1
|
Chaisungnern K, Rattananupong T, Klinhom R, Nanta S, Banchuen K, Itharat A, Kuropakornpong P, Supasiri T, Nootim P, Jiamjarasrangsi W. Efficacy of Hibiscus sabdariffa L. extract on metabolic parameters in participants with abdominal obesity and mild metabolic syndrome in Bangkok, Thailand: A double-blind, randomized, placebo-controlled trial. Complement Ther Med 2025:103185. [PMID: 40334927 DOI: 10.1016/j.ctim.2025.103185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 04/24/2025] [Accepted: 04/28/2025] [Indexed: 05/09/2025] Open
Abstract
BACKGROUND Hibiscus sabdariffa L. (HS) has been investigated as an alternative treatment for metabolic syndrome (MetS), as it affects all MetS components with low side effects simultaneously; however, clinical evidence regarding its efficacy compared with placebo is inconsistent. This study assessed how the aqueous calyx extract of HS influences insulin resistance and MetS parameters and examined the safety effects on liver, kidney, and hematological indexes in participants with abdominal obesity and mild MetS symptoms. METHODS In this double-blind, randomized, placebo-controlled trial, 108 participants with MetS were randomly assigned to take 1000-mg HS (45.04mg/day in total polyphenols) or placebo daily for 12 weeks. Insulin resistance (HOMA-IR), glycemic markers, body mass index (BMI), waist circumference (WC), lipid profiles, and blood pressure were assessed at baseline, 6 weeks, and 12 weeks. Additionally, liver and kidney function indicators along with hematological parameters were evaluated. RESULTS Compared with placebo, HS did not significantly affect HOMA-IR, glycemic markers, BMI, WC, lipid profile, or blood pressure. Although HS did not significantly alter the lipid profile overall, serum low-density lipoprotein (LDL) levels decreased significantly at 12 weeks compared with baseline (-7.98mg/dL, [95% CI, -14.80, -1.15]). Additionally, HS did not cause significant liver or kidney function or hematological changes compared with placebo. CONCLUSION Taking 1000-mg HS daily for 12 weeks seems to be safe. Placebo and HS groups showed good clinical results, and the extract was not associated with improved metabolic parameters in individuals with abdominal obesity and mild MetS symptoms, with the exception of lower serum LDL.
Collapse
Affiliation(s)
- Kanchaporn Chaisungnern
- Health Research and Management Program, Department of Preventive and Social Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
| | - Thanapoom Rattananupong
- Health Research and Management Program, Department of Preventive and Social Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
| | - Rossukon Klinhom
- Institute of Thai Traditional Medicine, Department of Thai Traditional and Alternative Medicine, Ministry of Public Health, Thailand.
| | - Srisuphak Nanta
- Institute of Thai Traditional Medicine, Department of Thai Traditional and Alternative Medicine, Ministry of Public Health, Thailand.
| | - Kamonwan Banchuen
- Institute of Thai Traditional Medicine, Department of Thai Traditional and Alternative Medicine, Ministry of Public Health, Thailand.
| | - Arunporn Itharat
- Center of Excellence in Applied Thai Traditional Medicine Research, Thammasat University, Thailand.
| | - Pranporn Kuropakornpong
- Center of Excellence in Applied Thai Traditional Medicine Research, Thammasat University, Thailand.
| | - Thanan Supasiri
- Health Research and Management Program, Department of Preventive and Social Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Center of Excellence in Preventive and Integrative Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
| | - Preecha Nootim
- Institute of Thai Traditional Medicine, Department of Thai Traditional and Alternative Medicine, Ministry of Public Health, Thailand.
| | - Wiroj Jiamjarasrangsi
- Health Research and Management Program, Department of Preventive and Social Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
2
|
Ezcurra-Hualde M, Gómez-Leyva JF, Juarez-Curiel E, Regalado-Noyola YJ, Ardaiz N, Casares N, Ruiz-Guillamon D, Rodríguez-Leon SM, Flores-Hernández FY, Arrizabalaga L, Risson A, García-Fuentes R, Gomar C, Belsue V, Aranda F, Berraondo P, Garcia-Garcia MR. Intratumoral administration of Hibiscus sabdariffa-derived anthocyanins exerts potent antitumor effects in murine cancer models. Front Immunol 2025; 16:1549890. [PMID: 40124386 PMCID: PMC11925877 DOI: 10.3389/fimmu.2025.1549890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Accepted: 02/17/2025] [Indexed: 03/25/2025] Open
Abstract
Introduction Cancer remains the leading cause of death worldwide, with increasing incidence rates. Natural compounds have gained attention as potential therapeutic agents due to their bioactive properties. Anthocyanins, particularly delphinidin-3-sambubioside (Dp-3-sam) and cyanidin-3-sambubioside (Cn-3-sam), are flavonoids with antioxidant and potential antitumor properties. This study investigates the antitumor effects of anthocyanins extracted from Hibiscus sabdariffa L. (H. sabdariffa), administered intratumorally, and their potential as adjuvants to chemotherapy. Methods Anthocyanins were extracted from H. sabdariffa and characterized using high-performance liquid chromatography (HPLC). The total phenolic content was determined using the Folin-Ciocalteu method. Antioxidant activity was assessed through DPPH, ABTS, and FRAP assays. The antiproliferative effects of Dp-3-sam and Cn-3-sam were evaluated in vitro using MCA-205 fibrosarcoma and CT26 colon carcinoma cell lines. In vivo studies were conducted on mouse tumor models to assess tumor growth inhibition following intratumoral administration of anthocyanins alone or in combination with doxorubicin. The impact on angiogenesis, immune cell recruitment, and long-term immune memory was also analyzed. Results HPLC analysis confirmed the presence of Dp-3-sam and Cn-3-sam in the H. sabdariffa extract. The anthocyanins exhibited significant antioxidant activity in all assays. In vitro studies demonstrated dose-dependent inhibition of cancer cell proliferation. In vivo, intratumoral administration of anthocyanins led to a significant reduction in tumor growth. The combination of anthocyanins with doxorubicin further enhanced tumor suppression. Mechanistically, Dp-3-sam and Cn-3-sam reduced angiogenesis and promoted immune cell recruitment but did not elicit an effective antitumor immune response alone. However, co-administration with doxorubicin reversed this limitation, leading to increased immune activation and resistance to tumor rechallenge, suggesting the induction of long-term immune memory. Discussion These findings highlight the potential of H. sabdariffa-derived anthocyanins as adjuvants in cancer therapy. When administered intratumorally, they enhance chemotherapy efficacy and immunogenicity. However, further studies are needed to optimize dosing strategies, evaluate long-term safety, and assess clinical applicability.
Collapse
Affiliation(s)
- Miriam Ezcurra-Hualde
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Cancer Center Clínica Universidad de Navarra (CCUN), Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Juan Florencio Gómez-Leyva
- Laboratorio de Biología Molecular, TecNM-Instituto Tecnológico de Tlajomulco, Tlajomulco de Zúñiga, Jalisco, Mexico
| | - Efren Juarez-Curiel
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Cancer Center Clínica Universidad de Navarra (CCUN), Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- Laboratorio de Biología Molecular, TecNM-Instituto Tecnológico de Tlajomulco, Tlajomulco de Zúñiga, Jalisco, Mexico
| | | | - Nuria Ardaiz
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Cancer Center Clínica Universidad de Navarra (CCUN), Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Noelia Casares
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Cancer Center Clínica Universidad de Navarra (CCUN), Pamplona, Spain
- Solid Tumor Program, Cima Universidad de Navarra, Cancer, Center Clínica Universidad de Navarra (CCUN), Pamplona, Spain
| | - David Ruiz-Guillamon
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Cancer Center Clínica Universidad de Navarra (CCUN), Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | | | - Flor Yohana Flores-Hernández
- Unidad de Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, Mexico
| | - Leire Arrizabalaga
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Cancer Center Clínica Universidad de Navarra (CCUN), Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Aline Risson
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Cancer Center Clínica Universidad de Navarra (CCUN), Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Román García-Fuentes
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Cancer Center Clínica Universidad de Navarra (CCUN), Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Celia Gomar
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Cancer Center Clínica Universidad de Navarra (CCUN), Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Virginia Belsue
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Cancer Center Clínica Universidad de Navarra (CCUN), Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Fernando Aranda
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Cancer Center Clínica Universidad de Navarra (CCUN), Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Pedro Berraondo
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Cancer Center Clínica Universidad de Navarra (CCUN), Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- Spanish Center for Biomedical Research Network in Oncology (CIBERONC), Madrid, Spain
| | - Maritza R. Garcia-Garcia
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Cancer Center Clínica Universidad de Navarra (CCUN), Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- Escuela de Nutrición, Universidad Autónoma de Guadalajara, Zapopan, Jalisco, Mexico
| |
Collapse
|
3
|
Ghaly HKF, Younis FAAY, Soliman AM, El-Sabbagh SM. Phytochemical and antibacterial properties of calyces Hibiscus sabdariffa L.: an in vitro and in silico multitarget-mediated antibacterial study. BMC Complement Med Ther 2025; 25:62. [PMID: 39966872 PMCID: PMC11837655 DOI: 10.1186/s12906-025-04794-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 01/29/2025] [Indexed: 02/20/2025] Open
Abstract
BACKGROUND Multidrug-resistant (MDR) bacteria pose a significant threat to human health worldwide by increasing the harmful impact of traditional synthetic antibiotics. Traditional medicinal plants have bioactive metabolites that can significantly modulate the growth rate, cell survival, and pathogenicity of antibiotic-resistant bacteria. Hibiscus sabdariffa L., known as Roselle or Karkade, belongs to the Malvaceae family. It is well-known for its edible aromatic red/purple calyces and is extensively utilized in the food industry and pharmacological applications. H. sabdariffa calyx bioactive phytocompounds have potent therapeutic activities such as antimicrobial, antidiabetic, antiobesity, antioxidant, anti-inflammatory, and anticancer properties. METHODS This study utilized gas chromatography-mass spectrometry (GC-MS) analysis to determine the volatile aromatic compounds that found in the hydroethanolic extract of Hibiscus sabdariffa calyces. The purpose was to verify the antibacterial properties of Roselle calyces against selective MDR clinical bacterial isolates, including A. baumanii, E. coli, K. pneumoniae, and P. aeruginosa. RESULTS The GC-MS spectrum profile revealed the presence of twenty-seven volatile organic components, including organic fatty acid derivatives, ester compounds, sugar derivatives, and terpene components. The major GC-MS fractionations and the main active chemical compositions of the hydroethanolic extract of H. sabdariffa flowers were (E)-10-Octadecenoic acid methyl ester (59.23%), 8,11-Octadecadienoic acid, methyl ester (11.51%), Butanedioic acid, 3-hydroxy-2,2-dimethyl-, diethyl ester (6.22%), Diethyl succinate/Butanedioic acid, diethyl ester (2.35%), and Heptadecanoic acid, 16-methyl-, methyl ester/Methyl isostearate (2.31%). The hydroethanolic extract of H. sabdariffa dried calyces demonstrated potent antibacterial properties (zones diameter of inhibition growth, MIC, MBC, and MBC/MIC) against selective MDR clinical bacterial isolates, such as A. baumanii, E. coli, K. pneumoniae, and P. aeruginosa, as determined by the phytochemical screening (TAC, TFC, and TPC) and antioxidant activity (DPPH). The surface morphological characteristics of the treated A. baumanii, E. coli, K. pneumoniae, and P. aeruginosa clinical isolates have been affected in comparison to the untreated forms by the hydroethanolic extract of H. sabdariffa calyces, as determined by scanning electron microscopy (SEM). In silico predictive investigation revealed that the volatile aromatic components of the hydroethanolic extract of Roselle calyces exhibited significant scoring functions, binding affinities, and non-covalent intermolecular interactions with the MenB lyase and DNA gyrase targets of E. coli. These interactions significantly enhanced the activities of the volatile aromatic components against the bacterial pathogenicity, cell survival, growth, and differentiation of selective MDR clinical bacterial isolates. CONCLUSIONS According to the in vitro and in silico findings, the hydroethanolic extract of H. sabdariffa calyces has shown potentials as an effective antioxidant and antibacterial treatment. It contains volatile aromatic compounds that can modulate selective MDR Gram-negative clinical bacterial isolates.
Collapse
Affiliation(s)
- Hend Khairy Fekry Ghaly
- Botany and Microbiology Department, Faculty of Science, Menoufia University, Shebin El-Kom, Menoufia, Egypt
| | - Fatema Aly Al-Yamany Younis
- Chemistry Department, Faculty of Science, Al-Azhar University (Girls Branch), Cairo, Egypt.
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, 21515, Egypt.
| | - Azza Mahmoud Soliman
- Botany and Microbiology Department, Faculty of Science, Menoufia University, Shebin El-Kom, Menoufia, Egypt
| | - Sabha Mahmoud El-Sabbagh
- Botany and Microbiology Department, Faculty of Science, Menoufia University, Shebin El-Kom, Menoufia, Egypt.
| |
Collapse
|
4
|
Coyago-Cruz E, Barrigas A, Guachamin A, Heredia-Moya J, Zuñiga-Miranda J, Vera E. Bioactive Composition of Tropical Flowers and Their Antioxidant and Antimicrobial Properties. Foods 2024; 13:3766. [PMID: 39682838 DOI: 10.3390/foods13233766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/18/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024] Open
Abstract
This study evaluated tropical flower petals' bioactive compounds and antioxidant and antimicrobial properties. The physicochemical characteristics, carotenoids, phenolics, anthocyanins, organic acids, and antioxidant activity of 67 flowers were analyzed. In addition, the antimicrobial activity against Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, Streptococcus mutans, Candida albicans, and Candida tropicalis of 35 species was determined. A 2 × 3 experimental design was used for the extraction of carotenoids and phenolics, including solvents and ultrasonic agitation times. The mixture of methanol-acetone-dichloromethane (1:1:2) and acetone-methanol (2:1) resulted in the highest concentration of carotenoids, while acidified 80% methanol favoured phenolic extraction. Renealmia alpinia was extremely rich in carotenoids (292.5 mg β-carotene/g DW), Pleroma heteromallum in anthocyanins (7.35 mg C-3-gl/g DW), while a high content of citric acid was found in Hibiscus rosa-sinensis (17,819 mg/100 g DW). On the other hand, Thibaudia floribunda showed the highest antioxidant activity (7.8 mmol Trolox equivalent/g DW). The main phenolics were m-coumaric acid in Acalypha poiretii (12,044 mg/100 g DW), 4-hydroxybenzoic acid in Brugmansia arborea (10,729 mg/100 g DW), and kaempferol in Dahlia pinnata (8236 mg/100 g DW). The extract of Acalypha poiretii, Brownea macrophylla, and Cavendishia nobilis showed antibacterial activity, while the extract of Pleroma heteromallum was the only one active against Candida albicans. These findings highlight the potential health benefits from certain tropical flowers.
Collapse
Affiliation(s)
- Elena Coyago-Cruz
- Carrera de Ingeniería en Biotecnología de los Recursos Naturales, Universidad Politécnica Salesiana, Sede Quito, Campus El Girón, Av. 12 de Octubre N2422 y Wilson, Quito 170109, Ecuador
| | - Alejandro Barrigas
- Maestría en Productos Farmacéuticos Naturales, Universidad Politécnica Salesiana, Sede Quito, Campus El Girón, Av. 12 de Octubre N2422 y Wilson, Quito 170109, Ecuador
| | - Aida Guachamin
- Carrera de Ingeniería en Biotecnología de los Recursos Naturales, Universidad Politécnica Salesiana, Sede Quito, Campus El Girón, Av. 12 de Octubre N2422 y Wilson, Quito 170109, Ecuador
| | - Jorge Heredia-Moya
- Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador
| | - Johana Zuñiga-Miranda
- Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador
| | - Edwin Vera
- Departamento de Ciencia de los Alimentos y Biotecnología, Facultad de Ingeniería Química, Escuela Politécnica Nacional, Quito 170524, Ecuador
| |
Collapse
|
5
|
Saqib S, Muneer A, Munir R, Sayed M, Waqas M, Aliyam T, Younas F, Farah MA, Elsadek MF, Noreen S. Green hybrid coagulants for water treatment: An innovative approach using alum and bentonite clay combined with eco-friendly plant materials for batch and column adsorption. ENVIRONMENTAL RESEARCH 2024; 259:119569. [PMID: 38972343 DOI: 10.1016/j.envres.2024.119569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 06/26/2024] [Accepted: 07/04/2024] [Indexed: 07/09/2024]
Abstract
Textile industries contribute to water pollution through synthetic dye discharge. This study explores the use of natural bio-coagulants to remove acid dyes from wastewater, investigating factors like pH, coagulant dose, dye concentration, contact time, and temperature for optimal results. The optimum pH and coagulants capabilities of (CAAPP, CAAPH, CBAGL, CBAPP and CBAPH) were 3 (49.6 mg/g), 3 (42.5 mg/g), 3 (38.9 mg/g), 4 (35.7 mg/g), 4 (34.1 mg/g), and 4 (29.4 mg/g) respectively, while treating of selected BRF-221 dyes from water solution. The acidic range (3-4) was found to have the best pH for the maximal coagulation, and the optimal dose were found to be 0.05 g/50 mL. The equilibrium was attained within 45-60 min for all coagulants. After 60 min of shaking, the maximum coagulation capacities (21.9, 21.02, 16.5, 27.9, 25.3, and 23.4 mg/g) of several coagulant composites (CAAGL, CAAPP, CAAPH, CBAGL, CBAPP, CBAPH) were determined. The initial BRF-221 dye concentration in the range of 10-200 mg/L was considered as optimum for gaiting maximum elimination of dye using different coagulants. At a dye value of 100 mg/L of BRF-221, maximal coagulation capacities CAAGL (179.19 mg/g), CAAPP (166.06 mg/g), CAAPH (141.60 mg/g), and CBAGL (126.49 mg/g), CBAPP (113.9 mg/g), CBAPH (93.08 mg/g) were attained. The study found 35 °C to be the optimal temperature for maximum acid dye removal using bio-coagulants. Increasing temperature reduced coagulation capacity, indicating an exothermic process. Freundlich and Langmuir isotherms showed suitability for pseudo-first-order and pseudo-second-order kinetics in biosorption. Thermodynamic parameters were assessed for process feasibility. Effective coagulants demonstrated sensitivity to electrolyte variations. In column studies, adjusting parameters achieved maximum coagulation efficiency for removing BRF-221 dyes. The study successfully applied optimal parameters to remove real textile effluents at a practical scale. SEM, FT-IR, BET and XRD characterized coagulants, providing insights into stability and morphology.
Collapse
Affiliation(s)
- Sidra Saqib
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Amna Muneer
- Department of Physics, Government College Women University, Faisalabad, 38000, Pakistan
| | - Ruba Munir
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Murtaza Sayed
- National Center of Excellence in Physical Chemistry, University of Peshawar, Pakistan
| | - Muhammad Waqas
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Tayyiba Aliyam
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Fazila Younas
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Mohammad Abul Farah
- Department of Zoology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Mohamed Farouk Elsadek
- Department of Biochemistry, College of Science, King Saud University, P.O. 2455, Riyadh, 11451, Saudi Arabia
| | - Saima Noreen
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan.
| |
Collapse
|
6
|
Villegas-Aguilar MDC, Cádiz Gurrea MDLL, Herranz-López M, Barrajón-Catalán E, Arráez-Román D, Fernández-Ochoa Á, Segura-Carretero A. An untargeted metabolomics approach applied to the study of the bioavailability and metabolism of three different bioactive plant extracts in human blood samples. Food Funct 2024; 15:9176-9190. [PMID: 39158031 DOI: 10.1039/d4fo01522c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
Advances in the understanding of bioavailability and metabolism of bioactive compounds have been achieved primarily through targeted or semi-targeted metabolomics approaches using the hypothesis of potential metabolized compounds. The recent development of untargeted metabolomics approaches can present great advantages in this field, such as in the discovery of new metabolized compounds or to study the metabolism of compounds from multiple matrices simultaneously. Thus, this study proposes the use of an untargeted metabolomics strategy based on HPLC-ESI-QTOF-MS for the study of bioavailability and metabolism of bioactive compounds from different vegetal sources. Specifically, this study has been applied to plasma samples collected in an acute human intervention study using three matrices (Hibiscus sabdariffa, Silybum marianum and Theobroma cacao). This approach allowed the selection of those significant variables associated with exogenous metabolites derived from the consumption of bioactive compounds for their subsequent identification. As a result, 14, 25 and 3 potential metabolites associated with supplement intake were significantly detected in the plasma samples from volunteers who ingested the H. sabdariffa (HS), S. marianum (SM) and T. cacao (TC) extracts. Furthermore, Tmax values have been computed for each detected compound. The results highlight the potential of untargeted metabolomics for rapid and comprehensive analysis when working with a wide range of exogenous metabolites from different plant sources in biological samples.
Collapse
Affiliation(s)
| | | | - María Herranz-López
- Institute of Research, Development and Innovation in Biotechnology of Elche (IDiBE) and Molecular and Cell Biology Institute (IBMC), Miguel Hernández University (UMH), 03202 Elche, Spain
| | - Enrique Barrajón-Catalán
- Institute of Research, Development and Innovation in Biotechnology of Elche (IDiBE) and Molecular and Cell Biology Institute (IBMC), Miguel Hernández University (UMH), 03202 Elche, Spain
| | - David Arráez-Román
- Department of Analytical Chemistry, University of Granada, 18071 Granada, Spain.
| | | | | |
Collapse
|
7
|
Huang J, Yang G, Chen K, Du M, Zalán Z, Hegyi F, Kan J. Anti-fungal effects of lactic acid bacteria from pickles on the growth and sterigmatocystin production of Aspergillus versicolor. Int J Food Microbiol 2024; 422:110809. [PMID: 38955023 DOI: 10.1016/j.ijfoodmicro.2024.110809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/30/2024] [Accepted: 06/23/2024] [Indexed: 07/04/2024]
Abstract
Sterigmatocystin (STC) is an emerging mycotoxin that poses a significant threat to the food security of cereal crops. To mitigate STC contamination in maize, this study employed selected lactic acid bacteria as biocontrol agents against Aspergillus versicolor, evaluating their biocontrol potential and analyzing the underlying mechanisms. Lactiplantibacillus plantarum HJ10, isolated from pickle, exhibited substantial in vitro antifungal activity and passed safety assessments, including antibiotic resistance and hemolysis tests. In vivo experiments demonstrated that L. plantarum HJ10 significantly reduced the contents of A. versicolor and STC in maize (both >84 %). The impact of heat, enzymes, alkali, and other treatments on the antifungal activity of cell-free supernatant (CFS) was investigated. Integrated ultra-high-performance liquid chromatography (UPLC) and gas chromatography-mass spectrometry (GC-MS) analysis revealed that lactic acid, acetic acid, and formic acid are the key substances responsible for the in vitro antifungal activity of L. plantarum HJ10. These metabolites induced mold apoptosis by disrupting cell wall structure, increasing cell membrane fluidity, reducing enzyme activities, and disrupting energy metabolism. However, in vivo antagonism by L. plantarum HJ10 primarily occurs through organic acid production and competition for growth space and nutrients. This study highlights the potential of L. plantarum HJ10 in reducing A. versicolor and STC contamination in maize.
Collapse
Affiliation(s)
- Jun Huang
- College of Food Science, Southwest University, 2 Tiansheng Road, Beibei, Chongqing 400715, PR China; Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing 400715, PR China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, PR China
| | - Gang Yang
- College of Food Science, Southwest University, 2 Tiansheng Road, Beibei, Chongqing 400715, PR China; Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing 400715, PR China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, PR China
| | - Kewei Chen
- College of Food Science, Southwest University, 2 Tiansheng Road, Beibei, Chongqing 400715, PR China; Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing 400715, PR China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, PR China; Laboratory of Quality & Safety Risk Assessment for Agro-products on Storage and Preservation (Chongqing), Ministry of Agriculture, Chongqing 400715, PR China
| | - Muying Du
- College of Food Science, Southwest University, 2 Tiansheng Road, Beibei, Chongqing 400715, PR China; Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing 400715, PR China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, PR China; Laboratory of Quality & Safety Risk Assessment for Agro-products on Storage and Preservation (Chongqing), Ministry of Agriculture, Chongqing 400715, PR China
| | - Zsolt Zalán
- Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing 400715, PR China; Food Science and Technology Institute, Hungarian University of Agriculture and Life Sciences, Buda Campus, Herman Ottó str. 15, Budapest 1022, Hungary.
| | - Ferenc Hegyi
- Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing 400715, PR China; Food Science and Technology Institute, Hungarian University of Agriculture and Life Sciences, Buda Campus, Herman Ottó str. 15, Budapest 1022, Hungary.
| | - Jianquan Kan
- College of Food Science, Southwest University, 2 Tiansheng Road, Beibei, Chongqing 400715, PR China; Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing 400715, PR China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, PR China; Laboratory of Quality & Safety Risk Assessment for Agro-products on Storage and Preservation (Chongqing), Ministry of Agriculture, Chongqing 400715, PR China.
| |
Collapse
|
8
|
Yu W, Du Y, Li S, Wu L, Guo X, Qin W, Kuang X, Gao X, Wang Q, Kuang H. Sea buckthorn-nutritional composition, bioactivity, safety, and applications: A review. J Food Compost Anal 2024; 133:106371. [DOI: 10.1016/j.jfca.2024.106371] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2025]
|
9
|
Coyago-Cruz E, Valenzuela D, Guachamin A, Méndez G, Heredia-Moya J, Vera E. Bioactive Compound Profiling and Antioxidant Activity of Phytelephas tenuicaulis and Other Amazonian Fruits. Foods 2024; 13:2151. [PMID: 38998656 PMCID: PMC11241299 DOI: 10.3390/foods13132151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/29/2024] [Accepted: 07/02/2024] [Indexed: 07/14/2024] Open
Abstract
The Amazon region is home to many plant species, many of which have not been studied. The objective was to evaluate the physicochemical properties, bioactive compounds, and antioxidant activity of Phytelephas tenuicalis (tintiuk), Grias neuberthii (apai), Euterpe oleracea (acai), and Mauritia flexuosa (brown moriche). Physicochemical analyses were carried out on fresh fruit from local markets. Bioactive compounds (carotenoids, phenolics, vitamin C, and organic acids) were quantified in the freeze-dried pulp by rapid-resolution liquid chromatography (RRLC), and antioxidant activity was determined by ABTS and DPPH assays. The results showed high soluble solids (10.7 °Brix) and ascorbic acid (67.3 mg/100 g DW) in tintiuk; β-carotene (63.4 mg/100 g DW) and malic acid (19.6 g/100 g DW) in brown moriche; quercetin (944.2 mg/100 g DW) and antioxidant activity by ABTS (6.7 mmol ET/100 g DW) in apai; and citric acid (2.1 g/100 g DW) in acai. These results indicate interesting bioactive properties that could increase the consumption of these fruits nationally and internationally, benefiting local farmers and stimulating the development of new products in functional food, medicine, and cosmetics.
Collapse
Affiliation(s)
- Elena Coyago-Cruz
- Carrera de Ingeniería en Biotecnología de los Recursos Naturales, Universidad Politécnica Salesiana, Sede Quito, Campus El Girón, Av. 12 de Octubre N2422 y Wilson, Quito 170143, Ecuador
| | - David Valenzuela
- Maestría en Productos Farmacéuticos Naturales, Universidad Politécnica Salesiana, Quito 170143, Ecuador
| | - Aida Guachamin
- Carrera de Ingeniería en Biotecnología de los Recursos Naturales, Universidad Politécnica Salesiana, Sede Quito, Campus El Girón, Av. 12 de Octubre N2422 y Wilson, Quito 170143, Ecuador
| | - Gabriela Méndez
- Carrera de Ingeniería en Biotecnología de los Recursos Naturales, Universidad Politécnica Salesiana, Sede Quito, Campus El Girón, Av. 12 de Octubre N2422 y Wilson, Quito 170143, Ecuador
| | - Jorge Heredia-Moya
- Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador
| | - Edwin Vera
- Departamento de Ciencias de los Alimentos y Biotecnología, Facultad de Ingeniería Química, Escuela Politécnica Nacional, Av. 12 de Octubre N2422 y Veintimilla, Quito 170524, Ecuador
| |
Collapse
|
10
|
Dehkhoda B, Enayati A, Mirzaei H, Ghorbani S, Soleimani MH, Amirkhanlou S, Sahebkar A. Roselle ( Hibiscus sabdariffa L.) extract as an adjunct to valsartan in patients with mild chronic kidney disease: A double-blind randomized controlled clinical trial. AVICENNA JOURNAL OF PHYTOMEDICINE 2024; 14:505-519. [PMID: 38952776 PMCID: PMC11179185 DOI: 10.22038/ajp.2024.23871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/01/2024] [Accepted: 01/01/2024] [Indexed: 07/03/2024]
Abstract
Objective The objective of this study was to evaluate the effectiveness of Hibiscus sabdariffa L. extract (HS) as an adjunct to valsartan in the treatment of high blood pressure in patients with mild chronic kidney disease (CKD). Materials and Methods This trial was conducted in Gorgan, Iran. Seventy-two participants with CKD and high blood pressure were randomly assigned to either the HS group, receiving a 350 mg pill every 12 hr for 90 days along with 40 mg of valsartan every 12 hr, or the control group (40 mg valsartan + 12.5 mg hydrochlorothiazide). The primary objective was to assess the improvement of hypertension, while secondary objectives included the evaluation of proteinuria, albuminuria, kidney function, lipid profile, and electrolyte levels. Molecular docking analysis was performed to examine the mechanisms of action of the isolated components of HS. Results Out of 80 initial participants, 72 were included in the analysis. Both groups showed a significant reduction in blood pressure (p<0.001). The HS group demonstrated a statistically significant decrease in lipid profile (p<0.001). There were no statistically significant differences between the groups regarding the reduction of renal markers. Molecular docking analysis revealed that the compounds present in HS, particularly its anthocyanins and flavonoids, exhibited greater angiotensin-converting enzyme (ACE) inhibitory potential than hydrochlorothiazide in both domains. Moreover, the compounds met the criteria for drug likeness and Lipinski rules. Conclusion Adjunctive therapy with HS showed promising results in reducing hypertension and improving lipid profile in patients with CKD.
Collapse
Affiliation(s)
- Behdad Dehkhoda
- Ischemic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
- Equal first author
| | - Ayesheh Enayati
- Ischemic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
- Equal first author
| | - Hassan Mirzaei
- Ischemic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Somayeh Ghorbani
- Rheumatology Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | | | - Saeid Amirkhanlou
- Ischemic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
11
|
Wen J, Xiang Q, Guo J, Zhang J, Yang N, Huang Y, Chen Y, Hu T, Rao C. Pharmacological activities of Zanthoxylum L. plants and its exploitation and utilization. Heliyon 2024; 10:e33207. [PMID: 39022083 PMCID: PMC11252797 DOI: 10.1016/j.heliyon.2024.e33207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/10/2024] [Accepted: 06/17/2024] [Indexed: 07/20/2024] Open
Abstract
The study aims to provide an up-to-date review at the advancements of the investigations on the ethnopharmacology, phytochemistry, pharmacological effect and exploitation and utilizations of Zanthoxylum L. Besides, the possible tendency and perspective for future research of this plant are discussed, as well. This article uses "Zanthoxylum L." "Zanthorylum bungeanum" as the keywords and collects relevant information on Zanthoxylum L. plants through electronic searches (Elsevier, PubMed, ACS, Web of Science, Science Direct, CNKI, Google Scholar), relevant books, and classic literature about Chinese herb. The plants of this genus are rich in volatile oils, alkaloids, amides, lignans, coumarins and organic acids, and has a wide range of pharmacological activities, including but not limited to anti-inflammatory, analgesic, anti-tumor, hypoglycemic, hypolipidemic, antioxidant and anti-infectious. This article reviewed both Chinese and international research progress on the active ingredients and pharmacological activities of Zanthoxylum L. as well as the applications of this genus in the fields of food, medicinal and daily chemicals, and clarified the material basis of its pharmacological activities. Based on traditional usage, phytochemicals, and pharmacological properties, of Zanthoxylum L. species, which indicate that they possess diverse bioactive metabolites with interesting bioactivities. Zanthoxylum L. is a potential medicinal and edible plant with diverse pharmacological effects. Due to its various advantages, it may have vast application potential in the food and medicinal industries and daily chemicals. Nonetheless, the currently available data has several gaps in understanding the herbal utilization of Zanthoxylum L. Thus, further research into their toxicity, mechanisms of actions of the isolated bioactive metabolites, as well as scientific connotations between the traditional medicinal uses and pharmacological properties is required to unravel their efficacy in therapeutic potential for safe clinical application.
Collapse
Affiliation(s)
- Jiayu Wen
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Qiwen Xiang
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Jiafu Guo
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Jian Zhang
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Nannan Yang
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Yan Huang
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Yan Chen
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Tingting Hu
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Chaolong Rao
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
- R&D Center for Efficiency, Safety and Application in Chinese Materia Medica with Medical and Edible Values, School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| |
Collapse
|
12
|
WANG X, HUANG J, WANG Y, WANG Q, JING Y, ZHANG G, PENG L, GAO J, WANG H, YAN Y. Differential metabolite analysis of the pharmacodynamic differences between different ratios of Dahuang ()-Taoren () herb pair. J TRADIT CHIN MED 2024; 44:515-523. [PMID: 38767635 PMCID: PMC11077142 DOI: 10.19852/j.cnki.jtcm.20240423.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 07/14/2023] [Indexed: 05/22/2024]
Abstract
OBJECTIVE To explore the material basis of the difference of efficacy of Dahuang (Radix Et Rhizoma Rhei Palmati)-Taoren (Semen Persicae) (DT) drugs with different proportions. METHODS Samples of different ratios of Dahuang (Radix et Rhizoma Rhei Palnati, DH) to Taoren (Semen Persicae, TR) (Group A 1:1, B 2:3, C 3:2) were analyzed based on gas chromatography time-of-flight mass spectrometry untargeted metabolomics technique. RESULTS A total of 240 primary metabolites were detected. Forty-one differential metabolites involved nine differential metabolic pathways, of which four were closely related to the efficacy of DT in the treatment of heat and blood stasis syndrome. These pathways included the biosynthesis of amino acid (phenylalanine tyrosine and tryptophan), flavonoids, unsaturated fatty acids, and the glycolysis/glycogenesis pathway. CONCLUSION There are significant differences in the efficacy of different ratios of DT drugs, and their optimal ratio for the treatment of heat and blood stasis syndrome should be 1:1.
Collapse
Affiliation(s)
- Xiang WANG
- 1 Department of Key Laboratory of "Qin Pharmaceutical" Research and Development, Shaanxi University of Traditional Chinese Medicine, Xianyang 712046, China
| | - Jianping HUANG
- 1 Department of Key Laboratory of "Qin Pharmaceutical" Research and Development, Shaanxi University of Traditional Chinese Medicine, Xianyang 712046, China
| | - Yupeng WANG
- 3 Department of Yupeng Shaanxi Haitian Pharmaceutical Co., Ltd., Xianyang 712000, China
| | - Qilong WANG
- 1 Department of Key Laboratory of "Qin Pharmaceutical" Research and Development, Shaanxi University of Traditional Chinese Medicine, Xianyang 712046, China
| | - Yajiang JING
- 1 Department of Key Laboratory of "Qin Pharmaceutical" Research and Development, Shaanxi University of Traditional Chinese Medicine, Xianyang 712046, China
| | - Gang ZHANG
- 1 Department of Key Laboratory of "Qin Pharmaceutical" Research and Development, Shaanxi University of Traditional Chinese Medicine, Xianyang 712046, China
| | - Liang PENG
- 1 Department of Key Laboratory of "Qin Pharmaceutical" Research and Development, Shaanxi University of Traditional Chinese Medicine, Xianyang 712046, China
| | - Jing GAO
- 1 Department of Key Laboratory of "Qin Pharmaceutical" Research and Development, Shaanxi University of Traditional Chinese Medicine, Xianyang 712046, China
| | - Hongyan WANG
- 2 Department of Acupuncture and Tuina, Shaanxi University of Traditional Chinese Medicine, Xianyang 712046, China
| | - Yonggang YAN
- 1 Department of Key Laboratory of "Qin Pharmaceutical" Research and Development, Shaanxi University of Traditional Chinese Medicine, Xianyang 712046, China
| |
Collapse
|
13
|
Mandal B, Das R, Mondal S. Anthocyanins: Potential phytochemical candidates for the amelioration of non-alcoholic fatty liver disease. ANNALES PHARMACEUTIQUES FRANÇAISES 2024; 82:373-391. [PMID: 38354975 DOI: 10.1016/j.pharma.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/30/2024] [Accepted: 02/08/2024] [Indexed: 02/16/2024]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is described by too much hepatic fat deposition causing steatosis, which further develops into nonalcoholic steatohepatitis (NASH), defined by necroinflammation and fibrosis, progressing further to hepatic cirrhosis, hepatocellular carcinoma, and liver failure. NAFLD is linked to different aspects of the metabolic syndrome like obesity, insulin resistance, hypertension, and dyslipidemia, and its pathogenesis involves several elements including diet, obesity, disruption of lipid homeostasis, and a high buildup of triglycerides and other lipids in liver cells. It is therefore linked to an increase in the susceptibility to developing diabetes mellitus and cardiovascular diseases. Several interventions exist regarding its management, but the availability of natural sources through diet will be a benefit in dealing with the disorder due to the immensely growing dependence of the population worldwide on natural sources owing to their ability to treat the root cause of the disease. Anthocyanins (ACNs) are naturally occurring polyphenolic pigments that exist in the form of glycosides, which are the glucosides of anthocyanidins and are produced from flavonoids via the phenyl propanoid pathway. To understand their mode of action in NAFLD and their therapeutic potential, the literature on in vitro, in vivo, and clinical trials on naturally occurring ACN-rich sources was exhaustively reviewed. It was concluded that ACNs show their potential in the treatment of NAFLD through their antioxidant properties and their efficacy to control lipid metabolism, glucose homeostasis, transcription factors, and inflammation. This led to the conclusion that ACNs possess efficacy in the amelioration of NAFLD and the various features associated with it. However, additional clinical trials are required to justify the potential of ACNs in NAFLD.
Collapse
Affiliation(s)
- Bitasta Mandal
- School of Pharmaceutical Technology, School of Health and Medical Sciences, Adamas University, Kolkata 700126, India.
| | - Rakesh Das
- School of Pharmaceutical Technology, School of Health and Medical Sciences, Adamas University, Kolkata 700126, India.
| | - Sandip Mondal
- School of Pharmaceutical Technology, School of Health and Medical Sciences, Adamas University, Kolkata 700126, India.
| |
Collapse
|
14
|
Takada K, Nakano S, Nishio R, Muku D, Mochizuki S, Inui I, Okita K, Koga A, Watanabe K, Yoshioka Y, Ariyoshi W, Yamasaki R. Medicinal herbs, especially Hibiscus sabdariffa, inhibit oral pathogenic bacteria. J Oral Biosci 2024; 66:179-187. [PMID: 38278302 DOI: 10.1016/j.job.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/14/2024] [Accepted: 01/15/2024] [Indexed: 01/28/2024]
Abstract
OBJECTIVES Medicinal herbs are plants with potential medicinal and health benefits. In recent years, they are being increasingly used as a treatment alternative owing to their effectiveness against various diseases. In this study, we investigated the inhibitory effects of 15 medicinal herbs on causative bacteria for dental caries and periodontal disease. METHODS This study evaluated the effects of the extracts of 15 medicinal herbs on growth and biofilm formation in five oral pathogenic bacterial strains. The herbs were processed into extracts, and bacterial strains were cultured. Then, bacterial growth and biofilm formation were assessed using various methods. Finally, the extract of the herb Hibiscus sabdariffa (hibiscus) was analyzed using high-performance liquid chromatography. RESULTS Incubation of bacteria with the herbal extracts showed that hibiscus exerted a significant inhibitory effect on all the oral pathogenic bacterial strains evaluated in this study. In addition, the pigment delphinidin-3-sambubioside, which is found in hibiscus extract, was identified as a particularly important inhibitory component. CONCLUSIONS These results lay the ground work for the potential development of novel therapeutic or preventive agents against dental caries and periodontal disease, two major oral diseases.
Collapse
Affiliation(s)
- Kazuya Takada
- Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental University, Kitakyushu, Fukuoka, 803-8580, Japan; Division of Developmental Stomatognathic Function Science, Department of Health Promotion, Kyushu Dental University, Kitakyushu, Fukuoka, 803-8580, Japan
| | - Shizuki Nakano
- Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental University, Kitakyushu, Fukuoka, 803-8580, Japan
| | - Reina Nishio
- Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental University, Kitakyushu, Fukuoka, 803-8580, Japan
| | - Daichi Muku
- Department of Chemistry and Biochemistry, The University of Kitakyushu, Kitakyushu, Fukuoka, 808-0135, Japan
| | - Shinichi Mochizuki
- Department of Chemistry and Biochemistry, The University of Kitakyushu, Kitakyushu, Fukuoka, 808-0135, Japan
| | - Inori Inui
- Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental University, Kitakyushu, Fukuoka, 803-8580, Japan
| | - Kaede Okita
- Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental University, Kitakyushu, Fukuoka, 803-8580, Japan
| | - Ayaka Koga
- Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental University, Kitakyushu, Fukuoka, 803-8580, Japan
| | - Koji Watanabe
- Division of Developmental Stomatognathic Function Science, Department of Health Promotion, Kyushu Dental University, Kitakyushu, Fukuoka, 803-8580, Japan
| | - Yoshie Yoshioka
- Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental University, Kitakyushu, Fukuoka, 803-8580, Japan
| | - Wataru Ariyoshi
- Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental University, Kitakyushu, Fukuoka, 803-8580, Japan
| | - Ryota Yamasaki
- Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental University, Kitakyushu, Fukuoka, 803-8580, Japan; Collaborative Research Centre for Green Materials on Environmental Technology, Kyushu Institute of Technology, Kitakyushu, Fukuoka, 804-8550, Japan.
| |
Collapse
|
15
|
Zúñiga-Hernández SR, García-Iglesias T, Macías-Carballo M, Pérez-Larios A, Gutiérrez-Mercado YK, Camargo-Hernández G, Rodríguez-Razón CM. Targets and Effects of Common Biocompounds of Hibiscus sabdariffa (Delphinidin-3-Sambubiosid, Quercetin, and Hibiscus Acid) in Different Pathways of Human Cells According to a Bioinformatic Assay. Nutrients 2024; 16:566. [PMID: 38398890 PMCID: PMC10893457 DOI: 10.3390/nu16040566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/01/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
The utilization of food as a therapeutic measure for various ailments has been a prevalent practice throughout history and across different cultures. This is exemplified in societies where substances like Hibiscus sabdariffa have been employed to manage health conditions like hypertension and elevated blood glucose levels. The inherent bioactive compounds found in this plant, namely, delphinidin-3-sambubioside (DS3), quercetin (QRC), and hibiscus acid (HA), have been linked to various health benefits. Despite receiving individual attention, the specific molecular targets for these compounds remain unclear. In this study, computational analysis was conducted using bioinformatics tools such as Swiss Target Prediction, ShinnyGo 0.77, KEGG, and Stringdb to identify the molecular targets, pathways, and hub genes. Supplementary results were obtained through a thorough literature search in PubMed. DS3 analysis revealed potential genetic alterations related to the metabolism of nitrogen and glucose, inflammation, angiogenesis, and cell proliferation, particularly impacting the PI3K-AKT signaling pathway. QRC analysis demonstrated interconnected targets spanning multiple pathways, with some overlap with DS3 analysis and a particular focus on pathways related to cancer. HA analysis revealed distinct targets, especially those associated with pathways related to the nervous system. These findings emphasize the necessity for focused research on the molecular effects of DS3, QRC, and HA, thereby providing valuable insights into potential therapeutic pathways.
Collapse
Affiliation(s)
- Sergio R. Zúñiga-Hernández
- Departamento de Ciencias de la Salud, Centro Universitario de los Altos, Universidad de Guadalajara, Tepatitlán de Morelos 47620, Mexico;
| | - Trinidad García-Iglesias
- Instituto de Investigación de Cáncer en la Infancia y Adolescencia, Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Guadalajara 44340, Mexico;
| | - Monserrat Macías-Carballo
- Instituto de Investigación en Ciencias Médicas, Centro Universitario de los Altos, Universidad de Guadalajara, Tepatitlán de Morelos 47620, Mexico;
| | - Alejandro Pérez-Larios
- Laboratorio de Nanomateriales, Agua y Energia, Departamento de Ingenierias, Centro Universitario de los Altos, Tepatitlán de Morelos 47620, Mexico;
| | - Yanet Karina Gutiérrez-Mercado
- Laboratorio Biotecnológico de Investigación y Diagnóstico, Departamento de Clínicas, Centro Universitario de los Altos, Tepatitlán de Morelos 47620, Mexico;
| | - Gabriela Camargo-Hernández
- Departamento de Ciencias de la Salud, Centro Universitario de los Altos, Universidad de Guadalajara, Tepatitlán de Morelos 47620, Mexico;
| | - Christian Martin Rodríguez-Razón
- Laboratorio de Experimentación Animal (Bioterio), Departamento de Ciencias de la Salud, Centro Universitario de los Altos, Tepatitlán de Morelos 47620, Mexico
| |
Collapse
|
16
|
Antonino C, Difonzo G, Faccia M, Caponio F. Effect of edible coatings and films enriched with plant extracts and essential oils on the preservation of animal-derived foods. J Food Sci 2024; 89:748-772. [PMID: 38161278 DOI: 10.1111/1750-3841.16894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/16/2023] [Accepted: 12/02/2023] [Indexed: 01/03/2024]
Abstract
Edible coatings and films for food preservation are becoming more popular thanks to their environmentally friendly properties and active ingredient-carrying ability. Their application can be effective in contrasting quality decay by limiting oxidation and deterioration of foods. Many reviews analyze the different compounds with which films and coatings can be created, their characteristics, and the effect when applied to food. However, the possibility of adding plant extracts and essential oils in edible coatings and films to preserve processed animal-derived products has been not exhaustively explored. The aim of this review is to summarize how edible coatings and films enriched with plant extracts (EXs) and essential oils (EOs) influence the physico-chemical and sensory features as well as the shelf-life of cheese, and processed meat and fish. Different studies showed that various EXs and EOs limited both oxidation and microbial growth after processing and during food preservation. Moreover, encapsulation has been found to be a valid technology to improve the solubility and stability of EOs and EXs, limiting strong flavor, controlling the release of bioactive compounds, and maintaining their stability during storage. Overall, the incorporation of EXs and EOs in edible coating and film to preserve processed foods can offer benefits for improving the shelf-life, limiting food losses, and creating a food sustainable chain.
Collapse
Affiliation(s)
- Claudia Antonino
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Graziana Difonzo
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Michele Faccia
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Francesco Caponio
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
17
|
Wierzchowski K, Nowak B, Kawka M, Sykłowska-Baranek K, Pilarek M. Effect of Silica Xerogel Functionalization on Intensification of Rindera graeca Transgenic Roots Proliferation and Boosting Naphthoquinone Production. Life (Basel) 2024; 14:159. [PMID: 38276288 PMCID: PMC10817608 DOI: 10.3390/life14010159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/15/2024] [Accepted: 01/20/2024] [Indexed: 01/27/2024] Open
Abstract
Secondary metabolites derived from plants are recognized as valuable products with several successful applications in the pharmaceutical, cosmetic, and food industries. The major limitation to the broader implementation of these compounds is their low manufacturing efficiency. Current efforts to overcome unprofitability depend mainly on biotechnological methods, especially through the application of plant in vitro cultures. This concept allows unprecedented bioengineering opportunities for culture system modifications with in situ product removal. The silica-based xerogels can be used as a novel, porous biomaterial characterized by a large surface area and high affinity to lipophilic secondary metabolites produced by plant tissue. This study aimed to investigate the influence of xerogel-based biomaterials functionalized with methyl, hydroxyl, carboxylic, and amine groups on Rindera graeca transgenic root growth and the production of naphthoquinone derivatives. The application of xerogel-based scaffolds functionalized with the methyl group resulted in more than 1.5 times higher biomass proliferation than for reference untreated culture. The naphthoquinone derivatives' production was noted exclusively in culture systems supplemented with xerogel functionalized with methyl and hydroxyl groups. Applying chemically functionalized xerogels as in situ adsorbents allowed for the enhanced growth and productivity of in vitro cultured R. graeca transgenic roots, facilitating product isolation due to their selective and efficient accumulation.
Collapse
Affiliation(s)
- Kamil Wierzchowski
- Faculty of Chemical and Process Engineering, Warsaw University of Technology, Waryńskiego 1, 00-645 Warsaw, Poland; (K.W.); (B.N.)
| | - Bartosz Nowak
- Faculty of Chemical and Process Engineering, Warsaw University of Technology, Waryńskiego 1, 00-645 Warsaw, Poland; (K.W.); (B.N.)
| | - Mateusz Kawka
- Department of Pharmaceutical Biology, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland; (M.K.); (K.S.-B.)
| | - Katarzyna Sykłowska-Baranek
- Department of Pharmaceutical Biology, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland; (M.K.); (K.S.-B.)
| | - Maciej Pilarek
- Faculty of Chemical and Process Engineering, Warsaw University of Technology, Waryńskiego 1, 00-645 Warsaw, Poland; (K.W.); (B.N.)
| |
Collapse
|
18
|
Irondi EA, Bankole AO, Awoyale W, Ajani EO, Alamu EO. Antioxidant, enzymes inhibitory, physicochemical and sensory properties of instant bio-yoghurts containing multi-purpose natural additives. Front Nutr 2024; 10:1340679. [PMID: 38274204 PMCID: PMC10808348 DOI: 10.3389/fnut.2023.1340679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 12/28/2023] [Indexed: 01/27/2024] Open
Abstract
This study aimed to assess the antioxidant, enzyme inhibitory, physicochemical and sensory properties of instant bio-yoghurts containing multi-purpose natural additives. Multi-purpose natural additives were formulated with three natural additives (sweet detar seed, ginger rhizome, and hibiscus calyx flours, as a thickener, flavourant and colourant, respectively) blends at proportions derived from the Design Expert. The additives' synthetic counterparts were formulated with sodium carboxymethylcellulose, vanilla flavor, and red colourant at the same proportions. After that, yoghurt was produced and the additives blends were incorporated into it either in aqueous extract or flour form, yielding bio-yoghurts designated multi-purpose natural additive extract-containing yoghurt (MNAE-yoghurt), multi-purpose natural additive flour-added yoghurt (MNAF-yoghurt), and their multi-purpose synthetic additives-containing counterparts (MSAE-yoghurt and MSAF-yoghurt). A commercially-available bio-yoghurt served as a control. All the yoghurts were lyophilized to obtain instant bio-yoghurts. Subsequently, bioactive components (total phenolics, tannins, total flavonoids and saponins), antioxidants and enzymes [alpha-amylase, alpha-glucosidase, pancreatic lipase, and angiotensin 1-converting enzyme (ACE)] inhibitory activities, as well as proximate, physicochemical and sensory qualities of the bio-yoghurts were determined. The MNAE-yoghurt and MNAF-yoghurt had higher bioactive constituents, total titratable acid levels, and more potent antioxidant and enzyme inhibitory properties, but a lower pH than their synthetic counterparts and the control. The total phenolics, tannins, total flavonoids and saponins levels of MNAE-yoghurt and MNAF-yoghurt were 14.40 ± 0.24 and 16.54 ± 0.62 mg/g, 1.65 ± 0.04 and 1.74 ± 0.08 mg/g, 4.25 ± 0.03 and 4.40 ± 0.02 mg/g, 0.64 ± 0.01 and 0.66 ± 0.02 mg/g, respectively. Among the natural multi-purpose additives-containing bio-yoghurts, MNAF-yoghurt had higher bioactive constituents and stronger antioxidant and enzymes inhibitory properties. Its α-amylase, α-glucosidase, ACE, and pancreatic lipase IC50 values were 72.47 ± 0.47, 74.07 ± 0.02, 25.58 ± 2.58, and 33.56 ± 29.66 μg/mL, respectively. In contrast, MNAE-yoghurt had the highest protein (13.70 ± 0.85%) and the lowest fat (2.63 ± 0.71%) contents. The sensory attributes of all the bio-yoghurts fell within an acceptable likeness range. Overall, the inclusion of multi-purpose natural additives blends enhanced the instant bio-yoghurts' nutritional, health-promoting, and sensory qualities.
Collapse
Affiliation(s)
| | | | - Wasiu Awoyale
- Department of Food Science and Technology, Kwara State University, Ilorin, Nigeria
| | | | - Emmanuel Oladeji Alamu
- Food and Nutrition Sciences Laboratory, International Institute of Tropical Agriculture, Oyo, Nigeria
- Food and Nutrition Sciences Laboratory, International Institute of Tropical Agriculture, Southern Africa Research and Administration Hub (SARAH), Lusaka, Zambia
| |
Collapse
|
19
|
Chew LY, Teng SK, Neo YP, Sim YY, Chew SC. The Potential of Roselle (Hibiscus sabdariffa) Plant in Industrial Applications: A Promising Source of Functional Compounds. J Oleo Sci 2024; 73:275-292. [PMID: 38432993 DOI: 10.5650/jos.ess23111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024] Open
Abstract
Roselle is an annual botanical plant that widely planted in different countries worldwide. Its different parts, including seeds, leaves, and calyces, can offer multi-purpose applications with economic importance. The present review discusses the detailed profile of bioactive compounds present in roselle seeds, leaves, and calyces, as well as their extraction and processing, to explore their potential application in pharmaceutical, cosmetic, nutraceutical, food and other industries. Roselle seeds with high phenolics, fiber, and protein contents, which are suitable to use in functional food product development. Besides, roselle seeds can yield 17-20% of roselle seed oil with high content of linoleic acid (35.0-45.3%) and oleic acid (27.1- 36.9%). This unique fatty acid composition of roselle seed oil makes it suitable to use as edible oil to offer the health benefits of essential fatty acid. Moreover, high contents of tocopherols, phenolics, and phytosterols were detected in roselle seed oil to provide nutritional, pharmaceutical, and therapeutic properties. On the other hand, roselle leaves with valuable contents of phenols, flavonoids, organic acid, and tocopherols can be applied in silver nanoparticles, food product development, and the pharmaceutical industry. Roselle calyces with high content of anthocyanins, protocatechuic acids, and organic acids are widely applied in food and colorant industries.
Collapse
Affiliation(s)
- Lye Yee Chew
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University Lakeside Campus
| | | | - Yun Ping Neo
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University Lakeside Campus
| | | | - Sook Chin Chew
- School of Foundation Studies, Xiamen University Malaysia Campus
| |
Collapse
|
20
|
Petrovic N, Tosti T, Srbljak I, Đurić A, Simić Z, Kosanić M. Analysis of the Chemical and Medicinal Properties of Armillaria ostoyae (Agaricomycetes) Extracts and the Presence of Heavy Metals in Dry Basidiocarps. Int J Med Mushrooms 2024; 26:33-50. [PMID: 39093400 DOI: 10.1615/intjmedmushrooms.2024054187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
We investigated the chemical and medicinal properties of methanolic and acetonic extracts of Armillaria ostoyae and the presence of heavy metals in its dry basidiocarps. The chemical content of extracts was analyzed with the HPLC-DAD-MS/MS method. According to our results, the most abundant mineral was potassium; the most abundant organic acid was malic acid; the most abundant carbohydrate was fructose, and the most abundant polyphenol was chlorogenic acid. The antimicrobial potential was evaluated using the microdilution assay, and the results ranged from 0.62 to 20 mg/mL. Antioxidant potential was studied by DPPH [half-maximal inhibitory concentration (IC50) of the methanolic extract was 619.67 μg/mL and of the acetonic extract was 533.65 μg/mL] and reducing power assays (the results ranged from 0.025 to 0.078 μg/mL). Total phenolic content was presented as gallic acid equivalent (methanolic extract, 6.12 mg GAE/g; acetonic extract, 3.99 mg GAE/g). The antidiabetic potential was explored by applying the α-amylase (the results ranged from 39.62 to 44.33%) and α-glucosidase assays (the results were in the range of 0.27-2.51%). The neuroprotective activity was asserted by the acetylcholinesterase inhibition assay (the results were in the range of 3.06-6.09%). The cytotoxic potential was investigated using the microtetrazolium assay, and the IC50 values ranged from 221.96 to > 400 μg/mL. Heavy metal content of the dry basidiocarps was evaluated using the AAS method and iron was the most abundant metal. A. ostoyae is a conditionally edible mushroom, which was not studied thoroughly before, thus this research will provide valuable knowledge about this species.
Collapse
Affiliation(s)
- Nevena Petrovic
- Faculty of Science, Department of Biology and Ecology, University of Kragujevac, Radoja Domanovića 12, 34 000, Kragujevac, Serbia
| | - Tomislav Tosti
- Faculty of Chemistry, University of Belgrade, 11158 Belgrade, Serbia
| | - Ivana Srbljak
- Institute of Oncology and Radiology of Serbia, 11000 Belgrade, Serbia
| | - Ana Đurić
- Institute of Oncology and Radiology of Serbia, 11000 Belgrade, Serbia
| | - Zoran Simić
- Faculty of Science, Department of Chemistry, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Marijana Kosanić
- Faculty of Science, Department of Biology and Ecology, University of Kragujevac, Radoja Domanovića 12, 34 000 Kragujevac, Serbia
| |
Collapse
|
21
|
Yasmin R, Gogoi S, Bora J, Chakraborty A, Dey S, Ghaziri G, Bhattacharjee S, Singh LH. Novel Insight into the Cellular and Molecular Signalling Pathways on Cancer Preventing Effects of Hibiscus sabdariffa: A Review. J Cancer Prev 2023; 28:77-92. [PMID: 37830114 PMCID: PMC10564632 DOI: 10.15430/jcp.2023.28.3.77] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/31/2023] [Accepted: 06/07/2023] [Indexed: 10/14/2023] Open
Abstract
A category of diseases known as cancer includes abnormal cell development and the ability to infiltrate or spread to other regions of the body, making them a major cause of mortality worldwide. Chemotherapy, radiation, the use of cytotoxic medicines, and surgery are the mainstays of cancer treatment today. Plants or products produced from them hold promise as a source of anti-cancer medications that have fewer adverse effects. Due to the presence of numerous phytochemicals that have been isolated from various parts of the Hibiscus sabdariffa (HS) plant, including anthocyanin, flavonoids, saponins, tannins, polyphenols, organic acids, caffeic acids, citric acids, protocatechuic acid, and others, extracts of this plant have been reported to have anti-cancer effects. These compounds have been shown to reduce cancer cell proliferation, induce apoptosis, and cause cell cycle arrest. They also increase the expression levels of the cell cycle inhibitors (p53, p21, and p27) and the pro-apoptotic proteins (BAD, Bax, caspase 3, caspase 7, caspase 8, and caspase 9). This review highlights various intracellular signalling pathways involved in cancer preventive potential of HS.
Collapse
Affiliation(s)
- Raihana Yasmin
- Department of Zoology, Royal Global University, Guwahati, India
| | - Sangeeta Gogoi
- Department of Zoology, Royal Global University, Guwahati, India
| | - Jumi Bora
- Department of Zoology, Royal Global University, Guwahati, India
| | - Arijit Chakraborty
- Department of Sports Physiology and Nutrition, National Sports University, Imphal, India
| | - Susmita Dey
- Department of Zoology, Royal Global University, Guwahati, India
| | - Ghazal Ghaziri
- Department of Cell and Molecular Biology, Kharazmi University, Tehran, Iran
| | - Surajit Bhattacharjee
- Department of Biological Sciences, Dr. BR Ambedkar English Model School, Agartala, India
| | | |
Collapse
|
22
|
Kim H, Jang Y, Ryu J, Seo D, Lee S, Choi S, Kim D, Moh S, Shin J. The Dipeptide Gly-Pro (GP), Derived from Hibiscus sabdariffa, Exhibits Potent Antifibrotic Effects by Regulating the TGF-β1-ATF4-Serine/Glycine Biosynthesis Pathway. Int J Mol Sci 2023; 24:13616. [PMID: 37686422 PMCID: PMC10487435 DOI: 10.3390/ijms241713616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/26/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023] Open
Abstract
TGF-β1, a key fibrotic cytokine, enhances both the expression and translocation of the activating transcriptional factor 4 (ATF4) and activates the serine/glycine biosynthesis pathway, which is crucial for augmenting collagen production. Targeting the TGF-β1-ATF4-serine/glycine biosynthesis pathway might offer a promising therapeutic approach for fibrotic diseases. In this study, we aimed to identify a proline-containing dipeptide in Hibiscus sabdariffa plant cells that modulates collagen synthesis. We induced Hibiscus sabdariffa plant cells and screened for a proline-containing dipeptide that can suppress TGF-β1-induced collagen synthesis in fibroblasts. Analyses were conducted using LC-MS/MS, RT-qPCR, Western blot analysis, and immunocytochemistry. We identified Gly-Pro (GP) from the extract of Hibiscus sabdariffa plant cells as a dipeptide capable of suppressing TGF-β1-induced collagen production. GP inhibited the phosphorylation of Smad2/3 and reduced the expression of ATF4, which is upregulated by TGF-β1. Notably, GP also decreased the expression of enzymes involved in the serine/glycine biosynthesis and glucose metabolism pathways, such as PHGDH, PSAT1, PSPH, SHMT2, and SLC2A1. Our findings indicate that the peptide GP, derived from Hibiscus sabdariffa plant cells, exhibits potent anti-fibrotic effects, potentially through its regulation of the TGF-β1-ATF4-serine/glycine biosynthesis pathway.
Collapse
Affiliation(s)
- HaiVin Kim
- Department of Biomedical Science, College of Life Science, Graduate School, CHA University, Seongnam 13488, Republic of Korea; (H.K.); (Y.J.); (D.S.)
| | - YoungSu Jang
- Department of Biomedical Science, College of Life Science, Graduate School, CHA University, Seongnam 13488, Republic of Korea; (H.K.); (Y.J.); (D.S.)
| | - JaeSang Ryu
- Department of Dermatology, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam 13496, Republic of Korea; (J.R.); (D.K.)
| | - DaHye Seo
- Department of Biomedical Science, College of Life Science, Graduate School, CHA University, Seongnam 13488, Republic of Korea; (H.K.); (Y.J.); (D.S.)
| | - Sak Lee
- Plant Cell Research Institute of BIO-FD&C Co., Ltd., Incheon 21990, Republic of Korea;
| | - SungSoo Choi
- Daesang Holdings, Jung-gu, Seoul 04513, Republic of Korea;
| | - DongHyun Kim
- Department of Dermatology, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam 13496, Republic of Korea; (J.R.); (D.K.)
| | - SangHyun Moh
- Plant Cell Research Institute of BIO-FD&C Co., Ltd., Incheon 21990, Republic of Korea;
| | - JungU Shin
- Department of Dermatology, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam 13496, Republic of Korea; (J.R.); (D.K.)
| |
Collapse
|
23
|
Abdallah RH, Al-Saleem MSM, Abdel-Mageed WM, Al-Attar ASR, Shehata YM, Abdel-Fattah DM, Atta RM. LCMS/MS Phytochemical Profiling, Molecular, Pathological, and Immune-Histochemical Studies on the Anticancer Properties of Annona muricata. Molecules 2023; 28:5744. [PMID: 37570713 PMCID: PMC10421100 DOI: 10.3390/molecules28155744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/09/2023] [Accepted: 07/14/2023] [Indexed: 08/13/2023] Open
Abstract
Annona muricate is a tropical plant that is well-known for its edible fruit of therapeutic interest. LCMS/MS analyses were applied to identify phytoconstituents of the ethanolic extract of the whole fruits and the aqueous extract of the edible fruit part, in addition to the investigation of their anticancer properties against Ehrlich ascites carcinoma (EAC) in male albino mice. LCMS/MS analyses resulted in the identification of 388 components, representing a wide array of classes of compounds, including acetogenins as the major constituents, alkaloids, flavonoids, and phenolics. Among them, four compounds were tentatively characterized as new compounds (1-4), including an acid derivative, protocatechuic-coumaroyl-quinic acid (1), and three flavonoid derivatives, dihydromyricetin galloyl hexoside (2), apigenin gallate (3), and dihydromyricetin hexouronic acid hexoside (4). Induction with EAC cells resulted in abnormalities in the gene expression of pro-apoptotic genes (Bax and caspase-3) and anti-apoptotic gene (Bcl-2) in the tumor mass. Moreover, microscopic, histopathological, and immune-histochemical examinations of the tumor mass and liver tissues exhibited extensive growth of malignant Ehrlich carcinoma cells and marked hydropic degeneration of hepatocytes and infiltration by tumor cells to liver tissue with marked inflammatory reaction. These abnormalities were markedly ameliorated aftertreatment of EAC mice with A. muricata extracts.
Collapse
Affiliation(s)
- Rehab H. Abdallah
- Department of Pharmacognosy, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt;
| | - Muneera S. M. Al-Saleem
- Department of Chemistry, Science College, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Wael M. Abdel-Mageed
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Al-Sayed R. Al-Attar
- Department of Pathology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt; (A.-S.R.A.-A.); (D.M.A.-F.)
| | - Youssef M. Shehata
- Department of Biochemistry, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt; (Y.M.S.); (R.M.A.)
| | - Doaa M. Abdel-Fattah
- Department of Pathology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt; (A.-S.R.A.-A.); (D.M.A.-F.)
| | - Rahnaa M. Atta
- Department of Biochemistry, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt; (Y.M.S.); (R.M.A.)
| |
Collapse
|
24
|
Cho WK, Kim SY, Jang SJ, Lee S, Kim HI, Kim E, Lee JH, Choi SS, Moh SH. Comparative Analysis of Water Extracts from Roselle ( Hibiscus sabdariffa L.) Plants and Callus Cells: Constituents, Effects on Human Skin Cells, and Transcriptome Profiles. Int J Mol Sci 2023; 24:10853. [PMID: 37446030 DOI: 10.3390/ijms241310853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 06/25/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Roselle (Hibiscus sabdariffa L.) is a plant that has traditionally been used in various food and beverage products. Here, we investigated the potential of water extracts derived from Roselle leaves and callus cells for cosmetic and pharmaceutical purposes. We generated calluses from Roselle leaves and produced two different water extracts through heat extraction, which we named Hibiscus sabdariffa plant extract (HSPE) and Hibiscus sabdariffa callus extract (HSCE). HPLC analysis showed that the two extracts have different components, with nucleic acids and metabolites such as phenylalanine and tryptophan being the most common components in both extracts. In vitro assays demonstrated that HSCE has strong anti-melanogenic effects and functions for skin barrier and antioxidant activity. Transcriptome profiling of human skin cells treated with HSPE and HSCE showed significant differences, with HSPE having more effects on human skin cells. Up-regulated genes by HSPE function in angiogenesis, the oxidation-reduction process, and glycolysis, while up-regulated genes by HSCE encode ribosome proteins and IFI6, functioning in the healing of radiation-injured skin cells. Therefore, we suggest that the two extracts from Roselle should be applied differently for cosmetics and pharmaceutical purposes. Our findings demonstrate the potential of Roselle extracts as a natural source for skincare products.
Collapse
Affiliation(s)
- Won Kyong Cho
- College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Soo-Yun Kim
- Plant Cell Research Institute of BIO-FD&C Co., Ltd., Incheon 21990, Republic of Korea
| | - Sung Joo Jang
- Plant Cell Research Institute of BIO-FD&C Co., Ltd., Incheon 21990, Republic of Korea
| | - Sak Lee
- Plant Cell Research Institute of BIO-FD&C Co., Ltd., Incheon 21990, Republic of Korea
| | - Hye-In Kim
- Plant Cell Research Institute of BIO-FD&C Co., Ltd., Incheon 21990, Republic of Korea
| | - Euihyun Kim
- Plant Cell Research Institute of BIO-FD&C Co., Ltd., Incheon 21990, Republic of Korea
| | - Jeong Hun Lee
- Plant Cell Research Institute of BIO-FD&C Co., Ltd., Incheon 21990, Republic of Korea
| | - Sung Soo Choi
- Daesang Holdings, Jung-gu, Seoul 04513, Republic of Korea
| | - Sang Hyun Moh
- Plant Cell Research Institute of BIO-FD&C Co., Ltd., Incheon 21990, Republic of Korea
| |
Collapse
|
25
|
Sapian S, Ibrahim Mze AA, Jubaidi FF, Mohd Nor NA, Taib IS, Abd Hamid Z, Zainalabidin S, Mohamad Anuar NN, Katas H, Latip J, Jalil J, Abu Bakar NF, Budin SB. Therapeutic Potential of Hibiscus sabdariffa Linn. in Attenuating Cardiovascular Risk Factors. Pharmaceuticals (Basel) 2023; 16:807. [PMID: 37375755 DOI: 10.3390/ph16060807] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
Cardiovascular diseases (CVDs) represent a broad spectrum of diseases afflicting the heart and blood vessels and remain a major cause of death and disability worldwide. CVD progression is strongly associated with risk factors, including hypertension, hyperglycemia, dyslipidemia, oxidative stress, inflammation, fibrosis, and apoptosis. These risk factors lead to oxidative damage that results in various cardiovascular complications including endothelial dysfunctions, alterations in vascular integrity, the formation of atherosclerosis, as well as incorrigible cardiac remodeling. The use of conventional pharmacological therapy is one of the current preventive measures to control the development of CVDs. However, as undesirable side effects from drug use have become a recent issue, alternative treatment from natural products is being sought in medicinal plants and is gaining interest. Roselle (Hibiscus sabdariffa Linn.) has been reported to contain various bioactive compounds that exert anti-hyperlipidemia, anti-hyperglycemia, anti-hypertension, antioxidative, anti-inflammation, and anti-fibrosis effects. These properties of roselle, especially from its calyx, have relevance to its therapeutic and cardiovascular protection effects in humans. This review summarizes the findings of recent preclinical and clinical studies on roselle as a prophylactic and therapeutic agent in attenuating cardiovascular risk factors and associated mechanisms.
Collapse
Affiliation(s)
- Syaifuzah Sapian
- Centre for Diagnostic, Therapeutic and Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia
| | - Asma Ali Ibrahim Mze
- Centre for Diagnostic, Therapeutic and Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia
| | - Fatin Farhana Jubaidi
- Centre for Diagnostic, Therapeutic and Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia
| | - Nor Anizah Mohd Nor
- Centre for Diagnostic, Therapeutic and Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia
| | - Izatus Shima Taib
- Centre for Diagnostic, Therapeutic and Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia
| | - Zariyantey Abd Hamid
- Centre for Diagnostic, Therapeutic and Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia
| | - Satirah Zainalabidin
- Center for Toxicology and Health Risk Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia
| | - Nur Najmi Mohamad Anuar
- Center for Toxicology and Health Risk Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia
| | - Haliza Katas
- Centre for Drug Delivery Technology, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia
| | - Jalifah Latip
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Selangor 43600, Malaysia
| | - Juriyati Jalil
- Centre for Drug and Herbal Development, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia
| | - Nur Faizah Abu Bakar
- Centre for Diagnostic, Therapeutic and Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia
| | - Siti Balkis Budin
- Centre for Diagnostic, Therapeutic and Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia
| |
Collapse
|
26
|
Yedjou CG, Grigsby J, Mbemi A, Nelson D, Mildort B, Latinwo L, Tchounwou PB. The Management of Diabetes Mellitus Using Medicinal Plants and Vitamins. Int J Mol Sci 2023; 24:ijms24109085. [PMID: 37240430 DOI: 10.3390/ijms24109085] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
Diabetes mellitus (DM) is a serious chronic metabolic disease that is associated with hyperglycemia and several complications including cardiovascular disease and chronic kidney disease. DM is caused by high levels of blood sugar in the body associated with the disruption of insulin metabolism and homeostasis. Over time, DM can induce life-threatening health problems such as blindness, heart disease, kidney damage, and stroke. Although the cure of DM has improved over the past decades, its morbidity and mortality rates remain high. Hence, new therapeutic strategies are needed to overcome the burden of this disease. One such prevention and treatment strategy that is easily accessible to diabetic patients at low cost is the use of medicinal plants, vitamins, and essential elements. The research objective of this review article is to study DM and explore its treatment modalities based on medicinal plants and vitamins. To achieve our objective, we searched scientific databases of ongoing trials in PubMed Central, Medline databases, and Google Scholar websites. We also searched databases on World Health Organization International Clinical Trials Registry Platform to collect relevant papers. Results of numerous scientific investigations revealed that phytochemicals present in medicinal plants (Allium sativum, Momordica charantia, Hibiscus sabdariffa L., and Zingiber officinale) possess anti-hypoglycemic activities and show promise for the prevention and/or control of DM. Results also revealed that intake of vitamins C, D, E, or their combination improves the health of diabetes patients by reducing blood glucose, inflammation, lipid peroxidation, and blood pressure levels. However, very limited studies have addressed the health benefits of medicinal plants and vitamins as chemo-therapeutic/preventive agents for the management of DM. This review paper aims at addressing this knowledge gap by studying DM and highlighting the biomedical significance of the most potent medicinal plants and vitamins with hypoglycemic properties that show a great potential to prevent and/or treat DM.
Collapse
Affiliation(s)
- Clement G Yedjou
- Department of Biological Sciences, College of Science and Technology, Florida Agricultural and Mechanical University, 1610 S. Martin Luther King Blvd, Tallahassee, FL 32307, USA
| | - Jameka Grigsby
- Department of Biological Sciences, School of Arts and Sciences, Alcorn State University, 1000 ASU Drive, Lorman, MS 39096, USA
| | - Ariane Mbemi
- Department of Biology, College of Science, Engineering and Technology, Jackson State University, 1400 Lynch Street, Box 18750, Jackson, MS 39217, USA
| | - Daryllynn Nelson
- Department of Health Administration, Morehouse School of Medicine, 720 Westview Dr. SW, Atlanta, GA 30310, USA
| | - Bryan Mildort
- Department of Pharmaceutical Sciences, College of Pharmacy, Howard University, 2400 6th St, NW, Washington, DC 20059, USA
| | - Lekan Latinwo
- Department of Biological Sciences, College of Science and Technology, Florida Agricultural and Mechanical University, 1610 S. Martin Luther King Blvd, Tallahassee, FL 32307, USA
| | - Paul B Tchounwou
- RCMI Center for Urban Health Disparities Research and Innovation, Morgan State University, 1700 E. Cold Spring Lane, Baltimore, MD 21252, USA
| |
Collapse
|
27
|
Laskar YB, Mazumder PB, Talukdar AD. Hibiscus sabdariffa anthocyanins are potential modulators of estrogen receptor alpha activity with favourable toxicology: a computational analysis using molecular docking, ADME/Tox prediction, 2D/3D QSAR and molecular dynamics simulation. J Biomol Struct Dyn 2023; 41:611-633. [PMID: 34854367 DOI: 10.1080/07391102.2021.2009914] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The estrogen hormone receptor (ER) mediated gene expression mainly regulate the development and physiology of the primary and secondary reproductive system alongside bone-forming, metabolism and behaviour. Over-expressed ER is associated with several pathological conditions and play a crucial role in breast cancer occurrence, progression and metastasis. Hibiscus sabdariffa L. or roselle is a rich source of naturally occurring polyphenolic compounds that reportedly have robust estrogenic activity. However, the estrogen-like ingredient of the plant remains ambiguous. This study has screened a library of already recorded and less-explored compounds of Hibiscus sabdariffa for their estrogen receptor binding affinity and safety using a suite of computational methods that include protein-ligand docking, ADME and Toxicity prediction, and 2D/3D QSAR. The study revealed that the estrogen-receptor binding potential of Pelargonidin, Delphinidin, Cyanidin, and Hibiscetin are more efficient than popular breast cancer drugs, Tamoxifen and Raloxifene. Besides, the compounds exhibited favourable toxicological parameters with potent bioactivity towards binding ER-α subunit. Thus, these compounds can serve as prototypes for designing novel Selective Estrogen Receptor Modulator molecules with a few structural modifications. This is the first report exploring the phytochemical basis of estrogenic activity of Hibiscus sabdariffa L.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Yahyea Baktiar Laskar
- Natural Product and Biomedicine Research Laboratory, Department of Biotechnology, Assam University, Silchar, India
| | - Pranab Behari Mazumder
- Natural Product and Biomedicine Research Laboratory, Department of Biotechnology, Assam University, Silchar, India
| | - Anupam Das Talukdar
- Ethnobotany and Medicinal Plants Research Laboratory, Department of Life Science & Bioinformatics, Assam University, Silchar, India
| |
Collapse
|
28
|
Use of Roselle Calyx Wastes for the Enrichment of Biscuits: An Approach to Improve Their Functionality. Processes (Basel) 2023. [DOI: 10.3390/pr11010287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The objective of the present study was to evaluate the use of powder made out of Roselle Calyx Wastes (RCP) in developing a biscuit formulation with acceptable sensory value. Roselle calyxes were infused in water in a 1:10 ratio. The residual infused calyxes were dried at 50 °C for 16 h, grounded, sieved through a 50 mesh, and stored in plastic bags until used. The biscuit formulations were enriched with RCP at 0% (BC), 5% (BRCP5), 10% (BRCP10), and 15% (BRCP15). The amount of RCP added to the biscuit formulation did not change the protein content. However, the addition of RCP significantly affected the biscuit’s color; the lightness parameter (L*) decreased as the RP content increased from 69.66 to 49.04. The sensory evaluation showed that the control biscuit and the biscuit enriched with 5% of RP were the best accepted. As for the antiradical activity, the formulation with the highest activity was presented by the BRCP15 (587.43 µmol Trolox/100 g dwb). On the other hand, BRCP5 presented 189.96 µmol Trolox/100 g dwb. Therefore, the biscuit formulation with RCP at a 15% enrichment could be used to commercialize a functional product.
Collapse
|
29
|
Effect of Partial Meat Replacement by Hibiscus sabdariffa By-Product and Pleurotus djamor Powder on the Quality of Beef Patties. Foods 2023; 12:foods12020391. [PMID: 36673487 PMCID: PMC9858442 DOI: 10.3390/foods12020391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/26/2022] [Accepted: 01/05/2023] [Indexed: 01/18/2023] Open
Abstract
The effects of Hibiscus sabdariffa (roselle; Hs) by-product (2-5%) and Pleurotus djamor (pink oyster; Pd) powder (5-7.5%) as meat replacers on the physicochemical and sensorial properties of beef patties were analyzed. The addition of these non-meat ingredients significantly decreased moisture and increased fiber content, and did not affect the protein level of the product. The antioxidant effect of the roselle by-product was limited, while Pleurotus djamor favored the oxidation processes. The samples supplemented with roselle by-product and mushroom powder presented significantly lower microbial counts (total viable counts, enterobacteria, and Pseudomonas) than control, but texture and sensorial parameters were significantly affected. The patties darkened due to the presence of the Hibiscus by-product, while the color of the samples containing 5% Pleurotus djamor was hardly modified. These samples, together with the control samples, were the most sensorially appreciated. The addition of these ingredients provoked a decrease in texture parameters, being less pronounced in the samples with only 2% of roselle by-product. In spite of the good antimicrobial and antioxidant properties of Hibiscus by-products, its inclusion in meat should be moderate (2-2.5%) to avoid consumer rejection when Pleurotus djamor is also included in the formulation.
Collapse
|
30
|
Zeng X, Li J, Lyu X, Chen T, Chen J, Chen X, Guo S. Utilization of functional agro-waste residues for oyster mushroom production: Nutritions and active ingredients in healthcare. FRONTIERS IN PLANT SCIENCE 2023; 13:1085022. [PMID: 36684732 PMCID: PMC9846735 DOI: 10.3389/fpls.2022.1085022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/05/2022] [Indexed: 06/01/2023]
Abstract
A large amount of agro-industrial residues are produced from the planting, production and processing of traditional Chinese herbs. As a tonic, edible, and economical herb, Codonopsis pilosula root has been extensively developed into medicine and functional food. However, thousands of tons of aerial parts (stems, leaves, flowers and fruits) have been directly discarded after harvest each year. To utilise agro-wastes, Pleurotus ostreatus was cultivated on a basal substrate supplemented with C. pilosula stems and leaves (CSL). Physicochemical analyses revealed that the basal substrate mixed with CSL was more abundant in cellulose, hemicellulose, and most of micronutrients such as K, Ca, Mg, S, Fe, Zn and Mo. After the first flush, the fruit bodies in CSL group exhibited a higher fresh weight, a wider average pileus diameter and a lower moisture level. Nutrition analyses presented a higher protein content and a lower fat content in mushrooms from CSL group compared with control group. Interestingly, 14 amino acids (glutamine, arginine, valine, leucine, and etc.) and 3 micronutrients (Se, Fe and Zn) were increased after CSL addition to the substrate. Based on untargeted metabolomics, a total of 710 metabolites were annotated. Compared with control group, there were 142 and 117 metabolites significantly increased and decreased in the CSL group. Most of them were grouped into classes of amino acids and peptids, fatty acids, carbohydrates, terpenoids, and etc. Moreover, an abundance of phytometabolites from Codonopsis were detected in P. ostreatus from CSL group, including polyacetylenes or polyenes, flavonoids, alkaloids, terpenoids, organic acids, and etc. UPLC-MS/MS results demonstrated that lobetyolin content in the CSL group samples was 0.0058%. In summary, the aerial parts of C. pilosula processed for use in the production of edible mushroom is an emerging strategy to converting agricultural waste into functional foods.
Collapse
|
31
|
Anadozie SO, Effiom DO, Adewale OB, Jude J, Zosela I, Akawa OB, Olayinka JN, Roux S. Hibiscus sabdariffa synthesized gold nanoparticles ameliorate aluminum chloride induced memory deficits through inhibition of COX-2/BACE-1 mRNA expression in rats. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
|
32
|
Hu L, Chen D, Zhou W, Chen X, Zhang Q. Effects of Growth Period and Storage Methods on Primary Metabolite Contents and Antioxidant Activities of Morus alba L. Leaf. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010148. [PMID: 36615342 PMCID: PMC9821893 DOI: 10.3390/molecules28010148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/07/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022]
Abstract
(1) Background: Mulberry leaves have been widely consumed due to their richness in bioactive substances and high antioxidant activity. The choice of storage method to ensure the quality of mulberry leaves is a challenge in the supply process. (2) Methods: The differences in primary metabolites of freeze-dried mulberry leaf powder after 30 days of storage under different storage conditions (i.e., vacuum or non-vacuum, 4 °C or room temperature) were investigated. (3) Results: A low temperature and vacuum had better preservation effects on the types and activity of the primary metabolites of mulberry leaves, with vacuum preservation being the best. However, the types of primary metabolites in mulberry leaves were significantly reduced after non-vacuum storage at room temperature compared to those with other storage methods. Among the metabolites detected, including dehydroascorbic acid, various phenolic acids, amino acids, lipids, and carbohydrates showed a significant decrease in their contents of more than 40%, and there was a significant increase in the contents of various compounds of the muconic acid biosynthetic pathway compared to those in other storage methods. Moreover, the antioxidant activity of mulberry leaves stored at room temperature under non-vacuum conditions was also significantly reduced. (4) Conclusions: Vacuum storage is the most ideal storage method for preserving mulberry leaves.
Collapse
Affiliation(s)
- Lei Hu
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Dandan Chen
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Wei Zhou
- Guangdong Research and Development Center of Modern Agriculture (Woody Forage) Industrial Technology, South China Agricultural University, Guangzhou 510642, China
- Correspondence: (W.Z.); (X.C.); (Q.Z.)
| | - Xiaoyang Chen
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, China
- Correspondence: (W.Z.); (X.C.); (Q.Z.)
| | - Qing Zhang
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, China
- College of Forestry and Landscape Architecture, Guangdong Province Research Center of Woody Forage Engineering Technology, South China Agricultural University, Guangzhou 510642, China
- Correspondence: (W.Z.); (X.C.); (Q.Z.)
| |
Collapse
|
33
|
Vijeesh V, Vysakh A, Jisha N, Latha M. Multispectroscopic binding studies and in silico docking analysis of interactions of malic acid with xanthine oxidase. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
34
|
Nutritional Composition and Untargeted Metabolomics Reveal the Potential of Tetradesmus obliquus, Chlorella vulgaris and Nannochloropsis oceanica as Valuable Nutrient Sources for Dogs. Animals (Basel) 2022; 12:ani12192643. [PMID: 36230383 PMCID: PMC9558554 DOI: 10.3390/ani12192643] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/26/2022] [Accepted: 09/29/2022] [Indexed: 11/17/2022] Open
Abstract
The growing pet population is questioning the sustainability of the pet food system. Although microalgae may constitute a more sustainable food resource, the assessment of their potential for canine diets is almost non-existent. The present study aimed to evaluate the potential of three microalgae species (Tetradesmus obliquus, Chlorella vulgaris and Nannochloropsis oceanica) grown locally in industrial photobioreactors as alternative food resources for dogs. A detailed characterization of their nutritional composition and metabolomic profile was carried out and related to the nutritional requirements of dogs. Overall, the essential amino acid content exceeded the amounts required for dogs at all life stages, except methionine and cysteine. The three microalgae were deficient in linoleic acid, N. oceanica presented a linolenic acid content below requirements and T. obliquus and C. vulgaris were deficient in arachidonic and eicosapentaenoic acids. The fiber was mainly composed of insoluble dietary fiber. The mineral profile varied greatly with the microalgae species, demonstrating their different potential for dog feeding. Untargeted metabolomics highlighted glycolipids, glycerolipids and phospholipids as the most discriminating compounds between microalgae species. Overall, the results support the potential of T. obliquus, C. vulgaris and N. oceanica as valuable macro- and micro-nutrients sources for dog feeding.
Collapse
|
35
|
Potential of Hibiscus sabdariffa L. and Hibiscus Acid to Reverse Skin Aging. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27186076. [PMID: 36144809 PMCID: PMC9504376 DOI: 10.3390/molecules27186076] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 09/12/2022] [Accepted: 09/12/2022] [Indexed: 12/04/2022]
Abstract
Hibiscus sabdariffa L. (HS) has a long history of edible and medicinal uses. In this study, the biological activities of the extracts, chromatographic fractions, and hibiscus acid obtained from HS were evaluated for their potential bioactivities. Their ability to promote extracellular matrix synthesis in skin fibroblasts was evaluated by enzyme-linked immunosorbent assays. Their anti-inflammatory activity was evaluated in a nitric oxide (NO)–Griess inflammatory experiment. Furthermore, hibiscus acid was found to have a strong anti-oxidative stress effect through the establishment of an oxidative stress model induced by hydrogen peroxide. Several assays indicated that hibiscus acid treatment can effectively reduce extracellular adenosine triphosphate (ATP) secretion and carbonyl protein production, as well as maintain a high level of reduced/oxidized glutathione (GSH/GSSG) in skin cells, thus providing a possible mechanism by which hibiscus acid can counter antioxidative stress. The present study is the first to explore the reversing skin aging potential and the contributory component of HS.
Collapse
|
36
|
Singh M, Thrimawithana T, Shukla R, Benu Adhikari. Inhibition of enzymes associated with obesity by the polyphenol-rich extracts of Hibiscus sabdariffa. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
37
|
Xue G, Meng N, Zhao Y, Zhang R, Yang J, Chen Z, Zhang M, Chai X. The qualitative and quantitative profiling for quality assessment of Yinxing Mihuan Oral Solution and the stability study on the focused flavonol glycosides. J Pharm Biomed Anal 2022; 219:114937. [PMID: 35853261 DOI: 10.1016/j.jpba.2022.114937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 07/08/2022] [Accepted: 07/11/2022] [Indexed: 10/17/2022]
Abstract
Yinxing Mihuan Oral Solution (YMOS) has been widely applied for the treatment of coronary heart disease, angina pectoris, and cerebral ischemic disease in clinical practice. Nonetheless, the limited basic researches on quality analysis of YMOS remain a critical bottleneck that needs to be enhanced for better clinical applications. In this study, a total of 67 chemical components, including flavonoids, terpene lactones, nucleosides, etc., were tentatively characterized by ultra-high performance liquid chromatography tandem Q-Exactive Orbitrap high-resolution mass spectrometry, among which 34 compounds were further identified by comparison with reference substances. By adopting a methodologically validated method, we discovered that the quantitative estimate of multi-compounds in 22 batches of YMOS showed lot-to-lot consistency, and the additives in YMOS also met the corresponding regulations. Furthermore, five flavonol glycosides whose content presented a downward trend in the expired YMOS were focused. A systematic research on stability test focusing on the five targeted flavonol glycosides was performed under different temperatures and pH levels. It was found that ortho-diphenolic hydroxyl group on B-ring and the type of saccharide connected to 3-hydroxyl on C-ring play a pivotal role in the stability of the tested compounds. Subsequently, as the important compounds, ginkgolides A, B, and C in YMOS were simultaneously quantified with ultra performance liquid chromatography coupled with triple quadrupole mass spectrometry. In brief, this study performs a reliable chemical identification and provides a rapid and feasible method for the quality evaluation, which contributes to the in-depth investigation and safe application of YMOS for clinical uses.
Collapse
Affiliation(s)
- Gen Xue
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Ning Meng
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yuting Zhao
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Ruihu Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jing Yang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Zhiyong Chen
- Tianjin Beichen Traditional Chinese Medicine Hospital, Tianjin 300232, China
| | - Min Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Xin Chai
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
38
|
Does Protocatechuic Acid Affect the Activity of Commonly Used Antibiotics and Antifungals? LIFE (BASEL, SWITZERLAND) 2022; 12:life12071010. [PMID: 35888098 PMCID: PMC9316016 DOI: 10.3390/life12071010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 12/14/2022]
Abstract
The aim of this study is to evaluate the efficiency of protocatechuic acid (PCA) in enhancing the commonly used drugs used to fight against nosocomial infection. These drugs are represented by routinely used antibiotics, synthetic chemotherapeutic agents with an antimicrobial spectrum, and antifungals. Three concentrations of PCA were added to 12 types of commercial disks used for antibiotic and antifungal susceptibility and tested against bacterial and yeast strains represented by Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, and Candida albicans. The results proved that PCA increased up to 50% of the antibacterial activity, especially that of levofloxacin against Staphylococcus aureus and Escherichia coli. These formulations will lead to new drug design ideas containing a smaller amount of antibiotics with the same effectiveness.
Collapse
|
39
|
Santos EM, Sánchez-Ortega I, Lorenzo JM, Domínguez R, Munekata PES, Falfán-Cortés RN, Ibarra IS, Rangel-Vargas E. Use of Hibiscus sabdariffa Calyxes in Meat Products. FRONTIERS IN ANIMAL SCIENCE 2022. [DOI: 10.3389/fanim.2022.876042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
In the search for new ingredients that counteract some of the problems associated with the consumption of meat and meat products like high contents of saturated fat, salt, cholesterol, the absence of dietary fiber, and the presence of synthetic additives, Hibiscus sabdariffa calyxes have shown good colorant, antimicrobial, and antioxidant properties. This research paper studies the use of H. sabdariffa roselle calyxes directly or by means of extracts in meat and meat products. Although its application is incipient, the results are promising. The vibrant red color of the calyxes makes calyxes suitable for their use in meat products even though the concentration must be optimized since the acid taste can detract from the overall acceptance. The antimicrobial properties contribute to safer meat products, and antioxidant effects, helping to extend the shelf life of meat products and reducing oxidative processes. Nonetheless, achieving the desired effects is still challenging since several factors can affect these functional properties.
Collapse
|
40
|
Montalvo-González E, Villagrán Z, González-Torres S, Iñiguez-Muñoz LE, Isiordia-Espinoza MA, Ruvalcaba-Gómez JM, Arteaga-Garibay RI, Acosta JL, González-Silva N, Anaya-Esparza LM. Physiological Effects and Human Health Benefits of Hibiscus sabdariffa: A Review of Clinical Trials. Pharmaceuticals (Basel) 2022; 15:ph15040464. [PMID: 35455462 PMCID: PMC9033014 DOI: 10.3390/ph15040464] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/09/2022] [Accepted: 04/10/2022] [Indexed: 02/04/2023] Open
Abstract
Hibiscus sabdariffa Linn. Malvaceae (HS) is characterized by its edible calyxes. The HS calyxes are widely used for cosmetic, food, and medicinal applications. According to ethnobotanical evidence, decoction, infusion, or maceration extracts from HS calyxes have been used in folk medicine to treat many ailments. Moreover, several in vitro and in vivo studies have demonstrated the pharmacological properties and potential human health benefits of HS consumption. On the other hand, the evaluation of the physiological effects and health benefits of HS in clinical studies is most challenging. Therefore, this narrative review summarizes and discusses the physiological effects and health benefits of HS calyxes reported in clinical trials. Preparations obtained from HS calyxes (extracts, infusions, decoction, teas, beverages, capsules, and pills) are used as non-pharmacological therapies to prevent/control diverse chronic non-communicable diseases. The most-reported HS health benefits are its antihypertensive, antidyslipidemic, hypoglycemic, body fat mass reduction, nephroprotective, antianemic, antioxidant, anti-inflammatory, and anti-xerostomic activities; these effects are associated with the phytochemicals found in HS. Moreover, no adverse effects were reported during the clinical trials. However, clinical studies exhibited some limitations; thus, further studies are required to validate the clinical efficacy of HS in large-scale studies with higher doses and a good experimental design
Collapse
Affiliation(s)
- Efigenia Montalvo-González
- Integral Food Research Laboratory, National Technological of Mexico/Technological Institute of Tepic, Av. Tecnologico 2595, Tepic 63175, Mexico;
| | - Zuamí Villagrán
- Department of Health Sciences, Division of Biomedical Science, University Center of Los Altos, University of Guadalajara, Av. Rafael Casillas Aceves 1200, Guadalajara 47600, Mexico; (Z.V.); (S.G.-T.)
| | - Sughey González-Torres
- Department of Health Sciences, Division of Biomedical Science, University Center of Los Altos, University of Guadalajara, Av. Rafael Casillas Aceves 1200, Guadalajara 47600, Mexico; (Z.V.); (S.G.-T.)
| | - Laura Elena Iñiguez-Muñoz
- División of Natural and Technological Exact Sciences, Southern Region University Center, University of Guadalajara, Av. Enrique Arreola Silva 883, Guadalajara 49000, Mexico;
| | - Mario Alberto Isiordia-Espinoza
- Department of Clinics, Division of Biomedical Sciences, Institute of Research in Medical Sciences, Los Altos University Center, University of Guadalajara, Av. Rafael Casillas Aceves 1200, Guadalajara 47600, Mexico;
| | - José Martín Ruvalcaba-Gómez
- National Center for Genetic Resources, National Institute of Forestry, Agriculture and Livestock Research, Boulevard de la Biodiversidad 400, Tepatitlan de Morelos 47600, Mexico; (J.M.R.-G.); (R.I.A.-G.)
| | - Ramón Ignacio Arteaga-Garibay
- National Center for Genetic Resources, National Institute of Forestry, Agriculture and Livestock Research, Boulevard de la Biodiversidad 400, Tepatitlan de Morelos 47600, Mexico; (J.M.R.-G.); (R.I.A.-G.)
| | - José Luis Acosta
- Interdisciplinary Research Centre for Integral Regional Development Sinaloa Unit, National Polytechnic Institute, Boulevard Juan de Dios Bátiz 250, Guasave 81049, Mexico;
| | - Napoleón González-Silva
- Department of Livestock and Agricultural Sciences, University Center of Los Altos, University of Guadalajara, Av. Rafael Casillas Aceves 1200, Guadalajara 47600, Mexico
- Correspondence: (N.G.-S.); (L.M.A.-E.)
| | - Luis Miguel Anaya-Esparza
- Department of Livestock and Agricultural Sciences, University Center of Los Altos, University of Guadalajara, Av. Rafael Casillas Aceves 1200, Guadalajara 47600, Mexico
- Correspondence: (N.G.-S.); (L.M.A.-E.)
| |
Collapse
|
41
|
Santana LF, Sasso S, Aquino DFS, de Cássia Freitas K, de Cássia Avellaneda Guimarães R, Pott A, do Nascimento VA, Bogo D, de Oliveira Figueiredo P, Hiane PA. Nutraceutic Potential of Bioactive Compounds of Eugenia dysenterica DC in Metabolic Alterations. Molecules 2022; 27:molecules27082477. [PMID: 35458674 PMCID: PMC9024852 DOI: 10.3390/molecules27082477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/25/2022] [Accepted: 02/25/2022] [Indexed: 12/04/2022] Open
Abstract
The fruit and leaves of Eugenia dysenterica DC., locally known as cagaita, are rich in antioxidant glycosylated quercetin derivatives and phenolic compounds that have beneficial effects on diabetes mellitus, hypertension and general inflammation. We conducted a literature search to investigate the nutraceutical potentials of these phenolic compounds for treating obesity, diabetes mellitus and intestinal inflammatory disease. The phenolic compounds in E. dysenterica have demonstrated effects on carbohydrate metabolism, which can prevent the development of these chronic diseases and reduce LDL (low-density lipoprotein) cholesterol and hypertension. E. dysenterica also improves intestinal motility and microbiota and protects gastric mucosa, thereby preventing inflammation. However, studies are necessary to identify the mechanism by which E. dysenterica nutraceutical compounds act on such pathological processes to support future research.
Collapse
Affiliation(s)
- Lidiani Figueiredo Santana
- Graduate Program in Health and Development in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul—UFMS, Campo Grande 79070-900, Brazil; (L.F.S.); (S.S.); (R.d.C.A.G.); (V.A.d.N.); (D.B.); (P.A.H.)
| | - Sandramara Sasso
- Graduate Program in Health and Development in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul—UFMS, Campo Grande 79070-900, Brazil; (L.F.S.); (S.S.); (R.d.C.A.G.); (V.A.d.N.); (D.B.); (P.A.H.)
| | - Diana Figueiredo Santana Aquino
- Higher Level Technician, Personnel Development Division, State University of Mato Grosso do Sul—UEMS, Dourados 79804-970, Brazil;
| | - Karine de Cássia Freitas
- Graduate Program in Health and Development in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul—UFMS, Campo Grande 79070-900, Brazil; (L.F.S.); (S.S.); (R.d.C.A.G.); (V.A.d.N.); (D.B.); (P.A.H.)
- Correspondence: ; Tel.: +55-67-3345-7410
| | - Rita de Cássia Avellaneda Guimarães
- Graduate Program in Health and Development in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul—UFMS, Campo Grande 79070-900, Brazil; (L.F.S.); (S.S.); (R.d.C.A.G.); (V.A.d.N.); (D.B.); (P.A.H.)
| | - Arnildo Pott
- Institute of Biosciences, Federal University of Mato Grosso do Sul—UFMS, Campo Grande 79079-900, Brazil;
| | - Valter Aragão do Nascimento
- Graduate Program in Health and Development in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul—UFMS, Campo Grande 79070-900, Brazil; (L.F.S.); (S.S.); (R.d.C.A.G.); (V.A.d.N.); (D.B.); (P.A.H.)
| | - Danielle Bogo
- Graduate Program in Health and Development in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul—UFMS, Campo Grande 79070-900, Brazil; (L.F.S.); (S.S.); (R.d.C.A.G.); (V.A.d.N.); (D.B.); (P.A.H.)
| | - Patrícia de Oliveira Figueiredo
- Laboratory Pronabio (Bioactive Natural Products)-Chemistry Institute, Federal University of Mato Grosso do Sul—UFMS, Campo Grande 79074-460, Brazil;
| | - Priscila Aiko Hiane
- Graduate Program in Health and Development in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul—UFMS, Campo Grande 79070-900, Brazil; (L.F.S.); (S.S.); (R.d.C.A.G.); (V.A.d.N.); (D.B.); (P.A.H.)
| |
Collapse
|
42
|
Xiaofang L, Wenhuan H, Xingfu T, Yanhong Z. Identification of the roselle root rot pathogen and its sensitivity to different fungicides. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.103932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
43
|
Baba Shekh AO, Abdul Wahab R, Yahya NA. Formulation of roselle extract water-in-oil nanoemulsion for controlled pulmonary delivery. J DISPER SCI TECHNOL 2022. [DOI: 10.1080/01932691.2022.2046044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Adil Omer Baba Shekh
- Faculty of Science, Department of Chemistry, Universiti Teknologi Malaysia, Baharu, Malaysia
- Enzyme Technology and Green Synthesis Group, Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru, Malaysia
| | - Roswanira Abdul Wahab
- Faculty of Science, Department of Chemistry, Universiti Teknologi Malaysia, Baharu, Malaysia
- Enzyme Technology and Green Synthesis Group, Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru, Malaysia
| | - Nur Azzanizawaty Yahya
- Faculty of Science, Department of Chemistry, Universiti Teknologi Malaysia, Baharu, Malaysia
- Enzyme Technology and Green Synthesis Group, Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru, Malaysia
| |
Collapse
|
44
|
A stability-indicating HPLC-UV method for the quantification of anthocyanin in Roselle ( Hibiscus Sabdariffa L.) spray-dried extract, oral powder, and lozenges. Heliyon 2022; 8:e09177. [PMID: 35368538 PMCID: PMC8971634 DOI: 10.1016/j.heliyon.2022.e09177] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/17/2021] [Accepted: 03/17/2022] [Indexed: 11/22/2022] Open
Abstract
Hibiscus sabdariffa L. (H.S.) plant and its calyces have received much attention from researchers because of their potential medicinal and nutritional values. Calyces are the major source of anthocyanin in this plant. Therefore, a well-developed, efficient, and accurate analytical method is needed to assure proper standardization and control the quality of H.S. plant herbal and nutraceutical products. The objective of this work is to develop a simple, rapid, stability-indicating HPLC-UV method for the quantitative determination of anthocyanin in spray-dried aqueous extract (SDE), oral powder, and compressible lozenges formulations using Delphinidin-3-O-sambubioside (Dp3S) as a marker compound. The chromatographic conditions were optimized using Eclipse plus® C18 column. The mobile phase comprised water acidified with 0.2% formic acid (FA) and acetonitrile (ACN) (90:10, v/v) using a gradient system at a flow rate of 0.8 mL/min. The detection wavelength was 525 nm. The column was maintained at 45 °C, and the injection volume was 15 μL. The developed method was validated according to the international conference of harmonization (ICH) guidelines for linearity, detection and quantitation limits, accuracy, precision, specificity, and robustness. Forced degradation studies under acid, base, oxidation, heat, and U.V light, were performed on the pure compound, extract, and the H.S. developed formulations. Significant degradation of the compound was observed under all tested conditions except U.V. light, where degradation was minimum. There was no interference from impurities, degradation products, or excipients at the retention time of Dp3S 3.2 min indicating the specificity of the method. The developed method was statistically confirmed to be accurate, precise, and reproducible. This simple, rapid, and specific method can be employed efficiently to determine anthocyanin in H.S. plant extract and nutraceutical products.
Collapse
|
45
|
Fabrication, characterization and corrosion feature evaluation of mild steel in 1 M HCl by nanoparticle-modified activated carbon. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-021-01895-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
46
|
Banwo K, Sanni A, Sarkar D, Ale O, Shetty K. Phenolics-Linked Antioxidant and Anti-hyperglycemic Properties of Edible Roselle (Hibiscus sabdariffa Linn.) Calyces Targeting Type 2 Diabetes Nutraceutical Benefits in vitro. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.660831] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Phenolics- enriched plant food sources are excellent dietary and therapeutic targets to combat the increasing prevalence of diet and lifestyle-influenced non-communicable chronic diseases (NCDs), such as type 2 diabetes (T2D). Among plant sources, edible flowers rich in health protective phenolic compounds provide novel opportunities as ingredient and nutraceutical sources. Roselle (Hibiscus sabdariffa Linn.) is a popular edible flower and consumed as part of traditional cuisines and processed foods in several countries of Asia and Africa. Red calyces of Roselle are rich in phenolic compounds, which potentially have high antioxidant and anti-hyperglycemic properties. Therefore, there is merit in screening of dried Roselle calyces as sources for functional food ingredients or nutraceuticals to counter chronic oxidative stress and chronic hyperglycemia using in vitro assays. This has led to this study to investigate and compare phenolic compounds associated antioxidant and anti-hyperglycemic functions of different organic solvent-extracted fractions of dried Roselle calyces using rapid in vitro assays-based screening strategy. Total soluble phenolic content, profile of phenolic compounds, free radical scavenging assay-based total antioxidant activity, and anti-hyperglycemic function linked α-amylase and α-glucosidase inhibitory activities of four different organic solvents (chloroform, hexane, ethyl acetate, and initial crude extraction in 100% methanol) extracted fractions of calyces of Roselle were determined using in vitro assays. Studies indicated high phenolic-linked antioxidant and anti-hyperglycemic relevant properties in red Roselle calyces, specifically in ethyl acetate and methanol solvent-based extracted fractions. Major phenolic compounds in extracted fractions of Roselle calyces were chlorogenic acid, caffeic acid, gallic acid, catechin, rutin, benzoic acid, and cinnamic acid. Additionally, moderate α-amylase (30–92%) and very high α-glucosidase (81–98%) inhibitory activities were confirmed in undiluted samples of organic solvent-extracted fractions of Roselle calyces in the in vitro assays. Taken together these in vitro screening results indicated that calyces of Roselle are excellent sources of health protective phenolic compounds with high antioxidant and anti-hyperglycemic functions and organic solvent (ethyl acetate and methanol) extracted fractions of this edible flower can be strategically utilized to design functional food ingredients and nutraceuticals.
Collapse
|
47
|
Singh M, Thrimawithana T, Shukla R, Adhikari B. Extraction and characterization of polyphenolic compounds and potassium hydroxycitrate from Hibiscus sabdariffa. FUTURE FOODS 2021. [DOI: 10.1016/j.fufo.2021.100087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
48
|
Díaz-Núñez JL, Pérez-López M, Espinosa N, Campos-Hernández N, García-Contreras R, Díaz-Guerrero M, Cortes-López H, Vázquez-Sánchez M, Quezada H, Martínez-Vázquez M, Soto-Hernández RM, Burgos-Hernández M, González-Pedrajo B, Castillo-Juárez I. Anti-Virulence Properties of Plant Species: Correlation between In Vitro Activity and Efficacy in a Murine Model of Bacterial Infection. Microorganisms 2021; 9:2424. [PMID: 34946027 PMCID: PMC8706108 DOI: 10.3390/microorganisms9122424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 11/13/2021] [Accepted: 11/15/2021] [Indexed: 11/17/2022] Open
Abstract
Several plant extracts exhibit anti-virulence properties due to the interruption of bacterial quorum sensing (QS). However, studies on their effects at the preclinical level are scarce. Here, we used a murine model of abscess/necrosis induced by Pseudomonas aeruginosa to evaluate the anti-pathogenic efficacy of 24 plant extracts at a sub-inhibitory concentration. We analyzed their ability to inhibit QS-regulated virulence factors such as swarming, pyocyanin production, and secretion of the ExoU toxin via the type III secretion system (T3SS). Five of the seven extracts with the best anti-pathogenic activity reduced ExoU secretion, and the extracts of Diphysa americana and Hibiscus sabdariffa were identified as the most active. Therefore, the abscess/necrosis model allows identification of plant extracts that have the capacity to reduce pathogenicity of P. aeruginosa. Furthermore, we evaluated the activity of the plant extracts on Chromobacterium violaceum. T3SS (ΔescU) and QS (ΔcviI) mutant strains were assessed in both the abscess/necrosis and sepsis models. Only the ΔescU strain had lower pathogenicity in the animal models, although no activity of plant extracts was observed. These results demonstrate differences between the anti-virulence activity recorded in vitro and pathogenicity in vivo and between the roles of QS and T3S systems as virulence determinants.
Collapse
Affiliation(s)
- José Luis Díaz-Núñez
- Laboratorio de Fitoquímica, Posgrado de Botánica, Colegio de Postgraduados, Texcoco 56230, Mexico; (J.L.D.-N.); (M.P.-L.); (N.C.-H.); (H.C.-L.); (M.V.-S.); (R.M.S.-H.); (M.B.-H.)
| | - Macrina Pérez-López
- Laboratorio de Fitoquímica, Posgrado de Botánica, Colegio de Postgraduados, Texcoco 56230, Mexico; (J.L.D.-N.); (M.P.-L.); (N.C.-H.); (H.C.-L.); (M.V.-S.); (R.M.S.-H.); (M.B.-H.)
| | - Norma Espinosa
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; (N.E.); (M.D.-G.)
| | - Nayelli Campos-Hernández
- Laboratorio de Fitoquímica, Posgrado de Botánica, Colegio de Postgraduados, Texcoco 56230, Mexico; (J.L.D.-N.); (M.P.-L.); (N.C.-H.); (H.C.-L.); (M.V.-S.); (R.M.S.-H.); (M.B.-H.)
| | - Rodolfo García-Contreras
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico;
| | - Miguel Díaz-Guerrero
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; (N.E.); (M.D.-G.)
| | - Humberto Cortes-López
- Laboratorio de Fitoquímica, Posgrado de Botánica, Colegio de Postgraduados, Texcoco 56230, Mexico; (J.L.D.-N.); (M.P.-L.); (N.C.-H.); (H.C.-L.); (M.V.-S.); (R.M.S.-H.); (M.B.-H.)
| | - Monserrat Vázquez-Sánchez
- Laboratorio de Fitoquímica, Posgrado de Botánica, Colegio de Postgraduados, Texcoco 56230, Mexico; (J.L.D.-N.); (M.P.-L.); (N.C.-H.); (H.C.-L.); (M.V.-S.); (R.M.S.-H.); (M.B.-H.)
| | - Héctor Quezada
- Laboratorio de Investigación en Inmunología y Proteómica, Hospital Infantil de México Federico Gómez, Ciudad de México 06720, Mexico;
| | - Mariano Martínez-Vázquez
- Departamento de Productos Naturales, Instituto de Química, Universidad Nacional Autόnoma de México, Ciudad de México 04510, Mexico;
| | - Ramón Marcos Soto-Hernández
- Laboratorio de Fitoquímica, Posgrado de Botánica, Colegio de Postgraduados, Texcoco 56230, Mexico; (J.L.D.-N.); (M.P.-L.); (N.C.-H.); (H.C.-L.); (M.V.-S.); (R.M.S.-H.); (M.B.-H.)
| | - Mireya Burgos-Hernández
- Laboratorio de Fitoquímica, Posgrado de Botánica, Colegio de Postgraduados, Texcoco 56230, Mexico; (J.L.D.-N.); (M.P.-L.); (N.C.-H.); (H.C.-L.); (M.V.-S.); (R.M.S.-H.); (M.B.-H.)
| | - Bertha González-Pedrajo
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; (N.E.); (M.D.-G.)
| | - Israel Castillo-Juárez
- Laboratorio de Fitoquímica, Posgrado de Botánica, Colegio de Postgraduados, Texcoco 56230, Mexico; (J.L.D.-N.); (M.P.-L.); (N.C.-H.); (H.C.-L.); (M.V.-S.); (R.M.S.-H.); (M.B.-H.)
| |
Collapse
|
49
|
Aktepe N, Keskin C, Baran A, Atalar MN, Baran MF, Akmeşe Ş. Biochemical components, enzyme inhibitory, antioxidant and antimicrobial activities in endemic plant
Scilla mesopotamica speta. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15980] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Necmettin Aktepe
- Department of Nursing Faculty of Health Sciences University of Mardin Artuklu Mardin Turkey
| | - Cumali Keskin
- Department of Medical Services and Techniques University of Mardin Artuklu Mardin Turkey
| | - Ayşe Baran
- Department of Biology Institute of Science Mardin Artuklu University Mardin Turkey
| | - Mehmet Nuri Atalar
- Department of Biochemistry Faculty of Arts and Science Iğdır University Iğdır Turkey
| | - Mehmet Fırat Baran
- Department of Medical Services and Techniques University of Mardin Artuklu Mardin Turkey
| | - Şükrü Akmeşe
- Program of Pharmacy Services Vocational School of Health ServicesHarran University Şanlıurfa Turkey
| |
Collapse
|
50
|
Lee Y. Roles of circadian clocks in cancer pathogenesis and treatment. Exp Mol Med 2021; 53:1529-1538. [PMID: 34615982 PMCID: PMC8568965 DOI: 10.1038/s12276-021-00681-0] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/29/2021] [Accepted: 08/06/2021] [Indexed: 12/24/2022] Open
Abstract
Circadian clocks are ubiquitous timing mechanisms that generate approximately 24-h rhythms in cellular and bodily functions across nearly all living species. These internal clock systems enable living organisms to anticipate and respond to daily changes in their environment in a timely manner, optimizing temporal physiology and behaviors. Dysregulation of circadian rhythms by genetic and environmental risk factors increases susceptibility to multiple diseases, particularly cancers. A growing number of studies have revealed dynamic crosstalk between circadian clocks and cancer pathways, providing mechanistic insights into the therapeutic utility of circadian rhythms in cancer treatment. This review will discuss the roles of circadian rhythms in cancer pathogenesis, highlighting the recent advances in chronotherapeutic approaches for improved cancer treatment.
Collapse
Affiliation(s)
- Yool Lee
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, 99202, USA.
| |
Collapse
|