1
|
Chi ZH, Liu L, Zheng J, Tian L, Chevrier J, Bornman R, Obida M, Gates Goodyer C, Hales BF, Bayen S. Investigation of common and unreported parabens alongside other plastic-related contaminants in human milk using non-targeted strategies. CHEMOSPHERE 2025; 373:144154. [PMID: 39919615 DOI: 10.1016/j.chemosphere.2025.144154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 01/21/2025] [Accepted: 01/22/2025] [Indexed: 02/09/2025]
Abstract
Human milk studies analyzing widely used contaminants mainly utilize a targeted approach to screen and quantify a limited number of compounds. While targeted analysis allows health officials to quantify the levels of these chemicals in human milk, it fails to detect the presence of other unknowns that may be of equal importance. Hence, the objective of this study was to apply non-targeted analysis to detect and identify different prevalent contaminants, specifically common or unreported parabens as well as other plastic-related contaminants (PRCs) in human milk. Extracts of 594 human milk samples collected in Canada (Montreal) and South Africa (Vhembe and Pretoria) in 2018-2019 were analyzed using liquid chromatography-mass spectrometry to confirm the presence of methyl, ethyl and propyl parabens. Additional investigations revealed the presence of sulfated species of these parabens, suggesting their conjugation potential in human milk. Further analysis using in-source fragmentation, identified the presence of four other parabens in human milk, including phenyl paraben as well as 2-ethylhexyl 4-hydroxybenzoate, an unusual paraben exclusive to South African samples. Other PRCs that were detected included several phthalate metabolites, per- and poly-fluoroalkyl substances (PFAS) and 1,3 diphenyl guanidine, a tire-related chemical. This is the first study to have used different non-targeted analyses for the detection and confirmation of several common and unusual parabens alongside different PRCs in human milk.
Collapse
Affiliation(s)
- Zhi Hao Chi
- Department of Food Science and Agricultural Chemistry, McGill University, Montreal, QC, Canada
| | - Lan Liu
- Department of Food Science and Agricultural Chemistry, McGill University, Montreal, QC, Canada
| | - Jingyun Zheng
- Department of Food Science and Agricultural Chemistry, McGill University, Montreal, QC, Canada
| | - Lei Tian
- Department of Food Science and Agricultural Chemistry, McGill University, Montreal, QC, Canada
| | - Jonathan Chevrier
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, QC, Canada
| | | | | | | | - Barbara F Hales
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Stéphane Bayen
- Department of Food Science and Agricultural Chemistry, McGill University, Montreal, QC, Canada
| |
Collapse
|
2
|
Liu YA, Hsu HJ, Pan HC, Sun CY, Chen YT, Lee CC, Su FC, Wei YC, Hsu CK, Chen CY. Community-based insights into the connection between endocrine-disrupting chemicals and depressive symptoms. Curr Res Toxicol 2025; 8:100225. [PMID: 40109874 PMCID: PMC11919602 DOI: 10.1016/j.crtox.2025.100225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 02/08/2025] [Accepted: 02/16/2025] [Indexed: 03/22/2025] Open
Abstract
Background The rising prevalence of depressive disorders has sparked concerns regarding environmental risk factors, particularly exposure to endocrine-disrupting chemicals (EDCs). However, the link between EDC exposure and depressive symptoms remains largely unexplored. Methods The Chang Gung Community Medicine Research Center carried out a cross-sectional study across four regions in northeastern Taiwan. Out of 887 participants, 120 subjects were chosen according to their EDC exposure scores. These participants underwent urinary EDC analysis and were evaluated for depressive symptoms through the standardized Hospital Anxiety and Depression Scale - Depression subscale (HADS-D) questionnaire. Results Participants with HADS-D scores ≥ 8 exhibited significantly higher EDC exposure score compared to those with lower scores. The correlation analyses identified a notible positive association between urinary monobenzyl phthalate (MBzP) levels and HADS-D scores (r = 0.244, p = 0.007). Multiple regression analysis revealed that MBzP was independently linked to increased HADS-D scores in a positive manner (β ± SE: 0.139 ± 0.050, p = 0.006). Multivariable logistic regression indicated that higher MBzP (OR: 1.150, 95 % CI: 1.036-1.278, p = 0.009) and methylparaben (MP) levels (OR: 1.008, 95 % CI: 1.003-1.013, p < 0.001) showed a significant correlation with the likelihood of HADS-D scores ≥ 8. Receiver operating characteristic curve analysis demonstrated that elevated levels of MBzP, MP and the EDCs exposure score were associated with a greater likelihood of depressive symptoms. Conclusion Exposure to EDCs, particularly MBzP and MP, could be associated with a heightened risk of depressive symptoms.
Collapse
Affiliation(s)
- Yun-An Liu
- Department of Nephrology, Chang Gung Memorial Hospital, Keelung Branch 222, Mai-Chin Road, Keelung 20401, Taiwan, Republic of China
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Community Medicine Research Center, Chang Gung Memorial Hospital, Keelung Branch 222, Mai-Chin Road, Keelung 20401, Taiwan, Republic of China
| | - Heng-Jung Hsu
- Department of Nephrology, Chang Gung Memorial Hospital, Keelung Branch 222, Mai-Chin Road, Keelung 20401, Taiwan, Republic of China
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Community Medicine Research Center, Chang Gung Memorial Hospital, Keelung Branch 222, Mai-Chin Road, Keelung 20401, Taiwan, Republic of China
| | - Heng-Chih Pan
- Department of Nephrology, Chang Gung Memorial Hospital, Keelung Branch 222, Mai-Chin Road, Keelung 20401, Taiwan, Republic of China
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Community Medicine Research Center, Chang Gung Memorial Hospital, Keelung Branch 222, Mai-Chin Road, Keelung 20401, Taiwan, Republic of China
| | - Chiao-Yin Sun
- Department of Nephrology, Chang Gung Memorial Hospital, Keelung Branch 222, Mai-Chin Road, Keelung 20401, Taiwan, Republic of China
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Community Medicine Research Center, Chang Gung Memorial Hospital, Keelung Branch 222, Mai-Chin Road, Keelung 20401, Taiwan, Republic of China
| | - Yih-Ting Chen
- Department of Nephrology, Chang Gung Memorial Hospital, Keelung Branch 222, Mai-Chin Road, Keelung 20401, Taiwan, Republic of China
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Community Medicine Research Center, Chang Gung Memorial Hospital, Keelung Branch 222, Mai-Chin Road, Keelung 20401, Taiwan, Republic of China
| | - Chin-Chan Lee
- Department of Nephrology, Chang Gung Memorial Hospital, Keelung Branch 222, Mai-Chin Road, Keelung 20401, Taiwan, Republic of China
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Community Medicine Research Center, Chang Gung Memorial Hospital, Keelung Branch 222, Mai-Chin Road, Keelung 20401, Taiwan, Republic of China
| | - Feng-Chieh Su
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Neurology, Chang Gung Memorial Hospital, Keelung Branch 222, Mai-Chin Road, Keelung 20401, No. 259, Wenhua 1st Rd., Guishan Dist., Taoyuan City 33302, Taiwan, Republic of China
| | - Yi-Chia Wei
- Community Medicine Research Center, Chang Gung Memorial Hospital, Keelung Branch 222, Mai-Chin Road, Keelung 20401, Taiwan, Republic of China
- Department of Neurology, Chang Gung Memorial Hospital, Keelung Branch 222, Mai-Chin Road, Keelung 20401, No. 259, Wenhua 1st Rd., Guishan Dist., Taoyuan City 33302, Taiwan, Republic of China
- School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, No. 259, Wenhua 1st Rd., Guishan Dist., Taoyuan City 33302, Taiwan, Republic of China
| | - Cheng-Kai Hsu
- Department of Nephrology, Chang Gung Memorial Hospital, Keelung Branch 222, Mai-Chin Road, Keelung 20401, Taiwan, Republic of China
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Community Medicine Research Center, Chang Gung Memorial Hospital, Keelung Branch 222, Mai-Chin Road, Keelung 20401, Taiwan, Republic of China
| | - Chun-Yu Chen
- Department of Nephrology, Chang Gung Memorial Hospital, Keelung Branch 222, Mai-Chin Road, Keelung 20401, Taiwan, Republic of China
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Community Medicine Research Center, Chang Gung Memorial Hospital, Keelung Branch 222, Mai-Chin Road, Keelung 20401, Taiwan, Republic of China
| |
Collapse
|
3
|
Miller RL, Wang Y, Aalborg J, Alshawabkeh AN, Bennett DH, Breton CV, Buckley JP, Dabelea D, Dunlop AL, Ferrara A, Gao G, Gaylord A, Gold DR, Hartert T, Hertz-Picciotto I, Hoepner LA, Karagas M, Karr CJ, Kelly RS, Khatchikian C, Liu M, Meeker JD, O'Connor TG, Peterson AK, Sathyanarayana S, Sordillo J, Trasande L, Weiss ST, Zhu Y. Prenatal exposure to environmental bisphenols over time and their association with childhood asthma, allergic rhinitis and atopic dermatitis in the ECHO consortium. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 366:125415. [PMID: 39615574 DOI: 10.1016/j.envpol.2024.125415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 11/20/2024] [Accepted: 11/27/2024] [Indexed: 12/08/2024]
Abstract
Concerns persist about the potential impact of prenatal exposure to bisphenols (BP) and their replacement analogues on childhood asthma and allergies. Previous studies on single and small cohorts had limited statistical power, few investigated analogues BPF and BPS, and even fewer examined atopic outcomes. Our objective was to assess whether prenatal exposures to individual environmental bisphenols (BPA, BPF, BPS) influence risk of childhood asthma, allergic rhinitis, and atopic dermatitis. Data from the U.S. Environmental Influences on Child Health Outcomes (ECHO) consortium were harmonized on measures of prenatal urinary BPA, BPF and BPS and asthma and allergic rhinitis (ages 5-9 years) and atopic dermatitis (up to age 3 years) from 1905 mother-child pairs that were collected between 1998 and 2017. Across the 2012 federal ban of BPA from certain infant products, median BPA levels decreased from 1.11 ng/ml to 0.86 ng/ml; median BPF levels decreased from 0.51 ng/ml to 0.39 ng/ml; and median BPS levels increased from 0.23 ng/ml to 0.31 ng/ml (dilution adjusted; p < 0.001 for all three median comparisons). Prenatal measures of BPA, BPF, and BPS were unrelated to the risk of childhood asthma, allergic rhinitis, or atopic dermatitis in the total population. Modest sex-dependent effects were observed: only among girls, second tertile levels of BPF was associated with a reduced odds of asthma (odds ratio (OR) 0.27, 95% confidence interval (CI) 0.08, 0.93); a continuous index of prenatal BPS was associated with reduced odds of atopic dermatitis (OR 0.64, 95% CI 0.44, 0.93). The ongoing and changing patterns of exposure to bisphenols in the U.S. population require further study with additional attention to time windows of exposure and co-occurring social determinants of health, to continue to inform current policies and evaluate the importance of limiting exposure to BPA and its analogues on childhood asthma, allergic rhinitis, and atopic dermatitis.
Collapse
Affiliation(s)
- Rachel L Miller
- Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA.
| | - Yuyan Wang
- NYU Grossman School of Medicine, 180 Madison Ave, New York, NY, USA.
| | - Jenny Aalborg
- University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| | - Akram N Alshawabkeh
- Northeastern University, Department of Civil and Environmental Engineering, Boston, MA, USA.
| | - Deborah H Bennett
- Department of Public Health Science, University of California, Davis, CA, USA.
| | - Carrie V Breton
- Department of Population and Public Health Sciences, University of Southern, CA, USA.
| | - Jessie P Buckley
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, 2106-B McGavran-Greenberg Hall CB#7435, Chapel Hill, NC, USA.
| | - Dana Dabelea
- University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| | - Anne L Dunlop
- Department of Gynecology & Obstetrics, Emory University School of Medicine, 101 Woodruff Circle, Rm 4313, Woodruff Memorial Building, Atlanta, GA, 30322, USA.
| | - Assiamira Ferrara
- Division of Research Kaiser Permanente Northern California, 2000 Broadway, Oakland, CA, USA.
| | - Griffith Gao
- Northeastern University, Department of Civil and Environmental Engineering, Boston, MA, USA.
| | - Abigail Gaylord
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA.
| | - Diane R Gold
- Gold the Department of Environmental Health, Harvard T.H. Chan School of Public Health, and the Channing Division of Network Medicine, Harvard Medical School, Department of Medicine, Brigham and Women's Hospital, Boston, MA, United States Boston, MA, USA.
| | - Tina Hartert
- Vanderbilt University Medical Center, Nashville, TN, USA.
| | | | - Lori A Hoepner
- SUNY Downstate Health Sciences University, Department of Environmental and Occupational Health Sciences, Brooklyn, NY, 11230, USA.
| | - Margaret Karagas
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA.
| | - Catherine J Karr
- University of Washington, Departments of Pediatrics, Environmental & Occupational Health Sciences, Seattle, 4225 Roosevelt Way NE, Suite 100, WA, 98105, USA.
| | - Rachel S Kelly
- Channing Division of Network Medicine, Brigham and Womens Hospital, Harvard Medical School, Boston, MA, USA.
| | - Camilo Khatchikian
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA.
| | - Mengling Liu
- NYU Grossman School of Medicine, 180 Madison Ave, New York, NY, USA.
| | - John D Meeker
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA.
| | - Thomas G O'Connor
- Departments of Psychiatry, Neuroscience, Obstetrics and Gynecology, University of Rochester, 300 Crittenden Blvd, Rochester, NY, 14642, USA.
| | - Alicia K Peterson
- Division of Research Kaiser Permanente Northern California, 2000 Broadway, Oakland, CA, USA.
| | - Sheela Sathyanarayana
- Department of Pediatrics, Department of Environmental and Occupational Health Sciences, Department of Epidemiology, University of Washington, Seattle, WA, USA; Seattle Children's Research Institute, University of Washington, Seattle, WA, USA.
| | - Joanne Sordillo
- Department of Population Medicine, Harvard Pilgrim Healthcare Institute, Harvard Medical School, Boston, MA, USA.
| | - Leonardo Trasande
- Departments of Pediatrics and Population Health, NYU Grossman School of Medicine, New York, NY, USA.
| | - Scott T Weiss
- Channing Division of Network Medicine, Brigham and Womens Hospital, Harvard Medical School, Boston, MA, USA.
| | - Yeyi Zhu
- Division of Research Kaiser Permanente Northern California, 2000 Broadway, Oakland, CA, USA.
| |
Collapse
|
4
|
Muñoz JP. The impact of endocrine-disrupting chemicals on stem cells: Mechanisms and implications for human health. J Environ Sci (China) 2025; 147:294-309. [PMID: 39003048 DOI: 10.1016/j.jes.2023.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/17/2023] [Accepted: 11/21/2023] [Indexed: 07/15/2024]
Abstract
Endocrine-disrupting chemicals (EDCs) are compounds, either natural or man-made, that interfere with the normal functioning of the endocrine system. There is increasing evidence that exposure to EDCs can have profound adverse effects on reproduction, metabolic disorders, neurological alterations, and increased risk of hormone-dependent cancer. Stem cells (SCs) are integral to these pathological processes, and it is therefore crucial to understand how EDCs may influence SC functionality. This review examines the literature on different types of EDCs and their effects on various types of SCs, including embryonic, adult, and cancer SCs. Possible molecular mechanisms through which EDCs may influence the phenotype of SCs are also evaluated. Finally, the possible implications of these effects on human health are discussed. The available literature demonstrates that EDCs can influence the biology of SCs in a variety of ways, including by altering hormonal pathways, DNA damage, epigenetic changes, reactive oxygen species production and alterations in the gene expression patterns. These disruptions may lead to a variety of cell fates and diseases later in adulthood including increased risk of endocrine disorders, obesity, infertility, reproductive abnormalities, and cancer. Therefore, the review emphasizes the importance of raising broader awareness regarding the intricate impact of EDCs on human health.
Collapse
Affiliation(s)
- Juan P Muñoz
- Laboratorio de Bioquímica, Departamento de Química, Facultad de Ciencias, Universidad de Tarapacá, Arica 1000007, Chile.
| |
Collapse
|
5
|
Sadek KM, Khalifa NE, Alshial EE, Abdelnour SA, Mohamed AAR, Noreldin AE. Potential hazards of bisphenol A on the male reproductive system: Induction of programmed cell death in testicular cells. J Biochem Mol Toxicol 2024; 38:e23844. [PMID: 39252451 DOI: 10.1002/jbt.23844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 08/10/2024] [Accepted: 08/29/2024] [Indexed: 09/11/2024]
Abstract
A common industrial chemical known as bisphenol A (BPA) has been linked to endocrine disruption and can interfere with hormonal signaling pathways in humans and animals. This comprehensive review aims to explore the detrimental consequences of BPA on reproductive organ performance and apoptosis induction, shedding light on the emerging body of evidence from laboratory animal studies. Historically, most studies investigating the connection between BPA and reproductive tissue function have mainly leaned on laboratory animal models. These studies have provided crucial insights into the harmful effects of BPA on several facets of reproduction. This review consolidates an increasing literature that correlates exposure to BPA in the environment with a negative impact on human health. It also integrates findings from laboratory studies conducted on diverse species, collectively bolstering the mounting evidence that environmental BPA exposure can be detrimental to both humans and animals, particularly to reproductive health. Furthermore, this article explores the fundamental processes by which BPA triggers cell death and apoptosis in testicular cells. By elucidating these mechanisms, this review aids a deeper understanding of the complex interactions between BPA and reproductive tissues.
Collapse
Affiliation(s)
- Kadry M Sadek
- Department of Biochemistry, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Norhan E Khalifa
- Department of Physiology, Faculty of Veterinary Medicine, Matrouh University, Matrouh, Egypt
| | - Eman E Alshial
- Department of Biochemistry, Faculty of Science, Damanhour University, Damanhour, Egypt
| | - Sameh A Abdelnour
- Department of Animal Production, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Amany A-R Mohamed
- Departmentof Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Ahmed E Noreldin
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| |
Collapse
|
6
|
Tuli A, Suresh G, Halder N, Velpandian T. Analysis and remediation of phthalates in aquatic matrices: current perspectives. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:23408-23434. [PMID: 38456985 DOI: 10.1007/s11356-024-32670-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 02/23/2024] [Indexed: 03/09/2024]
Abstract
Phthalic acid esters (PAEs) are high production volume chemicals used extensively as plasticizers, to increase the flexibility of the main polymer. They are reported to leach into their surroundings from plastic products and are now a ubiquitous environmental contaminant. Phthalate levels have been determined in several environmental matrices, especially in water. These levels serve as an indicator of plasticizer abuse and plastic pollution, and also serve as a route of exposure to different species including humans. Reports published on effects of different PAEs on experimental models demonstrate their carcinogenic, teratogenic, reproductive, and endocrine disruptive effects. Therefore, regular monitoring and remediation of environmental water samples is essential to ascertain their hazard quotient and daily exposure levels. This review summarises the extraction and detection techniques available for phthalate analysis in water samples such as chromatography, biosensors, immunoassays, and spectroscopy. Current remediation strategies for phthalate removal such as adsorption, advanced oxidation, and microbial degradation have also been highlighted.
Collapse
Affiliation(s)
- Anannya Tuli
- High Precision Bio-Analytical Facility (DST-FIST Sponsored), Ocular Pharmacology and Pharmacy, Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Gayatri Suresh
- High Precision Bio-Analytical Facility (DST-FIST Sponsored), Ocular Pharmacology and Pharmacy, Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Nabanita Halder
- High Precision Bio-Analytical Facility (DST-FIST Sponsored), Ocular Pharmacology and Pharmacy, Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Thirumurthy Velpandian
- High Precision Bio-Analytical Facility (DST-FIST Sponsored), Ocular Pharmacology and Pharmacy, Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, 110029, India.
| |
Collapse
|
7
|
Salas-González MD, Loria-Kohen V, Jiménez-Ortega AI, López-Sobaler AM. [Nutritional factors related to insulin resistance in children and adolescents]. NUTR HOSP 2023; 40:51-54. [PMID: 37929895 DOI: 10.20960/nh.04956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023] Open
Abstract
Introduction Insulin resistance is described as a defect in the binding of insulin to its receptor and is associated with several diseases, including obesity and type 2 diabetes. Insulin resistance has been linked to vitamin and mineral deficiencies, especially those involved in oxidative stress. The Mediterranean diet, a diet based on the Healthy Eating Index or the Dietary Approaches to Stop Hypertension (DASH) diet are dietary patterns that have been associated with a lower risk of developing insulin resistance in children. Therefore, a diet rich in antioxidant vitamins and minerals, fiber, calcium, and polyunsaturated fatty acids and low in free sugars, sodium and saturated fatty acids may decrease the risk of insulin resistance in this age group. In addition, other nutritional factors, such as avoiding fast food, eating dinner with the family, not eating while watching TV or eating a sufficient and healthy breakfast on a regular basis seem to be associated with a lower risk of insulin resistance. Therefore, it is important to establish balanced daily eating habits to prevent and treat insulin resistance in schoolchildren and adolescents.
Collapse
Affiliation(s)
- María Dolores Salas-González
- Departamento de Nutrición y Ciencia de los Alimentos. Facultad de Farmacia. Universidad Complutense de Madrid. Grupo de Investigación VALORNUT-UCM (920030)
| | - Viviana Loria-Kohen
- Departamento de Nutrición y Ciencia de los Alimentos. Facultad de Farmacia. Universidad Complutense de Madrid. Grupo de Investigación VALORNUT-UCM (920030)
| | | | - Ana M López-Sobaler
- Departamento de Nutrición y Ciencia de los Alimentos. Facultad de Farmacia. Universidad Complutense de Madrid. Grupo de Investigación VALORNUT-UCM (920030). IdISSC
| |
Collapse
|
8
|
Dagar M, Kumari P, Mirza AMW, Singh S, Ain NU, Munir Z, Javed T, Virk MFI, Javed S, Qizilbash FH, Kc A, Ekhator C, Bellegarde SB. The Hidden Threat: Endocrine Disruptors and Their Impact on Insulin Resistance. Cureus 2023; 15:e47282. [PMID: 38021644 PMCID: PMC10656111 DOI: 10.7759/cureus.47282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2023] [Indexed: 12/01/2023] Open
Abstract
The association between Insulin resistance, a global health issue, and endocrine disruptors (EDCs), chemicals interfering with the endocrine system, has sparked concern in the scientific community. This article provides a comprehensive review of the existing literature regarding the intricate relationship between EDCs and insulin resistance. Phthalates, commonly found in consumer products, are well-established EDCs with documented effects on insulin-signaling pathways and metabolic processes. Epidemiological studies have connected phthalate exposure to an increased risk of type 2 diabetes mellitus (T2DM). Perfluoroalkyl substances (PFAS), persistent synthetic compounds, have shown inconsistent associations with T2DM in epidemiological research. However, studies suggest that PFAS may influence insulin resistance and overall metabolic health, with varying effects depending on specific PFAS molecules and study populations. Bisphenol A (BPA), found in plastics and resins, has emerged as a concern for glucose regulation and insulin resistance. Research has linked BPA exposure to T2DM, altered insulin release, obesity, and changes in the mass and function of insulin-secreting β-cells. Triclosan, an antibacterial agent in personal care products, exhibits gender-specific associations with T2DM risk. It may impact gut microbiota, thyroid hormones, obesity, and inflammation, raising concerns about its effects on metabolic health. Furthermore, environmental EDCs like polycyclic aromatic hydrocarbons, pesticides, and heavy metals have demonstrated associations with T2DM, insulin resistance, hypertension, and obesity. Occupational exposure to specific pesticides and heavy metals has been linked to metabolic abnormalities.
Collapse
Affiliation(s)
- Mehak Dagar
- Internal Medicine, Himalayan Institute of Medical Sciences, New Delhi, IND
| | - Priya Kumari
- Medicine, Jinnah Postgraduate Medical Centre, Karachi, PAK
| | | | - Shivani Singh
- Medicine, MediCiti Institute of Medical Sciences, Hyderabad, IND
| | - Noor U Ain
- Medicine, Mayo Hospital, Lahore, PAK
- Medicine, King Edward Medical University, Lahore, PAK
| | - Zainab Munir
- Emergency Department, Imran Idrees Teaching Hospital, Sialkot, PAK
| | - Tamleel Javed
- Emergency Department, Imran Idrees Teaching Hospital, Sialkot, PAK
| | | | - Saleha Javed
- Emergency Department, Sheikh Zayed Hospital, Rahim Yar Khan, PAK
| | | | - Anil Kc
- Medicine and Surgery, Patan Academy of Health Sciences, Kathmandu, NPL
- Medicine, California Institute of Behavioral Neurosciences and Psychology, Fairfield, USA
| | - Chukwuyem Ekhator
- Neuro-Oncology, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, USA
| | - Sophia B Bellegarde
- Pathology and Laboratory Medicine, American University of Antigua, Coolidge, ATG
| |
Collapse
|
9
|
Senolsun A, Akyilmaz E. A new non-enzymatic biosensor for the determination of bisphenol-A. Food Chem 2023; 426:136536. [PMID: 37302303 DOI: 10.1016/j.foodchem.2023.136536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/30/2023] [Accepted: 06/01/2023] [Indexed: 06/13/2023]
Abstract
In this study, a new non-enzymatic carbon paste biosensor was developed for the determination of Bisphenol-A (BPA) based on Multiwalled Carbon Nanotube (MWCNT) modified Myoglobin (Mb). The measurement principle of the biosensor was developed based on the inhibition effect of BPA on the heme group of myoglobin in the presence of hydrogen peroxide. With the designed biosensor, measurements were taken in the potential range of (-0.15 V & +0.65 V) using the differential pulse voltammetry (DPV) method in the medium containing K4[Fe(CN)6]. The linear range for BPA was determined to be 100-1000 µM. Response time was calculated as 16 s. The limit of detection was set at 89 μM. As a result, it has been proven that MWCNT modified myoglobin based biosensor is an alternative method that can be used for BPA determination, giving very sensitive and fast results.
Collapse
Affiliation(s)
- Asude Senolsun
- Ege University, Faculty of Science Biochemistry Department, 35100 Bornova, Izmir, Turkey.
| | - Erol Akyilmaz
- Ege University, Faculty of Science Biochemistry Department, 35100 Bornova, Izmir, Turkey
| |
Collapse
|
10
|
Di Pietro G, Forcucci F, Chiarelli F. Endocrine Disruptor Chemicals and Children's Health. Int J Mol Sci 2023; 24:2671. [PMID: 36768991 PMCID: PMC9916521 DOI: 10.3390/ijms24032671] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 02/01/2023] Open
Abstract
We are all exposed to endocrine-disrupting chemicals (EDCs) starting from embryonic life. The fetus and child set up crucial developmental processes allowing adaptation to the environment throughout life: they are extremely sensitive to very low doses of hormones and EDCs because they are developing organisms. Considering the developmental origin of well-being and diseases, every adult organism expresses consequences of the environment in which it developed. The molecular mechanisms through which the main EDCs manifest their effects and their potential association with endocrine disorders, such as diabetes, obesity, thyroid disease and alteration of adrenal hormones, will be reviewed here. Despite 40 years having passed since the first study on EDCs, little is yet known about them; therefore, our purpose is to take stock of the situation to establish a starting point for further studies. Since there is plenty of evidence showing that exposure to EDCs may adversely impact the health of adults and children through altered endocrine function-suggesting their link to endocrinopathies-it is essential in this context to bear in mind what is already known about endocrine disruptors and to deepen our knowledge to establish rules of conduct aimed at limiting exposure to EDCs' negative effects. Considering that during the COVID-19 pandemic an increase in endocrine disruptor effects has been reported, it will also be useful to address this new phenomenon for better understanding its basis and limiting its consequences.
Collapse
Affiliation(s)
| | | | - Francesco Chiarelli
- Department of Pediatrics, University of Chieti “G. d’Annunzio”, 66100 Chieti, Italy
| |
Collapse
|
11
|
Bernal K, Touma C, Erradhouani C, Boronat-Belda T, Gaillard L, Al Kassir S, Le Mentec H, Martin-Chouly C, Podechard N, Lagadic-Gossmann D, Langouet S, Brion F, Knoll-Gellida A, Babin PJ, Sovadinova I, Babica P, Andreau K, Barouki R, Vondracek J, Alonso-Magdalena P, Blanc E, Kim MJ, Coumoul X. Combinatorial pathway disruption is a powerful approach to delineate metabolic impacts of endocrine disruptors. FEBS Lett 2022; 596:3107-3123. [PMID: 35957500 DOI: 10.1002/1873-3468.14465] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 07/22/2022] [Accepted: 07/25/2022] [Indexed: 01/14/2023]
Abstract
The prevalence of metabolic diseases, such as obesity, diabetes, metabolic syndrome and chronic liver diseases among others, has been rising for several years. Epidemiology and mechanistic (in vivo, in vitro and in silico) toxicology have recently provided compelling evidence implicating the chemical environment in the pathogenesis of these diseases. In this review, we will describe the biological processes that contribute to the development of metabolic diseases targeted by metabolic disruptors, and will propose an integrated pathophysiological vision of their effects on several organs. With regard to these pathomechanisms, we will discuss the needs, and the stakes of evolving the testing and assessment of endocrine disruptors to improve the prevention and management of metabolic diseases that have become a global epidemic since the end of last century.
Collapse
Affiliation(s)
- Kévin Bernal
- INSERM UMR-S 1124, Paris, France.,Université Paris Cité, France
| | - Charbel Touma
- Inserm, EHESP, Irset (Institut de recherche en santé environnement et travail) - UMR_S 1085, Université Rennes, France
| | - Chedi Erradhouani
- Université Paris Cité, France.,Ecotoxicologie des substances et des milieux, Parc ALATA, INERIS, Verneuil-en-Halatte, France
| | - Talía Boronat-Belda
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universitas Miguel Hernández, Elche, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Lucas Gaillard
- INSERM UMR-S 1124, Paris, France.,Université Paris Cité, France
| | - Sara Al Kassir
- Department of Life and Health Sciences, INSERM U1211, MRGM, University of Bordeaux, Pessac, France
| | - Hélène Le Mentec
- Inserm, EHESP, Irset (Institut de recherche en santé environnement et travail) - UMR_S 1085, Université Rennes, France
| | - Corinne Martin-Chouly
- Inserm, EHESP, Irset (Institut de recherche en santé environnement et travail) - UMR_S 1085, Université Rennes, France
| | - Normand Podechard
- Inserm, EHESP, Irset (Institut de recherche en santé environnement et travail) - UMR_S 1085, Université Rennes, France
| | - Dominique Lagadic-Gossmann
- Inserm, EHESP, Irset (Institut de recherche en santé environnement et travail) - UMR_S 1085, Université Rennes, France
| | - Sophie Langouet
- Inserm, EHESP, Irset (Institut de recherche en santé environnement et travail) - UMR_S 1085, Université Rennes, France
| | - François Brion
- Ecotoxicologie des substances et des milieux, Parc ALATA, INERIS, Verneuil-en-Halatte, France
| | - Anja Knoll-Gellida
- Department of Life and Health Sciences, INSERM U1211, MRGM, University of Bordeaux, Pessac, France
| | - Patrick J Babin
- Department of Life and Health Sciences, INSERM U1211, MRGM, University of Bordeaux, Pessac, France
| | - Iva Sovadinova
- RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Pavel Babica
- RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Karine Andreau
- INSERM UMR-S 1124, Paris, France.,Université Paris Cité, France
| | - Robert Barouki
- INSERM UMR-S 1124, Paris, France.,Université Paris Cité, France
| | - Jan Vondracek
- Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
| | - Paloma Alonso-Magdalena
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universitas Miguel Hernández, Elche, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Etienne Blanc
- INSERM UMR-S 1124, Paris, France.,Université Paris Cité, France
| | - Min Ji Kim
- INSERM UMR-S 1124, Paris, France.,Université Sorbonne Paris Nord, Bobigny, France
| | - Xavier Coumoul
- INSERM UMR-S 1124, Paris, France.,Université Paris Cité, France
| |
Collapse
|
12
|
Rannaud-Bartaire P. Perturbateurs endocriniens et origine environnementale des maladies : intégrer ces données pour un nouveau modèle d’accompagnement des patients vers la santé environnementale. Rech Soins Infirm 2022; 149:7-18. [DOI: 10.3917/rsi.149.0007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
13
|
Pangath M, Unnikrishnan L, Throwba PH, Vasudevan K, Jayaraman S, Li M, Iyaswamy A, Palaniyandi K, Gnanasampanthapandian D. The Epigenetic Correlation among Ovarian Cancer, Endometriosis and PCOS: A Review. Crit Rev Oncol Hematol 2022; 180:103852. [DOI: 10.1016/j.critrevonc.2022.103852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 10/08/2022] [Accepted: 10/12/2022] [Indexed: 11/07/2022] Open
|
14
|
Li L, Xu S, Lian Q. The mediating function of obesity on endocrine-disrupting chemicals and insulin resistance in children. J Pediatr Endocrinol Metab 2022; 35:1169-1176. [PMID: 36069769 DOI: 10.1515/jpem-2022-0354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 07/13/2022] [Indexed: 11/15/2022]
Abstract
OBJECTIVES To explore the association of endocrine-disrupting chemicals (EDCs) with insulin resistance (IR) in children as well as whether obesity played a mediation role between EDCs and IR. METHODS In this cross-sectional study, the data of 878 subjects were included, and divided into the non-IR group (n=501) and IR group (n=377). The associations of EDC and IR, obesity, abdominal obesity were shown by restricted cubic spline (RCS). Univariate and multivariable logistic analysis were applied to explore the associations between EDCs and IR as well as EDCs and obesity, respectively. Bootstrap coefficient product was used to analyze the medication effect of obesity on EDCs and IR. RESULTS RCS showed that increase of benzophenone-3 (BP-3) level was associated with increased risk of IR, obesity and abdominal obesity. After adjusting for confounders, BP-3>100 ng/mL was a risk factor for IR (OR=1.42, 95%CI: 1.11-1.81). In the adjusted model, we found BP-3>100 ng/mL was a risk factor for both obesity (OR=1.52, 95%CI: 1.13-2.04) and abdominal obesity (OR=1.68, 95%CI: 1.11-2.54). The indirect effect of obesity as a mediator on the relationship between BP-3 and IR was 0.038 (95%CI: 0.016-0.090) and the direct effect of obesity as a mediator on the relationship between BP-3 and IR was 0.077 (95%CI: 0.001-0.160). As for abdominal obesity, the indirect effect of it on the relationship between BP-3 and IR was 0.039 (95%CI: 0.007-0.070). CONCLUSIONS BP-3 level might be a risk factor for IR and obesity in children, and obesity was a mediator on the relationship between BP-3 and IR in children.
Collapse
Affiliation(s)
- Lingli Li
- Department of Pediatrics, The First Affiliated Hospital of Xiamen University, Pediatric Key Laboratory of Xiamen, Institute of Pediatrics, School of Medicine, Xiamen University, Xiamen, Fujian, P.R. China
| | - Shanshan Xu
- Department of Pediatrics, The First Affiliated Hospital of Xiamen University, Pediatric Key Laboratory of Xiamen, Institute of Pediatrics, School of Medicine, Xiamen University, Xiamen, Fujian, P.R. China
| | - Qun Lian
- Department of Pediatrics, The First Affiliated Hospital of Xiamen University, Pediatric Key Laboratory of Xiamen, Institute of Pediatrics, School of Medicine, Xiamen University, Xiamen, Fujian, P.R. China
| |
Collapse
|
15
|
Positive effects of Epigallocatechin-3-gallate (EGCG) intervention on insulin resistance and gut microbial dysbiosis induced by bisphenol A. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
16
|
Carli F, Ciociaro D, Gastaldelli A. Assessment of Exposure to Di-(2-ethylhexyl) Phthalate (DEHP) Metabolites and Bisphenol A (BPA) and Its Importance for the Prevention of Cardiometabolic Diseases. Metabolites 2022; 12:167. [PMID: 35208241 PMCID: PMC8878475 DOI: 10.3390/metabo12020167] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/26/2022] [Accepted: 02/04/2022] [Indexed: 02/04/2023] Open
Abstract
Exposomics analyses have highlighted the importance of biomonitoring of human exposure to pollutants, even non-persistent, for the prevention of non-communicable diseases such as obesity, diabetes, non-alcoholic fatty liver disease, atherosclerosis, and cardiovascular diseases. Phthalates and bisphenol A (BPA) are endocrine disrupting chemicals (EDCs) widely used in industry and in a large range of daily life products that increase the risk of endocrine and cardiometabolic diseases especially if the exposure starts during childhood. Thus, biomonitoring of exposure to these compounds is important not only in adulthood but also in childhood. This was the goal of the LIFE-PERSUADED project that measured the exposure to phthalates (DEHP metabolites, MEHP, MEHHP, MEOHP) and BPA in Italian mother-children couples of different ages. In this paper we describe the method that was set up for the LIFE PERSUADED project and validated during the proficiency test (ICI/EQUAS) showing that accurate determination of urinary phthalates and BPA can be achieved starting from small sample size (0.5 mL) using two MS techniques applied in cascade on the same deconjugated matrix.
Collapse
Affiliation(s)
| | | | - Amalia Gastaldelli
- Institute of Clinical Physiology, National Research Council, Via Giuseppe Moruzzi 1, 56124 Pisa, Italy; (F.C.); (D.C.)
| |
Collapse
|
17
|
Yang Y, Ju L, Fan J, Cai S, Sun L, Li Y. Association of urinary phthalate metabolites with sarcopenia in US adults: NHANES 1999-2006. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:7573-7582. [PMID: 34480309 DOI: 10.1007/s11356-021-16202-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 08/24/2021] [Indexed: 06/13/2023]
Abstract
Phthalates have been extensively detected in environmental and biological matrices. Exposure to phthalates is implicated in various human diseases. In this study, we conducted a cross-sectional study to determine whether urinary phthalate metabolite concentrations were correlated with prevalence of sarcopenia in US adult population. We included 3562 participants with detailed information on skeletal muscle mass and urinary phthalate metabolites based on National Health and Nutrition Examination Survey (NHANES) 1999-2006 data. A total of 7 main phthalate metabolites were analyzed in the urine sample of each participant. Appendicular skeletal muscle mass (ASM) was measured using dual-energy X-ray absorptiometry. Multivariable linear regression models were conducted following adjustment for multiple covariates. ASM adjusted by body mass index (ASM/BMI) was calculated, and sarcopenia was defined as the lowest quintile for ASM/BMI value. Compared with participants in quartile 1, those in quartile 2 of urinary mono-n-butyl phthalate (MnBP) and quartile 4 of urinary monobenzyl phthalate (MBzP) had decreased ASM/BMI. Urinary MnBP in quartile 4, as well as urinary MBzP in quartile 2, was shown to be significantly correlated with higher sarcopenia prevalence. In subgroup analysis, negative association of MBzP with ASM/BMI was observed in both males and females, while this negative association was only observed in males for MnBP. Females with higher urinary monoethyl phthalate (MEP) concentrations had higher sarcopenia risk. Taken together, the present study found several urinary phthalate metabolites were positively associated with sarcopenia prevalence in US adult population. These findings indicated phthalate exposure might be an important environmental risk factor contributing to sarcopenia development.
Collapse
Affiliation(s)
- Ye Yang
- Department of Epidemiology and Health Statistics, School of Public Health, Hangzhou Medical College, 481 Binwen Road, Hangzhou, 310053, China
| | - Li Ju
- Department of Epidemiology and Health Statistics, School of Public Health, Hangzhou Medical College, 481 Binwen Road, Hangzhou, 310053, China
| | - Jiayao Fan
- Department of Epidemiology and Health Statistics, School of Public Health, Hangzhou Medical College, 481 Binwen Road, Hangzhou, 310053, China
| | - Shaofang Cai
- Department of Science and Education, The Second Affiliated Hospital of Xiamen Medical College, Xiamen, China
| | - Lingling Sun
- Department of Orthopaedics, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yingjun Li
- Department of Epidemiology and Health Statistics, School of Public Health, Hangzhou Medical College, 481 Binwen Road, Hangzhou, 310053, China.
| |
Collapse
|
18
|
Guzylack-Piriou L, Ménard S. Early Life Exposure to Food Contaminants and Social Stress as Risk Factor for Metabolic Disorders Occurrence?-An Overview. Biomolecules 2021; 11:687. [PMID: 34063694 PMCID: PMC8147825 DOI: 10.3390/biom11050687] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 04/28/2021] [Accepted: 04/29/2021] [Indexed: 12/20/2022] Open
Abstract
The global prevalence of obesity has been increasing in recent years and is now the major public health challenge worldwide. While the risks of developing metabolic disorders (MD) including obesity and type 2 diabetes (T2D) have been historically thought to be essentially driven by increased caloric intake and lack of exercise, this is insufficient to account for the observed changes in disease trends. Based on human epidemiological and pre-clinical experimental studies, this overview questioned the role of non-nutritional components as contributors to the epidemic of MD with a special emphasis on food contaminants and social stress. This overview examines the impact of early life adverse events (ELAE) focusing on exposures to food contaminants or social stress on weight gain and T2D occurrence in the offspring and explores potential mechanisms leading to MD in adulthood. Indeed, summing up data on both ELAE models in parallel allowed us to identify common patterns that appear worthwhile to study in MD etiology. This overview provides some evidence of a link between ELAE-induced intestinal barrier disruption, inflammation, epigenetic modifications, and the occurrence of MD. This overview sums up evidence that MD could have developmental origins and that ELAE are risk factors for MD at adulthood independently of nutritional status.
Collapse
Affiliation(s)
| | - Sandrine Ménard
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, UPS, 31024 Toulouse, France;
| |
Collapse
|
19
|
Kunysz M, Mora-Janiszewska O, Darmochwał-Kolarz D. Epigenetic Modifications Associated with Exposure to Endocrine Disrupting Chemicals in Patients with Gestational Diabetes Mellitus. Int J Mol Sci 2021; 22:ijms22094693. [PMID: 33946662 PMCID: PMC8124363 DOI: 10.3390/ijms22094693] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 04/22/2021] [Accepted: 04/26/2021] [Indexed: 12/27/2022] Open
Abstract
Gestational diabetes mellitus (GDM) remains a significant clinical and public health issue due to its increasing prevalence and the possibility for numerous short- and long-term complications. The growing incidence of GDM seems to coincide with the widespread use of endocrine disrupting chemicals (EDCs). The extensive production and common use of these substances in everyday life has resulted in constant exposure to harmful substances from the environment. That may result in epigenetic changes, which may manifest themselves also after many years and be passed on to future generations. It is important to consider the possible link between environmental exposure to endocrine disrupting chemicals (EDCs) during pregnancy, epigenetic mechanisms and an increased risk for developing gestational diabetes mellitus (GDM). This manuscript attempts to summarize data on epigenetic changes in pregnant women suffering from gestational diabetes in association with EDCs. There is a chance that epigenetic marks may serve as a tool for diagnostic, prognostic, and therapeutic measures.
Collapse
|
20
|
Zhang J, Choudhury M. Benzyl Butyl Phthalate Induced Early lncRNA H19 Regulation in C3H10T1/2 Stem Cell Line. Chem Res Toxicol 2021; 34:54-62. [PMID: 33395283 DOI: 10.1021/acs.chemrestox.0c00129] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Exposure to endocrine-disrupting chemicals used in plastic manufacturing may contribute to the current obesity and diabetes epidemic. Our previous study demonstrated that benzyl butyl phthalate (BBP) induced adipogenesis in the C3H10T1/2 stem cell line. Here we investigated if BBP deregulated long noncoding RNA H19 and its downstream pathway and whether BBP plays a role in the insulin signaling pathway during adipocyte diiferentiation. Cells treated with an 8 day BBP regimen showed that H19 expression was decreased at day 2 with 50 μM BBP exposure (p < 0.05). However, no significant changes were observed from day 4 to day 8. Expression of miRNA-103/107, H19 regulated miRNAs, was upregulated at day 2 (p < 0.05) but not from day 4 to day 8. Similarly, expression of the let-7 family members (a, b, c, d, f, and g) was also significantly increased at day 2 (p < 0.05 or p < 0.01), except for let-7e. Both let-7 and miRNA-103/107 are targets of H19 and play roles in insulin signaling. Insulin receptor substrate (IRS)-1, one of the key insulin signal transduction regulators, was significantly downregulated from day 2 to day 8 (p < 0.05). Gene expression of insulin receptor (IR) and IRS-2 were not altered by BBP exposure. The ratio of IRS1/IRS2 was significantly decreased from day 2 to day 8. On day 4, phospho-Akt protein expression was significantly decreased (p < 0.05). In conclusion, BBP exposure may lead to metabolic dysregulation by altering vital epigenetic regulators such as lncRNA H19 and its target microRNAs at an earlier stage, which further regulates insulin signaling.
Collapse
Affiliation(s)
- Jian Zhang
- Department of Pharmaceutical Sciences, Rangel College of Pharmacy, Texas A&M University, College Station, 77843-1114 TX, United States of America
| | - Mahua Choudhury
- Department of Pharmaceutical Sciences, Rangel College of Pharmacy, Texas A&M University, College Station, 77843-1114 TX, United States of America
| |
Collapse
|
21
|
Cimmino I, Fiory F, Perruolo G, Miele C, Beguinot F, Formisano P, Oriente F. Potential Mechanisms of Bisphenol A (BPA) Contributing to Human Disease. Int J Mol Sci 2020; 21:E5761. [PMID: 32796699 PMCID: PMC7460848 DOI: 10.3390/ijms21165761] [Citation(s) in RCA: 233] [Impact Index Per Article: 46.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/06/2020] [Accepted: 08/07/2020] [Indexed: 12/19/2022] Open
Abstract
Bisphenol A (BPA) is an organic synthetic compound serving as a monomer to produce polycarbonate plastic, widely used in the packaging for food and drinks, medical devices, thermal paper, and dental materials. BPA can contaminate food, beverage, air, and soil. It accumulates in several human tissues and organs and is potentially harmful to human health through different molecular mechanisms. Due to its hormone-like properties, BPA may bind to estrogen receptors, thereby affecting both body weight and tumorigenesis. BPA may also affect metabolism and cancer progression, by interacting with GPR30, and may impair male reproductive function, by binding to androgen receptors. Several transcription factors, including PPARγ, C/EBP, Nrf2, HOX, and HAND2, are involved in BPA action on fat and liver homeostasis, the cardiovascular system, and cancer. Finally, epigenetic changes, such as DNA methylation, histones modification, and changes in microRNAs expression contribute to BPA pathological effects. This review aims to provide an extensive and comprehensive analysis of the most recent evidence about the potential mechanisms by which BPA affects human health.
Collapse
Affiliation(s)
| | | | | | | | | | - Pietro Formisano
- Department of Translational Medicine, Federico II University of Naples and URT “Genomic of Diabetes” of Institute of Experimental Endocrinology and Oncology, National Council of Research (CNR), 80131 Naples, Italy; (I.C.); (F.F.); (G.P.); (C.M.); (F.B.); (F.O.)
| | | |
Collapse
|
22
|
Sicińska P, Kik K, Bukowska B. Human Erythrocytes Exposed to Phthalates and Their Metabolites Alter Antioxidant Enzyme Activity and Hemoglobin Oxidation. Int J Mol Sci 2020; 21:E4480. [PMID: 32599721 PMCID: PMC7350025 DOI: 10.3390/ijms21124480] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/22/2020] [Accepted: 06/23/2020] [Indexed: 12/12/2022] Open
Abstract
Phthalates used as plasticizers have become a part of human life because of their important role in various industries. Human exposure to these compounds is unavoidable, and therefore their mechanisms of toxicity should be investigated. Due to their structure and function, human erythrocytes are increasingly used as a cell model for testing the in vitro toxicity of various xenobiotics. Therefore, the purpose of our study was to assess the effect of selected phthalates on methemoglobin (metHb), reactive oxygen species (ROS) including hydroxyl radical levels, as well as the activity of antioxidative enzymes, such as superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px), in human erythrocytes. Erythrocytes were incubated with di-n-butyl phthalate (DBP), butylbenzyl phthalate (BBP), and their metabolites, i.e., mono-n-butyl phthalate (MBP) and monobenzyl phthalate (MBzP), at concentrations ranging from 0.5 to 100 µg/mL for 6 or 24 h. This study shows that the analyzed phthalates disturbed the redox balance in human erythrocytes. DBP and BBP, at much lower concentrations than their metabolites, caused a statistically significant increase of metHb and ROS, including hydroxyl radical levels, and changed the activity of antioxidant enzymes. The studied phthalates disturbed the redox balance in human erythrocytes, which may contribute to the accelerated removal of these cells from the circulation.
Collapse
Affiliation(s)
- Paulina Sicińska
- Department of Biophysics of Environmental Pollution, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska Str. 141/143, 90-236 Łódź, Poland; (K.K.); (B.B.)
| | | | | |
Collapse
|