1
|
Wen J, Liu H, Lai H, Xu Y, Wu J, Yu Y, Huang W, Fu M, Liu H. Widely Targeted Metabolomics Reveal the Distribution of Metabolites in Shatian Pomelo Fruit. Foods 2024; 13:3698. [PMID: 39594113 PMCID: PMC11593426 DOI: 10.3390/foods13223698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/13/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024] Open
Abstract
Using ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) technology in multiple reaction monitoring mode, a widely targeted metabolomics approach was employed to identify metabolites in five tissues (exocarp, endocarp, segment membrane, pulp, and seeds) of the Shatian pomelo fruit. The differences in metabolite composition and abundance among different tissues were analyzed using multivariate statistical analysis methods. The results showed that a total of 1722 metabolites were identified from the five tissues of the Shatian pomelo, including 413 flavonoids and 277 amino acids and their derivatives. Flavonoid metabolites accumulate the most abundantly in the exocarp and seeds, while amino acids and their derivatives are primarily accumulated in the exocarp and pulp. A total of 649 key differential metabolites were screened, including flavonoids, amino acids, and their derivatives, indicating the presence of tissue-specific accumulation of metabolites in the Shatian pomelo. This study systematically investigated the metabolite distribution in different tissue parts of the Shatian pomelo, and validated the feasibility of widely targeted metabolomics technology in pomelo quality analysis. It provided a theoretical reference for metabolic research on the Shatian pomelo and other citrus fruits, and offered a theoretical basis for the efficient utilization of pomelo resources.
Collapse
Affiliation(s)
- Jing Wen
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China; (J.W.); (H.L.)
- Institute of Sericulture and Agricultural Products Processing, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China; (H.L.); (Y.X.); (J.W.); (Y.Y.); (W.H.); (M.F.)
| | - Haocheng Liu
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China; (J.W.); (H.L.)
- Institute of Sericulture and Agricultural Products Processing, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China; (H.L.); (Y.X.); (J.W.); (Y.Y.); (W.H.); (M.F.)
| | - Huining Lai
- Institute of Sericulture and Agricultural Products Processing, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China; (H.L.); (Y.X.); (J.W.); (Y.Y.); (W.H.); (M.F.)
| | - Yujuan Xu
- Institute of Sericulture and Agricultural Products Processing, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China; (H.L.); (Y.X.); (J.W.); (Y.Y.); (W.H.); (M.F.)
| | - Jijun Wu
- Institute of Sericulture and Agricultural Products Processing, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China; (H.L.); (Y.X.); (J.W.); (Y.Y.); (W.H.); (M.F.)
| | - Yuanshan Yu
- Institute of Sericulture and Agricultural Products Processing, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China; (H.L.); (Y.X.); (J.W.); (Y.Y.); (W.H.); (M.F.)
| | - Wenqian Huang
- Institute of Sericulture and Agricultural Products Processing, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China; (H.L.); (Y.X.); (J.W.); (Y.Y.); (W.H.); (M.F.)
| | - Manqin Fu
- Institute of Sericulture and Agricultural Products Processing, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China; (H.L.); (Y.X.); (J.W.); (Y.Y.); (W.H.); (M.F.)
| | - Haiyang Liu
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China; (J.W.); (H.L.)
| |
Collapse
|
2
|
Socha R, Such A, Wisła-Świder A, Juszczak L, Nowak E, Bulski K, Frączek K, Doskocil I, Lampova B, Koronowicz A. Edible Alginate-Lecithin Films Enriched with Different Coffee Bean Extracts: Formulation, Non-Cytotoxic, Anti-Inflammatory and Antimicrobial Properties. Int J Mol Sci 2024; 25:12093. [PMID: 39596163 PMCID: PMC11594067 DOI: 10.3390/ijms252212093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/08/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
The aim of this study was to analyze the functional properties of newly obtained films based on sodium alginate and lecithin with the addition of antioxidant-rich coffee extracts and to verify their potential as safe edible food packaging materials. In our study, we developed alginate-lecithin films enriched with green or roasted coffee bean extracts. The roasting process of coffee beans had a significant impact on the total phenolic content (TPC) in the studied extracts. The highest value of TPC (2697.2 mg GAE/dm3), as well as antioxidant activity (AA) (17.6 mM T/dm3), was observed for the extract of light-roasted coffee beans. Films with the addition of medium-roasted coffee extracts and baseline films had the highest tensile strength (21.21 ± 0.73 N). The addition of coffee extract improved the barrier properties of the films against UV light with a decrease in the transmittance values (200-400 nm), regardless of the type of extract added. Studies on Caco-2, HepG2 and BJ cells showed that digestated films were non-cytotoxic materials (100-0.1 μg/cm3) and had no negative effect on cell viability; an increase was noted for all cell lines, the highest after 48 h in a dose of 1 μg/cm3 for a film with medium-roasted coffee (194.43 ± 38.30) for Caco-2. The tested films at 20% digestate concentrations demonstrated the ability to reduce nitric oxide (NO) production in the RAW264.7 cell line by 25 to 60% compared to the control. Each of the tested films with coffee extracts had growth inhibitory properties towards selected species of bacteria.
Collapse
Affiliation(s)
- Robert Socha
- Department of Food Analysis and Evaluation of Food Quality, Faculty of Food Technology, University of Agriculture in Krakow, ul. Balicka 122, 30-149 Kraków, Poland; (R.S.); (L.J.)
| | - Aleksandra Such
- Department of Human Nutrition and Dietetics, Faculty of Food Technology, University of Agriculture in Krakow, ul. Balicka 122, 30-149 Kraków, Poland
| | - Anna Wisła-Świder
- Department of Chemistry, Faculty of Food Technology, University of Agriculture in Krakow, ul. Balicka 122, 30-149 Kraków, Poland; (A.W.-Ś.); (E.N.)
| | - Lesław Juszczak
- Department of Food Analysis and Evaluation of Food Quality, Faculty of Food Technology, University of Agriculture in Krakow, ul. Balicka 122, 30-149 Kraków, Poland; (R.S.); (L.J.)
- Department of Dietetics and Food Studies, Faculty of Science and Technology, Jan Długosz University in Częstochowa, Al. Armii Krajowej 13/15, 42-200 Częstochowa, Poland
| | - Ewelina Nowak
- Department of Chemistry, Faculty of Food Technology, University of Agriculture in Krakow, ul. Balicka 122, 30-149 Kraków, Poland; (A.W.-Ś.); (E.N.)
| | - Karol Bulski
- Department of Microbiology and Biomonitoring, Faculty of Agriculture and Economics, University of Agriculture in Krakow, Al. Mickiewicza 21, 31-120 Kraków, Poland; (K.B.); (K.F.)
| | - Krzysztof Frączek
- Department of Microbiology and Biomonitoring, Faculty of Agriculture and Economics, University of Agriculture in Krakow, Al. Mickiewicza 21, 31-120 Kraków, Poland; (K.B.); (K.F.)
| | - Ivo Doskocil
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, 165 21 Praha, Czech Republic; (I.D.); (B.L.)
| | - Barbora Lampova
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, 165 21 Praha, Czech Republic; (I.D.); (B.L.)
| | - Aneta Koronowicz
- Department of Human Nutrition and Dietetics, Faculty of Food Technology, University of Agriculture in Krakow, ul. Balicka 122, 30-149 Kraków, Poland
| |
Collapse
|
3
|
Lúcio M, Giannino N, Barreira S, Catita J, Gonçalves H, Ribeiro A, Fernandes E, Carvalho I, Pinho H, Cerqueira F, Biondi M, Lopes CM. Nanostructured Lipid Carriers Enriched Hydrogels for Skin Topical Administration of Quercetin and Omega-3 Fatty Acid. Pharmaceutics 2023; 15:2078. [PMID: 37631292 PMCID: PMC10459668 DOI: 10.3390/pharmaceutics15082078] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 08/27/2023] Open
Abstract
Chronic skin exposure to external hostile agents (e.g., UV radiation, microorganisms, and oxidizing chemicals) may increase oxidative stress, causing skin damage and aging. Because of their well-known skincare and protective benefits, quercetin (Q) and omega-3 fatty acids (ω3) have attracted the attention of the dermocosmetic and pharmaceutical sectors. However, both bioactives have inherent properties that limit their efficient skin delivery. Therefore, nanostructured lipid carriers (NLCs) and enriched PFC® hydrogels (HGs) have been developed as a dual-approach vehicle for Q and/or ω3 skin topical administration to improve bioactives' stability and skin permeation. Two NLC formulations were prepared with the same lipid composition but differing in surfactant composition (NLC1-soy lecithin and poloxamer 407; NLC2-Tween® 80 and dioctyl sodium sulfosuccinate (DOSS)), which have an impact on physicochemical properties and pharmaceutical and therapeutic performance. Despite both NLCs presenting high Q loading capacity, NLC2's physicochemical properties make them more suitable for topical skin administration and ensure longer colloidal stability. Additionally, NLC2 demonstrated a more sustained Q release, indicating higher bioactive storage while improving permeability. The occlusive effect of NLCs-enriched HGs also has a positive impact on skin permeability. Q-loaded NLC2, with or without ω3, -enriched HGs demonstrated efficacy as antioxidant and photoprotective formulations as well as effective reduction in S. aureus growth, indicating that they constitute a promising approach for topical skin administration to prevent skin aging and other damaging cutaneous processes.
Collapse
Affiliation(s)
- Marlene Lúcio
- CF-UM-UP, Centro de Física das Universidades do Minho e Porto, Departamento de Física, Universidade do Minho, 4710-057 Braga, Portugal;
- CBMA, Centro de Biologia Molecular e Ambiental, Departamento de Biologia, Universidade do Minho, 4710-057 Braga, Portugal
| | - Nicole Giannino
- Instituto de Investigação, Inovação e Desenvolvimento (FP-I3ID), Biomedical and Health Sciences Research Unit (FP-BHS), Faculdade Ciências da Saúde, Universidade Fernando Pessoa, 4200-150 Porto, Portugal; (N.G.); (S.B.); (J.C.); (H.P.); (F.C.)
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy;
| | - Sérgio Barreira
- Instituto de Investigação, Inovação e Desenvolvimento (FP-I3ID), Biomedical and Health Sciences Research Unit (FP-BHS), Faculdade Ciências da Saúde, Universidade Fernando Pessoa, 4200-150 Porto, Portugal; (N.G.); (S.B.); (J.C.); (H.P.); (F.C.)
| | - José Catita
- Instituto de Investigação, Inovação e Desenvolvimento (FP-I3ID), Biomedical and Health Sciences Research Unit (FP-BHS), Faculdade Ciências da Saúde, Universidade Fernando Pessoa, 4200-150 Porto, Portugal; (N.G.); (S.B.); (J.C.); (H.P.); (F.C.)
- Paralab, SA, 4420-392 Valbom, Portugal;
| | | | - Artur Ribeiro
- CEB, Centro de Engenharia Biológica, Universidade do Minho, 4710-057 Braga, Portugal; (A.R.); (I.C.)
- LABBELS, Associate Laboratory, Braga/Guimarães, Portugal
| | - Eduarda Fernandes
- CF-UM-UP, Centro de Física das Universidades do Minho e Porto, Departamento de Física, Universidade do Minho, 4710-057 Braga, Portugal;
| | - Isabel Carvalho
- CEB, Centro de Engenharia Biológica, Universidade do Minho, 4710-057 Braga, Portugal; (A.R.); (I.C.)
- LABBELS, Associate Laboratory, Braga/Guimarães, Portugal
- LIBRO—Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
| | - Hugo Pinho
- Instituto de Investigação, Inovação e Desenvolvimento (FP-I3ID), Biomedical and Health Sciences Research Unit (FP-BHS), Faculdade Ciências da Saúde, Universidade Fernando Pessoa, 4200-150 Porto, Portugal; (N.G.); (S.B.); (J.C.); (H.P.); (F.C.)
| | - Fátima Cerqueira
- Instituto de Investigação, Inovação e Desenvolvimento (FP-I3ID), Biomedical and Health Sciences Research Unit (FP-BHS), Faculdade Ciências da Saúde, Universidade Fernando Pessoa, 4200-150 Porto, Portugal; (N.G.); (S.B.); (J.C.); (H.P.); (F.C.)
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal
| | - Marco Biondi
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy;
| | - Carla M. Lopes
- Instituto de Investigação, Inovação e Desenvolvimento (FP-I3ID), Biomedical and Health Sciences Research Unit (FP-BHS), Faculdade Ciências da Saúde, Universidade Fernando Pessoa, 4200-150 Porto, Portugal; (N.G.); (S.B.); (J.C.); (H.P.); (F.C.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, MEDTECH, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| |
Collapse
|
4
|
Hamza A, Ghanekar S, Santhosh Kumar D. Current trends in health-promoting potential and biomaterial applications of edible mushrooms for human wellness. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2022.102290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
5
|
Attenuation of Hyperlipidemia by Medicinal Formulations of Emblica officinalis Synergized with Nanotechnological Approaches. BIOENGINEERING (BASEL, SWITZERLAND) 2023; 10:bioengineering10010064. [PMID: 36671636 PMCID: PMC9854976 DOI: 10.3390/bioengineering10010064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/30/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023]
Abstract
The ayurvedic herb Emblica officinalis (E. officinalis) is a gift to mankind to acquire a healthy lifestyle. It has great therapeutic and nutritional importance. Emblica officinalis, also known as Indian gooseberry or Amla, is a member of the Euphorbiaceae family. Amla is beneficial for treating illnesses in all its forms. The most crucial component is a fruit, which is also the most common. It is used frequently in Indian medicine as a restorative, diuretic, liver tonic, refrigerant, stomachic, laxative, antipyretic, hair tonic, ulcer preventive, and for the common cold and fever. Hyperlipidemia is also known as high cholesterol or an increase in one or more lipid-containing blood proteins. Various phytocompounds, including polyphenols, vitamins, amino acids, fixed oils, and flavonoids, are present in the various parts of E. officinalis. E. officinalis has been linked to a variety of pharmacological effects in earlier studies, including hepatoprotective, immunomodulatory, antimicrobial, radioprotective, and hyperlipidemic effects. The amla-derived active ingredients and food products nevertheless encounter challenges such as instability and interactions with other food matrices. Considering the issue from this perspective, food component nanoencapsulation is a young and cutting-edge field for controlled and targeted delivery with a range of preventative activities. The nanoformulation of E. officinalis facilitates the release of active components or food ingredients, increased bioaccessibility, enhanced therapeutic activities, and digestion in the human body. Accordingly, the current review provides a summary of the phytoconstituents of E. officinalis, pharmacological actions detailing the plant E. officinalis's traditional uses, and especially hyperlipidemic activity. Correspondingly, the article describes the uses of nanotechnology in amla therapeutics and functional ingredients.
Collapse
|
6
|
Mazziotta C, Tognon M, Martini F, Torreggiani E, Rotondo JC. Probiotics Mechanism of Action on Immune Cells and Beneficial Effects on Human Health. Cells 2023; 12:184. [PMID: 36611977 PMCID: PMC9818925 DOI: 10.3390/cells12010184] [Citation(s) in RCA: 221] [Impact Index Per Article: 110.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/12/2022] [Accepted: 12/29/2022] [Indexed: 01/03/2023] Open
Abstract
Immune cells and commensal microbes in the human intestine constantly communicate with and react to each other in a stable environment in order to maintain healthy immune activities. Immune system-microbiota cross-talk relies on a complex network of pathways that sustain the balance between immune tolerance and immunogenicity. Probiotic bacteria can interact and stimulate intestinal immune cells and commensal microflora to modulate specific immune functions and immune homeostasis. Growing evidence shows that probiotic bacteria present important health-promoting and immunomodulatory properties. Thus, the use of probiotics might represent a promising approach for improving immune system activities. So far, few studies have been reported on the beneficial immune modulatory effect of probiotics. However, many others, which are mainly focused on their metabolic/nutritional properties, have been published. Therefore, the mechanisms behind the interaction between host immune cells and probiotics have only been partially described. The present review aims to collect and summarize the most recent scientific results and the resulting implications of how probiotic bacteria and immune cells interact to improve immune functions. Hence, a description of the currently known immunomodulatory mechanisms of probiotic bacteria in improving the host immune system is provided.
Collapse
Affiliation(s)
- Chiara Mazziotta
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
- Center for Studies on Gender Medicine, Department of Medical Sciences, University of Ferrara, 64/b, Fossato di Mortara Street, 44121 Ferrara, Italy
| | - Mauro Tognon
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Fernanda Martini
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
- Center for Studies on Gender Medicine, Department of Medical Sciences, University of Ferrara, 64/b, Fossato di Mortara Street, 44121 Ferrara, Italy
- Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy
| | - Elena Torreggiani
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - John Charles Rotondo
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
- Center for Studies on Gender Medicine, Department of Medical Sciences, University of Ferrara, 64/b, Fossato di Mortara Street, 44121 Ferrara, Italy
| |
Collapse
|
7
|
Fuel M, Mesas C, Martínez R, Ortiz R, Quiñonero F, Bermúdez F, Gutiérrez N, Torres AM, Kapravelou G, Lozano A, Perazzoli G, Prados J, Porres JM, Melguizo C. Antioxidant and Chemopreventive Activity of Protein Hydrolysates from Raw and Germinated Flour of Legumes with Commercial Interest in Colorectal Cancer. Antioxidants (Basel) 2022; 11:2421. [PMID: 36552629 PMCID: PMC9774143 DOI: 10.3390/antiox11122421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/01/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022] Open
Abstract
Legumes are a highly nutritious source of plant protein, fiber, minerals and vitamins. However, they also contain several bioactive compounds with significant potential benefits for human health. The objectives of this study were to evaluate the antioxidant, antitumor and chemopreventive activity of functional extracts from legumes using raw and germinated flours of six legume species of commercial interest. The methodology carried out consisted on the development of protein hydrolysates, assessment of their antioxidant capacity and in vitro tests on T84, HCT15 and SW480 colorectal cancer (CRC) cell lines. Our results showed a high antitumor activity of protein hydrolysate from M. sativa. Likewise, when combined with 5-Fluorouracile (5-Fu), there was a synergistic effect using extract concentrations from 50 to 175 µg/mL and 5-Fu concentrations from 1.5 to 5 µM. Similarly, the induction effect on detoxifying enzymes by the extracts of M. sativa, germinated V. faba Baraca × LVzt1 and V. narbonensis, which produced a higher induction rate than the positive control sulforaphane (10 µM), should be highlighted. Therefore, incorporating these enzymes into the diet could provide nutritional effects, as well as play an effective role in cancer chemoprevention and therapy.
Collapse
Affiliation(s)
- Marco Fuel
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain
| | - Cristina Mesas
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain
- Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
- Instituto Biosanitario de Granada (ibs.GRANADA), 18014 Granada, Spain
| | - Rosario Martínez
- Cellbitec S.L., N.I.F. B04847216, Scientific Headquarters of the Almería Technology Park, Universidad de Almería, 04128 La Cañada, Spain
- Department of Physiology, Institute of Nutrition and Food Technology (INyTA), Biomedical Research Center (CIBM), Universidad de Granada, 18100 Granada, Spain
| | - Raúl Ortiz
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain
- Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
- Instituto Biosanitario de Granada (ibs.GRANADA), 18014 Granada, Spain
| | - Francisco Quiñonero
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain
- Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
- Instituto Biosanitario de Granada (ibs.GRANADA), 18014 Granada, Spain
| | - Francisco Bermúdez
- Cellbitec S.L., N.I.F. B04847216, Scientific Headquarters of the Almería Technology Park, Universidad de Almería, 04128 La Cañada, Spain
| | - Natalia Gutiérrez
- IFAPA Centro Alameda del Obispo, Área de Genómica y Biotecnología, Apdo 3092, 14080 Córdoba, Spain
| | - Ana M. Torres
- IFAPA Centro Alameda del Obispo, Área de Genómica y Biotecnología, Apdo 3092, 14080 Córdoba, Spain
| | - Garyfallia Kapravelou
- Department of Physiology, Institute of Nutrition and Food Technology (INyTA), Biomedical Research Center (CIBM), Universidad de Granada, 18100 Granada, Spain
| | - Aída Lozano
- Department of Physiology, Institute of Nutrition and Food Technology (INyTA), Biomedical Research Center (CIBM), Universidad de Granada, 18100 Granada, Spain
| | - Gloria Perazzoli
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain
- Instituto Biosanitario de Granada (ibs.GRANADA), 18014 Granada, Spain
| | - Jose Prados
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain
- Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
- Instituto Biosanitario de Granada (ibs.GRANADA), 18014 Granada, Spain
| | - Jesús M. Porres
- Department of Physiology, Institute of Nutrition and Food Technology (INyTA), Biomedical Research Center (CIBM), Universidad de Granada, 18100 Granada, Spain
| | - Consolación Melguizo
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain
- Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
- Instituto Biosanitario de Granada (ibs.GRANADA), 18014 Granada, Spain
| |
Collapse
|
8
|
Bioactive compounds from mushrooms: Emerging bioresources of food and nutraceuticals. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
9
|
Morales D. Use of Strawberry Tree ( Arbutus unedo) as a Source of Functional Fractions with Biological Activities. Foods 2022; 11:foods11233838. [PMID: 36496646 PMCID: PMC9736438 DOI: 10.3390/foods11233838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
Arbutus unedo, commonly named 'strawberry tree' (ST), is a Mediterranean native plant that represents a relevant source of biologically active fractions and compounds. ST fruits, traditionally used with culinary and medicinal purposes, along with other components (leaves, roots, honeys, etc.), have been subjected to varied extraction procedures to obtain enriched and bioactive products. This work reviewed the scientific literature, searching for studies that evaluated the potential health implications of ST fractions and attending to the tested biological activities (antioxidant, antiproliferative, hypoglycemic, immune-modulatory, antihypertensive, antimicrobial, etc.), the part of the tree, the experimental model, the specific bioactive compounds and the selected extraction protocol. Furthermore, the strengths and weaknesses of the current state of the published evidence were critically analysed. Although in vitro results demonstrated the potential of ST fractions, further research is encouraged in order to obtain in vivo evidence (animal and clinical studies), assess additional activities (hypocholesterolemic, microbiome-modulatory), maximize the use of advanced extraction technologies, purify and isolate specific bioactive compounds and broaden the analysis investigating phenolic and non-phenolic molecules and their bioavailability.
Collapse
Affiliation(s)
- Diego Morales
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007 Tarragona, Spain
| |
Collapse
|
10
|
Song Z, Cheng L, Liu Y, Zhan S, Wu Z, Zhang X. Plant-derived bioactive components regulate gut microbiota to prevent depression and depressive-related neurodegenerative diseases: Focus on neurotransmitters. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.10.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
11
|
Ali SG, Jalal M, Ahmad H, Sharma D, Ahmad A, Umar K, Khan HM. Green Synthesis of Silver Nanoparticles from Camellia sinensis and Its Antimicrobial and Antibiofilm Effect against Clinical Isolates. MATERIALS (BASEL, SWITZERLAND) 2022; 15:6978. [PMID: 36234319 PMCID: PMC9570907 DOI: 10.3390/ma15196978] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 09/09/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
The green synthesis method of was used for the synthesis of silver nanoparticles using Camellia sinensis (green tea). The Camellia sinensis silver nanoparticles (CS-AgNPs) were characterized using different techniques, including UV-Vis (ultra violet-visible), SEM (scanning electron microscopy), TEM (transmission electron microscopy), and XRD (X-ray diffraction). The average size of the CS-AgNPs was 52 nm, according to TEM. The CS-AgNPs showed excellent antibacterial and antifungal activity. The MIC (minimum inhibitory concentration) against bacterial isolates varied from 31.25 to 62.5 µg/mL, whereas for fungal isolates, the MIC varied from 125 to 250 µg/mL. The presence of a zone in the well diffusion assay showed the antimicrobial nature of CS-AgNPs. Further, CLSM (confocal laser scanning microscopy) showed that CS-AgNPs possess antibiofilm activity. The interaction of CS-AgNPs with the Candidal cells was analyzed using TEM, and it was revealed that CS-AgNPs entered the cell and disrupted the cell machinery.
Collapse
Affiliation(s)
- Syed Ghazanfar Ali
- Department of Microbiology, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh 202002, India
| | - Mohammad Jalal
- Department of Microbiology, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh 202002, India
| | - Hilal Ahmad
- SRM Institute of Science and Technology, Kattankulathur, Chennai 603203, India
| | - Diwakar Sharma
- Department of Civil Engineering, Aligarh Muslim University, Aligarh 202002, India
| | - Akil Ahmad
- Department of Chemistry, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Khalid Umar
- School of Chemical Sciences, University Sains Malaysia, Gelugor 11800, Malaysia
| | - Haris Manzoor Khan
- Department of Microbiology, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh 202002, India
| |
Collapse
|
12
|
Fisette A, Sergi D, Breton-Morin A, Descôteaux S, Martinoli MG. New Insights on the Role of Bioactive Food Derivatives in Neurodegeneration and Neuroprotection. Curr Pharm Des 2022; 28:3068-3081. [PMID: 36121075 DOI: 10.2174/1381612828666220919085742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 07/30/2022] [Indexed: 01/28/2023]
Abstract
Over the last three decades, neurodegenerative diseases have received increasing attention due to their frequency in the aging population and the social and economic burdens they are posing. In parallel, an era's worth of research in neuroscience has shaped our current appreciation of the complex relationship between nutrition and the central nervous system. Particular branches of nutrition continue to galvanize neuroscientists, in particular the diverse roles that bioactive food derivatives play on health and disease. Bioactive food derivatives are nowadays recognized to directly impact brain homeostasis, specifically with respect to their actions on cellular mechanisms of oxidative stress, neuroinflammation, mitochondrial dysfunction, apoptosis and autophagy. However, ambiguities still exist regarding the significance of the influence of bioactive food derivatives on human health. In turn, gut microbiota dysbiosis is emerging as a novel player in the pathogenesis of neurodegenerative diseases. Currently, several routes of communication exist between the gut and the brain, where molecules are either released in the bloodstream or directly transported to the CNS. As such, bioactive food derivatives can modulate the complex ecosystem of the gut-brain axis, thus, targeting this communication network holds promises as a neuroprotective tool. This review aims at addressing one of the emerging aspects of neuroscience, particularly the interplay between food bioactive derivatives and neurodegeneration. We will specifically address the role that polyphenols and omega-3 fatty acids play in preventing neurodegenerative diseases and how dietary intervention complements available pharmacological approaches.
Collapse
Affiliation(s)
- Alexandre Fisette
- Department of Medical Biology, Université du Québec à Trois-Rivières, Trois-Rivières, Qc., Canada
| | - Domenico Sergi
- Department of Translational Medicine, University di Ferrara, Ferrara, Italy
| | - Alyssa Breton-Morin
- Department of Medical Biology, Université du Québec à Trois-Rivières, Trois-Rivières, Qc., Canada
| | - Savanah Descôteaux
- Department of Medical Biology, Université du Québec à Trois-Rivières, Trois-Rivières, Qc., Canada
| | - Maria-Grazia Martinoli
- Department of Medical Biology, Université du Québec à Trois-Rivières, Trois-Rivières, Qc., Canada.,Department of Psychiatry and Neuroscience, U. Laval and CHU Research Center, Québec, Canada
| |
Collapse
|
13
|
Salama SA, AL-Faifi ZE, El-Amier YA. Chemical Composition of Reichardia tingitana Methanolic Extract and Its Potential Antioxidant, Antimicrobial, Cytotoxic and Larvicidal Activity. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11152028. [PMID: 35956506 PMCID: PMC9370821 DOI: 10.3390/plants11152028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 07/24/2022] [Accepted: 07/29/2022] [Indexed: 06/07/2023]
Abstract
The biggest challenges are locating effective, reasonably priced, and eco-friendly compounds to treat diseases caused by insects and microbes. The aim of this study was to employ GC-MS to assess the biological potency and chemical composition of the aerial parts of Reichardia tingitana (L.) Roth. Using this technique, 17 components were interpreted from the extracted plant, accounting for around 100% of total volatile compounds. Commonly, 6,10,14-trimethylpentadecan-2-one (21.98%) and methyl oleate (27.26%) were positioned as the major components, which were ascertained after 19.25, and 23.34 min, respectively. The major components were classified as hydrocarbons (23.82%), fatty acids, esters of fatty acids (57.46%), steroids (17.26%), and terpenes (1.48%). The DPPH antioxidant activity of the R. tingitana extracted components revealed that the shoot extract is the most powerful, with an IC50 value of 30.77 mg L−1 and a radical scavenging activity percentage of 71.91%. According to the current result, methanolic extract of R. tingitana had the maximum zone of inhibition against Salmonella typhimurium and Bacillus cereus (25.71 ± 1.63 and 24.42 ± 0.81 mm, respectively), while Clostridium tetani and Staphylococcus xylosus were the main resistant species. In addition, the 50% methanol crude shoot extract of R. tingitana showed greater potential anticancer activity with high cytotoxicity for two tumor cells HepG-2 and PC3 cells (IC50 = 29.977 and 40.479 µg mL−1, respectively) and noncytotoxic activity for WI-38 normal cells (IC50 = >100 µg mL−1). The MeOH extract of plant sample was more effective against Aedes aegypti larvae with LC50 of extract being 46.85, 35.75, and 29.38 mg L−1, whereas the LC90 is 82.66, 63.82, and 53.30 mg L−1 for the various time periods of 24, 48, and 72 h, respectively. R. tingitana is a possible biologically active plant. Future study will include pure chemical isolation and individual component bioactivity evaluation.
Collapse
Affiliation(s)
- Salama A. Salama
- Biology Department, Faculty of Science, Jazan University, P.O. Box 114, Jazan 45142, Saudi Arabia
- Zoology Department, Faculty of Science, Damanhur University, Damanhour 22511, Egypt
| | - Zarraq E. AL-Faifi
- Center for Environmental Research and Studies, Jazan University, P.O. Box 2097, Jazan 42145, Saudi Arabia
| | - Yasser A. El-Amier
- Department of Botany, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
14
|
Effect of Coffee on Lipopolysaccharide-Induced Immortalized Human Oral Keratinocytes. Foods 2022; 11:foods11152199. [PMID: 35892784 PMCID: PMC9330743 DOI: 10.3390/foods11152199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/18/2022] [Accepted: 07/21/2022] [Indexed: 11/16/2022] Open
Abstract
Periodontitis is a common inflammatory disease that is strongly influenced by dietary habits. Coffee is one of the most common dietary components; however, current research on the relationship between coffee consumption and periodontitis, as well as its underlying mechanisms, is limited. Based on a previous report, caffeine (CA) and chlorogenic acid (CGA) were formulated into artificial coffee (AC) for this experiment. Cell viability, prostaglandin E2 release, Western blotting, cellular reactive oxygen species (ROS) production, and NF-E2-related factor 2 (Nrf2) translocation analyses were performed to explore the effects of AC on lipopolysaccharide (LPS)-induced immortalized human oral keratinocytes (IHOKs) and elucidate their underlying mechanisms. AC pretreatment attenuated LPS-induced inflammatory mediator release, ROS production, and nuclear factor kappa B translocation in IHOKs. CA and CGA promoted AMP-activated protein kinase phosphorylation and down-regulated the nuclear factor-κB pathways to exert anti-inflammatory effects. Additionally, CGA promoted Nrf2 translocation and heme oxygenase-1 expression and showed anti-oxidative effects. Furthermore, AC, CA, and CGA components showed synergistic effects. Thus, we predict that coffee consumption may be beneficial for alleviating periodontitis. Moreover, the main coffee components CA and CGA seem to play a synergistic role in periodontitis.
Collapse
|
15
|
Liu L, Wang L, Li X, Zhu S, Pan N, Wang X, Li C, Li Y. Effects of Different Bud Thinning Methods on Nutritional Quality and Antioxidant Activities of Fruiting Bodies of Pleurotus eryngii. FRONTIERS IN PLANT SCIENCE 2022; 13:917010. [PMID: 35783955 PMCID: PMC9244624 DOI: 10.3389/fpls.2022.917010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
The cultivation of Pleurotus eryngii was studied by different methods, such as puncturing and fixed-point mushroom production, shading treatment at the top of the bag, and pulling the top of the bag. The agronomic characters, yield, nutritional components, and antioxidant activities in vitro of fruiting bodies of P. eryngii were determined. The results showed that the number of buds in the perforated treatment was less than that in the production method of traditional fruiting bodies to a certain extent. When a circular hole with a diameter of 1.5 cm was drilled in the perforated treatment, the number of buds was 5, which was less than that in the control group. The efficiency of artificial removal of buds was significantly higher than that of the control group, but the harvesting date was longer than that of other methods. The number of buds in shading treatment and bag opening treatment was significantly less than that in the control group, which could effectively control the number of buds and reduce the cost of manpower and material resources. In terms of nutritional components, the A3 treatment group with a hole diameter of 1.0 cm and a quantity of one had the highest crude protein content of 151.34 g, and a significant difference was observed in crude fiber content compared with other treatments. The extraction rate of B5 crude polysaccharide was the highest, and the extraction rate was 12.90%. The antioxidant activities in vitro increased with the increase of crude polysaccharide concentration. Using A3 treatment to cultivate fruiting bodies is conducive to meeting people's requirements for improving quality of life.
Collapse
Affiliation(s)
- Lingyun Liu
- Engineering Research Center of Edible and Medicinal Fungi, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Lupeng Wang
- Engineering Research Center of Edible and Medicinal Fungi, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Xuefei Li
- Engineering Research Center of Edible and Medicinal Fungi, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Shurui Zhu
- Engineering Research Center of Edible and Medicinal Fungi, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Niangang Pan
- Engineering Research Center of Edible and Medicinal Fungi, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Xin Wang
- Engineering Research Center of Edible and Medicinal Fungi, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Changtian Li
- Engineering Research Center of Edible and Medicinal Fungi, Ministry of Education, Jilin Agricultural University, Changchun, China
- International Joint Research Center, Creation of New Edible Mushroom Germplasm Resources, Ministry of Science and Technology, Jilin Agricultural University, Changchun, China
| | - Yu Li
- Engineering Research Center of Edible and Medicinal Fungi, Ministry of Education, Jilin Agricultural University, Changchun, China
- International Joint Research Center, Creation of New Edible Mushroom Germplasm Resources, Ministry of Science and Technology, Jilin Agricultural University, Changchun, China
| |
Collapse
|
16
|
Sałański P, Kowalczyk M, Bardowski JK, Szczepankowska AK. Health-Promoting Nature of Lactococcus lactis IBB109 and Lactococcus lactis IBB417 Strains Exhibiting Proliferation Inhibition and Stimulation of Interleukin-18 Expression in Colorectal Cancer Cells. Front Microbiol 2022; 13:822912. [PMID: 35694291 PMCID: PMC9174673 DOI: 10.3389/fmicb.2022.822912] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 04/29/2022] [Indexed: 12/19/2022] Open
Abstract
Lactic acid bacteria (LAB) are Gram-positive bacteria which are considered for use as adjuvant therapeutics in management of various disease ailments, including obesity, irritable bowel syndrome, lactose intolerance and cancer. To investigate the possible use of Lactococcus lactis strains from our collection in treatment of gastrointestinal cancer, we tested them for the ability to arrest proliferation of human colorectal adenocarcinoma cells (Caco-2). Results of the BrdU assay showed that the anti-proliferative activity of L. lactis cells is strain-specific. We found that particularly, two strains, L. lactis IBB109 and L. lactis IBB417, exhibited the most potent inhibitory effect. Moreover, both strains triggered interleukin 18 gene expression, normally inhibited in Caco-2 (cancer) cells. To examine the probiotic potential of the two strains, we tested them for bile salts and acid tolerance, as well as adhesion properties. Both isolates exhibited probiotic potential—they survived in the presence of 0.3% bile salts and tolerated exposure to low pH and osmotic stress. Notably, we found that L. lactis IBB417 displayed better adherence to mucus and Caco-2 cells than L. lactis IBB109. Additionally, by microdilution tests we confirmed that both strains are sensitive to all nine antibiotics of human and veterinary importance listed by the European Food Safety Authority. Finally, by in silico investigations of whole genome sequencing data, we revealed the genetic features of L. lactis IBB109 and L. lactis IBB417 that can be associated with functional (e.g., adhesion and carbohydrate metabolic genes) and safety (e.g., virulence and antibiotic resistance) aspects of the strains, confirming their health-promoting potential.
Collapse
|
17
|
Soheili M, Alinaghipour A, Salami M. Good bacteria, oxidative stress and neurological disorders: Possible therapeutical considerations. Life Sci 2022; 301:120605. [DOI: 10.1016/j.lfs.2022.120605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 04/27/2022] [Accepted: 04/27/2022] [Indexed: 12/11/2022]
|
18
|
Mohammadi A, Mashayekhi K, Navashenaq JG, Haftcheshmeh SM. Curcumin as a Natural Modulator of B Lymphocytes: Evidence from In Vitro and In Vivo Studies. Mini Rev Med Chem 2022; 22:2361-2370. [DOI: 10.2174/1389557522666220304122916] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/12/2021] [Accepted: 12/22/2021] [Indexed: 11/22/2022]
Abstract
Abstract:
B cells are the only player of humoral immune responses by the production of various types of antibodies. However, B cells are also involved in the pathogenesis of several immune-mediated diseases. Moreover, different types of B cell lymphoma have also been characterized. Selective depletion of B cells by anti-CD20 and other B cell-depleting agents in the clinic can improve a wide range of immune-mediated diseases. B cells' capacity to act as cytokine-producing cells explains how they can control immune cells' activity and contribute to disease pathogenesis. Thus, researchers investigated a safe, low-cost, and effective treatment modality for targeting B cells. In this respect, curcumin, the biologically active ingredient of turmeric, has a wide range of pharmacological activities. Evidence showed that curcumin could affect various immune cells, such as monocytes and macrophages, dendritic cells, and T lymphocytes. However, there are few pieces of evidence about the effects of curcumin on B cells. This study aims to review the available evidence about curcumin's modulatory effects on B cells' proliferation, differentiation, and function in different states. Apart from normal B cells, the modulatory effects of curcumin on B cell lymphoma will also discuss.
Collapse
Affiliation(s)
- Asadollah Mohammadi
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Kazem Mashayekhi
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | | | - Saeed Mohammadian Haftcheshmeh
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran
- Healthy Ageing Research Centre, Neyshabur University of Medical Sciences, Neyshabur, Iran
| |
Collapse
|
19
|
Zeng X, Li J, Lyu X, Chen XM, Guo S. Nutritional Characterization and Untargeted Metabolomics of Oyster Mushroom Produced Using Astragalus membranaceus var. mongolicus Stems and Leaves as Substrates. FRONTIERS IN PLANT SCIENCE 2022; 13:802801. [PMID: 35185978 PMCID: PMC8853653 DOI: 10.3389/fpls.2022.802801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 01/13/2022] [Indexed: 06/02/2023]
Abstract
Astragalus membranaceus var. mongolicus (AMM) is an edible and medicinal material and is commonly used in East Asia. According to the pharmacopeia of China, the dried root of AMM is medicinal. However, the aerial parts of AMM are always directly discarded after harvest. The stems and leaves are also rich in active compounds, including saponins, flavonoids, terpenoids, and polysaccharides. To rationally use resources, waste products from AMM stems and leaves are useful substrates for edible fungus cultivation. Here, oyster mushroom (Pleurotus ostreatus var. florida) was cultivated on a basal substrate supplemented with AMM stems and leaves (AMM group). The nutritional and chemical composition of the fruiting body were analyzed by metabolomics and chemometrics. Our results showed that AMM addition to the substrate affected the fresh weight, moisture, fat, protein, and element concentrations, and amino acid composition of oyster mushroom. Moreover, 2,156 metabolites were detected and annotated based on the metabolomics data, of which 680 were identified as differentially expressed metabolites. Many active phytometabolites previously identified in AMM herbs were also detected in the metabolomics of oyster mushroom from AMM group, including 46 terpenoids, 21 flavonoids, 17 alkaloids, 14 phenylpropanoids, and 3 fatty acids. In summary, our results imply that oyster mushroom cultured with AMM stems and leaves might have very high nutritional therapy health care value.
Collapse
Affiliation(s)
| | | | | | - Xiao-Mei Chen
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shunxing Guo
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
20
|
Torres CE, Cifuentes J, Gómez SC, Quezada V, Giraldo KA, Puentes PR, Rueda-Gensini L, Serna JA, Muñoz-Camargo C, Reyes LH, Osma JF, Cruz JC. Microfluidic Synthesis and Purification of Magnetoliposomes for Potential Applications in the Gastrointestinal Delivery of Difficult-to-Transport Drugs. Pharmaceutics 2022; 14:315. [PMID: 35214047 PMCID: PMC8877506 DOI: 10.3390/pharmaceutics14020315] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 01/26/2023] Open
Abstract
Magnetite nanoparticles (MNPs) have gained significant attention in several applications for drug delivery. However, there are some issues related to cell penetration, especially in the transport of cargoes that show limited membrane passing. A widely studied strategy to overcome this problem is the encapsulation of the MNPs into liposomes to form magnetoliposomes (MLPs), which are capable of fusing with membranes to achieve high delivery rates. This study presents a low-cost microfluidic approach for the synthesis and purification of MLPs and their biocompatibility and functional testing via hemolysis, platelet aggregation, cytocompatibility, internalization, and endosomal escape assays to determine their potential application in gastrointestinal delivery. The results show MLPs with average hydrodynamic diameters ranging from 137 ± 17 nm to 787 ± 45 nm with acceptable polydispersity index (PDI) values (below 0.5). In addition, we achieved encapsulation efficiencies between 20% and 90% by varying the total flow rates (TFRs), flow rate ratios (FRRs), and MNPs concentration. Moreover, remarkable biocompatibility was attained with the obtained MLPs in terms of hemocompatibility (hemolysis below 1%), platelet aggregation (less than 10% with respect to PBS 1×), and cytocompatibility (cell viability higher than 80% in AGS and Vero cells at concentrations below 0.1 mg/mL). Additionally, promising delivery results were obtained, as evidenced by high internalization, low endosomal entrapment (AGS cells: PCC of 0.28 and covered area of 60% at 0.5 h and PCC of 0.34 and covered area of 99% at 4 h), and negligible nuclear damage and DNA condensation. These results confirm that the developed microfluidic devices allow high-throughput production of MLPs for potential encapsulation and efficient delivery of nanostructured cell-penetrating agents. Nevertheless, further in vitro analysis must be carried out to evaluate the prevalent intracellular trafficking routes as well as to gain a detailed understanding of the existing interactions between nanovehicles and cells.
Collapse
Affiliation(s)
- Carlos E. Torres
- Department of Biomedical Engineering, School of Engineering, Universidad de Los Andes, Carrera 1 No. 18A-12, Bogotá 111711, Colombia; (C.E.T.); (J.C.); (S.C.G.); (V.Q.); (K.A.G.); (P.R.P.); (L.R.-G.); (J.A.S.); (C.M.-C.)
| | - Javier Cifuentes
- Department of Biomedical Engineering, School of Engineering, Universidad de Los Andes, Carrera 1 No. 18A-12, Bogotá 111711, Colombia; (C.E.T.); (J.C.); (S.C.G.); (V.Q.); (K.A.G.); (P.R.P.); (L.R.-G.); (J.A.S.); (C.M.-C.)
| | - Saúl C. Gómez
- Department of Biomedical Engineering, School of Engineering, Universidad de Los Andes, Carrera 1 No. 18A-12, Bogotá 111711, Colombia; (C.E.T.); (J.C.); (S.C.G.); (V.Q.); (K.A.G.); (P.R.P.); (L.R.-G.); (J.A.S.); (C.M.-C.)
| | - Valentina Quezada
- Department of Biomedical Engineering, School of Engineering, Universidad de Los Andes, Carrera 1 No. 18A-12, Bogotá 111711, Colombia; (C.E.T.); (J.C.); (S.C.G.); (V.Q.); (K.A.G.); (P.R.P.); (L.R.-G.); (J.A.S.); (C.M.-C.)
| | - Kevin A. Giraldo
- Department of Biomedical Engineering, School of Engineering, Universidad de Los Andes, Carrera 1 No. 18A-12, Bogotá 111711, Colombia; (C.E.T.); (J.C.); (S.C.G.); (V.Q.); (K.A.G.); (P.R.P.); (L.R.-G.); (J.A.S.); (C.M.-C.)
| | - Paola Ruiz Puentes
- Department of Biomedical Engineering, School of Engineering, Universidad de Los Andes, Carrera 1 No. 18A-12, Bogotá 111711, Colombia; (C.E.T.); (J.C.); (S.C.G.); (V.Q.); (K.A.G.); (P.R.P.); (L.R.-G.); (J.A.S.); (C.M.-C.)
| | - Laura Rueda-Gensini
- Department of Biomedical Engineering, School of Engineering, Universidad de Los Andes, Carrera 1 No. 18A-12, Bogotá 111711, Colombia; (C.E.T.); (J.C.); (S.C.G.); (V.Q.); (K.A.G.); (P.R.P.); (L.R.-G.); (J.A.S.); (C.M.-C.)
| | - Julian A. Serna
- Department of Biomedical Engineering, School of Engineering, Universidad de Los Andes, Carrera 1 No. 18A-12, Bogotá 111711, Colombia; (C.E.T.); (J.C.); (S.C.G.); (V.Q.); (K.A.G.); (P.R.P.); (L.R.-G.); (J.A.S.); (C.M.-C.)
| | - Carolina Muñoz-Camargo
- Department of Biomedical Engineering, School of Engineering, Universidad de Los Andes, Carrera 1 No. 18A-12, Bogotá 111711, Colombia; (C.E.T.); (J.C.); (S.C.G.); (V.Q.); (K.A.G.); (P.R.P.); (L.R.-G.); (J.A.S.); (C.M.-C.)
| | - Luis H. Reyes
- Department of Chemical and Food Engineering, School of Engineering, Universidad de Los Andes, Carrera 1 No. 18A-12, Bogotá 111711, Colombia
| | - Johann F. Osma
- Department of Electrical and Electronic Engineering, School of Engineering, Universidad de Los Andes, Carrera 1 No. 18A-12, Bogotá 111711, Colombia
| | - Juan C. Cruz
- Department of Biomedical Engineering, School of Engineering, Universidad de Los Andes, Carrera 1 No. 18A-12, Bogotá 111711, Colombia; (C.E.T.); (J.C.); (S.C.G.); (V.Q.); (K.A.G.); (P.R.P.); (L.R.-G.); (J.A.S.); (C.M.-C.)
| |
Collapse
|
21
|
Petrovic J, Fernandes Â, Stojković D, Soković M, Barros L, Ferreira I, Shekhar A, Glamočlija J. A Step Forward Towards Exploring Nutritional and Biological Potential of Mushrooms: A Case Study of Calocybe gambosa (Fr.) Donk Wild Growing in Serbia. POL J FOOD NUTR SCI 2022. [DOI: 10.31883/pjfns/144836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
22
|
Plant-Based Polyphenols: Anti-Helicobacter pylori Effect and Improvement of Gut Microbiota. Antioxidants (Basel) 2022; 11:antiox11010109. [PMID: 35052613 PMCID: PMC8772845 DOI: 10.3390/antiox11010109] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 12/28/2021] [Accepted: 12/30/2021] [Indexed: 02/07/2023] Open
Abstract
Helicobacter pylori (H. pylori) infection affects more than half of the world’s population, and thus, about 10 to 20% of people with H. pylori suffer from peptic ulcers, which may ultimately lead to gastric cancer. The increase in antibiotic resistance and susceptibility has encouraged the search for new alternative therapies to eradicate this pathogen. Several plant species are essential sources of polyphenols, and these bioactive compounds have demonstrated health-promoting properties, such as the gut microbiota stimulation, inflammation reduction, and bactericidal effect. Therefore, this review aims to discuss the potential effect of plant-based polyphenols against H. pylori and their role in the gut microbiota improvement.
Collapse
|
23
|
Ashwin K, Pattanaik AK, Howarth GS. Polyphenolic bioactives as an emerging group of nutraceuticals for promotion of gut health: A review. FOOD BIOSCI 2021; 44:101376. [DOI: 10.1016/j.fbio.2021.101376] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
24
|
Allison J, Kaliszewska A, Uceda S, Reiriz M, Arias N. Targeting DNA Methylation in the Adult Brain through Diet. Nutrients 2021; 13:nu13113979. [PMID: 34836233 PMCID: PMC8618930 DOI: 10.3390/nu13113979] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/05/2021] [Accepted: 11/05/2021] [Indexed: 02/07/2023] Open
Abstract
Metabolism and nutrition have a significant role in epigenetic modifications such as DNA methylation, which can influence gene expression. Recently, it has been suggested that bioactive nutrients and gut microbiota can alter DNA methylation in the central nervous system (CNS) through the gut-brain axis, playing a crucial role in modulating CNS functions and, finally, behavior. Here, we will focus on the effect of metabolic signals in shaping brain DNA methylation during adulthood. We will provide an overview of potential interactions among diet, gastrointestinal microbiome and epigenetic alterations on brain methylation and behavior. In addition, the impact of different diet challenges on cytosine methylation dynamics in the adult brain will be discussed. Finally, we will explore new ways to modulate DNA hydroxymethylation, which is particularly abundant in neural tissue, through diet.
Collapse
Affiliation(s)
- Joseph Allison
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, Denmark Hill, London SE5 8AF, UK; (J.A.); (A.K.)
| | - Aleksandra Kaliszewska
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, Denmark Hill, London SE5 8AF, UK; (J.A.); (A.K.)
| | - Sara Uceda
- BRABE Group, Department of Psychology, Faculty of Life and Natural Sciences, University of Nebrija, C/del Hostal, 28248 Madrid, Spain; (S.U.); (M.R.)
| | - Manuel Reiriz
- BRABE Group, Department of Psychology, Faculty of Life and Natural Sciences, University of Nebrija, C/del Hostal, 28248 Madrid, Spain; (S.U.); (M.R.)
| | - Natalia Arias
- BRABE Group, Department of Psychology, Faculty of Life and Natural Sciences, University of Nebrija, C/del Hostal, 28248 Madrid, Spain; (S.U.); (M.R.)
- Institute of Neurosciences of the Principality of Asturias (INEUROPA), 33003 Oviedo, Spain
- Health Research Institute of the Principality of Asturias—ISPA, 33011 Oviedo, Spain
- Correspondence: ; Tel.: +34-91-452-1101
| |
Collapse
|
25
|
Chakraborty K, Dhara S, Mani AE. Ulvapyrone, a pyrone-linked benzochromene from sea lettuce Ulva lactuca Linnaeus (family Ulvaceae): newly described anti-inflammatory agent attenuates arachidonate 5-lipoxygenase. Nat Prod Res 2021; 36:4114-4124. [PMID: 34542363 DOI: 10.1080/14786419.2021.1976173] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Green marine macroalgae, particularly Ulva lactuca, is an essential constituent of the cuisines in many Asian countries. The present work aims to separate a bioactive pyrone attached benzochromene analogue, named as ulvapyrone from the organic extract of U. lactuca, followed by its structural characterisation as 2-{(6a'-hydroxyethyl-4'-methyltetrahydro-2H-pyran-2'-one)-6'-yl}-4-methyl-7-ethylacetate-8-hydroxy-7, 8-dihydrobenzo [de]chromene. Ulvapyrone exhibited prospective inhibition property against arachidonate 5-lipoxygenase (IC50 ∼1 mg mL-1) comparable to that demonstrated by ibuprofen (IC50 0.9 mg mL-1), which connoted its anti-inflammatory activity. The studied benzochromene exhibited promising antioxidant potential (IC50 0.5-0.6 mg mL-1), which further reinforced its attenuation property against 5-lipoxygenase. Bioactivities of ulvapyrone were linearly correlated with electronic parameter (topological polar surface area ∼102) along with less binding energy (-8.22 kcal mol-1) with the allosteric site of 5-lipoxygenase. In silico predictions of physicochemical parameters along with absorption, distribution, metabolism and excretion could recognise the acceptable oral bioavailability of ulvapyrone.
Collapse
Affiliation(s)
- Kajal Chakraborty
- Central Marine Fisheries Research Institute, Ernakulam North, Cochin, Kerala, India
| | - Shubhajit Dhara
- Central Marine Fisheries Research Institute, Ernakulam North, Cochin, Kerala, India
| | | |
Collapse
|
26
|
Akram M, Thiruvengadam M, Zainab R, Daniyal M, Bankole MM, Rebezov M, Shariati MA, Okuskhanova E. Herbal Medicine for the Management of Laxative Activity. Curr Pharm Biotechnol 2021; 23:1269-1283. [PMID: 34387161 DOI: 10.2174/1389201022666210812121328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 05/21/2021] [Accepted: 07/23/2021] [Indexed: 11/22/2022]
Abstract
Constipation is one of the most common and prevalent chronic gastrointestinal conditions across the globe that is treated or managed through various methods. Laxatives are used for the treatment or management of chronic/acute constipation. But due to the adverse effects associated with these laxatives, herbal foods should be considered as alternative therapies for constipation. In this review, the laxative potential of plant-based medicines used for constipation were discussed. Constipation may be caused by various factors such as lifestyle, particular food habits, pregnancy and even due to some medication. Chronic constipation is responsible for different health issues. Pharmacological and non-pharmacological paradigms are applied for the treatment or management of constipation. In the pharmacological way of treatment, medicinal plants have a key role, because of their fibrous nature. Numerous plants such as Prunus persica (Rosaceae), Cyamopsis tetragonolobus (Leguminosae), Citrus sinensis (Rutaceae), Planta goovata (Plantaginaceae), Rheum emodi (Polygonaceae), Cassia auriculata (Caesalpinacea), Ricinus communis (Euphorbiaceae), Croton tiglium (Euphorbiaceae), Aloe barbadensis (Liliaceae), Mareya micrantha (Euphorbiaceae), Euphorbia thymifolia (Euphorbiaceae), Cascara sagrada (Rhamnaceae), Cassia angustifolia (Fabaceae) have laxative activity. Medicinal plants possess a significant laxative potential and support their folklore therefore, further, well-designed clinical-based studies are required to prove and improve the efficacy of herbal medicine for constipation. The present review showed that herbs laxative effect in various in-vivo/ in-vitro models.
Collapse
Affiliation(s)
- Muhammad Akram
- Department of Eastern Medicine, Government College University Faisalabad. Pakistan
| | - Muthu Thiruvengadam
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul 05029. South Korea
| | - Rida Zainab
- Department of Eastern Medicine, Government College University Faisalabad. Pakistan
| | - Muhammad Daniyal
- Faculty of Eastern Medicine, Hamdard University, Karachi. Pakistan
| | - Marc Moboladji Bankole
- African Centre of Excellence (World Bank) Public Health and Toxicological Research (ACE-PUTOR) University of Port Harcourt, Rivers State. Nigeria
| | - Maksim Rebezov
- V. M. Gorbatov Federal Research Center for Food Systems of Russian Academy of Sciences, Moscow. Russian Federation
| | - Mohammad Ali Shariati
- K.G. Razumovsky Moscow State University of Technologies and Management (the First Cossack University), 109004, Moscow. Russian Federation
| | | |
Collapse
|
27
|
Wide Spectrum of Active Compounds in Sea Buckthorn ( Hippophae rhamnoides) for Disease Prevention and Food Production. Antioxidants (Basel) 2021; 10:antiox10081279. [PMID: 34439527 PMCID: PMC8389226 DOI: 10.3390/antiox10081279] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/06/2021] [Accepted: 08/10/2021] [Indexed: 11/25/2022] Open
Abstract
Growing demand for value-added products and functional foods is encouraging manufacturers to consider new additives that can enrich their products and help combat lifestyle diseases. The healthy properties of sea buckthorn have been recognized for centuries. This plant has a high content of bioactive compounds, including antioxidants, phytosterols, essential fatty acids, and amino acids, as well as vitamins C, K, and E. It also has a low content of sugar and a wide spectrum of volatiles, which contribute to its unique aroma. Sea buckthorn shows antimicrobial and antiviral properties, and is a potential nutraceutical or cosmeceutical. It was proven to help treat cardiovascular disease, tumors, and diabetes, as well as gastrointestinal and skin problems. The numerous health benefits of sea buckthorn make it a good candidate for incorporation into novel food products.
Collapse
|
28
|
De Santis S, Liso M, Verna G, Curci F, Milani G, Faienza MF, Franchini C, Moschetta A, Chieppa M, Clodoveo ML, Crupi P, Corbo F. Extra Virgin Olive Oil Extracts Modulate the Inflammatory Ability of Murine Dendritic Cells Based on Their Polyphenols Pattern: Correlation between Chemical Composition and Biological Function. Antioxidants (Basel) 2021; 10:1016. [PMID: 34202671 PMCID: PMC8300824 DOI: 10.3390/antiox10071016] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/11/2021] [Accepted: 06/16/2021] [Indexed: 12/11/2022] Open
Abstract
Extra virgin olive oil (EVOO) represents one of the most important health-promoting foods whose antioxidant and anti-inflammatory activities are mainly associated to its polyphenols content. To date, studies exploring the effect of EVOO polyphenols on dendritic cells (DCs), acting as a crosstalk between the innate and the adaptive immune response, are scanty. Therefore, we studied the ability of three EVOO extracts (cv. Coratina, Cima di Mola/Coratina, and Casaliva), characterized by different polyphenols amount, to regulate DCs maturation in resting conditions or after an inflammatory stimulus. Cima di Mola/Coratina and Casaliva extracts were demonstrated to be the most effective in modulating DCs toward an anti-inflammatory profile by reduction of TNF and IL-6 secretion and CD86 expression, along with a down-modulation of Il-1β and iNOS expression. From factorial analysis results, 9 polyphenols were tentatively established to play a synergistic role in modulating DCs inflammatory ability, thus reducing the risk of chronic inflammation.
Collapse
Affiliation(s)
- Stefania De Santis
- Department of Pharmacy-Drug Science, University of Bari Aldo Moro, 70126 Bari, Italy; (F.C.); (G.M.); (C.F.); (F.C.)
| | - Marina Liso
- National Institute of Gastroenterology “S. de Bellis”, Research Hospital, 70013 Castellana Grotte, Italy; (M.L.); (M.C.)
| | - Giulio Verna
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy;
| | - Francesca Curci
- Department of Pharmacy-Drug Science, University of Bari Aldo Moro, 70126 Bari, Italy; (F.C.); (G.M.); (C.F.); (F.C.)
| | - Gualtiero Milani
- Department of Pharmacy-Drug Science, University of Bari Aldo Moro, 70126 Bari, Italy; (F.C.); (G.M.); (C.F.); (F.C.)
| | - Maria Felicia Faienza
- Pediatric Unit, Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, 70124 Bari, Italy;
| | - Carlo Franchini
- Department of Pharmacy-Drug Science, University of Bari Aldo Moro, 70126 Bari, Italy; (F.C.); (G.M.); (C.F.); (F.C.)
| | - Antonio Moschetta
- Department of Interdisciplinary Medicine, University of Bari Aldo Moro, 70124 Bari, Italy; (A.M.); (M.L.C.)
| | - Marcello Chieppa
- National Institute of Gastroenterology “S. de Bellis”, Research Hospital, 70013 Castellana Grotte, Italy; (M.L.); (M.C.)
| | - Maria Lisa Clodoveo
- Department of Interdisciplinary Medicine, University of Bari Aldo Moro, 70124 Bari, Italy; (A.M.); (M.L.C.)
| | - Pasquale Crupi
- Department of Interdisciplinary Medicine, University of Bari Aldo Moro, 70124 Bari, Italy; (A.M.); (M.L.C.)
| | - Filomena Corbo
- Department of Pharmacy-Drug Science, University of Bari Aldo Moro, 70126 Bari, Italy; (F.C.); (G.M.); (C.F.); (F.C.)
| |
Collapse
|
29
|
Zorraquín-Peña I, Taladrid D, Tamargo A, Silva M, Molinero N, de Llano DG, Bartolomé B, Moreno-Arribas MV. Effects of Wine and Its Microbial-Derived Metabolites on Intestinal Permeability Using Simulated Gastrointestinal Digestion/Colonic Fermentation and Caco-2 Intestinal Cell Models. Microorganisms 2021; 9:microorganisms9071378. [PMID: 34202738 PMCID: PMC8306816 DOI: 10.3390/microorganisms9071378] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/16/2021] [Accepted: 06/21/2021] [Indexed: 01/04/2023] Open
Abstract
This paper explores the effects of wine polyphenols on intestinal permeability in in vitro conditions. A red wine (2500 mg/L of gallic acid equivalents) was sequentially subjected to gastrointestinal and colonic digestion in the Dynamic Gastrointestinal Simulator (simgi®) to obtain two simulated fluids: intestinal-digested wine (IDW) and colonic-digested wine (CDW). The two fluids were incubated with Caco-2 cell monolayers grown in Transwell® inserts, and paracellular permeability was measured as transport of FITC-dextran. Non-significant decreases (p > 0.05) in paracellular permeability were found, which was attributed to the relatively low phenolic concentration in the solutions tested (15.6 and 7.8 mg of gallic acid equivalents/L for IDW and CDW, respectively) as quercetin (200 µM) and one of its microbial-derived phenolic metabolites, 3,4-dihydroxyphenylacetic acid (200 µM), led to significant decreases (p < 0.05). The expression of tight junction (TJ) proteins (i.e., ZO-1 and occludin) in Caco-2 cells after incubation with IDW and CDW was also determined. A slight increase in mRNA levels for occludin for both IDW and CDW fluids, albeit without statistical significance (p > 0.05), was observed. Analysis of the microbiome and microbial activity during wine colonic fermentation revealed relevant changes in the relative abundance of some families/genera (i.e., reduction in Bacteroides and an increase in Veillonella, Escherichia/Shigella and Akkermansia) as well as in the microbial production of SCFA (i.e., a significant increase in propionic acid in the presence of IDW), all of which might affect paracellular permeability. Both direct and indirect (microbiota-mediated) mechanisms might be involved in the protective effects of (wine) polyphenols on intestinal barrier integrity. Overall, this paper reinforces (wine) polyphenols as a promising dietary strategy to improve gut functionality, although further studies are needed to evaluate the effect on the intestinal barrier under different conditions.
Collapse
|
30
|
The Link between Obesity, Microbiota Dysbiosis, and Neurodegenerative Pathogenesis. Diseases 2021; 9:diseases9030045. [PMID: 34201465 PMCID: PMC8293145 DOI: 10.3390/diseases9030045] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/19/2021] [Accepted: 06/21/2021] [Indexed: 02/07/2023] Open
Abstract
Current research in medicine in several parts of the world has attempted to establish a link between the occurrence of neurodegenerative pathologies, microbiota dysbiosis, and the incidence of obesity. The body’s response to different physicochemical factors has also been influenced by the proper assimilation of bioactive compounds contained in the food that is ingested. Oxidative stress is one of the major factors that directly affects the functioning of the human microbiota. The body’s reaction to this imbalance is crucial to the progression of inflammatory processes, which are based on molecular mechanisms. Microbial dysbiosis can result in a possibly permanent alteration in the physiological response. This review aims to highlight recent contributions made to alleviating human dysbiosis in degenerative diseases, especially for neurodegenerative pathologies based on the rising prevalence of obesity. We discuss the significance of both microbiota modulation and possible alleviations of pathologies by a modulatory function. We argue that pre- and probiotics (including phenolic compounds stimulating the favorable strain from the microbiota) are an effective alternative that can support the microbiota pattern’s modulation over time and the attenuation of indirect causes that determine dysbiosis. Molecular aspects are presented in support of the modulating role of the microbiota following the use of probiotics.
Collapse
|
31
|
Roy P, Tomassoni D, Traini E, Martinelli I, Micioni Di Bonaventura MV, Cifani C, Amenta F, Tayebati SK. Natural Antioxidant Application on Fat Accumulation: Preclinical Evidence. Antioxidants (Basel) 2021; 10:antiox10060858. [PMID: 34071903 PMCID: PMC8227384 DOI: 10.3390/antiox10060858] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/20/2021] [Accepted: 05/24/2021] [Indexed: 12/24/2022] Open
Abstract
Obesity represents one of the most important challenges in the contemporary world that must be overcome. Different pathological consequences of these physical conditions have been studied for more than 30 years. The most nagging effects were found early in the cardiovascular system. However, later, its negative impact was also investigated in several other organs. Damage at cellular structures due to overexpression of reactive oxygen species together with mechanisms that cause under-production of antioxidants leads to the development of obesity-related complications. In this view, the negative results of oxidant molecules due to obesity were studied in various districts of the body. In the last ten years, scientific literature has reported reasonable evidence regarding natural and synthetic compounds' supplementation, which showed benefits in reducing oxidative stress and inflammatory processes in animal models of obesity. This article attempts to clarify the role of oxidative stress due to obesity and the opposing role of antioxidants to counter it, reported in preclinical studies. This analysis aims to clear-up different mechanisms that lead to the build-up of pro-oxidants during obesity and how various molecules of different origins hinder this phenomenon, behaving as antioxidants.
Collapse
Affiliation(s)
- Proshanta Roy
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy; (P.R.); (D.T.)
| | - Daniele Tomassoni
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy; (P.R.); (D.T.)
| | - Enea Traini
- School of Pharmacy, University of Camerino, 62032 Camerino, Italy; (E.T.); (I.M.); (M.V.M.D.B.); (C.C.); (F.A.)
| | - Ilenia Martinelli
- School of Pharmacy, University of Camerino, 62032 Camerino, Italy; (E.T.); (I.M.); (M.V.M.D.B.); (C.C.); (F.A.)
| | | | - Carlo Cifani
- School of Pharmacy, University of Camerino, 62032 Camerino, Italy; (E.T.); (I.M.); (M.V.M.D.B.); (C.C.); (F.A.)
| | - Francesco Amenta
- School of Pharmacy, University of Camerino, 62032 Camerino, Italy; (E.T.); (I.M.); (M.V.M.D.B.); (C.C.); (F.A.)
| | - Seyed Khosrow Tayebati
- School of Pharmacy, University of Camerino, 62032 Camerino, Italy; (E.T.); (I.M.); (M.V.M.D.B.); (C.C.); (F.A.)
- Correspondence:
| |
Collapse
|
32
|
Reyes-Cortes JL, Azaola-Espinosa A, Lozano-Aguirre L, Ponce-Alquicira E. Physiological and Genomic Analysis of Bacillus pumilus UAMX Isolated from the Gastrointestinal Tract of Overweight Individuals. Microorganisms 2021; 9:microorganisms9051076. [PMID: 34067853 PMCID: PMC8156450 DOI: 10.3390/microorganisms9051076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/08/2021] [Accepted: 05/13/2021] [Indexed: 12/15/2022] Open
Abstract
The study aimed to evaluate the metabolism and resistance to the gastrointestinal tract conditions of Bacillus pumilus UAMX (BP-UAMX) isolated from overweight individuals using genomic tools. Specifically, we assessed its ability to metabolize various carbon sources, its resistance to low pH exposure, and its growth in the presence of bile salts. The genomic and bioinformatic analyses included the prediction of gene and protein metabolic functions, a pan-genome and phylogenomic analysis. BP-UAMX survived at pH 3, while bile salts (0.2-0.3% w/v) increased its growth rate. Moreover, it showed the ability to metabolize simple and complex carbon sources (glucose, starch, carboxymethyl-cellulose, inulin, and tributyrin), showing a differentiated electrophoretic profile. Genome was assembled into a single contig, with a high percentage of genes and proteins associated with the metabolism of amino acids, carbohydrates, and lipids. Antibiotic resistance genes were detected, but only one beta-Lactam resistance protein related to the inhibition of peptidoglycan biosynthesis was identified. The pan-genome of BP-UAMX is still open with phylogenetic similarities with other Bacillus of human origin. Therefore, BP-UAMX seems to be adapted to the intestinal environment, with physiological and genomic analyses demonstrating the ability to metabolize complex carbon sources, the strain has an open pan-genome with continuous evolution and adaptation.
Collapse
Affiliation(s)
- José Luis Reyes-Cortes
- Departamento de Biotecnología, Universidad Autónoma Metropolitana Unidad Iztapalapa, Av. San Rafael Atlixco 186, Col. Vicentina, Ciudad de México 09340, Mexico;
| | - Alejandro Azaola-Espinosa
- Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana Unidad Xochimilco, Calzada del Hueso 1100, Coyoacán, Ciudad de México 04960, Mexico;
| | - Luis Lozano-Aguirre
- Unidad de Análisis Bioinformáticos del Centro de Ciencias Genómicas, UNAM, Cuernavaca, Morelos 62210, Mexico;
| | - Edith Ponce-Alquicira
- Departamento de Biotecnología, Universidad Autónoma Metropolitana Unidad Iztapalapa, Av. San Rafael Atlixco 186, Col. Vicentina, Ciudad de México 09340, Mexico;
- Correspondence: ; Tel.: +52-55-58044600 (ext. 2676)
| |
Collapse
|
33
|
Jalali A, Dabaghian F, Zarshenas MM. Alkaloids of Peganum harmala: Anticancer Biomarkers with Promising Outcomes. Curr Pharm Des 2021; 27:185-196. [PMID: 33238864 DOI: 10.2174/1381612826666201125103941] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 08/24/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Cancer is a serious and growing global health issue worldwide. In the cancerous cells, the normal cell cycle has been disrupted via a series of irreversible changes. Recently, the investigations on herbal medicine and clarifying the phytochemicals potential in treat cancer has been increased. The combination of phytochemicals with conventional cancer treatment approaches can improve outcomes via advancing cell death, restraining cell proliferation and invasion, sensitizing cancerous cells, and promoting the immune system. Therefore, phytochemicals can be introduced as relevant complementary medicaments in cancer therapy. Peganum harmala L. (Zygophyllaceae) as a valuable medicinal herb, possesses various alkaloid ingredient. OBJECTIVE Pointing to the importance of new avenues for cancer management and P. harmala convincing effect in this field, this review strived to collect a frame to epitome possible scopes to develop novel medicines in cancer treatment. METHODS Keywords "Peganum harmala" and cancer, or chemotherapy, or anti-neoplasm were searched through the "Scopus" database up to 29th of February 2020. Papers linking to agriculture, chemistry, environmental, and genetics sciences were omitted and, papers centered on cancer were selected. RESULTS AND DISCUSSION In the current study, 42 related papers to cancer treatment and 22 papers on alkaloid bioactive components are collected from 72 papers. The β-carboline alkaloids derived from P. harmala, especially harmine, demonstrate notable anticancer properties by targeting apoptosis, autophagy, abnormal cell proliferation, angiogenesis, metastasis, and cytotoxicity. Based on the collected information, P. harmala holds significant anticancer activity. Considering the mechanism of the various anticancer drugs and their acting similarity to P. harmala, the alkaloids derived from this herb, particularly harmine, can introduce as a novel anticancer medicine solely or in adjuvant cancer therapy.
Collapse
Affiliation(s)
- Atefeh Jalali
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Farid Dabaghian
- Department of Pharmacognosy, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad M Zarshenas
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
34
|
Targhotra M, Chauhan MK. An Overview on Various Approaches and Recent Patents on Buccal Drug Delivery Systems. Curr Pharm Des 2021; 26:5030-5039. [PMID: 32534560 DOI: 10.2174/1381612826666200614182013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 05/13/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Buccal delivery is an alluring course of organization for fundamental medication conveyance and it leads direct access to the systemic flow through the interior jugular vein sidesteps drugs from the hepatic first-pass digestion gives high bioavailability. OBJECTIVE This article aims at buccal medication conveyance by discussing the structure and condition of the oral mucosa and the novel strategies utilized in evaluating buccal medication ingestion. METHODS This review highlights the various pharmaceutical approaches for buccal delivery such as buccal tablets, buccal lozenges, buccal micro/nanoparticle, wafer and semisolid dosage forms like chewing gums, buccal patch, buccal gel or ointment and some buccal liquid dosage forms like buccal solutions and buccal sprays and recent patents filed or granted for these approaches. RESULTS Recently, some patents are also reported where a combination of various approaches is being employed to achieve very effective mucosal delivery. The various patent search sites were used to collect and analyze the information on buccal drug delivery systems. CONCLUSION The present study provides valuable information, advantages, limitations and future outlook of various buccal drug delivery systems.
Collapse
Affiliation(s)
- Monika Targhotra
- NDDS Research Laboratory, Department of Pharmaceutics, Delhi Institute of Pharmaceutical Sciences and Research, DPSRUniversity, Pushp Vihar, Sec 3, New Delhi, 110017, India
| | - Meenakshi K Chauhan
- NDDS Research Laboratory, Department of Pharmaceutics, Delhi Institute of Pharmaceutical Sciences and Research, DPSRUniversity, Pushp Vihar, Sec 3, New Delhi, 110017, India
| |
Collapse
|
35
|
Seraglio SKT, Schulz M, Gonzaga LV, Fett R, Costa ACO. Current status of the gastrointestinal digestion effects on honey: A comprehensive review. Food Chem 2021; 357:129807. [PMID: 33915465 DOI: 10.1016/j.foodchem.2021.129807] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 03/15/2021] [Accepted: 03/27/2021] [Indexed: 12/30/2022]
Abstract
In the past five years, more than 8000 scientific reports have been published on honey composition and its potential bioactivity as a source of pro-health components. However, the potential effectiveness of nutrients and other compounds in the human body is greatly influenced by the individual digestion conditions. Consequently, changes in the structure of honey components and their interactions with other constituents are expected and they may affect the bioaccessibility, the bioavailability, and further physiological functions of honey nutrients and bioactives. In this context, in addition to present key physiological characteristics for each step of the human digestion and their simulation aspects, this review also summarizes and discusses available data regarding the effect of the digestion (in vitro and in vivo) on honey compounds. Additionally, we consider the influence of the digestion on biological activities described for the compounds in the honey.
Collapse
Affiliation(s)
| | - Mayara Schulz
- Department of Food Science and Technology, Federal University of Santa Catarina, 88034-001 Florianópolis, SC, Brazil
| | - Luciano Valdemiro Gonzaga
- Department of Food Science and Technology, Federal University of Santa Catarina, 88034-001 Florianópolis, SC, Brazil
| | - Roseane Fett
- Department of Food Science and Technology, Federal University of Santa Catarina, 88034-001 Florianópolis, SC, Brazil
| | - Ana Carolina Oliveira Costa
- Department of Food Science and Technology, Federal University of Santa Catarina, 88034-001 Florianópolis, SC, Brazil.
| |
Collapse
|
36
|
Pegah A, Abbasi-Oshaghi E, Khodadadi I, Mirzaei F, Tayebinai H. Probiotic and resveratrol normalize GLP-1 levels and oxidative stress in the intestine of diabetic rats. Metabol Open 2021; 10:100093. [PMID: 33997755 PMCID: PMC8091914 DOI: 10.1016/j.metop.2021.100093] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/09/2021] [Accepted: 04/10/2021] [Indexed: 12/24/2022] Open
Abstract
Background Recently, the use of incretins has been considered as a therapeutic target for diabetes. One of the important incretins in the improvement of diabetes is glucagon-like peptide (GLP-1), which is secreted by the gut and reduces the apoptosis of pancreatic β-cells and improves insulin sensitivity. In this experiment we determined the effects of resveratrol and probiotics on insulin resistance, oxidative stress, and GLP-1 in type 2 diabetes (T2D) rats. Methods In this study, 40 male Wistar male rats were divided into 5 groups: 1. Control group, 2. T2D, 3. T2D treated with probiotics, 4. T2D treated with resveratrol, 5. T2D group treated with probiotics and resveratrol. After four weeks, the intestine were removed for histopathological analysis, biochemical tests, and oxidative stress markers. Results Probiotics and resveratrol significantly decreased (p < 0.001) glucose and insulin resistance, and increased (p < 0.001) GLP1 and total antioxidant capacity compared to the diabetic group. Treatment with probiotics and resveratrol also returned intestinal histological changes in diabetic rats to normal. Conclusion Resveratrol and probiotics appear to be effective in controlling T2D by increasing GLP-1 levels and reducing oxidative stress.
Collapse
Affiliation(s)
- Atefeh Pegah
- Department of Clinical Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ebrahim Abbasi-Oshaghi
- Department of Clinical Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Iraj Khodadadi
- Department of Clinical Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Fatemeh Mirzaei
- Department of Anatomy, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Heidar Tayebinai
- Department of Clinical Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
37
|
Milia E, Bullitta SM, Mastandrea G, Szotáková B, Schoubben A, Langhansová L, Quartu M, Bortone A, Eick S. Leaves and Fruits Preparations of Pistacia lentiscus L.: A Review on the Ethnopharmacological Uses and Implications in Inflammation and Infection. Antibiotics (Basel) 2021; 10:antibiotics10040425. [PMID: 33921406 PMCID: PMC8069618 DOI: 10.3390/antibiotics10040425] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/31/2021] [Accepted: 04/09/2021] [Indexed: 12/28/2022] Open
Abstract
There is an increasing interest in revisiting plants for drug discovery, proving scientifically their role as remedies. The aim of this review was to give an overview of the ethnopharmacological uses of Pistacia lentiscus L. (PlL) leaves and fruits, expanding the search for the scientific discovery of their chemistry, anti-inflammatory, antioxidative and antimicrobial activities. PlL is a wild-growing shrub rich in terpenoids and polyphenols, the oil and extracts of which have been widely used against inflammation and infections, and as wound healing agents. The more recurrent components in PlL essential oil (EO) are represented by α-pinene, terpinene, caryophyllene, limonene and myrcene, with high variability in concentration depending on the Mediterranean country. The anti-inflammatory activity of the oil mainly occurs due to the inhibition of pro-inflammatory cytokines and the arachidonic acid cascade. Interestingly, the capacity against COX-2 and LOX indicates PlL EO as a dual inhibitory compound. The high content of polyphenols enriching the extracts provide explanations for the known biological properties of the plant. The protective effect against reactive oxygen species is of wide interest. In particular, their anthocyanins content greatly clarifies their antioxidative capacity. Further, the antimicrobial activity of PlL oil and extracts includes the inhibition of Staphylococcus aureus, Escherichia coli, periodontal bacteria and Candida spp. In conclusion, the relevant scientific properties indicate PlL as a nutraceutical and also as a therapeutic agent against a wide range of diseases based on inflammation and infections.
Collapse
Affiliation(s)
- Egle Milia
- Department of Medicine, Surgery and Experimental Sciences, University of Sassari, Viale San Pietro 43, 07100 Sassari, Italy
- Correspondence: (E.M.); (S.E.); Tel.: +39-79-228437 (E.M.); +41-31-632-25-42 (S.E.)
| | - Simonetta Maria Bullitta
- C.N.R., Institute for Animal Production System in Mediterranean Environment (ISPAAM), Traversa La Crucca 3, Località Baldinca, 07100 Sassari, Italy;
| | - Giorgio Mastandrea
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/C, 07100 Sassari, Italy;
| | - Barbora Szotáková
- Faculty of Pharmacy, Charles University, Akademika Heyrovského 1203, 50005 Hradec Králové, Czech Republic;
| | - Aurélie Schoubben
- Department of Pharmaceutical Sciences, University of Perugia, Via Fabretti, 48-06123 Perugia, Italy;
| | - Lenka Langhansová
- Institute of Experimental Botany, Czech Academy of Sciences, Rozvojová 263, 16502 Prague, Czech Republic;
| | - Marina Quartu
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, 09042 Cagliari, Italy;
| | - Antonella Bortone
- Dental Unite, Azienda Ospedaliero-Universitaria di Sassari, 07100 Sassari, Italy;
| | - Sigrun Eick
- Department of Periodontology, School of Dental Medicine, University of Bern, Freiburgstrasse 3, 3010 Bern, Switzerland
- Correspondence: (E.M.); (S.E.); Tel.: +39-79-228437 (E.M.); +41-31-632-25-42 (S.E.)
| |
Collapse
|
38
|
Gawlik-Dziki U, Baraniak B, Sikora M, Jakubczyk A, Kapusta I, Świeca M. Potentially Bioaccessible Phenolic and Antioxidant Potential of Fresh and Stored Lentil Sprouts-Effect of Lactobacillus plantarum 299v Enrichment. Molecules 2021; 26:molecules26082109. [PMID: 33916936 PMCID: PMC8067562 DOI: 10.3390/molecules26082109] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/03/2021] [Accepted: 04/05/2021] [Indexed: 11/25/2022] Open
Abstract
The phenolic and antioxidant potential of potentially bioaccessible fractions of lentil sprouts was studied. Sprouts were cocultivated with a probiotic to obtain a new functional product and further stored in cool conditions. The fraction obtained after buffer extraction and gastric digestion had higher content of phenolics compared to the control (by 20% and 46%, respectively); however, a 9% decrease was observed in samples obtained after gastrointestinal digestion. After gastrointestinal digestion, the highest content of phenolics (278 µg/g d.w.) was determined in the fresh control sprouts. Compounds neutralizing ABTS and hydroxyl radicals, chelating metal ions, and exhibiting strong reducing power were effectively released after gastrointestinal digestion (e.g., the values of the gastrointestinal digestibility index for chelating power and ability to quench hydroxyl radicals significantly exceeded 1 in all studied samples). It was proved that the enrichment of sprouts with a probiotic and further storage significantly improved the antioxidant potential; compared to the fresh control sprouts, an increase by 45% and 10% was determined after the gastric and gastrointestinal digestion, respectively. Lentil sprouts enriched with L. plantarum 299v may be a new functional product characterized by the high antioxidant capacity of the potentially bioaccessible fraction.
Collapse
Affiliation(s)
- Urszula Gawlik-Dziki
- Department of Biochemistry and Food Chemistry, University of Life Sciences, Skromna Str. 8, 20-704 Lublin, Poland; (U.G.-D.); (B.B.); (M.S.); (A.J.)
| | - Barbara Baraniak
- Department of Biochemistry and Food Chemistry, University of Life Sciences, Skromna Str. 8, 20-704 Lublin, Poland; (U.G.-D.); (B.B.); (M.S.); (A.J.)
| | - Małgorzata Sikora
- Department of Biochemistry and Food Chemistry, University of Life Sciences, Skromna Str. 8, 20-704 Lublin, Poland; (U.G.-D.); (B.B.); (M.S.); (A.J.)
| | - Anna Jakubczyk
- Department of Biochemistry and Food Chemistry, University of Life Sciences, Skromna Str. 8, 20-704 Lublin, Poland; (U.G.-D.); (B.B.); (M.S.); (A.J.)
| | - Ireneusz Kapusta
- Department of Food Technology and Human Nutrition, Rzeszów University, 4 Zelwerowicza Street, 35-601 Rzeszów, Poland;
| | - Michał Świeca
- Department of Biochemistry and Food Chemistry, University of Life Sciences, Skromna Str. 8, 20-704 Lublin, Poland; (U.G.-D.); (B.B.); (M.S.); (A.J.)
- Correspondence: ; Tel.: +48-81-462-33-96
| |
Collapse
|
39
|
B Gowda SG, Minami Y, Gowda D, Furuko D, Chiba H, Hui SP. Lipidomic analysis of non-esterified furan fatty acids and fatty acid compositions in dietary shellfish and salmon by UHPLC/LTQ-Orbitrap-MS. Food Res Int 2021; 144:110325. [PMID: 34053529 DOI: 10.1016/j.foodres.2021.110325] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 03/11/2021] [Accepted: 03/11/2021] [Indexed: 01/21/2023]
Abstract
Lipids such as furan fatty acids (F-acids) are the valuable minor bioactive components of food such as fatty fish and plants. They are reported to have positive health benefits, including antioxidant and anti-inflammatory activities. Despite their importance, limited studies are focusing on F-acid determination in dietary seafood. This study aimed to identify and profile non-esterified F-acids and free fatty acids in total lipid extract of seafood such as shellfish and salmon. The lipidomic analysis using liquid chromatography-linear trap quadrupole-orbitrap mass spectrometry led to identifying seven types of free F-acids in shellfish (n = 5) and salmon (n = 4). The identified F-acids were confirmed by their high-resolution masses and acquired mass spectra. The relative concentrations of F-acids in shellfish range from 0.01 to 10.93 mg/100 g of the fillet, and in salmon, 0.01 to 14.21 mg/100 g of the fillet. The results revealed the highest abundance of F-acids in Sakhalin surf clam, Japanese scallop, and a fatty salmon trout. Besides, relative levels of saturated, monounsaturated, and polyunsaturated fatty acids (PUFAs) in these seafoods were compared with each other, suggesting basket clams and salmon trout to have significantly higher levels of PUFAs. The dietary seafoods enriched with F-acids and PUFAs may have possible health benefits. Hence, the applied technique could be a promising tool for rapid detection and analysis of non-esterified fatty acids in food.
Collapse
Affiliation(s)
- Siddabasave Gowda B Gowda
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sapporo 060-0812, Japan.
| | - Yusuke Minami
- Graduate School of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sapporo 060-0812, Japan.
| | - Divyavani Gowda
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sapporo 060-0812, Japan.
| | - Daisuke Furuko
- Graduate School of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sapporo 060-0812, Japan.
| | - Hitoshi Chiba
- Department of Nutrition, Sapporo University of Health Sciences, Nakanuma, Nishi-4-3-1-15, Higashi-ku, Sapporo 007-0894, Japan.
| | - Shu-Ping Hui
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sapporo 060-0812, Japan.
| |
Collapse
|
40
|
Relationship between Nutrient Intake and Human Gut Microbiota in Monozygotic Twins. ACTA ACUST UNITED AC 2021; 57:medicina57030275. [PMID: 33809761 PMCID: PMC8002349 DOI: 10.3390/medicina57030275] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/12/2021] [Accepted: 03/12/2021] [Indexed: 02/07/2023]
Abstract
Background and Objectives: The gut microbiota is associated with human health and dietary nutrition. Various studies have been reported in this regard, but it is difficult to clearly analyze human gut microbiota as individual differences are significant. The causes of these individual differences in intestinal microflora are genetic and/or environmental. In this study, we focused on differences between identical twins in Japan to clarify the effects of nutrients consumed on the entire gut microbiome, while excluding genetic differences. Materials and Methods: We selected healthy Japanese monozygotic twins for the study and confirmed their zygosity by matching 15 short tandem repeat loci. Their fecal samples were subjected to 16S rRNA sequencing and bioinformatics analyses to identify and compare the fluctuations in intestinal bacteria. Results: We identified 12 genera sensitive to environmental factors, and found that Lactobacillus was relatively unaffected by environmental factors. Moreover, we identified protein, fat, and some nutrient intake that can affect 12 genera, which have been identified to be more sensitive to environmental factors. Among the 12 genera, Bacteroides had a positive correlation with retinol equivalent intake (rs = 0.38), Lachnospira had a significantly negative correlation with protein, sodium, iron, vitamin D, vitamin B6, and vitamin B12 intake (rs = −0.38, −0.41, −0.39, −0.63, −0.42, −0.49, respectively), Lachnospiraceae ND3007 group had a positive correlation with fat intake (rs = 0.39), and Lachnospiraceae UCG-008 group had a negative correlation with the saturated fatty acid intake (rs = −0.45). Conclusions: Our study is the first to focus on the relationship between human gut microbiota and nutrient intake using samples from Japanese twins to exclude the effects of genetic factors. These findings will broaden our understanding of the more intuitive relationship between nutrient intake and the gut microbiota and can be a useful basis for finding useful biomarkers that contribute to human health.
Collapse
|
41
|
Oak trees (Quercus spp.) as a source of extracts with biological activities: A narrative review. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.01.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
42
|
Messaoud M, Abbes S, Gnaien M, Rebai Y, Kallel A, Jemel S, Cherif G, Skhairia MA, Marouen S, Fakhfekh N, Mardassi H, Belhadj S, Znaidi S, Kallel K. High Frequency of Enterocytozoon bieneusi Genotype WL12 Occurrence among Immunocompromised Patients with Intestinal Microsporidiosis. J Fungi (Basel) 2021; 7:jof7030161. [PMID: 33668221 PMCID: PMC7996336 DOI: 10.3390/jof7030161] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 02/08/2021] [Accepted: 02/11/2021] [Indexed: 11/25/2022] Open
Abstract
Microsporidiosis is an emerging opportunistic infection causing severe digestive disorders in immunocompromised patients. The aim of this study was to investigate the prevalence of intestinal microsporidia carriage among immunocompromised patients hospitalized at a major hospital complex in the Tunis capital area, Tunisia (North Africa), and perform molecular epidemiology and population structure analyses of Enterocytozoon bieneusi, which is an emerging fungal pathogen. We screened 250 stool samples for the presence of intestinal microsporidia from 171 patients, including 81 organ transplant recipients, 73 Human Immunodeficiency Virus (HIV)-positive patients, and 17 patients with unspecified immunodeficiency. Using a nested PCR-based diagnostic approach for the detection of E. bieneusi and Encephalitozoon spp., we identified 18 microsporidia-positive patients out of 171 (10.5%), among which 17 were infected with E. bieneusi. Microsporidia-positive cases displayed chronic diarrhea (17 out of 18), which was associated more with HIV rather than with immunosuppression other than HIV (12 out of 73 versus 6 out of 98, respectively, p = 0.02) and correlated with extended hospital stays compared to microsporidia-negative cases (60 versus 19 days on average, respectively; p = 0.001). Strikingly, internal transcribed spacer (ITS)-based genotyping of E. bieneusi strains revealed high-frequency occurrence of ITS sequences that were identical (n = 10) or similar (with one single polymorphic site, n = 3) to rare genotype WL12. Minimum-spanning tree analyses segregated the 17 E. bieneusi infection cases into four distinct genotypic clusters and confirmed the high prevalence of genotype WL12 in our patient population. Phylogenetic analyses allowed the mapping of all 17 E. bieneusi strains to zoonotic group 1 (subgroups 1a and 1b/1c), indicating loose host specificity and raising public health concern. Our study suggests a probable common source of E. bieneusi genotype WL12 transmission and prompts the implementation of a wider epidemiological investigation.
Collapse
Affiliation(s)
- Mariem Messaoud
- Laboratoire de Parasitologie et Mycologie, UR17SP03, La Rabta Hospital, Tunis 1007, Tunisia; (M.M.); (S.A.); (A.K.); (S.J.); (G.C.); (S.M.); (N.F.); (S.B.)
| | - Salma Abbes
- Laboratoire de Parasitologie et Mycologie, UR17SP03, La Rabta Hospital, Tunis 1007, Tunisia; (M.M.); (S.A.); (A.K.); (S.J.); (G.C.); (S.M.); (N.F.); (S.B.)
| | - Mayssa Gnaien
- Institut Pasteur de Tunis, University of Tunis El Manar, Laboratoire de Microbiologie Moléculaire, Vaccinologie et Développement Biotechnologique, Tunis 1002, Tunisia; (M.G.); (Y.R.); (M.A.S.); (H.M.)
| | - Yasmine Rebai
- Institut Pasteur de Tunis, University of Tunis El Manar, Laboratoire de Microbiologie Moléculaire, Vaccinologie et Développement Biotechnologique, Tunis 1002, Tunisia; (M.G.); (Y.R.); (M.A.S.); (H.M.)
| | - Aicha Kallel
- Laboratoire de Parasitologie et Mycologie, UR17SP03, La Rabta Hospital, Tunis 1007, Tunisia; (M.M.); (S.A.); (A.K.); (S.J.); (G.C.); (S.M.); (N.F.); (S.B.)
- Institut Pasteur de Tunis, University of Tunis El Manar, Laboratoire de Microbiologie Moléculaire, Vaccinologie et Développement Biotechnologique, Tunis 1002, Tunisia; (M.G.); (Y.R.); (M.A.S.); (H.M.)
| | - Sana Jemel
- Laboratoire de Parasitologie et Mycologie, UR17SP03, La Rabta Hospital, Tunis 1007, Tunisia; (M.M.); (S.A.); (A.K.); (S.J.); (G.C.); (S.M.); (N.F.); (S.B.)
| | - Ghaya Cherif
- Laboratoire de Parasitologie et Mycologie, UR17SP03, La Rabta Hospital, Tunis 1007, Tunisia; (M.M.); (S.A.); (A.K.); (S.J.); (G.C.); (S.M.); (N.F.); (S.B.)
| | - Mohamed Amine Skhairia
- Institut Pasteur de Tunis, University of Tunis El Manar, Laboratoire de Microbiologie Moléculaire, Vaccinologie et Développement Biotechnologique, Tunis 1002, Tunisia; (M.G.); (Y.R.); (M.A.S.); (H.M.)
| | - Sonia Marouen
- Laboratoire de Parasitologie et Mycologie, UR17SP03, La Rabta Hospital, Tunis 1007, Tunisia; (M.M.); (S.A.); (A.K.); (S.J.); (G.C.); (S.M.); (N.F.); (S.B.)
| | - Najla Fakhfekh
- Laboratoire de Parasitologie et Mycologie, UR17SP03, La Rabta Hospital, Tunis 1007, Tunisia; (M.M.); (S.A.); (A.K.); (S.J.); (G.C.); (S.M.); (N.F.); (S.B.)
| | - Helmi Mardassi
- Institut Pasteur de Tunis, University of Tunis El Manar, Laboratoire de Microbiologie Moléculaire, Vaccinologie et Développement Biotechnologique, Tunis 1002, Tunisia; (M.G.); (Y.R.); (M.A.S.); (H.M.)
| | - Slaheddine Belhadj
- Laboratoire de Parasitologie et Mycologie, UR17SP03, La Rabta Hospital, Tunis 1007, Tunisia; (M.M.); (S.A.); (A.K.); (S.J.); (G.C.); (S.M.); (N.F.); (S.B.)
| | - Sadri Znaidi
- Institut Pasteur de Tunis, University of Tunis El Manar, Laboratoire de Microbiologie Moléculaire, Vaccinologie et Développement Biotechnologique, Tunis 1002, Tunisia; (M.G.); (Y.R.); (M.A.S.); (H.M.)
- Institut Pasteur, INRA, Département Mycologie, Unité Biologie et Pathogénicité Fongiques, 75015 Paris, France
- Correspondence: (S.Z.); (K.K.)
| | - Kalthoum Kallel
- Laboratoire de Parasitologie et Mycologie, UR17SP03, La Rabta Hospital, Tunis 1007, Tunisia; (M.M.); (S.A.); (A.K.); (S.J.); (G.C.); (S.M.); (N.F.); (S.B.)
- Correspondence: (S.Z.); (K.K.)
| |
Collapse
|
43
|
Physicochemical characterization and antitumor activity in vitro of a selenium polysaccharide from Pleurotus ostreatus. Int J Biol Macromol 2020; 165:2934-2946. [DOI: 10.1016/j.ijbiomac.2020.10.168] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/15/2020] [Accepted: 10/21/2020] [Indexed: 02/08/2023]
|
44
|
Kim EJ, Seo SH, Park SE, Lim YW, Roh SW, Son HS. Initial storage of kimchi at room temperature alters its microbial and metabolite profiles. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.110160] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
45
|
Al-Rowaily SL, Abd-ElGawad AM, Assaeed AM, Elgamal AM, Gendy AENGE, Mohamed TA, Dar BA, Mohamed TK, Elshamy AI. Essential Oil of Calotropis procera: Comparative Chemical Profiles, Antimicrobial Activity, and Allelopathic Potential on Weeds. Molecules 2020; 25:molecules25215203. [PMID: 33182287 PMCID: PMC7664932 DOI: 10.3390/molecules25215203] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/05/2020] [Accepted: 11/06/2020] [Indexed: 12/16/2022] Open
Abstract
Plants are considered green resources for thousands of bioactive compounds. Essential oils (EOs) are an important class of secondary compounds with various biological activities, including allelopathic and antimicrobial activities. Herein, the present study aimed to compare the chemical profiles of the EOs of the widely distributed medicinal plant Calotropis procera collected from Saudi Arabia and Egypt. In addition, this study also aimed to assess their allelopathic and antimicrobial activities. The EOs from Egyptian and Saudi ecospecies were extracted by hydrodistillation and analyzed via GC-MS. The correlation between the analyzed EOs and those published from Egypt, India, and Nigeria was assessed by principal component analysis (PCA) and agglomerative hierarchical clustering (AHC). The allelopathic activity of the extracted EOs was tested against two weeds (Bidens pilosa and Dactyloctenium aegyptium). Moreover, the EOs were tested for antimicrobial activity against seven bacterial and two fungal strains. Ninety compounds were identified from both ecospecies, where 76 compounds were recorded in Saudi ecospecies and 33 in the Egyptian one. Terpenes were recorded as the main components along with hydrocarbons, aromatics, and carotenoids. The sesquiterpenes (54.07%) were the most abundant component of EO of the Saudi sample, while the diterpenes (44.82%) represented the mains of the Egyptian one. Hinesol (13.50%), trans-chrysanthenyl acetate (12.33%), 1,4-trans-1,7-cis-acorenone (7.62%), phytol (8.73%), and myristicin (6.13%) were found as the major constituents of EO of the Saudi sample, while phytol (38.02%), n-docosane (6.86%), linoleic acid (6.36%), n-pentacosane (6.31%), and bicyclogermacrene (4.37%) represented the main compounds of the Egyptian one. It was evident that the EOs of both ecospecies had potent phytotoxic activity against the two tested weeds, while the EO of the Egyptian ecospecies was more effective, particularly on the weed D. aegyptium. Moreover, the EOs showed substantial antibacterial and antifungal activities. The present study revealed that the EOs of Egyptian and Saudi ecospecies were different in quality and quantity, which could be attributed to the variant environmental and climatic conditions. The EOs of both ecospecies showed significant allelopathic and antimicrobial activity; therefore, these EOs could be considered as potential green eco-friendly resources for weed and microbe control, considering that this plant is widely grown in arid habitats.
Collapse
Affiliation(s)
- Saud L. Al-Rowaily
- Plant Production Department, College of Food & Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia; (S.L.A.-R.); (A.M.A.); (B.A.D.)
| | - Ahmed M. Abd-ElGawad
- Plant Production Department, College of Food & Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia; (S.L.A.-R.); (A.M.A.); (B.A.D.)
- Department of Botany, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
- Correspondence: (A.M.A.-E.); (A.I.E.); Tel.: +966-562680864 (A.M.A.-E.); +20-1005525108 (A.I.E.)
| | - Abdulaziz M. Assaeed
- Plant Production Department, College of Food & Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia; (S.L.A.-R.); (A.M.A.); (B.A.D.)
| | - Abdelbaset M. Elgamal
- Department of Chemistry of Microbial and Natural Products, 33 El-Bohouth St., Dokki, Giza 12622, Egypt;
| | - Abd El-Nasser G. El Gendy
- Medicinal and Aromatic Plants Research Department, National Research Centre, 33 El Bohouth St., Dokki, Giza 12622, Egypt;
| | - Tarik A. Mohamed
- Chemistry of Medicinal Plants Department, National Research Centre, 33 El-Bohouth St., Dokki, Giza 12622, Egypt;
| | - Basharat A. Dar
- Plant Production Department, College of Food & Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia; (S.L.A.-R.); (A.M.A.); (B.A.D.)
| | - Tahia K. Mohamed
- Department of Natural Compounds Chemistry, National Research Centre, 33 El Bohouth St., Dokki, Giza 12622, Egypt;
| | - Abdelsamed I. Elshamy
- Department of Natural Compounds Chemistry, National Research Centre, 33 El Bohouth St., Dokki, Giza 12622, Egypt;
- Correspondence: (A.M.A.-E.); (A.I.E.); Tel.: +966-562680864 (A.M.A.-E.); +20-1005525108 (A.I.E.)
| |
Collapse
|
46
|
Bülbül EÖ, Karantas ID, Okur ME, Siafaka PI, Okur NÜ. Schizophrenia; A Review on Promising Drug Delivery Systems. Curr Pharm Des 2020; 26:3871-3883. [DOI: 10.2174/1381612826666200523173102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 04/15/2020] [Indexed: 12/30/2022]
Abstract
Background:
Schizophrenia belongs to mental illnesses affecting 1% of the worldwide population. Its
therapy is still unmet; thus, researchers aimed to develop new pharmacological molecules which can improve its
management.
Methods:
Moreover, the current typical and atypical antipsychotics should be formulated in more efficacious
systems that can deliver the drug in the brain with as few side effects as possible. Further, the development of
long-acting efficient drug delivery systems could be significant in minimizing frequent dosing which is nonpreferred
to schizophrenics.
Results:
Herein, authors focused on current developments of antipsychotic medications used in schizophrenia
management. Various studies, which include the use of first and second-generation antipsychotics, were analyzed
according to their efficacy. In fact, in this review, oral, injectable, transdermal and intranasal formulations entrapped
antipsychotics are presented to be valuable guidance for scientists to formulate more effective drug delivery
systems for schizophrenic patients.
Conclusions:
This review aimed to assist researchers working on schizophrenia management by summarizing
current medications and newly synthesized drug delivery systems recently found in the literature.
Collapse
Affiliation(s)
- Ece Ö. Bülbül
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey
| | - Ioannis D. Karantas
- Hippokration General Hospital, 2nd Clinic of Internal Medicine, Thessaloniki, Greece
| | - Mehmet E. Okur
- Department of Pharmacology, Faculty of Pharmacy, University of Health Sciences, Istanbul, Turkey
| | - Panoraia I. Siafaka
- Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Neslihan Ü. Okur
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Health Sciences, Istanbul, Turkey
| |
Collapse
|
47
|
Saleem H, Zengin G, Ahmad I, Htar TT, Naidu R, Mahomoodally MF, Ahemad N. Therapeutic propensities, phytochemical composition, and toxicological evaluation of Anagallis arvensis (L.): A wild edible medicinal food plant. Food Res Int 2020; 137:109651. [PMID: 33233230 DOI: 10.1016/j.foodres.2020.109651] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 05/11/2020] [Accepted: 08/28/2020] [Indexed: 01/25/2023]
Abstract
Anagallis arvensis (L.) is a wild edible food plant that has been used in folklore as a natural remedy for treating common ailments. This study aimed to explore the biochemical properties and toxicity of methanol (MeOH) and dichloromethane (DCM) extracts of A. arvensis (aerial and root parts). Bioactive contents were assessed spectrophotometrically, and the secondary metabolites were identified by UHPLC-MS analysis. DPPH, ABTS, FRAP, CUPRAC, phosphomolybdenum, and metal chelating assays were employed to assess antioxidant activity. Inhibitory potential against key enzymes (α-glucosidase, urease, lipoxygenase (LOX), acetylcholinesterase (AChE), and butyrylcholinesterase (BChE)) were also assessed. MTT assay was employed to test toxicity against SW-480, MDA-MB-231, CaSki, MCF-7, and DU-145 cancer cell lines. Methanolic extracts showed highest phenolic (aerial-MeOH: 27.5 mg GAE/g extract; root-MeOH: 21.17 mg GAE/g extract) and flavonoid (aerial-MeOH: 26.15 mg QE/g extract; root-MeOH: 19.07 mg QE/g extract) contents, and potent antioxidant activities. The aerial-MeOH extract was most potent for DPPH (IC50: 231 ug/mL), ABTS (131.12 mg TE/g extract), FRAP (82.97 mg TE/g extract), and CUPRAC (137.15 mg TE/g extract) antioxidant assays. All extracts were cytotoxic towards tested cancer cells with IC50 values ranging from 12.57 to 294.5 µg/mL and conferred a comparatively strong inhibition against α-glucosidase (aerial-DCM extract showed the highest inhibition against α-glucosidase with IC50 value of 20.97 µg /mL), while aerial extracts were also considerably active against BChE (aerial-MeOH IC50: 224.63 µg /mL), LOX (aerial-DCM IC50: 385.7 µg /mL). Likewise, aerial-MeOH extract was most active against urease enzyme (IC50: 129.72 µg /mL). UHPLC-MS investigation of methanolic extracts showed the existence of important phenolics, flavonoids, and saponins, including methyl gallte, quercetin, lanceoletin, and balanitesin, amongst others. Moreover, principal component analysis (PCA) highlighted the correlation amongst bioactive contents and observed biological activities. A. arvensis extracts could be regarded as a natural source of bioactive antioxidants, enzyme inhibitors and anticancer agents and can be further investigated as a lead source for food and pharmaceutical products. However, further studies to isolate, purify, and to characterize its bioactive phytochemicals are needed.
Collapse
Affiliation(s)
- Hammad Saleem
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway Selangor, Darul Ehsan, Malaysia; Institute of Pharmaceutical Sciences (IPS), University of Veterinary & Animal Sciences (UVAS), Lahore 54000, Pakistan
| | - Gokhan Zengin
- Department of Biology, Faculty of Science, Selcuk University, Campus/Konya, Turkey
| | - Irshad Ahmad
- Department of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Thet Thet Htar
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway Selangor, Darul Ehsan, Malaysia
| | - Rakesh Naidu
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway Selangor, Darul Ehsan, Malaysia
| | - Mohamad Fawzi Mahomoodally
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Viet Nam; Department of Health Sciences, Faculty of Science, University of Mauritius, Mauritius
| | - Nafees Ahemad
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway Selangor, Darul Ehsan, Malaysia; Tropical Medicine and Biology Multidisciplinary Platform, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway Selangor, Darul Ehsan, Malaysia; Global Asia in 21(st) Century Research Platform, Monash University, Jalan Lagoon Selatan, Bandar Sunway 47500, Petaling Jaya, Selangor, Malaysia
| |
Collapse
|
48
|
Chemical Profile, Antioxidant, Anti-Inflammatory, and Anti-Cancer Effects of Italian Salvia rosmarinus Spenn. Methanol Leaves Extracts. Antioxidants (Basel) 2020; 9:antiox9090826. [PMID: 32899385 PMCID: PMC7556042 DOI: 10.3390/antiox9090826] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/31/2020] [Accepted: 09/02/2020] [Indexed: 12/20/2022] Open
Abstract
In this study, we evaluated and compared the chemical composition, the antioxidant, anti-inflammatory, and anti-proliferative effects of four methanol extracts (R1–R4), of Salvia rosmarinus Spenn. in two different sites of Southern Italy obtained by maceration or ultrasound-assisted extraction. Extracts of S. rosmarinus collected on the Ionian coast are indicated with the abbreviations R1 (maceration) and R2 (ultrasound-assisted extraction). Extracts of S. rosmarinus collected on the Tyrrhenian coast are indicated with the abbreviations R3 (maceration) and R4 (ultrasound-assisted extraction). The chemical composition was analyzed using High Pressure liquid chromatography–Diod-Array detection–Electrospray ionization–Quadrupole–Mass Spectroscopy (HPLC-DAD-ESI-Q-MS). The antioxidant activity was analyzed by 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) 2,2-diphenyl-1-picrylhydrazyl (DPPH), β-carotene bleaching, and Ferric Reducing Antioxidant Power (FRAP) assays. Antioxidant features were also assessed in lipopolysaccharide (LPS)-stimulated RAW-264.7 murine macrophages, evaluating Reactive Oxygen Species (ROS) production; in the same experimental model, the anti-inflammatory activity of the extracts was investigated. Interestingly, all extracts displayed antioxidant and anti-inflammatory properties. They exhibited significative nitrite production inhibitory activity, whith IC50 values ranging from 3.46 to 5.53 µg/mL, without impairing cell viability. The anti-inflammatory activity was also investigated by Western Blotting and immunofluorescence assay, highlighting the R3 and R4 extracts ability to reduce NF-κB translocation, as well as to disrupt the MAPKs signaling pathway. Extracts exhibited both potential anti-proliferative activity on breast cancer cells, inducing apoptosis, without affecting non-tumorigenic cells, and the ability to inhibit MDA-MB-231 cells’ motility. Finally, the rosemary extracts treatment significantly reduced the power of conditioned media, from MCF-7 or MDA-MB-231 cells to induce nitrite production on RAW 264.7 cells, confirming their promising anti-inflammatory activity.
Collapse
|
49
|
Li JF, Zhang JX, Li G, Xu YY, Lu K, Wang ZG, Liu JP. Antimicrobial activity and mechanism of peptide CM4 against Pseudomonas aeruginosa. Food Funct 2020; 11:7245-7254. [PMID: 32766662 DOI: 10.1039/d0fo01031f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Antibacterial peptide CM4 (ABP-CM4) is a small cationic peptide with broad-spectrum activities against bacteria, fungi and tumor cells and may possibly be used as an antimicrobial agent. In this study, a C-terminal amidated antibacterial peptide ABP-CM4 (ABP-CM4N) with the strongest antibacterial activity was obtained through screening the antibacterial activities of ABP-CM4 with different modifications. The minimal inhibitory concentration of ABP-CM4N was 8 μM against P. aeruginosa (ATCC 27853) which was lower than that of ABP-CM4 (16 μM). The strengthened antimicrobial activity of ABP-CM4N may be associated with the increased membrane binding capacity, being two times that of ABP-CM4 (p < 0.001). The antibacterial mechanism of ABP-CM4N to Pseudomonas aeruginosa was examined by means of cell membrane integrity analysiss, the intracellular ultrastructure change observation and E. coli genomic DNA binding assay. It was found that ABP-CM4N had the same antimicrobial mechanism as ABP-CM4, and the aim of the antimicrobial mechanism was mainly to destroy the cell membrane which caused nucleic acid or protein leakage, and secondly to interact with E. coli genomic DNA after penetrating the cell membrane. Furthermore, in vitro ABP-CM4N showed a better bacteriostatic activity in meats, with the treated samples showing two to three times less positive colonies than ABP-CM4.
Collapse
Affiliation(s)
- Jian-Feng Li
- Institute of Aging Research, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang Province 311121, China.
| | - Jia-Xin Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210046, China
| | - Guo Li
- Department of Biochemistry and Molecular Biology and Key Laboratory of Molecular Biology, School of Basic Medicine and Life Sciences, Hainan Medical College, Haikou, 571199, China
| | - Yan-Yan Xu
- Institute of Aging Research, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang Province 311121, China.
| | - Kai Lu
- School of Medicine, Wenzhou Medical College, Wenzhou, Zhejiang Province 325035, China
| | - Zhi-Guo Wang
- Institute of Aging Research, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang Province 311121, China.
| | - Jun-Ping Liu
- Institute of Aging Research, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang Province 311121, China.
| |
Collapse
|
50
|
Navrátilová M, Raisová Stuchlíková L, Moťková K, Szotáková B, Skálová L, Langhansová L, Podlipná R. The Uptake of Ivermectin and Its Effects in Roots, Leaves and Seeds of Soybean ( Glycine max). Molecules 2020; 25:E3655. [PMID: 32796616 PMCID: PMC7466097 DOI: 10.3390/molecules25163655] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/04/2020] [Accepted: 08/06/2020] [Indexed: 12/17/2022] Open
Abstract
In recent years interest has grown in the occurrence and the effects of pharmaceuticals in the environment. The aim of this work is to evaluate the risk of fertilizing crops with manure from livestock treated with anthelmintics. The present study was designed to follow the fate of the commonly used anthelmintic drug, ivermectin (IVM) and its metabolites in soybeans (Glycine max (L.) Merr.), a plant that is grown and consumed world-wide for its high content of nutritional and health-beneficial substances. In vitro plantlets and soybean plants, cultivated in a greenhouse, were used for this purpose. Our results showed the uptake of IVM and its translocation to the leaves, but not in the pods and the beans. Four IVM metabolites were detected in the roots, and one in the leaves. IVM exposure decreased slightly the number and weight of the beans and induced changes in the activities of antioxidant enzymes. In addition, the presence of IVM affected the proportion of individual isoflavones and reduced the content of isoflavones aglycones, which might decrease the therapeutic value of soybeans. Fertilization of soybean fields with manure from IVM-treated animals appears to be safe for humans, due to the absence of IVM in beans, the food part of plants. On the other hand, it could negatively affect soybean plants and herbivorous invertebrates.
Collapse
Affiliation(s)
- Martina Navrátilová
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic; (M.N.); (L.R.S.); (B.S.); (L.S.)
| | - Lucie Raisová Stuchlíková
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic; (M.N.); (L.R.S.); (B.S.); (L.S.)
| | - Kateřina Moťková
- Laboratory of Plant Biotechnologies, Institute of Experimental Botany, Czech Academy of Sciences, 165 02 Praha 6-Lysolaje, Czech Republic; (K.M.); (L.L.)
| | - Barbora Szotáková
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic; (M.N.); (L.R.S.); (B.S.); (L.S.)
| | - Lenka Skálová
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic; (M.N.); (L.R.S.); (B.S.); (L.S.)
| | - Lenka Langhansová
- Laboratory of Plant Biotechnologies, Institute of Experimental Botany, Czech Academy of Sciences, 165 02 Praha 6-Lysolaje, Czech Republic; (K.M.); (L.L.)
| | - Radka Podlipná
- Laboratory of Plant Biotechnologies, Institute of Experimental Botany, Czech Academy of Sciences, 165 02 Praha 6-Lysolaje, Czech Republic; (K.M.); (L.L.)
| |
Collapse
|