1
|
Hidalgo I, Sorolla MA, Sorolla A, Salud A, Parisi E. Secreted Phospholipases A2: Drivers of Inflammation and Cancer. Int J Mol Sci 2024; 25:12408. [PMID: 39596471 PMCID: PMC11594849 DOI: 10.3390/ijms252212408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/08/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024] Open
Abstract
Secreted phospholipase 2 (sPLA2) is the largest family of phospholipase A2 (PLA2) enzymes with 11 mammalian isoforms. Each sPLA2 exhibits different localizations and specific properties, being involved in a very wide spectrum of biological processes. The enzymatic activity of sPLA2 has been well described; however, recent findings have shown that they could regulate different signaling pathways by acting directly as ligands. Arachidonic acid (AA) and its derivatives are produced by sPLA2 in collaboration with other molecules in the extracellular space, making important impacts on the cellular environment, being especially relevant in the contexts of immunity and cancer. For these reasons, this review focuses on sPLA2 functions in processes such as the promotion of EMT, angiogenesis, and immunomodulation in the context of tumor initiation and progression. Finally, we will also describe how this knowledge has been applied in the search for new sPLA2 inhibitory compounds that can be used for cancer treatment.
Collapse
Affiliation(s)
- Ivan Hidalgo
- Research Group of Cancer Biomarkers, Biomedical Research Institute of Lleida (IRBLleida), 25198 Lleida, Spain
| | - Maria Alba Sorolla
- Research Group of Cancer Biomarkers, Biomedical Research Institute of Lleida (IRBLleida), 25198 Lleida, Spain
| | - Anabel Sorolla
- Research Group of Cancer Biomarkers, Biomedical Research Institute of Lleida (IRBLleida), 25198 Lleida, Spain
| | - Antonieta Salud
- Research Group of Cancer Biomarkers, Biomedical Research Institute of Lleida (IRBLleida), 25198 Lleida, Spain
- Department of Medical Oncology, Arnau de Vilanova University Hospital (HUAV), 25198 Lleida, Spain
- Department of Medicine, University of Lleida, 25198 Lleida, Spain
| | - Eva Parisi
- Research Group of Cancer Biomarkers, Biomedical Research Institute of Lleida (IRBLleida), 25198 Lleida, Spain
- Department of Experimental Medicine, University of Lleida, 25198 Lleida, Spain
| |
Collapse
|
2
|
Xu H, Mastenbroek J, Krikke NTB, El-Asal S, Mutlaq R, Casewell NR, Slagboom J, Kool J. Nanofractionation Analytics for Comparing MALDI-MS and ESI-MS Data of Viperidae Snake Venom Toxins. Toxins (Basel) 2024; 16:370. [PMID: 39195780 PMCID: PMC11360109 DOI: 10.3390/toxins16080370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/06/2024] [Accepted: 08/08/2024] [Indexed: 08/29/2024] Open
Abstract
Worldwide, it is estimated that there are 1.8 to 2.7 million cases of envenoming caused by snakebites. Snake venom is a complex mixture of protein toxins, lipids, small molecules, and salts, with the proteins typically responsible for causing pathology in snakebite victims. For their chemical characterization and identification, analytical methods are required. Reversed-phase liquid chromatography coupled with electrospray ionization mass spectrometry (RP-LC-ESI-MS) is a widely used technique due to its ease of use, sensitivity, and ability to be directly coupled after LC separation. This method allows for the efficient separation of complex mixtures and sensitive detection of analytes. On the other hand, matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) is also sometimes used, and though it typically requires additional sample preparation steps, it offers desirable suitability for the analysis of larger biomolecules. In this study, seven medically important viperid snake venoms were separated into their respective venom toxins and measured by ESI-MS. In parallel, using nanofractionation analytics, post-column high-resolution fractionation was used to collect the eluting toxins for further processing for MALDI-MS analysis. Our comparative results showed that the deconvoluted snake venom toxin masses were observed with good sensitivity from both ESI-MS and MALDI-MS approaches and presented overlap in the toxin masses recovered (between 25% and 57%, depending on the venom analyzed). The mass range of the toxins detected in high abundance was between 4 and 28 kDa. In total, 39 masses were found in both the ESI-MS and/or MALDI-MS analyses, with most being between 5 and 9 kDa (46%), 13 and 15 kDa (38%), and 24 and 28 kDa (13%) in size. Next to the post-column MS analyses, additional coagulation bioassaying was performed to demonstrate the parallel post-column assessment of venom activity in the workflow. Most nanofractionated venoms exhibited anticoagulant activity, with three venoms additionally exhibiting toxins with clear procoagulant activity (Bothrops asper, Crotalus atrox, and Daboia russelii) observed post-column. The results of this study highlight the complementarity of ESI-MS and MALDI-MS approaches for characterizing snake venom toxins and provide a complementary overview of defined toxin masses found in a diversity of viper snake venoms.
Collapse
Affiliation(s)
- Haifeng Xu
- Department of Chemistry and Pharmaceutical Sciences, Division of BioAnalytical Chemistry, Faculty of Science, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
- Centre for Analytical Sciences Amsterdam (CASA), 1012 WX Amsterdam, The Netherlands
| | - Jesse Mastenbroek
- Department of Chemistry and Pharmaceutical Sciences, Division of BioAnalytical Chemistry, Faculty of Science, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| | - Natascha T. B. Krikke
- Department of Chemistry and Pharmaceutical Sciences, Division of BioAnalytical Chemistry, Faculty of Science, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| | - Susan El-Asal
- Department of Chemistry and Pharmaceutical Sciences, Division of BioAnalytical Chemistry, Faculty of Science, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| | - Rama Mutlaq
- Department of Chemistry and Pharmaceutical Sciences, Division of BioAnalytical Chemistry, Faculty of Science, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| | - Nicholas R. Casewell
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - Julien Slagboom
- Department of Chemistry and Pharmaceutical Sciences, Division of BioAnalytical Chemistry, Faculty of Science, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
- Centre for Analytical Sciences Amsterdam (CASA), 1012 WX Amsterdam, The Netherlands
| | - Jeroen Kool
- Department of Chemistry and Pharmaceutical Sciences, Division of BioAnalytical Chemistry, Faculty of Science, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
- Centre for Analytical Sciences Amsterdam (CASA), 1012 WX Amsterdam, The Netherlands
| |
Collapse
|
3
|
Smith CF, Modahl CM, Ceja Galindo D, Larson KY, Maroney SP, Bahrabadi L, Brandehoff NP, Perry BW, McCabe MC, Petras D, Lomonte B, Calvete JJ, Castoe TA, Mackessy SP, Hansen KC, Saviola AJ. Assessing Target Specificity of the Small Molecule Inhibitor MARIMASTAT to Snake Venom Toxins: A Novel Application of Thermal Proteome Profiling. Mol Cell Proteomics 2024; 23:100779. [PMID: 38679388 PMCID: PMC11154231 DOI: 10.1016/j.mcpro.2024.100779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 04/09/2024] [Accepted: 04/25/2024] [Indexed: 05/01/2024] Open
Abstract
New treatments that circumvent the pitfalls of traditional antivenom therapies are critical to address the problem of snakebite globally. Numerous snake venom toxin inhibitors have shown promising cross-species neutralization of medically significant venom toxins in vivo and in vitro. The development of high-throughput approaches for the screening of such inhibitors could accelerate their identification, testing, and implementation and thus holds exciting potential for improving the treatments and outcomes of snakebite envenomation worldwide. Energetics-based proteomic approaches, including thermal proteome profiling and proteome integral solubility alteration (PISA) assays, represent "deep proteomics" methods for high throughput, proteome-wide identification of drug targets and ligands. In the following study, we apply thermal proteome profiling and PISA methods to characterize the interactions between venom toxin proteoforms in Crotalus atrox (Western Diamondback Rattlesnake) and the snake venom metalloprotease (SVMP) inhibitor marimastat. We investigate its venom proteome-wide effects and characterize its interactions with specific SVMP proteoforms, as well as its potential targeting of non-SVMP venom toxin families. We also compare the performance of PISA thermal window and soluble supernatant with insoluble precipitate using two inhibitor concentrations, providing the first demonstration of the utility of a sensitive high-throughput PISA-based approach to assess the direct targets of small molecule inhibitors for snake venom.
Collapse
Affiliation(s)
- Cara F Smith
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, Colorado, USA
| | - Cassandra M Modahl
- Centre for Snakebite Research and Interventions, Liverpool School of Tropical Medicine, Liverpool, UK
| | - David Ceja Galindo
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, Colorado, USA
| | - Keira Y Larson
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, Colorado, USA
| | - Sean P Maroney
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, Colorado, USA
| | - Lilyrose Bahrabadi
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, Colorado, USA
| | - Nicklaus P Brandehoff
- Rocky Mountain Poison and Drug Center, Denver Health and Hospital Authority, Denver, Colorado, USA
| | - Blair W Perry
- School of Biological Sciences, Washington State University, Pullman, Washington, USA
| | - Maxwell C McCabe
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, Colorado, USA
| | - Daniel Petras
- CMFI Cluster of Excellence, University of Tuebingen, Tuebingen, Germany; Department of Biochemistry, University of California Riverside, Riverside, California, USA
| | - Bruno Lomonte
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Juan J Calvete
- Evolutionary and Translational Venomics Laboratory, Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| | - Todd A Castoe
- Department of Biology, The University of Texas Arlington, Texas, USA
| | - Stephen P Mackessy
- Department of Biological Sciences, University of Northern Colorado, Greeley, Colorado, USA
| | - Kirk C Hansen
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, Colorado, USA
| | - Anthony J Saviola
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, Colorado, USA.
| |
Collapse
|
4
|
Bartlett KE, Hall SR, Rasmussen SA, Crittenden E, Dawson CA, Albulescu LO, Laprade W, Harrison RA, Saviola AJ, Modahl CM, Jenkins TP, Wilkinson MC, Gutiérrez JM, Casewell NR. Dermonecrosis caused by a spitting cobra snakebite results from toxin potentiation and is prevented by the repurposed drug varespladib. Proc Natl Acad Sci U S A 2024; 121:e2315597121. [PMID: 38687786 PMCID: PMC11087757 DOI: 10.1073/pnas.2315597121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 02/26/2024] [Indexed: 05/02/2024] Open
Abstract
Snakebite envenoming is a neglected tropical disease that causes substantial mortality and morbidity globally. The venom of African spitting cobras often causes permanent injury via tissue-destructive dermonecrosis at the bite site, which is ineffectively treated by current antivenoms. To address this therapeutic gap, we identified the etiological venom toxins in Naja nigricollis venom responsible for causing local dermonecrosis. While cytotoxic three-finger toxins were primarily responsible for causing spitting cobra cytotoxicity in cultured keratinocytes, their potentiation by phospholipases A2 toxins was essential to cause dermonecrosis in vivo. This evidence of probable toxin synergism suggests that a single toxin-family inhibiting drug could prevent local envenoming. We show that local injection with the repurposed phospholipase A2-inhibiting drug varespladib significantly prevents local tissue damage caused by several spitting cobra venoms in murine models of envenoming. Our findings therefore provide a therapeutic strategy that may effectively prevent life-changing morbidity caused by snakebite in rural Africa.
Collapse
Affiliation(s)
- Keirah E. Bartlett
- Centre for Snakebite Research & Interventions, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, LiverpoolL3 5QA, United Kingdom
| | - Steven R. Hall
- Centre for Snakebite Research & Interventions, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, LiverpoolL3 5QA, United Kingdom
- Centre for Drugs & Diagnostics, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, LiverpoolL3 5QA, United Kingdom
| | - Sean A. Rasmussen
- Department of Pathology and Laboratory Medicine, Queen Elizabeth II Health Sciences Centre and Dalhousie University, Halifax, NSB3H 1V8, Canada
| | - Edouard Crittenden
- Centre for Snakebite Research & Interventions, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, LiverpoolL3 5QA, United Kingdom
| | - Charlotte A. Dawson
- Centre for Snakebite Research & Interventions, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, LiverpoolL3 5QA, United Kingdom
| | - Laura-Oana Albulescu
- Centre for Snakebite Research & Interventions, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, LiverpoolL3 5QA, United Kingdom
- Centre for Drugs & Diagnostics, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, LiverpoolL3 5QA, United Kingdom
| | - William Laprade
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kongens LyngbyDK-2800, Denmark
| | - Robert A. Harrison
- Centre for Snakebite Research & Interventions, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, LiverpoolL3 5QA, United Kingdom
- Centre for Drugs & Diagnostics, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, LiverpoolL3 5QA, United Kingdom
| | - Anthony J. Saviola
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, CO80045
| | - Cassandra M. Modahl
- Centre for Snakebite Research & Interventions, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, LiverpoolL3 5QA, United Kingdom
| | - Timothy P. Jenkins
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens LyngbyDK-2800, Denmark
| | - Mark C. Wilkinson
- Centre for Snakebite Research & Interventions, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, LiverpoolL3 5QA, United Kingdom
| | - José María Gutiérrez
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José11501–2060, Costa Rica
| | - Nicholas R. Casewell
- Centre for Snakebite Research & Interventions, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, LiverpoolL3 5QA, United Kingdom
- Centre for Drugs & Diagnostics, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, LiverpoolL3 5QA, United Kingdom
| |
Collapse
|
5
|
Zhao W, Liu J, Wang S, Tao Q, Lei Q, Huang C. Varespladib mitigates acute liver injury via suppression of excessive mitophagy on Naja atra envenomed mice by inhibiting PLA 2. Toxicon 2024; 242:107694. [PMID: 38556061 DOI: 10.1016/j.toxicon.2024.107694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/05/2024] [Accepted: 03/19/2024] [Indexed: 04/02/2024]
Abstract
Snakebite envenomation often leads to severe visceral injuries, including acute liver injury (ALI). However, the toxicity mechanism remains unclear. Moreover, varespladib can directly inhibit phospholipase A2 (PLA2) in snake venom, but its protective effect on snakebite-induced ALI and the mechanism have not been clarified. Previous studies have shown that snake venom PLA2 leads to neuron cell death via reactive oxygen species (ROS), one of the initial factors related to the mitophagy pathway. The present study group also found that ROS accumulation occurred after Naja atra envenoming. Hematoxylin and eosin (H/E) staining and immunohistochemistry (IHC) were performed to identify the expression of inflammatory factors in the liver tissue, and flow cytometry and immunofluorescence were used to detect ROS levels and mitochondrial function. Immunofluorescence and western blotting were also used for detecting mitophagy pathway-related proteins. The results showed that N. atra bite induced ALI by activating mitophagy and inducing inflammation and that varespladib had a protective effect. Collectively, these results showed the pathological mechanism of ALI caused by N. atra bite and revealed the protective effect of varespladib.
Collapse
Affiliation(s)
- Wenjie Zhao
- School of Basic Medicine Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Jiahao Liu
- School of Basic Medicine Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Sidan Wang
- Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Qinqin Tao
- School of Basic Medicine Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Qiongqiong Lei
- School of Nursing, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China.
| | - Chunhong Huang
- School of Basic Medicine Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China.
| |
Collapse
|
6
|
Sampat GH, Hiremath K, Dodakallanavar J, Patil VS, Harish DR, Biradar P, Mahadevamurthy RK, Barvaliya M, Roy S. Unraveling snake venom phospholipase A 2: an overview of its structure, pharmacology, and inhibitors. Pharmacol Rep 2023; 75:1454-1473. [PMID: 37926795 DOI: 10.1007/s43440-023-00543-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 11/07/2023]
Abstract
Snake bite is a neglected disease that affects millions of people worldwide. WHO reported approximately 5 million people are bitten by various species of snakes each year, resulting in nearly 1 million deaths and an additional three times cases of permanent disability. Snakes utilize the venom mainly for immobilization and digestion of their prey. Snake venom is a composition of proteins and enzymes which is responsible for its diverse pharmacological action. Snake venom phospholipase A2 (SvPLA2) is an enzyme that is present in every snake species in different quantities and is known to produce remarkable functional diversity and pharmacological action like inflammation, necrosis, myonecrosis, hemorrhage, etc. Arachidonic acid, a precursor to eicosanoids, such as prostaglandins and leukotrienes, is released when SvPLA2 catalyzes the hydrolysis of the sn-2 positions of membrane glycerophospholipids, which is responsible for its actions. Polyvalent antivenom produced from horses or lambs is the standard treatment for snake envenomation, although it has many drawbacks. Traditional medical practitioners treat snake bites using plants and other remedies as a sustainable alternative. More than 500 plant species from more than 100 families reported having venom-neutralizing abilities. Plant-derived secondary metabolites have the ability to reduce the venom's adverse consequences. Numerous studies have documented the ability of plant chemicals to inhibit the enzymes found in snake venom. Research in recent years has shown that various small molecules, such as varespladib and methyl varespladib, effectively inhibit the PLA2 toxin. In the present article, we have overviewed the knowledge of snake venom phospholipase A2, its classification, and the mechanism involved in the pathophysiology of cytotoxicity, myonecrosis, anticoagulation, and inflammation clinical application and inhibitors of SvPLA2, along with the list of studies carried out to evaluate the potency of small molecules like varespladib and secondary metabolites from the traditional medicine for their anti-PLA2 effect.
Collapse
Affiliation(s)
- Ganesh H Sampat
- ICMR-National Institute of Traditional Medicine, Belagavi, Karnataka, 590010, India
- KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education and Research, Belagavi, Karnataka, 590010, India
| | - Kashinath Hiremath
- ICMR-National Institute of Traditional Medicine, Belagavi, Karnataka, 590010, India
- KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education and Research, Belagavi, Karnataka, 590010, India
| | - Jagadeesh Dodakallanavar
- ICMR-National Institute of Traditional Medicine, Belagavi, Karnataka, 590010, India
- KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education and Research, Belagavi, Karnataka, 590010, India
| | - Vishal S Patil
- ICMR-National Institute of Traditional Medicine, Belagavi, Karnataka, 590010, India
- KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education and Research, Belagavi, Karnataka, 590010, India
| | - Darasaguppe R Harish
- ICMR-National Institute of Traditional Medicine, Belagavi, Karnataka, 590010, India.
| | - Prakash Biradar
- KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education and Research, Belagavi, Karnataka, 590010, India.
| | | | - Manish Barvaliya
- ICMR-National Institute of Traditional Medicine, Belagavi, Karnataka, 590010, India
| | - Subarna Roy
- ICMR-National Institute of Traditional Medicine, Belagavi, Karnataka, 590010, India
| |
Collapse
|
7
|
Vanuopadath M, Rajan K, Alangode A, Nair SS, Nair BG. The Need for Next-Generation Antivenom for Snakebite Envenomation in India. Toxins (Basel) 2023; 15:510. [PMID: 37624267 PMCID: PMC10467155 DOI: 10.3390/toxins15080510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 07/05/2023] [Accepted: 07/11/2023] [Indexed: 08/26/2023] Open
Abstract
The limitations posed by currently available antivenoms have emphasized the need for alternative treatments to counteract snakebite envenomation. Even though exact epidemiological data are lacking, reports have indicated that most global snakebite deaths are reported in India. Among the many problems associated with snakebite envenomation, issues related to the availability of safer and more efficient antivenoms are of primary concern. Since India has the highest number of global snakebite deaths, efforts should be made to reduce the burden associated with snakebite envenoming. Alternative methods, including aptamers, camel antivenoms, phage display techniques for generating high-affinity antibodies and antibody fragments, small-molecule inhibitors, and natural products, are currently being investigated for their effectiveness. These alternative methods have shown promise in vitro, but their in vivo effectiveness should also be evaluated. In this review, the issues associated with Indian polyvalent antivenoms in neutralizing venom components from geographically distant species are discussed in detail. In a nutshell, this review gives an overview of the current drawbacks of using animal-derived antivenoms and several alternative strategies that are currently being widely explored.
Collapse
Affiliation(s)
| | | | | | | | - Bipin Gopalakrishnan Nair
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam 690 525, Kerala, India; (M.V.); (K.R.); (A.A.); (S.S.N.)
| |
Collapse
|
8
|
Salvador GHM, Pinto ÊKR, Ortolani PL, Fortes-Dias CL, Cavalcante WLG, Soares AM, Lomonte B, Lewin MR, Fontes MRM. Structural basis of the myotoxic inhibition of the Bothrops pirajai PrTX-I by the synthetic varespladib. Biochimie 2023; 207:1-10. [PMID: 36403756 DOI: 10.1016/j.biochi.2022.11.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 11/08/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022]
Abstract
Varespladib (LY315920) is a potent inhibitor of human group IIA phospholipase A2 (PLA2) originally developed to control inflammatory cascades of diseases associated with high or dysregulated levels of endogenous PLA2. Recently, varespladib was also found to inhibit snake venom PLA2 and PLA2-like toxins. Herein, ex vivo neuromuscular blocking activity assays were used to test the inhibitory activity of varespladib. The binding affinity between varespladib and a PLA2-like toxin was quantified and compared with other potential inhibitors for this class of proteins. Crystallographic and bioinformatic studies showed that varespladib binds to PrTX-I and BthTX-I into their hydrophobic channels, similarly to other previously characterized PLA2-like myotoxins. However, a new finding is that an additional varespladib binds to the MDiS region, a particular site that is related to muscle cell disruption by these toxins. The present results further advance the characterization of the molecular interactions of varespladib with PLA2-like myotoxins and provide additional evidence for this compound as a promising inhibitor candidate for different PLA2 and PLA2-like toxins.
Collapse
Affiliation(s)
- Guilherme H M Salvador
- Departamento de Biofísica e Farmacologia, Instituto de Biociências, Universidade Estadual Paulista, Botucatu, SP, Brazil
| | - Êmylle K R Pinto
- Departmento de Farmacologia, Instituto de Ciências Biologicas, Universidade Federal de Minas Gerais (UFMG), Brazil
| | - Paula L Ortolani
- Centro de Pesquisa e Desenvolvimento, Fundação Ezequiel Dias (FUNED), Brazil
| | | | - Walter L G Cavalcante
- Departmento de Farmacologia, Instituto de Ciências Biologicas, Universidade Federal de Minas Gerais (UFMG), Brazil
| | - Andreimar M Soares
- Laboratório de Biotecnologia de Proteínas e Compostos Bioativos Aplicados à Saúde, LABIOPROT, Fundação Oswaldo Cruz, FIOCRUZ, unidade Rondônia e Instituto Nacional de Ciência e Tecnologia de Epidemiologia da Amazônia Ocidental, INCT EPIAMO, Porto Velho, RO, Brazil
| | - Bruno Lomonte
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Matthew R Lewin
- Ophirex, Inc. Corte Madera, CA, 94925, USA; Center for Exploration and Travel Health, California Academy of Sciences, San Francisco, CA, 94118, USA
| | - Marcos R M Fontes
- Departamento de Biofísica e Farmacologia, Instituto de Biociências, Universidade Estadual Paulista, Botucatu, SP, Brazil.
| |
Collapse
|
9
|
Quiroz S, Henao Castañeda IC, Granados J, Patiño AC, Preciado LM, Pereañez JA. Inhibitory Effects of Varespladib, CP471474, and Their Potential Synergistic Activity on Bothrops asper and Crotalus durissus cumanensis Venoms. Molecules 2022; 27:8588. [PMID: 36500682 PMCID: PMC9737558 DOI: 10.3390/molecules27238588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/02/2022] [Accepted: 12/03/2022] [Indexed: 12/12/2022] Open
Abstract
Snakebite is a neglected tropical disease that causes extensive mortality and morbidity in rural communities. Antivenim sera are the currently approved therapy for snake bites; however, they have some therapeutic limitations that have been extensively documented. Recently, small molecule toxin inhibitors have received significant attention as potential alternatives or co-adjuvant to immunoglobulin-based snakebite therapies. Thus, in this study, we evaluated the inhibitory effects of the phospholipase A2 inhibitor varespladib and the metalloproteinase inhibitor CP471474 and their synergistic effects on the lethal, edema-forming, hemorrhagic, and myotoxic activities of Bothrops asper and Crotalus durissus cumanensis venoms from Colombia. Except for the preincubation assay of the lethal activity with B. asper venom, the mixture showed the best inhibitory activity. Nevertheless, the mix did not display statistically significant differences to varespladib and CP471474 used separately in all assays. In preincubation assays, varespladib showed the best inhibitory activity against the lethal effect induced by B. asper venom. However, in independent injection assays, the mix of the compounds partially inhibited the lethal activity of both venoms (50%). In addition, in the assays to test the inhibition of edema-forming activity, the mixture exhibited the best inhibitory activity, followed by Varespladib, but without statistically significant differences (p > 0.05). The combination also decreased the myotoxic activity of evaluated venoms. In these assays, the mix showed statistical differences regarding CP471474 (p < 0.05). The mixture also abolished the hemorrhagic activity of B. asper venom in preincubation assays, with no statistical differences to CP471474. Finally, the mixture showed inhibition in studies with independent administration in a time-dependent manner. To propose a mode of action of varespladib and CP471474, molecular docking was performed. PLA2s and SVMPs from tested venoms were used as targets. In all cases, our molecular modeling results suggested that inhibitors may occupy the substrate-binding cleft of the enzymes, which was supported by specific interaction with amino acids from the active site, such as His48 for PLA2s and Glu143 for the metalloproteinase. In addition, varespladib and CP471474 also showed interaction with residues from the hydrophobic channel in PLA2s and substrate binding subsites in the SVMP. Our results suggest a synergistic action of the mixed inhibitors and show the potential of varespladib, CP471474, and their mixture to generate new treatments for snakebite envenoming with application in the field or as antivenom co-adjuvants.
Collapse
Affiliation(s)
- Sara Quiroz
- Research Group in Toxinology, Pharmaceutical, and Food Alternatives, Pharmaceutical and Food Sciences Faculty, University of Antioquia, Medellín 50010, Colombia
| | - Isabel C. Henao Castañeda
- Research Group in Marine Natural Products, Pharmaceutical and Food Sciences Faculty, University of Antioquia, Medellín 050010, Colombia
| | - Johan Granados
- Research Group in Pharmaceutical Promotion and Prevention, Universidad de Antioquia, Medellín 050010, Colombia
| | - Arley Camilo Patiño
- Research Group in Toxinology, Pharmaceutical, and Food Alternatives, Pharmaceutical and Food Sciences Faculty, University of Antioquia, Medellín 50010, Colombia
| | - Lina María Preciado
- Research Group in Toxinology, Pharmaceutical, and Food Alternatives, Pharmaceutical and Food Sciences Faculty, University of Antioquia, Medellín 50010, Colombia
| | - Jaime Andrés Pereañez
- Research Group in Toxinology, Pharmaceutical, and Food Alternatives, Pharmaceutical and Food Sciences Faculty, University of Antioquia, Medellín 50010, Colombia
| |
Collapse
|
10
|
Lewin MR, Carter RW, Matteo IA, Samuel SP, Rao S, Fry BG, Bickler PE. Varespladib in the Treatment of Snakebite Envenoming: Development History and Preclinical Evidence Supporting Advancement to Clinical Trials in Patients Bitten by Venomous Snakes. Toxins (Basel) 2022; 14:783. [PMID: 36422958 PMCID: PMC9695340 DOI: 10.3390/toxins14110783] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/26/2022] [Accepted: 11/01/2022] [Indexed: 11/16/2022] Open
Abstract
The availability of effective, reliably accessible, and affordable treatments for snakebite envenoming is a critical and long unmet medical need. Recently, small, synthetic toxin-specific inhibitors with oral bioavailability used in conjunction with antivenom have been identified as having the potential to greatly improve outcomes after snakebite. Varespladib, a small, synthetic molecule that broadly and potently inhibits secreted phospholipase A2 (sPLA2s) venom toxins has renewed interest in this class of inhibitors due to its potential utility in the treatment of snakebite envenoming. The development of varespladib and its oral dosage form, varespladib-methyl, has been accelerated by previous clinical development campaigns to treat non-envenoming conditions related to ulcerative colitis, rheumatoid arthritis, asthma, sepsis, and acute coronary syndrome. To date, twenty-nine clinical studies evaluating the safety, pharmacokinetics (PK), and efficacy of varespladib for non-snakebite envenoming conditions have been completed in more than 4600 human subjects, and the drugs were generally well-tolerated and considered safe for use in humans. Since 2016, more than 30 publications describing the structure, function, and efficacy of varespladib have directly addressed its potential for the treatment of snakebite. This review summarizes preclinical findings and outlines the scientific support, the potential limitations, and the next steps in the development of varespladib's use as a snakebite treatment, which is now in Phase 2 human clinical trials in the United States and India.
Collapse
Affiliation(s)
- Matthew R. Lewin
- Division of Research, Ophirex, Inc., Corte Madera, CA 94925, USA
- Center for Exploration and Travel Health, California Academy of Sciences, San Francisco, CA 94118, USA
| | | | - Isabel A. Matteo
- Center for Exploration and Travel Health, California Academy of Sciences, San Francisco, CA 94118, USA
| | | | - Sunita Rao
- Division of Research, Ophirex, Inc., Corte Madera, CA 94925, USA
| | - Bryan G. Fry
- Venom Evolution Lab, School of Biological Science, University of Queensland, St. Lucia, QLD 4072, Australia
| | - Philip E. Bickler
- Center for Exploration and Travel Health, California Academy of Sciences, San Francisco, CA 94118, USA
- Department of Anesthesia and Perioperative Care, University of California San Francisco School of Medicine, San Francisco, CA 94143, USA
| |
Collapse
|
11
|
Arrahman A, Kazandjian TD, Still KBM, Slagboom J, Somsen GW, Vonk FJ, Casewell NR, Kool J. A Combined Bioassay and Nanofractionation Approach to Investigate the Anticoagulant Toxins of Mamba and Cobra Venoms and Their Inhibition by Varespladib. Toxins (Basel) 2022; 14:736. [PMID: 36355986 PMCID: PMC9695013 DOI: 10.3390/toxins14110736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/17/2022] [Accepted: 10/21/2022] [Indexed: 01/26/2023] Open
Abstract
Envenomation by elapid snakes primarily results in neurotoxic symptoms and, consequently, are the primary focus of therapeutic research concerning such venoms. However, mounting evidence suggests these venoms can additionally cause coagulopathic symptoms, as demonstrated by some Asian elapids and African spitting cobras. This study sought to investigate the coagulopathic potential of venoms from medically important elapids of the genera Naja (true cobras), Hemachatus (rinkhals), and Dendroaspis (mambas). Crude venoms were bioassayed for coagulant effects using a plasma coagulation assay before RPLC/MS was used to separate and identify venom toxins in parallel with a nanofractionation module. Subsequently, coagulation bioassays were performed on the nanofractionated toxins, along with in-solution tryptic digestion and proteomics analysis. These experiments were then repeated on both crude venoms and on the nanofractionated venom toxins with the addition of either the phospholipase A2 (PLA2) inhibitor varespladib or the snake venom metalloproteinase (SVMP) inhibitor marimastat. Our results demonstrate that various African elapid venoms have an anticoagulant effect, and that this activity is significantly reduced for cobra venoms by the addition of varespladib, though this inhibitor had no effect against anticoagulation caused by mamba venoms. Marimastat showed limited capacity to reduce anticoagulation in elapids, affecting only N. haje and H. haemachatus venom at higher doses. Proteomic analysis of nanofractionated toxins revealed that the anticoagulant toxins in cobra venoms were both acidic and basic PLA2s, while the causative toxins in mamba venoms remain uncertain. This implies that while PLA2 inhibitors such as varespladib and metalloproteinase inhibitors such as marimastat are viable candidates for novel snakebite treatments, they are not likely to be effective against mamba envenomings.
Collapse
Affiliation(s)
- Arif Arrahman
- Division of Bioanalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
- Centre for Analytical Sciences Amsterdam (CASA), 1012 WX Amsterdam, The Netherlands
- Faculty of Pharmacy, Universitas Indonesia, Kampus Baru UI, Depok 16424, Indonesia
| | - Taline D. Kazandjian
- Centre for Snakebite Research and Interventions. Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | - Kristina B. M. Still
- Division of Bioanalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
- Centre for Analytical Sciences Amsterdam (CASA), 1012 WX Amsterdam, The Netherlands
| | - Julien Slagboom
- Division of Bioanalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
- Centre for Analytical Sciences Amsterdam (CASA), 1012 WX Amsterdam, The Netherlands
| | - Govert W. Somsen
- Division of Bioanalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
- Centre for Analytical Sciences Amsterdam (CASA), 1012 WX Amsterdam, The Netherlands
| | - Freek J. Vonk
- Division of Bioanalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
- Naturalis Biodiversity Centre, Darwinweg 2, 2333 CR Leiden, The Netherlands
| | - Nicholas R. Casewell
- Centre for Snakebite Research and Interventions. Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | - Jeroen Kool
- Division of Bioanalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
- Centre for Analytical Sciences Amsterdam (CASA), 1012 WX Amsterdam, The Netherlands
| |
Collapse
|
12
|
Liu Y, Liu T, Zhao X, Gao Y. New insights into the bile acid-based regulatory mechanisms and therapeutic perspectives in alcohol-related liver disease. Cell Mol Life Sci 2022; 79:486. [PMID: 35978227 PMCID: PMC11073206 DOI: 10.1007/s00018-022-04509-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/22/2022] [Accepted: 07/31/2022] [Indexed: 11/27/2022]
Abstract
Cholestasis is a key causative factor in alcohol-related liver disease (ALD) and variable degrees of cholestasis occur in all stages of ALD. However, the pathogenetic mechanisms and biomarkers associated with cholestasis are not well characterized. Cholestatic disease is marked by the disruption of bile acids (BA) transport and homeostasis. Consequently, in both human and experimental ALD, the disease shows a direct correlation with an imbalance in BA equilibrium, which in turn may also affect the severity of the disease. Modulation of BA metabolism or signaling pathways is increasingly considered as a potential therapeutic strategy for ALD in humans. In this paper, we highlight the key advances made in the past two decades in characterizing the molecular regulatory mechanisms of BA synthesis, enterohepatic circulation, and BA homeostasis. We summarize recent insights into the nature of the linkage between BA dysregulation and ALD, including the abnormal expression of genes involved in BA metabolism, abnormal changes in receptors that regulate BA metabolism, and disturbance in the gut flora engaged in BA metabolism caused by alcohol consumption. Additionally, we provide novel perspectives on the changes in BAs in various stages of ALD. Finally, we propose potential pharmacological therapies for ALD targeting BA metabolism and signaling.
Collapse
Affiliation(s)
- Yali Liu
- Department of Hepatology, The First Hospital of Jilin University, Jilin University, Changchun, 130021, Jilin, China
| | - Tao Liu
- Department of Hepatology, The First Hospital of Jilin University, Jilin University, Changchun, 130021, Jilin, China
| | - Xu Zhao
- Department of Hepatology, The First Hospital of Jilin University, Jilin University, Changchun, 130021, Jilin, China
| | - Yanhang Gao
- Department of Hepatology, The First Hospital of Jilin University, Jilin University, Changchun, 130021, Jilin, China.
- Center of Infectious Diseases and Pathogen Biology, The First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
13
|
Tiwari N, Aggarwal G, Jain GK, Mittal G. Multi-drug loaded microneedles for emergency treatment of snakebite envenomation. Med Hypotheses 2022. [DOI: 10.1016/j.mehy.2022.110908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
14
|
Chowdhury A, Youngman NJ, Liu J, Lewin MR, Carter RW, Fry BG. The relative efficacy of chemically diverse small-molecule enzyme-inhibitors against anticoagulant activities of Black Snake (Pseudechis spp.) venoms. Toxicol Lett 2022; 366:26-32. [PMID: 35788045 DOI: 10.1016/j.toxlet.2022.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 05/31/2022] [Accepted: 06/28/2022] [Indexed: 11/28/2022]
Abstract
Snakebite remains a worldwide public health burden and a severely neglected tropical disease. Recent research has begun to focus on the potential use of repurposed small-molecule enzyme-inhibitors as early treatments to neutralise the effects of snake venoms. Black snakes (Pseudechis spp.) are a widespread and dangerously venomous group found throughout Australia and New Guinea. Utilising validated coagulation assays, our study assessed the efficacy of two chemically different small molecule inhibitors, a phospholipase A2 inhibitor (varespladib) and a metalloproteinase inhibitor (prinomastat), in vitro neutralisation of the anticoagulant prothrombinase-inhibiting activity of venom from seven species within the Pseudechis genus (P. australis, P. butleri, P. coletti, P. guttatus, P. papuanus, P.rossignolii, P. sp (NT).). Varespladib was shown to be highly effective at neutralising this anticoagulant activity for all seven species, but with P. coletti notably less so than the others. In contrast, prinomastat showed strong neutralisation for five out of the seven species, but was ineffective at neutralising the activity of P. coletti or P. rossignolii venoms. This suggests that varespladib binds to a highly conserved site but that prinomastat binds to a more variable site. These results build upon recent literature indicating that metalloproteinase inhibitors have cross-neutralising potential towards snake venom phospholipase A2 toxins, but with higher degrees of variability that PLA2-specific inhibitors. An important caveat is that these are in vitro tests and while suggestive of potential clinical utility, in vivo animal testing and clinical trials are required as future work.
Collapse
Affiliation(s)
- Abhinandan Chowdhury
- Venom Evolution Lab, School of Biological Science, University of Queensland, St. Lucia QLD, 4072 Australia; Department of Biochemistry & Microbiology, North South University, Dhaka 1229, Bangladesh.
| | - Nicholas J Youngman
- Venom Evolution Lab, School of Biological Science, University of Queensland, St. Lucia QLD, 4072 Australia
| | - Jiaojiao Liu
- Venom Evolution Lab, School of Biological Science, University of Queensland, St. Lucia QLD, 4072 Australia
| | - Matthew R Lewin
- California Academy of Sciences, San Francisco, CA, 94118, USA; Ophirex, Inc., Corte Madera, CA, 94925, USA
| | | | - Bryan G Fry
- Venom Evolution Lab, School of Biological Science, University of Queensland, St. Lucia QLD, 4072 Australia.
| |
Collapse
|
15
|
Park SH, Lee YS, Sim J, Seo S, Seo W. Alcoholic liver disease: a new insight into the pathogenesis of liver disease. Arch Pharm Res 2022; 45:447-459. [PMID: 35761115 DOI: 10.1007/s12272-022-01392-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 06/10/2022] [Indexed: 11/02/2022]
Abstract
Excessive alcohol consumption contributes to a broad clinical spectrum of liver diseases, from simple steatosis to end-stage hepatocellular carcinoma. The liver is the primary organ that metabolizes ingested alcohol and is exquisitely sensitive to alcohol intake. Alcohol metabolism is classified into two pathways: oxidative and non-oxidative alcohol metabolism. Both oxidative and non-oxidative alcohol metabolisms and their metabolites have toxic consequences for multiple organs, including the liver, adipose tissue, intestine, and pancreas. Although many studies have focused on the effects of oxidative alcohol metabolites on liver damage, the importance of non-oxidative alcohol metabolites in cellular damage has also been discovered. Furthermore, extrahepatic alcohol effects are crucial for providing additional information necessary for the progression of alcoholic liver disease. Therefore, studying the effects of alcohol-producing metabolites and interorgan crosstalk between the liver and peripheral organs that express ethanol-metabolizing enzymes will facilitate a comprehensive understanding of the pathogenesis of alcoholic liver disease. This review focuses on alcohol-metabolite-associated hepatotoxicity due to oxidative and non-oxidative alcohol metabolites and the role of interorgan crosstalk in alcoholic liver disease pathogenesis.
Collapse
Affiliation(s)
- Seol Hee Park
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Republic of Korea
| | - Young-Sun Lee
- Department of Internal Medicine, Korea University Medical Center, Seoul, Republic of Korea
| | - Jaemin Sim
- Lab of Hepatotoxicity, College of Pharmacy, Ewha Womans University, #52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03765, Republic of Korea
| | - Seonkyung Seo
- Lab of Hepatotoxicity, College of Pharmacy, Ewha Womans University, #52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03765, Republic of Korea
| | - Wonhyo Seo
- Lab of Hepatotoxicity, College of Pharmacy, Ewha Womans University, #52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03765, Republic of Korea.
| |
Collapse
|
16
|
Menzies SK, Clare RH, Xie C, Westhorpe A, Hall SR, Edge RJ, Alsolaiss J, Crittenden E, Marriott AE, Harrison RA, Kool J, Casewell NR. In vitro and in vivo preclinical venom inhibition assays identify metalloproteinase inhibiting drugs as potential future treatments for snakebite envenoming by Dispholidus typus. Toxicon X 2022; 14:100118. [PMID: 35321116 PMCID: PMC8935517 DOI: 10.1016/j.toxcx.2022.100118] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/18/2022] [Accepted: 03/07/2022] [Indexed: 11/23/2022] Open
Abstract
Snakebite envenoming affects more than 250,000 people annually in sub-Saharan Africa. Envenoming by Dispholidus typus (boomslang) results in venom-induced consumption coagulopathy (VICC), whereby highly abundant prothrombin-activating snake venom metalloproteinases (SVMPs) consume clotting factors and deplete fibrinogen. The only available treatment for D. typus envenoming is the monovalent SAIMR Boomslang antivenom. Treatment options are urgently required because this antivenom is often difficult to source and, at US$6000/vial, typically unaffordable for most snakebite patients. We therefore investigated the in vitro and in vivo preclinical efficacy of four SVMP inhibitors to neutralise the effects of D. typus venom; the matrix metalloproteinase inhibitors marimastat and prinomastat, and the metal chelators dimercaprol and DMPS. The venom of D. typus exhibited an SVMP-driven procoagulant phenotype in vitro. Marimastat and prinomastat demonstrated equipotent inhibition of the SVMP-mediated procoagulant activity of the venom in vitro, whereas dimercaprol and DMPS showed considerably lower potency. However, when tested in preclinical murine models of envenoming using mixed sex CD1 mice, DMPS and marimastat demonstrated partial protection against venom lethality, demonstrated by prolonged survival times of experimental animals, whereas dimercaprol and prinomastat failed to confer any protection at the doses tested. The preclinical results presented here demonstrate that DMPS and marimastat show potential as novel small molecule-based therapeutics for D. typus snakebite envenoming. These two drugs have been previously shown to be effective against Echis ocellatus VICC in preclinical models, and thus we conclude that marimastat and DMPS should be further explored as potentially valuable early intervention therapeutics to broadly treat VICC following snakebite envenoming in sub-Saharan Africa.
Collapse
Affiliation(s)
- Stefanie K. Menzies
- Centre for Snakebite Research and Interventions, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, England, UK
- Centre for Drugs and Diagnostics, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, England, UK
| | - Rachel H. Clare
- Centre for Snakebite Research and Interventions, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, England, UK
- Centre for Drugs and Diagnostics, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, England, UK
| | - Chunfang Xie
- Amsterdam Institute of Molecular and Life Sciences, Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081HV, Amsterdam, the Netherlands
| | - Adam Westhorpe
- Centre for Snakebite Research and Interventions, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, England, UK
- Centre for Drugs and Diagnostics, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, England, UK
| | - Steven R. Hall
- Centre for Snakebite Research and Interventions, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, England, UK
- Centre for Drugs and Diagnostics, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, England, UK
| | - Rebecca J. Edge
- Centre for Snakebite Research and Interventions, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, England, UK
- Centre for Drugs and Diagnostics, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, England, UK
| | - Jaffer Alsolaiss
- Centre for Snakebite Research and Interventions, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, England, UK
- Centre for Drugs and Diagnostics, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, England, UK
| | - Edouard Crittenden
- Centre for Snakebite Research and Interventions, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, England, UK
- Centre for Drugs and Diagnostics, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, England, UK
| | - Amy E. Marriott
- Centre for Snakebite Research and Interventions, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, England, UK
- Centre for Drugs and Diagnostics, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, England, UK
| | - Robert A. Harrison
- Centre for Snakebite Research and Interventions, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, England, UK
- Centre for Drugs and Diagnostics, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, England, UK
| | - Jeroen Kool
- Amsterdam Institute of Molecular and Life Sciences, Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081HV, Amsterdam, the Netherlands
| | - Nicholas R. Casewell
- Centre for Snakebite Research and Interventions, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, England, UK
- Centre for Drugs and Diagnostics, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, England, UK
| |
Collapse
|
17
|
Analysis of the Composition of Deinagkistrodon acutus Snake Venom Based on Proteomics, and Its Antithrombotic Activity and Toxicity Studies. Molecules 2022; 27:molecules27072229. [PMID: 35408629 PMCID: PMC9000436 DOI: 10.3390/molecules27072229] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 02/06/2023] Open
Abstract
There is a strong correlation between the composition of Deinagkistrodon acutus venom proteins and their potential pharmacological effects. The proteomic analysis revealed 103 proteins identified through label-free proteomics from 30 different snake venom families. Phospholipase A2 (30.0%), snaclec (21.0%), antithrombin (17.8%), thrombin (8.1%) and metalloproteinases (4.2%) were the most abundant proteins. The main toxicity of Deinagkistrodon acutus venom is hematotoxicity and neurotoxicity, and it acts on the lung. Deinagkistrodon acutus venom may have anticoagulant and antithrombotic effects. In summary, the protein profile and related toxicity and pharmacological activity of Deinagkistrodon acutus venom from southwest China were put forward for the first time. In addition, we revealed the relationship between the main toxicity, pharmacological effects, and the protein components of snake venom.
Collapse
|
18
|
Gutierres PG, Pereira DR, Vieira NL, Arantes LF, Silva NJ, Torres-Bonilla KA, Hyslop S, Morais-Zani K, Nogueira RMB, Rowan EG, Floriano RS. Action of Varespladib (LY-315920), a Phospholipase A 2 Inhibitor, on the Enzymatic, Coagulant and Haemorrhagic Activities of Lachesis muta rhombeata (South-American Bushmaster) Venom. Front Pharmacol 2022; 12:812295. [PMID: 35095526 PMCID: PMC8790531 DOI: 10.3389/fphar.2021.812295] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 12/09/2021] [Indexed: 01/08/2023] Open
Abstract
Varespladib (VPL) was primarily developed to treat inflammatory disturbances associated with high levels of serum phospholipase A2 (PLA2). VPL has also demonstrated to be a potential antivenom support agent to prevent PLA2-dependent effects produced by snake venoms. In this study, we examined the action of VPL on the coagulant, haemorrhagic and enzymatic activities of Lachesis muta rhombeata (South-American bushmaster) venom. Conventional colorimetric enzymatic assays were performed for PLA2, caseinolytic and esterasic activities; in vitro coagulant activities for prothrombin time (PT) and activated partial thromboplastin time (aPTT) were performed in rat citrated plasma through a quick timer coagulometer, whereas the dimensions of haemorrhagic haloes obtained after i.d. injections of venom in Wistar rats were determined using ImageJ software. Venom (1 mg/ml) exhibited accentuated enzymatic activities for proteases and PLA2in vitro, with VPL abolishing the PLA2 activity from 0.01 mM; VPL did not affect caseinolytic and esterasic activities at any tested concentrations (0.001–1 mM). In rat citrated plasma in vitro, VPL (1 mM) alone efficiently prevented the venom (1 mg/ml)-induced procoagulant disorder associated to extrinsic (PT) pathway, whereas its association with a commercial antivenom successfully prevented changes in both intrinsic (aPTT) and extrinsic (PT) pathways; commercial antivenom by itself failed to avoid the procoagulant disorders by this venom. Venom (0.5 mg/kg)-induced hemorrhagic activity was slightly reduced by VPL (1 mM) alone or combined with antivenom (antivenom:venom ratio 1:3 ‘v/w’) in rats, with antivenom alone producing no protective action on this parameter. In conclusion, VPL does not inhibit other major enzymatic groups of L. m. rhombeata venom, with its high PLA2 antagonize activity efficaciously preventing the venom-induced coagulation disturbances.
Collapse
Affiliation(s)
- Pamella G Gutierres
- Laboratory of Toxinology and Cardiovascular Research, University of Western São Paulo, Presidente Prudente, Brazil
| | - Diego R Pereira
- Laboratory of Toxinology and Cardiovascular Research, University of Western São Paulo, Presidente Prudente, Brazil
| | - Nataly L Vieira
- Laboratory of Toxinology and Cardiovascular Research, University of Western São Paulo, Presidente Prudente, Brazil
| | - Lilian F Arantes
- Graduate Program in Zootechnics, Rural Federal University of Pernambuco, Recife, Brazil
| | - Nelson J Silva
- Graduate Program in Environmental Sciences and Health, School of Medical, Pharmaceutical and Biomedical Sciences, Pontifical Catholic University of Goiás, Goiânia, Brazil
| | - Kristian A Torres-Bonilla
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas, Campinas, Brazil
| | - Stephen Hyslop
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas, Campinas, Brazil
| | | | - Rosa M B Nogueira
- Laboratory of Toxinology and Cardiovascular Research, University of Western São Paulo, Presidente Prudente, Brazil
| | - Edward G Rowan
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Rafael S Floriano
- Laboratory of Toxinology and Cardiovascular Research, University of Western São Paulo, Presidente Prudente, Brazil
| |
Collapse
|
19
|
In vivo treatment with varespladib, a phospholipase A 2 inhibitor, prevents the peripheral neurotoxicity and systemic disorders induced by Micrurus corallinus (coral snake) venom in rats. Toxicol Lett 2021; 356:54-63. [PMID: 34774704 DOI: 10.1016/j.toxlet.2021.11.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 10/14/2021] [Accepted: 11/09/2021] [Indexed: 11/23/2022]
Abstract
In this study, we investigated the action of varespladib (VPL) alone or in combination with a coral snake antivenom (CAV) on the local and systemic effects induced by Micrurus corallinus venom in rats. Adult male Wistar rats were exposed to venom (1.5 mg/kg - i.m.) and immediately treated with CAV (antivenom:venom ratio 1:1.5 'v/w' - i.p.), VPL (0.5 mg/kg - i.p.), or both of these treatments. The animals were monitored for 120 min and then anesthetized to collect blood samples used for haematological and serum biochemical analysis; after euthanasia, skeletal muscle, renal and hepatic tissue samples were collected for histopathological analysis. M. corallinus venom caused local oedema without subcutaneous haemorrhage or apparent necrosis formation, although there was accentuated muscle morphological damage; none of the treatments prevented oedema formation but the combination of CAV and VPL reduced venom-induced myonecrosis. Venom caused neuromuscular paralysis and respiratory impairment in approximately 60 min following envenomation; CAV alone did not prevent the neurotoxic action, whereas VPL alone prevented neurotoxic symptoms developing as did the combination of CAV and VPL. Venom induced significant increase of serum CK and AST release, mostly due to local and systemic myotoxicity, which was partially prevented by the combination of CAV and VPL. The release of hepatotoxic serum biomarkers (LDH and ALP) induced by M. corallinus venom was not prevented by CAV and VPL when individually administered; their combination effectively prevented ALP release. The venom-induced nephrotoxicity (increase in serum creatinine concentration) was prevented by all the treatments. VPL alone or in combination with CAV significantly prevented the venom-induced lymphocytosis. In conclusion, VPL shows to be effective at preventing the neurotoxic, nephrotoxic, and inflammatory activities of M. corallinus venom. In addition, VPL acts synergistically with antivenom to prevent a number of systemic effects caused by M. corallinus venom.
Collapse
|
20
|
Hamza M, Knudsen C, Gnanathasan CA, Monteiro W, Lewin MR, Laustsen AH, Habib AG. Clinical management of snakebite envenoming: Future perspectives. Toxicon X 2021; 11:100079. [PMID: 34430847 PMCID: PMC8374517 DOI: 10.1016/j.toxcx.2021.100079] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/29/2021] [Accepted: 07/30/2021] [Indexed: 11/18/2022] Open
Abstract
Snakebite envenoming is a major cause of morbidity and mortality in rural communities throughout the tropics. Generally, the main clinical features of snakebites are local swelling, tissue necrosis, shock, spontaneous systemic hemorrhage, incoagulable blood, paralysis, rhabdomyolysis, and acute kidney injury. These clinical manifestations result from complex biochemical venom constituents comprising of cytotoxins, hemotoxins, neurotoxins, myotoxins, and other substances. Timely diagnosis of envenoming and identification of the responsible snake species is clinically challenging in many parts of the world and necessitates prompt and thorough clinical assessment, which could be supported by the development of reliable, affordable, widely-accessible, point-of-care tests. Conventional antivenoms based on polyclonal antibodies derived from animals remain the mainstay of therapy along with supportive medical and surgical care. However, while antivenoms save countless lives, they are associated with adverse reactions, limited potency, and are relatively inefficacious against presynaptic neurotoxicity and in preventing necrosis. Nevertheless, major scientific and technological advances are facilitating the development of new molecular and immunologic diagnostic tests, as well as a new generation of antivenoms comprising human monoclonal antibodies with broader and more potent neutralization capacity and less immunogenicity. Repurposed pharmaceuticals based on small molecule inhibitors (e.g., marimastat and varespladib) used alone and in combination against enzymatic toxins, such as metalloproteases and phospholipase A2s, have shown promise in animal studies. These orally bioavailable molecules could serve as early interventions in the out-of-hospital setting if confirmed to be safe and efficacious in clinical studies. Antivenom access can be improved by the usage of drones and ensuring constant antivenom supply in remote endemic rural areas. Overall, the improvement of clinical management of snakebite envenoming requires sustained, coordinated, and multifaceted efforts involving basic and applied sciences, new technology, product development, effective clinical training, implementation of existing guidelines and therapeutic approaches, supported by improved supply of existing antivenoms.
Collapse
Affiliation(s)
- Muhammad Hamza
- Infectious and Tropical Diseases Unit, Bayero University Kano, Nigeria
| | - Cecilie Knudsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | | | - Wuelton Monteiro
- Department of Research, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil
- School of Health Sciences, Universidade do Estado do Amazonas, Manaus, Brazil
| | - Matthew R. Lewin
- Center for Exploration and Travel Health, California Academy of Sciences, San Francisco, USA
| | - Andreas H. Laustsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | | |
Collapse
|
21
|
Batsika CS, Gerogiannopoulou ADD, Mantzourani C, Vasilakaki S, Kokotos G. The design and discovery of phospholipase A 2 inhibitors for the treatment of inflammatory diseases. Expert Opin Drug Discov 2021; 16:1287-1305. [PMID: 34143707 DOI: 10.1080/17460441.2021.1942835] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
AREAS COVERED This review article summarizes the most important synthetic PLA2 inhibitors developed to target each one of the four major types of human PLA2 (cytosolic cPLA2, calcium-independent iPLA2, secreted sPLA2, and lipoprotein-associated Lp-PLA2), discussing their in vitro and in vivo activities as well as their recent applications and therapeutic properties. Recent findings on the role of PLA2 in the pathobiology of COVID-19 are also discussed. EXPERT OPINION Although a number of PLA2 inhibitors have entered clinical trials, none has reached the market yet. Lipoprotein-associated PLA2 is now considered a biomarker of vascular inflammation rather than a therapeutic target for inhibitors like darapladib. Inhibitors of cytosolic PLA2 may find topical applications for diseases like atopic dermatitis and psoriasis. Inhibitors of secreted PLA2, varespladib and varespladib methyl, are under investigation for repositioning in snakebite envenoming. A deeper understanding of PLA2 enzymes is needed for the development of novel selective inhibitors. Lipidomic technologies combined with medicinal chemistry approaches may be useful tools toward this goal.
Collapse
Affiliation(s)
| | | | - Christiana Mantzourani
- Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Greece
| | - Sofia Vasilakaki
- Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Greece
| | - George Kokotos
- Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Greece
| |
Collapse
|
22
|
Gutiérrez JM, Albulescu LO, Clare RH, Casewell NR, Abd El-Aziz TM, Escalante T, Rucavado A. The Search for Natural and Synthetic Inhibitors That Would Complement Antivenoms as Therapeutics for Snakebite Envenoming. Toxins (Basel) 2021; 13:451. [PMID: 34209691 PMCID: PMC8309910 DOI: 10.3390/toxins13070451] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 06/23/2021] [Accepted: 06/27/2021] [Indexed: 12/28/2022] Open
Abstract
A global strategy, under the coordination of the World Health Organization, is being unfolded to reduce the impact of snakebite envenoming. One of the pillars of this strategy is to ensure safe and effective treatments. The mainstay in the therapy of snakebite envenoming is the administration of animal-derived antivenoms. In addition, new therapeutic options are being explored, including recombinant antibodies and natural and synthetic toxin inhibitors. In this review, snake venom toxins are classified in terms of their abundance and toxicity, and priority actions are being proposed in the search for snake venom metalloproteinase (SVMP), phospholipase A2 (PLA2), three-finger toxin (3FTx), and serine proteinase (SVSP) inhibitors. Natural inhibitors include compounds isolated from plants, animal sera, and mast cells, whereas synthetic inhibitors comprise a wide range of molecules of a variable chemical nature. Some of the most promising inhibitors, especially SVMP and PLA2 inhibitors, have been developed for other diseases and are being repurposed for snakebite envenoming. In addition, the search for drugs aimed at controlling endogenous processes generated in the course of envenoming is being pursued. The present review summarizes some of the most promising developments in this field and discusses issues that need to be considered for the effective translation of this knowledge to improve therapies for tackling snakebite envenoming.
Collapse
Affiliation(s)
- José María Gutiérrez
- Facultad de Microbiología, Instituto Clodomiro Picado, Universidad de Costa Rica, San José 11501, Costa Rica; (T.E.); (A.R.)
| | - Laura-Oana Albulescu
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK; (L.-O.A.); (R.H.C.); (N.R.C.)
| | - Rachel H. Clare
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK; (L.-O.A.); (R.H.C.); (N.R.C.)
| | - Nicholas R. Casewell
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK; (L.-O.A.); (R.H.C.); (N.R.C.)
| | - Tarek Mohamed Abd El-Aziz
- Zoology Department, Faculty of Science, Minia University, El-Minia 61519, Egypt;
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229-3900, USA
| | - Teresa Escalante
- Facultad de Microbiología, Instituto Clodomiro Picado, Universidad de Costa Rica, San José 11501, Costa Rica; (T.E.); (A.R.)
| | - Alexandra Rucavado
- Facultad de Microbiología, Instituto Clodomiro Picado, Universidad de Costa Rica, San José 11501, Costa Rica; (T.E.); (A.R.)
| |
Collapse
|
23
|
Kazandjian TD, Arrahman A, Still KBM, Somsen GW, Vonk FJ, Casewell NR, Wilkinson MC, Kool J. Anticoagulant Activity of Naja nigricollis Venom Is Mediated by Phospholipase A2 Toxins and Inhibited by Varespladib. Toxins (Basel) 2021; 13:toxins13050302. [PMID: 33922825 PMCID: PMC8145175 DOI: 10.3390/toxins13050302] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/07/2021] [Accepted: 04/18/2021] [Indexed: 12/03/2022] Open
Abstract
Bites from elapid snakes typically result in neurotoxic symptoms in snakebite victims. Neurotoxins are, therefore, often the focus of research relating to understanding the pathogenesis of elapid bites. However, recent evidence suggests that some elapid snake venoms contain anticoagulant toxins which may help neurotoxic components spread more rapidly. This study examines the effects of venom from the West African black-necked spitting cobra (Naja nigricollis) on blood coagulation and identifies potential coagulopathic toxins. An integrated RPLC-MS methodology, coupled with nanofractionation, was first used to separate venom components, followed by MS, proteomics and coagulopathic bioassays. Coagulation assays were performed on both crude and nanofractionated N. nigricollis venom toxins as well as PLA2s and 3FTx purified from the venom. Assays were then repeated with the addition of either the phospholipase A2 inhibitor varespladib or the snake venom metalloproteinase inhibitor marimastat to assess whether either toxin inhibitor is capable of neutralizing coagulopathic venom activity. Subsequent proteomic analysis was performed on nanofractionated bioactive venom toxins using tryptic digestion followed by nanoLC-MS/MS measurements, which were then identified using Swiss-Prot and species-specific database searches. Varespladib, but not marimastat, was found to significantly reduce the anticoagulant activity of N. nigricollis venom and MS and proteomics analyses confirmed that the anticoagulant venom components mostly consisted of PLA2 proteins. We, therefore, conclude that PLA2s are the most likely candidates responsible for anticoagulant effects stimulated by N. nigricollis venom.
Collapse
Affiliation(s)
- Taline D. Kazandjian
- Centre for Snakebite Research and Interventions, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK; (T.D.K.); (N.R.C.)
| | - Arif Arrahman
- Department of Chemistry and Pharmaceutical Sciences, Division of Bioanalytical Chemistry, Faculty of Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081HV Amsterdam, The Netherlands; (A.A.); (K.B.M.S.); (G.W.S.)
- Centre for Analytical Sciences Amsterdam (CASA), 1012WX Amsterdam, The Netherlands
- Faculty of Pharmacy, Kampus Baru UI, Universitas Indonesia, Depok 16424, Indonesia
| | - Kristina B. M. Still
- Department of Chemistry and Pharmaceutical Sciences, Division of Bioanalytical Chemistry, Faculty of Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081HV Amsterdam, The Netherlands; (A.A.); (K.B.M.S.); (G.W.S.)
- Centre for Analytical Sciences Amsterdam (CASA), 1012WX Amsterdam, The Netherlands
| | - Govert W. Somsen
- Department of Chemistry and Pharmaceutical Sciences, Division of Bioanalytical Chemistry, Faculty of Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081HV Amsterdam, The Netherlands; (A.A.); (K.B.M.S.); (G.W.S.)
- Centre for Analytical Sciences Amsterdam (CASA), 1012WX Amsterdam, The Netherlands
| | - Freek J. Vonk
- Naturalis Biodiversity Center, Darwinweg 2, 2333CR Leiden, The Netherlands;
| | - Nicholas R. Casewell
- Centre for Snakebite Research and Interventions, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK; (T.D.K.); (N.R.C.)
| | - Mark C. Wilkinson
- Centre for Snakebite Research and Interventions, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK; (T.D.K.); (N.R.C.)
- Correspondence: (M.C.W.); (J.K.)
| | - Jeroen Kool
- Department of Chemistry and Pharmaceutical Sciences, Division of Bioanalytical Chemistry, Faculty of Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081HV Amsterdam, The Netherlands; (A.A.); (K.B.M.S.); (G.W.S.)
- Centre for Analytical Sciences Amsterdam (CASA), 1012WX Amsterdam, The Netherlands
- Correspondence: (M.C.W.); (J.K.)
| |
Collapse
|
24
|
Salvador GHM, Borges RJ, Lomonte B, Lewin MR, Fontes MRM. The synthetic varespladib molecule is a multi-functional inhibitor for PLA 2 and PLA 2-like ophidic toxins. Biochim Biophys Acta Gen Subj 2021; 1865:129913. [PMID: 33865953 DOI: 10.1016/j.bbagen.2021.129913] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 04/11/2021] [Accepted: 04/12/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND The treatment for snakebites is early administration of antivenom, which can be highly effective in inhibiting the systemic effects of snake venoms, but is less effective in the treatment of extra-circulatory and local effects. To complement standard-of-care treatments such as antibody-based antivenoms, natural and synthetic small molecules have been proposed for the inhibition of key venom components such as phospholipase A2 (PLA2) and PLA2-like toxins. Varespladib (compound LY315920) is a synthetic molecule developed and clinically tested aiming to block inflammatory cascades of several diseases associated with high PLA2s. Recent studies have demonstrated this molecule is able to potently inhibit snake venom catalytic PLA2 and PLA2-like toxins. METHODS In vivo and in vitro techniques were used to evaluate the inhibitory effect of varespladib against MjTX-I. X-ray crystallography was used to reveal details of the interaction between these molecules. A new methodology that combines crystallography, mass spectroscopy and phylogenetic data was used to review its primary sequence. RESULTS Varespladib was able to inhibit the myotoxic and cytotoxic effects of MjTX-I. Structural analysis revealed a particular inhibitory mechanism of MjTX-I when compared to other PLA2-like myotoxin, presenting an oligomeric-independent function. CONCLUSION Results suggest the effectiveness of varespladib for the inhibition of MjTX-I, in similarity with other PLA2 and PLA2-like toxins. GENERAL SIGNIFICANCE Varespladib appears to be a promissory molecule in the treatment of local effects led by PLA2 and PLA2-like toxins (oligomeric dependent and independent), indicating that this is a multifunctional or broadly specific inhibitor for different toxins within this superfamily.
Collapse
Affiliation(s)
- Guilherme H M Salvador
- Departamento de Biofísica e Farmacologia, Instituto de Biociências, Universidade Estadual Paulista (UNESP), Botucatu, SP, Brazil
| | - Rafael J Borges
- Departamento de Biofísica e Farmacologia, Instituto de Biociências, Universidade Estadual Paulista (UNESP), Botucatu, SP, Brazil
| | - Bruno Lomonte
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Matthew R Lewin
- Center for Exploration and Travel Health, California Academy of Sciences, San Francisco, CA 94118, USA
| | - Marcos R M Fontes
- Departamento de Biofísica e Farmacologia, Instituto de Biociências, Universidade Estadual Paulista (UNESP), Botucatu, SP, Brazil.
| |
Collapse
|
25
|
Animal Venoms-Curse or Cure? Biomedicines 2021; 9:biomedicines9040413. [PMID: 33921205 PMCID: PMC8068803 DOI: 10.3390/biomedicines9040413] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/09/2021] [Accepted: 04/09/2021] [Indexed: 12/16/2022] Open
Abstract
An estimated 15% of animals are venomous, with representatives spread across the majority of animal lineages. Animals use venoms for various purposes, such as prey capture and predator deterrence. Humans have always been fascinated by venomous animals in a Janus-faced way. On the one hand, humans have a deeply rooted fear of venomous animals. This is boosted by their largely negative image in public media and the fact that snakes alone cause an annual global death toll in the hundreds of thousands, with even more people being left disabled or disfigured. Consequently, snake envenomation has recently been reclassified by the World Health Organization as a neglected tropical disease. On the other hand, there has been a growth in recent decades in the global scene of enthusiasts keeping venomous snakes, spiders, scorpions, and centipedes in captivity as pets. Recent scientific research has focussed on utilising animal venoms and toxins for the benefit of humanity in the form of molecular research tools, novel diagnostics and therapeutics, biopesticides, or anti-parasitic treatments. Continued research into developing efficient and safe antivenoms and promising discoveries of beneficial effects of animal toxins is further tipping the scales in favour of the “cure” rather than the “curse” prospect of venoms.
Collapse
|
26
|
Dashevsky D, Bénard-Valle M, Neri-Castro E, Youngman NJ, Zdenek CN, Alagón A, Portes-Junior JA, Frank N, Fry BG. Anticoagulant Micrurus venoms: Targets and neutralization. Toxicol Lett 2020; 337:91-97. [PMID: 33197555 DOI: 10.1016/j.toxlet.2020.11.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/30/2020] [Accepted: 11/09/2020] [Indexed: 11/26/2022]
Abstract
Snakebite is a neglected tropical disease with a massive global burden of injury and death. The best current treatments, antivenoms, are plagued by a number of logistical issues that limit supply and access in remote or poor regions. We explore the anticoagulant properties of venoms from the genus Micrurus (coral snakes), which have been largely unstudied, as well as the effectiveness of antivenom and a small-molecule phospholipase inhibitor-varespladib-at counteracting these effects. Our in vitro results suggest that these venoms likely interfere with the formation or function of the prothrombinase complex. We find that the anticoagulant potency varies widely across the genus and is especially pronounced in M. laticollaris. This variation does not appear to correspond to previously described patterns regarding the relative expression of the three-finger toxin and phospholipase A2 (PLA2) toxin families within the venoms of this genus. The coral snake antivenom Coralmyn, is largely unable to ameliorate these effects except for M. ibiboboca. Varespladib on the other hand completely abolished the anticoagulant activity of every venom. This is consistent with the growing body of results showing that varespladib may be an effective treatment for a wide range of toxicity caused by PLA2 toxins from many different snake species. Varespladib is a particularly attractive candidate to help alleviate the burden of snakebite because it is an approved drug that possesses several logistical advantages over antivenom including temperature stability and oral availability.
Collapse
Affiliation(s)
- Daniel Dashevsky
- Toxin Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, QLD 4072 Australia; Australian National Insect Collection, Commonwealth Science and Industry Research Organization, Canberra, ACT 2601 Australia
| | - Melisa Bénard-Valle
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnologa, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca, Morelos, 62210, Mexico
| | - Edgar Neri-Castro
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnologa, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca, Morelos, 62210, Mexico
| | - Nicholas J Youngman
- Toxin Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, QLD 4072 Australia
| | - Christina N Zdenek
- Toxin Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, QLD 4072 Australia
| | - Alejandro Alagón
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnologa, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca, Morelos, 62210, Mexico
| | - José A Portes-Junior
- Laboratório de Coleções Zoológicas, Instituto Butantan, São Paulo 05503-900, Brazil
| | | | - Bryan G Fry
- Toxin Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, QLD 4072 Australia.
| |
Collapse
|
27
|
Xie C, Albulescu LO, Bittenbinder MA, Somsen GW, Vonk FJ, Casewell NR, Kool J. Neutralizing Effects of Small Molecule Inhibitors and Metal Chelators on Coagulopathic Viperinae Snake Venom Toxins. Biomedicines 2020; 8:E297. [PMID: 32825484 PMCID: PMC7555180 DOI: 10.3390/biomedicines8090297] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/13/2020] [Accepted: 08/18/2020] [Indexed: 12/27/2022] Open
Abstract
Animal-derived antivenoms are the only specific therapies currently available for the treatment of snake envenoming, but these products have a number of limitations associated with their efficacy, safety and affordability for use in tropical snakebite victims. Small molecule drugs and drug candidates are regarded as promising alternatives for filling the critical therapeutic gap between snake envenoming and effective treatment. In this study, by using an advanced analytical technique that combines chromatography, mass spectrometry and bioassaying, we investigated the effect of several small molecule inhibitors that target phospholipase A2 (varespladib) and snake venom metalloproteinase (marimastat, dimercaprol and DMPS) toxin families on inhibiting the activities of coagulopathic toxins found in Viperinae snake venoms. The venoms of Echis carinatus, Echis ocellatus, Daboia russelii and Bitis arietans, which are known for their potent haemotoxicities, were fractionated in high resolution onto 384-well plates using liquid chromatography followed by coagulopathic bioassaying of the obtained fractions. Bioassay activities were correlated to parallel recorded mass spectrometric and proteomics data to assign the venom toxins responsible for coagulopathic activity and assess which of these toxins could be neutralized by the inhibitors under investigation. Our results showed that the phospholipase A2-inhibitor varespladib neutralized the vast majority of anticoagulation activities found across all of the tested snake venoms. Of the snake venom metalloproteinase inhibitors, marimastat demonstrated impressive neutralization of the procoagulation activities detected in all of the tested venoms, whereas dimercaprol and DMPS could only partially neutralize these activities at the doses tested. Our results provide additional support for the concept that combinations of small molecules, particularly the combination of varespladib with marimastat, serve as a drug-repurposing opportunity to develop new broad-spectrum inhibitor-based therapies for snakebite envenoming.
Collapse
Affiliation(s)
- Chunfang Xie
- Amsterdam Institute of Molecular and Life Sciences, Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081HV Amsterdam, The Netherlands; (C.X.); (M.A.B.); (G.W.S.); (F.J.V.)
- Centre for Analytical Sciences Amsterdam (CASA), 1098 XH Amsterdam, The Netherlands
| | - Laura-Oana Albulescu
- Centre for Snakebite Research and Interventions, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK; (L.-O.A.); (N.R.C.)
- Centre for Drugs and Diagnostics, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | - Mátyás A. Bittenbinder
- Amsterdam Institute of Molecular and Life Sciences, Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081HV Amsterdam, The Netherlands; (C.X.); (M.A.B.); (G.W.S.); (F.J.V.)
- Centre for Analytical Sciences Amsterdam (CASA), 1098 XH Amsterdam, The Netherlands
- Naturalis Biodiversity Center, 2333 CR Leiden, The Netherlands
| | - Govert W. Somsen
- Amsterdam Institute of Molecular and Life Sciences, Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081HV Amsterdam, The Netherlands; (C.X.); (M.A.B.); (G.W.S.); (F.J.V.)
- Centre for Analytical Sciences Amsterdam (CASA), 1098 XH Amsterdam, The Netherlands
| | - Freek J. Vonk
- Amsterdam Institute of Molecular and Life Sciences, Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081HV Amsterdam, The Netherlands; (C.X.); (M.A.B.); (G.W.S.); (F.J.V.)
- Centre for Analytical Sciences Amsterdam (CASA), 1098 XH Amsterdam, The Netherlands
| | - Nicholas R. Casewell
- Centre for Snakebite Research and Interventions, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK; (L.-O.A.); (N.R.C.)
- Centre for Drugs and Diagnostics, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | - Jeroen Kool
- Amsterdam Institute of Molecular and Life Sciences, Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081HV Amsterdam, The Netherlands; (C.X.); (M.A.B.); (G.W.S.); (F.J.V.)
- Centre for Analytical Sciences Amsterdam (CASA), 1098 XH Amsterdam, The Netherlands
| |
Collapse
|