1
|
Kandel M, Macelline SP, Toghyani M, Chrystal PV, Choct M, Cowieson AJ, Liu SY, Selle PH. The potential of canola to decrease soybean meal inclusions in diets for broiler chickens. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2025; 20:342-354. [PMID: 40034462 PMCID: PMC11872666 DOI: 10.1016/j.aninu.2024.11.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 11/17/2024] [Accepted: 11/19/2024] [Indexed: 03/05/2025]
Abstract
Feedstuffs derived from canola, predominantly canola meals plus whole, "full-fat" canola seed, and even canola protein isolates and/or concentrates, have the potential to decrease soybean meal inclusions in diets for broiler chickens. The protein content of soybean meal exceeds that of canola meal; however, canola meal contains more methionine and cysteine in absolute and relative terms. The purpose of this review is to explore this potential as Australian chicken-meat production is uniquely positioned to take advantage of this opportunity to the extent that it can be realised. Australia harvests ample quantities of canola, the bulk of which is exported as seed; alternatively, soybean production is very limited; therefore, large quantities of soybean meal are imported as the principal source of dietary protein for broiler chickens. This importation of soybean meal is not sustainable; however, canola meal inclusions in broiler diets do not usually exceed 100 g/kg. Regression equations derived from 15 recent studies indicate that dietary inclusions of 150 g/kg solvent-extracted canola meal would compromise weight gain by 4.04% and feed conversion ratio (FCR) by 4.72%. The foremost factors driving these depressions in canola meal are probably (1) high fibre contents coupled with low energy densities and (2) the presence of glucosinolates, which may be converted into toxic metabolites including thiocyanates. Moreover, regression equations from nine studies suggest that calculated dietary glucosinolate concentrations of 2.00 μmol/g would compromise weight gain by 5.72% and FCR by 6.56%. The nutritive value of canola meal could be enhanced by improvements in canola breeding programs, processing methods in canola meal production, and dietary formulations including judicious application of exogenous enzymes. Consideration is given to these aspects in this review as any improvements would increase the extent to which canola meal can feasibly replace soybean meal in broiler diets. An additional pathway to decrease the reliance on soybean meal could be the adoption of reduced-crude protein (CP) diets containing canola meal. The combined strategy of canola meal replacing soybean meal in reduced-CP diets, if successful, would tangibly decrease soybean meal requirements in global chicken-meat production.
Collapse
Affiliation(s)
- Milan Kandel
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Camden, NSW, 2570, Australia
- Poultry Research Foundation, The University of Sydney, Camden, NSW, 2570, Australia
| | - Shemil P. Macelline
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Camden, NSW, 2570, Australia
- Poultry Research Foundation, The University of Sydney, Camden, NSW, 2570, Australia
| | - Mehdi Toghyani
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Camden, NSW, 2570, Australia
- Poultry Research Foundation, The University of Sydney, Camden, NSW, 2570, Australia
| | - Peter V. Chrystal
- Poultry Research Foundation, The University of Sydney, Camden, NSW, 2570, Australia
- Aviagen Huntsville, 35808, AL, USA
| | - Mingan Choct
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Camden, NSW, 2570, Australia
- Poultry Research Foundation, The University of Sydney, Camden, NSW, 2570, Australia
| | | | - Sonia Yun Liu
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Camden, NSW, 2570, Australia
- Poultry Research Foundation, The University of Sydney, Camden, NSW, 2570, Australia
| | - Peter H. Selle
- Poultry Research Foundation, The University of Sydney, Camden, NSW, 2570, Australia
- Sydney School of Veterinary Science, The University of Sydney, Camden, NSW, 2570, Australia
| |
Collapse
|
2
|
Arjun OK, Sethi M, Parida D, Dash J, Kumar Das S, Prakash T, Senapati S. Comprehensive physiological and genomic characterization of a potential probiotic strain, Lactiplantibacillus plantarum ILSF15, isolated from the gut of tribes of Odisha, India. Gene 2024; 931:148882. [PMID: 39182659 DOI: 10.1016/j.gene.2024.148882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 08/11/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
Characterizing probiotic features of organisms isolated from diverse environments can lead to the discovery of novel strains with promising functional features and health attributes. The present study attempts to characterize a novel probiotic strain isolated from the gut of the tribal population of Odisha, India. Based on 16S rRNA-based phylogeny, the strain was identified as a species of the Lactiplantibacillus genus and was named Lactiplantibacillus plantarum strain ILSF15. The current investigation focuses on elucidating this strain's genetic and physiological properties associated with probiotic attributes such as biosafety risk, host adaptation/survival traits, and beneficial functional features. The novel strain was observed, in vitro, exhibiting features such as acid/bile tolerance, adhesion to the host enteric epithelial cells, cholesterol assimilation, and pathogen exclusion, indicating its ability to survive the harsh environment of the human GIT and resist the growth of harmful microorganisms. Additionally, the L. plantarum ILSF15 strain was found to harbor genes associated with the metabolism and synthesis of various bioactive molecules, including amino acids, carbohydrates, lipids, and vitamins, highlighting the organism's ability to efficiently utilize diverse resources and contribute to the host's nutrition and health. Several genes involved in host adaptation/survival strategies and host-microbe interactions were also identified from the ILSF15 genome. Moreover, L. plantarum strains, in general, were found to have an open pangenome characterized by high genetic diversity and the absence of specific lineages associated with particular habitats, signifying its versatile nature and potential applications in probiotic and functional food industries.
Collapse
Affiliation(s)
- O K Arjun
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, Himachal Pradesh 175005, India
| | - Manisha Sethi
- Institute of Life Sciences, Nalco Square, Bhubaneswar, Odisha 751023, India
| | - Deepti Parida
- Institute of Life Sciences, Nalco Square, Bhubaneswar, Odisha 751023, India
| | - Jayalaxmi Dash
- Institute of Life Sciences, Nalco Square, Bhubaneswar, Odisha 751023, India
| | - Suraja Kumar Das
- Institute of Life Sciences, Nalco Square, Bhubaneswar, Odisha 751023, India
| | - Tulika Prakash
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, Himachal Pradesh 175005, India.
| | | |
Collapse
|
3
|
Tasnim F, Hosen ME, Haque ME, Islam A, Nuryay MN, Mawya J, Akter N, Yesmin D, Hossain MM, Rahman N, Mahmudul Hasan BM, Hassan MN, Islam MM, Khalekuzzaman M. Glucosinolates and Indole-3-carbinol from Brassica oleracea L. as inhibitors of E. coli CdtB: insights from molecular docking, dynamics, DFT and in vitro assay. In Silico Pharmacol 2024; 12:95. [PMID: 39479380 PMCID: PMC11519271 DOI: 10.1007/s40203-024-00276-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 10/15/2024] [Indexed: 11/02/2024] Open
Abstract
Escherichia coli (E. coli), a common human gut bacterium, is generally harmless but capable of causing infections and contributing to diseases like urinary tract infections, sepsis/meningitis, or diarrheal diseases. Notably, E. coli is implicated in developing gallbladder cancer (GBC) either through ascending infection from the gastrointestinal tract or via hematogenous spread. Certain E. coli strains are known to produce toxins, such as cytolethal distending toxins (CDTs), that directly contribute to the genetic mutations and cellular abnormalities observed in GBC. Broccoli (Brassica oleracea) is known for its health-promoting properties, including antimicrobial, antioxidant, and immunomodulatory effects, and is rich in essential compounds. Our study investigates the potential of the phytochemicals of B. oleracea to inhibit the CdtB (PDB ID: 2F1N) protein of E. coli which plays a significant role in the pathogenesis of GBC. By employing in silico molecular docking, Glucosinolates and Indole-3-carbinol emerged as promising inhibitors, demonstrating strong bonding affinities of -8.95 and - 8.5 Kcal/mol, respectively. The molecular dynamic simulation showed that both compounds maintained stable interaction with CdtB with minimal conformational changes observed in the protein-ligand complexes. Additionally, the ADMET analysis provided evidence for the drug-likeness properties of the lead compounds. Furthermore, the DFT (Density Functional Theory) revealed that Indole-3-carbinol is more chemically stable but less reactive than Glucosinolates, with HOMO-LUMO gaps of 5.14 eV and 4.50 eV, respectively. Finally, the in vitro antibacterial assessment confirmed the inhibitory effect of Glucosinolates and Indole-3-carbinol against E. coli through disc diffusion assay with the zone of inhibition 34.25 ± 0.541 and 28.67 ± 0.376 mm compared to the control ciprofloxacin. Our study provides crucial data for developing novel therapeutic agents targeting E. coli-associated GBC from the phytochemicals of B. oleracea. Supplementary Information The online version contains supplementary material available at 10.1007/s40203-024-00276-3.
Collapse
Affiliation(s)
- Faria Tasnim
- Department of Microbiology, Shaheed Shamsuzzoha Institute of Biosciences, Affiliated with University of Rajshahi, Rajshahi, Bangladesh
| | - Md. Eram Hosen
- Department of Microbiology, Shaheed Shamsuzzoha Institute of Biosciences, Affiliated with University of Rajshahi, Rajshahi, Bangladesh
| | - Md. Enamul Haque
- Department of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
| | - Ariful Islam
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, 6205 Bangladesh
| | - Mst Naharina Nuryay
- Department of Microbiology, Rajshahi Institute of Bioscience, Affiliated with University of Rajshahi, Rajshahi, 6205 Bangladesh
| | - Jannatul Mawya
- Department of Microbiology, Udayan College of Bioscience, Affiliated with University of Rajshahi, Rajshahi, 6205 Bangladesh
| | - Najnin Akter
- Department of Microbiology, Udayan College of Bioscience, Affiliated with University of Rajshahi, Rajshahi, 6205 Bangladesh
| | - Delara Yesmin
- Department of Microbiology, Rajshahi Institute of Bioscience, Affiliated with University of Rajshahi, Rajshahi, 6205 Bangladesh
| | - Md. Mosabbir Hossain
- Department of Microbiology, Rajshahi Institute of Bioscience, Affiliated with University of Rajshahi, Rajshahi, 6205 Bangladesh
| | - Nilima Rahman
- Department of Microbiology, Udayan College of Bioscience, Affiliated with University of Rajshahi, Rajshahi, 6205 Bangladesh
| | | | | | - Md. Mahmudul Islam
- Department of Microbiology, Shaheed Shamsuzzoha Institute of Biosciences, Affiliated with University of Rajshahi, Rajshahi, Bangladesh
| | - Md. Khalekuzzaman
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, 6205 Bangladesh
| |
Collapse
|
4
|
Arora R. Glucosinolates and Their Hydrolytic Products-A Love Story of Environmental, Biological, and Chemical Conditions. J AOAC Int 2024; 107:867-875. [PMID: 38913875 DOI: 10.1093/jaoacint/qsae049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 06/13/2024] [Indexed: 06/26/2024]
Abstract
BACKGROUND Glucosinolates (GSL) play an important role in providing defense to plants and helping them to cope with various biotic, as well as abiotic, stresses. Many living beings including humans and animals, including some herbivores, have adapted themselves to use this defense mechanism for their own use. More than 120 glucosinolates are distributed within a large number of plants. Many factors are known to influence the GSL composition in a plant. Among these, cofactors, myrosinase isozymes, heavy metals and the environmental conditions such as light, CO2 and temperature are important in regulation. These factors ensure that different glucosinolate compositions can be produced by the plants, thus impacting the defense mechanism. OBJECTIVE The objective of the current review is to highlight the importance of the factors responsible for affecting glucosinolate composition and concentration. METHODS The review has been compiled using accessible literature from Pubmed, Scopus, and Google scholar. Efforts have been made to restrict the literature to the last 5 years (2018-2023), with some exceptions. RESULTS The current critical review acts as a resource for all the researchers working on these essential compounds. It provides information on the factors that may influence glucosinolate production. It also gives them an opportunity to modify the glucosinolate composition of a plant using the given information. CONCLUSIONS Glucosinolates have long been an ignored class of biomolecule. The plethora of biological activities of the compounds can be useful. Though there are some harmful components such as goitrin and progoitrin, these can be easily removed by modulating some of the factors highlighted in the review. HIGHLIGHTS The current review has covered most of the factors that have the ability to modify glucosinolate composition and concentration. The mechanistic action of these factors has also been discussed using the current available literature.
Collapse
Affiliation(s)
- Rohit Arora
- Department of Women and Baby, Sunnybrook Research Institute, 2075 Bayview Ave, North York, Ontario, M4N 3M5, Canada
| |
Collapse
|
5
|
Tang Y, Zhao J, Suo H, Hu C, Li Q, Li G, Han S, Su X, Song W, Jin M, Li Y, Li S, Wei L, Jiang X, Jiang S. Sinigrin reduces the virulence of Staphylococcus aureus by targeting coagulase. Microb Pathog 2024; 194:106841. [PMID: 39117013 DOI: 10.1016/j.micpath.2024.106841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/26/2024] [Accepted: 08/03/2024] [Indexed: 08/10/2024]
Abstract
Multi-resistant Staphylococcus aureus (S. aureus) infection is a significant global health concern owing to its high mortality and morbidity rates. Coagulase (Coa), a key enzyme that activates prothrombin to initiate host coagulation, has emerged as a promising target for anti-infective therapeutic approaches. This study identified sinigrin as a potent Coa inhibitor that significantly inhibited S. aureus-induced coagulation at concentration as low as 32 mg/L. Additionally, at a higher concentration of 128 mg/L, sinigrin disrupted the self-protection mechanism of S. aureus. Thermal shift and fluorescence-quenching assays confirmed the direct binding of sinigrin to the Coa protein. Molecular docking analysis predicted specific binding sites for sinigrin in the Coa molecule, and point mutation experiments highlighted the importance of Arg-187 and Asp-222 as critical binding sites for both Coa and sinigrin. In vivo studies demonstrated that the combination of sinigrin with oxacillin exhibited greater antibacterial efficacy than oxacillin alone in the treatment of S. aureus-induced pneumonia in mice. Furthermore, sinigrin was shown to reduce bacterial counts and inflammatory cytokine levels in the lung tissues of S. aureus-infected mice. In summary, sinigrin was shown to directly target Coa, resulting in the attenuation of S. aureus virulence, which suggests the potential of sinigrin as an adjuvant for future antimicrobial therapies.
Collapse
Affiliation(s)
- Yating Tang
- Clinical Medical College, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Jingming Zhao
- Proctology Department, Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, 130021, China
| | - Huiqin Suo
- School of Pharmacy, Changchun University of Traditional Chinese Medicine, Changchun, 130117, China
| | - Chunjie Hu
- Proctology Department, Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, 130021, China
| | - Qingjie Li
- PhD Research Center of Traditional Chinese Medicine, The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, 130021, China
| | - Guofeng Li
- Proctology Department, Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, 130021, China
| | - Shaoyu Han
- The University of Queensland, St Lucia, QLD, 4067, China
| | - Xin Su
- School of Basic Medicine, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Wu Song
- Clinical Medical College, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Mengli Jin
- Clinical Medical College, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Yufen Li
- School of Basic Medicine, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Songyang Li
- School of Pharmacy, Changchun University of Traditional Chinese Medicine, Changchun, 130117, China
| | - Lin Wei
- Clinical Medical College, Changchun University of Chinese Medicine, Changchun, 130117, China.
| | - Xin Jiang
- Clinical Medical College, Changchun University of Chinese Medicine, Changchun, 130117, China; School of Basic Medicine, Changchun University of Chinese Medicine, Changchun, 130117, China.
| | - Shuang Jiang
- Clinical Medical College, Changchun University of Chinese Medicine, Changchun, 130117, China.
| |
Collapse
|
6
|
Serna-Barrera MA, Bas-Bellver C, Seguí L, Betoret N, Barrera C. Exploring fermentation with lactic acid bacteria as a pretreatment for enhancing antioxidant potential in broccoli stem powders. AIMS Microbiol 2024; 10:255-272. [PMID: 38919719 PMCID: PMC11194623 DOI: 10.3934/microbiol.2024013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 03/07/2024] [Accepted: 03/19/2024] [Indexed: 06/27/2024] Open
Abstract
Fruit and vegetable industries face a major environmental challenge with food loss and waste. Broccoli stems, comprising 38% of the plant's total weight, are usually discarded by the industry producing fourth-range and ready-to-use products, despite being rich in antioxidants, vitamins, fiber, carotenoids, phenolic compounds, and glucosinolates. Addressing the challenge of reducing waste in this sector includes the production of stable and nutrient-concentrated powders, which can be consumed directly or used as ingredients in functional food formulation. This study investigated fermentation with lactic acid bacteria (Limosilactobacillus reuteri, Lactiplantibacillus plantarum, and Lactobacillus salivarius) as a pretreatment for enhancing antioxidant and probiotic potential in broccoli stem powders. Results showed maximum counts 24 h after inoculation, and no effect of the previous disruption intensity on microbial growth was observed. Fermenting broccoli stems for 24 h with the three microbial strains led to a significant increase in total phenols and flavonoids but to a general reduction in the samples' capacity to scavenge DPPH and ABTS free radicals. Overall, ground broccoli stems exhibited the most favorable antioxidant properties following the 24 h fermentation step. The subsequent freeze-drying and final grinding had minimal impact on the microbial population but significantly enhanced the extractability of the antioxidant compounds. This study offers a valuable reference for researchers and stakeholders exploring the development of new products and innovations from vegetable waste.
Collapse
Affiliation(s)
| | | | | | | | - Cristina Barrera
- Instituto de Ingeniería de Alimentos-FoodUPV de la Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain
| |
Collapse
|
7
|
Yeo HJ, Ki WY, Lee S, Kim CY, Kim JK, Park SU, Park CH. Metabolite profiles and biological activities of different phenotypes of Chinese cabbage (Brassica rapa ssp. Pekinensis). Food Res Int 2023; 174:113619. [PMID: 37981381 DOI: 10.1016/j.foodres.2023.113619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/18/2023] [Accepted: 10/21/2023] [Indexed: 11/21/2023]
Abstract
Chinese cabbage is considered as one of the most important cruciferous vegetables in South Korea because of its use in salads, kimchi, and Korean cuisine. Secondary metabolites were quantified in three Chinese cabbage varieties: 65065, interspecific hybrid of Chinese cabbage × red cabbage exhibiting a deep purple color; 85772, interspecific hybrid of Chinese cabbage × red mustard exhibiting a reddish-purple color; and a typical Chinese green cabbage cultivar "CR Carotene" (Brassica rapa subsp. pekinensis cv. CR Carotene). A total of 54 metabolites (2 amines, 2 sugar alcohols, 2 sugar phosphates, 6 carbohydrates, 18 amino acids, 13 organic acids, 8 phenolic compounds, and 3 carotenoids) were detected in 85772. Of them, 52 metabolites excluding β-carotene and 9-cis-β-carotene, and 51 metabolites excluding leucine, β-carotene, and 9-cis-β-carotene, were detected in 65065 and CR Carotene, respectively. Amino acid content was the highest in 85772, followed by 65065 and CR Carotene. The cultivars 65065 and 85772 contained high levels of phenolic compounds and total anthocyanins. Cyanidin-, pelargonidin-, and petunidin-type anthocyanins were detected in 65065 and 85772. However, delphinidin-type anthocyanins which typically impart a deep purple color were identified only in the deep purple phenotype 65065. Furthermore, the total anthocyanin content was the highest in 85772 (4.38 ± 0.65 mg g -1 dry weight) followed by that in 65065 (3.72 ± 0.52 mg g-1 dry weight). Antibacterial and antioxidant analyses revealed remarkable antibacterial effects of the purple cultivars against pathogens Vibrio parahaemolyticus (KCTC 2471), Bacillus cereus (KCTC 3624), Pseudomonas aeruginosa (KCCM 11803), Staphylococcus aureus (KCTC 3881), Chryseobacterium gleum (KCTC 2094), and Proteus mirabilis (KCTC 2510)] and methicillin-resistant pathogenic strains of Pseudomonas aeruginosa (0826, 0225, 0254, 1113, 1378, 1731, p01827, and p01828) compared with the antibacterial effects of CR Carotene. Furthermore, 65065 and 85772 exhibited significantly higher antioxidant activity than that of the CR Carotene. Therefore, the novel purple Chinese cabbages (65065 and 85772), derived from interspecific hybridization, are potentially favorable alternatives to the typical green Chinese cabbage, given the higher content of amino acids, phenolic compounds, anthocyanins, and carotenoids, as well as an increased ability to scavenge free radicals and inhibit pathogen growth.
Collapse
Affiliation(s)
- Hyeon Ji Yeo
- Department of Crop Science, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 305-764, Republic of Korea
| | - Woo Yeal Ki
- Kwonnong Seed Co., 186 Pungnyeon-ro, Heungdeok-gu, Cheongju 28394, Republic of Korea
| | - Seom Lee
- Major in Biological Sciences, Keimyung University, 1095 Dalgubeol-daero, Dalseo-gu, Daegu 42601, Republic of Korea
| | - Cha Young Kim
- Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 181 Ipsin-gil, Jeongeup 56212, Republic of Korea
| | - Jae Kwang Kim
- Division of Life Sciences and Bio-Resource and Environmental Center, Incheon National University, Incheon 406-772, Republic of Korea
| | - Sang Un Park
- Department of Crop Science, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 305-764, Republic of Korea; Department of Smart Agriculture Systems, Chungnam National University, 99 Daehak-Ro, Yuseong-gu, Daejeon 34134, Republic of Korea.
| | - Chang Ha Park
- Major in Biological Sciences, Keimyung University, 1095 Dalgubeol-daero, Dalseo-gu, Daegu 42601, Republic of Korea.
| |
Collapse
|
8
|
Sharma RK, Patil SB, Jadhav AK, Karuppayil SM. Isothiocyanates as potential antifungal agents: a mini-review. Future Microbiol 2023; 18:673-679. [PMID: 37522244 DOI: 10.2217/fmb-2022-0251] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023] Open
Abstract
Cruciferous vegetables and mustard oil are rich in the glucosinolate group of molecules. Isothiocyanates are an important group of glucosinolate derivatives. These derivatives have various bioactive properties, including antioxidant, antibacterial, anticarcinogenic, antifungal, antiparasitic, herbicidal and antimutagenic activity. Previous studies indicate that regular intake of such vegetables may considerably reduce the incidence of various types of cancer. These studies have inspired studies where the bioactive agents of these plants have been isolated and explored for their therapeutic applications. The use of these bioactive compounds as antifungals could be a new therapeutic approach against human pathogenic fungi. Isothiocyanates have been studied for their antifungal activity and have the potential to be used for antifungal therapy.
Collapse
Affiliation(s)
- Rakesh K Sharma
- Department of Obstetrics & Gynecology, DY Patil Medical College, DY Patil Education Society (Deemed to be University), Kolhapur, Kasaba Bawada, Maharashtra, 416006, India
| | - Shivani B Patil
- Department of Stem Cell and Regenerative Medicine, Center for Interdisciplinary Research, DY Patil Education Society (Deemed to be University), Kolhapur, Kasaba Bawada, Maharashtra, 416006, India
| | - Ashwini K Jadhav
- Department of Stem Cell and Regenerative Medicine, Center for Interdisciplinary Research, DY Patil Education Society (Deemed to be University), Kolhapur, Kasaba Bawada, Maharashtra, 416006, India
| | - Sankunny M Karuppayil
- Department of Stem Cell and Regenerative Medicine, Center for Interdisciplinary Research, DY Patil Education Society (Deemed to be University), Kolhapur, Kasaba Bawada, Maharashtra, 416006, India
| |
Collapse
|
9
|
Abdel-Massih RM, Debs E, Othman L, Attieh J, Cabrerizo FM. Glucosinolates, a natural chemical arsenal: More to tell than the myrosinase story. Front Microbiol 2023; 14:1130208. [PMID: 37089539 PMCID: PMC10114928 DOI: 10.3389/fmicb.2023.1130208] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 03/13/2023] [Indexed: 04/08/2023] Open
Abstract
Glucosinolates are a group of thioglucosides that belong to the class of plant nitrogen-containing natural products. So far, very little biological activity has been associated with intact glucosinolates. The hydrolysis of glucosinolates has, for long, attracted attention because of the potent biological activity of the hydrolysis products. From allelopathic to antiparasitic, antimicrobial and antineoplastic effects, the activity spectrum of the degradation products of typical glucosinolates has been the subject of much research. The present review seeks to address the various means of glucosinolate degradation (thermal, enzymatic, or chemical degradation) and the ensuing products. It also aims to draw a comparative profile of the various antimicrobial effects of these degradation products to provide a further understanding of the biological function of these important compounds.
Collapse
Affiliation(s)
| | - Espérance Debs
- Department of Biology, Faculty of Arts and Sciences, University of Balamand, El-Koura, Lebanon
| | - Leen Othman
- Faculty of Medicine and Medical Sciences, University of Balamand, El-Koura, Lebanon
| | - Jihad Attieh
- Department of Biology, Faculty of Arts and Sciences, University of Balamand, El-Koura, Lebanon
| | - Franco M. Cabrerizo
- Instituto Tecnológico de Chascomús, National Scientific and Technical Research Council – National University of General San Martín, Chascomús, Argentina
- Escuela de Bio y Nanotecnologías, National University of General San Martín, Buenos Aires, Argentina
| |
Collapse
|
10
|
Kaur P, Attri S, Singh D, Rashid F, Singh S, Kumar A, Kaur H, Bedi N, Arora S. Neuromodulatory effect of 4-(methylthio)butyl isothiocyanate against 3-nitropropionic acid induced oxidative impairments in human dopaminergic SH-SY5Y cells via BDNF/CREB/TrkB pathway. Sci Rep 2023; 13:4461. [PMID: 36932199 PMCID: PMC10023800 DOI: 10.1038/s41598-023-31716-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 03/16/2023] [Indexed: 03/19/2023] Open
Abstract
Mitochondrial impairment, energetic crisis and elevated oxidative stress have been demonstrated to play a pivotal role in the pathological processes of Huntington's disease (HD). 3-Nitropropionic acid (3-NPA) is a natural neurotoxin that mimics the neurological dysfunctions, mitochondrial impairments and oxidative imbalance of HD. The current investigation was undertaken to demonstrate the neuroprotective effect of 4-(methylthio)butyl isothiocyanate (4-MTBITC) against the 3-NPA induced neurotoxicity in human dopaminergic SH-SY5Y cells. The experimental evidence of oxidative DNA damage by 3-NPA was elucidated by pBR322 DNA nicking assay. In contrast, the 4-MTBITC considerably attenuated the DNA damage, suggesting its free radical scavenging action against 3-NPA and Fenton's reagent. The dose and time-dependent increase of 3-NPA revealed its neurotoxic dose as 0.5 mM after 24 h of treatment of SH-SY5Y cells in MTT assay. In order to determine the optimal dose at which 4-MTBITC protects cell death, the 3-NPA (IC50) induced cells were pretreated with different concentrations of 4-MTBITC for 1 h. The neuroprotective dose of 4-MTBITC against 3-NPA was found to be 0.25 μM. Additionally, the elevated GSH levels in cells treated with 4-MTBITC indicate its propensity to eliminate reactive species generated as a result of 3-NPA-induced mitochondrial dysfunction. Likewise, it was determined through microscopic and flow cytometric experiments that 3-NPA's induced overproduction of reactive species and a decline in mitochondrial membrane potential (MMP) could be efficiently prevented by pre-treating cells with 4-MTBITC. To elucidate the underlying molecular mechanism, the RT-qPCR analysis revealed that the pre-treatment of 4-MTBITC effectively protected neuronal cells against 3-NPA-induced cell death by preventing Caspase-3 activation, Brain-derived neurotrophic factor (BDNF) upregulation, activation of cAMP response element-binding protein (CREB) and Nrf2 induction. Together, our findings lend credence to the idea that pre-treatment with 4-MTBITC reduced 3-NPA-induced neurotoxicity by lowering redox impairment, apoptotic state, and mitochondrial dysfunction. The present work, in conclusion, presented the first proof that the phytoconstituent 4-MTBITC supports the antioxidant system, BDNF/TrkB/CREB signaling, and neuronal survival in dopaminergic SH-SY5Y cells against 3-NPA-induced oxidative deficits.
Collapse
Affiliation(s)
- Prabhjot Kaur
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, 143005, India
| | - Shivani Attri
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, 143005, India
| | - Davinder Singh
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, 143005, India.
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, 43210, USA.
| | - Farhana Rashid
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, 143005, India
| | - Sharabjit Singh
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, 143005, India
| | - Avinash Kumar
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, 143005, India
| | - Harjot Kaur
- Department of Biotechnology, Punjabi University, Patiala, 147001, India
| | - Neena Bedi
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, 143005, India
| | - Saroj Arora
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, 143005, India.
| |
Collapse
|
11
|
Satomi S, Takahashi S, Yoshida K, Shimizu S, Inoue T, Takara T, Suganuma H. Effects of broccoli sprout supplements enriched in glucoraphanin on liver functions in healthy middle-aged adults with high-normal serum hepatic biomarkers: A randomized controlled trial. Front Nutr 2022; 9:1077271. [PMID: 36618707 PMCID: PMC9813215 DOI: 10.3389/fnut.2022.1077271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022] Open
Abstract
Sulforaphane (SFN), an isothiocyanate derived from glucoraphanin, has antioxidant, and anti-inflammatory effects that may be beneficial for improving liver function. However, few studies regarding the effects of glucoraphanin on the biological markers related to liver function, such as alanine aminotransferase (ALT), aspartate aminotransferase (AST), and gamma-glutamyltransferase (γ-GTP) in healthy individuals have been reported. This randomized, double-blind, placebo-controlled parallel- group trial was conducted from April 22 to December 25, 2021 and compared the effects of broccoli sprout supplements enriched in glucoraphanin (glucoraphanin supplements) (n = 35) with those of placebo supplements (n = 35). This trial was registered with the University Hospital Medical Information Network Clinical Trial Registry (UMIN-CTR; ID number UMIN000044005) https://center6.umin.ac.jp/cgi-open-bin/ctr_e/ctr_view. cgi?recptno=R000050252. Glucoraphanin significantly improved serum ALT levels at 24 weeks compared to placebo supplements. However, no significant difference in serum glutathione levels, one of the major antioxidants synthesized in the liver, was observed between the two groups. In conclusion, daily intake of the glucoraphanin supplements is beneficial for maintaining liver health in healthy, middle-aged adults with high-normal serum hepatic biomarkers, although further studies focusing on other antioxidant markers are needed to understand how glucoraphanin improves liver function.
Collapse
Affiliation(s)
- Shohei Satomi
- Innovation Division, Department of Diet and Wellbeing Research, KAGOME Co., Ltd., Nasushiobara, Japan,*Correspondence: Shohei Satomi,
| | - Shingo Takahashi
- Innovation Division, Department of Diet and Wellbeing Research, KAGOME Co., Ltd., Nasushiobara, Japan
| | - Kazutaka Yoshida
- Innovation Division, Department of Diet and Wellbeing Research, KAGOME Co., Ltd., Nasushiobara, Japan
| | - Sunao Shimizu
- Innovation Division, Department of Diet and Wellbeing Research, KAGOME Co., Ltd., Nasushiobara, Japan
| | - Takuro Inoue
- Innovation Division, Department of Diet and Wellbeing Research, KAGOME Co., Ltd., Nasushiobara, Japan
| | | | - Hiroyuki Suganuma
- Innovation Division, Department of Diet and Wellbeing Research, KAGOME Co., Ltd., Nasushiobara, Japan
| |
Collapse
|
12
|
Hasan AM, Ghafil JA. Study on the anti-microbial effect of Sinigrin against some pathogenic bacterial species. BIONATURA 2022. [DOI: 10.21931/rb/2022.07.04.68] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The increasing anti-bacterial drug resistance is one of the biggest challenges facing doctors around the globe, so finding alternative treatments is one of the ideal options to overcome this problem. The cruciferous family is one of the wealthiest plants worldwide because it contains the most important secondary metabolites, glucosinolates, known for their anti-microbial properties. The present study aimed to evaluate the anti-bacterial effect of glucosinolates (Sinigrin) against eight bacterial isolates (Staphylococcus aureus, Enterococcus faecalis, Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Actinomyces, Proteus mirabilis and Streptococcus pneumoniae). The current study investigated six concentrations of pure Sinigrin (100, 300, 500, 700, 900, and 1100 µg/ml). The sensitivity of bacterial isolates to various antibiotics was tested by VITIK 2DensiCheck equipment. The anti-bacterial activity of Sinigrin was assessed using the agar diffusion method, and the microtiter plate method measured the minimal inhibitory concentration (MIC). The highest anti-bacterial effect of Sinigrin was observed against S. aureus, E. coli, and E. faecalis. The anti-bacterial activity started as lower as 100 µg/ml, while a moderate effect was seen against P. aeruginosa and K. pneumoniae at a concentration lower than 700 µg/ml. On the other hand, Sinigrin was not effective against Actinomyces, P. mirabilis, and S. pneumoniae. It can be concluded from the present study that Sinigrin has an anti-bacterial effect on some isolates of bacteria which suggests the possibility of using Sinigrin as alternative medicine in the future.
Keywords: Anti-bacterial activity, Agar well diffusion, Glucosinolates, Minimum inhibition concentration and antibiotic susceptibility, Sinigrin.
Collapse
Affiliation(s)
- Alaa M. Hasan
- Department of Biology, College of Science, University of Baghdad, Baghdad, Iraq
| | - Jenan A. Ghafil
- Department of Biology, College of Science, University of Baghdad, Baghdad, Iraq
| |
Collapse
|
13
|
Plaza-Vinuesa L, Hernandez-Hernandez O, Sánchez-Arroyo A, Cumella JM, Corzo N, Muñoz-Labrador AM, Moreno FJ, Rivas BDL, Muñoz R. Deciphering the Myrosinase-like Activity of Lactiplantibacillus plantarum WCFS1 among GH1 Family Glycoside Hydrolases. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:15531-15538. [PMID: 36454042 DOI: 10.1021/acs.jafc.2c06240] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The hydrolysis of plant glucosinolates by myrosinases (thioglucosidases) originates metabolites with chemopreventive properties. In this study, the ability to hydrolyze the glucosinolate sinigrin by cultures or protein extracts of Lactiplantibacillus plantarum WCFS1 was assayed. This strain possesses myrosinase-like activity as sinigrin was partly hydrolyzed by induced cultures but not by protein extracts. The 11 glycoside hydrolase GH1 family proteins, annotated as 6-phospho-β-glucosidases, were the proteins most similar to plant myrosinases. The activity of these proteins was assayed against sinigrin and synthetic glucosides. As expected, none of the proteins assayed possessed myrosinase activity against sinigrin or the synthetic β-thio-glucoside derivative or against the β-glucoside. However, all 11 proteins were active on the phosphorylated-β-glucoside derivative. Moreover, only eight of these proteins were active on phospho-β-thioglucose. These results supported that, in L. plantarum WCFS1, glucosinolates may undergo previous phosphorylation, and GH1 proteins are the glycosidases involved in the hydrolysis of phosphorylated glucosinolates.
Collapse
Affiliation(s)
- Laura Plaza-Vinuesa
- Instituto de Ciencia y Tecnología de Alimentos y Nutrición (ICTAN), CSIC, José Antonio Novais 10, Madrid 28040, Spain
| | - Oswaldo Hernandez-Hernandez
- Instituto de Investigación en Ciencias de La Alimentación (CIAL), CSIC-UAM, CEI (UAM+CSIC), Nicolás Cabrera 9, Madrid 28049, Spain
| | - Ana Sánchez-Arroyo
- Instituto de Ciencia y Tecnología de Alimentos y Nutrición (ICTAN), CSIC, José Antonio Novais 10, Madrid 28040, Spain
| | - José M Cumella
- Instituto de Química Médica (IQM), CSIC, Juan de la Cierva 3, Madrid 28006, Spain
| | - Nieves Corzo
- Instituto de Investigación en Ciencias de La Alimentación (CIAL), CSIC-UAM, CEI (UAM+CSIC), Nicolás Cabrera 9, Madrid 28049, Spain
| | - Ana M Muñoz-Labrador
- Instituto de Investigación en Ciencias de La Alimentación (CIAL), CSIC-UAM, CEI (UAM+CSIC), Nicolás Cabrera 9, Madrid 28049, Spain
| | - F Javier Moreno
- Instituto de Investigación en Ciencias de La Alimentación (CIAL), CSIC-UAM, CEI (UAM+CSIC), Nicolás Cabrera 9, Madrid 28049, Spain
| | - Blanca de Las Rivas
- Instituto de Ciencia y Tecnología de Alimentos y Nutrición (ICTAN), CSIC, José Antonio Novais 10, Madrid 28040, Spain
| | - Rosario Muñoz
- Instituto de Ciencia y Tecnología de Alimentos y Nutrición (ICTAN), CSIC, José Antonio Novais 10, Madrid 28040, Spain
| |
Collapse
|
14
|
Microorganisms-An Effective Tool to Intensify the Utilization of Sulforaphane. Foods 2022; 11:foods11233775. [PMID: 36496582 PMCID: PMC9737538 DOI: 10.3390/foods11233775] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/20/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022] Open
Abstract
Sulforaphane (SFN) was generated by the hydrolysis of glucoraphanin under the action of myrosinase. However, due to the instability of SFN, the bioavailability of SFN was limited. Meanwhile, the gut flora obtained the ability to synthesize myrosinase and glucoraphanin, which could be converted into SFN in the intestine. However, the ability of microorganisms to synthesize myrosinase in the gut was limited. Therefore, microorganisms with myrosinase synthesis ability need to be supplemented. With the development of research, microorganisms with high levels of myrosinase synthesis could be obtained by artificial selection and gene modification. Researchers found the SFN production rate of the transformed microorganisms could be significantly improved. However, despite applying transformation technology and regulating nutrients to microorganisms, it still could not provide the best efficiency during generating SFN and could not accomplish colonization in the intestine. Due to the great effect of microencapsulation on improving the colonization ability of microorganisms, microencapsulation is currently an important way to deliver microorganisms into the gut. This article mainly analyzed the possibility of obtaining SFN-producing microorganisms through gene modification and delivering them to the gut via microencapsulation to improve the utilization rate of SFN. It could provide a theoretical basis for expanding the application scope of SFN.
Collapse
|
15
|
Singh G. In silico Prediction and Pharmacokinetic Studies on Glucosinolates as a Potential Drug and Key Inhibitor Molecule for Lanosterol-14α- demethylase: A Fungal Membrane Biosynthesis Enzyme. Curr Drug Discov Technol 2022; 19:e150622206033. [PMID: 35708080 DOI: 10.2174/1570163819666220615142933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/01/2022] [Accepted: 05/19/2022] [Indexed: 01/27/2023]
Abstract
BACKGROUND Glucosinolates (β-thioglucoside-N-hydroxysulfates) are a water-soluble organic anion with sulfur- and nitrogen-containing glycosides which are found in abundance in Cruciferous plants. Ergosterol (ERG13) lanosterol-14α-demethylase protein has been targeted for inhibition studies as a key regulator enzyme of fungal membrane biosynthesis. OBJECTIVES To understand the molecular mechanism of inhibition of Ergosterol (ERG13) lanosterol- 14α-demethylase by various phytochemicals from brassicales, i.e., glucosinolates and their potential role as putative drug molecules. METHODS In this study, in silico analyses were performed to predict the molecular basis of various glucosinolates as a potential inhibitor of lanosterol-14α-demethylase protein, which is a key regulator of fungal membrane biosynthesis and its pharmacodynamics and toxicity profile. 3d structures of various glucosinolates were retrieved from PubChem, and the target protein, lanosterol-14α-demethylase (Pdb ID- 4lxj), was retrieved from the RCSB protein data bank. Molecular docking and interactions were carried out using the PyRx software using the AutoDOCK toolbar with default parameters. Dru- LiTo, ORISIS web servers were used to predict various drug likeliness predictions and Lipinski's Rule of 5, whereas admetSAR was used for prediction of toxicity, and PASS Program was used to study the antifungal and antimicrobial properties of these compounds. RESULTS This study shows that among the different compounds screened, gluconasturtiin, Glucotropaeolin, and Indolylmethyl-Glucosinolate showed the highest binding energies of -8.7 kcal/mol, -8.5 kcal/mol, and -8.3 kcal/mol with the lanosterol-14α-demethylase, respectively. Further all the compounds follow the Lipinski's rule as well as they are found to be non-carcinogenic and non-cytotoxic in nature. These compounds also show antifungal properties. CONCLUSION This study thus reveals that various glucosinolates interact with the ERG13 enzyme at various amino acid positions, which behaves as a catalytic site, thus indicates the probable mechanism of inactivation, and subsequently, these can be used as potential drug molecules. In vitro studies can be taken to further examine the utility of these compounds as antifungal agents.
Collapse
Affiliation(s)
- Gurpreet Singh
- Department of Biotechnology, Lyallpur Khalsa College, Jalandhar, India
| |
Collapse
|
16
|
Torrijos R, Righetti L, Cirlini M, Calani L, Mañes J, Meca G, Dall’Asta C. Phytochemical profiling of volatile and bioactive compounds in yellow mustard (Sinapis alba) and oriental mustard (Brassica juncea) seed flour and bran. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
17
|
Glucosinolates and Omega-3 Fatty Acids from Mustard Seeds: Phytochemistry and Pharmacology. PLANTS 2022; 11:plants11172290. [PMID: 36079672 PMCID: PMC9459965 DOI: 10.3390/plants11172290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 11/22/2022]
Abstract
Seeds from mustard (genera Brassica spp. and Sinapsis spp.), are known as a rich source of glucosinolates and omega-3 fatty acids. These compounds are widely known for their health benefits that include reducing inflammation and lowering the risk of cardiovascular diseases and cancer. This review presented a synthesis of published literature from Google Scholar, PubMed, Scopus, Sci Finder, and Web of Science regarding the different glucosinolates and omega-3 fatty acids isolated from mustard seeds. We presented an overview of extraction, isolation, purification, and structure elucidation of glucosinolates from the seeds of mustard plants. Moreover, we presented a compilation of in vitro, in vivo, and clinical studies showing the potential health benefits of glucosinolates and omega-3 fatty acids. Previous studies showed that glucosinolates have antimicrobial, antipain, and anticancer properties while omega-3 fatty acids are useful for their pharmacologic effects against sleep disorders, anxiety, cerebrovascular disease, neurodegenerative disease, hypercholesterolemia, and diabetes. Further studies are needed to investigate other naturally occurring glucosinolates and omega-3 fatty acids, improve and standardize the extraction and isolation methods from mustard seeds, and obtain more clinical evidence on the pharmacological applications of glucosinolates and omega-3 fatty acids from mustard seeds.
Collapse
|
18
|
Schiavon M, Nardi S, Pilon-Smits EAH, Dall’Acqua S. Foliar selenium fertilization alters the content of dietary phytochemicals in two rocket species. FRONTIERS IN PLANT SCIENCE 2022; 13:987935. [PMID: 36119625 PMCID: PMC9470978 DOI: 10.3389/fpls.2022.987935] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
Biofortification is the process that aims to enrich crops in micronutrients and valuable compounds. Selenium (Se) biofortification has particularly attracted increasing interest in recent times due to the growing number of individuals suffering from Se deficiency. Selenate and selenite are the Se forms most frequently administered to crops. In this study, Se was applied foliarly as selenate at 2.5, 5, or 10 mg per plant to two rocket species, Diplotaxis tenuifolia and Eruca sativa, grown in soil and the effects in terms of Se enrichment and content of primary and secondary metabolites were comparatively analyzed. We also compared our results with those obtained previously when selenate was supplied to the same species in hydroponics by addition to the nutrient solution. In most cases, the results were the opposite. In E. sativa, foliar Se treatment was more effective in promoting Se accumulation, sulfur (S), cysteine, and glucosinolates. No significant effect of Se was evident on total phenolic content, but there were individual phenols. Among amino acids, the content of proline was increased by Se, perhaps to counteract osmotic stress due to high Se accumulation. In D. tenuifolia, the content of S and cysteine decreased under Se treatment, but the amount of glutathione was steady, suggesting a preferred assimilation of cysteine toward the synthesis of this antioxidant. Consistent, the content of methionine and glucosinolates was reduced. The content of total phenolics was enhanced only by the low Se dosage. In both species, selenocysteine (SeCys) was identified, the content of which was higher compared to plants grown hydroponically. Concluding, most metabolic differences between rocket species were observed at high Se supplementation. Low Se foliar fertilization was effective in an enriching rocket in Se without affecting other phytochemicals. However, the Se dosages sufficient for biofortification could be even lower, as the Se concentration in rocket treated with 2.5 mg Se per plant was still very high and the edible part should not be eaten undiluted. Also, a single method of Se supplementation does not appear to be optimal for all plant species or the same species, as the metabolic responses could be very different.
Collapse
Affiliation(s)
- Michela Schiavon
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Turin, Grugliasco, TO, Italy
| | - Serenella Nardi
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Legnaro, PD, Italy
| | | | - Stefano Dall’Acqua
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| |
Collapse
|
19
|
Mitra S, Emran TB, Chandran D, Zidan BMRM, Das R, Mamada SS, Masyita A, Salampe M, Nainu F, Khandaker MU, Idris AM, Simal-Gandara J. Cruciferous vegetables as a treasure of functional foods bioactive compounds: Targeting p53 family in gastrointestinal tract and associated cancers. Front Nutr 2022; 9:951935. [PMID: 35990357 PMCID: PMC9386315 DOI: 10.3389/fnut.2022.951935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/12/2022] [Indexed: 11/23/2022] Open
Abstract
In the past few years, phytochemicals from natural products have gotten the boundless praise in treating cancer. The promising role of cruciferous vegetables and active components contained in these vegetables, such as isothiocyanates, indole-3-carbinol, and isothiocyanates, has been widely researched in experimental in vitro and in vivo carcinogenesis models. The chemopreventive agents produced from the cruciferous vegetables were recurrently proven to affect carcinogenesis throughout the onset and developmental phases of cancer formation. Likewise, findings from clinical investigations and epidemiological research supported this statement. The anticancer activities of these functional foods bioactive compounds are closely related to their ability to upregulate p53 and its related target genes, e.g., p21. As the “guardian of the genome,” the p53 family (p53, p63, and p73) plays a pivotal role in preventing the cancer progression associated with DNA damage. This review discusses the functional foods bioactive compounds derived from several cruciferous vegetables and their use in altering the tumor-suppressive effect of p53 proteins. The association between the mutation of p53 and the incidence of gastrointestinal malignancies (gastric, small intestine, colon, liver, and pancreatic cancers) is also discussed. This review contains crucial information about the use of cruciferous vegetables in the treatment of gastrointestinal tract malignancies.
Collapse
Affiliation(s)
- Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka, Bangladesh
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, Bangladesh.,Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Deepak Chandran
- Department of Veterinary Sciences and Animal Husbandry, Amrita School of Agricultural Sciences, Amrita Vishwa Vidyapeetham University, Coimbatore, Tamil Nadu, India
| | | | - Rajib Das
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka, Bangladesh
| | | | - Ayu Masyita
- Faculty of Pharmacy, Hasanuddin University, Makassar, Indonesia
| | | | - Firzan Nainu
- Faculty of Pharmacy, Hasanuddin University, Makassar, Indonesia
| | - Mayeen Uddin Khandaker
- Centre for Applied Physics and Radiation Technologies, School of Engineering and Technology, Sunway University, Subang Jaya, Selangor, Malaysia
| | - Abubakr M Idris
- Department of Chemistry, College of Science, King Khalid University, Abha, Saudi Arabia.,Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha, Saudi Arabia
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, Ourense, Spain
| |
Collapse
|
20
|
Yang X, Liao X, Yu L, Rao S, Chen Q, Zhu Z, Cong X, Zhang W, Ye J, Cheng S, Xu F. Combined metabolome and transcriptome analysis reveal the mechanism of selenate influence on the growth and quality of cabbage (Brassica oleracea var. capitata L.). Food Res Int 2022; 156:111135. [DOI: 10.1016/j.foodres.2022.111135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 12/26/2022]
|
21
|
The Distribution of Glucosinolates in Different Phenotypes of Lepidium peruvianum and Their Role as Acetyl- and Butyrylcholinesterase Inhibitors-In Silico and In Vitro Studies. Int J Mol Sci 2022; 23:ijms23094858. [PMID: 35563248 PMCID: PMC9101689 DOI: 10.3390/ijms23094858] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 04/22/2022] [Accepted: 04/25/2022] [Indexed: 11/17/2022] Open
Abstract
The aim of the study was to present the fingerprint of different Lepidium peruvianum tuber extracts showing glucosinolates-containing substances possibly playing an important role in preventinting dementia and other memory disorders. Different phenotypes of Lepidium peruvianum (Brassicaceae) tubers were analysed for their glucosinolate profile using a liquid chromatograph coupled with mass spectrometer (HPLC-ESI-QTOF-MS/MS platform). Qualitative analysis in 50% ethanolic extracts confirmed the presence of ten compounds: aliphatic, indolyl, and aromatic glucosinolates, with glucotropaeolin being the leading one, detected at levels between 0–1.57% depending on phenotype, size, processing, and collection site. The PCA analysis showed important variations in glucosinolate content between the samples and different ratios of the detected compounds. Applied in vitro activity tests confirmed inhibitory properties of extracts and single glucosinolates against acetylcholinesterase (AChE) (15.3–28.9% for the extracts and 55.95–57.60% for individual compounds) and butyrylcholinesterase (BuChE) (71.3–77.2% for the extracts and 36.2–39.9% for individual compounds). The molecular basis for the activity of glucosinolates was explained through molecular docking studies showing that the tested metabolites interacted with tryptophan and histidine residues of the enzymes, most likely blocking their active catalytic side. Based on the obtained results and described mechanism of action, it could be concluded that glucosinolates exhibit inhibitory properties against two cholinesterases present in the synaptic cleft, which indicates that selected phenotypes of L. peruvianum tubers cultivated under well-defined environmental and ecological conditions may present a valuable plant material to be considered for the development of therapeutic products with memory-stimulating properties.
Collapse
|
22
|
Cruciferous Vegetables and Their Bioactive Metabolites: from Prevention to Novel Therapies of Colorectal Cancer. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:1534083. [PMID: 35449807 PMCID: PMC9017484 DOI: 10.1155/2022/1534083] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 03/16/2022] [Indexed: 02/07/2023]
Abstract
The Brassicaceae family, known as cruciferous vegetables, includes many economically important species, mainly edible oil plants, vegetable species, spice plants, and feed plants. Cruciferous vegetables are foods rich in nutritive composition and are also a good source of dietary fiber. Besides, cruciferous vegetables contain various bioactive chemicals known as glucosinolates and S-methyl cysteine sulfoxide, including sulphur-containing cancer-protective chemicals. Numerous studies have reported that daily intake of sulphurous vegetables helps prevent cancer formation and reduces cancer incidence, especially in colorectal cancer, through various mechanisms. The potential mechanisms of these compounds in preventing cancer in experimental studies are as follows: protecting cells against DNA damage, inactivating carcinogenic substances, showing antiviral and antibacterial effects, triggering apoptosis in cells with disrupted structure, inhibiting tumour cell migration causing metastasis and the development of tumour-feeding vessels (angiogenesis). These beneficial anticancer effects of cruciferous vegetables are generally associated with glucosinolates in their composition and some secondary metabolites, as well as other phenolic compounds, seed oils, and dietary fiber in the literature. This review aims to examine to the roles of cruciferous vegetables and their important bioactive metabolites in the prevention and treatment of colorectal cancer.
Collapse
|
23
|
Janssens M, Verlinden BE, Hertog MLATM, Nicolaï BM. Quality Evolution and Aroma Profile of Pointed Cabbage in Different Storage Regimes. FRONTIERS IN PLANT SCIENCE 2022; 13:852817. [PMID: 35498690 PMCID: PMC9051525 DOI: 10.3389/fpls.2022.852817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/11/2022] [Indexed: 06/14/2023]
Abstract
With its increasing popularity, the need for optimal storage conditions of pointed cabbages becomes more important to meet the year-round demand. Storage of the pointed varieties, however, is more difficult compared to the traditional, round varieties and is limited to a few weeks in normal air. Pointed cabbages are more susceptible to quality loss (shriveling, yellowing of leaves, weight loss, fungal, and bacterial infections) and tend to spoil much faster. In order to provide a year-round availability of the fresh product, storage under controlled atmosphere (CA) could offer a solution. In this study, pointed, white cabbage heads (Brassica oleracea var. capitata for. alba L. subv. Conica cv. 'Caraflex') were stored at 1°C from November 2018 to May 2019 under four different CA conditions (1 kPa O2 + 1.5 kPa CO2, 1 kPa O2 + 5 kPa CO2, 3 kPa O2 + 1.5 kPa CO2, and 3 kPa O2 + 5 kPa CO2), and compared to storage under normal air. Results showed that CA storage resulted in a prolonged storage life with a good quality retention for both texture and aroma. CA-stored cabbages showed less weight loss, shriveling, and yellowing. Internal quality parameters [color, soluble solids content (SSC)] were stable over the whole storage period for all objects. The aroma profiles of both the storage atmosphere and cabbage samples were impacted by storage duration. The aroma of cabbage juice was also affected by the storage regime. A clear separation was found for cabbage stored under CA compared to the reference group. From the CA-treatments studied, a combination of low oxygen (1 kPa O2) and elevated carbon dioxide levels (5 kPa CO2) showed the best results maintaining quality. Storage under CA resulted in a better resemblance to the aroma of freshly, harvested produce compared to cabbages stored in normal air.
Collapse
Affiliation(s)
| | | | | | - Bart M. Nicolaï
- Flanders Centre of Postharvest Technology, Leuven, Belgium
- BIOSYST-MeBioS Postharvest Research Group, KU Leuven, Leuven, Belgium
| |
Collapse
|
24
|
Hill CR, Shafaei A, Balmer L, Lewis JR, Hodgson JM, Millar AH, Blekkenhorst LC. Sulfur compounds: From plants to humans and their role in chronic disease prevention. Crit Rev Food Sci Nutr 2022; 63:8616-8638. [PMID: 35380479 DOI: 10.1080/10408398.2022.2057915] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Sulfur is essential for the health of plants and is an indispensable dietary component for human health and disease prevention. Its incorporation into our food supply is heavily reliant upon the uptake of sulfur into plant tissue and our subsequent intake. Dietary requirements for sulfur are largely calculated based upon requirements for the sulfur-containing amino acids (SAA), cysteine and methionine, to meet the demands for synthesis of proteins, enzymes, co-enzymes, vitamins, and hormones. SAA are found in abundance in animal sources and are relatively low in plants. However, some plants, particularly cruciferous and allium vegetables, produce many protective sulfur-containing secondary metabolites, such as glucosinolates and cysteine sulfoxides. The variety and quantity of these sulfur-containing metabolites are extensive and their effects on human health are wide-reaching. Many benefits appear to be related to sulfur's role in redox biochemistry, protecting against uncontrolled oxidative stress and inflammation; features consistent within cardiometabolic dysfunction and many chronic metabolic diseases of aging. This narrative explores the origins and importance of sulfur, its incorporation into our food supply and dietary sources. It also explores the overarching potential of sulfur for human health, particularly around the amelioration of oxidative stress and chronic inflammation, and subsequent chronic disease prevention.
Collapse
Affiliation(s)
- Caroline R Hill
- Nutrition & Health Innovation Research Institute, School of Medical and Health Science, Edith Cowan University, Perth, Australia
- Royal Perth Hospital Research Foundation, Perth, Australia
| | - Armaghan Shafaei
- Centre for Integrative Metabolomics and Computational Biology, School of Science, Edith Cowan University, Joondalup, Australia
| | - Lois Balmer
- Centre for Precision Health, School of Medical and Health Science, Edith Cowan University, Perth, Australia
- Centre for Diabetes Research, Harry Perkins Institute of Medical Research, The University of Western Australia, Nedlands, Australia
| | - Joshua R Lewis
- Nutrition & Health Innovation Research Institute, School of Medical and Health Science, Edith Cowan University, Perth, Australia
- Royal Perth Hospital Research Foundation, Perth, Australia
- Medical School, The University of Western Australia, Nedlands, Australia
- Centre for Kidney Research, Children's Hospital at Westmead School of Public Health, Sydney Medical School, The University of Sydney, Sydney, Australia
| | - Jonathan M Hodgson
- Nutrition & Health Innovation Research Institute, School of Medical and Health Science, Edith Cowan University, Perth, Australia
- Royal Perth Hospital Research Foundation, Perth, Australia
- Medical School, The University of Western Australia, Nedlands, Australia
| | - A Harvey Millar
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, Australia
| | - Lauren C Blekkenhorst
- Nutrition & Health Innovation Research Institute, School of Medical and Health Science, Edith Cowan University, Perth, Australia
- Royal Perth Hospital Research Foundation, Perth, Australia
- Medical School, The University of Western Australia, Nedlands, Australia
| |
Collapse
|
25
|
Galádová H, Polozsányi Z, Breier A, Šimkovič M. Sulphoraphane Affinity-Based Chromatography for the Purification of Myrosinase from Lepidium sativum Seeds. Biomolecules 2022; 12:biom12030406. [PMID: 35327598 PMCID: PMC8945721 DOI: 10.3390/biom12030406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/24/2022] [Accepted: 03/02/2022] [Indexed: 02/06/2023] Open
Abstract
Sulforaphane and other natural isothiocyanates released from the respective plant glucosinolates by the plant enzyme myrosinase (β-thioglucoside glucohydrolase) show extensive anticancer and antimicrobial effects. In this study, myrosinase from garden cress (Lepidium sativum) seeds was purified to electrophoretic homogeneity by a fast and easy strategy consisting of fractionation by isoelectric precipitation with ammonium sulphate (AS) and affinity chromatography using sulforaphane (SFN) attached to cellulose resin. The overall purification of enzyme with respect to crude extract was 169-fold and recovery of 37%. Under non-reducing conditions, two protein bands exhibiting myrosinase activity with masses of about 114 and 122 kDa, respectively, and a 58 kDa protein band with no activity were detected by SDS-PAGE and zymography on polyacrylamide gel. MALDI-Tof/Tof of tryptic fragments obtained from the respective protein bands detected sequence motifs homologous to the regions responsible for glycoside-substrate binding and similarities to members of the enzyme subfamilies β-glucosidases and myrosinases GH. The enzyme hydrolyzed both the natural (sinigrin, sinalbin, glucoraphanin) and the synthetic (p-nitrophenol-β-D-glucopyranoside (pNPG)) substrates. The highest catalytic activity of purified enzyme was achieved against sinigrin. The KM and Vmax values of the enzyme for sinigrin were found to be 0.57 mM, and 1.3 mM/s, respectively. The enzyme was strongly activated by 30 μM ascorbic acid. The optimum temperature and pH for enzyme was 50 °C and pH 6.0, respectively. The purified enzyme could be stored at 4 °C and slightly acidic pH for at least 45 days without a significant decrease in specific activity.
Collapse
Affiliation(s)
- Helena Galádová
- Faculty of Chemical and Food Technology, Institute of Biochemistry and Microbiology, Slovak University of Technology, Radlinského 9, 812 37 Bratislava, Slovakia; (H.G.); (Z.P.); (A.B.)
| | - Zoltán Polozsányi
- Faculty of Chemical and Food Technology, Institute of Biochemistry and Microbiology, Slovak University of Technology, Radlinského 9, 812 37 Bratislava, Slovakia; (H.G.); (Z.P.); (A.B.)
| | - Albert Breier
- Faculty of Chemical and Food Technology, Institute of Biochemistry and Microbiology, Slovak University of Technology, Radlinského 9, 812 37 Bratislava, Slovakia; (H.G.); (Z.P.); (A.B.)
- Centre of Biosciences, Institute of Molecular Physiology and Genetics, Slovak Academy of Sciences, Dúbravská cesta 9, 845 05 Bratislava, Slovakia
| | - Martin Šimkovič
- Faculty of Chemical and Food Technology, Institute of Biochemistry and Microbiology, Slovak University of Technology, Radlinského 9, 812 37 Bratislava, Slovakia; (H.G.); (Z.P.); (A.B.)
- Correspondence:
| |
Collapse
|
26
|
|
27
|
Kamal RM, Abdull Razis AF, Mohd Sukri NS, Perimal EK, Ahmad H, Patrick R, Djedaini-Pilard F, Mazzon E, Rigaud S. Beneficial Health Effects of Glucosinolates-Derived Isothiocyanates on Cardiovascular and Neurodegenerative Diseases. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27030624. [PMID: 35163897 PMCID: PMC8838317 DOI: 10.3390/molecules27030624] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/10/2022] [Accepted: 01/12/2022] [Indexed: 12/17/2022]
Abstract
Neurodegenerative diseases (NDDs) and cardiovascular diseases (CVDs) are illnesses that affect the nervous system and heart, all of which are vital to the human body. To maintain health of the human body, vegetable diets serve as a preventive approach and particularly Brassica vegetables have been associated with lower risks of chronic diseases, especially NDDs and CVDs. Interestingly, glucosinolates (GLs) and isothiocyanates (ITCs) are phytochemicals that are mostly found in the Cruciferae family and they have been largely documented as antioxidants contributing to both cardio- and neuroprotective effects. The hydrolytic breakdown of GLs into ITCs such as sulforaphane (SFN), phenylethyl ITC (PEITC), moringin (MG), erucin (ER), and allyl ITC (AITC) has been recognized to exert significant effects with regards to cardio- and neuroprotection. From past in vivo and/or in vitro studies, those phytochemicals have displayed the ability to mitigate the adverse effects of reactive oxidation species (ROS), inflammation, and apoptosis, which are the primary causes of CVDs and NDDs. This review focuses on the protective effects of those GL-derived ITCs, featuring their beneficial effects and the mechanisms behind those effects in CVDs and NDDs.
Collapse
Affiliation(s)
- Ramla Muhammad Kamal
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
- Department of Pharmacology, Federal University Dutse, Dutse 720101, Jigawa State, Nigeria
| | - Ahmad Faizal Abdull Razis
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Correspondence:
| | - Nurul Syafuhah Mohd Sukri
- Faculty of Applied Science and Technology, Universiti Tun Hussein Onn Malaysia, Batu Pahat 86400, Johor, Malaysia;
| | - Enoch Kumar Perimal
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| | - Hafandi Ahmad
- Department of Veterinary Preclinical Sciences, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| | - Rollin Patrick
- Université d’Orléans et CNRS, ICOA, UMR 7311, BP 6759, CEDEX 02, F-45067 Orléans, France;
| | - Florence Djedaini-Pilard
- LG2A UMR 7378, Université de Picardie Jules Verne, 33 rue Saint Leu—UFR des Sciences, F-80000 Amiens, France; (F.D.-P.); (S.R.)
| | - Emanuela Mazzon
- Laboratorio di Neurologia Sperimentale, IRCCS Centro Neurolesi "Bonino Pulejo", 98124 Messina, Italy;
| | - Sébastien Rigaud
- LG2A UMR 7378, Université de Picardie Jules Verne, 33 rue Saint Leu—UFR des Sciences, F-80000 Amiens, France; (F.D.-P.); (S.R.)
| |
Collapse
|
28
|
Affiliation(s)
- Anna Grygier
- Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Poznań, Poland
| |
Collapse
|
29
|
Santos ADS, Pimentel AL, Oliveira JVLD, Silva MTD, Silva FGC, Borges ALTF, Moura MAFBD, Silva SASD, Nascimento TGD. Phytochemical and pharmacological reports of the hypoglycemic activity of the Moringa oleifera extracts. RODRIGUÉSIA 2022. [DOI: 10.1590/2175-7860202273090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abstract Moringa oleifera is an arboreal plant belonging to the family Moringaceae distributed in tropical areas and has gained enormous attention in the last decades. This research is a review on the association between aqueous extracts of M. oleifera leaves and diabetes mellitus and understanding its pharmacological functions and underlying mechanisms. The research refinement demonstrated the pharmaceutical potential of M. oleifera and its phytochemicals, given its antidiabetic effect. The prospective analysis showed the amount of application within IPC A61K in health area. The secondary metabolites present in M. oleifera, glucosinolates, flavonoids, and phenolic compounds may be responsible, in part, for the disease control hypoglycemic actions. Glucosinolates, when metabolized by salivary enzymes, give rise to sulforaphanes that act in preventing type 2 diabetes and in reducing insulin resistance. Flavonoids interact with intestinal enzymes by modifying carbohydrate metabolism by regulating glycemic levels, in addition to increasing insulin sensitivity. Phenolic compounds increase the expression of glucose transporters (GLUT4) and reduce the synthesis of fatty acids and cholesterol, contributing to the reduction of glucose resistance and blood sugar control. Moringa oleifera can be used as complementary therapy of the type-2 diabetes.
Collapse
|
30
|
Drvenica I, Blažević I, Bošković P, Bratanić A, Bugarski B, Bilusic T. Sinigrin Encapsulation in Liposomes: Influence on In Vitro Digestion and Antioxidant Potential. POL J FOOD NUTR SCI 2021. [DOI: 10.31883/pjfns/143574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
31
|
Krause K, Pyrczak-Felczykowska A, Karczewska M, Narajczyk M, Herman-Antosiewicz A, Szalewska-Pałasz A, Nowicki D. Dietary Isothiocyanates, Sulforaphane and 2-Phenethyl Isothiocyanate, Effectively Impair Vibrio cholerae Virulence. Int J Mol Sci 2021; 22:10187. [PMID: 34638525 PMCID: PMC8508596 DOI: 10.3390/ijms221910187] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/09/2021] [Accepted: 09/20/2021] [Indexed: 12/02/2022] Open
Abstract
Vibrio cholerae represents a constant threat to public health, causing widespread infections, especially in developing countries with a significant number of fatalities and serious complications every year. The standard treatment by oral rehydration does not eliminate the source of infection, while increasing antibiotic resistance among pathogenic V. cholerae strains makes the therapy difficult. Thus, we assessed the antibacterial potential of plant-derived phytoncides, isothiocyanates (ITC), against V. cholerae O365 strain. Sulforaphane (SFN) and 2-phenethyl isothiocyanate (PEITC) ability to inhibit bacterial growth was assessed. Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values indicate that these compounds possess antibacterial activity and are also effective against cells growing in a biofilm. Tested ITC caused accumulation of stringent response alarmone, ppGpp, which indicates induction of the global stress response. It was accompanied by bacterial cytoplasm shrinkage, the inhibition of the DNA, and RNA synthesis as well as downregulation of the expression of virulence factors. Most importantly, ITC reduced the toxicity of V. cholerae in the in vitro assays (against Vero and HeLa cells) and in vivo, using Galleria mellonella larvae as an infection model. In conclusion, our data indicate that ITCs might be considered promising antibacterial agents in V. cholerae infections.
Collapse
Affiliation(s)
- Klaudyna Krause
- Department of Bacterial Molecular Genetics, Faculty of Biology, University of Gdansk, 80-308 Gdansk, Poland; (K.K.); (M.K.); (A.S.-P.)
| | | | - Monika Karczewska
- Department of Bacterial Molecular Genetics, Faculty of Biology, University of Gdansk, 80-308 Gdansk, Poland; (K.K.); (M.K.); (A.S.-P.)
| | - Magdalena Narajczyk
- Department of Electron Microscopy, Faculty of Biology, University of Gdansk, 80-308 Gdansk, Poland;
| | - Anna Herman-Antosiewicz
- Department of Medical Biology and Genetics, Faculty of Biology, University of Gdansk, 80-308 Gdansk, Poland;
| | - Agnieszka Szalewska-Pałasz
- Department of Bacterial Molecular Genetics, Faculty of Biology, University of Gdansk, 80-308 Gdansk, Poland; (K.K.); (M.K.); (A.S.-P.)
| | - Dariusz Nowicki
- Department of Bacterial Molecular Genetics, Faculty of Biology, University of Gdansk, 80-308 Gdansk, Poland; (K.K.); (M.K.); (A.S.-P.)
| |
Collapse
|
32
|
Wu X, Pehrsson PR. Current Knowledge and Challenges on the Development of a Dietary Glucosinolate Database in the United States. Curr Dev Nutr 2021; 5:nzab102. [PMID: 34458665 PMCID: PMC8386921 DOI: 10.1093/cdn/nzab102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/07/2021] [Accepted: 07/16/2021] [Indexed: 01/09/2023] Open
Abstract
Glucosinolates (GSLs) are a group of cancer chemopreventive sulfur-containing compounds found primarily in Brassica vegetables. The goals of this study were to summarize the current knowledge and discuss the challenges of developing a dietary GSL database for US foods. A systematic literature search was conducted for the period 1980-2020. Thirty articles were found to meet all inclusion and exclusion criteria; 27 GSLs were reported in 16 different vegetables. GSLs identified and quantified ranged from 3 for winter cress to 16 for cabbage. In general, the experimental designs of these 30 studies did not fully consider the factors related to the data quality. Enormous variations of GSLs are observed between different vegetables and in the same vegetables. In conclusion, the studies on GSLs in commonly consumed vegetables are still limited, and some data may be outdated. Currently available data are not sufficient to develop a valid GSL database in the United States.
Collapse
Affiliation(s)
- Xianli Wu
- Methods and Application of Food Composition Laboratory, USDA ARS Beltsville Human Nutrition Research Center, Beltsville, MD, USA
| | - Pamela R Pehrsson
- Methods and Application of Food Composition Laboratory, USDA ARS Beltsville Human Nutrition Research Center, Beltsville, MD, USA
| |
Collapse
|
33
|
Lima LW, Nardi S, Santoro V, Schiavon M. The Relevance of Plant-Derived Se Compounds to Human Health in the SARS-CoV-2 (COVID-19) Pandemic Era. Antioxidants (Basel) 2021; 10:antiox10071031. [PMID: 34202330 PMCID: PMC8300636 DOI: 10.3390/antiox10071031] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 06/20/2021] [Accepted: 06/23/2021] [Indexed: 12/27/2022] Open
Abstract
Dietary selenium (Se)-compounds accumulated in plants are essential for human metabolism and normal physiological processes. Inorganic and organic Se species can be readily absorbed by the human body, but are metabolized differently and thus exhibit distinct mechanisms of action. They can act as antioxidants or serve as a source of Se for the synthesis of selenoproteins. Selenocysteine, in particular, is incorporated at the catalytic center of these proteins through a specific insertion mechanism and, due to its electronic features, enhances their catalytic activity against biological oxidants. Selenite and other Se-organic compounds may also act as direct antioxidants in cells due to their strong nucleophilic properties. In addition, Se-amino acids are more easily subjected to oxidation than the corresponding thiols/thioethers and can bind redox-active metal ions. Adequate Se intake aids in preventing several metabolic disorders and affords protection against viral infections. At present, an epidemic caused by a novel coronavirus (SARS-CoV-2) threatens human health across several countries and impacts the global economy. Therefore, Se-supplementation could be a complementary treatment to vaccines and pharmacological drugs to reduce the viral load, mutation frequency, and enhance the immune system of populations with low Se intake in the diet.
Collapse
Affiliation(s)
| | - Serenella Nardi
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Viale dell’Università 16, 35020 Legnaro, PD, Italy;
| | - Veronica Santoro
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Turin, Via Leonardo da Vinci, 44, 10095 Grugliasco, TO, Italy;
| | - Michela Schiavon
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Turin, Via Leonardo da Vinci, 44, 10095 Grugliasco, TO, Italy;
- Correspondence: ; Tel.: +1-1670-8520
| |
Collapse
|
34
|
Di Dalmazi G, Giuliani C. Plant constituents and thyroid: A revision of the main phytochemicals that interfere with thyroid function. Food Chem Toxicol 2021; 152:112158. [PMID: 33789121 DOI: 10.1016/j.fct.2021.112158] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 03/22/2021] [Accepted: 03/24/2021] [Indexed: 01/06/2023]
Abstract
In the past few decades, there has been a lot of interest in plant constituents for their antioxidant, anti-inflammatory, anti-microbial and anti-proliferative properties. However, concerns have been raised on their potential toxic effects particularly when consumed at high dose. The anti-thyroid effects of some plant constituents have been known for some time. Indeed, epidemiological observations have shown the causal association between staple food based on brassicaceae or soybeans and the development of goiter and/or hypothyroidism. Herein, we review the main plant constituents that interfere with normal thyroid function such as cyanogenic glucosides, polyphenols, phenolic acids, and alkaloids. In detail, we summarize the in vitro and in vivo studies present in the literature, focusing on the compounds that are more abundant in foods or that are available as dietary supplements. We highlight the mechanism of action of these compounds on thyroid cells by giving a particular emphasis to the experimental studies that can be significant for human health. Furthermore, we reveal that the anti-thyroid effects of these plant constituents are clinically evident only when they are consumed in very large amounts or when their ingestion is associated with other conditions that impair thyroid function.
Collapse
Affiliation(s)
- Giulia Di Dalmazi
- Center for Advanced Studies and Technology (CAST) and Department of Medicine and Aging Science, University "G. d'Annunzio" of Chieti-Pescara, 66100, Chieti, Italy; Department of Medicine and Aging Science, Translational Medicine PhD Program, University "G. d'Annunzio" of Chieti-Pescara, 66100, Chieti, Italy.
| | - Cesidio Giuliani
- Center for Advanced Studies and Technology (CAST) and Department of Medicine and Aging Science, University "G. d'Annunzio" of Chieti-Pescara, 66100, Chieti, Italy.
| |
Collapse
|
35
|
Allemailem KS. Antimicrobial Potential of Naturally Occurring Bioactive Secondary Metabolites. J Pharm Bioallied Sci 2021; 13:155-162. [PMID: 34349474 PMCID: PMC8291113 DOI: 10.4103/jpbs.jpbs_753_20] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/01/2020] [Accepted: 12/25/2020] [Indexed: 11/04/2022] Open
Abstract
The use of traditional medicines of natural origin has been prevalent since ancient times globally as the plants produce a great diversity in their secondary metabolites. The naturally occurring bioactive constituents in food and other plant materials have shown widespread attention for their use as alternative medicine to prevent and cure microbial growth with the least toxic manifestations. The inclusion of these contents revealed their crucial role to improve the therapeutic efficacy of the classical drugs against various pathogenic microorganisms. Furthermore, several metabolites have also been explored in combination with antimicrobial agents to overcome the problems associated with drug resistance. This current review discusses the antimicrobial activities of secondary metabolites as well as their role in drug sensitivity against multiple-drug resistant pathogenic microbes.
Collapse
Affiliation(s)
- Khaled S Allemailem
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| |
Collapse
|
36
|
Didaras NA, Kafantaris I, Dimitriou TG, Mitsagga C, Karatasou K, Giavasis I, Stagos D, Amoutzias GD, Hatjina F, Mossialos D. Biological Properties of Bee Bread Collected from Apiaries Located across Greece. Antibiotics (Basel) 2021; 10:antibiotics10050555. [PMID: 34068740 PMCID: PMC8151309 DOI: 10.3390/antibiotics10050555] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/07/2021] [Accepted: 05/08/2021] [Indexed: 01/18/2023] Open
Abstract
Bee bread is the only fermented product of the beehive. It constitutes the main source of proteins, lipids, vitamins, and macro- and microelements in honeybee nutrition and it exerts antioxidant and antimicrobial properties, though research on these aspects has been limited so far. In this study 18 samples of Greek bee bread, two of which were monofloral, were collected during different seasons from diverse locations such as Crete and Mount Athos and were tested for their bioactivity. Samples were analyzed for their antibacterial properties, antioxidant activity, total phenolic content (TPC), and total flavonoid content (TFC). The antimicrobial activity of each sample was tested against Staphylococcus aureus, Pseudomonas aeruginosa, Klebsiella pneumoniae, and Salmonella typhimurium. Our data demonstrate that all samples exert inhibitory and most of them bactericidal activity against at least two pathogens. Furthermore, all samples exert significant antioxidant activity, where the monofloral Castanea Sativa sample demonstrated superior antioxidant activity. Nevertheless, the antioxidant and antimicrobial activity were not strongly correlated. Furthermore, machine learning methods demonstrated that the palynological composition of the samples is a good predictor of their TPC and ABTS activity. This is the first study that focuses on the biological properties of Greek bee bread and demonstrates that bee bread can be considered a functional food and a possible source of novel antimicrobial compounds.
Collapse
Affiliation(s)
- Nikos Asoutis Didaras
- Laboratory of Microbial Biotechnology, Molecular Bacteriology, Virology, Department of Biochemistry & Biotechnology, School of Health Sciences, University of Thessaly, 41500 Larissa, Greece; (N.A.D.); (I.K.); (T.G.D.)
| | - Ioannis Kafantaris
- Laboratory of Microbial Biotechnology, Molecular Bacteriology, Virology, Department of Biochemistry & Biotechnology, School of Health Sciences, University of Thessaly, 41500 Larissa, Greece; (N.A.D.); (I.K.); (T.G.D.)
| | - Tilemachos G. Dimitriou
- Laboratory of Microbial Biotechnology, Molecular Bacteriology, Virology, Department of Biochemistry & Biotechnology, School of Health Sciences, University of Thessaly, 41500 Larissa, Greece; (N.A.D.); (I.K.); (T.G.D.)
| | - Chrysanthi Mitsagga
- Laboratory of Food Microbiology and Biotechnology, Department of Food Science and Nutrition, University of Thessaly, 43100 Karditsa, Greece; (C.M.); (I.G.)
| | - Katerina Karatasou
- Apicultural Centre of Larissa, Federation of Greek Beekeepers Associations, 41222 Larissa, Greece;
| | - Ioannis Giavasis
- Laboratory of Food Microbiology and Biotechnology, Department of Food Science and Nutrition, University of Thessaly, 43100 Karditsa, Greece; (C.M.); (I.G.)
| | - Dimitris Stagos
- Laboratory of Animal Physiology, Department of Biochemistry & Biotechnology, School of Health Sciences, University of Thessaly, 41500 Larissa, Greece;
| | - Grigoris D. Amoutzias
- Bioinformatics Laboratory, Department of Biochemistry and Biotechnology, School of Health Sciences, University of Thessaly, 41500 Larissa, Greece;
| | - Fani Hatjina
- Department of Apiculture, Institute of Animal Science, Hellenic Agricultural Organisation DEMETER, 63200 Nea Moudania, Greece;
| | - Dimitris Mossialos
- Laboratory of Microbial Biotechnology, Molecular Bacteriology, Virology, Department of Biochemistry & Biotechnology, School of Health Sciences, University of Thessaly, 41500 Larissa, Greece; (N.A.D.); (I.K.); (T.G.D.)
- Correspondence: ; Tel.: +30-241-056-5270
| |
Collapse
|
37
|
Pacifico D, Lanzanova C, Pagnotta E, Bassolino L, Mastrangelo AM, Marone D, Matteo R, Lo Scalzo R, Balconi C. Sustainable Use of Bioactive Compounds from Solanum Tuberosum and Brassicaceae Wastes and by-Products for Crop Protection-A Review. Molecules 2021; 26:2174. [PMID: 33918886 PMCID: PMC8070479 DOI: 10.3390/molecules26082174] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 12/24/2022] Open
Abstract
Defatted seed meals of oleaginous Brassicaceae, such as Eruca sativa, and potato peel are excellent plant matrices to recover potentially useful biomolecules from industrial processes in a circular strategy perspective aiming at crop protection. These biomolecules, mainly glycoalkaloids and phenols for potato and glucosinolates for Brassicaceae, have been proven to be effective against microbes, fungi, nematodes, insects, and even parasitic plants. Their role in plant protection is overviewed, together with the molecular basis of their synthesis in plant, and the description of their mechanisms of action. Possible genetic and biotechnological strategies are presented to increase their content in plants. Genetic mapping and identification of closely linked molecular markers are useful to identify the loci/genes responsible for their accumulation and transfer them to elite cultivars in breeding programs. Biotechnological approaches can be used to modify their allelic sequence and enhance the accumulation of the bioactive compounds. How the global challenges, such as reducing agri-food waste and increasing sustainability and food safety, could be addressed through bioprotector applications are discussed here.
Collapse
Affiliation(s)
- Daniela Pacifico
- CREA Council for Agricultural Research and Economics—Research Centre for Cereal and Industrial Crops, 00198 Rome, Italy; (C.L.); (E.P.); (L.B.); (A.M.M.); (D.M.); (C.B.); (R.M.)
| | - Chiara Lanzanova
- CREA Council for Agricultural Research and Economics—Research Centre for Cereal and Industrial Crops, 00198 Rome, Italy; (C.L.); (E.P.); (L.B.); (A.M.M.); (D.M.); (C.B.); (R.M.)
| | - Eleonora Pagnotta
- CREA Council for Agricultural Research and Economics—Research Centre for Cereal and Industrial Crops, 00198 Rome, Italy; (C.L.); (E.P.); (L.B.); (A.M.M.); (D.M.); (C.B.); (R.M.)
| | - Laura Bassolino
- CREA Council for Agricultural Research and Economics—Research Centre for Cereal and Industrial Crops, 00198 Rome, Italy; (C.L.); (E.P.); (L.B.); (A.M.M.); (D.M.); (C.B.); (R.M.)
| | - Anna Maria Mastrangelo
- CREA Council for Agricultural Research and Economics—Research Centre for Cereal and Industrial Crops, 00198 Rome, Italy; (C.L.); (E.P.); (L.B.); (A.M.M.); (D.M.); (C.B.); (R.M.)
| | - Daniela Marone
- CREA Council for Agricultural Research and Economics—Research Centre for Cereal and Industrial Crops, 00198 Rome, Italy; (C.L.); (E.P.); (L.B.); (A.M.M.); (D.M.); (C.B.); (R.M.)
| | - Roberto Matteo
- CREA Council for Agricultural Research and Economics—Research Centre for Cereal and Industrial Crops, 00198 Rome, Italy; (C.L.); (E.P.); (L.B.); (A.M.M.); (D.M.); (C.B.); (R.M.)
| | - Roberto Lo Scalzo
- CREA Council for Agricultural Research and Economics—Research Centre for Engineering and Agro-Food Processing, 00198 Rome, Italy;
| | - Carlotta Balconi
- CREA Council for Agricultural Research and Economics—Research Centre for Cereal and Industrial Crops, 00198 Rome, Italy; (C.L.); (E.P.); (L.B.); (A.M.M.); (D.M.); (C.B.); (R.M.)
| |
Collapse
|
38
|
Brassica juncea L. (Mustard) Extract Silver NanoParticles and Knocking off Oxidative Stress, ProInflammatory Cytokine and Reverse DNA Genotoxicity. Biomolecules 2020; 10:biom10121650. [PMID: 33317112 PMCID: PMC7763120 DOI: 10.3390/biom10121650] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/02/2020] [Accepted: 12/04/2020] [Indexed: 02/06/2023] Open
Abstract
Detoxification is one of the main vital tasks performed by the liver. The purpose of this study was to investigate whether mustard in its normal or nanoparticles could confer a protective/therapeutic effect against TAA-induced acute liver failure in experimental animal models. Mustard ethanolic extract was analyzed by HPLC/MS. To induce liver failure, male rats were injected with 350 mg/kg bw TAA IP, then treated orally with a dose of 100 mg/kg for 15 d of mustard extract and its nanoform before and following induction. The levels of serum liver functions, total cholesterol (TCHo), total glyceride (TG), total bilirubin (TBIL), hepatic malonaldhyde (MDA) and nitric oxide (NO),glutathione (GSH), sodium oxide dismutase (SOD), as well as tumor necrosis factor (TNF-α,) and interleukin 6 (IL-6), were estimated. DNA genotoxicity and hepatic pathology, and immunohistologic (IHC) changes were assayed. The antioxidant content of Phenolic acids, flavonoids in mustard ethanolic extract substantially decreased the levels of ALT, AST, ALP and rehabilitated the histopathological alterations. In addition, nanoforms of mustard ethanol extract have notably increased the levels of GSH, SOD and significantly reduced the levels of MDA. The expression levels of TNF-α and IL-6 in serum and tissue were markedly downregulated. DNA genotoxicity was significantly reversed. Mustard introduced a protective and medicinal effect against TAA in both its forms.
Collapse
|
39
|
Sharifi-Rad J, Rajabi S, Martorell M, López MD, Toro MT, Barollo S, Armanini D, Fokou PVT, Zagotto G, Ribaudo G, Pezzani R. Plant natural products with anti-thyroid cancer activity. Fitoterapia 2020; 146:104640. [PMID: 32474055 DOI: 10.1016/j.fitote.2020.104640] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/25/2020] [Accepted: 05/25/2020] [Indexed: 12/11/2022]
Abstract
Thyroid cancer is the most frequent endocrine malignancy, with more than 500,000 cases per year worldwide. Differentiated thyroid cancers are the most common forms with best prognosis, while poorly/undifferentiated ones are rare (2% of all thyroid cancer), aggressive, frequently metastasize and have a worse prognosis. For aggressive, metastatic and advanced thyroid cancer novel antitumor molecules are urgently needed and phytochemical products can be a rational and extensive source, since secondary plant metabolites can guarantee the necessary biochemical variability for therapeutic purpose. Among bioactive molecules that present biological activity on thyroid cancer, resveratrol, curcumin, isoflavones, glucosinolates are the most common and used in experimental model. Most of them have been studied both in vitro and in vivo on this cancer, but rarely in clinical trial. This review summarizes phytochemicals, phytotherapeutics and plant derived compounds used in thyroid cancer.
Collapse
Affiliation(s)
- Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Sadegh Rajabi
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, University of Concepcion, Concepcion, Chile; Centre for Healthy Living, University of Concepción, Concepción, Chile; Unidad de Desarrollo Tecnológico, Universidad de Concepción UDT, Concepcion, Chile.
| | - Maria Dolores López
- Department of Plant Production, Faculty of Agronomy, Universidad de Concepción, Avenida Vicente Mendez, 595, Chillán 3812120, Chile
| | - María Trinidad Toro
- Department of Plant Production, Faculty of Agronomy, Universidad de Concepción, Avenida Vicente Mendez, 595, Chillán 3812120, Chile.
| | - Susi Barollo
- Endocrinology Unit, Department of Medicine (DIMED), University of Padova, via Ospedale 105, 35128 Padova, Italy
| | - Decio Armanini
- Endocrinology Unit, Department of Medicine (DIMED), University of Padova, via Ospedale 105, 35128 Padova, Italy
| | | | - Giuseppe Zagotto
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, via Marzolo 5, 35131 Padova, Italy.
| | - Giovanni Ribaudo
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy.
| | - Raffaele Pezzani
- Endocrinology Unit, Department of Medicine (DIMED), University of Padova, via Ospedale 105, 35128 Padova, Italy; AIROB, Associazione Italiana per la Ricerca Oncologica di Base, Padova, Italy.
| |
Collapse
|
40
|
Schiavon M, Nardi S, dalla Vecchia F, Ertani A. Selenium biofortification in the 21 st century: status and challenges for healthy human nutrition. PLANT AND SOIL 2020; 453:245-270. [PMID: 32836404 PMCID: PMC7363690 DOI: 10.1007/s11104-020-04635-9] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 07/06/2020] [Indexed: 05/04/2023]
Abstract
BACKGROUND Selenium (Se) is an essential element for mammals and its deficiency in the diet is a global problem. Plants accumulate Se and thus represent a major source of Se to consumers. Agronomic biofortification intends to enrich crops with Se in order to secure its adequate supply by people. SCOPE The goal of this review is to report the present knowledge of the distribution and processes of Se in soil and at the plant-soil interface, and of Se behaviour inside the plant in terms of biofortification. It aims to unravel the Se metabolic pathways that affect the nutritional value of edible plant products, various Se biofortification strategies in challenging environments, as well as the impact of Se-enriched food on human health. CONCLUSIONS Agronomic biofortification and breeding are prevalent strategies for battling Se deficiency. Future research addresses nanosized Se biofortification, crop enrichment with multiple micronutrients, microbial-integrated agronomic biofortification, and optimization of Se biofortification in adverse conditions. Biofortified food of superior nutritional quality may be created, enriched with healthy Se-compounds, as well as several other valuable phytochemicals. Whether such a food source might be used as nutritional intervention for recently emerged coronavirus infections is a relevant question that deserves investigation.
Collapse
Affiliation(s)
- Michela Schiavon
- Dipartimento di Agronomia, Animali, Alimenti, Risorse naturali e Ambiente (DAFNAE), Università di Padova, Viale dell’Università 16, 35020 Legnaro, PD Italy
| | - Serenella Nardi
- Dipartimento di Agronomia, Animali, Alimenti, Risorse naturali e Ambiente (DAFNAE), Università di Padova, Viale dell’Università 16, 35020 Legnaro, PD Italy
| | | | - Andrea Ertani
- Dipartimento di Scienze Agrarie, Università di Torino, Via Leonardo da Vinci, 44, 10095 Grugliasco, TO Italy
| |
Collapse
|
41
|
Borgonovo G, Zimbaldi N, Guarise M, Bedussi F, Winnig M, Vennegeerts T, Bassoli A. Glucosinolates in Sisymbrium officinale (L.) Scop.: Comparative Analysis in Cultivated and Wild Plants and in Vitro Assays with T2Rs Bitter Taste Receptors. Molecules 2019; 24:molecules24244572. [PMID: 31847178 PMCID: PMC6943552 DOI: 10.3390/molecules24244572] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/06/2019] [Accepted: 12/09/2019] [Indexed: 11/16/2022] Open
Abstract
Sisymbrium officinale (L.) Scop., commonly known as "hedge mustard" or "the singer's plant" is a wild plant common in Eurasian regions. Its cultivation is mainly dedicated to herboristic applications and it has only recently been introduced into Italy. The active botanicals in S. officinale are glucosinolates, generally estimated by using UV or high-performance liquid chromatography (HPLC). Using both techniques, we measured the total glucosinolates from S. officinale in different parts of the plant as roots, leaves, seeds, and flowers. A comparison was made for cultivated and wild samples, and for samples obtained with different pre-treatment and fresh, frozen, and dried storage conditions. Cultivated and wild plants have a comparable amount of total glucosinolates, while drying procedures can reduce the final glucosinolates content. The content in glucoputranjivin, which is the chemical marker for glucosinolates in S. officinale, has been determined using HPLC and a pure reference standard. Glucoputranjivin and two isothiocyanates from S. officinale have been submitted to in vitro assays with the platform of bitter taste receptors of the T2Rs family. The results show that glucoputranjivin is a selective agonist of receptor T2R16.
Collapse
Affiliation(s)
- Gigliola Borgonovo
- Department of Food, Environmental and Nutritional Sciences-DeFENS, University of Milan, Via Celoria 2, I-20133 Milano, Italy; (G.B.); (N.Z.)
| | - Nathan Zimbaldi
- Department of Food, Environmental and Nutritional Sciences-DeFENS, University of Milan, Via Celoria 2, I-20133 Milano, Italy; (G.B.); (N.Z.)
| | - Marta Guarise
- Department of Agricultural and Environmental Sciences-DISAA, University of Milan, Via Celoria 2, I-20133 Milano, Italy; (M.G.); (F.B.)
| | - Floriana Bedussi
- Department of Agricultural and Environmental Sciences-DISAA, University of Milan, Via Celoria 2, I-20133 Milano, Italy; (M.G.); (F.B.)
| | - Marcel Winnig
- IMAX Discovery GmbH, Otto-Hahn-Straße, 15, 44227 Dortmund, Germany; (M.W.); (T.V.)
- Axxam S.p.A. Via Meucci, 3, 20091 Bresso, Italy
| | - Timo Vennegeerts
- IMAX Discovery GmbH, Otto-Hahn-Straße, 15, 44227 Dortmund, Germany; (M.W.); (T.V.)
- Axxam S.p.A. Via Meucci, 3, 20091 Bresso, Italy
| | - Angela Bassoli
- Department of Food, Environmental and Nutritional Sciences-DeFENS, University of Milan, Via Celoria 2, I-20133 Milano, Italy; (G.B.); (N.Z.)
- Correspondence: ; Tel.: +39-025-031-6815
| |
Collapse
|