1
|
Jacobo-Delgado YM, Rodríguez-Carlos A, Santos-Mena A, González-Muñiz ÓE, Félix-Arellano C, Navarro-Tovar G, Rivas-Santiago B. A new target for drug repositioning: CEBPα elicits LL-37 expression in a vitamin D-independent manner promoting Mtb clearance. Microb Pathog 2025; 205:107586. [PMID: 40252936 DOI: 10.1016/j.micpath.2025.107586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 02/27/2025] [Accepted: 04/12/2025] [Indexed: 04/21/2025]
Abstract
Tuberculosis is an infectious disease caused by Mycobacterium tuberculosis (Mtb) and is a growing public health problem worldwide. Within the innate immune response, we highlight the secretion of the antimicrobial peptide LL-37, which is crucial for Mtb elimination in infected cells. Previous reports have shown that CEBPα activation induces LL-37 independently of its main inducer, vitamin D, under endoplasmic reticulum (ER) stress. In this study, we report that infection with Mtb causes ER stress in pulmonary epithelial cells and macrophages. The stress induces the activation of CEBPα, which in turn promotes the LL-37 expression. Furthermore, the participation of CEBPα is necessary for the correct clearance of Mtb in an in vitro infection model. We identify candidate drugs (mycophenolic acid, indapamide, and glibenclamide) capable of activating CEBPα and promoting LL-37 through in silico assays. The effect of the drugs was corroborated by gene and protein expression analysis. Finally, we observed that treatment with these drugs improves bacterial clearance in infected cells. Our results lead us to suggest CEBPα as a potential therapeutic target as an adjuvant in the standard treatment of tuberculosis, seeking a reduction in treatment time, and thus a lower appearance of drug resistance.
Collapse
Affiliation(s)
- Yolanda M Jacobo-Delgado
- Zacatecas Biomedical Research Unit, Mexican Social Security Institute. Interior de la Alameda #45 Colonia Centro 98000, Zacatecas, Mexico; Faculty of Chemical Sciences, Autonomous University of San Luis Potosi. Av. Manuel Nava #6, Zona Universitaria, 78290, San Luis Potosi, . Mexico.
| | - Adrián Rodríguez-Carlos
- Zacatecas Biomedical Research Unit, Mexican Social Security Institute. Interior de la Alameda #45 Colonia Centro 98000, Zacatecas, Mexico.
| | - Alan Santos-Mena
- Zacatecas Biomedical Research Unit, Mexican Social Security Institute. Interior de la Alameda #45 Colonia Centro 98000, Zacatecas, Mexico.
| | - Óscar E González-Muñiz
- Zacatecas Biomedical Research Unit, Mexican Social Security Institute. Interior de la Alameda #45 Colonia Centro 98000, Zacatecas, Mexico; Faculty of Chemical Sciences, Autonomous University of San Luis Potosi. Av. Manuel Nava #6, Zona Universitaria, 78290, San Luis Potosi, . Mexico.
| | - Camelia Félix-Arellano
- Zacatecas Biomedical Research Unit, Mexican Social Security Institute. Interior de la Alameda #45 Colonia Centro 98000, Zacatecas, Mexico.
| | - Gabriela Navarro-Tovar
- Faculty of Chemical Sciences, Autonomous University of San Luis Potosi. Av. Manuel Nava #6, Zona Universitaria, 78290, San Luis Potosi, . Mexico.
| | - Bruno Rivas-Santiago
- Zacatecas Biomedical Research Unit, Mexican Social Security Institute. Interior de la Alameda #45 Colonia Centro 98000, Zacatecas, Mexico.
| |
Collapse
|
2
|
Albini A, Di Paola L, Mei G, Baci D, Fusco N, Corso G, Noonan D. Inflammation and cancer cell survival: TRAF2 as a key player. Cell Death Dis 2025; 16:292. [PMID: 40229245 PMCID: PMC11997178 DOI: 10.1038/s41419-025-07609-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 03/25/2025] [Accepted: 03/31/2025] [Indexed: 04/16/2025]
Abstract
TNF receptor-associated factor 2 (TRAF2) plays a crucial role in both physiological and pathological processes. It takes part in the regulation of cell survival and death, tissue regeneration, development, endoplasmic reticulum stress response, autophagy, homeostasis of the epithelial barrier and regulation of adaptive and innate immunity. Initially identified for its interaction with TNF receptor 2 (TNFR2), TRAF2 contains a TRAF domain that enables homo- and hetero-oligomerization, allowing it to interact with multiple receptors and signaling molecules. While best known for mediating TNFR1 and TNFR2 signaling, TRAF2 also modulates other receptor pathways, including MAPK, NF-κB, and Wnt/β-catenin cascades. By regulating NF-κB-inducing kinase (NIK), TRAF2 is a key activator of the alternative NF-κB pathway, linking it to inflammatory diseases, immune dysfunction, and tumorigenesis. In the innate immune system, TRAF2 influences macrophage differentiation, activation, and survival and stimulates natural killer cell cytotoxicity. In the adaptive immune system, it represses effector B- and T-cell activity while sustaining regulatory T-cell function, thus promoting immune suppression. The lack of fine-tuning of TRAF2 activity leads to excessive NF-kB activation, driving chronic inflammation and autoimmunity. Although TRAF2 can act as a tumor suppressor, it is predominantly described as a tumor promoter, as its expression has been correlated with increased metastatic potential and poorer prognosis in several types of cancer. Targeting TRAF2 or TRAF2-dependent signaling pathways might represent a promising anti-cancer therapeutic strategy.
Collapse
Grants
- The work was also supported by the Italian Ministry of Health Ricerca Corrente to IRCCS IEO, European Institute of Oncology, and IRCCS MultiMedica, Italy.
- PRIN 2022, grant 2022PJKF88 The work was also supported by the Italian Ministry of Health Ricerca Corrente to IRCCS IEO, European Institute of Oncology, and IRCCS MultiMedica, Italy.
- PRIN 2022 The work was also supported by the Italian Ministry of Health Ricerca Corrente to IRCCS IEO, European Institute of Oncology, and IRCCS MultiMedica, Italy.
- "Umberto Veronesi" Foundation project: "Massive CDH1 genetic screening in the so-called hereditary breast-gastric cancer syndrome". The work was also supported by the Italian Ministry of Health Ricerca Corrente to IRCCS IEO, European Institute of Oncology, and IRCCS MultiMedica, Italy.
Collapse
Affiliation(s)
- Adriana Albini
- European Institute of Oncology (IEO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy.
| | - Luisa Di Paola
- Unit of Chemical-Physics Fundamentals in Chemical Engineering, Faculty Department of Science and Technology for Sustainable Development and One Health, Università Campus Bio-Medico, Rome, Italy
| | - Giampiero Mei
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Denisa Baci
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
- Molecular Cardiology Laboratory, IRCCS-Policlinico San Donato, Milan, Italy
| | - Nicola Fusco
- European Institute of Oncology (IEO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy
| | - Giovanni Corso
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy.
- Division of Breast Surgery, European Institute of Oncology (IEO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy.
| | - Douglas Noonan
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
- IRCCS MultiMedica, Milan, Italy
| |
Collapse
|
3
|
Chen L, Zhao X, Sheng R, Lazarovici P, Zheng W. Artemisinin alleviates astrocyte overactivation and neuroinflammation by modulating the IRE1/NF-κB signaling pathway in in vitro and in vivo Alzheimer's disease models. Free Radic Biol Med 2025; 229:96-110. [PMID: 39826816 DOI: 10.1016/j.freeradbiomed.2025.01.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 12/25/2024] [Accepted: 01/13/2025] [Indexed: 01/22/2025]
Abstract
Recent studies have shown that neuroinflammation and heightened glial activity, particularly astrocyte overactivation, are associated with Alzheimer's disease (AD). Abnormal accumulation of amyloid-beta (Aβ) induces endoplasmic reticulum (ER) stress and activates astrocytes. Artemisinin (ART), a frontline anti-malarial drug, has been found to have neuroprotective properties. However, its impact on astrocytes remains unclear. In this study, we used Aβ1-42 induced astrocyte cultures and 3 × Tg-AD mice as in vitro and in vivo models, respectively, to investigate the effects of ART on AD related astrocyte overactivation and its underlying mechanisms. ART attenuated Aβ1-42-induced astrocyte activation, ER stress, and inflammatory responses in astrocyte cultures by inhibiting IRE1 phosphorylation and the NF-κB pathway, as evidenced by the overexpression of IRE1 WT and IRE1-K599A (kinase activity invalidated), along with application of activators and inhibitors related to ER stress. Furthermore, ART alleviated the detrimental effects and restored neurotrophic function of astrocytes on co-cultured neurons, preventing neuronal apoptosis during Aβ1-42 treatment. In 3 × Tg-AD mice, ART treatment improved cognitive function and reduced astrocyte overactivation, neuroinflammation, ER stress, and neuronal apoptosis. Moreover, ART attenuated the upregulation of IRE1/NF-κB pathway activity in AD mice. Astrocyte-specific overexpression of IRE1 via adeno-associated virus in AD mice reversed the ameliorating effects of ART. Our findings suggest that ART inhibits astrocyte overactivation and neuroinflammation in both in vitro and in vivo AD models by modulating the IRE1/NF-κB signaling pathway, thereby enhancing neuronal functions. This study underscores the therapeutic potential of ART in AD and highlights the significance of modulating the ER stress-inflammatory cycle and normalizing astrocyte-neuron communication.
Collapse
Affiliation(s)
- Lei Chen
- Pharmaceutical Science, Faculty of Health Sciences, University of Macau, Macau, Taipa, China; Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, China
| | - Xia Zhao
- Pharmaceutical Science, Faculty of Health Sciences, University of Macau, Macau, Taipa, China
| | - Rui Sheng
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, China.
| | - Philip Lazarovici
- School of Pharmacy Institute for Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, 9112002, Israel
| | - Wenhua Zheng
- Pharmaceutical Science, Faculty of Health Sciences, University of Macau, Macau, Taipa, China.
| |
Collapse
|
4
|
Zakaria N, Menze ET, Elsherbiny DA, Tadros MG, George MY. Lycopene mitigates paclitaxel-induced cognitive impairment in mice; Insights into Nrf2/HO-1, NF-κB/NLRP3, and GRP-78/ATF-6 axes. Prog Neuropsychopharmacol Biol Psychiatry 2025; 137:111262. [PMID: 39848561 DOI: 10.1016/j.pnpbp.2025.111262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 01/16/2025] [Accepted: 01/17/2025] [Indexed: 01/25/2025]
Abstract
Chemotherapy-induced cognitive impairment, referred to as "chemobrain", is widely acknowledged as a significant adverse effect of cancer therapy. Paclitaxel, a chemotherapeutic drug, has been reported to cause cognitive impairment clinically and in animal models. However, the precise mechanisms are not fully understood. The current study explored the potential neuroprotective effect of lycopene in paclitaxel-induced cognitive impairment in mice and its potential underlying mechanisms. Mice were randomly allocated into six groups: control, paclitaxel-treated (10 mg/kg), lycopene-treated (5, 10, and 20 mg/kg) + paclitaxel, and lycopene alone-treated (20 mg/kg) groups. The effect of lycopene treatment on behavioral function and histological examination was assessed. Lycopene (20 mg/kg) was selected for additional investigation into the underlying mechanisms. Lycopene treatment counteracted paclitaxel-induced oxidative stress by reducing lipid peroxidation and enhancing catalase levels. Additionally, lycopene-treated mice demonstrated a significant elevation in nuclear factor erythroid 2-related factor 2 with no significant effect on hemeoxygenase-1. Moreover, paclitaxel administration elevated endoplasmic reticulum stress markers; glucose-regulated protein78, activating Transcription Factor 6, C/EBP homologous protein, and apoptosis marker annexin V which were significantly reduced by lycopene treatment. Furthermore, lycopene mitigated paclitaxel-induced neuroinflammation through the reduction of the levels of the NLR Family Pyrin Domain Containing 3 (NLRP3) inflammasome axis markers; nuclear factor-κB, NLRP3, caspase-1, interleukin-1β, and interleukin-18. Our study findings may provide new evidence that lycopene mitigates paclitaxel-induced cognitive impairment in mice by reversing oxidative stress, endoplasmic reticulum stress, and inflammatory mechanisms.
Collapse
Affiliation(s)
- Nora Zakaria
- Armed Forces Medical Complex- Kobry El-Qobba, Ministry of Defense, Kobry El-Qobba, Cairo 11766, Egypt
| | - Esther T Menze
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt
| | - Doaa A Elsherbiny
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt
| | - Mariane G Tadros
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt
| | - Mina Y George
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt.
| |
Collapse
|
5
|
Amara A, Trabelsi S, Hai A, Zaidi SHH, Siddiqui F, Alsaeed S. Equivocating and Deliberating on the Probability of COVID-19 Infection Serving as a Risk Factor for Lung Cancer and Common Molecular Pathways Serving as a Link. Pathogens 2024; 13:1070. [PMID: 39770330 PMCID: PMC11728627 DOI: 10.3390/pathogens13121070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 11/27/2024] [Accepted: 12/04/2024] [Indexed: 01/30/2025] Open
Abstract
The COVID-19 infection caused by SARS-CoV-2 in late 2019 posed unprecedented global health challenges of massive proportions. The persistent effects of COVID-19 have become a subject of significant concern amongst the medical and scientific community. This article aims to explore the probability of a link between the COVID-19 infection and the risk of lung cancer development. First, this article reports that SARS-CoV-2 induces severe inflammatory response and cellular stress, potentially leading to tumorigenesis through common pathways between SARS-CoV-2 infection and cancer. These pathways include the JAK/STAT3 pathway which is activated after the initiation of cytokine storm following SARS-CoV-2 infection. This pathway is involved in cellular proliferation, differentiation, and immune homeostasis. The JAK/STAT3 pathway is also hyperactivated in lung cancer which serves as a link thereof. It predisposes patients to lung cancer through myriad molecular mechanisms such as DNA damage, genomic instability, and cell cycle dysregulation. Another probable pathway to tumorigenesis is based on the possibility of an oncogenic nature of SARS-CoV-2 through hijacking the p53 protein, leading to cell oxidative stress and interfering with the DNA repair mechanisms. Finally, this article highlights the overexpression of the SLC22A18 gene in lung cancer. This gene can be overexpressed by the ZEB1 transcription factor, which was found to be highly expressed during COVID-19 infection.
Collapse
Affiliation(s)
- Abdelbasset Amara
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Northern Border University, Arar 91431, Saudi Arabia; (A.H.); (F.S.); (S.A.)
- Center for Health Research, Northern Border University, Arar 91431, Saudi Arabia;
| | - Saoussen Trabelsi
- Center for Health Research, Northern Border University, Arar 91431, Saudi Arabia;
- Department of Community Health, Faculty of Applied Medical Sciences, Northern Border University, Arar 91431, Saudi Arabia
| | - Abdul Hai
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Northern Border University, Arar 91431, Saudi Arabia; (A.H.); (F.S.); (S.A.)
| | - Syeda Huma H. Zaidi
- Department of Chemistry, Faculty of Science, Northern Border University, Arar 91431, Saudi Arabia;
| | - Farah Siddiqui
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Northern Border University, Arar 91431, Saudi Arabia; (A.H.); (F.S.); (S.A.)
| | - Sami Alsaeed
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Northern Border University, Arar 91431, Saudi Arabia; (A.H.); (F.S.); (S.A.)
| |
Collapse
|
6
|
Shi J, He F, Du X. Emerging role of IRE1α in vascular diseases. J Cell Commun Signal 2024; 18:e12056. [PMID: 39691875 PMCID: PMC11647051 DOI: 10.1002/ccs3.12056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/29/2024] [Accepted: 10/21/2024] [Indexed: 12/19/2024] Open
Abstract
A mounting body of evidence suggests that the endoplasmic reticulum stress and the unfolded protein response are involved in the underlying mechanisms responsible for vascular diseases. Inositol-requiring protein 1α (IRE1α), the most ancient branch among the UPR-related signaling pathways, can possess both serine/threonine kinase and endoribonuclease (RNase) activity and can perform physiological and pathological functions. The IRE1α-signaling pathway plays a critical role in the pathology of various vascular diseases. In this review, we provide a general overview of the physiological function of IRE1α and its pathophysiological role in vascular diseases.
Collapse
Affiliation(s)
- Jia Shi
- Department of NephrologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Fan He
- Department of NephrologyTongji Hospital Affiliated to Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei ProvinceChina
| | - Xiaogang Du
- Department of NephrologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| |
Collapse
|
7
|
Temviriyanukul P, Chansawhang A, Inthachat W, Supasawat P, Phochantachinda S, Pitchakarn P, Chantong B. Phikud navakot extract acts as an ER stress inhibitor to ameliorate ER stress and neuroinflammation. Heliyon 2024; 10:e39700. [PMID: 39524867 PMCID: PMC11543883 DOI: 10.1016/j.heliyon.2024.e39700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 10/17/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
The prevalence of neurological disorders (NDs) such as Alzheimer's disease (AD) is increasing globally, and the lack of effective pharmacological interventions presents a significant health risk. Multiple mechanisms including the activation of oxidative stress, amyloid pathway, ER stress, and neuroinflammation have been implicated in AD; therefore, multi-targeted agents against these mechanisms may be preferable to single-target agents. Phikud Navakot (PN), a Thai traditional medicine combining nine herbs, has been shown to reduce oxidative stress and neuroinflammation of neuronal and microglia cells and the coculture between them, indicating the promising role of PN extract as anti-AD. This study evaluated the neuroprotective effects of PN extract against oxidative stress, amyloid pathway, endoplasmic reticulum stress (ER stress), and neuroinflammation using neuronal and microglia cells, as well as in a Drosophila model of AD. Results showed that PN extract reduced oxidative stress, lipid peroxidation, pro-inflammatory cytokines, amyloid pathway, and ER stress induced by aluminum chloride (AlCl3, AD-induced agent) or thapsigargin (TG, an ER stress activator) in both neurons and microglia cells. PN extract also reduced oxidative stress, ER-stress-related genes, and neurotoxic peptides (amyloid beta) in a Drosophila model of AD. Data indicated that PN extract may function as an anti-AD agent by targeting multiple mechanisms as described. This research also revealed for the first time that PN extract acted as an ER stress inhibitor.
Collapse
Affiliation(s)
- Piya Temviriyanukul
- Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom, 73170, Thailand
| | - Anchana Chansawhang
- The Center for Veterinary Diagnosis, Faculty of Veterinary Science, Mahidol University, Salaya, Phutthamonthon, Nakhon Pathom, 73170, Thailand
| | - Woorawee Inthachat
- Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom, 73170, Thailand
| | - Punchaya Supasawat
- Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom, 73170, Thailand
| | - Sataporn Phochantachinda
- Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, Salaya, Phutthamonthon, Nakhon Pathom, 73170, Thailand
| | - Pornsiri Pitchakarn
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Boonrat Chantong
- Department of Pre-clinical and Applied Animal Science, Faculty of Veterinary Science, Mahidol University, Salaya, Phutthamonthon, Nakhon Pathom, 73170, Thailand
| |
Collapse
|
8
|
Wang Q, Li A, Yu H, Wang C, Wang T, Zhang J. Evaluation of Cross-Talk and Alleviate Potential of Cytotoxic Factors Induced by Deoxynivalenol in IPEC-J2 Cells Interference with Curcumin. Int J Mol Sci 2024; 25:6984. [PMID: 39000093 PMCID: PMC11241398 DOI: 10.3390/ijms25136984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/17/2024] [Accepted: 06/24/2024] [Indexed: 07/16/2024] Open
Abstract
Deoxynivalenol (DON) is a mycotoxin produced by Fusarium graminearum, and curcumin (CUR) is a natural polyphenolic compound found in turmeric. However, the combined treatment of CUR and DON to explore the mitigating effect of CUR on DON and their combined mechanism of action is not clear. Therefore, in this study, we established four treatment groups (CON, CUR, DON and CUR + DON) to investigate their mechanism in the porcine intestinal epithelial cells (IPEC-J2). In addition, the cross-talk and alleviating potential of CUR interfering with DON-induced cytotoxic factors were evaluated by in vitro experiments; the results showed that CUR could effectively inhibit DON-exposed activated TNF-α/NF-κB pathway, attenuate DON-induced apoptosis, and alleviate DON-induced endoplasmic reticulum stress and oxidative stress through PERK/CHOP pathways, which were verified at both mRNA and protein levels. In conclusion, these promising findings may contribute to the future use of CUR as a novel feed additive to protect livestock from the harmful effects of DON.
Collapse
Affiliation(s)
- Qiyuan Wang
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China
- College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Aike Li
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China
| | - Hao Yu
- College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Chuanqi Wang
- College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Ting Wang
- College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Jing Zhang
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China
| |
Collapse
|
9
|
Huang X, Jiang F, Ma Y, Zhu K, Wang Z, Hua Z, Yu J, Zhang L. A bibliometric analysis of endoplasmic reticulum stress and atherosclerosis. Front Physiol 2024; 15:1392454. [PMID: 38938744 PMCID: PMC11210825 DOI: 10.3389/fphys.2024.1392454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/24/2024] [Indexed: 06/29/2024] Open
Abstract
The mechanisms underlying the occurrence and development of atherosclerosis (AS) are diverse, among which endoplasmic reticulum stress (ERS) is an important mechanism that should not be overlooked. However, up to now, there has been no bibliometric study on the relationship between ERS and AS. To understand the research progress in ERS and AS, this paper conducted a statistical analysis of publications in this field using bibliometrics. A total of 1,035 records were retrieved from the Web of Science Core Collection. CiteSpace, VOSviewer, and the R package "bibliometric" were used to analyze the spatiotemporal distribution, countries, authors, institutions, journals, references, and keywords of the literature, and to present the basic information of this field through visualized maps, as well as determine the collaboration relationships among researchers in this field. This field has gradually developed and stabilized over the past 20 years. The current research hotspots in this field mainly include the relationship between ERS and AS-related cells, the mechanisms by which ERS promotes AS, related diseases, and associated cytokines, etc. Vascular calcification, endothelial dysfunction, NLRP3 inflammasome, and heart failure represent the frontier research in this field and are becoming new research hotspots. It is hoped that this study will provide new insights for research and clinical work in the field of ERS and AS.
Collapse
Affiliation(s)
- Xinyu Huang
- Shandong University of Traditional Chinese Medicine, Shandon, China
| | - Feng Jiang
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Shandon, China
| | - Yongbo Ma
- Shandong University of Traditional Chinese Medicine, Shandon, China
| | - Kunpeng Zhu
- Shandong University of Traditional Chinese Medicine, Shandon, China
| | - Zhenyuan Wang
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Shandon, China
| | - Zhen Hua
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Shandon, China
| | - Jie Yu
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Shandon, China
| | - Lei Zhang
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Shandon, China
| |
Collapse
|
10
|
Chandrasekaran P, Weiskirchen R. The signaling pathways in obesity-related complications. J Cell Commun Signal 2024; 18:e12039. [PMID: 38946722 PMCID: PMC11208128 DOI: 10.1002/ccs3.12039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 07/02/2024] Open
Abstract
Obesity, a rapidly expanding epidemic worldwide, is known to exacerbate many medical conditions, making it a significant factor in multiple diseases and their associated complications. This threatening epidemic is linked to various harmful conditions such as type 2 diabetes mellitus, hypertension, metabolic dysfunction-associated steatotic liver disease, polycystic ovary syndrome, cardiovascular diseases (CVDs), dyslipidemia, and cancer. The rise in urbanization and sedentary lifestyles creates an environment that fosters obesity, leading to both psychosocial and medical complications. To identify individuals at risk and ensure timely treatment, it is crucial to have a better understanding of the pathophysiology of obesity and its comorbidities. This comprehensive review highlights the relationship between obesity and obesity-associated complications, including type 2 diabetes, hypertension, (CVDs), dyslipidemia, polycystic ovary syndrome, metabolic dysfunction-associated steatotic liver disease, gastrointestinal complications, and obstructive sleep apnea. It also explores the potential mechanisms underlying these associations. A thorough analysis of the interplay between obesity and its associated complications is vital in developing effective therapeutic strategies to combat the exponential increase in global obesity rates and mitigate the deadly consequences of this polygenic condition.
Collapse
Affiliation(s)
| | - Ralf Weiskirchen
- Institute of Molecular PathobiochemistryExperimental Gene Therapy and Clinical Chemistry (IFMPEGKC)RWTH University Hospital AachenAachenGermany
| |
Collapse
|
11
|
Bietar K, Chu S, Mandl G, Zhang E, Chabaytah N, Sabelli R, Capobianco JA, Stochaj U. Silica-coated LiYF 4:Yb 3+, Tm 3+ upconverting nanoparticles are non-toxic and activate minor stress responses in mammalian cells. RSC Adv 2024; 14:8695-8708. [PMID: 38495986 PMCID: PMC10938293 DOI: 10.1039/d3ra08869c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 03/05/2024] [Indexed: 03/19/2024] Open
Abstract
Lanthanide-doped upconverting nanoparticles (UCNPs) are ideal candidates for use in biomedicine. The interaction of nanomaterials with biological systems determines whether they are suitable for use in living cells. In-depth knowledge of the nano-bio interactions is therefore a pre-requisite for the development of biomedical applications. The current study evaluates fundamental aspects of the NP-cell interface for square bipyramidal UCNPs containing a LiYF4:Yb3+, Tm3+ core and two different silica surface coatings. Given their importance for mammalian physiology, fibroblast and renal proximal tubule epithelial cells were selected as cellular model systems. We have assessed the toxicity of the UCNPs and measured their impact on the homeostasis of living non-malignant cells. Rigorous analyses were conducted to identify possible toxic and sub-lethal effects of the UCNPs. To this end, we examined biomarkers that reveal if UCNPs induce cell killing or stress. Quantitative measurements demonstrate that short-term exposure to the UCNPs had no profound effects on cell viability, cell size or morphology. Indicators of oxidative, endoplasmic reticulum, or nucleolar stress, and the production of molecular chaperones varied with the surface modification of the UCNPs and the cell type analyzed. These differences emphasize the importance of evaluating cells of diverse origin that are relevant to the intended use of the nanomaterials. Taken together, we established that short-term, our square bipyramidal UCNPs are not toxic to non-malignant fibroblast and proximal renal epithelial cells. Compared with established inducers of cellular stress, these UCNPs have minor effects on cellular homeostasis. Our results build the foundation to explore square bipyramidal UCNPs for future in vivo applications.
Collapse
Affiliation(s)
- Kais Bietar
- Department of Physiology, McGill University Canada
| | - Siwei Chu
- Department of Physiology, McGill University Canada
| | - Gabrielle Mandl
- Department of Chemistry and Biochemistry, Centre for Nanoscience Research, Concordia University Canada
| | - Emma Zhang
- Department of Physiology, McGill University Canada
| | | | | | - John A Capobianco
- Department of Chemistry and Biochemistry, Centre for Nanoscience Research, Concordia University Canada
| | - Ursula Stochaj
- Department of Physiology, McGill University Canada
- Quantitative Life Sciences Program, McGill University Montreal Canada
| |
Collapse
|
12
|
Jiang JL, Zhou YY, Zhong WW, Luo LY, Liu SY, Xie XY, Mu MY, Jiang ZG, Xue Y, Zhang J, He YH. Uridine diphosphate glucuronosyltransferase 1A1 prevents the progression of liver injury. World J Gastroenterol 2024; 30:1189-1212. [PMID: 38577195 PMCID: PMC10989491 DOI: 10.3748/wjg.v30.i9.1189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 01/02/2024] [Accepted: 01/29/2024] [Indexed: 03/06/2024] Open
Abstract
BACKGROUND Uridine diphosphate glucuronosyltransferase 1A1 (UGT1A1) plays a crucial role in metabolizing and detoxifying endogenous and exogenous substances. However, its contribution to the progression of liver damage remains unclear. AIM To determine the role and mechanism of UGT1A1 in liver damage progression. METHODS We investigated the relationship between UGT1A1 expression and liver injury through clinical research. Additionally, the impact and mechanism of UGT1A1 on the progression of liver injury was analyzed through a mouse model study. RESULTS Patients with UGT1A1 gene mutations showed varying degrees of liver damage, while patients with acute-on-chronic liver failure (ACLF) exhibited relatively reduced levels of UGT1A1 protein in the liver as compared to patients with chronic hepatitis. This suggests that low UGT1A1 levels may be associated with the progression of liver damage. In mouse models of liver injury induced by carbon tetrachloride (CCl4) and concanavalin A (ConA), the hepatic levels of UGT1A1 protein were found to be increased. In mice with lipopolysaccharide or liver steatosis-mediated liver-injury progression, the hepatic protein levels of UGT1A1 were decreased, which is consistent with the observations in patients with ACLF. UGT1A1 knockout exacerbated CCl4- and ConA-induced liver injury, hepatocyte apoptosis and necroptosis in mice, intensified hepatocyte endoplasmic reticulum (ER) stress and oxidative stress, and disrupted lipid metabolism. CONCLUSION UGT1A1 is upregulated as a compensatory response during liver injury, and interference with this upregulation process may worsen liver injury. UGT1A1 reduces ER stress, oxidative stress, and lipid metabolism disorder, thereby mitigating hepatocyte apoptosis and necroptosis.
Collapse
Affiliation(s)
- Jin-Lian Jiang
- Department of Infectious Diseases, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou Province, China
| | - Yi-Yang Zhou
- Department of Infectious Diseases, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou Province, China
| | - Wei-Wei Zhong
- Department of Infectious Diseases, Jingmen Central Hospital, Jingmen 448000, Hubei Province, China
| | - Lin-Yan Luo
- Department of Respiratory Medicine, Anshun People’s Hospital, Anshun 561099, Guizhou Province, China
| | - Si-Ying Liu
- Department of Infectious Diseases, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou Province, China
| | - Xiao-Yu Xie
- Department of General Practice, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou Province, China
| | - Mao-Yuan Mu
- Department of Intervention Radiology, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou Province, China
| | - Zhi-Gang Jiang
- School of Public Health, Zunyi Medical University, Zunyi 563099, Guizhou Province, China
| | - Yuan Xue
- Department of Liver Diseases, Third People’s Hospital of Changzhou, Changzhou 213000, Jiangsu Province, China
| | - Jian Zhang
- Department of Digestion, Dafang County People’s Hospital, Bijie 551600, Guizhou Province, China
| | - Yi-Huai He
- Department of Infectious Diseases, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou Province, China
| |
Collapse
|
13
|
Corne A, Adolphe F, Estaquier J, Gaumer S, Corsi JM. ATF4 Signaling in HIV-1 Infection: Viral Subversion of a Stress Response Transcription Factor. BIOLOGY 2024; 13:146. [PMID: 38534416 PMCID: PMC10968437 DOI: 10.3390/biology13030146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 02/13/2024] [Accepted: 02/20/2024] [Indexed: 03/28/2024]
Abstract
Cellular integrated stress response (ISR), the mitochondrial unfolded protein response (UPRmt), and IFN signaling are associated with viral infections. Activating transcription factor 4 (ATF4) plays a pivotal role in these pathways and controls the expression of many genes involved in redox processes, amino acid metabolism, protein misfolding, autophagy, and apoptosis. The precise role of ATF4 during viral infection is unclear and depends on cell hosts, viral agents, and models. Furthermore, ATF4 signaling can be hijacked by pathogens to favor viral infection and replication. In this review, we summarize the ATF4-mediated signaling pathways in response to viral infections, focusing on human immunodeficiency virus 1 (HIV-1). We examine the consequences of ATF4 activation for HIV-1 replication and reactivation. The role of ATF4 in autophagy and apoptosis is explored as in the context of HIV-1 infection programmed cell deaths contribute to the depletion of CD4 T cells. Furthermore, ATF4 can also participate in the establishment of innate and adaptive immunity that is essential for the host to control viral infections. We finally discuss the putative role of the ATF4 paralogue, named ATF5, in HIV-1 infection. This review underlines the role of ATF4 at the crossroads of multiple processes reflecting host-pathogen interactions.
Collapse
Affiliation(s)
- Adrien Corne
- Laboratoire de Génétique et Biologie Cellulaire, Université Versailles-Saint-Quentin-en-Yvelines, Université Paris-Saclay, 78000 Versailles, France; (A.C.); (F.A.); (S.G.)
- CHU de Québec Research Center, Laval University, Quebec City, QC G1V 4G2, Canada
| | - Florine Adolphe
- Laboratoire de Génétique et Biologie Cellulaire, Université Versailles-Saint-Quentin-en-Yvelines, Université Paris-Saclay, 78000 Versailles, France; (A.C.); (F.A.); (S.G.)
| | - Jérôme Estaquier
- CHU de Québec Research Center, Laval University, Quebec City, QC G1V 4G2, Canada
- INSERM U1124, Université Paris Cité, 75006 Paris, France
| | - Sébastien Gaumer
- Laboratoire de Génétique et Biologie Cellulaire, Université Versailles-Saint-Quentin-en-Yvelines, Université Paris-Saclay, 78000 Versailles, France; (A.C.); (F.A.); (S.G.)
| | - Jean-Marc Corsi
- Laboratoire de Génétique et Biologie Cellulaire, Université Versailles-Saint-Quentin-en-Yvelines, Université Paris-Saclay, 78000 Versailles, France; (A.C.); (F.A.); (S.G.)
| |
Collapse
|
14
|
Liang X, Hou X, Bouhamdan M, Sun Y, Song Z, Rajagopalan C, Jiang H, Wei HG, Song J, Yang D, Guo Y, Zhang Y, Mou H, Zhang J, Chen YE, Sun F, Jin JP, Zhang K, Xu J. Sotagliflozin attenuates liver-associated disorders in cystic fibrosis rabbits. JCI Insight 2024; 9:e165826. [PMID: 38358827 PMCID: PMC10972622 DOI: 10.1172/jci.insight.165826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 02/09/2024] [Indexed: 02/17/2024] Open
Abstract
Mutations in the cystic fibrosis (CF) transmembrane conductance regulator (CFTR) gene lead to CF, a life-threating autosomal recessive genetic disease. While recently approved Trikafta dramatically ameliorates CF lung diseases, there is still a lack of effective medicine to treat CF-associated liver disease (CFLD). To address this medical need, we used a recently established CF rabbit model to test whether sotagliflozin, a sodium-glucose cotransporter 1 and 2 (SGLT1/2) inhibitor drug that is approved to treat diabetes, can be repurposed to treat CFLD. Sotagliflozin treatment led to systemic benefits to CF rabbits, evidenced by increased appetite and weight gain as well as prolonged lifespan. For CF liver-related phenotypes, the animals benefited from normalized blood chemistry and bile acid parameters. Furthermore, sotagliflozin alleviated nonalcoholic steatohepatitis-like phenotypes, including liver fibrosis. Intriguingly, sotagliflozin treatment markedly reduced the otherwise elevated endoplasmic reticulum stress responses in the liver and other affected organs of CF rabbits. In summary, our work demonstrates that sotagliflozin attenuates liver disorders in CF rabbits and suggests sotagliflozin as a potential drug to treat CFLD.
Collapse
Affiliation(s)
- Xiubin Liang
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Xia Hou
- Department of Physiology, and
| | | | - Yifei Sun
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Zhenfeng Song
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, Michigan, USA
| | | | | | | | - Jun Song
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Dongshan Yang
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Yanhong Guo
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Yihan Zhang
- The Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Hongmei Mou
- The Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Jifeng Zhang
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Y. Eugene Chen
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Fei Sun
- Department of Physiology, and
| | | | - Kezhong Zhang
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Jie Xu
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| |
Collapse
|
15
|
Jo SL, Hong EJ. Progesterone Receptor Membrane Component 1 Regulates Cellular Stress Responses and Inflammatory Pathways in Chronic Neuroinflammatory Conditions. Antioxidants (Basel) 2024; 13:230. [PMID: 38397828 PMCID: PMC10886208 DOI: 10.3390/antiox13020230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/08/2024] [Accepted: 02/11/2024] [Indexed: 02/25/2024] Open
Abstract
Alzheimer's disease (AD) is the leading cause of dementia and is one of the neurodegenerative diseases that are caused by neuronal death due to various triggers. Neuroinflammation plays a critical role in the development of AD. The neuroinflammatory response is manifested by pro-inflammatory cytokines, such as interleukin (IL)-1β, IL-6, and tumor necrosis factor-α; various chemokines; nitrous oxide; and reactive oxygen species. In this study, we evaluated the relevance of progesterone receptor membrane component 1 (PGRMC1), which is expressed in the brain cells during the induction of neuroinflammation. A lipopolysaccharide (LPS)-induced chronic neuroinflammation model and Pgrmc1 knockdown cells were used to assess the inflammatory cytokine levels, AD-related factors, inflammation-related signaling, and cell death. Pgrmc1 knockout (KO) mice had higher IL-1β levels after treatment with LPS compared with those of wild-type (WT) mice. Furthermore, Pgrmc1 KO mice had higher levels of inflammatory factors, endoplasmic reticulum stress indicators, and AD-associated markers compared with those of WT mice who underwent LPS treatment or not. Finally, these indicators were observed in vitro using U373-MG astrocytes. In conclusion, the loss of PGRMC1 may promote neuroinflammation and lead to AD.
Collapse
Affiliation(s)
| | - Eui-Ju Hong
- College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Republic of Korea;
| |
Collapse
|
16
|
Bunz M, Eisele M, Hu D, Ritter M, Kammerloher J, Lampl S, Schindler M. CD81 suppresses NF-κB signaling and is downregulated in hepatitis C virus expressing cells. Front Cell Infect Microbiol 2024; 14:1338606. [PMID: 38357447 PMCID: PMC10864554 DOI: 10.3389/fcimb.2024.1338606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/15/2024] [Indexed: 02/16/2024] Open
Abstract
The tetraspanin CD81 is one of the main entry receptors for Hepatitis C virus, which is a major causative agent to develop liver cirrhosis and hepatocellular carcinoma (HCC). Here, we identify CD81 as one of few surface proteins that are downregulated in HCV expressing hepatoma cells, discovering a functional role of CD81 beyond mediating HCV entry. CD81 was downregulated at the mRNA level in hepatoma cells that replicate HCV. Kinetics of HCV expression were increased in CD81-knockout cells and accompanied by enhanced cellular growth. Furthermore, loss of CD81 compensated for inhibition of pro-survival TBK1-signaling in HCV expressing cells. Analysis of functional phenotypes that could be associated with pro-survival signaling revealed that CD81 is a negative regulator of NF-κB. Interaction of the NF-κB subunits p50 and p65 was increased in cells lacking CD81. Similarly, we witnessed an overall increase in the total levels of phosphorylated and cellular p65 upon CD81-knockout in hepatoma cells. Finally, translocation of p65 in CD81-negative hepatoma cells was markedly induced upon stimulation with TNFα or PMA. Altogether, CD81 emerges as a regulator of pro-survival NF-κB signaling. Considering the important and established role of NF-κB for HCV replication and tumorigenesis, the downregulation of CD81 by HCV and the associated increase in NF-κB signaling might be relevant for viral persistence and chronic infection.
Collapse
Affiliation(s)
- Maximilian Bunz
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, Tübingen, Germany
| | - Mona Eisele
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, Tübingen, Germany
| | - Dan Hu
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, Tübingen, Germany
| | - Michael Ritter
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, Tübingen, Germany
| | - Julia Kammerloher
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, Tübingen, Germany
- Institute of Virology, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
| | - Sandra Lampl
- Institute of Virology, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
| | - Michael Schindler
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, Tübingen, Germany
| |
Collapse
|
17
|
Lee HC, Chao HT, Lee SYH, Lin CY, Tsai HJ. The Upstream 1350~1250 Nucleotide Sequences of the Human ENDOU-1 Gene Contain Critical Cis-Elements Responsible for Upregulating Its Transcription during ER Stress. Int J Mol Sci 2023; 24:17393. [PMID: 38139221 PMCID: PMC10744159 DOI: 10.3390/ijms242417393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/04/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
ENDOU-1 encodes an endoribonuclease that overcomes the inhibitory upstream open reading frame (uORF)-trap at 5'-untranslated region (UTR) of the CHOP transcript, allowing the downstream coding sequence of CHOP be translated during endoplasmic reticulum (ER) stress. However, transcriptional control of ENDOU-1 remains enigmatic. To address this, we cloned an upstream 2.1 kb (-2055~+77 bp) of human ENDOU-1 (pE2.1p) fused with reporter luciferase (luc) cDNA. The promoter strength driven by pE2.1p was significantly upregulated in both pE2.1p-transfected cells and pE2.1p-injected zebrafish embryos treated with stress inducers. Comparing the luc activities driven by pE2.1p and -1125~+77 (pE1.2p) segments, we revealed that cis-elements located at the -2055~-1125 segment might play a critical role in ENDOU-1 upregulation during ER stress. Since bioinformatics analysis predicted many cis-elements clustered at the -1850~-1250, we further deconstructed this segment to generate pE2.1p-based derivatives lacking -1850~-1750, -1749~-1650, -1649~-1486, -1485~-1350 or -1350~-1250 segments. Quantification of promoter activities driven by these five internal deletion plasmids suggested a repressor binding element within the -1649~-1486 and an activator binding element within the -1350~-1250. Since luc activities driven by the -1649~-1486 were not significantly different between normal and stress conditions, we herein propose that the stress-inducible activator bound at the -1350~-1250 segment makes a major contribution to the increased expression of human ENDOU-1 upon ER stresses.
Collapse
Affiliation(s)
- Hung-Chieh Lee
- Department of Life Science, Fu-Jen Catholic University, New Taipei City 242062, Taiwan
| | - Hsuan-Te Chao
- Department of Life Science, Fu-Jen Catholic University, New Taipei City 242062, Taiwan
| | - Selina Yi-Hsuan Lee
- Faculty of Sciences and Engineering, Maastricht University, 6211 LK Maastricht, The Netherlands
| | - Cheng-Yung Lin
- Institute of Biomedical Sciences, Mackay Medical College, New Taipei City 25245, Taiwan
| | - Huai-Jen Tsai
- Department of Life Science, Fu-Jen Catholic University, New Taipei City 242062, Taiwan
| |
Collapse
|
18
|
Lin S, Wang J, Cao B, Huang Y, Sheng X, Zhu Y. Cofilin-1 induces acute kidney injury via the promotion of endoplasmic reticulum stress-mediated ferroptosis. Hum Cell 2023; 36:1928-1937. [PMID: 37548903 PMCID: PMC10587211 DOI: 10.1007/s13577-023-00949-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 06/28/2023] [Indexed: 08/08/2023]
Abstract
Ischemia-reperfusion injury (IRI) leads to acute kidney injury (AKI), which poses serious threat to public health and society. Many clinical studies were conducted to evaluate several biomarkers in AKI, among which Cofilin-1 remains to be a very promising one. To explore the potential mechanism of Cofilin-1 in AKI, we established an oxygen-glucose-deprivation (OGD)-induced AKI cell model. The overexpression and knock-down Cofilin-1 were used for gain- and loss-of-function. Pharmacological inhibitors were employed to study the related pathways. The results showed that Cofilin-1 was significantly upregulated in AKI cells, knocking down Cofilin-1 protected cells against the effect of OGD treatment and alleviated AKI phenotypes. Overexpression of Cofilin-1 might induce AKI by triggering ferroptosis, inhibiting NF-κB signaling or ER stress pathway attenuated Cofilin-1 induced lipid peroxidation and AKI. We also validated our findings in IRI-induced AKI mouse models in vivo. Our work elucidated that Cofilin-1 might induce AKI via promoting ER stress-mediated ferroptosis and argues it as a biomarker for early diagnosis of AKI. We also expect to offer novel insights on future therapeutic interventions.
Collapse
Affiliation(s)
- Sihao Lin
- Department of Urology, Jiading Branch of Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 800 Huangjiahuayuan Road, Shanghai, 201803, People's Republic of China
| | - Jie Wang
- Department of Urology, Jiading Branch of Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 800 Huangjiahuayuan Road, Shanghai, 201803, People's Republic of China
| | - Bin Cao
- Department of Urology, Jiading Branch of Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 800 Huangjiahuayuan Road, Shanghai, 201803, People's Republic of China
| | - Yang Huang
- Department of Urology, Chengmai County People Hospital, Hainan, 571900, People's Republic of China
| | - Xujun Sheng
- Department of Urology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, People's Republic of China.
| | - Yingjian Zhu
- Department of Urology, Jiading Branch of Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 800 Huangjiahuayuan Road, Shanghai, 201803, People's Republic of China.
| |
Collapse
|
19
|
Feng S, Tang D, Wang Y, Li X, Bao H, Tang C, Dong X, Li X, Yang Q, Yan Y, Yin Z, Shang T, Zheng K, Huang X, Wei Z, Wang K, Qi S. The mechanism of ferroptosis and its related diseases. MOLECULAR BIOMEDICINE 2023; 4:33. [PMID: 37840106 PMCID: PMC10577123 DOI: 10.1186/s43556-023-00142-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 08/23/2023] [Indexed: 10/17/2023] Open
Abstract
Ferroptosis, a regulated form of cellular death characterized by the iron-mediated accumulation of lipid peroxides, provides a novel avenue for delving into the intersection of cellular metabolism, oxidative stress, and disease pathology. We have witnessed a mounting fascination with ferroptosis, attributed to its pivotal roles across diverse physiological and pathological conditions including developmental processes, metabolic dynamics, oncogenic pathways, neurodegenerative cascades, and traumatic tissue injuries. By unraveling the intricate underpinnings of the molecular machinery, pivotal contributors, intricate signaling conduits, and regulatory networks governing ferroptosis, researchers aim to bridge the gap between the intricacies of this unique mode of cellular death and its multifaceted implications for health and disease. In light of the rapidly advancing landscape of ferroptosis research, we present a comprehensive review aiming at the extensive implications of ferroptosis in the origins and progress of human diseases. This review concludes with a careful analysis of potential treatment approaches carefully designed to either inhibit or promote ferroptosis. Additionally, we have succinctly summarized the potential therapeutic targets and compounds that hold promise in targeting ferroptosis within various diseases. This pivotal facet underscores the burgeoning possibilities for manipulating ferroptosis as a therapeutic strategy. In summary, this review enriched the insights of both investigators and practitioners, while fostering an elevated comprehension of ferroptosis and its latent translational utilities. By revealing the basic processes and investigating treatment possibilities, this review provides a crucial resource for scientists and medical practitioners, aiding in a deep understanding of ferroptosis and its effects in various disease situations.
Collapse
Affiliation(s)
- Shijian Feng
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Dan Tang
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Yichang Wang
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Xiang Li
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Hui Bao
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Chengbing Tang
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Xiuju Dong
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Xinna Li
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Qinxue Yang
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Yun Yan
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Zhijie Yin
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Tiantian Shang
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Kaixuan Zheng
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Xiaofang Huang
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Zuheng Wei
- Chengdu Jinjiang Jiaxiang Foreign Languages High School, Chengdu, People's Republic of China
| | - Kunjie Wang
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China.
| | - Shiqian Qi
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China.
| |
Collapse
|
20
|
Matsushita M, Kashiwazaki S, Kamiko S, Kobori M, Osada M, Kunieda H, Hirao M, Ichikawa D, Hattori Y. Immunomodulatory Effect of Proteasome Inhibitors via the Induction of Immunogenic Cell Death in Myeloma Cells. Pharmaceuticals (Basel) 2023; 16:1367. [PMID: 37895838 PMCID: PMC10609901 DOI: 10.3390/ph16101367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/08/2023] [Accepted: 09/22/2023] [Indexed: 10/29/2023] Open
Abstract
Several anti-cancer drugs are known to have immunomodulatory effects, including immunogenic cell death (ICD) of cancer cells. ICD is a form of apoptosis which is caused by the release of damage-associated molecular patterns (DAMPs), the uptake of cancer antigens by dendritic cells, and the activation of acquired immunity against cancer cells. ICD was originally reported in solid tumors, and there have been few reports on ICD in multiple myeloma (MM). Here, we showed that proteasome inhibitors, including carfilzomib, induce ICD in myeloma cells via an unfolded protein response pathway distinct from that in solid tumors. Additionally, we demonstrated the potential impact of ICD on the survival of patients with myeloma. ICD induced by proteasome inhibitors is expected to improve the prognosis of MM patients not only by its cytotoxic effects, but also by building strong immune memory response against MM cells in combination with other therapies, such as chimeric antigen receptor-T cell therapy.
Collapse
Affiliation(s)
- Maiko Matsushita
- Division of Clinical Physiology and Therapeutics, Faculty of Pharmacy, Keio University, Tokyo 105-8512, Japan
| | - Sho Kashiwazaki
- Division of Clinical Physiology and Therapeutics, Faculty of Pharmacy, Keio University, Tokyo 105-8512, Japan
| | - Satoshi Kamiko
- Division of Clinical Physiology and Therapeutics, Faculty of Pharmacy, Keio University, Tokyo 105-8512, Japan
| | - Michio Kobori
- Division of Clinical Physiology and Therapeutics, Faculty of Pharmacy, Keio University, Tokyo 105-8512, Japan
| | - Makoto Osada
- Department of Hematology, Tokyo Saiseikai Central Hospital, Tokyo 108-0073, Japan; (M.O.)
| | - Hisako Kunieda
- Department of Hematology, Tokyo Saiseikai Central Hospital, Tokyo 108-0073, Japan; (M.O.)
| | - Maki Hirao
- Department of Health Science, Faculty of Sports and Health Science, Daito Bunka University, Saitama 355-8501, Japan
| | - Daiju Ichikawa
- Division of Clinical Physiology and Therapeutics, Faculty of Pharmacy, Keio University, Tokyo 105-8512, Japan
| | - Yutaka Hattori
- Division of Clinical Physiology and Therapeutics, Faculty of Pharmacy, Keio University, Tokyo 105-8512, Japan
- Department of Hematology, Tokyo Saiseikai Central Hospital, Tokyo 108-0073, Japan; (M.O.)
| |
Collapse
|
21
|
Zhao M, Chauhan P, Sherman CA, Singh A, Kaileh M, Mazan-Mamczarz K, Ji H, Joy J, Nandi S, De S, Zhang Y, Fan J, Becker KG, Loke P, Zhou W, Sen R. NF-κB subunits direct kinetically distinct transcriptional cascades in antigen receptor-activated B cells. Nat Immunol 2023; 24:1552-1564. [PMID: 37524800 PMCID: PMC10457194 DOI: 10.1038/s41590-023-01561-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 06/15/2023] [Indexed: 08/02/2023]
Abstract
The nuclear factor kappa B (NF-κB) family of transcription factors orchestrates signal-induced gene expression in diverse cell types. Cellular responses to NF-κB activation are regulated at the level of cell and signal specificity, as well as differential use of family members (subunit specificity). Here we used time-dependent multi-omics to investigate the selective functions of Rel and RelA, two closely related NF-κB proteins, in primary B lymphocytes activated via the B cell receptor. Despite large numbers of shared binding sites genome wide, Rel and RelA directed kinetically distinct cascades of gene expression in activated B cells. Single-cell RNA sequencing revealed marked heterogeneity of Rel- and RelA-specific responses, and sequential binding of these factors was not a major mechanism of protracted transcription. Moreover, nuclear co-expression of Rel and RelA led to functional antagonism between the factors. By rigorously identifying the target genes of each NF-κB subunit, these studies provide insights into exclusive functions of Rel and RelA in immunity and cancer.
Collapse
Affiliation(s)
- Mingming Zhao
- Gene Regulation Section, Laboratory of Molecular Biology and Immunology, National Institute on Aging, Baltimore, MD, USA
- Type 2 Immunity Section, Laboratory of Parasitic Diseases National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Prashant Chauhan
- Gene Regulation Section, Laboratory of Molecular Biology and Immunology, National Institute on Aging, Baltimore, MD, USA
| | - Cheryl A Sherman
- Gene Regulation Section, Laboratory of Molecular Biology and Immunology, National Institute on Aging, Baltimore, MD, USA
| | - Amit Singh
- Gene Regulation Section, Laboratory of Molecular Biology and Immunology, National Institute on Aging, Baltimore, MD, USA
| | - Mary Kaileh
- Gene Regulation Section, Laboratory of Molecular Biology and Immunology, National Institute on Aging, Baltimore, MD, USA
| | - Krystyna Mazan-Mamczarz
- Computational Biology and Genomics Core, Laboratory of Genetics and Genomics, National Institute on Aging, Baltimore, MD, USA
| | - Hongkai Ji
- Department of Biostatistics, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Jaimy Joy
- Gene Regulation Section, Laboratory of Molecular Biology and Immunology, National Institute on Aging, Baltimore, MD, USA
| | - Satabdi Nandi
- Gene Regulation Section, Laboratory of Molecular Biology and Immunology, National Institute on Aging, Baltimore, MD, USA
| | - Supriyo De
- Computational Biology and Genomics Core, Laboratory of Genetics and Genomics, National Institute on Aging, Baltimore, MD, USA
| | - Yongqing Zhang
- Computational Biology and Genomics Core, Laboratory of Genetics and Genomics, National Institute on Aging, Baltimore, MD, USA
| | - Jinshui Fan
- Computational Biology and Genomics Core, Laboratory of Genetics and Genomics, National Institute on Aging, Baltimore, MD, USA
| | - Kevin G Becker
- Computational Biology and Genomics Core, Laboratory of Genetics and Genomics, National Institute on Aging, Baltimore, MD, USA
| | - Png Loke
- Type 2 Immunity Section, Laboratory of Parasitic Diseases National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Weiqiang Zhou
- Department of Biostatistics, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Ranjan Sen
- Gene Regulation Section, Laboratory of Molecular Biology and Immunology, National Institute on Aging, Baltimore, MD, USA.
| |
Collapse
|
22
|
Carvalho D, Diaz-Amarilla P, Dapueto R, Santi MD, Duarte P, Savio E, Engler H, Abin-Carriquiry JA, Arredondo F. Transcriptomic Analyses of Neurotoxic Astrocytes Derived from Adult Triple Transgenic Alzheimer's Disease Mice. J Mol Neurosci 2023; 73:487-515. [PMID: 37318736 DOI: 10.1007/s12031-023-02105-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 02/03/2023] [Indexed: 06/16/2023]
Abstract
Neurodegenerative diseases such as Alzheimer's disease have been classically studied from a purely neuronocentric point of view. More recent evidences support the notion that other cell populations are involved in disease progression. In this sense, the possible pathogenic role of glial cells like astrocytes is increasingly being recognized. Once faced with tissue damage signals and other stimuli present in disease environments, astrocytes suffer many morphological and functional changes, a process referred as reactive astrogliosis. Studies from murine models and humans suggest that these complex and heterogeneous responses could manifest as disease-specific astrocyte phenotypes. Clear understanding of disease-associated astrocytes is a necessary step to fully disclose neurodegenerative processes, aiding in the design of new therapeutic and diagnostic strategies. In this work, we present the transcriptomics characterization of neurotoxic astrocytic cultures isolated from adult symptomatic animals of the triple transgenic mouse model of Alzheimer's disease (3xTg-AD). According to the observed profile, 3xTg-AD neurotoxic astrocytes show various reactivity features including alteration of the extracellular matrix and release of pro-inflammatory and proliferative factors that could result in harmful effects to neurons. Moreover, these alterations could be a consequence of stress responses at the endoplasmic reticulum and mitochondria as well as of concomitant metabolic adaptations. Present results support the hypothesis that adaptive changes of astrocytic function induced by a stressed microenvironment could later promote harmful astrocyte phenotypes and further accelerate or induce neurodegenerative processes.
Collapse
Affiliation(s)
- Diego Carvalho
- Departamento de Neuroquímica, Instituto de Investigaciones Biológicas Clemente Estable, 11600, Montevideo, Uruguay
| | - Pablo Diaz-Amarilla
- Área I+D Biomédica, Centro Uruguayo de Imagenología Molecular, 11600, Montevideo, Uruguay
| | - Rosina Dapueto
- Área I+D Biomédica, Centro Uruguayo de Imagenología Molecular, 11600, Montevideo, Uruguay
| | - María Daniela Santi
- Área I+D Biomédica, Centro Uruguayo de Imagenología Molecular, 11600, Montevideo, Uruguay
- College of Dentistry, Bluestone Center for Clinical Research, New York University, New York, 10010, USA
| | - Pablo Duarte
- Área I+D Biomédica, Centro Uruguayo de Imagenología Molecular, 11600, Montevideo, Uruguay
| | - Eduardo Savio
- Área I+D Biomédica, Centro Uruguayo de Imagenología Molecular, 11600, Montevideo, Uruguay
| | - Henry Engler
- Área I+D Biomédica, Centro Uruguayo de Imagenología Molecular, 11600, Montevideo, Uruguay
- Facultad de Medicina, Universidad de la República, 1800, Montevideo, Uruguay
| | - Juan A Abin-Carriquiry
- Departamento de Neuroquímica, Instituto de Investigaciones Biológicas Clemente Estable, 11600, Montevideo, Uruguay.
- Laboratorio de Biofármacos, Institut Pasteur de Montevideo, 11600, Montevideo, Uruguay.
| | - Florencia Arredondo
- Departamento de Neuroquímica, Instituto de Investigaciones Biológicas Clemente Estable, 11600, Montevideo, Uruguay.
- Área I+D Biomédica, Centro Uruguayo de Imagenología Molecular, 11600, Montevideo, Uruguay.
| |
Collapse
|
23
|
Jo SL, Yang H, Lee HW, Hong EJ. Curcumae radix Reduces Endoplasmic Reticulum Stress in Mice with Chronic Neuroinflammation. Biomedicines 2023; 11:2107. [PMID: 37626603 PMCID: PMC10452873 DOI: 10.3390/biomedicines11082107] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/16/2023] [Accepted: 06/26/2023] [Indexed: 08/27/2023] Open
Abstract
Endoplasmic reticulum (ER) stress is a condition in which the ER protein-folding machinery is impaired, leading to the accumulation of improperly folded proteins and triggering an unfolded-protein response. Excessive ER stress causes cell death and contributes to the development of chronic diseases. Interestingly, there is a bidirectional relationship between ER stress and the nuclear factor-kappa B (NF-κB) pathway. Curcumin, a natural polyphenolic compound found in Curcumae radix, exerts its neuroprotective effects by regulating ER stress and inflammation. Therefore, investigating the potential protective and regulatory effects of curcumin on ER stress, inflammation, and neurodegeneration under chronic neuroinflammatory conditions is of great interest. Mice were pretreated with Curcumae radix extract (CRE) for 19 days and then treated with CRE plus lipopolysaccharide for 1 week. We monitored pro-inflammatory cytokine levels in the serum and ER stress-, inflammation-, and neurodegeneration-related markers in the mouse cerebrum and hippocampus using Western blotting and qRT-PCR. CRE reduced Interleukin-1 beta levels in the blood and brain of mice with lipopolysaccharide-induced chronic inflammation. CRE also suppressed the expression of markers related to the ER stress and NF-κB signaling pathways. The expression of neurodegeneration-related markers was reduced in the mouse cerebrum and hippocampus. CRE exerts neuroprotective effects under chronic inflammatory conditions via multifaceted anti-inflammatory and ER stress-pathway regulatory mechanisms.
Collapse
Affiliation(s)
- Seong-Lae Jo
- College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Republic of Korea;
| | - Hyun Yang
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea;
| | - Hye Won Lee
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea;
| | - Eui-Ju Hong
- College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Republic of Korea;
| |
Collapse
|
24
|
Huang X, He X, Qiu R, Xie X, Zheng F, Chen F, Hu Z. Unfolded protein response inhibits KAT2B/MLKL-mediated necroptosis of hepatocytes by promoting BMI1 level to ubiquitinate KAT2B. Open Med (Wars) 2023; 18:20230718. [PMID: 37333449 PMCID: PMC10276622 DOI: 10.1515/med-2023-0718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 06/20/2023] Open
Abstract
Unfolded protein response (UPR) plays an important role in the pathogenesis of many liver diseases. BMI1 has a liver protection effect, but whether it participates in the regulation of hepatocyte death through UPR is not well defined. Herein, the endoplasmic reticulum stress model was established by inducing hepatocyte line (MIHA) with tunicamycin (TM, 5 µg/ml). Cell counting kit-8 assay and flow cytometry were used to evaluate the viability and apoptosis of hepatocytes. The expression levels of BMI1, KAT2B, and proteins related to UPR (p-eIF2α, eIF2α, ATF4, and ATF6), NF-κB (p65 and p-p65), apoptosis (cleaved caspase-3, bcl-2, and bax) and necroptosis (p-MLKL and MLKL) were determined by Western blot. The relationship between KAT2B and BMI1 was determined by co-immunoprecipitation and ubiquitination assay. The results showed that TM not only promoted UPR, apoptosis, and necroptosis in hepatocytes but also upregulated the expression levels of BMI1 and KAT2B and activated NF-κB pathway. BAY-117082 reversed the effects of TM on viability, apoptosis, NF-κB pathway, and BMI1 but strengthened the effects of TM on KAT2B/MLKL-mediated necroptosis. BMI1 promoted the ubiquitination of KAT2B, and BMI1 overexpression reversed the effects of TM on viability, apoptosis, and KAT2B/MLKL-mediated necroptosis. In summary, overexpression of BMI1 promotes the ubiquitination of KAT2B to block the MLKL-mediated necroptosis of hepatocytes.
Collapse
Affiliation(s)
- Xiaogang Huang
- Department of Infectious Diseases, The Affiliated Hospital of Putian University, Putian City, Fujian Province, 351100, China
| | - Xiongzhi He
- Department of Infectious Diseases, The Affiliated Hospital of Putian University, Putian City, Fujian Province, 351100, China
| | - Rongxian Qiu
- Department of Infectious Diseases, The Affiliated Hospital of Putian University, Putian City, Fujian Province, 351100, China
| | - Xuemei Xie
- Department of Infectious Diseases, The Affiliated Hospital of Putian University, Putian City, Fujian Province, 351100, China
| | - Fengfeng Zheng
- Department of Infectious Diseases, The Affiliated Hospital of Putian University, Putian City, Fujian Province, 351100, China
| | - Feihua Chen
- Department of Infectious Diseases, The Affiliated Hospital of Putian University, Putian City, Fujian Province, 351100, China
| | - Zhenting Hu
- Department of Infectious Diseases, The Affiliated Hospital of Putian University, No. 999 Dongzhen East Road, Licheng District, Putian City, Fujian Province, 351100, China
| |
Collapse
|
25
|
Zhu C, Chen W, Cui H, Huang Z, Ding R, Li N, Wang Q, Wu F, Zhao Y, Cong X. TRIM64 promotes ox-LDL-induced foam cell formation, pyroptosis, and inflammation in THP-1-derived macrophages by activating a feedback loop with NF-κB via IκBα ubiquitination. Cell Biol Toxicol 2023; 39:607-620. [PMID: 36229750 PMCID: PMC10406714 DOI: 10.1007/s10565-022-09768-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 08/26/2022] [Indexed: 11/30/2022]
Abstract
Atherosclerosis is a chronic inflammatory disease and the main pathology behind most cardiovascular diseases and the overactivation of macrophages initiates the development of atherosclerosis. However, the specific functions of oxidized low-density lipoprotein (ox-LDL) in macrophages remain elusive. Macrophages derived from monocyte (THP-1) were treated with ox-LDL and were used to generate atherosclerosis in an in vitro model. NLRP3 inflammasome markers were examined using quantitative RT-PCR and Western blotting. Cytokines were measured using ELISA. Chromatin immunoprecipitation (ChIP) was utilized to detect nuclear factor kappa B (NF-κB) and TRIM64 interactions. A fat-rich diet was applied to ApoE-/- mice for in vivo studies. ox-LDL promoted TRIM64 expression in a time-dependent manner. According to loss- and gain-of-function analyses, TRIM64 enhanced the activation of NLRP3 inflammasomes and the expression of downstream molecules. TRIM64 directly interacted with IκBα and promoted IκBα ubiquitination at K67 to activate NF-κB signaling. We detected direct binding between NF-κB and the TRIM64 promoter, as well as enhanced TRIM64 expression. Our study revealed an interaction between TRIM64 and NF-κB in the development of atherosclerosis. TRIM64 and NF-κB formed a positive feedback to activate NF-κB pathway. ox-LDL induces foam cell formation and TRIM64 expression TRIM64 regulates ox-LDL-induced foam cell formation, pyroptosis and inflammation via the NF-κB signaling TRIM64 activates NF-κB signaling by ubiquitination of IκBα NF-κB inhibition attenuates atherosclerosis in HFD-induced ApoE (-/-) mice.
Collapse
Affiliation(s)
- Chao Zhu
- Department of Nephrology, Changhai Hospital, Shanghai, 200433, China
| | - Wei Chen
- Department of Cardiology, Shanghai Changzheng Hospital, 415 Fengyang Road, Huangpu District, Shanghai, 200003, China
| | - Haiming Cui
- Department of Cardiology, Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, No. 110 Ganhe Road, Hongkou District, Shanghai, 200437, China
| | - Zhigang Huang
- Department of Cardiology, Shanghai Changzheng Hospital, 415 Fengyang Road, Huangpu District, Shanghai, 200003, China
| | - Ru Ding
- Department of Cardiology, Shanghai Changzheng Hospital, 415 Fengyang Road, Huangpu District, Shanghai, 200003, China
| | - Na Li
- Department of Cardiology, Shanghai Changzheng Hospital, 415 Fengyang Road, Huangpu District, Shanghai, 200003, China
| | - Qinqin Wang
- Department of Cardiology, Shanghai Changzheng Hospital, 415 Fengyang Road, Huangpu District, Shanghai, 200003, China
| | - Feng Wu
- Department of Cardiology, Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, No. 110 Ganhe Road, Hongkou District, Shanghai, 200437, China.
| | - Yanmin Zhao
- Department of Cardiology, Shanghai Changzheng Hospital, 415 Fengyang Road, Huangpu District, Shanghai, 200003, China.
| | - Xiaoliang Cong
- Department of Cardiology, Shanghai Changzheng Hospital, 415 Fengyang Road, Huangpu District, Shanghai, 200003, China.
| |
Collapse
|
26
|
Zhu C, Liu P, Li C, Zhang Y, Yin J, Hou L, Zheng G, Liu X. Near-Death Cells Cause Chemotherapy-Induced Metastasis via ATF4-Mediated NF-κB Signaling Activation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205835. [PMID: 36739602 PMCID: PMC10074103 DOI: 10.1002/advs.202205835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 01/11/2023] [Indexed: 06/18/2023]
Abstract
Cytotoxic chemotherapy is a primary treatment modality for many patients with advanced cancer. Increasing preclinical and clinical observations indicate that chemotherapy can exacerbate tumor metastasis. However, the underlying mechanism remains unclear. Here, it is attempted to identify the mechanisms underlying chemotherapy-induced cancer recurrence and metastasis. It is revealed that a small subpopulation of "near-death cells" (NDCs) with compromised plasma membranes can reverse the death process to enhance survival and repopulation after exposure to lethal doses of cytotoxins. Moreover, these NDCs acquire enhanced tumorigenic and metastatic capabilities, but maintain chemosensitivity in multiple models. Mechanistically, cytotoxin exposure induces activating transcription factor 4 (ATF4)-dependent nonclassical NF-κB signaling activation; ultimately, this results in nuclear translocation of p52 and RelB in NDCs. Deletion of ATF4 in parental cancer cells significantly reduces colony formation and metastasis of NDCs, whereas overexpression of ATF4 activates the nonclassical NF-κB signaling pathway to promote chemotherapy-induced metastasis of NDCs. Overall, these results provide novel mechanistic insights into the chemotherapy-induced metastasis and indicate the pivotal role of NDCs in mediating tumor relapse after cytotoxic therapy. This study also suggests that targeting ATF4 may be an effective approach in improving the efficacy of chemotherapy.
Collapse
Affiliation(s)
- Chenchen Zhu
- Department of BiochemistrySchool of MedicineShenzhen Campus of Sun Yat‐sen UniversityShenzhenGuangdong510275China
| | - Pei Liu
- Department of BiochemistrySchool of MedicineShenzhen Campus of Sun Yat‐sen UniversityShenzhenGuangdong510275China
| | - Chuan‐Yuan Li
- Department of DermatologyDuke University Medical CenterDurhamNC27710USA
| | - Yuli Zhang
- Department of BiochemistrySchool of MedicineShenzhen Campus of Sun Yat‐sen UniversityShenzhenGuangdong510275China
| | - Jiang Yin
- Cancer Research Institute and Cancer HospitalGuangzhou Medical UniversityGuangzhouGuangdong510180China
| | - Linlin Hou
- Department of BiochemistrySchool of MedicineShenzhen Campus of Sun Yat‐sen UniversityShenzhenGuangdong510275China
| | - Guopei Zheng
- Cancer Research Institute and Cancer HospitalGuangzhou Medical UniversityGuangzhouGuangdong510180China
| | - Xinjian Liu
- Department of BiochemistrySchool of MedicineShenzhen Campus of Sun Yat‐sen UniversityShenzhenGuangdong510275China
- Bebetter Med Inc.GuangzhouGuangdong510525China
| |
Collapse
|
27
|
Alvarez-Rivera E, Rodríguez-Valentín M, Boukli NM. The Antiviral Compound PSP Inhibits HIV-1 Entry via PKR-Dependent Activation in Monocytic Cells. Viruses 2023; 15:804. [PMID: 36992512 PMCID: PMC10051440 DOI: 10.3390/v15030804] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/16/2023] [Accepted: 03/17/2023] [Indexed: 03/31/2023] Open
Abstract
Actin depolymerization factor (ADF) cofilin-1 is a key cytoskeleton component that serves to lessen cortical actin. HIV-1 manipulates cofilin-1 regulation as a pre- and post-entry requisite. Disruption of ADF signaling is associated with denial of entry. The unfolded protein response (UPR) marker Inositol-Requiring Enzyme-1α (IRE1α) and interferon-induced protein (IFN-IP) double-stranded RNA- activated protein kinase (PKR) are reported to overlap with actin components. In our published findings, Coriolus versicolor bioactive extract polysaccharide peptide (PSP) has demonstrated anti-HIV replicative properties in THP1 monocytic cells. However, its involvement towards viral infectivity has not been elucidated before. In the present study, we examined the roles of PKR and IRE1α in cofilin-1 phosphorylation and its HIV-1 restrictive roles in THP1. HIV-1 p24 antigen was measured through infected supernatant to determine PSP's restrictive potential. Quantitative proteomics was performed to analyze cytoskeletal and UPR regulators. PKR, IRE1α, and cofilin-1 biomarkers were measured through immunoblots. Validation of key proteome markers was done through RT-qPCR. PKR/IRE1α inhibitors were used to validate viral entry and cofilin-1 phosphorylation through Western blots. Our findings show that PSP treatment before infection leads to an overall lower infectivity. Additionally, PKR and IRE1α show to be key regulators in cofilin-1 phosphorylation and viral restriction.
Collapse
Affiliation(s)
- Eduardo Alvarez-Rivera
- Biomedical Proteomics Facility, Department of Microbiology and Immunology, Universidad Central del Caribe School of Medicine, Bayamόn, PR 00960, USA
| | | | - Nawal M. Boukli
- Biomedical Proteomics Facility, Department of Microbiology and Immunology, Universidad Central del Caribe School of Medicine, Bayamόn, PR 00960, USA
| |
Collapse
|
28
|
A Data-Mining Approach to Identify NF-kB-Responsive microRNAs in Tissues Involved in Inflammatory Processes: Potential Relevance in Age-Related Diseases. Int J Mol Sci 2023; 24:ijms24065123. [PMID: 36982191 PMCID: PMC10049099 DOI: 10.3390/ijms24065123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/02/2023] [Accepted: 03/04/2023] [Indexed: 03/11/2023] Open
Abstract
The nuclear factor NF-kB is the master transcription factor in the inflammatory process by modulating the expression of pro-inflammatory genes. However, an additional level of complexity is the ability to promote the transcriptional activation of post-transcriptional modulators of gene expression as non-coding RNA (i.e., miRNAs). While NF-kB’s role in inflammation-associated gene expression has been extensively investigated, the interplay between NF-kB and genes coding for miRNAs still deserves investigation. To identify miRNAs with potential NF-kB binding sites in their transcription start site, we predicted miRNA promoters by an in silico analysis using the PROmiRNA software, which allowed us to score the genomic region’s propensity to be miRNA cis-regulatory elements. A list of 722 human miRNAs was generated, of which 399 were expressed in at least one tissue involved in the inflammatory processes. The selection of “high-confidence” hairpins in miRbase identified 68 mature miRNAs, most of them previously identified as inflammamiRs. The identification of targeted pathways/diseases highlighted their involvement in the most common age-related diseases. Overall, our results reinforce the hypothesis that persistent activation of NF-kB could unbalance the transcription of specific inflammamiRNAs. The identification of such miRNAs could be of diagnostic/prognostic/therapeutic relevance for the most common inflammatory-related and age-related diseases.
Collapse
|
29
|
Oshima Y, Wakino S, Kanda T, Tajima T, Itoh T, Uchiyama K, Yoshimoto K, Sasabe J, Yasui M, Itoh H. Sodium benzoate attenuates 2,8-dihydroxyadenine nephropathy by inhibiting monocyte/macrophage TNF-α expression. Sci Rep 2023; 13:3331. [PMID: 36849798 PMCID: PMC9971245 DOI: 10.1038/s41598-023-30056-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 02/15/2023] [Indexed: 03/01/2023] Open
Abstract
Sodium benzoate (SB), a known D-amino acid oxidase (DAO) enzyme inhibitor, has an anti-inflammatory effect, although its role in renal damage has not been explored. 2,8-dihydroxyadenine crystal induced chronic kidney disease, in which TNF-α is involved in the pathogenesis, was established by oral adenine administration in C57BL/6JJcl mice (AdCKD) with or without SB to investigate its renal protective effects. SB significantly attenuated AdCKD by decreasing serum creatinine and urea nitrogen levels, and kidney interstitial fibrosis and tubular atrophy scores. The survival of AdCKD mice improved 2.6-fold by SB administration. SB significantly decreased the number of infiltrating macrophages observed in the positive F4/80 immunohistochemistry area and reduced the expression of macrophage markers and inflammatory genes, including TNF-α, in the kidneys of AdCKD. Human THP-1 cells stimulated with either lipopolysaccharide or TNF-α showed increased expression of inflammatory genes, although this was significantly reduced by SB, confirming the anti-inflammatory effects of SB. SB exhibited renal protective effects in AdCKD in DAO enzyme deficient mice, suggesting that anti-inflammatory effect of SB was independent of DAO enzyme activity. Moreover, binding to motif DNA sequence, protein level, and mRNA level of NF-κB RelB were significantly inhibited by SB in AdCKD kidneys and lipopolysaccharide treated THP-1 cells, respectively. We report that anti-inflammatory property of SB is independent of DAO enzymatic activity and is associated with down regulated NF-κB RelB as well as its downstream inflammatory genes such as TNF-α in AdCKD.
Collapse
Affiliation(s)
- Yoichi Oshima
- grid.26091.3c0000 0004 1936 9959Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Shu Wakino
- Department of Nephrology, Tokushima University School of Medicine, Tokushima, Japan.
| | - Takeshi Kanda
- grid.26091.3c0000 0004 1936 9959Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Takaya Tajima
- grid.26091.3c0000 0004 1936 9959Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Tomoaki Itoh
- grid.26091.3c0000 0004 1936 9959Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Kiyotaka Uchiyama
- grid.26091.3c0000 0004 1936 9959Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Keiko Yoshimoto
- grid.26091.3c0000 0004 1936 9959Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Jumpei Sasabe
- grid.26091.3c0000 0004 1936 9959Department of Pharmacology, Keio University School of Medicine, Tokyo, Japan
| | - Masato Yasui
- grid.26091.3c0000 0004 1936 9959Department of Pharmacology, Keio University School of Medicine, Tokyo, Japan
| | - Hiroshi Itoh
- grid.26091.3c0000 0004 1936 9959Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
30
|
Deng J, Tang H, Zhang Y, Yuan X, Ma N, Hu H, Wang X, Liu C, Xu G, Li Y, Wang S, Guo L, Wang X. House dust mite-induced endoplasmic reticulum stress mediates MUC5AC hypersecretion via TBK1 in airway epithelium. Exp Lung Res 2023; 49:49-62. [PMID: 36719141 DOI: 10.1080/01902148.2023.2170494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 11/12/2022] [Accepted: 01/14/2023] [Indexed: 02/01/2023]
Abstract
Purpose: Endoplasmic reticulum (ER) stress regulates mucus hypersecretion, and may activate downstream factors via TBK1 signaling to induce gene expression. However, it remains unclear whether ER stress promotes airway mucus secretion through the TBK1 pathway. We aimed to investigate the role of the TBK1 pathway in the regulation of MUC5AC expression in a mouse model of house dust mite (HDM)-induced allergic asthma. Materials and Methods: Mice with HDM-induced asthma and human bronchial epithelial BEAS-2B cells were treated with amlexanox, an anti-allergy drug (25 μM), or 4-PBA (10 mM). Tissue and cell samples were collected. Tissue samples were stained with hematoxylin and eosin (H&E) or periodic acid Schiff (PAS) to evaluate pathology. Protein expression was analyzed by western blotting and immunofluorescence. Results: Mice exposed to HDM presented ER stress and hypersecretion of mucus Muc5ac from airway epithelial cells (p < 0.001). Similar results were observed in BEAS-2B cells following exposure to HDM. Both in vivo and in vitro studies revealed that HDM-induced ER stress induced MUC5AC overexpression via TBK1 signaling. Amlexanox and 4-PBA markedly reduced mucus production and weakened the TBK1 signal, which mediates MUC5AC hypersecretion. Conclusion: TBK1 plays a pivotal role in HDM-induced ER stress, leading to overproduction of MUC5AC in the asthmatic airway epithelium. The overproduction of MUC5AC can be significantly decreased by inhibiting TBK1 or ER stress using 4-PBA. These findings highlight potential target-specific therapies for patients with chronic allergic asthma.
Collapse
Affiliation(s)
- Jun Deng
- Inflammation & Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Hongmei Tang
- Inflammation & Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yun Zhang
- Inflammation & Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xiefang Yuan
- Inflammation & Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Ning Ma
- Inflammation & Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Hang Hu
- Inflammation & Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xiaoyun Wang
- Inflammation & Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Chunfeng Liu
- Inflammation & Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Guofeng Xu
- Inflammation & Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yuejiao Li
- Inflammation & Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Songping Wang
- Inflammation & Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Linlin Guo
- Department of Obstetrics and Gynecology, The Ohio State University Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| | - Xing Wang
- Inflammation & Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
31
|
Carvalho de Oliveira J, Mathias C, Oliveira VC, Pezuk JA, Brassesco MS. The Double Face of miR-708: A Pan-Cancer Player with Dissociative Identity Disorder. Genes (Basel) 2022; 13:genes13122375. [PMID: 36553642 PMCID: PMC9777992 DOI: 10.3390/genes13122375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/08/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Over the last decades, accumulating evidence has shown tumor-dependent profiles of miR-708, being either up- or downregulated, and thus, acting as a "Janus" regulator of oncogenic pathways. Herein, its functional duality was assessed through a thorough review of the literature and further validation in silico using The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. In the literature, miR-708 was found with an oncogenic role in eight tumor types, while a suppressor tumor role was described in seven cancers. This double profile was also found in TCGA and GEO databases, with some tumor types having a high expression of miR-708 and others with low expression compared with non-tumor counterparts. The investigation of validated targets using miRBase, miRTarBase, and miRecords platforms, identified a total of 572 genes that appeared enriched for PI3K-Akt signaling, followed by cell cycle control, p53, Apellin and Hippo signaling, endocrine resistance, focal adhesion, and cell senescence regulations, which are all recognized contributors of tumoral phenotypes. Among these targets, a set of 15 genes shared by at least two platforms was identified, most of which have important roles in cancer cells that influence either tumor suppression or progression. In a clinical scenario, miR-708 has shown to be a good diagnostic and prognosis marker. However, its multitarget nature and opposing roles in diverse human tumors, aligned with insufficient experimental data and the lack of proper delivery strategies, hamper its potential as a sequence-directed therapeutic.
Collapse
Affiliation(s)
| | - Carolina Mathias
- Department of Genetics, Federal University of Paraná, Curitiba 80060-000, Brazil
- Laboratory of Applied Science and Technology in Health, Carlos Chagas Institute, Oswaldo Cruz Foundation (Fiocruz), Curitiba 81350-010, Brazil
| | - Verônica Cristina Oliveira
- Department of Biotechnology and Health Innovation, Anhanguera University of São Paulo, Pirituba 05145-200, Brazil
| | - Julia Alejandra Pezuk
- Department of Biotechnology and Health Innovation, Anhanguera University of São Paulo, Pirituba 05145-200, Brazil
| | - María Sol Brassesco
- Biology Department, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-901, Brazil
- Correspondence:
| |
Collapse
|
32
|
Lumbrokinase regulates endoplasmic reticulum stress to improve neurological deficits in ischemic stroke. Neuropharmacology 2022; 221:109277. [DOI: 10.1016/j.neuropharm.2022.109277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 08/30/2022] [Accepted: 09/27/2022] [Indexed: 11/07/2022]
|
33
|
Colombini B, Dinu M, Murgo E, Lotti S, Tarquini R, Sofi F, Mazzoccoli G. Ageing and Low-Level Chronic Inflammation: The Role of the Biological Clock. Antioxidants (Basel) 2022; 11:2228. [PMID: 36421414 PMCID: PMC9686908 DOI: 10.3390/antiox11112228] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/02/2022] [Accepted: 11/09/2022] [Indexed: 09/01/2023] Open
Abstract
Ageing is a multifactorial physiological manifestation that occurs inexorably and gradually in all forms of life. This process is linked to the decay of homeostasis due to the progressive decrease in the reparative and regenerative capacity of tissues and organs, with reduced physiological reserve in response to stress. Ageing is closely related to oxidative damage and involves immunosenescence and tissue impairment or metabolic imbalances that trigger inflammation and inflammasome formation. One of the main ageing-related alterations is the dysregulation of the immune response, which results in chronic low-level, systemic inflammation, termed "inflammaging". Genetic and epigenetic changes, as well as environmental factors, promote and/or modulate the mechanisms of ageing at the molecular, cellular, organ, and system levels. Most of these mechanisms are characterized by time-dependent patterns of variation driven by the biological clock. In this review, we describe the involvement of ageing-related processes with inflammation in relation to the functioning of the biological clock and the mechanisms operating this intricate interaction.
Collapse
Affiliation(s)
- Barbara Colombini
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | - Monica Dinu
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | - Emanuele Murgo
- Department of Medical Sciences, Division of Internal Medicine and Chronobiology Laboratory, Fondazione IRCCS “Casa Sollievo della Sofferenza”, Opera di Padre Pio da Pietrelcina, 71013 San Giovanni Rotondo, Italy
| | - Sofia Lotti
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | - Roberto Tarquini
- Division of Internal Medicine I, San Giuseppe Hospital, 50053 Empoli, Italy
| | - Francesco Sofi
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | - Gianluigi Mazzoccoli
- Department of Medical Sciences, Division of Internal Medicine and Chronobiology Laboratory, Fondazione IRCCS “Casa Sollievo della Sofferenza”, Opera di Padre Pio da Pietrelcina, 71013 San Giovanni Rotondo, Italy
| |
Collapse
|
34
|
Linagliptin and Vitamin D3 Synergistically Rescue Testicular Steroidogenesis and Spermatogenesis in Cisplatin-Exposed Rats: The Crosstalk of Endoplasmic Reticulum Stress with NF-κB/iNOS Activation. Molecules 2022; 27:molecules27217299. [DOI: 10.3390/molecules27217299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/16/2022] [Accepted: 10/24/2022] [Indexed: 11/17/2022] Open
Abstract
This study investigated the therapeutic effect of linagliptin and/or vitamin D3 on testicular steroidogenesis and spermatogenesis in cisplatin-exposed rats including their impact on endoplasmic reticulum (ER) stress and NF-κB/iNOS crosstalk. Cisplatin (7 mg/kg, IP) was injected into adult male albino rats which then were orally treated with drug vehicle, linagliptin (3 mg/kg/day), vitamin D3 (10 μg/kg/day) or both drugs for four weeks. Age-matched rats were used as the control group. Serum samples and testes were collected for further analyses. Cisplatin induced testicular weight loss, deteriorated testicular architecture, loss of germ cells and declined serum and intra-testicular testosterone levels, compared to the control group. There was down-regulation of steroidogenic markers including StAR, CYP11A1, HSD3b and HSD17b in cisplatin-exposed rats, compared with controls. Cisplatin-exposed rats showed up-regulation of ER stress markers in testicular tissue along with increased expression of NF-κB and iNOS in spermatogenic and Leydig cells. These perturbations were almost reversed by vitamin D3 or linagliptin. The combined therapy exerted a more remarkable effect on testicular dysfunction than either monotherapy. These findings suggest a novel therapeutic application for linagliptin combined with vitamin D3 to restore testicular architecture, aberrant steroidogenesis and spermatogenesis after cisplatin exposure. These effects may be attributed to suppression of ER stress and NF-kB/iNOS.
Collapse
|
35
|
Li W, Jin K, Luo J, Xu W, Wu Y, Zhou J, Wang Y, Xu R, Jiao L, Wang T, Yang G. NF-κB and its crosstalk with endoplasmic reticulum stress in atherosclerosis. Front Cardiovasc Med 2022; 9:988266. [PMID: 36204587 PMCID: PMC9530249 DOI: 10.3389/fcvm.2022.988266] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
Atherosclerosis (AS) is a common cardiovascular disease with complex pathogenesis, in which multiple pathways and their interweaving regulatory mechanism remain unclear. The primary transcription factor NF-κB plays a critical role in AS via modulating the expression of a series of inflammatory mediators under various stimuli such as cytokines, microbial antigens, and intracellular stresses. Endoplasmic reticulum (ER) stress, caused by the disrupted synthesis and secretion of protein, links inflammation, metabolic signals, and other cellular processes via the unfolded protein response (UPR). Both NF-κB and ER stress share the intersection regarding their molecular regulation and function and are regarded as critical individual contributors to AS. In this review, we summarize the multiple interactions between NF-κB and ER stress activation, including the UPR, NLRP3 inflammasome, and reactive oxygen species (ROS) generation, which have been ignored in the pathogenesis of AS. Given the multiple links between NF-κB and ER stress, we speculate that the integrated network contributes to the understanding of molecular mechanisms of AS. This review aims to provide an insight into these interactions and their underlying roles in the progression of AS, highlighting potential pharmacological targets against the atherosclerotic inflammatory process.
Collapse
Affiliation(s)
- Wenjing Li
- Laboratory of Computational Biology and Machine Intelligence, National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China
| | - Kehan Jin
- Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Jichang Luo
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- China International Neuroscience Institute (China-INI), Beijing, China
| | - Wenlong Xu
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- China International Neuroscience Institute (China-INI), Beijing, China
| | - Yujie Wu
- Laboratory of Computational Biology and Machine Intelligence, National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Jia Zhou
- Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Yilin Wang
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Ran Xu
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- China International Neuroscience Institute (China-INI), Beijing, China
| | - Liqun Jiao
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- China International Neuroscience Institute (China-INI), Beijing, China
- Department of Interventional Radiology, Xuanwu Hospital, Capital Medical University, Beijing, China
- *Correspondence: Liqun Jiao,
| | - Tao Wang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- China International Neuroscience Institute (China-INI), Beijing, China
- Tao Wang,
| | - Ge Yang
- Laboratory of Computational Biology and Machine Intelligence, National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China
- Tao Wang,
| |
Collapse
|
36
|
Reichart D, Lindberg EL, Maatz H, Miranda AMA, Viveiros A, Shvetsov N, Gärtner A, Nadelmann ER, Lee M, Kanemaru K, Ruiz-Orera J, Strohmenger V, DeLaughter DM, Patone G, Zhang H, Woehler A, Lippert C, Kim Y, Adami E, Gorham JM, Barnett SN, Brown K, Buchan RJ, Chowdhury RA, Constantinou C, Cranley J, Felkin LE, Fox H, Ghauri A, Gummert J, Kanda M, Li R, Mach L, McDonough B, Samari S, Shahriaran F, Yapp C, Stanasiuk C, Theotokis PI, Theis FJ, van den Bogaerdt A, Wakimoto H, Ware JS, Worth CL, Barton PJR, Lee YA, Teichmann SA, Milting H, Noseda M, Oudit GY, Heinig M, Seidman JG, Hubner N, Seidman CE. Pathogenic variants damage cell composition and single cell transcription in cardiomyopathies. Science 2022; 377:eabo1984. [PMID: 35926050 PMCID: PMC9528698 DOI: 10.1126/science.abo1984] [Citation(s) in RCA: 115] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Pathogenic variants in genes that cause dilated cardiomyopathy (DCM) and arrhythmogenic cardiomyopathy (ACM) convey high risks for the development of heart failure through unknown mechanisms. Using single-nucleus RNA sequencing, we characterized the transcriptome of 880,000 nuclei from 18 control and 61 failing, nonischemic human hearts with pathogenic variants in DCM and ACM genes or idiopathic disease. We performed genotype-stratified analyses of the ventricular cell lineages and transcriptional states. The resultant DCM and ACM ventricular cell atlas demonstrated distinct right and left ventricular responses, highlighting genotype-associated pathways, intercellular interactions, and differential gene expression at single-cell resolution. Together, these data illuminate both shared and distinct cellular and molecular architectures of human heart failure and suggest candidate therapeutic targets.
Collapse
Affiliation(s)
- Daniel Reichart
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.,Cardiovascular Division, Brigham and Women's Hospital, Boston, MA 02115, USA.,Department of Medicine I, University Hospital, LMU Munich, 80336 Munich, Germany
| | - Eric L Lindberg
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
| | - Henrike Maatz
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 10785 Berlin, Germany
| | - Antonio M A Miranda
- National Heart and Lung Institute, Imperial College London, London SW3 6LY, UK.,British Heart Foundation Centre for Research Excellence and Centre for Regenerative Medicine, Imperial College London, London WC2R 2LS, UK
| | - Anissa Viveiros
- Division of Cardiology, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2R3, Canada.,Mazankowski Alberta Heart Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - Nikolay Shvetsov
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
| | - Anna Gärtner
- Erich and Hanna Klessmann Institute, Heart and Diabetes Center NRW, University Hospital of the Ruhr-University Bochum, 32545 Bad Oeynhausen, Germany
| | - Emily R Nadelmann
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Michael Lee
- National Heart and Lung Institute, Imperial College London, London SW3 6LY, UK
| | - Kazumasa Kanemaru
- Cellular Genetics Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK
| | - Jorge Ruiz-Orera
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
| | - Viktoria Strohmenger
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.,Walter-Brendel-Centre of Experimental Medicine, Ludwig-Maximilian University of Munich, 81377 Munich, Germany
| | - Daniel M DeLaughter
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.,Howard Hughes Medical Institute, Bethesda, MD 20815, USA
| | - Giannino Patone
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
| | - Hao Zhang
- Division of Cardiology, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2R3, Canada.,Mazankowski Alberta Heart Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - Andrew Woehler
- Systems Biology Imaging Platform, Berlin Institute for Medical Systems Biology (BIMSB), Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), 10115 Berlin, Germany
| | - Christoph Lippert
- Digital Health-Machine Learning group, Hasso Plattner Institute for Digital Engineering, University of Potsdam, 14482 Potsdam, Germany.,Hasso Plattner Institute for Digital Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Yuri Kim
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.,Cardiovascular Division, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Eleonora Adami
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
| | - Joshua M Gorham
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Sam N Barnett
- National Heart and Lung Institute, Imperial College London, London SW3 6LY, UK
| | - Kemar Brown
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.,Cardiac Unit, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Rachel J Buchan
- National Heart and Lung Institute, Imperial College London, London SW3 6LY, UK.,Royal Brompton and Harefield Hospitals, Guy's and St. Thomas' NHS Foundation Trust, London SW3 6NR, UK
| | - Rasheda A Chowdhury
- National Heart and Lung Institute, Imperial College London, London SW3 6LY, UK
| | | | - James Cranley
- Cellular Genetics Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK
| | - Leanne E Felkin
- National Heart and Lung Institute, Imperial College London, London SW3 6LY, UK.,Royal Brompton and Harefield Hospitals, Guy's and St. Thomas' NHS Foundation Trust, London SW3 6NR, UK
| | - Henrik Fox
- Heart and Diabetes Center NRW, Clinic for Thoracic and Cardiovascular Surgery, University Hospital of the Ruhr-University, 32545 Bad Oeynhausen, Germany
| | - Ahla Ghauri
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
| | - Jan Gummert
- Heart and Diabetes Center NRW, Clinic for Thoracic and Cardiovascular Surgery, University Hospital of the Ruhr-University, 32545 Bad Oeynhausen, Germany
| | - Masatoshi Kanda
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany.,Department of Rheumatology and Clinical Immunology, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
| | - Ruoyan Li
- Cellular Genetics Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK
| | - Lukas Mach
- National Heart and Lung Institute, Imperial College London, London SW3 6LY, UK.,Royal Brompton and Harefield Hospitals, Guy's and St. Thomas' NHS Foundation Trust, London SW3 6NR, UK
| | - Barbara McDonough
- Cardiovascular Division, Brigham and Women's Hospital, Boston, MA 02115, USA.,Howard Hughes Medical Institute, Bethesda, MD 20815, USA
| | - Sara Samari
- National Heart and Lung Institute, Imperial College London, London SW3 6LY, UK
| | - Farnoush Shahriaran
- Computational Health Center, Helmholtz Zentrum München Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), 85764 Neuherberg, Germany
| | - Clarence Yapp
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Caroline Stanasiuk
- Erich and Hanna Klessmann Institute, Heart and Diabetes Center NRW, University Hospital of the Ruhr-University Bochum, 32545 Bad Oeynhausen, Germany
| | - Pantazis I Theotokis
- National Heart and Lung Institute, Imperial College London, London SW3 6LY, UK.,MRC London Institute of Medical Sciences, Imperial College London, London W12 0NN, UK
| | - Fabian J Theis
- Computational Health Center, Helmholtz Zentrum München Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), 85764 Neuherberg, Germany
| | | | - Hiroko Wakimoto
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - James S Ware
- National Heart and Lung Institute, Imperial College London, London SW3 6LY, UK.,Royal Brompton and Harefield Hospitals, Guy's and St. Thomas' NHS Foundation Trust, London SW3 6NR, UK.,MRC London Institute of Medical Sciences, Imperial College London, London W12 0NN, UK
| | - Catherine L Worth
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
| | - Paul J R Barton
- National Heart and Lung Institute, Imperial College London, London SW3 6LY, UK.,Royal Brompton and Harefield Hospitals, Guy's and St. Thomas' NHS Foundation Trust, London SW3 6NR, UK.,MRC London Institute of Medical Sciences, Imperial College London, London W12 0NN, UK
| | - Young-Ae Lee
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany.,Clinic for Pediatric Allergy, Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin, 13125 Berlin, Germany
| | - Sarah A Teichmann
- Cellular Genetics Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK.,Department of Physics, Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, UK
| | - Hendrik Milting
- Erich and Hanna Klessmann Institute, Heart and Diabetes Center NRW, University Hospital of the Ruhr-University Bochum, 32545 Bad Oeynhausen, Germany
| | - Michela Noseda
- National Heart and Lung Institute, Imperial College London, London SW3 6LY, UK.,British Heart Foundation Centre for Research Excellence and Centre for Regenerative Medicine, Imperial College London, London WC2R 2LS, UK
| | - Gavin Y Oudit
- Division of Cardiology, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2R3, Canada.,Mazankowski Alberta Heart Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - Matthias Heinig
- Computational Health Center, Helmholtz Zentrum München Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), 85764 Neuherberg, Germany.,Department of Informatics, Technische Universitaet Muenchen (TUM), 85748 Munich, Germany.,DZHK (German Centre for Cardiovascular Research), Munich Heart Association, Partner Site Munich, 10785 Berlin, Germany
| | | | - Norbert Hubner
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 10785 Berlin, Germany.,Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Christine E Seidman
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.,Cardiovascular Division, Brigham and Women's Hospital, Boston, MA 02115, USA.,Howard Hughes Medical Institute, Bethesda, MD 20815, USA
| |
Collapse
|
37
|
Xiao R, You L, Zhang L, Guo X, Guo E, Zhao F, Yang B, Li X, Fu Y, Lu F, Wang Z, Liu C, Peng W, Li W, Yang X, Dou Y, Liu J, Wang W, Qin T, Cui Y, Zhang X, Li F, Jin Y, Zeng Q, Wang B, Mills GB, Chen G, Sheng X, Sun C. Inhibiting the IRE1α Axis of the Unfolded Protein Response Enhances the Antitumor Effect of AZD1775 in TP53 Mutant Ovarian Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105469. [PMID: 35619328 PMCID: PMC9313493 DOI: 10.1002/advs.202105469] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 04/13/2022] [Indexed: 05/30/2023]
Abstract
Targeting the G2/M checkpoint mediator WEE1 has been explored as a novel treatment strategy in ovarian cancer, but mechanisms underlying its efficacy and resistance remains to be understood. Here, it is demonstrated that the WEE1 inhibitor AZD1775 induces endoplasmic reticulum stress and activates the protein kinase RNA-like ER kinase (PERK) and inositol-required enzyme 1α (IRE1α) branches of the unfolded protein response (UPR) in TP53 mutant (mtTP53) ovarian cancer models. This is facilitated through NF-κB mediated senescence-associated secretory phenotype. Upon AZD1775 treatment, activated PERK promotes apoptotic signaling via C/EBP-homologous protein (CHOP), while IRE1α-induced splicing of XBP1 (XBP1s) maintains cell survival by repressing apoptosis. This leads to an encouraging synergistic antitumor effect of combining AZD1775 and an IRE1α inhibitor MKC8866 in multiple cell lines and preclinical models of ovarian cancers. Taken together, the data reveal an important dual role of the UPR signaling network in mtTP53 ovarian cancer models in response to AZD1775 and suggest that inhibition of the IRE1α-XBP1s pathway may enhance the efficacy of AZD1775 in the clinics.
Collapse
Affiliation(s)
- Rourou Xiao
- National Clinical Research Center for Gynecology and ObstetricsTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
- Cancer Biology Research CenterTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
- Department of Gynecology and Obstetrics, Tongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Lixin You
- National Clinical Research Center for Gynecology and ObstetricsTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
- Cancer Biology Research CenterTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
- Department of Gynecology and Obstetrics, Tongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Li Zhang
- National Clinical Research Center for Gynecology and ObstetricsTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
- Cancer Biology Research CenterTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
- Department of Gynecology and Obstetrics, Tongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Xichen Guo
- Key Laboratory of Environment and HealthMinistry of Education & Ministry of Environmental Protectionand State Key Laboratory of Environmental Health (Incubation)School of Public HealthTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Ensong Guo
- National Clinical Research Center for Gynecology and ObstetricsTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
- Cancer Biology Research CenterTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
- Department of Gynecology and Obstetrics, Tongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Faming Zhao
- Key Laboratory of Environment and HealthMinistry of Education & Ministry of Environmental Protectionand State Key Laboratory of Environmental Health (Incubation)School of Public HealthTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Bin Yang
- National Clinical Research Center for Gynecology and ObstetricsTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
- Cancer Biology Research CenterTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
- Department of Gynecology and Obstetrics, Tongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Xi Li
- National Clinical Research Center for Gynecology and ObstetricsTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
- Cancer Biology Research CenterTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
- Department of Gynecology and Obstetrics, Tongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Yu Fu
- National Clinical Research Center for Gynecology and ObstetricsTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
- Cancer Biology Research CenterTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
- Department of Gynecology and Obstetrics, Tongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Funian Lu
- National Clinical Research Center for Gynecology and ObstetricsTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
- Cancer Biology Research CenterTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
- Department of Gynecology and Obstetrics, Tongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Zizhuo Wang
- National Clinical Research Center for Gynecology and ObstetricsTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
- Cancer Biology Research CenterTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
- Department of Gynecology and Obstetrics, Tongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Chen Liu
- National Clinical Research Center for Gynecology and ObstetricsTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
- Cancer Biology Research CenterTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
- Department of Gynecology and Obstetrics, Tongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Wenju Peng
- National Clinical Research Center for Gynecology and ObstetricsTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
- Cancer Biology Research CenterTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
- Department of Gynecology and Obstetrics, Tongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Wenting Li
- National Clinical Research Center for Gynecology and ObstetricsTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
- Cancer Biology Research CenterTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
- Department of Gynecology and Obstetrics, Tongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Xiaohang Yang
- National Clinical Research Center for Gynecology and ObstetricsTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
- Cancer Biology Research CenterTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
- Department of Gynecology and Obstetrics, Tongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Yingyu Dou
- National Clinical Research Center for Gynecology and ObstetricsTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
- Cancer Biology Research CenterTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
- Department of Gynecology and Obstetrics, Tongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Jingbo Liu
- National Clinical Research Center for Gynecology and ObstetricsTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
- Cancer Biology Research CenterTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
- Department of Gynecology and Obstetrics, Tongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Wei Wang
- National Clinical Research Center for Gynecology and ObstetricsTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
- Cancer Biology Research CenterTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
- Department of Gynecology and Obstetrics, Tongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Tianyu Qin
- National Clinical Research Center for Gynecology and ObstetricsTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
- Cancer Biology Research CenterTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
- Department of Gynecology and Obstetrics, Tongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Yaoyuan Cui
- National Clinical Research Center for Gynecology and ObstetricsTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
- Cancer Biology Research CenterTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
- Department of Gynecology and Obstetrics, Tongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Xiaoxiao Zhang
- Department of Obstetrics and GynecologyThe First Affiliated Hospital of Zhengzhou UniversityZheng Zhou450052China
| | - Fuxia Li
- Department of gynecologyFirst Affiliated HospitalShihezi University School of MedicineShiheziXinjiang832000P. R. China
| | - Yang Jin
- Department of BiosciencesUniversity of OsloOslo0371Norway
| | - Qingping Zeng
- Fosun OrinoveInc.Unit 211, Building A4, 218 Xinhu StreetSuzhou215000China
| | - Beibei Wang
- National Clinical Research Center for Gynecology and ObstetricsTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
- Cancer Biology Research CenterTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
- Department of Gynecology and Obstetrics, Tongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Gordon B. Mills
- Department of CellDevelopment and Cancer BiologyKnight Cancer InstituteOregon Health and Sciences UniversityPortlandOR97201USA
| | - Gang Chen
- National Clinical Research Center for Gynecology and ObstetricsTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
- Cancer Biology Research CenterTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
- Department of Gynecology and Obstetrics, Tongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Xia Sheng
- Key Laboratory of Environment and HealthMinistry of Education & Ministry of Environmental Protectionand State Key Laboratory of Environmental Health (Incubation)School of Public HealthTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Chaoyang Sun
- National Clinical Research Center for Gynecology and ObstetricsTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
- Cancer Biology Research CenterTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
- Department of Gynecology and Obstetrics, Tongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| |
Collapse
|
38
|
Kang Z, Zhu G, Su C, Zeng K, Li S, Wu X. Differential effects of remifentanil and sufentanil anesthesia on post-operative pain and cognitive functions. Int Immunopharmacol 2022; 108:108888. [DOI: 10.1016/j.intimp.2022.108888] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/21/2022] [Accepted: 05/19/2022] [Indexed: 02/06/2023]
|
39
|
Hsieh PC, Peng CK, Liu GT, Kuo CY, Tzeng IS, Wang MC, Lan CC, Huang KL. Aqueous Extract of Descuraniae Semen Attenuates Lipopolysaccharide-Induced Inflammation and Apoptosis by Regulating the Proteasomal Degradation and IRE1α-Dependent Unfolded Protein Response in A549 Cells. Front Immunol 2022; 13:916102. [PMID: 35812413 PMCID: PMC9265213 DOI: 10.3389/fimmu.2022.916102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 05/17/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Lipopolysaccharide (LPS)-induced acute lung injury (ALI) induces endoplasmic reticulum stress, unfolded protein response (UPR), apoptosis, and inflammation. Inositol-requiring enzyme 1 (IRE1)-α is important for adaptive and apoptotic UPR determination during ER stress. The aqueous extract of Descuraniae Semen (AEDS) is reported to be a safe and effective herb for the treatment of pulmonary edema as it shows anti-inflammatory activities. METHODS We investigated the effects of AEDS on LPS-induced ALI in A549 cells with respect to the regulation of IRE1α-dependent UPR, proteasomal degradation, mitochondrial membrane potential (MtMP), inflammation, and apoptosis. RESULTS AEDS attenuated ER stress by regulating the proteasomal degradation. LPS induced ER stress [binding immunoglobulin protein (BiP), phosphorylated IRE1α, sliced X-box binding protein 1 [XBP1s], phosphorylated cJUN NH2-terminal kinase (pJNK), B-cell lymphoma (Bcl)-2-associated X (Bax), Bcl-2], inflammation (nucleus factor-kappa B (NF-κB) p65 nuclear translocation, nucleus NF-κB, pro-inflammatory cytokines] and apoptosis [C/EBP homologous protein (CHOP), cytochrome c, caspase-8, and caspase-6, and TUNEL] were significantly attenuated by AEDS treatment in A549 cells. AEDS prevents LPS-induced decreased expression of MtMP in A549 cells. CONCLUSIONS AEDS attenuated LPS-induced inflammation and apoptosis by regulating proteasomal degradation, promoting IRE1α-dependent adaptive UPR, and inhibiting IRE1α-dependent apoptotic UPR. Moreover, IRE1α-dependent UPR plays a pivotal role in the mechanisms of LPS-induced ALI. Based on these findings, AEDS is suggested as a potential therapeutic option for treating patients with ALI.
Collapse
Affiliation(s)
- Po-Chun Hsieh
- Department of Chinese Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Chung-Kan Peng
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Tri-Service General Hospital, Taipei, Taiwan
| | - Guan-Ting Liu
- Department of Chinese Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
- Division of Pulmonary Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
| | - Chan-Yen Kuo
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
| | - I-Shiang Tzeng
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
| | - Ming-Chieh Wang
- Department of Pharmacy, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
| | - Chou-Chin Lan
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
- Division of Pulmonary Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
- School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Kun-Lun Huang
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Tri-Service General Hospital, Taipei, Taiwan
| |
Collapse
|
40
|
Kuang Y, Ye N, Kyani A, Ljungman M, Paulsen M, Chen H, Zhou M, Wild C, Chen H, Zhou J, Neamati N. Induction of Genes Implicated in Stress Response and Autophagy by a Novel Quinolin-8-yl-nicotinamide QN523 in Pancreatic Cancer. J Med Chem 2022; 65:6133-6156. [PMID: 35439009 PMCID: PMC9195374 DOI: 10.1021/acs.jmedchem.1c02207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Using a cytotoxicity-based phenotypic screen of a highly diverse library of 20,000 small-molecule compounds, we identified a quinolin-8-yl-nicotinamide, QN519, as a promising lead. QN519 represents a novel scaffold with drug-like properties, showing potent in vitro cytotoxicity in a panel of 12 cancer cell lines. Subsequently, lead optimization campaign generated compounds with IC50 values < 1 μM. An optimized compound, QN523, shows significant in vivo efficacy in a pancreatic cancer xenograft model. QN523 treatment significantly increased the expression of HSPA5, DDIT3, TRIB3, and ATF3 genes, suggesting activation of the stress response pathway. We also observed a significant increase in the expression of WIPI1, HERPUD1, GABARAPL1, and MAP1LC3B, implicating autophagy as a major mechanism of action. Due to the lack of effective treatments for pancreatic cancer, discovery of novel agents such as the QN series of compounds with unique mechanism of action has the potential to fulfill a clear unmet medical need.
Collapse
Affiliation(s)
- Yuting Kuang
- Department of Medicinal Chemistry, College of Pharmacy, Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Na Ye
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch (UTMB), Galveston, TX 77550, USA
| | - Armita Kyani
- Department of Medicinal Chemistry, College of Pharmacy, Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Mats Ljungman
- Department of Radiation Oncology, Rogel Cancer Center and Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Michelle Paulsen
- Department of Radiation Oncology, Rogel Cancer Center and Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Haijun Chen
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch (UTMB), Galveston, TX 77550, USA
| | - Mingxiang Zhou
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch (UTMB), Galveston, TX 77550, USA
| | - Christopher Wild
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch (UTMB), Galveston, TX 77550, USA
| | - Haiying Chen
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch (UTMB), Galveston, TX 77550, USA
| | - Jia Zhou
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch (UTMB), Galveston, TX 77550, USA
| | - Nouri Neamati
- Department of Medicinal Chemistry, College of Pharmacy, Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
41
|
Müllebner A, Herminghaus A, Miller I, Kames M, Luís A, Picker O, Bauer I, Kozlov AV, Duvigneau JC. Tissue Damage, Not Infection, Triggers Hepatic Unfolded Protein Response in an Experimental Rat Peritonitis Model. Front Med (Lausanne) 2022; 9:785285. [PMID: 35372445 PMCID: PMC8965740 DOI: 10.3389/fmed.2022.785285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 02/10/2022] [Indexed: 11/13/2022] Open
Abstract
Background Abdominal surgery is an efficient treatment of intra-abdominal sepsis. Surgical trauma and peritoneal infection lead to the activation of multiple pathological pathways. The liver is particularly susceptible to injury under septic conditions. Liver function is impaired when pathological conditions induce endoplasmic reticulum (ER) stress. ER stress triggers the unfolded protein response (UPR), aiming at restoring ER homeostasis, or inducing cell death. In order to translate basic knowledge on ER function into the clinical setting, we aimed at dissecting the effect of surgery and peritoneal infection on the progression of ER stress/UPR and inflammatory markers in the liver in a clinically relevant experimental animal model. Methods Wistar rats underwent laparotomy followed by colon ascendens stent peritonitis (CASP) or surgery (sham) only. Liver damage (aspartate aminotransferase (AST), alanine aminotransferase (ALT) and De Ritis values), inflammatory and UPR markers were assessed in livers at 24, 48, 72, and 96 h postsurgery. Levels of inflammatory (IL-6, TNF-α, iNOS, and HO-1), UPR (XBP1, GRP78, CHOP), and apoptosis (BAX/Bcl-XL) mRNA were determined by qPCR. Splicing of XBP1 (XBP1s) was analyzed by gel electrophoresis, p-eIF2α and GRP78 protein levels using the western blots. Results Aspartate aminotransferase levels were elevated 24 h after surgery and thereafter declined with different kinetics in sham and CASP groups. Compared with sham De Ritis ratios were significantly higher in the CASP group, at 48 and 96 h. CASP induced an inflammatory response after 48 h, evidenced by elevated levels of IL-6, TNF-α, iNOS, and HO-1. In contrast, UPR markers XBP1s, p-eIF2α, GRP78, XBP1, and CHOP did not increase in response to infection but paralleled the kinetics of AST and De Ritis ratios. We found that inflammatory markers were predominantly associated with CASP, while UPR markers were associated with surgery. However, in the CASP group, we found a stronger correlation between XBP1s, XBP1 and GRP78 with damage markers, suggesting a synergistic influence of inflammation on UPR in our model. Conclusion Our results indicate that independent mechanisms induce ER stress/UPR and the inflammatory response in the liver. While peritoneal infection predominantly triggers inflammatory responses, the conditions associated with organ damage are predominant triggers of the hepatic UPR.
Collapse
Affiliation(s)
- Andrea Müllebner
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation With AUVA, Vienna, Austria.,Department of Biomedical Sciences, Institute for Medical Biochemistry, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Anna Herminghaus
- Department of Anesthesiology, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Ingrid Miller
- Department of Biomedical Sciences, Institute for Medical Biochemistry, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Martina Kames
- Department of Biomedical Sciences, Institute for Medical Biochemistry, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Andreia Luís
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation With AUVA, Vienna, Austria
| | - Olaf Picker
- Department of Anesthesiology, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Inge Bauer
- Department of Anesthesiology, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Andrey V Kozlov
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation With AUVA, Vienna, Austria
| | - Johanna Catharina Duvigneau
- Department of Biomedical Sciences, Institute for Medical Biochemistry, University of Veterinary Medicine Vienna, Vienna, Austria
| |
Collapse
|
42
|
Thapsigargin: key to new host-directed coronavirus antivirals? Trends Pharmacol Sci 2022; 43:557-568. [PMID: 35534355 PMCID: PMC9013669 DOI: 10.1016/j.tips.2022.04.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/09/2022] [Accepted: 04/12/2022] [Indexed: 11/20/2022]
Abstract
Despite the great success of vaccines that protect against RNA virus infections, and the development and clinical use of a limited number of RNA virus-specific drugs, there is still an urgent need for new classes of antiviral drugs against circulating or emerging RNA viruses. To date, it has proved difficult to efficiently suppress RNA virus replication by targeting host cell functions, and there are no approved drugs of this type. This opinion article discusses the recent discovery of a pronounced and sustained antiviral activity of the plant-derived natural compound thapsigargin against enveloped RNA viruses such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), Middle East respiratory syndrome coronavirus (MERS-CoV), and influenza A virus. Based on its mechanisms of action, thapsigargin represents a new prototype of compounds with multimodal host-directed antiviral activity.
Collapse
|
43
|
McKay LGA, Thomas J, Albalawi W, Fattaccioli A, Dieu M, Ruggiero A, McKeating JA, Ball JK, Tarr AW, Renard P, Pollakis G, Paxton WA. The HCV Envelope Glycoprotein Down-Modulates NF-κB Signalling and Associates With Stimulation of the Host Endoplasmic Reticulum Stress Pathway. Front Immunol 2022; 13:831695. [PMID: 35371105 PMCID: PMC8964954 DOI: 10.3389/fimmu.2022.831695] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 02/21/2022] [Indexed: 11/13/2022] Open
Abstract
Following acute HCV infection, the virus establishes a chronic disease in the majority of patients whilst few individuals clear the infection spontaneously. The precise mechanisms that determine chronic HCV infection or spontaneous clearance are not completely understood but are proposed to be driven by host and viral genetic factors as well as HCV encoded immunomodulatory proteins. Using the HIV-1 LTR as a tool to measure NF-κB activity, we identified that the HCV E1E2 glycoproteins and more so the E2 protein down-modulates HIV-1 LTR activation in 293T, TZM-bl and the more physiologically relevant Huh7 liver derived cell line. We demonstrate this effect is specifically mediated through inhibiting NF-κB binding to the LTR and show that this effect was conserved for all HCV genotypes tested. Transcriptomic analysis of 293T cells expressing the HCV glycoproteins identified E1E2 mediated stimulation of the endoplasmic reticulum (ER) stress response pathway and upregulation of stress response genes such as ATF3. Through shRNA mediated inhibition of ATF3, one of the components, we observed that E1E2 mediated inhibitory effects on HIV-1 LTR activity was alleviated. Our in vitro studies demonstrate that HCV Env glycoprotein activates host ER Stress Pathways known to inhibit NF-κB activity. This has potential implications for understanding HCV induced immune activation as well as oncogenesis.
Collapse
Affiliation(s)
- Lindsay G. A. McKay
- Department of Clinical Infection, Microbiology and Immunology, Institute of Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Jordan Thomas
- Department of Clinical Infection, Microbiology and Immunology, Institute of Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Wejdan Albalawi
- Department of Clinical Infection, Microbiology and Immunology, Institute of Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Antoine Fattaccioli
- Laboratory of Biochemistry and Cell Biology (URBC), Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), Namur, Belgium
| | - Marc Dieu
- MaSUN, Mass Spectrometry Facility, University of Namur (UNamur), Namur, Belgium
| | - Alessandra Ruggiero
- Department of Clinical Infection, Microbiology and Immunology, Institute of Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Jane A. McKeating
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Jonathan K. Ball
- Wolfson Centre for Global Virus Research and School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Alexander W. Tarr
- Wolfson Centre for Global Virus Research and School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Patricia Renard
- Laboratory of Biochemistry and Cell Biology (URBC), Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), Namur, Belgium,MaSUN, Mass Spectrometry Facility, University of Namur (UNamur), Namur, Belgium
| | - Georgios Pollakis
- Department of Clinical Infection, Microbiology and Immunology, Institute of Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - William A. Paxton
- Department of Clinical Infection, Microbiology and Immunology, Institute of Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom,*Correspondence: William A. Paxton,
| |
Collapse
|
44
|
Repas J, Zupin M, Vodlan M, Veranič P, Gole B, Potočnik U, Pavlin M. Dual Effect of Combined Metformin and 2-Deoxy-D-Glucose Treatment on Mitochondrial Biogenesis and PD-L1 Expression in Triple-Negative Breast Cancer Cells. Cancers (Basel) 2022; 14:1343. [PMID: 35267651 PMCID: PMC8909901 DOI: 10.3390/cancers14051343] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/23/2022] [Accepted: 03/01/2022] [Indexed: 02/04/2023] Open
Abstract
Metformin and 2-deoxy-D-glucose (2DG) exhibit multiple metabolic and immunomodulatory anti-cancer effects, such as suppressed proliferation or PD-L1 expression. Their combination or 2DG alone induce triple-negative breast cancer (TNBC) cell detachment, but their effects on mitochondria, crucial for anchorage-independent growth and metastasis formation, have not yet been evaluated. In the present study, we explored the effects of metformin, 2DG and their combination (metformin + 2DG) on TNBC cell mitochondria in vitro. Metformin + 2DG increased mitochondrial mass in TNBC cells. This was associated with an increased size but not number of morphologically normal mitochondria and driven by the induction of mitochondrial biogenesis rather than suppressed mitophagy. 2DG and metformin + 2DG strongly induced the unfolded protein response by inhibiting protein N-glycosylation. Together with adequate energy stress, this was one of the possible triggers of mitochondrial enlargement. Suppressed N-glycosylation by 2DG or metformin + 2DG also caused PD-L1 deglycosylation and reduced surface expression in MDA-MB-231 cells. PD-L1 was increased in low glucose and normalized by both drugs. 2DG and metformin + 2DG reduced PD-1 expression in Jurkat cells beyond the effects on activation, while cytokine secretion was mostly preserved. Despite increasing mitochondrial mass in TNBC cells, metformin and 2DG could therefore potentially be used as an adjunct therapy to improve anti-tumor immunity in TNBC.
Collapse
Affiliation(s)
- Jernej Repas
- Institute of Biophysics, Faculty of Medicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (J.R.); (M.V.)
| | - Mateja Zupin
- Center for Human Molecular Genetics and Pharmacogenomics, Faculty of Medicine, University of Maribor, SI-2000 Maribor, Slovenia; (M.Z.); (B.G.); (U.P.)
| | - Maja Vodlan
- Institute of Biophysics, Faculty of Medicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (J.R.); (M.V.)
| | - Peter Veranič
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia;
| | - Boris Gole
- Center for Human Molecular Genetics and Pharmacogenomics, Faculty of Medicine, University of Maribor, SI-2000 Maribor, Slovenia; (M.Z.); (B.G.); (U.P.)
| | - Uroš Potočnik
- Center for Human Molecular Genetics and Pharmacogenomics, Faculty of Medicine, University of Maribor, SI-2000 Maribor, Slovenia; (M.Z.); (B.G.); (U.P.)
- Laboratory for Biochemistry, Molecular Biology and Genomics, University of Maribor, SI-2000 Maribor, Slovenia
- Department for Science and Research, University Medical Centre Maribor, SI-2000 Maribor, Slovenia
| | - Mojca Pavlin
- Institute of Biophysics, Faculty of Medicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (J.R.); (M.V.)
- Group for Nano- and Biotechnological Applications, Faculty of Electrical Engineering, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
45
|
Bogár F, Fülöp L, Penke B. Novel Therapeutic Target for Prevention of Neurodegenerative Diseases: Modulation of Neuroinflammation with Sig-1R Ligands. Biomolecules 2022; 12:363. [PMID: 35327555 PMCID: PMC8945408 DOI: 10.3390/biom12030363] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/20/2022] [Accepted: 02/23/2022] [Indexed: 12/13/2022] Open
Abstract
Neurodegenerative diseases (NDDs) are characterized by progressive deterioration of the structure and function of cells and their networks in the nervous system. There are currently no drugs or other treatments that can stop the progression of NDDs. NDDs have many similarities and common pathways, e.g., formation of misfolded amyloid proteins, intra- and extracellular amyloid deposits, and chronic inflammation. Initially, the inflammation process has a cytoprotective function; however, an elevated and prolonged immune response has damaging effects and causes cell death. Neuroinflammation has been a target of drug development for treating and curing NDDs. Treatment of different NDDs with non-steroid anti-inflammatory drugs (NSAIDs) has failed or has given inconsistent results. The use of NSAIDs in diagnosed Alzheimer's disease is currently not recommended. Sigma-1 receptor (Sig-1R) is a novel target for NDD drug development. Sig-1R plays a key role in cellular stress signaling, and it regulates endoplasmic reticulum stress and unfolded protein response. Activation of Sig-1R provides neuroprotection in cell cultures and animal studies. Clinical trials demonstrated that several Sig-1R agonists (pridopidine, ANAVEX3-71, fluvoxamine, dextrometorphan) and their combinations have a neuroprotective effect and slow down the progression of distinct NDDs.
Collapse
Affiliation(s)
- Ferenc Bogár
- MTA-SZTE Biomimetic Systems Research Group, Eötvös Loránd Research Network (ELKH), Dóm Square 8, H-6720 Szeged, Hungary;
- Department of Medical Chemistry, University of Szeged, Dóm Square 8, H-6720 Szeged, Hungary;
| | - Lívia Fülöp
- Department of Medical Chemistry, University of Szeged, Dóm Square 8, H-6720 Szeged, Hungary;
| | - Botond Penke
- Department of Medical Chemistry, University of Szeged, Dóm Square 8, H-6720 Szeged, Hungary;
| |
Collapse
|
46
|
Drug Resistance and Endoplasmic Reticulum Stress in Hepatocellular Carcinoma. Cells 2022; 11:cells11040632. [PMID: 35203283 PMCID: PMC8870354 DOI: 10.3390/cells11040632] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 02/05/2022] [Accepted: 02/08/2022] [Indexed: 01/27/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common and deadly cancers worldwide. It is usually diagnosed in an advanced stage and is characterized by a high intrinsic drug resistance, leading to limited chemotherapeutic efficacy and relapse after treatment. There is therefore a vast need for understanding underlying mechanisms that contribute to drug resistance and for developing therapeutic strategies that would overcome this. The rapid proliferation of tumor cells, in combination with a highly inflammatory microenvironment, causes a chronic increase of protein synthesis in different hepatic cell populations. This leads to an intensified demand of protein folding, which inevitably causes an accumulation of misfolded or unfolded proteins in the lumen of the endoplasmic reticulum (ER). This process is called ER stress and triggers the unfolded protein response (UPR) in order to restore protein synthesis or—in the case of severe or prolonged ER stress—to induce cell death. Interestingly, the three different arms of the ER stress signaling pathways have been shown to drive chemoresistance in several tumors and could therefore form a promising therapeutic target. This review provides an overview of how ER stress and activation of the UPR contributes to drug resistance in HCC.
Collapse
|
47
|
Cankara FN, Kuş MS, Günaydın C, Şafak S, Bilge SS, Ozmen O, Tural E, Kortholt A. The beneficial effect of salubrinal on neuroinflammation and neuronal loss in intranigral LPS-induced hemi-Parkinson disease model in rats. Immunopharmacol Immunotoxicol 2022; 44:168-177. [PMID: 35021949 DOI: 10.1080/08923973.2021.2023174] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
OBJECTIVE Endoplasmic reticulum stress (ERS) and neuroinflammation are triggers for neurodegenerative disorders. Salubrinal is a selective inhibitor of protein phosphatase 1 (PP1) complex involving dephosphorylation of phosphorylated eukaryotic initiation factor-2α (eIF2α), the key crucial pathway in the ERS. Therefore, this study assessed the effects of inhibition of the ERS with salubrinal in the intranigral hemi-Parkinson disease (PD) model. MATERIALS AND METHODS Animals were treated with salubrinal for one week after the PD model was created by intranigral lipopolysaccharide (LPS) administration. Apomorphine-induced rotation, rotarod, cylinder, and pole tests were performed to evaluate behavioral changes. Proinflammatory cytokines and the expression level of the dual specificity protein phosphatase 2 (DUSP2), PP1, and p-eIF2α were evaluated. Nigral expression of inducible nitric oxide synthase (iNOS), nuclear factor kappaB (Nf-κB), and cyclooxygenase (COX)-2 was determined. Finally, tyrosine hydroxylase and caspase-3/ caspase-9 expressions were assessed by immunohistochemistry. RESULTS Salubrinal reduced the motor impairments and dopamine-related behavioral deficiencies caused by the LPS. Salubrinal attenuated the LPS-induced increased levels of interleukin (IL)-1β, IL-6, tumor necrosis factor-α, and salubrinal rescued the loss of TH expression and dopamine levels and prevented the caspase-3/9 increase in the substantial nigra (SN). LPS potently increased iNOS, Nf-κB, and COX-2 expression, but this effect was reduced after salubrinal treatment. Additionally, salubrinal attenuated the LPS-induced PP1 and DUSP2 increase. CONCLUSION Our results reveal that salubrinal is attenuating several inflammatory mediators and thereby decreased the inflammatory effects of LPS in the neurons of the SN. Together this results in increased cellular survival and maintained integrity of SN. Taken together our data show the beneficial effects of inhibition of ERS to restrict neuroinflammatory progression and neuronal loss in a PD model.
Collapse
Affiliation(s)
- Fatma Nihan Cankara
- Department of Pharmacology, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey.,Innovative Technologies Application and Research Center, Suleyman Demirel University, Isparta, Turkey
| | - Meliha Sümeyye Kuş
- Department of Pharmacology, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| | - Caner Günaydın
- Department of Pharmacology, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Turkey
| | - Sinan Şafak
- Department of Pharmacology, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Turkey
| | - Süleyman Sırrı Bilge
- Department of Pharmacology, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Turkey
| | - Ozlem Ozmen
- Department of Pathology, Faculty of Veterinary Medicine, Burdur Mehmet Akif Ersoy University, Burdur, Turkey
| | - Emine Tural
- Department of Histology and Embryology, Faculty of Medicine, Pamukkale University, Denizli, Turkey
| | - Arjan Kortholt
- Innovative Technologies Application and Research Center, Suleyman Demirel University, Isparta, Turkey.,Department of Cell Biochemistry, Groningen Institute of Biomolecular Sciences & Biotechnology, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
48
|
Neufeldt CJ, Cerikan B, Cortese M, Frankish J, Lee JY, Plociennikowska A, Heigwer F, Prasad V, Joecks S, Burkart SS, Zander DY, Subramanian B, Gimi R, Padmanabhan S, Iyer R, Gendarme M, El Debs B, Halama N, Merle U, Boutros M, Binder M, Bartenschlager R. SARS-CoV-2 infection induces a pro-inflammatory cytokine response through cGAS-STING and NF-κB. Commun Biol 2022; 5:45. [PMID: 35022513 PMCID: PMC8755718 DOI: 10.1038/s42003-021-02983-5] [Citation(s) in RCA: 145] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 12/14/2021] [Indexed: 12/21/2022] Open
Abstract
SARS-CoV-2 is a novel virus that has rapidly spread, causing a global pandemic. In the majority of infected patients, SARS-CoV-2 leads to mild disease; however, in a significant proportion of infections, individuals develop severe symptoms that can lead to long-lasting lung damage or death. These severe cases are often associated with high levels of pro-inflammatory cytokines and low antiviral responses, which can cause systemic complications. Here, we have evaluated transcriptional and cytokine secretion profiles and detected a distinct upregulation of inflammatory cytokines in infected cell cultures and samples taken from infected patients. Building on these observations, we found a specific activation of NF-κB and a block of IRF3 nuclear translocation in SARS-CoV-2 infected cells. This NF-κB response was mediated by cGAS-STING activation and could be attenuated through several STING-targeting drugs. Our results show that SARS-CoV-2 directs a cGAS-STING mediated, NF-κB-driven inflammatory immune response in human epithelial cells that likely contributes to inflammatory responses seen in patients and could be therapeutically targeted to suppress severe disease symptoms.
Collapse
Affiliation(s)
- Christopher J Neufeldt
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany.
| | - Berati Cerikan
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany
| | - Mirko Cortese
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany
| | | | - Ji-Young Lee
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany
| | - Agnieszka Plociennikowska
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany.,Division Virus-Associated Carcinogenesis, German Cancer Research Center, Heidelberg, Germany
| | - Florian Heigwer
- Division of Signaling and Functional Genomics, German Cancer Research Center, and Department of Cell and Molecular Biology, Heidelberg University, Medical Faculty Mannheim, Mannheim, Germany
| | - Vibhu Prasad
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany
| | - Sebastian Joecks
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany
| | - Sandy S Burkart
- Research Group "Dynamics of Early Viral Infection and the Innate Antiviral Response", Division Virus-Associated Carcinogenesis, German Cancer Research Center, Heidelberg, Germany
| | - David Y Zander
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany.,Research Group "Dynamics of Early Viral Infection and the Innate Antiviral Response", Division Virus-Associated Carcinogenesis, German Cancer Research Center, Heidelberg, Germany
| | - Baskaran Subramanian
- Spring Bank Pharmaceuticals, Inc., 35 Corporate Drive, Hopkinton, MA, 01748, USA
| | - Rayomand Gimi
- Spring Bank Pharmaceuticals, Inc., 35 Corporate Drive, Hopkinton, MA, 01748, USA
| | | | - Radhakrishnan Iyer
- Spring Bank Pharmaceuticals, Inc., 35 Corporate Drive, Hopkinton, MA, 01748, USA
| | | | | | - Niels Halama
- Division of Translational Immunotherapy, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Uta Merle
- Department of Internal Medicine IV, University Hospital Heidelberg, Heidelberg, Germany
| | - Michael Boutros
- Division of Signaling and Functional Genomics, German Cancer Research Center, and Department of Cell and Molecular Biology, Heidelberg University, Medical Faculty Mannheim, Mannheim, Germany
| | - Marco Binder
- Research Group "Dynamics of Early Viral Infection and the Innate Antiviral Response", Division Virus-Associated Carcinogenesis, German Cancer Research Center, Heidelberg, Germany
| | - Ralf Bartenschlager
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany. .,Division Virus-Associated Carcinogenesis, German Cancer Research Center, Heidelberg, Germany. .,German Center for Infection Research, Heidelberg partner site, Heidelberg, Germany.
| |
Collapse
|
49
|
Rufo N, Korovesis D, Van Eygen S, Derua R, Garg AD, Finotello F, Vara-Perez M, Rožanc J, Dewaele M, de Witte PA, Alexopoulos LG, Janssens S, Sinkkonen L, Sauter T, Verhelst SHL, Agostinis P. Stress-induced inflammation evoked by immunogenic cell death is blunted by the IRE1α kinase inhibitor KIRA6 through HSP60 targeting. Cell Death Differ 2022; 29:230-245. [PMID: 34453119 PMCID: PMC8738768 DOI: 10.1038/s41418-021-00853-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 08/02/2021] [Accepted: 08/08/2021] [Indexed: 12/13/2022] Open
Abstract
Mounting evidence indicates that immunogenic therapies engaging the unfolded protein response (UPR) following endoplasmic reticulum (ER) stress favor proficient cancer cell-immune interactions, by stimulating the release of immunomodulatory/proinflammatory factors by stressed or dying cancer cells. UPR-driven transcription of proinflammatory cytokines/chemokines exert beneficial or detrimental effects on tumor growth and antitumor immunity, but the cell-autonomous machinery governing the cancer cell inflammatory output in response to immunogenic therapies remains poorly defined. Here, we profiled the transcriptome of cancer cells responding to immunogenic or weakly immunogenic treatments. Bioinformatics-driven pathway analysis indicated that immunogenic treatments instigated a NF-κB/AP-1-inflammatory stress response, which dissociated from both cell death and UPR. This stress-induced inflammation was specifically abolished by the IRE1α-kinase inhibitor KIRA6. Supernatants from immunogenic chemotherapy and KIRA6 co-treated cancer cells were deprived of proinflammatory/chemoattractant factors and failed to mobilize neutrophils and induce dendritic cell maturation. Furthermore, KIRA6 significantly reduced the in vivo vaccination potential of dying cancer cells responding to immunogenic chemotherapy. Mechanistically, we found that the anti-inflammatory effect of KIRA6 was still effective in IRE1α-deficient cells, indicating a hitherto unknown off-target effector of this IRE1α-kinase inhibitor. Generation of a KIRA6-clickable photoaffinity probe, mass spectrometry, and co-immunoprecipitation analysis identified cytosolic HSP60 as a KIRA6 off-target in the IKK-driven NF-κB pathway. In sum, our study unravels that HSP60 is a KIRA6-inhibitable upstream regulator of the NF-κB/AP-1-inflammatory stress responses evoked by immunogenic treatments. It also urges caution when interpreting the anti-inflammatory action of IRE1α chemical inhibitors.
Collapse
Affiliation(s)
- Nicole Rufo
- Cell Death Research and Therapy Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
- VIB Center for Cancer Biology Research, Leuven, Belgium
| | - Dimitris Korovesis
- Laboratory of Chemical Biology, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Sofie Van Eygen
- Cell Death Research and Therapy Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
- VIB Center for Cancer Biology Research, Leuven, Belgium
| | - Rita Derua
- Laboratory of Protein Phosphorylation and Proteomics, Department of Cellular and Molecular Medicine and SyBioMa, KU Leuven, Leuven, Belgium
| | - Abhishek D Garg
- Cell Death Research and Therapy Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Francesca Finotello
- Biocenter, Institute of Bioinformatics, Medical University of Innsbruck, Innsbruck, Austria
| | - Monica Vara-Perez
- Cell Death Research and Therapy Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
- VIB Center for Cancer Biology Research, Leuven, Belgium
| | - Jan Rožanc
- Department of Life Sciences and Medicine, University of Luxembourg, Belvaux, Luxembourg
- ProtATonce Ltd, Science Park Demokritos, Athens, Greece
| | - Michael Dewaele
- VIB Center for Cancer Biology Research, Leuven, Belgium
- Laboratory for Molecular Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Peter A de Witte
- Laboratory for Molecular Biodiscovery, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Leonidas G Alexopoulos
- ProtATonce Ltd, Science Park Demokritos, Athens, Greece
- BioSys Lab, Department of Mechanical Engineering, National Technical University of Athens, Zografou, Greece
| | - Sophie Janssens
- Laboratory for ER stress and Inflammation, VIB Center for Inflammation Research and Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Lasse Sinkkonen
- Department of Life Sciences and Medicine, University of Luxembourg, Belvaux, Luxembourg
| | - Thomas Sauter
- Department of Life Sciences and Medicine, University of Luxembourg, Belvaux, Luxembourg
| | - Steven H L Verhelst
- Laboratory of Chemical Biology, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
- AG Chemical Proteomics, Leibniz Institute for Analytical Sciences ISAS, e.V., Dortmund, Germany
| | - Patrizia Agostinis
- Cell Death Research and Therapy Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium.
- VIB Center for Cancer Biology Research, Leuven, Belgium.
| |
Collapse
|
50
|
Abstract
Two decades of research have established that Nuclear Factor-κB (NF-κB) signaling plays a critical role in reprogramming the fat cell transcriptome towards inflammation in response to overnutrition and metabolic stress. Several groups have suggested that inhibition of NF-κB signaling could have metabolic benefits for obesity-associated adipose tissue inflammation. However, two significant problems arise with this approach. The first is how to deliver general NF-κB inhibitors into adipocytes without allowing these compounds to disrupt normal functioning in cells of the immune system. The second issue is that general inhibition of canonical NF-κB signaling in adipocytes will likely lead to a massive increase in adipocyte apoptosis under conditions of metabolic stress, leading full circle into a secondary inflammation (However, this problem may not be true for non-canonical NF-κB signaling.). This review will focus on the research that has examined canonical and non-canonical NF-κB signaling in adipocytes, focusing on genetic studies that examine loss-of-function of NF-κB specifically in fat cells. Although the development of general inhibitors of canonical NF-κB signaling seems unlikely to succeed in alleviating adipose tissue inflammation in humans, the door remains open for more targeted therapeutics. In principle, these would include compounds that interrogate NF-κB DNA binding, protein-protein interactions, or post-translational modifications that partition NF-κB activity towards some genes and away from others in adipocytes. I also discuss the possibility for inhibitors of non-canonical NF-κB signaling to realize success in mitigating fat cell dysfunction in obesity. To plant the seeds for such approaches, much biochemical “digging” in adipocytes remains; this includes identifying—in an unbiased manner–NF-κB direct and indirect targets, genomic DNA binding sites for all five NF-κB subunits, NF-κB protein-protein interactions, and post-translational modifications of NF-κB in fat cells.
Collapse
|