1
|
Gupta A, Shaw P, Sharma SN, Gupta S, Sinha S. Site-Specific Chemical Modulation of a Flexible Azaproline Transporter to Enhance Epirubicin Accumulation in Drug-Resistant Human Glioblastoma Cells and Blood-Brain Barrier Penetration in Adult Zebrafish. Mol Pharm 2025. [PMID: 40230168 DOI: 10.1021/acs.molpharmaceut.4c01029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2025]
Abstract
Cell-penetrating peptides (CPPs) have emerged as nonviral biological carriers for the delivery of macromolecular therapeutics into cells. Despite their lower immunogenicity and cellular toxicity, CPPs often lack target specificity and proteolytic stability. Various modified CPPs have been reported to improve such selective targeting and pharmacokinetic properties in vivo. On this frontier, we have previously reported the synthesis and in vitro activity of a protease-stable non-natural δ-azaproline (δ-azp) containing CPP, named Flexible Azaproline Transporter-1 (FAT-1). In this study, we report the chemical synthesis of three modified FAT analogs (FAT-2, FAT-3, and FAT-4) and compare their biological efficacy in vitro. These analogs were designed by incorporating a β-alanine spacer between the two adjacent azaproline monomers, with structural variations (branched or linear) and terminal δ-N functionalization. Comparative biological efficacy studies demonstrated that FAT-2 exhibited the highest potency among the series, with enhanced cellular uptake and efficient endosomal escape in CHO cells. For the functional evaluation of FAT-2, the scaffold was conjugated to the antineoplastic drug, Epirubicin. The conjugate (Epi-FAT2) showed efficient induction of apoptosis in drug-resistant human glioblastoma (LN-229) cells, inhibited cell migration, and reduced ABCG2/P-glycoprotein-mediated drug efflux. The intraperitoneal (IP) administration of Epi-FAT2 in Wild Indian Karyotype (WIK) adult zebrafish revealed its superior blood-brain barrier (BBB) penetration capability with greater/diverse tissue-dependent accumulation. The promising results of FAT-2 in both in vitro and in vivo studies highlight its potential for the delivery of CNS therapeutics and exemplify the importance of suitable scaffold modification in CPPs for future studies.
Collapse
Affiliation(s)
- Abhishek Gupta
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, West Bengal, India
| | - Pallab Shaw
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, West Bengal, India
| | - Swrajit Nath Sharma
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, West Bengal, India
| | - Shalini Gupta
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, West Bengal, India
| | - Surajit Sinha
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, West Bengal, India
| |
Collapse
|
2
|
Leckie J, Yokota T. Integrating Machine Learning-Based Approaches into the Design of ASO Therapies. Genes (Basel) 2025; 16:185. [PMID: 40004514 PMCID: PMC11855077 DOI: 10.3390/genes16020185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/24/2025] [Accepted: 01/27/2025] [Indexed: 02/27/2025] Open
Abstract
Rare diseases impose a significant burden on affected individuals, caregivers, and healthcare systems worldwide. Developing effective therapeutics for these small patient populations presents substantial challenges. Antisense oligonucleotides (ASOs) have emerged as a promising therapeutic approach that targets the underlying genetic cause of disease at the RNA level. Several ASOs have gained FDA approval for the treatment of genetic conditions, including use in personalized N-of-1 trials. However, despite their potential, ASOs often exhibit limited clinical efficacy, and optimizing their design is a complex process influenced by numerous factors. Machine learning-based platforms, including eSkip-Finder and ASOptimizer, have been developed to address these challenges by predicting optimal ASO sequences and chemical modifications to enhance efficacy. eSkip-Finder focuses on exon-skipping applications, while ASOptimizer aims to optimize ASOs for RNA degradation. Preliminary in vitro results have demonstrated the promising predictive power of these platforms. However, limitations remain, including their generalizability to alternative targets and gaps in their consideration of all factors influencing ASO efficacy and safety. Continued advancements in machine learning models, alongside efforts to incorporate additional features affecting ASO efficacy and safety, hold significant promise for the field. These platforms have the potential to streamline ASO development, reduce associated costs, and improve clinical outcomes, positioning machine learning as a key tool in the future of ASO therapeutics.
Collapse
Affiliation(s)
- Jamie Leckie
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada;
| | - Toshifumi Yokota
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada;
- The Friends of Garrett Cumming Research & Muscular Dystrophy Canada HM Toupin Neurological Sciences Research, Edmonton, AB T6G 2H7, Canada
| |
Collapse
|
3
|
Chwalenia K, Wood MJA, Roberts TC. Progress and prospects in antisense oligonucleotide-mediated exon skipping therapies for Duchenne muscular dystrophy. J Muscle Res Cell Motil 2025:10.1007/s10974-024-09688-2. [PMID: 39883376 DOI: 10.1007/s10974-024-09688-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 12/11/2024] [Indexed: 01/31/2025]
Abstract
Recent years have seen enormous progress in the field of advanced therapeutics for the progressive muscle wasting disease Duchenne muscular dystrophy (DMD). In particular, four antisense oligonucleotide (ASO) therapies targeting various DMD-causing mutations have achieved FDA approval, marking major milestones in the treatment of this disease. These compounds are designed to induce alternative splicing events that restore the translation reading frame of the dystrophin gene, leading to the generation of internally-deleted, but mostly functional, pseudodystrophin proteins with the potential to compensate for the genetic loss of dystrophin. However, the efficacy of these compounds is very limited, with delivery remaining a key obstacle to effective therapy. There is therefore an urgent need for improved ASO technologies with better efficacy, and with applicability to a wider range of patient mutations. Here we discuss recent developments in ASO therapies for DMD, and future prospects with a focus on ASO chemical modification and bioconjugation strategies.
Collapse
Affiliation(s)
- Katarzyna Chwalenia
- Institute of Developmental and Regenerative Medicine, University of Oxford, IMS-Tetsuya Nakamura Building, Old Road Campus, Roosevelt Dr, Headington, Oxford, OX3 7TY, UK
- Department of Paediatrics, University of Oxford, South Parks Road, Oxford, OX1 3QX, UK
| | - Matthew J A Wood
- Institute of Developmental and Regenerative Medicine, University of Oxford, IMS-Tetsuya Nakamura Building, Old Road Campus, Roosevelt Dr, Headington, Oxford, OX3 7TY, UK
- Department of Paediatrics, University of Oxford, South Parks Road, Oxford, OX1 3QX, UK
- MDUK Oxford Neuromuscular Centre, Oxford, OX3 7TY, UK
| | - Thomas C Roberts
- Institute of Developmental and Regenerative Medicine, University of Oxford, IMS-Tetsuya Nakamura Building, Old Road Campus, Roosevelt Dr, Headington, Oxford, OX3 7TY, UK.
- Department of Paediatrics, University of Oxford, South Parks Road, Oxford, OX1 3QX, UK.
- MDUK Oxford Neuromuscular Centre, Oxford, OX3 7TY, UK.
| |
Collapse
|
4
|
Ruchi R, Raman GM, Kumar V, Bahal R. Evolution of antisense oligonucleotides: navigating nucleic acid chemistry and delivery challenges. Expert Opin Drug Discov 2025; 20:63-80. [PMID: 39653607 PMCID: PMC11823135 DOI: 10.1080/17460441.2024.2440095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 12/05/2024] [Indexed: 12/18/2024]
Abstract
INTRODUCTION Antisense oligonucleotide (ASO) was established as a viable therapeutic option for genetic disorders. ASOs can target RNAs implicated in various diseases, including upregulated mRNA and pre-mRNA undergoing abnormal alternative splicing events. Therapeutic applications of ASOs have been proven with the Food and Drug Administration approval of several drugs in recent years. Earlier enzymatic stability and delivery remains a big challenge for ASOs. Introducing new chemical modifications and new formulations resolving the issues related to the nuclease stability and delivery of the ASOs. Excitingly, ASOs-based bioconjugates that target the hepatocyte have gained much attraction. Efforts are ongoing to increase the therapeutic application of the ASOs to the extrahepatic tissue as well. AREA COVERED We have briefly discussed the mechanism of ASOs, the development of new chemistries, and delivery strategies for ASO-based drug discovery and development. The discussion focuses more on the already approved ASOs and those in the clinical development stage. EXPERT OPINION To expand the clinical application of ASOs, continuous effort is required to develop precise delivery strategies for targeting extrahepatic tissue to minimize the off-target effects.
Collapse
Affiliation(s)
- Ruchi Ruchi
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, USA
| | - Govind Mukesh Raman
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, USA
- Farmington High School, Farmington, CT, USA
| | - Vikas Kumar
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, USA
| | - Raman Bahal
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, USA
| |
Collapse
|
5
|
Wahane A, Kasina V, Pathuri M, Marro-Wilson C, Gupta A, Slack FJ, Bahal R. Development of bioconjugate-based delivery systems for nucleic acids. RNA (NEW YORK, N.Y.) 2024; 31:1-13. [PMID: 39477529 DOI: 10.1261/rna.080273.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Nucleic acids are a class of drugs that can modulate gene and protein expression by various mechanisms, namely, RNAi, mRNA degradation by RNase H cleavage, splice modulation, and steric blocking of protein binding or mRNA translation, thus exhibiting immense potential to treat various genetic and rare diseases. Unlike protein-targeted therapeutics, the clinical use of nucleic acids relies on Watson-Crick sequence recognition to regulate aberrant gene expression and impede protein translation. Though promising, targeted delivery remains a bottleneck for the clinical adoption of nucleic acid-based therapeutics. To overcome the delivery challenges associated with nucleic acids, various chemical modifications and bioconjugation-based delivery strategies have been explored. Currently, liver targeting by N-acetyl galactosamine (GalNAc) conjugation has been at the forefront for the treatment of rare and various metabolic diseases, which has led to FDA approval of four nucleic acid drugs. In addition, various other bioconjugation strategies have been explored to facilitate active organ and cell-enriched targeting. This review briefly covers the different classes of nucleic acids, their mechanisms of action, and their challenges. We also elaborate on recent advances in bioconjugation strategies in developing a diverse set of ligands for targeted delivery of nucleic acid drugs.
Collapse
Affiliation(s)
- Aniket Wahane
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut 06269, USA
| | - Vishal Kasina
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut 06269, USA
| | - Mounika Pathuri
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut 06269, USA
| | - Ciara Marro-Wilson
- Department of Pharmaceutical Sciences, University of Saint Joseph, West Hartford, Connecticut 06033, USA
| | - Anisha Gupta
- Department of Pharmaceutical Sciences, University of Saint Joseph, West Hartford, Connecticut 06033, USA
| | - Frank J Slack
- Department of Pathology, HMS Initiative for RNA Medicine, BIDMC Cancer Center, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Raman Bahal
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut 06269, USA
| |
Collapse
|
6
|
Maani Z, Rahbarnia L, Bahadori A, Chollou KM, Farajnia S. Spotlight on HIV-derived TAT peptide as a molecular shuttle in drug delivery. Drug Discov Today 2024; 29:104191. [PMID: 39322176 DOI: 10.1016/j.drudis.2024.104191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/08/2024] [Accepted: 09/19/2024] [Indexed: 09/27/2024]
Abstract
HIV-derived TAT peptide, with a high penetration rate into cells and its nonimmunogenic and minimally toxic nature, is an attractive tool for enhancing the biodistribution of drugs and their systemic administration. Despite the presence of numerous promising preclinical investigations illustrating its capability to specifically target distinct tissues and deliver a diverse range of pharmacological agents, the efficacy of various clinical trials incorporating TAT has been impeded by several considerable obstacles. Hence, there is much need for an in-depth investigation concerning the application of TAT in drug delivery mechanisms. In this review, we have elucidated the structure of TAT and its utility in the proficient delivery of various types of bioactive molecules.
Collapse
Affiliation(s)
- Zahra Maani
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leila Rahbarnia
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Ali Bahadori
- Department of Medical Microbiology, Sarab Faculty of Medical Sciences, Sarab, Iran
| | | | - Safar Farajnia
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
7
|
Stephen C, Palmer D, Mishanina TV. Opportunities for Riboswitch Inhibition by Targeting Co-Transcriptional RNA Folding Events. Int J Mol Sci 2024; 25:10495. [PMID: 39408823 PMCID: PMC11476745 DOI: 10.3390/ijms251910495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/27/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024] Open
Abstract
Antibiotic resistance is a critical global health concern, causing millions of prolonged bacterial infections every year and straining our healthcare systems. Novel antibiotic strategies are essential to combating this health crisis and bacterial non-coding RNAs are promising targets for new antibiotics. In particular, a class of bacterial non-coding RNAs called riboswitches has attracted significant interest as antibiotic targets. Riboswitches reside in the 5'-untranslated region of an mRNA transcript and tune gene expression levels in cis by binding to a small-molecule ligand. Riboswitches often control expression of essential genes for bacterial survival, making riboswitch inhibitors an exciting prospect for new antibacterials. Synthetic ligand mimics have predominated the search for new riboswitch inhibitors, which are designed based on static structures of a riboswitch's ligand-sensing aptamer domain or identified by screening a small-molecule library. However, many small-molecule inhibitors that bind an isolated riboswitch aptamer domain with high affinity in vitro lack potency in vivo. Importantly, riboswitches fold and respond to the ligand during active transcription in vivo. This co-transcriptional folding is often not considered during inhibitor design, and may explain the discrepancy between a low Kd in vitro and poor inhibition in vivo. In this review, we cover advances in riboswitch co-transcriptional folding and illustrate how intermediate structures can be targeted by antisense oligonucleotides-an exciting new strategy for riboswitch inhibitor design.
Collapse
Affiliation(s)
| | | | - Tatiana V. Mishanina
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, USA (D.P.)
| |
Collapse
|
8
|
Malinowska AL, Huynh HL, Correa-Sánchez AF, Bose S. Thiol-Specific Linkers for the Synthesis of Oligonucleotide Conjugates via Metal-Free Thiol-Ene Click Reaction. Bioconjug Chem 2024; 35. [PMID: 39264307 PMCID: PMC11487498 DOI: 10.1021/acs.bioconjchem.4c00336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/20/2024] [Accepted: 09/03/2024] [Indexed: 09/13/2024]
Abstract
Chemical conjugation of oligonucleotides is widely used to improve their delivery and therapeutic potential. A variety of strategies are implemented to efficiently modify oligonucleotides with conjugating partners. The linkers typically used for oligonucleotide conjugation have limitations in terms of stability or ease of synthesis, which generates the need for providing new improved linkers for oligonucleotide conjugation. Herein, we report the synthesis of novel vinylpyrimidine phosphoramidite building blocks, which can be incorporated into an oligonucleotide by standard solid-phase synthesis in an automated synthesizer. These linker-bearing oligonucleotides can be easily conjugated in a biocompatible manner with thiol-functionalized molecules leading to the efficient generation of oligonucleotide conjugates.
Collapse
Affiliation(s)
- Anna L. Malinowska
- Medical Research Council, Nucleic Acid
Therapy Accelerator (UKRI) Research Complex at Harwell (RCaH), Rutherford Appleton Laboratory, Harwell OX11 0FA, U.K.
| | - Harley L. Huynh
- Medical Research Council, Nucleic Acid
Therapy Accelerator (UKRI) Research Complex at Harwell (RCaH), Rutherford Appleton Laboratory, Harwell OX11 0FA, U.K.
| | - Andrés F. Correa-Sánchez
- Medical Research Council, Nucleic Acid
Therapy Accelerator (UKRI) Research Complex at Harwell (RCaH), Rutherford Appleton Laboratory, Harwell OX11 0FA, U.K.
| | - Sritama Bose
- Medical Research Council, Nucleic Acid
Therapy Accelerator (UKRI) Research Complex at Harwell (RCaH), Rutherford Appleton Laboratory, Harwell OX11 0FA, U.K.
| |
Collapse
|
9
|
Dume B, Licarete E, Banciu M. Advancing cancer treatments: The role of oligonucleotide-based therapies in driving progress. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102256. [PMID: 39045515 PMCID: PMC11264197 DOI: 10.1016/j.omtn.2024.102256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Although recent advancements in cancer immunology have resulted in the approval of numerous immunotherapies, minimal progress has been observed in addressing hard-to-treat cancers. In this context, therapeutic oligonucleotides, including interfering RNAs, antisense oligonucleotides, aptamers, and DNAzymes, have gained a central role in cancer therapeutic approaches due to their capacity to regulate gene expression and protein function with reduced toxicity compared with conventional chemotherapeutics. Nevertheless, systemic administration of naked oligonucleotides faces many extra- and intracellular challenges that can be overcome by using effective delivery systems. Thus, viral and non-viral carriers can improve oligonucleotide stability and intracellular uptake, enhance tumor accumulation, and increase the probability of endosomal escape while minimizing other adverse effects. Therefore, gaining more insight into fundamental mechanisms of actions of various oligonucleotides and the challenges posed by naked oligonucleotide administration, this article provides a comprehensive review of the recent progress on oligonucleotide delivery systems and an overview of completed and ongoing cancer clinical trials that can shape future oncological treatments.
Collapse
Affiliation(s)
- Bogdan Dume
- Doctoral School in Integrative Biology, Faculty of Biology and Geology, Babes-Bolyai University, 400006 Cluj-Napoca, Romania
| | - Emilia Licarete
- Department of Molecular Biology and Biotechnology, Centre of Systems Biology, Biodiversity and Bioresources, Faculty of Biology and Geology, Babes-Bolyai University, 400006 Cluj-Napoca, Romania
| | - Manuela Banciu
- Department of Molecular Biology and Biotechnology, Centre of Systems Biology, Biodiversity and Bioresources, Faculty of Biology and Geology, Babes-Bolyai University, 400006 Cluj-Napoca, Romania
| |
Collapse
|
10
|
Auger M, Sorroza-Martinez L, Brahiti N, Huppé CA, Faucher-Giguère L, Arbi I, Hervault M, Cheng X, Gaillet B, Couture F, Guay D, Soultan AH. Enhancing peptide and PMO delivery to mouse airway epithelia by chemical conjugation with the amphiphilic peptide S10. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102290. [PMID: 39233851 PMCID: PMC11372590 DOI: 10.1016/j.omtn.2024.102290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 07/26/2024] [Indexed: 09/06/2024]
Abstract
Delivery of antisense oligonucleotides (ASOs) to airway epithelial cells is arduous due to the physiological barriers that protect the lungs and the endosomal entrapment phenomenon, which prevents ASOs from reaching their intracellular targets. Various delivery strategies involving peptide-, lipid-, and polymer-based carriers are being investigated, yet the challenge remains. S10 is a peptide-based delivery agent that enables the intracellular delivery of biomolecules such as GFP, CRISPR-associated nuclease ribonucleoprotein (RNP), base editor RNP, and a fluorescent peptide into lung cells after intranasal or intratracheal administrations to mice, ferrets, and rhesus monkeys. Herein, we demonstrate that covalently attaching S10 to a fluorescently labeled peptide or a functional splice-switching phosphorodiamidate morpholino oligomer improves their intracellular delivery to airway epithelia in mice after a single intranasal instillation. Data reveal a homogeneous delivery from the trachea to the distal region of the lungs, specifically into the cells lining the airway. Quantitative measurements further highlight that conjugation via a disulfide bond through a pegylated (PEG) linker was the most beneficial strategy compared with direct conjugation (without the PEG linker) or conjugation via a permanent thiol-maleimide bond. We believe that S10-based conjugation provides a great strategy to achieve intracellular delivery of peptides and ASOs with therapeutic properties in lungs.
Collapse
Affiliation(s)
- Maud Auger
- Feldan Therapeutics, 2666 Boulevard du Parc Technologique Suite 290, Québec, QC G1P 4S6, Canada
- Département de génie chimique, Faculté des Sciences et de Génie, Université Laval, Pavillon Adrien-Pouliot 1065, av. de la Médecine, Bureau 3550, Québec, QC G1V 0A6, Canada
| | - Luis Sorroza-Martinez
- Feldan Therapeutics, 2666 Boulevard du Parc Technologique Suite 290, Québec, QC G1P 4S6, Canada
- Département de génie chimique, Faculté des Sciences et de Génie, Université Laval, Pavillon Adrien-Pouliot 1065, av. de la Médecine, Bureau 3550, Québec, QC G1V 0A6, Canada
| | - Nadine Brahiti
- Feldan Therapeutics, 2666 Boulevard du Parc Technologique Suite 290, Québec, QC G1P 4S6, Canada
| | - Carole-Ann Huppé
- Centre Collégial de Transfert de Technologie en Biotechnologies TransBIOTech, 201 Rue Monseigneur-Bourget, Lévis, QC G6V 6Z3, Canada
| | | | - Imen Arbi
- Feldan Therapeutics, 2666 Boulevard du Parc Technologique Suite 290, Québec, QC G1P 4S6, Canada
| | - Maxime Hervault
- Feldan Therapeutics, 2666 Boulevard du Parc Technologique Suite 290, Québec, QC G1P 4S6, Canada
| | - Xue Cheng
- Feldan Therapeutics, 2666 Boulevard du Parc Technologique Suite 290, Québec, QC G1P 4S6, Canada
| | - Bruno Gaillet
- Département de génie chimique, Faculté des Sciences et de Génie, Université Laval, Pavillon Adrien-Pouliot 1065, av. de la Médecine, Bureau 3550, Québec, QC G1V 0A6, Canada
| | - Frédéric Couture
- Centre Collégial de Transfert de Technologie en Biotechnologies TransBIOTech, 201 Rue Monseigneur-Bourget, Lévis, QC G6V 6Z3, Canada
| | - David Guay
- Feldan Therapeutics, 2666 Boulevard du Parc Technologique Suite 290, Québec, QC G1P 4S6, Canada
- Département de génie chimique, Faculté des Sciences et de Génie, Université Laval, Pavillon Adrien-Pouliot 1065, av. de la Médecine, Bureau 3550, Québec, QC G1V 0A6, Canada
| | - Al-Halifa Soultan
- Feldan Therapeutics, 2666 Boulevard du Parc Technologique Suite 290, Québec, QC G1P 4S6, Canada
| |
Collapse
|
11
|
Duan X, Wang P, He L, He Z, Wang S, Yang F, Gao C, Ren W, Lin J, Chen T, Xu C, Li J, Wu A. Peptide-Functionalized Inorganic Oxide Nanomaterials for Solid Cancer Imaging and Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311548. [PMID: 38333964 DOI: 10.1002/adma.202311548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/15/2024] [Indexed: 02/10/2024]
Abstract
The diagnosis and treatment of solid tumors have undergone significant advancements marked by a trend toward increased specificity and integration of imaging and therapeutic functions. The multifaceted nature of inorganic oxide nanomaterials (IONs), which boast optical, magnetic, ultrasonic, and biochemical modulatory properties, makes them ideal building blocks for developing multifunctional nanoplatforms. A promising class of materials that have emerged in this context are peptide-functionalized inorganic oxide nanomaterials (PFIONs), which have demonstrated excellent performance in multifunctional imaging and therapy, making them potential candidates for advancing solid tumor diagnosis and treatment. Owing to the functionalities of peptides in tumor targeting, penetration, responsiveness, and therapy, well-designed PFIONs can specifically accumulate and release therapeutic or imaging agents at the solid tumor sites, enabling precise imaging and effective treatment. This review provides an overview of the recent advances in the use of PFIONs for the imaging and treatment of solid tumors, highlighting the superiority of imaging and therapeutic integration as well as synergistic treatment. Moreover, the review discusses the challenges and prospects of PFIONs in depth, aiming to promote the intersection of the interdisciplinary to facilitate their clinical translation and the development of personalized diagnostic and therapeutic systems by optimizing the material systems.
Collapse
Affiliation(s)
- Xiaolin Duan
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Cixi, 315300, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Pin Wang
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Cixi, 315300, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lulu He
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Cixi, 315300, China
| | - Zhen He
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Cixi, 315300, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shiwei Wang
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Cixi, 315300, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fang Yang
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Cixi, 315300, China
| | - Changyong Gao
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Cixi, 315300, China
| | - Wenzhi Ren
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Cixi, 315300, China
| | - Jie Lin
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Cixi, 315300, China
| | - Tianxiang Chen
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Cixi, 315300, China
| | - Chen Xu
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Cixi, 315300, China
| | - Juan Li
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Cixi, 315300, China
| | - Aiguo Wu
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Cixi, 315300, China
| |
Collapse
|
12
|
Grau M, Wagner E. Strategies and mechanisms for endosomal escape of therapeutic nucleic acids. Curr Opin Chem Biol 2024; 81:102506. [PMID: 39096817 DOI: 10.1016/j.cbpa.2024.102506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/25/2024] [Accepted: 07/12/2024] [Indexed: 08/05/2024]
Abstract
Despite impressive recent establishment of therapeutic nucleic acids as drugs and vaccines, their broader medical use is impaired by modest performance in intracellular delivery. Inefficient endosomal escape presents a major limitation responsible for inadequate cytosolic cargo release. Depending on the carrier, this endosomal barrier can strongly limit or even abolish nucleic acid delivery. Different recent endosomal escape strategies and their hypothesized mechanisms are reviewed.
Collapse
Affiliation(s)
- Melina Grau
- Pharmaceutical Biotechnology, Department of Pharmacy, Ludwig-Maximilians-Universität Munich, Butenandtstrasse 5-13, 81377 Munich, Germany; CNATM - Cluster for Nucleic Acid Therapeutics Munich, Germany
| | - Ernst Wagner
- Pharmaceutical Biotechnology, Department of Pharmacy, Ludwig-Maximilians-Universität Munich, Butenandtstrasse 5-13, 81377 Munich, Germany; CNATM - Cluster for Nucleic Acid Therapeutics Munich, Germany; Center for Nanoscience (CeNS), LMU Munich, 80799 Munich, Germany.
| |
Collapse
|
13
|
Li S, Xiong F, Zhang S, Liu J, Gao G, Xie J, Wang Y. Oligonucleotide therapies for nonalcoholic steatohepatitis. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102184. [PMID: 38665220 PMCID: PMC11044058 DOI: 10.1016/j.omtn.2024.102184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Nonalcoholic steatohepatitis (NASH) represents a severe disease subtype of nonalcoholic fatty liver disease (NAFLD) that is thought to be highly associated with systemic metabolic abnormalities. It is characterized by a series of substantial liver damage, including hepatocellular steatosis, inflammation, and fibrosis. The end stage of NASH, in some cases, may result in cirrhosis and hepatocellular carcinoma (HCC). Nowadays a large number of investigations are actively under way to test various therapeutic strategies, including emerging oligonucleotide drugs (e.g., antisense oligonucleotide, small interfering RNA, microRNA, mimic/inhibitor RNA, and small activating RNA) that have shown high potential in treating this fatal liver disease. This article systematically reviews the pathogenesis of NASH/NAFLD, the promising druggable targets proven by current studies in chemical compounds or biological drug development, and the feasibility and limitations of oligonucleotide-based therapeutic approaches under clinical or pre-clinical studies.
Collapse
Affiliation(s)
- Sixu Li
- Department of Pathophysiology, West China College of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610066, China
| | - Feng Xiong
- Department of Cardiology, The Third People’s Hospital of Chengdu, Chengdu 610031, China
| | - Songbo Zhang
- Department of Breast Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu 610041, China
| | - Jinghua Liu
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Guangping Gao
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Viral Vector Core, University of Massachusetts Chan Medical, School, Worcester, MA 01605, USA
| | - Jun Xie
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Viral Vector Core, University of Massachusetts Chan Medical, School, Worcester, MA 01605, USA
| | - Yi Wang
- Department of Pathophysiology, West China College of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610066, China
| |
Collapse
|
14
|
Singh D. Revolutionizing Lung Cancer Treatment: Innovative CRISPR-Cas9 Delivery Strategies. AAPS PharmSciTech 2024; 25:129. [PMID: 38844700 DOI: 10.1208/s12249-024-02834-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 05/08/2024] [Indexed: 06/11/2024] Open
Abstract
Lung carcinoma, including both non-small cell lung cancer (NSCLC) and small cell lung cancer (SCLC), remains a significant global health challenge due to its high morbidity and mortality rates. The objsective of this review is to meticulously examine the current advancements and strategies in the delivery of CRISPR-Cas9 gene-editing technology for the treatment of lung carcinoma. This technology heralds a new era in molecular biology, offering unprecedented precision in genomic modifications. However, its therapeutic potential is contingent upon the development of effective delivery mechanisms that ensure the efficient and specific transport of gene-editing tools to tumor cells. We explore a variety of delivery approaches, such as viral vectors, lipid-based nanoparticles, and physical methods, highlighting their respective advantages, limitations, and recent breakthroughs. This review also delves into the translational and clinical significance of these strategies, discussing preclinical and clinical studies that investigate the feasibility, efficacy, and safety of CRISPR-Cas9 delivery for lung carcinoma. By scrutinizing the landscape of ongoing clinical trials and offering translational perspectives, we aim to elucidate the current state and future directions of this rapidly evolving field. The review is structured to first introduce the problem and significance of lung carcinoma, followed by an overview of CRISPR-Cas9 technology, a detailed examination of delivery strategies, and an analysis of clinical applications and regulatory considerations. Our discussion concludes with future perspectives and challenges, such as optimizing delivery strategies, enhancing specificity, mitigating immunogenicity concerns, and addressing regulatory issues. This comprehensive overview seeks to provide insights into the potential of CRISPR-Cas9 as a revolutionary approach for targeted therapies and personalized medicine in lung carcinoma, emphasizing the importance of delivery strategy development in realizing the full potential of this groundbreaking technology.
Collapse
Affiliation(s)
- Dilpreet Singh
- University Institute of Pharma Sciences, Chandigarh University, Gharuan, Mohali, 140413, India.
- University Centre for Research and Development, Chandigarh University, Gharuan, Mohali, 140413, India.
| |
Collapse
|
15
|
Leckie J, Yokota T. Potential of Cell-Penetrating Peptide-Conjugated Antisense Oligonucleotides for the Treatment of SMA. Molecules 2024; 29:2658. [PMID: 38893532 PMCID: PMC11173757 DOI: 10.3390/molecules29112658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
Spinal muscular atrophy (SMA) is a severe neuromuscular disorder that is caused by mutations in the survival motor neuron 1 (SMN1) gene, hindering the production of functional survival motor neuron (SMN) proteins. Antisense oligonucleotides (ASOs), a versatile DNA-like drug, are adept at binding to target RNA to prevent translation or promote alternative splicing. Nusinersen is an FDA-approved ASO for the treatment of SMA. It effectively promotes alternative splicing in pre-mRNA transcribed from the SMN2 gene, an analog of the SMN1 gene, to produce a greater amount of full-length SMN protein, to compensate for the loss of functional protein translated from SMN1. Despite its efficacy in ameliorating SMA symptoms, the cellular uptake of these ASOs is suboptimal, and their inability to penetrate the CNS necessitates invasive lumbar punctures. Cell-penetrating peptides (CPPs), which can be conjugated to ASOs, represent a promising approach to improve the efficiency of these treatments for SMA and have the potential to transverse the blood-brain barrier to circumvent the need for intrusive intrathecal injections and their associated adverse effects. This review provides a comprehensive analysis of ASO therapies, their application for the treatment of SMA, and the encouraging potential of CPPs as delivery systems to improve ASO uptake and overall efficiency.
Collapse
Affiliation(s)
- Jamie Leckie
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Toshifumi Yokota
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
- The Friends of Garrett Cumming Research & Muscular Dystrophy Canada HM Toupin Neurological Sciences Research, Edmonton, AB T6G 2H7, Canada
| |
Collapse
|
16
|
Dowaidar M. Uptake pathways of cell-penetrating peptides in the context of drug delivery, gene therapy, and vaccine development. Cell Signal 2024; 117:111116. [PMID: 38408550 DOI: 10.1016/j.cellsig.2024.111116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/19/2024] [Accepted: 02/21/2024] [Indexed: 02/28/2024]
Abstract
Cell-penetrating peptides have been extensively utilized for the purpose of facilitating the intracellular delivery of cargo that is impermeable to the cell membrane. The researchers have exhibited proficient delivery capabilities for oligonucleotides, thereby establishing cell-penetrating peptides as a potent instrument in the field of gene therapy. Furthermore, they have demonstrated a high level of efficiency in delivering several additional payloads. Cell penetrating peptides (CPPs) possess the capability to efficiently transport therapeutic molecules to specific cells, hence offering potential remedies for many illnesses. Hence, their utilization is imperative for the improvement of therapeutic vaccines. In contemporary studies, a plethora of cell-penetrating peptides have been unveiled, each characterized by its own distinct structural attributes and associated mechanisms. Although it is widely acknowledged that there are multiple pathways through which particles might be internalized, a comprehensive understanding of the specific mechanisms by which these particles enter cells has to be fully elucidated. The absorption of cell-penetrating peptides can occur through either direct translocation or endocytosis. However, it is worth noting that categories of cell-penetrating peptides are not commonly linked to specific entrance mechanisms. Furthermore, research has demonstrated that cell-penetrating peptides (CPPs) possess the capacity to enhance antigen uptake by cells and facilitate the traversal of various biological barriers. The primary objective of this work is to examine the mechanisms by which cell-penetrating peptides are internalized by cells and their significance in facilitating the administration of drugs, particularly in the context of gene therapy and vaccine development. The current study investigates the immunostimulatory properties of numerous vaccine components administered using different cell-penetrating peptides (CPPs). This study encompassed a comprehensive discussion on various topics, including the uptake pathways and mechanisms of cell-penetrating peptides (CPPs), the utilization of CPPs as innovative vectors for gene therapy, the role of CPPs in vaccine development, and the potential of CPPs for antigen delivery in the context of vaccine development.
Collapse
Affiliation(s)
- Moataz Dowaidar
- Bioengineering Department, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran 31261, Saudi Arabia; Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran 31261, Saudi Arabia; Biosystems and Machines Research Center, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran 31261, Saudi Arabia.
| |
Collapse
|
17
|
MacNair CR, Rutherford ST, Tan MW. Alternative therapeutic strategies to treat antibiotic-resistant pathogens. Nat Rev Microbiol 2024; 22:262-275. [PMID: 38082064 DOI: 10.1038/s41579-023-00993-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2023] [Indexed: 04/19/2024]
Abstract
Resistance threatens to render antibiotics - which are essential for modern medicine - ineffective, thus posing a threat to human health. The discovery of novel classes of antibiotics able to overcome resistance has been stalled for decades, with the developmental pipeline relying almost entirely on variations of existing chemical scaffolds. Unfortunately, this approach has been unable to keep pace with resistance evolution, necessitating new therapeutic strategies. In this Review, we highlight recent efforts to discover non-traditional antimicrobials, specifically describing the advantages and limitations of antimicrobial peptides and macrocycles, antibodies, bacteriophages and antisense oligonucleotides. These approaches have the potential to stem the tide of resistance by expanding the physicochemical property space and target spectrum occupied by currently approved antibiotics.
Collapse
Affiliation(s)
- Craig R MacNair
- Department of Infectious Diseases, Genentech Inc., South San Francisco, CA, USA
| | - Steven T Rutherford
- Department of Infectious Diseases, Genentech Inc., South San Francisco, CA, USA
| | - Man-Wah Tan
- Department of Infectious Diseases, Genentech Inc., South San Francisco, CA, USA.
| |
Collapse
|
18
|
Assefa M, Gepfert A, Zaheer M, Hum JM, Skinner BW. Casimersen (AMONDYS 45™): An Antisense Oligonucleotide for Duchenne Muscular Dystrophy. Biomedicines 2024; 12:912. [PMID: 38672266 PMCID: PMC11048227 DOI: 10.3390/biomedicines12040912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/10/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
Casimersen (AMONDYS 45TM) is an antisense oligonucleotide of the phosphorodiamidate morpholino oligomer subclass developed by Sarepta therapeutics. It was approved by the Food and Drug Administration (FDA) in February 2021 to treat Duchenne muscular dystrophy (DMD) in patients whose DMD gene mutation is amenable to exon 45 skipping. Administered intravenously, casimersen binds to the pre-mRNA of the DMD gene to skip a mutated region of an exon, thereby producing an internally truncated yet functional dystrophin protein in DMD patients. This is essential in maintaining the structure of a myocyte membrane. While casimersen is currently continuing in phase III of clinical trials in various countries, it was granted approval by the FDA under the accelerated approval program due to its observed increase in dystrophin production. This article discusses the pathophysiology of DMD, summarizes available treatments thus far, and provides a full drug review of casimersen (AMONDYS 45TM).
Collapse
Affiliation(s)
- Milyard Assefa
- School of Medicine, University of Virginia, Charlottesville, VA 22903, USA;
| | - Addison Gepfert
- College of Osteopathic Medicine, Marian University, Indianapolis, IN 46222, USA; (A.G.); (M.Z.)
| | - Meesam Zaheer
- College of Osteopathic Medicine, Marian University, Indianapolis, IN 46222, USA; (A.G.); (M.Z.)
| | - Julia M. Hum
- Division of Biomedical Sciences, College of Osteopathic Medicine, Marian University, Indianapolis, IN 46222, USA
| | - Brian W. Skinner
- Division of Clinical Sciences, College of Osteopathic Medicine, Marian University, Indianapolis, IN 46222, USA;
| |
Collapse
|
19
|
Silvestrini AVP, Morais MF, Debiasi BW, Praça FG, Bentley MVLB. Nanotechnology strategies to address challenges in topical and cellular delivery of siRNAs in skin disease therapy. Adv Drug Deliv Rev 2024; 207:115198. [PMID: 38341146 DOI: 10.1016/j.addr.2024.115198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/14/2023] [Accepted: 02/02/2024] [Indexed: 02/12/2024]
Abstract
Gene therapy is one of the most advanced therapies in current medicine. In particular, interference RNA-based therapy by small interfering RNA (siRNA) has gained attention in recent years as it is a highly versatile, selective and specific therapy. In dermatological conditions, topical delivery of siRNA offers numerous therapeutic advantages, mainly by inhibiting the expression of target transcripts directly in the skin. However, crossing the stratum corneum and overcoming intracellular barriers is an inherent challenge. Substantial efforts by scientists have moved towards the use of multimodal and multifunctional nanoparticles to overcome these barriers and achieve greater bioavailability in their site of action, the cytoplasm. In this review the most innovative strategies based on nanoparticle and physical methods are presented, as well as the design principles and the main factors that contribute to the performance of these systems. This review also highlights the synergistic contributions of medicine, nanotechnology, and molecular biology to advancing translational research into siRNA-based therapeutics for skin diseases.
Collapse
Affiliation(s)
- Ana Vitoria Pupo Silvestrini
- School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Av. do Café, s/n, 14040-903 Ribeirão Preto, SP, Brazil
| | - Milena Finazzi Morais
- School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Av. do Café, s/n, 14040-903 Ribeirão Preto, SP, Brazil
| | - Bryan Wender Debiasi
- School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Av. do Café, s/n, 14040-903 Ribeirão Preto, SP, Brazil
| | - Fabíola Garcia Praça
- School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Av. do Café, s/n, 14040-903 Ribeirão Preto, SP, Brazil
| | - Maria Vitória Lopes Badra Bentley
- School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Av. do Café, s/n, 14040-903 Ribeirão Preto, SP, Brazil.
| |
Collapse
|
20
|
Tarchoun K, Soltész D, Farkas V, Lee HJ, Szabó I, Bánóczi Z. Influence of Aza-Glycine Substitution on the Internalization of Penetratin. Pharmaceutics 2024; 16:477. [PMID: 38675138 PMCID: PMC11053488 DOI: 10.3390/pharmaceutics16040477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/22/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
The cell-penetrating peptide (CPP) penetratin has gained much attention over many years due to its potential role as a transporter for a broad range of cargo into cells. The modification of penetratin has been extensively investigated too. Aza-peptides are peptide analogs in which one or more of the amino residues are replaced by a semicarbazide. This substitution results in conformational restrictions and modifications in hydrogen bonding properties, which affect the structure and may lead to enhanced activity and selectivity of the modified peptide. In this work, the Trp residues of penetratin were substituted by aza-glycine or glycine residues to examine the effect of these modifications on the cellular uptake and the internalization mechanism. The substitution of Trp48 or Trp48,56 dramatically reduced the internalization, showing the importance of Trp48 in cellular uptake. Interestingly, while aza-glycine in the position of Trp56 increased the cellular uptake, Gly reduced it. The two Trp-modified derivatives showed altered internalization pathways, too. Based on our knowledge, this is the first study about the effect of aza-amino acid substitution on the cell entry of CPPs. Our results suggest that aza-amino acid insertion is a useful modification to change the internalization of a CPP.
Collapse
Affiliation(s)
- Karima Tarchoun
- Institute of Chemistry, Faculty of Science, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/A, 1117 Budapest, Hungary; (K.T.); (D.S.)
- Hevesy György PhD School of Chemistry, Institute of Chemistry, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/A, 1117 Budapest, Hungary
| | - Dóra Soltész
- Institute of Chemistry, Faculty of Science, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/A, 1117 Budapest, Hungary; (K.T.); (D.S.)
- Hevesy György PhD School of Chemistry, Institute of Chemistry, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/A, 1117 Budapest, Hungary
| | - Viktor Farkas
- HUN-REN-ELTE Protein Modeling Research Group, Institute of Chemistry, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/A, 1117 Budapest, Hungary;
| | - Ho-Jin Lee
- Department of Natural Sciences, Southwest Tennessee Community College, Memphis, TN 38015, USA;
- Division of Natural and Mathematics Sciences, LeMoyne-Own College, Memphis, TN 38126, USA
| | - Ildikó Szabó
- HUN-REN-ELTE Research Group of Peptide Chemistry, 1117 Budapest, Hungary;
| | - Zoltán Bánóczi
- Institute of Chemistry, Faculty of Science, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/A, 1117 Budapest, Hungary; (K.T.); (D.S.)
| |
Collapse
|
21
|
Tang A, Yokota T. Duchenne muscular dystrophy: promising early-stage clinical trials to watch. Expert Opin Investig Drugs 2024; 33:201-217. [PMID: 38291016 DOI: 10.1080/13543784.2024.2313105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 01/28/2024] [Indexed: 02/01/2024]
Abstract
INTRODUCTION Current therapies are unable to cure Duchenne muscular dystrophy (DMD), a severe and common form of muscular dystrophy, and instead aim to delay disease progression. Several treatments currently in phase I trials could increase the number of therapeutic options available to patients. AREAS COVERED This review aims to provide an overview of current treatments undergoing or having recently undergone early-stage trials. Several exon-skipping and gene therapy approaches are currently being investigated at the clinical stage to address an unmet need for DMD treatments. This article also covers Phase I trials from the last 5 years that involve inhibitors, small molecules, a purified synthetic flavanol, a cell-based therapy, and repurposed cardiac or tumor medications. EXPERT OPINION With antisense oligonucleotide (AON) treatments making up the majority of conditionally approved DMD therapies, most of the clinical trials occurring within the last 5 years have also evaluated exon-skipping AONs. The approval of Elevidys, a micro-dystrophin therapy, is reflected in a recent trend toward gene transfer therapies in phase I DMD clinical trials, but their safety and efficacy are being established in this phase of development. Other Phase I clinical-stage approaches are diverse, but have a range in efficacy, safety, and endpoint measures.
Collapse
Affiliation(s)
- Annie Tang
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Toshifumi Yokota
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
22
|
Preto AJ, Caniceiro AB, Duarte F, Fernandes H, Ferreira L, Mourão J, Moreira IS. POSEIDON: Peptidic Objects SEquence-based Interaction with cellular DOmaiNs: a new database and predictor. J Cheminform 2024; 16:18. [PMID: 38365724 PMCID: PMC10874016 DOI: 10.1186/s13321-024-00810-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 02/07/2024] [Indexed: 02/18/2024] Open
Abstract
Cell-penetrating peptides (CPPs) are short chains of amino acids that have shown remarkable potential to cross the cell membrane and deliver coupled therapeutic cargoes into cells. Designing and testing different CPPs to target specific cells or tissues is crucial to ensure high delivery efficiency and reduced toxicity. However, in vivo/in vitro testing of various CPPs can be both time-consuming and costly, which has led to interest in computational methodologies, such as Machine Learning (ML) approaches, as faster and cheaper methods for CPP design and uptake prediction. However, most ML models developed to date focus on classification rather than regression techniques, because of the lack of informative quantitative uptake values. To address these challenges, we developed POSEIDON, an open-access and up-to-date curated database that provides experimental quantitative uptake values for over 2,300 entries and physicochemical properties of 1,315 peptides. POSEIDON also offers physicochemical properties, such as cell line, cargo, and sequence, among others. By leveraging this database along with cell line genomic features, we processed a dataset of over 1,200 entries to develop an ML regression CPP uptake predictor. Our results demonstrated that POSEIDON accurately predicted peptide cell line uptake, achieving a Pearson correlation of 0.87, Spearman correlation of 0.88, and r2 score of 0.76, on an independent test set. With its comprehensive and novel dataset, along with its potent predictive capabilities, the POSEIDON database and its associated ML predictor signify a significant leap forward in CPP research and development. The POSEIDON database and ML Predictor are available for free and with a user-friendly interface at https://moreiralab.com/resources/poseidon/ , making them valuable resources for advancing research on CPP-related topics. Scientific Contribution Statement: Our research addresses the critical need for more efficient and cost-effective methodologies in Cell-Penetrating Peptide (CPP) research. We introduced POSEIDON, a comprehensive and freely accessible database that delivers quantitative uptake values for over 2,300 entries, along with detailed physicochemical profiles for 1,315 peptides. Recognizing the limitations of current Machine Learning (ML) models for CPP design, our work leveraged the rich dataset provided by POSEIDON to develop a highly accurate ML regression model for predicting CPP uptake.
Collapse
Affiliation(s)
- António J Preto
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal
- PhD Programme in Experimental Biology and Biomedicine, Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Casa Costa Alemão, 3030-789, Coimbra, Portugal
| | - Ana B Caniceiro
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal
- Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal
| | - Francisco Duarte
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal
| | - Hugo Fernandes
- CNC - Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- FMUC - Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- MIA - Multidisciplinary Institute of Ageing, University of Coimbra, Coimbra, Portugal
| | - Lino Ferreira
- CNC - Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- FMUC - Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Joana Mourão
- CNC - Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Irina S Moreira
- Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal.
- CNC - Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
23
|
González-Martínez I, Cerro-Herreros E, Moreno N, García-Rey A, Espinosa-Espinosa J, Carrascosa-Sàez M, Piqueras-Losilla D, Arzumanov A, Seoane-Miraz D, Jad Y, Raz R, Wood MJ, Varela MA, Llamusí B, Artero R. Peptide-conjugated antimiRs improve myotonic dystrophy type 1 phenotypes by promoting endogenous MBNL1 expression. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 34:102024. [PMID: 37744174 PMCID: PMC10514136 DOI: 10.1016/j.omtn.2023.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/01/2023] [Indexed: 09/26/2023]
Abstract
Myotonic dystrophy type 1 (DM1) is a rare neuromuscular disease caused by a CTG repeat expansion in the DMPK gene that generates toxic RNA with a myriad of downstream alterations in RNA metabolism. A key consequence is the sequestration of alternative splicing regulatory proteins MBNL1/2 by expanded transcripts in the affected tissues. MBNL1/2 depletion interferes with a developmental alternative splicing switch that causes the expression of fetal isoforms in adults. Boosting the endogenous expression of MBNL proteins by inhibiting the natural translational repressors miR-23b and miR-218 has previously been shown to be a promising therapeutic approach. We designed antimiRs against both miRNAs with a phosphorodiamidate morpholino oligonucleotide (PMO) chemistry conjugated to cell-penetrating peptides (CPPs) to improve delivery to affected tissues. In DM1 cells, CPP-PMOs significantly increased MBNL1 levels. In some candidates, this was achieved using concentrations less than two orders of magnitude below the median toxic concentration, with up to 5.38-fold better therapeutic window than previous antagomiRs. In HSALR mice, intravenous injections of CPP-PMOs improve molecular, histopathological, and functional phenotypes, without signs of toxicity. Our findings place CPP-PMOs as promising antimiR candidates to overcome the treatment delivery challenge in DM1 therapy.
Collapse
Affiliation(s)
- Irene González-Martínez
- University Research Institute for Biotechnology and Biomedicine (BIOTECMED), Universidad de Valencia, Valencia, Spain
- Translational Genomics Group, INCLIVA Biomedical Research Institute, Avenue Menéndez Pelayo 4 acc, 46010 Valencia, Spain
| | - Estefanía Cerro-Herreros
- University Research Institute for Biotechnology and Biomedicine (BIOTECMED), Universidad de Valencia, Valencia, Spain
- Translational Genomics Group, INCLIVA Biomedical Research Institute, Avenue Menéndez Pelayo 4 acc, 46010 Valencia, Spain
| | - Nerea Moreno
- University Research Institute for Biotechnology and Biomedicine (BIOTECMED), Universidad de Valencia, Valencia, Spain
- Translational Genomics Group, INCLIVA Biomedical Research Institute, Avenue Menéndez Pelayo 4 acc, 46010 Valencia, Spain
| | - Andrea García-Rey
- University Research Institute for Biotechnology and Biomedicine (BIOTECMED), Universidad de Valencia, Valencia, Spain
- Translational Genomics Group, INCLIVA Biomedical Research Institute, Avenue Menéndez Pelayo 4 acc, 46010 Valencia, Spain
| | - Jorge Espinosa-Espinosa
- University Research Institute for Biotechnology and Biomedicine (BIOTECMED), Universidad de Valencia, Valencia, Spain
- Translational Genomics Group, INCLIVA Biomedical Research Institute, Avenue Menéndez Pelayo 4 acc, 46010 Valencia, Spain
- Group of Emerging and Neglected Diseases, Ecoepidemiology and Biodiversity, Health Sciences Faculty, Universidad Internacional SEK, Quito 170521, Ecuador
| | - Marc Carrascosa-Sàez
- University Research Institute for Biotechnology and Biomedicine (BIOTECMED), Universidad de Valencia, Valencia, Spain
| | - Diego Piqueras-Losilla
- University Research Institute for Biotechnology and Biomedicine (BIOTECMED), Universidad de Valencia, Valencia, Spain
| | - Andrey Arzumanov
- Department of Paediatrics, Institute of Developmental and Regenerative Medicine (IDRM), University of Oxford, Roosevelt Dr, Oxford OX3 7TY, UK
- MDUK Oxford Neuromuscular Centre, University of Oxford, Oxford, UK
| | - David Seoane-Miraz
- Department of Paediatrics, Institute of Developmental and Regenerative Medicine (IDRM), University of Oxford, Roosevelt Dr, Oxford OX3 7TY, UK
- MDUK Oxford Neuromuscular Centre, University of Oxford, Oxford, UK
| | - Yahya Jad
- Department of Paediatrics, Institute of Developmental and Regenerative Medicine (IDRM), University of Oxford, Roosevelt Dr, Oxford OX3 7TY, UK
- MDUK Oxford Neuromuscular Centre, University of Oxford, Oxford, UK
| | - Richard Raz
- Department of Paediatrics, Institute of Developmental and Regenerative Medicine (IDRM), University of Oxford, Roosevelt Dr, Oxford OX3 7TY, UK
- MDUK Oxford Neuromuscular Centre, University of Oxford, Oxford, UK
| | - Matthew J. Wood
- Department of Paediatrics, Institute of Developmental and Regenerative Medicine (IDRM), University of Oxford, Roosevelt Dr, Oxford OX3 7TY, UK
- MDUK Oxford Neuromuscular Centre, University of Oxford, Oxford, UK
| | - Miguel A. Varela
- Department of Paediatrics, Institute of Developmental and Regenerative Medicine (IDRM), University of Oxford, Roosevelt Dr, Oxford OX3 7TY, UK
- MDUK Oxford Neuromuscular Centre, University of Oxford, Oxford, UK
| | - Beatriz Llamusí
- University Research Institute for Biotechnology and Biomedicine (BIOTECMED), Universidad de Valencia, Valencia, Spain
- Translational Genomics Group, INCLIVA Biomedical Research Institute, Avenue Menéndez Pelayo 4 acc, 46010 Valencia, Spain
| | - Rubén Artero
- University Research Institute for Biotechnology and Biomedicine (BIOTECMED), Universidad de Valencia, Valencia, Spain
- Translational Genomics Group, INCLIVA Biomedical Research Institute, Avenue Menéndez Pelayo 4 acc, 46010 Valencia, Spain
| |
Collapse
|
24
|
Pagoni M, Cava C, Sideris DC, Avgeris M, Zoumpourlis V, Michalopoulos I, Drakoulis N. miRNA-Based Technologies in Cancer Therapy. J Pers Med 2023; 13:1586. [PMID: 38003902 PMCID: PMC10672431 DOI: 10.3390/jpm13111586] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/02/2023] [Accepted: 11/04/2023] [Indexed: 11/26/2023] Open
Abstract
The discovery of therapeutic miRNAs is one of the most exciting challenges for pharmaceutical companies. Since the first miRNA was discovered in 1993, our knowledge of miRNA biology has grown considerably. Many studies have demonstrated that miRNA expression is dysregulated in many diseases, making them appealing tools for novel therapeutic approaches. This review aims to discuss miRNA biogenesis and function, as well as highlight strategies for delivering miRNA agents, presenting viral, non-viral, and exosomic delivery as therapeutic approaches for different cancer types. We also consider the therapeutic role of microRNA-mediated drug repurposing in cancer therapy.
Collapse
Affiliation(s)
- Maria Pagoni
- Research Group of Clinical Pharmacology and Pharmacogenomics, Faculty of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15701 Athens, Greece
| | - Claudia Cava
- Department of Science, Technology and Society, University School for Advanced Studies IUSS Pavia, 27100 Pavia, Italy;
| | - Diamantis C. Sideris
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 15701 Athens, Greece;
| | - Margaritis Avgeris
- Laboratory of Clinical Biochemistry—Molecular Diagnostics, Second Department of Pediatrics, School of Medicine, “P. & A. Kyriakou” Children’s Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Vassilios Zoumpourlis
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation (NHRF), 11635 Athens, Greece;
| | - Ioannis Michalopoulos
- Centre of Systems Biology, Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece;
| | - Nikolaos Drakoulis
- Research Group of Clinical Pharmacology and Pharmacogenomics, Faculty of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15701 Athens, Greece
| |
Collapse
|
25
|
Razi N, Li W, Ignacio MA, Loube JM, Agostino EL, Zhu X, Scull MA, DeStefano JJ. Inhibition of SARS-CoV-2 infection in human airway epithelium with a xeno-nucleic acid aptamer. Respir Res 2023; 24:272. [PMID: 37932762 PMCID: PMC10629106 DOI: 10.1186/s12931-023-02590-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 10/30/2023] [Indexed: 11/08/2023] Open
Abstract
BACKGROUND SARS-CoV-2, the agent responsible for the COVID-19 pandemic, enters cells through viral spike glycoprotein binding to the cellular receptor, angiotensin-converting enzyme 2 (ACE2). Given the lack of effective antivirals targeting SARS-CoV-2, we previously utilized systematic evolution of ligands by exponential enrichment (SELEX) and selected fluoro-arabino nucleic acid (FANA) aptamer R8-9 that was able to block the interaction between the viral receptor-binding domain and ACE2. METHODS Here, we further assessed FANA-R8-9 as an entry inhibitor in contexts that recapitulate infection in vivo. RESULTS We demonstrate that FANA-R8-9 inhibits spike-bearing pseudovirus particle uptake in cell lines. Then, using an in-vitro model of human airway epithelium (HAE) and SARS-CoV-2 virus, we show that FANA-R8-9 significantly reduces viral infection when added either at the time of inoculation, or several hours later. These results were specific to the R8-9 sequence, not the xeno-nucleic acid utilized to make the aptamer. Importantly, we also show that FANA-R8-9 is stable in HAE culture secretions and has no overt cytotoxic effects. CONCLUSIONS Together, these results suggest that FANA-R8-9 effectively prevents infection by specific SARS-CoV-2 variants and indicate that aptamer technology could be utilized to target other clinically-relevant viruses in the respiratory mucosa.
Collapse
Affiliation(s)
- Niayesh Razi
- Department of Cell Biology and Molecular Genetics, Maryland Pathogen Research Institute (MPRI), University of Maryland, College Park, MD, 20742, USA
| | - Weizhong Li
- Division of Immunology, Virginia-Maryland College of Veterinary Medicine, University of Maryland, College Park, MD, 20742, USA
| | - Maxinne A Ignacio
- Department of Cell Biology and Molecular Genetics, Maryland Pathogen Research Institute (MPRI), University of Maryland, College Park, MD, 20742, USA
| | - Jeffrey M Loube
- Department of Cell Biology and Molecular Genetics, Maryland Pathogen Research Institute (MPRI), University of Maryland, College Park, MD, 20742, USA
| | - Eva L Agostino
- Department of Cell Biology and Molecular Genetics, Maryland Pathogen Research Institute (MPRI), University of Maryland, College Park, MD, 20742, USA
| | - Xiaoping Zhu
- Division of Immunology, Virginia-Maryland College of Veterinary Medicine, University of Maryland, College Park, MD, 20742, USA
| | - Margaret A Scull
- Department of Cell Biology and Molecular Genetics, Maryland Pathogen Research Institute (MPRI), University of Maryland, College Park, MD, 20742, USA.
| | - Jeffrey J DeStefano
- Department of Cell Biology and Molecular Genetics, Maryland Pathogen Research Institute (MPRI), University of Maryland, College Park, MD, 20742, USA.
| |
Collapse
|
26
|
Zhu H, Luo H, Chang R, Yang Y, Liu D, Ji Y, Qin H, Rong H, Yin J. Protein-based delivery systems for RNA delivery. J Control Release 2023; 363:253-274. [PMID: 37741460 DOI: 10.1016/j.jconrel.2023.09.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 09/14/2023] [Accepted: 09/18/2023] [Indexed: 09/25/2023]
Abstract
RNA-based therapeutics have emerged as promising approaches to modulate gene expression and generate therapeutic proteins or antigens capable of inducing immune responses to treat a variety of diseases, such as infectious diseases, cancers, immunologic disorders, and genetic disorders. However, the efficient delivery of RNA molecules into cells poses significant challenges due to their large molecular weight, negative charge, and susceptibility to degradation by RNase enzymes. To overcome these obstacles, viral and non-viral vectors have been developed, including lipid nanoparticles, viral vectors, proteins, dendritic macromolecules, among others. Among these carriers, protein-based delivery systems have garnered considerable attention due to their potential to address specific issues associated with nanoparticle-based systems, such as liver accumulation and immunogenicity. This review provides an overview of currently marketed RNA drugs, underscores the significance of RNA delivery vector development, delineates the essential characteristics of an ideal RNA delivery vector, and introduces existing protein carriers for RNA delivery. By offering valuable insights, this review aims to serve as a reference for the future development of protein-based delivery vectors for RNA therapeutics.
Collapse
Affiliation(s)
- Haichao Zhu
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Hong Luo
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Ruilong Chang
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Yifan Yang
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Dingkang Liu
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Yue Ji
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Hai Qin
- Department of Clinical Laboratory, Beijing Jishuitan Hospital Guizhou Hospital, No. 206, Sixian Street, Baiyun District, Guiyang City 550014, Guizhou Province, China.
| | - Haibo Rong
- Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing 210009, China.
| | - Jun Yin
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
27
|
Malfanti A, Sami H, Balasso A, Marostica G, Arpac B, Mastrotto F, Mantovani G, Cola E, Anton M, Caliceti P, Ogris M, Salmaso S. Control of cell penetration enhancer shielding and endosomal escape-kinetics crucial for efficient and biocompatible siRNA delivery. J Control Release 2023; 363:101-113. [PMID: 37722420 DOI: 10.1016/j.jconrel.2023.09.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 07/21/2023] [Accepted: 09/14/2023] [Indexed: 09/20/2023]
Abstract
Although cationic liposomes are efficient carriers for nucleic acid delivery, their toxicity often hampers the clinical translation. Polyethylene glycol (PEG) coating has been largely used to improve their stability and reduce toxicity. Nevertheless, it has been found to decrease the transfection process. In order to exploit the advantages of cationic liposomes and PEG decoration for nucleic acid delivery, liposomes decorated with tetraArg-[G-1]-distearoyl glycerol (Arg4-DAG) dendronic oligo-cationic lipid enhancer (OCE) and PEG-lipid have been investigated. Non decorated or OCE-decorated lipoplexes (OCEfree-LPX and OCE-LPX, respectively) were obtained by lipid film hydration using oligonucleotide (ON) solutions. PEG and OCE/PEG decorated lipoplexes (PEG-OCEfree-LPX and PEG-OCE-LPX, respectively) were obtained by post-insertion of 2 or 5 kDa PEG-DSPE on preformed lipoplexes. The OCE decoration yielded lipoplexes with size of about 240 nm, 84% loading efficiency at 10 N/P ratio, ten times higher than OCEfree-LPX, and prevented the ON release when incubated with physiological heparin concentration or with plasma. The PEG decoration reduced the zeta potential, enhanced the lipoplex stability in serum and decreased both hemolysis and cytotoxicity, while it did not affect the lipoplex size and ON loading. With respect to OCEfree-LPX, the OCE-LPX remarkably associated with cells and were taken up by different cancer cell lines (HeLa and MDA-MB-231). Interestingly, 2 or 5 kDa PEG decoration did not reduce either the cell interaction or the cell up-take of the cationic lipoplexes. With siRNA as a payload, OCE enabled efficient internalization, but endosomal release was hampered. Post-transfection treatment with the lysosomotropic drug chloroquine allowed to identify the optimal time point for endosomal escape. Chloroquine treatment after 12 to 20 h of LPX pre-incubation enabled siRNA mediated target knockdown indicating that this is the time window of endo-lysosomal processing. This indicates that OCE can protect siRNA from lysosomal degradation for up to 20 h, as shown by these rescue experiments.
Collapse
Affiliation(s)
- Alessio Malfanti
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via F. Marzolo 5, Padova 35131, Italy
| | - Haider Sami
- University of Vienna, Faculty of Life Sciences, Department of Pharmaceutical Sciences, Laboratory of Macromolecular Cancer Therapeutics (MMCT), Josef-Holaubek-Platz 2, Vienna 1090, Austria
| | - Anna Balasso
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via F. Marzolo 5, Padova 35131, Italy
| | - Giulia Marostica
- University of Vienna, Faculty of Life Sciences, Department of Pharmaceutical Sciences, Laboratory of Macromolecular Cancer Therapeutics (MMCT), Josef-Holaubek-Platz 2, Vienna 1090, Austria
| | - Busra Arpac
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via F. Marzolo 5, Padova 35131, Italy
| | - Francesca Mastrotto
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via F. Marzolo 5, Padova 35131, Italy
| | | | - Elisa Cola
- University of Vienna, Faculty of Life Sciences, Department of Pharmaceutical Sciences, Laboratory of Macromolecular Cancer Therapeutics (MMCT), Josef-Holaubek-Platz 2, Vienna 1090, Austria
| | - Martina Anton
- Institute of Molecular Immunology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Paolo Caliceti
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via F. Marzolo 5, Padova 35131, Italy
| | - Manfred Ogris
- University of Vienna, Faculty of Life Sciences, Department of Pharmaceutical Sciences, Laboratory of Macromolecular Cancer Therapeutics (MMCT), Josef-Holaubek-Platz 2, Vienna 1090, Austria.
| | - Stefano Salmaso
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via F. Marzolo 5, Padova 35131, Italy.
| |
Collapse
|
28
|
Shchaslyvyi AY, Antonenko SV, Tesliuk MG, Telegeev GD. Current State of Human Gene Therapy: Approved Products and Vectors. Pharmaceuticals (Basel) 2023; 16:1416. [PMID: 37895887 PMCID: PMC10609992 DOI: 10.3390/ph16101416] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/13/2023] [Accepted: 09/19/2023] [Indexed: 10/29/2023] Open
Abstract
In the realm of gene therapy, a pivotal moment arrived with Paul Berg's groundbreaking identification of the first recombinant DNA in 1972. This achievement set the stage for future breakthroughs. Conditions once considered undefeatable, like melanoma, pancreatic cancer, and a host of other ailments, are now being addressed at their root cause-the genetic level. Presently, the gene therapy landscape stands adorned with 22 approved in vivo and ex vivo products, including IMLYGIC, LUXTURNA, Zolgensma, Spinraza, Patisiran, and many more. In this comprehensive exploration, we delve into a rich assortment of 16 drugs, from siRNA, miRNA, and CRISPR/Cas9 to DNA aptamers and TRAIL/APO2L, as well as 46 carriers, from AAV, AdV, LNPs, and exosomes to naked mRNA, sonoporation, and magnetofection. The article also discusses the advantages and disadvantages of each product and vector type, as well as the current challenges faced in the practical use of gene therapy and its future potential.
Collapse
Affiliation(s)
- Aladdin Y. Shchaslyvyi
- Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 150, Zabolotnogo Str., 03143 Kyiv, Ukraine; (S.V.A.); (M.G.T.); (G.D.T.)
| | | | | | | |
Collapse
|
29
|
Haque US, Yokota T. Enhancing Antisense Oligonucleotide-Based Therapeutic Delivery with DG9, a Versatile Cell-Penetrating Peptide. Cells 2023; 12:2395. [PMID: 37830609 PMCID: PMC10572411 DOI: 10.3390/cells12192395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/18/2023] [Accepted: 09/19/2023] [Indexed: 10/14/2023] Open
Abstract
Antisense oligonucleotide-based (ASO) therapeutics have emerged as a promising strategy for the treatment of human disorders. Charge-neutral PMOs have promising biological and pharmacological properties for antisense applications. Despite their great potential, the efficient delivery of these therapeutic agents to target cells remains a major obstacle to their widespread use. Cellular uptake of naked PMO is poor. Cell-penetrating peptides (CPPs) appear as a possibility to increase the cellular uptake and intracellular delivery of oligonucleotide-based drugs. Among these, the DG9 peptide has been identified as a versatile CPP with remarkable potential for enhancing the delivery of ASO-based therapeutics due to its unique structural features. Notably, in the context of phosphorodiamidate morpholino oligomers (PMOs), DG9 has shown promise in enhancing delivery while maintaining a favorable toxicity profile. A few studies have highlighted the potential of DG9-conjugated PMOs in DMD (Duchenne Muscular Dystrophy) and SMA (Spinal Muscular Atrophy), displaying significant exon skipping/inclusion and functional improvements in animal models. The article provides an overview of a detailed understanding of the challenges that ASOs face prior to reaching their targets and continued advances in methods to improve their delivery to target sites and cellular uptake, focusing on DG9, which aims to harness ASOs' full potential in precision medicine.
Collapse
Affiliation(s)
- Umme Sabrina Haque
- Department of Neuroscience, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Toshifumi Yokota
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
- The Friends of Garrett Cumming Research & Muscular Dystrophy Canada HM Toupin Neurological Science Research, Edmonton, AB T6G 2H7, Canada
| |
Collapse
|
30
|
Razi N, Li W, Ignacio MA, Loube JM, Agostino EL, Zhu X, Scull MA, DeStefano JJ. Inhibition of SARS-CoV-2 Infection in Human Airway Epithelium with a Xeno-Nucleic Acid Aptamer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.27.559799. [PMID: 37808754 PMCID: PMC10557761 DOI: 10.1101/2023.09.27.559799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Background SARS-CoV-2, the agent responsible for the COVID-19 pandemic, enters cells through viral spike glycoprotein binding to the cellular receptor, angiotensin-converting enzyme 2 (ACE2). Given the lack of effective antivirals targeting SARS-CoV-2, we previously utilized systematic evolution of ligands by exponential enrichment (SELEX) and selected fluoro-arabino nucleic acid (FANA) aptamer R8-9 that was able to block the interaction between the viral receptor-binding domain and ACE2. Methods Here, we further assessed FANA-R8-9 as an entry inhibitor in contexts that recapitulate infection in vivo. Results We demonstrate that FANA-R8-9 inhibits spike-bearing pseudovirus particle uptake in cell lines. Then, using an in-vitro model of human airway epithelium (HAE) and SARS-CoV-2 virus, we show that FANA-R8-9 significantly reduces viral infection when added either at the time of inoculation, or several hours later. These results were specific to the R8-9 sequence, not the xeno-nucleic acid utilized to make the aptamer. Importantly, we also show that FANA-R8-9 is stable in HAE culture secretions and has no overt cytotoxic effects. Conclusions Together, these results suggest that FANA-R8-9 effectively prevents infection by specific SARS-CoV-2 variants and indicate that aptamer technology could be utilized to target other clinically-relevant viruses in the respiratory mucosa.
Collapse
Affiliation(s)
- Niayesh Razi
- Department of Cell Biology and Molecular Genetics, and Maryland Pathogen Research Institute (MPRI), University of Maryland, College Park, MD, 20742
| | - Weizhong Li
- Division of Immunology, Virginia-Maryland College of Veterinary Medicine, University of Maryland, College Park, MD, 20742
| | - Maxinne A. Ignacio
- Department of Cell Biology and Molecular Genetics, and Maryland Pathogen Research Institute (MPRI), University of Maryland, College Park, MD, 20742
| | - Jeffrey M. Loube
- Department of Cell Biology and Molecular Genetics, and Maryland Pathogen Research Institute (MPRI), University of Maryland, College Park, MD, 20742
| | - Eva L. Agostino
- Department of Cell Biology and Molecular Genetics, and Maryland Pathogen Research Institute (MPRI), University of Maryland, College Park, MD, 20742
| | - Xiaoping Zhu
- Division of Immunology, Virginia-Maryland College of Veterinary Medicine, University of Maryland, College Park, MD, 20742
| | - Margaret A. Scull
- Department of Cell Biology and Molecular Genetics, and Maryland Pathogen Research Institute (MPRI), University of Maryland, College Park, MD, 20742
| | - Jeffrey J. DeStefano
- Department of Cell Biology and Molecular Genetics, and Maryland Pathogen Research Institute (MPRI), University of Maryland, College Park, MD, 20742
| |
Collapse
|
31
|
Mangla P, Vicentini Q, Biscans A. Therapeutic Oligonucleotides: An Outlook on Chemical Strategies to Improve Endosomal Trafficking. Cells 2023; 12:2253. [PMID: 37759475 PMCID: PMC10527716 DOI: 10.3390/cells12182253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/30/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
The potential of oligonucleotide therapeutics is undeniable as more than 15 drugs have been approved to treat various diseases in the liver, central nervous system (CNS), and muscles. However, achieving effective delivery of oligonucleotide therapeutics to specific tissues still remains a major challenge, limiting their widespread use. Chemical modifications play a crucial role to overcome biological barriers to enable efficient oligonucleotide delivery to the tissues/cells of interest. They provide oligonucleotide metabolic stability and confer favourable pharmacokinetic/pharmacodynamic properties. This review focuses on the various chemical approaches implicated in mitigating the delivery problem of oligonucleotides and their limitations. It highlights the importance of linkers in designing oligonucleotide conjugates and discusses their potential role in escaping the endosomal barrier, a bottleneck in the development of oligonucleotide therapeutics.
Collapse
Affiliation(s)
- Priyanka Mangla
- Oligonucleotide Discovery, Discovery Sciences Research and Development, AstraZeneca, 431 38 Gothenburg, Sweden; (P.M.); (Q.V.)
| | - Quentin Vicentini
- Oligonucleotide Discovery, Discovery Sciences Research and Development, AstraZeneca, 431 38 Gothenburg, Sweden; (P.M.); (Q.V.)
- Department of Laboratory Medicine, Clinical Research Centre, Karolinska Institute, 141 57 Stockholm, Sweden
| | - Annabelle Biscans
- Oligonucleotide Discovery, Discovery Sciences Research and Development, AstraZeneca, 431 38 Gothenburg, Sweden; (P.M.); (Q.V.)
| |
Collapse
|
32
|
Abt C, Gerlach LM, Bull J, Jacob A, Kreikemeyer B, Patenge N. Pyrenebutyrate Enhances the Antibacterial Effect of Peptide-Coupled Antisense Peptide Nucleic Acids in Streptococcus pyogenes. Microorganisms 2023; 11:2131. [PMID: 37763975 PMCID: PMC10537354 DOI: 10.3390/microorganisms11092131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/27/2023] [Accepted: 07/31/2023] [Indexed: 09/29/2023] Open
Abstract
Antisense peptide nucleic acids (PNAs) inhibit bacterial growth in several infection models. Since PNAs are not spontaneously taken up by bacteria, they are often conjugated to carriers such as cell-penetrating peptides (CPPs) in order to improve translocation. Hydrophobic counterions such as pyrenebutyrate (PyB) have been shown to facilitate translocation of peptides over natural and artificial membranes. In this study, the capability of PyB to support translocation of CPP-coupled antisense PNAs into bacteria was investigated in Streptococcus pyogenes and Streptococcus pneumoniae. PyB enhanced the antimicrobial activity of CPP-conjugated antisense PNAs in S. pyogenes. The most significant effect of PyB was observed in combination with K8-conjugated anti-gyrA PNAs. In contrast, no significant effect of PyB on the antimicrobial activity of CPP-conjugated PNAs in S. pneumoniae was detected. Uptake of K8-FITC into S. pyogenes, Escherichia coli, and Klebsiella pneumoniae could be improved by pre-incubation with PyB, indicating that PyB supports the antimicrobial effect of CPP-antisense PNAs in S. pyogenes by facilitating the translocation of peptides across the bacterial membrane.
Collapse
Affiliation(s)
- Corina Abt
- Institute of Medical Microbiology, Virology and Hygiene, University Medicine Rostock, 18057 Rostock, Germany (J.B.); (B.K.)
| | - Lisa Marie Gerlach
- Institute of Medical Microbiology, Virology and Hygiene, University Medicine Rostock, 18057 Rostock, Germany (J.B.); (B.K.)
| | - Jana Bull
- Institute of Medical Microbiology, Virology and Hygiene, University Medicine Rostock, 18057 Rostock, Germany (J.B.); (B.K.)
| | | | - Bernd Kreikemeyer
- Institute of Medical Microbiology, Virology and Hygiene, University Medicine Rostock, 18057 Rostock, Germany (J.B.); (B.K.)
| | - Nadja Patenge
- Institute of Medical Microbiology, Virology and Hygiene, University Medicine Rostock, 18057 Rostock, Germany (J.B.); (B.K.)
| |
Collapse
|
33
|
Kawamoto Y, Wu Y, Takahashi Y, Takakura Y. Development of nucleic acid medicines based on chemical technology. Adv Drug Deliv Rev 2023; 199:114872. [PMID: 37244354 DOI: 10.1016/j.addr.2023.114872] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/01/2023] [Accepted: 05/12/2023] [Indexed: 05/29/2023]
Abstract
Oligonucleotide-based therapeutics have attracted attention as an emerging modality that includes the modulation of genes and their binding proteins related to diseases, allowing us to take action on previously undruggable targets. Since the late 2010s, the number of oligonucleotide medicines approved for clinical uses has dramatically increased. Various chemistry-based technologies have been developed to improve the therapeutic properties of oligonucleotides, such as chemical modification, conjugation, and nanoparticle formation, which can increase nuclease resistance, enhance affinity and selectivity to target sites, suppress off-target effects, and improve pharmacokinetic properties. Similar strategies employing modified nucleobases and lipid nanoparticles have been used for developing coronavirus disease 2019 mRNA vaccines. In this review, we provide an overview of the development of chemistry-based technologies aimed at using nucleic acids for developing therapeutics over the past several decades, with a specific emphasis on the structural design and functionality of chemical modification strategies.
Collapse
Affiliation(s)
- Yusuke Kawamoto
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto 606-8501, Japan.
| | - You Wu
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto 606-8501, Japan
| | - Yuki Takahashi
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto 606-8501, Japan
| | - Yoshinobu Takakura
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto 606-8501, Japan.
| |
Collapse
|
34
|
Nakevska Z, Yokota T. Challenges and future perspective of antisense therapy for spinal muscular atrophy: A review. Eur J Cell Biol 2023; 102:151326. [PMID: 37295266 DOI: 10.1016/j.ejcb.2023.151326] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 05/18/2023] [Accepted: 05/20/2023] [Indexed: 06/12/2023] Open
Abstract
Spinal muscular atrophy (SMA), the most common genetic cause of infantile death, is caused by a mutation in the survival of motor neuron 1 gene (SMN1), leading to the death of motor neurons and progressive muscle weakness. SMN1 normally produces an essential protein called SMN. Although humans possess a paralogous gene called SMN2, ∼90% of the SMN it produces is non-functional. This is due to a mutation in SMN2 that causes the skipping of a required exon during splicing of the pre-mRNA. The first treatment for SMA, nusinersen (brand name Spinraza), was approved by the FDA in 2016 and by the EMU in 2017. Nusinersen is an antisense oligonucleotide-based therapy that alters the splicing of SMN2 to make functional full-length SMN protein. Despite the recent advancements in antisense oligonucleotide therapy and SMA treatment development, nusinersen is faced with a multitude of challenges, such as intracellular and systemic delivery. In recent years, the use of peptide-conjugated phosphorodiamidate morpholino oligomers (PPMOs) in antisense therapy has gained interest. These are antisense oligonucleotides conjugated to cell-penetrating peptides such as Pips and DG9, and they have the potential to address the challenges associated with delivery. This review focuses on the historic milestones, development, current challenges, and future perspectives of antisense therapy for SMA.
Collapse
Affiliation(s)
- Zorica Nakevska
- Department of Biological Sciences, Faculty of Science, University of Alberta, 116 St. and 85 Ave., Edmonton AB T6G 2E1, Canada.
| | - Toshifumi Yokota
- Neuroscience and Mental Health Institute, Faculty of Medicine and Dentistry, University of Alberta, 116 St. and 85 Ave., Edmonton AB T6G 2E1, Canada; Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, 116 St. and 85 Ave., Edmonton AB T6G 2E1, Canada; The Friends of Garret Cumming Research and Muscular Dystrophy Canada HM Toupin Neurological Science Research Chair, 8812 112 St., Edmonton AB T6G 2H7, Canada.
| |
Collapse
|
35
|
Yang S, Wang M, Wang T, Sun M, Huang H, Shi X, Duan S, Wu Y, Zhu J, Liu F. Self-assembled short peptides: Recent advances and strategies for potential pharmaceutical applications. Mater Today Bio 2023; 20:100644. [PMID: 37214549 PMCID: PMC10199221 DOI: 10.1016/j.mtbio.2023.100644] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/10/2023] [Accepted: 04/23/2023] [Indexed: 05/24/2023] Open
Abstract
Self-assembled short peptides have intrigued scientists due to the convenience of synthesis, good biocompatibility, low toxicity, inherent biodegradability and fast response to change in the physiological environment. Therefore, it is necessary to present a comprehensive summary of the recent advances in the last decade regarding the construction, route of administration and application of self-assembled short peptides based on the knowledge on their unique and specific ability of self-assembly. Herein, we firstly explored the molecular mechanisms of self-assembly of short peptides, such as non-modified amino acids, as well as Fmoc-modified, N-functionalized, and C-functionalized peptides. Next, cell penetration, fusion, and peptide targeting in peptide-based drug delivery were characterized. Then, the common administration routes and the potential pharmaceutical applications (drug delivery, antibacterial activity, stabilizers, imaging agents, and applications in bioengineering) of peptide drugs were respectively summarized. Last but not least, some general conclusions and future perspectives in the relevant fields were briefly listed. Although with certain challenges, great opportunities are offered by self-assembled short peptides to the fascinating area of drug development.
Collapse
Affiliation(s)
- Shihua Yang
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Ministry of Education, Shenyang, 110001, China
- Department of Phase I Clinical Trials Center, The First Hospital of China Medical University, Shenyang, 110102, China
| | - Mingge Wang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Tianye Wang
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Ministry of Education, Shenyang, 110001, China
- Department of Anus and Intestine Surgery, The First Hospital of Dalian Medical University, Dalian, 116000, China
| | - Mengchi Sun
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Hanwei Huang
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Ministry of Education, Shenyang, 110001, China
- Department of Phase I Clinical Trials Center, The First Hospital of China Medical University, Shenyang, 110102, China
| | - Xianbao Shi
- Department of Pharmacy, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121001, China
| | - Shijie Duan
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Ministry of Education, Shenyang, 110001, China
- Department of Phase I Clinical Trials Center, The First Hospital of China Medical University, Shenyang, 110102, China
| | - Ying Wu
- Department of Phase I Clinical Trials Center, The First Hospital of China Medical University, Shenyang, 110102, China
| | - Jiaming Zhu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Ministry of Education, Shenyang, 110001, China
| | - Funan Liu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Ministry of Education, Shenyang, 110001, China
- Department of Phase I Clinical Trials Center, The First Hospital of China Medical University, Shenyang, 110102, China
| |
Collapse
|
36
|
Soltész D, Szabó I, Bánóczi Z. The Balance between Hydrophobicity/Aromaticity and Positively Charged Residues May Influence the Cell Penetration Ability. Pharmaceutics 2023; 15:pharmaceutics15041267. [PMID: 37111751 PMCID: PMC10146604 DOI: 10.3390/pharmaceutics15041267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/05/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Cell-penetrating peptides (CPPs) are commonly modified to increase their cellular uptake, alter the mechanism of penetration or enhance their endosomal release. Earlier, we described the internalization enhancement ability of the 4-((4-(dimethylamino)phenyl)azo)benzoyl (Dabcyl) group. We proved that this modification on the N-terminus of tetra- and hexaarginine enhanced their cellular uptake. The introduction of an aromatic ring 4-(aminomethyl) benzoic acid, AMBA) into the peptide backbone has a synergistic effect with Dabcyl, and the tetraarginine derivatives had outstanding cellular uptake. Based on these results, the effect of Dabcyl or Dabcyl-AMBA modification on the internalization of oligoarginines was studied. Oligoarginines were modified with these groups and their internalization was measured using flow cytometry. The concentration dependence of the cellular uptake of selected constructs was compared too. Their internalization mechanism was also examined by using different endocytosis inhibitors. While the effect of the Dabcyl group was optimal for hexaarginine, the Dabcyl-AMBA group increased the cellular uptake in the case of all oligoarginines. All derivatives, with the exception of only tetraarginine, were more effective than the octaarginine control. The internalization mechanism was dependent on the size of the oligoarginine and was independent of the modification. Our findings suggest that these modifications enhanced the internalization of oligoarginines and resulted in novel, very effective CPPs.
Collapse
Affiliation(s)
- Dóra Soltész
- Department of Organic Chemistry, Eötvös L. University, 1117 Budapest, Hungary
| | - Ildikó Szabó
- ELKH-ELTE Research Group of Peptide Chemistry, 1117 Budapest, Hungary
| | - Zoltán Bánóczi
- Department of Organic Chemistry, Eötvös L. University, 1117 Budapest, Hungary
| |
Collapse
|
37
|
Anwar S, Mir F, Yokota T. Enhancing the Effectiveness of Oligonucleotide Therapeutics Using Cell-Penetrating Peptide Conjugation, Chemical Modification, and Carrier-Based Delivery Strategies. Pharmaceutics 2023; 15:pharmaceutics15041130. [PMID: 37111616 PMCID: PMC10140998 DOI: 10.3390/pharmaceutics15041130] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/28/2023] [Accepted: 03/28/2023] [Indexed: 04/29/2023] Open
Abstract
Oligonucleotide-based therapies are a promising approach for treating a wide range of hard-to-treat diseases, particularly genetic and rare diseases. These therapies involve the use of short synthetic sequences of DNA or RNA that can modulate gene expression or inhibit proteins through various mechanisms. Despite the potential of these therapies, a significant barrier to their widespread use is the difficulty in ensuring their uptake by target cells/tissues. Strategies to overcome this challenge include cell-penetrating peptide conjugation, chemical modification, nanoparticle formulation, and the use of endogenous vesicles, spherical nucleic acids, and smart material-based delivery vehicles. This article provides an overview of these strategies and their potential for the efficient delivery of oligonucleotide drugs, as well as the safety and toxicity considerations, regulatory requirements, and challenges in translating these therapies from the laboratory to the clinic.
Collapse
Affiliation(s)
- Saeed Anwar
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Farin Mir
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Toshifumi Yokota
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| |
Collapse
|
38
|
Fàbrega C, Aviñó A, Navarro N, Jorge AF, Grijalvo S, Eritja R. Lipid and Peptide-Oligonucleotide Conjugates for Therapeutic Purposes: From Simple Hybrids to Complex Multifunctional Assemblies. Pharmaceutics 2023; 15:320. [PMID: 36839642 PMCID: PMC9959333 DOI: 10.3390/pharmaceutics15020320] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/12/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
Antisense and small interfering RNA (siRNA) oligonucleotides have been recognized as powerful therapeutic compounds for targeting mRNAs and inducing their degradation. However, a major obstacle is that unmodified oligonucleotides are not readily taken up into tissues and are susceptible to degradation by nucleases. For these reasons, the design and preparation of modified DNA/RNA derivatives with better stability and an ability to be produced at large scale with enhanced uptake properties is of vital importance to improve current limitations. In the present study, we review the conjugation of oligonucleotides with lipids and peptides in order to produce oligonucleotide conjugates for therapeutics aiming to develop novel compounds with favorable pharmacokinetics.
Collapse
Affiliation(s)
- Carme Fàbrega
- Nucleic Acids Chemistry Group, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18-26, E-08034 Barcelona, Spain
- Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Jordi Girona 18-26, E-08034 Barcelona, Spain
| | - Anna Aviñó
- Nucleic Acids Chemistry Group, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18-26, E-08034 Barcelona, Spain
- Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Jordi Girona 18-26, E-08034 Barcelona, Spain
| | - Natalia Navarro
- Nucleic Acids Chemistry Group, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18-26, E-08034 Barcelona, Spain
- Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Jordi Girona 18-26, E-08034 Barcelona, Spain
| | - Andreia F. Jorge
- Department of Chemistry, Coimbra Chemistry Centre (CQC), University of Coimbra, Rua Larga, 3004-535 Coimbra, Portugal
| | - Santiago Grijalvo
- Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Jordi Girona 18-26, E-08034 Barcelona, Spain
- Colloidal and Interfacial Chemistry Group, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), E-08034 Barcelona, Spain
| | - Ramon Eritja
- Nucleic Acids Chemistry Group, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18-26, E-08034 Barcelona, Spain
- Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Jordi Girona 18-26, E-08034 Barcelona, Spain
| |
Collapse
|
39
|
Altrichter Y, Bou-Dib P, Kuznia C, Seitz O. Towards a templated reaction that translates RNA in cells into a proaptotic peptide-PNA conjugate. J Pept Sci 2023:e3477. [PMID: 36606596 DOI: 10.1002/psc.3477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/09/2022] [Accepted: 12/27/2022] [Indexed: 01/07/2023]
Abstract
Nucleic acid-templated chemistry opens the intriguing prospect of triggering the synthesis of drugs only in diseased cells. Herein, we explore the feasibility of using RNA-templated chemical reactions for the activation of a known Smac peptidomimetic compound (SMC), which has proapoptotic activity. Two peptide nucleic acid (PNA) conjugates were used to enable conditional activation of a masked SMC by reduction of an azide either by Staudinger reduction or catalytic photoreduction using a ruthenium complex. The latter provided ~135 nM SMC-PNA on as little as 10 nM (0.01 eq.) template. For the evaluation of the templated azido-SMC reduction system in cellulo, a stable HEK 293 cell line was generated, which overexpressed a truncated, non-functional form of the XIAP mRNA target. We furthermore describe the development of electroporation protocols that enable a robust delivery of PNA conjugates into HEK 293 cells. The action of the reactive PNA conjugates was evaluated by viability and flow cytometric apoptosis assays. In addition, electroporated probes were re-isolated and analyzed by ultra-high performance liquid chromatography (UPLC). Unfortunately, the ruthenium-PNA conjugate proved phototoxic, and treatment of cells with PNA-linked reducing agent and the azido-masked SMC conjugate did not result in a greater viability loss than treatment with scrambled sequence controls. Intracellular product formation was not detectable. A control experiment in total cellular RNA isolate indicated that the templated reaction can in principle proceed in a complex system. The results of this first-of-its-kind study reveal the numerous hurdles that must be overcome if RNA molecules are to trigger the synthesis of pro-apoptotic drugs inside cells.
Collapse
Affiliation(s)
- Yannic Altrichter
- Department of Chemistry, Humboldt University Berlin, Berlin, Germany
| | - Peter Bou-Dib
- Department of Chemistry, Humboldt University Berlin, Berlin, Germany
| | - Christina Kuznia
- Department of Chemistry, Humboldt University Berlin, Berlin, Germany
| | - Oliver Seitz
- Department of Chemistry, Humboldt University Berlin, Berlin, Germany
| |
Collapse
|
40
|
Barkowsky G, Abt C, Pöhner I, Bieda A, Hammerschmidt S, Jacob A, Kreikemeyer B, Patenge N. Antimicrobial Activity of Peptide-Coupled Antisense Peptide Nucleic Acids in Streptococcus pneumoniae. Microbiol Spectr 2022; 10:e0049722. [PMID: 36321914 PMCID: PMC9784828 DOI: 10.1128/spectrum.00497-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 10/19/2022] [Indexed: 12/24/2022] Open
Abstract
Streptococcus pneumoniae is the most common cause of community-acquired pneumonia and is responsible for multiple other infectious diseases, such as meningitis and otitis media, in children. Resistance to penicillins, macrolides, and fluoroquinolones is increasing and, since the introduction of pneumococcal conjugate vaccines (PCVs), vaccine serotypes have been replaced by non-vaccine serotypes. Antisense peptide nucleic acids (PNAs) have been shown to reduce the growth of several pathogenic bacteria in various infection models. PNAs are frequently coupled to cell-penetrating peptides (CPPs) to improve spontaneous cellular PNA uptake. In this study, different CPPs were investigated for their capability to support translocation of antisense PNAs into S. pneumoniae. HIV-1 TAT- and (RXR)4XB-coupled antisense PNAs efficiently reduced the viability of S. pneumoniae strains TIGR4 and D39 in vitro. Two essential genes, gyrA and rpoB, were used as targets for antisense PNAs. Overall, the antimicrobial activity of anti-gyrA PNAs was higher than that of anti-rpoB PNAs. Target gene transcription levels in S. pneumoniae were reduced following antisense PNA treatment. The effect of HIV-1 TAT- and (RXR)4XB-anti-gyrA PNAs on pneumococcal survival was also studied in vivo using an insect infection model. Treatment increased the survival of infected Galleria mellonella larvae. Our results represent a proof of principle and may provide a basis for the development of efficient antisense molecules for treatment of S. pneumoniae infections. IMPORTANCE Streptococcus pneumoniae is the most common cause of community-acquired pneumonia and is responsible for the deaths of up to 2 million children each year. Antibiotic resistance and strain replacement by non-vaccine serotypes are growing problems. For this reason, S. pneumoniae has been added to the WHO "global priority list" of antibiotic-resistant bacteria for which novel antimicrobials are most urgently needed. In this study, we investigated whether CPP-coupled antisense PNAs show antibacterial activity in S. pneumoniae. We demonstrated that HIV-1 TAT- and (RXR)4XB-coupled antisense PNAs were able to kill S. pneumoniae in vitro. The specificity of the antimicrobial effect was verified by reduced target gene transcription levels in S. pneumoniae. Moreover, CPP-antisense PNA treatment increased the survival rate of infected Galleria mellonella larvae in vivo. Based on these results, we believe that efficient antisense PNAs can be developed for the treatment of S. pneumoniae infections.
Collapse
Affiliation(s)
- Gina Barkowsky
- Institute of Medical Microbiology, Virology and Hygiene, University Medicine Rostock, Rostock, Germany
| | - Corina Abt
- Institute of Medical Microbiology, Virology and Hygiene, University Medicine Rostock, Rostock, Germany
| | - Irina Pöhner
- Institute of Medical Microbiology, Virology and Hygiene, University Medicine Rostock, Rostock, Germany
| | - Adam Bieda
- Institute of Medical Microbiology, Virology and Hygiene, University Medicine Rostock, Rostock, Germany
| | - Sven Hammerschmidt
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute for Genetics and Functional Genomics, Center for Functional Genomics of Microbes, University of Greifswald, Greifswald, Germany
| | - Anette Jacob
- Peps4LS GmbH, Heidelberg, Germany
- Functional Genome Analysis, Deutsches Krebsforschungszentrum, Heidelberg, Germany
| | - Bernd Kreikemeyer
- Institute of Medical Microbiology, Virology and Hygiene, University Medicine Rostock, Rostock, Germany
| | - Nadja Patenge
- Institute of Medical Microbiology, Virology and Hygiene, University Medicine Rostock, Rostock, Germany
| |
Collapse
|
41
|
Desrosiers A, Derbali RM, Hassine S, Berdugo J, Long V, Lauzon D, De Guire V, Fiset C, DesGroseillers L, Leblond Chain J, Vallée-Bélisle A. Programmable self-regulated molecular buffers for precise sustained drug delivery. Nat Commun 2022; 13:6504. [PMID: 36323663 PMCID: PMC9630261 DOI: 10.1038/s41467-022-33491-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 09/20/2022] [Indexed: 11/29/2022] Open
Abstract
Unlike artificial nanosystems, biological systems are ideally engineered to respond to their environment. As such, natural molecular buffers ensure precise and quantitative delivery of specific molecules through self-regulated mechanisms based on Le Chatelier's principle. Here, we apply this principle to design self-regulated nucleic acid molecular buffers for the chemotherapeutic drug doxorubicin and the antimalarial agent quinine. We show that these aptamer-based buffers can be programmed to maintain any specific desired concentration of free drug both in vitro and in vivo and enable the optimization of the chemical stability, partition coefficient, pharmacokinetics and biodistribution of the drug. These programmable buffers can be built from any polymer and should improve patient therapeutic outcome by enhancing drug activity and minimizing adverse effects and dosage frequency.
Collapse
Affiliation(s)
- Arnaud Desrosiers
- grid.14848.310000 0001 2292 3357Laboratoire de Biosenseurs et Nanomachines, Département de Chimie, Université de Montréal, Montréal, QC H3C 3J7 Canada ,grid.14848.310000 0001 2292 3357Département de Biochimie et Médecine Moléculaire, Université de Montréal, Montréal, QC H3T 1J4 Canada
| | - Rabeb Mouna Derbali
- grid.14848.310000 0001 2292 3357Faculté de Pharmacie, Université de Montréal, PO Box 6128 Downtown Station, Montréal, QC H3C 3J7 Canada
| | - Sami Hassine
- grid.14848.310000 0001 2292 3357Département de Biochimie et Médecine Moléculaire, Université de Montréal, Montréal, QC H3T 1J4 Canada
| | - Jérémie Berdugo
- grid.14848.310000 0001 2292 3357Département de Pathologie, Université de Montréal, Montréal, QC H3T 1J4 Canada
| | - Valérie Long
- grid.14848.310000 0001 2292 3357Faculté de Pharmacie, Université de Montréal, PO Box 6128 Downtown Station, Montréal, QC H3C 3J7 Canada ,grid.482476.b0000 0000 8995 9090Centre de Recherche, Institut de Cardiologie de Montréal, Montréal, QC H1Y 3G4 Canada
| | - Dominic Lauzon
- grid.14848.310000 0001 2292 3357Laboratoire de Biosenseurs et Nanomachines, Département de Chimie, Université de Montréal, Montréal, QC H3C 3J7 Canada
| | - Vincent De Guire
- grid.414216.40000 0001 0742 1666Clinical Biochemistry Department, Maisonneuve-Rosemont Hospital, Optilab-CHUM Laboratory Network, Montreal, QC Canada
| | - Céline Fiset
- grid.14848.310000 0001 2292 3357Faculté de Pharmacie, Université de Montréal, PO Box 6128 Downtown Station, Montréal, QC H3C 3J7 Canada ,grid.482476.b0000 0000 8995 9090Centre de Recherche, Institut de Cardiologie de Montréal, Montréal, QC H1Y 3G4 Canada
| | - Luc DesGroseillers
- grid.14848.310000 0001 2292 3357Département de Biochimie et Médecine Moléculaire, Université de Montréal, Montréal, QC H3T 1J4 Canada
| | - Jeanne Leblond Chain
- grid.503113.50000 0004 0459 4432Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, F-33000 Bordeaux, France
| | - Alexis Vallée-Bélisle
- grid.14848.310000 0001 2292 3357Laboratoire de Biosenseurs et Nanomachines, Département de Chimie, Université de Montréal, Montréal, QC H3C 3J7 Canada ,grid.14848.310000 0001 2292 3357Département de Biochimie et Médecine Moléculaire, Université de Montréal, Montréal, QC H3T 1J4 Canada
| |
Collapse
|
42
|
De Serres-Bérard T, Ait Benichou S, Jauvin D, Boutjdir M, Puymirat J, Chahine M. Recent Progress and Challenges in the Development of Antisense Therapies for Myotonic Dystrophy Type 1. Int J Mol Sci 2022; 23:13359. [PMID: 36362145 PMCID: PMC9657934 DOI: 10.3390/ijms232113359] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/20/2022] [Accepted: 10/25/2022] [Indexed: 08/01/2023] Open
Abstract
Myotonic dystrophy type 1 (DM1) is a dominant genetic disease in which the expansion of long CTG trinucleotides in the 3' UTR of the myotonic dystrophy protein kinase (DMPK) gene results in toxic RNA gain-of-function and gene mis-splicing affecting mainly the muscles, the heart, and the brain. The CUG-expanded transcripts are a suitable target for the development of antisense oligonucleotide (ASO) therapies. Various chemical modifications of the sugar-phosphate backbone have been reported to significantly enhance the affinity of ASOs for RNA and their resistance to nucleases, making it possible to reverse DM1-like symptoms following systemic administration in different transgenic mouse models. However, specific tissue delivery remains to be improved to achieve significant clinical outcomes in humans. Several strategies, including ASO conjugation to cell-penetrating peptides, fatty acids, or monoclonal antibodies, have recently been shown to improve potency in muscle and cardiac tissues in mice. Moreover, intrathecal administration of ASOs may be an advantageous complementary administration route to bypass the blood-brain barrier and correct defects of the central nervous system in DM1. This review describes the evolution of the chemical design of antisense oligonucleotides targeting CUG-expanded mRNAs and how recent advances in the field may be game-changing by forwarding laboratory findings into clinical research and treatments for DM1 and other microsatellite diseases.
Collapse
Affiliation(s)
- Thiéry De Serres-Bérard
- CERVO Research Center, Institut Universitaire en Santé Mentale de Québec, Quebec City, QC G1J 2G3, Canada
| | - Siham Ait Benichou
- LOEX, CHU de Québec-Université Laval Research Center, Quebec City, QC G1J 1Z4, Canada
| | - Dominic Jauvin
- CERVO Research Center, Institut Universitaire en Santé Mentale de Québec, Quebec City, QC G1J 2G3, Canada
| | - Mohamed Boutjdir
- Cardiovascular Research Program, VA New York Harbor Healthcare System, New York, NY 11209, USA
- Department of Medicine, Cell Biology and Pharmacology, State University of New York Downstate Health Science University, New York, NY 11203, USA
- Department of Medicine, NYU School of Medicine, New York, NY 10016, USA
| | - Jack Puymirat
- LOEX, CHU de Québec-Université Laval Research Center, Quebec City, QC G1J 1Z4, Canada
- Department of Medicine, Faculty of Medicine, Université Laval, Quebec City, QC G1V 0A6, Canada
| | - Mohamed Chahine
- CERVO Research Center, Institut Universitaire en Santé Mentale de Québec, Quebec City, QC G1J 2G3, Canada
- Department of Medicine, Faculty of Medicine, Université Laval, Quebec City, QC G1V 0A6, Canada
| |
Collapse
|
43
|
Porosk L, Langel Ü. Approaches for evaluation of novel CPP-based cargo delivery systems. Front Pharmacol 2022; 13:1056467. [PMID: 36339538 PMCID: PMC9634181 DOI: 10.3389/fphar.2022.1056467] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 10/10/2022] [Indexed: 08/05/2023] Open
Abstract
Cell penetrating peptides (CPPs) can be broadly defined as relatively short synthetic, protein derived or chimeric peptides. Their most remarkable property is their ability to cross cell barriers and facilitate the translocation of cargo, such as drugs, nucleic acids, peptides, small molecules, dyes, and many others across the plasma membrane. Over the years there have been several approaches used, adapted, and developed for the evaluation of CPP efficacies as delivery systems, with the fluorophore attachment as the most widely used approach. It has become progressively evident, that the evaluation method, in order to lead to successful outcome, should concede with the specialties of the delivery. For characterization and assessment of CPP-cargo a combination of research tools of chemistry, physics, molecular biology, engineering, and other fields have been applied. In this review, we summarize the diverse, in silico, in vitro and in vivo approaches used for evaluation and characterization of CPP-based cargo delivery systems.
Collapse
Affiliation(s)
- Ly Porosk
- Laboratory of Drug Delivery, Institute of Technology, Faculty of Science and Technology, University of Tartu, Tartu, Estonia
| | - Ülo Langel
- Laboratory of Drug Delivery, Institute of Technology, Faculty of Science and Technology, University of Tartu, Tartu, Estonia
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| |
Collapse
|
44
|
Akbari E, Ajdary S, Ardakani EM, Agi E, Milani A, Seyedinkhorasani M, Khalaj V, Bolhassani A. Immunopotentiation by linking Hsp70 T-cell epitopes to Gag-Pol-Env-Nef-Rev multiepitope construct and increased IFN-gamma secretion in infected lymphocytes. Pathog Dis 2022; 80:6608937. [PMID: 35704612 DOI: 10.1093/femspd/ftac021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 06/03/2022] [Accepted: 06/13/2022] [Indexed: 11/12/2022] Open
Abstract
Therapeutic human immunodeficiency virus (HIV) vaccines can boost the anti-HIV host immunity to control viral replication and eliminate viral reservoirs in the absence of anti-retroviral therapy. In this study, two computationally designed multiepitope Gag-Pol-Env-Nef-Rev and Hsp70-Gag-Pol-Env-Nef-Rev constructs harboring immunogenic and highly conserved HIV T cell epitopes were generated in E. coli as polypeptide vaccine candidates. Furthermore, the multiepitope gag-pol-env-nef-rev and hsp70-gag-pol-env-nef-rev DNA vaccine constructs were prepared and complexed with MPG cell-penetrating peptide. The immunogenicity of the multiepitope constructs were evaluated using the homologous and heterologous prime/boost strategies in mice. Moreover, the secretion of IFN-γ was assessed in infected lymphocytes in vitro. Our data showed that the homologous polypeptide regimens could significantly induce a mixture of IgG1 and IgG2a antibody responses, activate T cells to secret IFN-γ, IL-5, IL-10, and generate Granzyme B. Moreover, IFN-γ secretion was significantly enhanced in single-cycle replicable (SCR) HIV-1 virions-infected splenocytes in these groups compared to uninfected splenocytes. The linkage of heat shock protein 70 (Hsp70) epitopes to Gag-Pol-Env-Nef-Rev polypeptide in the homologous regimen increased significantly cytokines and Granzyme B levels, and IFN-γ secretion in virions-infected splenocytes. Briefly, both designed constructs in the homologous regimens can be used as a promising vaccine candidate against HIV infection.
Collapse
Affiliation(s)
- Elahe Akbari
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran.,Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Soheila Ajdary
- Department of Immunology, Pasteur Institute of Iran, Tehran, Iran
| | | | - Elnaz Agi
- Iranian Comprehensive Hemophilia Care Center, Tehran, Iran
| | - Alireza Milani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| | | | - Vahid Khalaj
- Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Azam Bolhassani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
45
|
Zhou M, Zou X, Cheng K, Zhong S, Su Y, Wu T, Tao Y, Cong L, Yan B, Jiang Y. The role of cell-penetrating peptides in potential anti-cancer therapy. Clin Transl Med 2022; 12:e822. [PMID: 35593206 PMCID: PMC9121317 DOI: 10.1002/ctm2.822] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/28/2022] [Accepted: 04/04/2022] [Indexed: 12/19/2022] Open
Abstract
Due to the complex physiological structure, microenvironment and multiple physiological barriers, traditional anti-cancer drugs are severely restricted from reaching the tumour site. Cell-penetrating peptides (CPPs) are typically made up of 5-30 amino acids, and can be utilised as molecular transporters to facilitate the passage of therapeutic drugs across physiological barriers. Up to now, CPPs have widely been used in many anti-cancer treatment strategies, serving as an excellent potential choice for oncology treatment. However, their drawbacks, such as the lack of cell specificity, short duration of action, poor stability in vivo, compatibility problems (i.e. immunogenicity), poor therapeutic efficacy and formation of unwanted metabolites, have limited their further application in cancer treatment. The cellular uptake mechanisms of CPPs involve mainly endocytosis and direct penetration, but still remain highly controversial in academia. The CPPs-based drug delivery strategy could be improved by clever design or chemical modifications to develop the next-generation CPPs with enhanced cell penetration capability, stability and selectivity. In addition, some recent advances in targeted cell penetration that involve CPPs provide some new ideas to optimise CPPs.
Collapse
Affiliation(s)
- Meiling Zhou
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha, Hunan, China.,School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Xi Zou
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha, Hunan, China.,School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Kexin Cheng
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha, Hunan, China.,School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Suye Zhong
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha, Hunan, China.,School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Yangzhou Su
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha, Hunan, China.,School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Tao Wu
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha, Hunan, China.,School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Yongguang Tao
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, Xiangya Hospital, School of Basic Medicine, Central South University, Changsha, Hunan, China
| | - Li Cong
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha, Hunan, China.,School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Bin Yan
- Department of Pathology, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital Southern University of Science and Technology, Shenzhen People's Hospital, Shenzhen, China
| | - Yiqun Jiang
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha, Hunan, China.,School of Medicine, Hunan Normal University, Changsha, Hunan, China
| |
Collapse
|
46
|
Luna Velez MV, Paulino da Silva Filho O, Verhaegh GW, van Hooij O, El Boujnouni N, Brock R, Schalken JA. Delivery of antisense oligonucleotides for splice-correction of androgen receptor pre-mRNA in castration-resistant prostate cancer models using cell-penetrating peptides. Prostate 2022; 82:657-665. [PMID: 35098567 PMCID: PMC9303360 DOI: 10.1002/pros.24309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 07/19/2021] [Accepted: 01/07/2022] [Indexed: 11/09/2022]
Abstract
BACKGROUND Cell-penetrating peptides (CPPs) are a promising approach for delivering antisense oligonucleotides (AONs) as they form nanosized complexes through noncovalent interactions that show efficient cellular uptake. Previously, we have designed an AON system to correct splicing of the androgen receptor (AR) pre-mRNA, thereby preventing the generation of the splice variant AR-V7 mRNA. AON-mediated knockdown of AR-V7 resulted in inhibition of androgen-independent cell proliferation. In this study, we evaluated the CPP-mediated delivery of this AON into castration-resistant prostate cancer cell line models 22Rv1, DuCaP (dura mater cancer of the prostate), and VCaP (vertebral cancer of the prostate). METHODS Nanoparticles (polyplexes) of AONs and CPPs were formed through rapid mixing. The impact of the peptide carrier, the formulation parameters, and cell incubation conditions on cellular uptake of fluorescently labeled AONs were assessed through flow cytometry. The cytotoxic activity of these formulations was measured using the CellTiter-Glo cell viability assay. The effectivity of CPP-mediated delivery of the splice-correcting AON-intronic splicing enhancer (ISE) targeting the ISE in the castration-resistant prostate cancer (CRPC)-derived 22Rv1, DuCaP, and VCaP cells was determined by measuring levels of AR-V7 mRNA normalized to those of the human heterochromatin protein 1 binding protein 3 (HP1BP3). Western blot analysis was used to confirm AR-V7 downregulation at a protein level. The cellular distribution of fluorescently labeled AON delivered by a CPP or a transfection reagent was determined through confocal laser scanning microscopy. RESULTS The amphipathic and stearylated CPP PepFect 14 (PF14) showed higher uptake efficiency than arginine-rich CPPs. Through adjustment of formulation parameters, concentration and incubation time, an optimal balance between carrier-associated toxicity and delivery efficiency was found with a formulation consisting of an amino/phosphate ratio of 3, 0.35 μM AON concentration and 30 min incubation time of the cells with polyplexes. Cellular delivery of AON-ISE directed against AR pre-mRNA achieved significant downregulation of AR-V7 by 50%, 37%, and 59% for 22Rv1, DuCaP, and VCaP cells, respectively, and reduced androgen-independent cell proliferation of DuCaP and VCaP cells. CONCLUSIONS This proof-of-principle study constitutes the basis for further development of CPP-mediated delivery of AONs for targeted therapy in prostate cancer.
Collapse
Affiliation(s)
- Maria V. Luna Velez
- Department of Urology, Radboud Institute for Molecular Life SciencesRadboud University Medical CenterNijmegenthe Netherlands
| | - Omar Paulino da Silva Filho
- Department of Biochemistry, Radboud Institute for Molecular Life SciencesRadboud University Medical CenterNijmegenthe Netherlands
- CAPES FoundationMinistry of Education of BrazilBrasíliaBrazil
| | - Gerald W. Verhaegh
- Department of Urology, Radboud Institute for Molecular Life SciencesRadboud University Medical CenterNijmegenthe Netherlands
| | - Onno van Hooij
- Department of Urology, Radboud Institute for Molecular Life SciencesRadboud University Medical CenterNijmegenthe Netherlands
| | - Najoua El Boujnouni
- Department of Biochemistry, Radboud Institute for Molecular Life SciencesRadboud University Medical CenterNijmegenthe Netherlands
| | - Roland Brock
- Department of Biochemistry, Radboud Institute for Molecular Life SciencesRadboud University Medical CenterNijmegenthe Netherlands
- Department of Medical Biochemistry, College of Medicine and Medical SciencesArabian Gulf UniversityKingdom of Bahrain
| | - Jack A. Schalken
- Department of Urology, Radboud Institute for Molecular Life SciencesRadboud University Medical CenterNijmegenthe Netherlands
| |
Collapse
|
47
|
Abstract
AbstractBiophysical studies have a very high impact on the understanding of internalization, molecular mechanisms, interactions, and localization of CPPs and CPP/cargo conjugates in live cells or in vivo. Biophysical studies are often first carried out in test-tube set-ups or in vitro, leading to the complicated in vivo systems. This review describes recent studies of CPP internalization, mechanisms, and localization. The multiple methods in these studies reveal different novel and important aspects and define the rules for CPP mechanisms, hopefully leading to their improved applicability to novel and safe therapies.
Collapse
Affiliation(s)
- Matjaž Zorko
- University of Ljubljana, Medical Faculty, Institute of Biochemistry and Molecular Genetics, Vrazov trg 2, 1000Ljubljana, Slovenia,
| | - Ülo Langel
- University of Stockholm, Department of Biochemistry and Biophysics, Svante Arrhenius väg 16, 106 91 Stockholm, Sweden, , and Institute of Technology, University of Tartu, Nooruse 1, Tartu, Estonia, 50411
| |
Collapse
|
48
|
Le Jeune M, Secret E, Trichet M, Michel A, Ravault D, Illien F, Siaugue JM, Sagan S, Burlina F, Ménager C. Conjugation of Oligo-His Peptides to Magnetic γ-Fe 2O 3@SiO 2 Core-Shell Nanoparticles Promotes Their Access to the Cytosol. ACS APPLIED MATERIALS & INTERFACES 2022; 14:15021-15034. [PMID: 35319860 DOI: 10.1021/acsami.2c01346] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The endosomal entrapment of functional nanoparticles is a severe limitation to their use for biomedical applications. In the case of magnetic nanoparticles (MNPs), this entrapment leads to poor heating efficiency for magnetic hyperthermia and suppresses the possibility to manipulate them in the cytosol. Current strategies to limit their entrapment include functionalization with cell-penetrating peptides to promote translocation directly across the cell membrane or facilitate endosomal escape. However, these strategies suffer from the potential release of free peptides in the cell, and to the best of our knowledge, there is currently a lack of effective methods for the cytosolic delivery of MNPs after incubation with cells. Herein, we report the conjugation of fluorescently labeled cationic peptides to γ-Fe2O3@SiO2 core-shell nanoparticles by click chemistry to improve MNP access to the cytosol. We compare the effect of Arg9 and His4 peptides. On the one hand, Arg9 is a classical cell-penetrating peptide able to enter cells by direct translocation, and on the other hand, it has been demonstrated that sequences rich in histidine residues can promote endosomal escape, possibly by the proton sponge effect. The methodology developed here allows a high colocalization of the peptides and core-shell nanoparticles in cells and confirms that grafting peptides rich in histidine residues onto nanoparticles promotes NPs' access to the cytosol. Endosomal escape was confirmed by a calcein leakage assay and by ultrastructural analysis in transmission electron microscopy. No toxicity was observed for the peptide-nanoparticles conjugates. We also show that our conjugation strategy is compatible with the addition of multiple substrates and can thus be used for the delivery of cytoplasm-targeted therapeutics.
Collapse
Affiliation(s)
- Mathilde Le Jeune
- Sorbonne Université, CNRS, Laboratoire Physicochimie des Électrolytes et Nanosystèmes Interfaciaux, PHENIX, 75005 Paris, France
- Sorbonne Université, École Normale Supérieure, PSL University, CNRS, Laboratoire des Biomolécules, LBM, 75005 Paris, France
| | - Emilie Secret
- Sorbonne Université, CNRS, Laboratoire Physicochimie des Électrolytes et Nanosystèmes Interfaciaux, PHENIX, 75005 Paris, France
| | - Michaël Trichet
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine (IBPS), Service de Microscopie Électronique (IBPS-SME), 9 quai Saint Bernard, F-75005 Paris, France
| | - Aude Michel
- Sorbonne Université, CNRS, Laboratoire Physicochimie des Électrolytes et Nanosystèmes Interfaciaux, PHENIX, 75005 Paris, France
| | - Delphine Ravault
- Sorbonne Université, École Normale Supérieure, PSL University, CNRS, Laboratoire des Biomolécules, LBM, 75005 Paris, France
| | - Françoise Illien
- Sorbonne Université, École Normale Supérieure, PSL University, CNRS, Laboratoire des Biomolécules, LBM, 75005 Paris, France
| | - Jean-Michel Siaugue
- Sorbonne Université, CNRS, Laboratoire Physicochimie des Électrolytes et Nanosystèmes Interfaciaux, PHENIX, 75005 Paris, France
| | - Sandrine Sagan
- Sorbonne Université, École Normale Supérieure, PSL University, CNRS, Laboratoire des Biomolécules, LBM, 75005 Paris, France
| | - Fabienne Burlina
- Sorbonne Université, École Normale Supérieure, PSL University, CNRS, Laboratoire des Biomolécules, LBM, 75005 Paris, France
| | - Christine Ménager
- Sorbonne Université, CNRS, Laboratoire Physicochimie des Électrolytes et Nanosystèmes Interfaciaux, PHENIX, 75005 Paris, France
| |
Collapse
|
49
|
Hadianamrei R, Wang J, Brown S, Zhao X. Rationally designed cationic amphiphilic peptides for selective gene delivery to cancer cells. Int J Pharm 2022; 617:121619. [PMID: 35218898 DOI: 10.1016/j.ijpharm.2022.121619] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 02/14/2022] [Accepted: 02/21/2022] [Indexed: 10/19/2022]
Abstract
Gene therapy has gained increasing attention as an alternative to pharmacotherapy for treatment of various diseases. The extracellular and intracellular barriers to gene delivery necessitate the use of gene vectors which has led to the development of myriads of gene delivery systems. However, many of these gene delivery systems have pitfalls such as low biocompatibility, low loading efficiency, low transfection efficiency, lack of tissue selectivity and high production costs. Herein, we report the development of a new series of short cationic amphiphilic peptides with anticancer activity for selective delivery of small interfering RNA (siRNA) and antisense oligodeoxynucleotides (ODNs) to cancer cells. The peptides consist of alternating dyads of hydrophobic (isoleucine (I) or leucine (L)) and hydrophilic (arginine (R) or lysine (L)) amino acids. The peptides exhibited higher preference for transfection of HCT 116 colorectal cancer cells compared to human dermal fibroblasts (HDFs) and induced higher level of gene silencing in the cancer cells. The nucleic acid complexation and transfection efficiency of the peptides was a function of their secondary structure, their hydrophobicity and their C-terminal amino acid. The peptides containing L in their hydrophobic domain formed stronger complexes with siRNA and successfully delivered it to the cancer cells but were unable to release their cargo inside the cells and therefore could not induce any gene silencing. On the contrary, the peptides containing I in their hydrophobic domain were able to release their associated siRNA and induce considerable gene silencing in cancer cells. The peptides exhibited higher selectivity for colorectal cancer cells and induced less gene silencing in fibroblasts compared to the lipid-based commercial transfection reagent DharmaFECT™ 1. The results from this study can serve as a tool for rational design of new peptide-based gene vectors for high selective gene delivery to cancer cells.
Collapse
Affiliation(s)
- Roja Hadianamrei
- Department of Chemical and Biological Engineering, University of Sheffield, S1 3JD, UK
| | - Jiqian Wang
- Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao 266555, China
| | - Stephen Brown
- Department of Biomedical Science, University of Sheffield, S10 2TN, UK
| | - Xiubo Zhao
- Department of Chemical and Biological Engineering, University of Sheffield, S1 3JD, UK; School of Pharmacy, Changzhou University, Changzhou 213164, China.
| |
Collapse
|
50
|
Saiyed AN, Vasavada AR, Johar SRK. Recent trends in miRNA therapeutics and the application of plant miRNA for prevention and treatment of human diseases. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2022; 8:24. [PMID: 35382490 PMCID: PMC8972743 DOI: 10.1186/s43094-022-00413-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/21/2022] [Indexed: 02/17/2023] Open
Abstract
Background Researchers now have a new avenue to investigate when it comes to miRNA-based therapeutics. miRNAs have the potential to be valuable biomarkers for disease detection. Variations in miRNA levels may be able to predict changes in normal physiological processes. At the epigenetic level, miRNA has been identified as a promising candidate for distinguishing and treating various diseases and defects. Main body In recent pharmacology, plants miRNA-based drugs have demonstrated a potential role in drug therapeutics. The purpose of this review paper is to discuss miRNA-based therapeutics, the role of miRNA in pharmacoepigenetics modulations, plant miRNA inter-kingdom regulation, and the therapeutic value and application of plant miRNA for cross-kingdom approaches. Target prediction and complementarity with host genes, as well as cross-kingdom gene interactions with plant miRNAs, are also revealed by bioinformatics research. We also show how plant miRNA can be transmitted from one species to another by crossing kingdom boundaries in this review. Despite several unidentified barriers to plant miRNA cross-transfer, plant miRNA-based gene regulation in trans-kingdom gene regulation may soon be valued as a possible approach in plant-based drug therapeutics. Conclusion This review summarised the biochemical synthesis of miRNAs, pharmacoepigenetics, drug therapeutics and miRNA transkingdom transfer.
Collapse
Affiliation(s)
- Atiyabanu N. Saiyed
- Department of Cell and Molecular Biology, Iladevi Cataract and IOL Research Centre, Ahmedabad, Gujarat India
- Ph.D. scholar of Manipal Academy of Higher Education, Manipal, Karnataka India
| | - Abhay R. Vasavada
- Department of Cell and Molecular Biology, Iladevi Cataract and IOL Research Centre, Ahmedabad, Gujarat India
| | - S. R. Kaid Johar
- Department of Zoology, BMTC, Human Genetics, USSC, Gujarat University, Ahmedabad, Gujarat India
| |
Collapse
|