1
|
Shi J, Liang J, Wang J, Wang H, Wang Z, Zhang X, Wu G, Tian S, Wei W. Assessment of biomechanical properties in pulmonary arterial hypertension: a computational fluid dynamics study of the extensive pulmonary arterial tree. BMC Pulm Med 2025; 25:175. [PMID: 40221738 PMCID: PMC11994006 DOI: 10.1186/s12890-025-03647-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Accepted: 04/04/2025] [Indexed: 04/14/2025] Open
Abstract
Biomechanical forces play a central role in the pathophysiology of pulmonary arterial hypertension (PAH). Due to the numerous branches and complex structure of the pulmonary arteries, three-dimensional reconstruction poses significant challenges, resulting in a lack of comprehensive hemodynamic studies encompassing the entire pulmonary arterial tree in PAH. This study employs computational fluid dynamics (CFD) to evaluate the biomechanical properties of the extensive pulmonary artery tree (segmented up to 6 th-generation branches) in PAH. Key hemodynamic parameters, including velocity, wall shear stress (WSS), time-averaged wall shear stress (TAWSS), oscillatory shear index (OSI), and relative residence time (RRT), were meticulously computed. Results revealed a significant decrease in outlet cross-sectional area (p < 0.0001) and a notable increase in outlet velocity compared to the inlet (p < 0.05) and main body (p < 0.001). WSS in the proximal pulmonary artery was consistently lower than in the distal pulmonary artery for all subjects, with low TAWSS observed in proximal arteries. Helical flow patterns were predominantly seen in proximal pulmonary arteries of PAH subjects. Additionally, high OSI and RRT values were noted within the proximal arteries. This study provides a comprehensive evaluation of hemodynamic parameters in PAH, identifying velocity, WSS, OSI, and RRT as valuable markers of its distinct biomechanical characteristics. These findings shed light on the complex interplay of biomechanical forces in PAH.
Collapse
Affiliation(s)
- Jian Shi
- Department of Cardiology, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong, P.R. China
| | - Jianwen Liang
- Department of Cardiology, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong, P.R. China
| | - Jieting Wang
- Department of Cardiac Ultrasound, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong, P.R. China
| | - Hui Wang
- Department of Cardiac Ultrasound, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong, P.R. China
| | - Zhenyu Wang
- Department of Cardiovascular Medicine, Shaanxi Provincial People's Hospital, Xi'an City, Shaanxi Province, People's Republic of China
| | - Xiaocong Zhang
- Department of Cardiology, Foshan Fosun Chancheng Hospital, Foshan, Guangdong, P.R. China
| | - Guifu Wu
- Department of Cardiology, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong, P.R. China
| | - Shuai Tian
- Department of Cardiology, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong, P.R. China.
| | - Wenbin Wei
- Department of Cardiology, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong, P.R. China.
| |
Collapse
|
2
|
Aaronson PI. The Role of Hydrogen Sulfide in the Regulation of the Pulmonary Vasculature in Health and Disease. Antioxidants (Basel) 2025; 14:341. [PMID: 40227402 PMCID: PMC11939758 DOI: 10.3390/antiox14030341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/09/2025] [Accepted: 03/12/2025] [Indexed: 04/15/2025] Open
Abstract
The gasotransmitter hydrogen sulfide (H2S; also termed sulfide) generally acts as a vasodilator in the systemic vasculature but causes a paradoxical constriction of pulmonary arteries (PAs). In light of evidence that a fall in the partial pressure in oxygen (pO2) increases cellular sulfide levels, it was proposed that a rise in sulfide in pulmonary artery smooth muscle cells (PASMCs) is responsible for hypoxic pulmonary vasoconstriction, the contraction of PAs which develops rapidly in lung regions undergoing alveolar hypoxia. In contrast, pulmonary hypertension (PH), a sustained elevation of pulmonary artery pressure (PAP) which can develop in the presence of a diverse array of pathological stimuli, including chronic hypoxia, is associated with a decrease in the expression of sulfide -producing enzymes in PASMCs and a corresponding fall in sulfide production by the lung. Evidence that PAP in animal models of PH can be lowered by administration of exogenous sulfide has led to an interest in using sulfide-donating agents for treating this condition in humans. Notably, intracellular H2S exists in equilibrium with other sulfur-containing species such as polysulfides and persulfides, and it is these reactive sulfur species which are thought to mediate most of its effects on cells through persulfidation of cysteine thiols on proteins, leading to changes in function in a manner similar to thiol oxidation by reactive oxygen species. This review sets out what is currently known about the mechanisms by which H2S and related sulfur species exert their actions on pulmonary vascular tone, both acutely and chronically, and discusses the potential of sulfide-releasing drugs as treatments for the different types of PH which arise in humans.
Collapse
Affiliation(s)
- Philip I Aaronson
- Department of Inflammation Biology, School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, London SE1 9RT, UK
| |
Collapse
|
3
|
Albendea-Gomez T, Mendoza-Tamajon S, Castro-Mecinas R, Escobar B, Ferreira Rocha S, Urra-Balduz S, Nicolas-Avila JA, Oliver E, Villalba-Orero M, Martin-Puig S. Vascular HIF2 Signaling Prevents Cardiomegaly, Alveolar Congestion, and Capillary Remodeling During Chronic Hypoxia. Arterioscler Thromb Vasc Biol 2025; 45:e78-e98. [PMID: 39846162 DOI: 10.1161/atvbaha.124.321780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 12/30/2024] [Accepted: 01/02/2025] [Indexed: 01/24/2025]
Abstract
BACKGROUND Hypoxia is associated with the onset of cardiovascular diseases including cardiac hypertrophy and pulmonary hypertension. HIF2 (hypoxia inducible factor 2) signaling in the endothelium mediates pulmonary arterial remodeling and subsequent elevation of the right ventricular systolic pressure during chronic hypoxia. Thus, novel therapeutic opportunities for pulmonary hypertension based on specific HIF2 inhibitors have been proposed. Nevertheless, HIF2 relevance beyond the pulmonary endothelium or in the cardiac adaptation to hypoxia remains elusive. Wt1 (Wilms tumor 1) lineage contributes to the heart and lung vascular compartments, including pericytes, endothelial cells, and smooth muscle cells. METHODS Here, we describe the response to chronic hypoxia of a novel HIF2 mutant mouse model in the Wt1 lineage (Hif2/Wt1 cKO [conditional knockout]), characterizing structural and functional aspects of the heart and lungs by means of classical histology, immunohistochemistry, flow cytometry, echocardiography, and lung ultrasound analysis. RESULTS Hif2/Wt1 cKO is protected against pulmonary remodeling and increased right ventricular systolic pressure induced by hypoxia, but displays alveolar congestion, inflammation, and hemorrhages associated with microvascular instability. Furthermore, lack of HIF2 in the Wt1 lineage leads to cardiomegaly, capillary remodeling, right and left ventricular hypertrophy, systolic dysfunction, and left ventricular dilation, suggesting pulmonary-independent cardiac direct roles of HIF2 in hypoxia. These structural defects are partially restored upon reoxygenation, while cardiac functional parameters remain altered. CONCLUSIONS Our results indicate that cardiopulmonary HIF2 signaling prevents excessive vascular proliferation during chronic hypoxia and define novel protective roles of HIF2 to warrant stable microvasculature and organ function.
Collapse
MESH Headings
- Animals
- Hypoxia/metabolism
- Hypoxia/physiopathology
- Vascular Remodeling
- Signal Transduction
- Basic Helix-Loop-Helix Transcription Factors/metabolism
- Basic Helix-Loop-Helix Transcription Factors/genetics
- Mice, Knockout
- Disease Models, Animal
- Chronic Disease
- Cardiomegaly/metabolism
- Cardiomegaly/physiopathology
- Cardiomegaly/pathology
- Cardiomegaly/genetics
- Capillaries/metabolism
- Capillaries/pathology
- Capillaries/physiopathology
- Pulmonary Alveoli/metabolism
- Pulmonary Alveoli/pathology
- Hypertrophy, Right Ventricular/metabolism
- Hypertrophy, Right Ventricular/physiopathology
- Hypertrophy, Right Ventricular/genetics
- Hypertrophy, Right Ventricular/pathology
- Hypertrophy, Right Ventricular/etiology
- Hypertrophy, Right Ventricular/prevention & control
- Hypertension, Pulmonary/metabolism
- Hypertension, Pulmonary/physiopathology
- Hypertension, Pulmonary/pathology
- Hypertension, Pulmonary/genetics
- Ventricular Function, Right
- Mice
- Male
- Mice, Inbred C57BL
- Ventricular Remodeling
- Ventricular Function, Left
- Pulmonary Artery/metabolism
- Pulmonary Artery/physiopathology
- Pulmonary Artery/pathology
- Transcription Factors
Collapse
Affiliation(s)
- Teresa Albendea-Gomez
- Metabolic and Immune Diseases Department, Instituto de Investigaciones Biomedicas Sols-Morreale (IIBM), CSIC-UAM, Madrid, Spain (T.A.-G., S.M.-T., R.C.-M., S.U.-B., S.M.-P.)
- Cardiovascular Regeneration Program, Centro Nacional de Investigaciones Cardiovasculares, Carlos III (CNIC), Madrid, Spain (T.A.-G., S.M.-T., B.E., S.F.R., J.A.N.-A., E.O., M.V.-O., S.M.-P.)
- School of Medicine, Universidad Francisco de Vitoria, Madrid, Spain (T.A.-G., S.M.-P.)
| | - Susana Mendoza-Tamajon
- Metabolic and Immune Diseases Department, Instituto de Investigaciones Biomedicas Sols-Morreale (IIBM), CSIC-UAM, Madrid, Spain (T.A.-G., S.M.-T., R.C.-M., S.U.-B., S.M.-P.)
- Cardiovascular Regeneration Program, Centro Nacional de Investigaciones Cardiovasculares, Carlos III (CNIC), Madrid, Spain (T.A.-G., S.M.-T., B.E., S.F.R., J.A.N.-A., E.O., M.V.-O., S.M.-P.)
| | - Rosana Castro-Mecinas
- Metabolic and Immune Diseases Department, Instituto de Investigaciones Biomedicas Sols-Morreale (IIBM), CSIC-UAM, Madrid, Spain (T.A.-G., S.M.-T., R.C.-M., S.U.-B., S.M.-P.)
| | - Beatriz Escobar
- Cardiovascular Regeneration Program, Centro Nacional de Investigaciones Cardiovasculares, Carlos III (CNIC), Madrid, Spain (T.A.-G., S.M.-T., B.E., S.F.R., J.A.N.-A., E.O., M.V.-O., S.M.-P.)
- Mouse Genome Editing Unit, Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain (B.E.)
| | - Susana Ferreira Rocha
- Cardiovascular Regeneration Program, Centro Nacional de Investigaciones Cardiovasculares, Carlos III (CNIC), Madrid, Spain (T.A.-G., S.M.-T., B.E., S.F.R., J.A.N.-A., E.O., M.V.-O., S.M.-P.)
| | - Sonia Urra-Balduz
- Metabolic and Immune Diseases Department, Instituto de Investigaciones Biomedicas Sols-Morreale (IIBM), CSIC-UAM, Madrid, Spain (T.A.-G., S.M.-T., R.C.-M., S.U.-B., S.M.-P.)
| | - Jose Angel Nicolas-Avila
- Cardiovascular Regeneration Program, Centro Nacional de Investigaciones Cardiovasculares, Carlos III (CNIC), Madrid, Spain (T.A.-G., S.M.-T., B.E., S.F.R., J.A.N.-A., E.O., M.V.-O., S.M.-P.)
- Cardiovascular Research Institute & Department of Microbiology and Immunology, University of California San Francisco (J.A.N.-A.)
| | - Eduardo Oliver
- Cardiovascular Regeneration Program, Centro Nacional de Investigaciones Cardiovasculares, Carlos III (CNIC), Madrid, Spain (T.A.-G., S.M.-T., B.E., S.F.R., J.A.N.-A., E.O., M.V.-O., S.M.-P.)
- Biomedicine Department, Centro de Investigaciones Biológicas Margarita Salas (CIB), Madrid, Spain (E.O.)
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Spain (E.O.)
| | - Maria Villalba-Orero
- Cardiovascular Regeneration Program, Centro Nacional de Investigaciones Cardiovasculares, Carlos III (CNIC), Madrid, Spain (T.A.-G., S.M.-T., B.E., S.F.R., J.A.N.-A., E.O., M.V.-O., S.M.-P.)
- Department of Animal Medicine and Surgery, Universidad Complutense de Madrid, Madrid, Spain (M.V.-O.)
| | - Silvia Martin-Puig
- Metabolic and Immune Diseases Department, Instituto de Investigaciones Biomedicas Sols-Morreale (IIBM), CSIC-UAM, Madrid, Spain (T.A.-G., S.M.-T., R.C.-M., S.U.-B., S.M.-P.)
- Cardiovascular Regeneration Program, Centro Nacional de Investigaciones Cardiovasculares, Carlos III (CNIC), Madrid, Spain (T.A.-G., S.M.-T., B.E., S.F.R., J.A.N.-A., E.O., M.V.-O., S.M.-P.)
- School of Medicine, Universidad Francisco de Vitoria, Madrid, Spain (T.A.-G., S.M.-P.)
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, Spain (S.M.-P.)
| |
Collapse
|
4
|
Liu ZB, Zhu RR, Liu JL, Xu QR, Xu H, Liu JC, Zhou XL. NSD2 mediated H3K36me2 promotes pulmonary arterial hypertension by recruiting FOLR1 and metabolism reprogramming. Cell Signal 2025; 127:111594. [PMID: 39798773 DOI: 10.1016/j.cellsig.2025.111594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 12/09/2024] [Accepted: 01/05/2025] [Indexed: 01/15/2025]
Abstract
Pulmonary artery hypertension (PAH) is characterized by a cancer-like metabolic shift towards aerobic glycolysis. Nuclear Receptor Binding SET Domain Protein 2 (NSD2), a histone methyltransferase, has been implicated in PAH, yet its precise role remains unclear. In this study, we induced PAH in C57BL/6 mice using monocrotaline (MCT) and observed increased FOLR1 expression in PAH tissues, which was suppressed by NSD2 knockdown. Silencing NSD2 or FOLR1 inhibited the proliferation and migration of pulmonary artery endothelial cells (PAECs) and alleviated PAH phenotypes, right ventricular dysfunction, and pulmonary artery remodeling. Mechanistically, NSD2 knockdown prevented nuclear translocation of FOLR1 and its interaction with H3K36me2. Metabolic analysis revealed that NSD2 or FOLR1 knockdown reversed the increased oxygen consumption rate, extracellular acidification rate, glucose consumption, lactate production, and G6PD activity in MCT-treated PAECs. Furthermore, NSD2 or FOLR1 silencing decreased the expression of key glycolytic genes (HK2, TIGAR, and G6PD) by suppressing their promoter activity and weakening the interaction between FOLR1/H3K36me2 and these gene promoters. Our findings suggest that NSD2-mediated H3K36me2 recruits FOLR1 to promote PAH, and FOLR1 acts as a transcriptional factor to upregulate glycolytic gene expression in PAECs.
Collapse
Affiliation(s)
- Zhi-Bo Liu
- Department of Cardiovascular Surgery, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Rong-Rong Zhu
- Department of Cardiology, Jiangxi Hospital of traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Jin-Long Liu
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China
| | - Qi-Rong Xu
- Department of Thoracic Surgery, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Hua Xu
- Department of Thoracic Surgery, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Ji-Chun Liu
- Department of Cardiovascular Surgery, the Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
| | - Xue-Liang Zhou
- Department of Cardiovascular Surgery, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
| |
Collapse
|
5
|
Luo L, Zheng D, Da L, Cheng J, Cao Y, Wang N. Thrombin generation indices and Wells score predict pulmonary embolism in patients with acute exacerbation of chronic obstructive pulmonary disease. Clinics (Sao Paulo) 2025; 80:100582. [PMID: 40022893 PMCID: PMC11919307 DOI: 10.1016/j.clinsp.2025.100582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/06/2024] [Accepted: 01/05/2025] [Indexed: 03/04/2025] Open
Abstract
OBJECTIVE This study investigated the predictive value of thrombin generation indices and Wells score in the development of Pulmonary Embolism (PE) in patients with Acute Exacerbation of Chronic Obstructive Pulmonary Disease (AECOPD). METHODS 160 patients who were admitted for AECOPD and underwent CT Pulmonary Arteriography (CTPA) were collected. Among them, a total of 62 cases were diagnosed with PE as the AECOPD with PE group, and the other 98 cases were not diagnosed with PE as the AECOPD group. The general data, past history and combined basic diseases, laboratory tests and other related clinical data of the two groups were compared, and the data collected were statistically analyzed to explore the diagnostic indexes that can predict PE in AECOPD. RESULTS History of venous thromboembolism, d-Dimer as well as Endogenous Thrombin Potential (ETP), Activated Partial Thromboplastin Time (APTT) coagulation indices, and Wells score was significantly higher in the AECOPD with PE group than in the AECOPD group, and Time to Peak (ttpeak), Albumin (ALB) and total protein were lower than those in the AECOPD group. The Wells score had a positive correlation with ETP and APTT and a negative correlation with ttpeak, which were all independent risk factors for PE in AECOPD. The Wells score had the best efficacy in predicting the occurrence of PE in patients with AECOPD with a cutoff value of 4.62. CONCLUSION Significant correlations were found between the thrombin generation indices (ETP, APTT and ttpeak) and the Wells score, which can also be used for early diagnosis of PE in patients with AECOPD.
Collapse
Affiliation(s)
- Linjie Luo
- Department of Respiratory and Critical Care medicine, The Affiliated Hospital, Southwest Medical University, Chengdu City, Sichuan Province, PR China.
| | - Dan Zheng
- Department of Respiratory and Critical Care medicine, The Affiliated Hospital, Southwest Medical University, Chengdu City, Sichuan Province, PR China
| | - Li Da
- Department of Respiratory and Critical Care medicine, The Affiliated Hospital, Southwest Medical University, Chengdu City, Sichuan Province, PR China
| | - Jian Cheng
- Department of Respiratory and Critical Care medicine, The Affiliated Hospital, Southwest Medical University, Chengdu City, Sichuan Province, PR China
| | - Yirui Cao
- Department of Respiratory and Critical Care medicine, The Affiliated Hospital, Southwest Medical University, Chengdu City, Sichuan Province, PR China
| | - Na Wang
- Department of Respiratory and Critical Care medicine, The Affiliated Hospital, Southwest Medical University, Chengdu City, Sichuan Province, PR China
| |
Collapse
|
6
|
Briones-Claudett KH, Briones-Zamora KH, Solís JGB, Huilcapi Borja DI, Ocaña KNA, Bonifaz MAT, Barberán-Torres P, Grunauer M. Severe COVID-19 Pneumonia, Opportunistic Candida krusei Infection, and Acute Respiratory Distress Syndrome with Pulmonary Arterial Hypertension Treated with Bosentan: A Case Report. AMERICAN JOURNAL OF CASE REPORTS 2025; 26:e946400. [PMID: 39988835 PMCID: PMC11868965 DOI: 10.12659/ajcr.946400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 01/22/2025] [Accepted: 01/09/2025] [Indexed: 02/25/2025]
Abstract
BACKGROUND Despite global vaccination efforts, COVID-19 still necessitates effective treatments for severe cases that can quickly escalate to life-threatening complications, such as acute respiratory distress syndrome (ARDS) and secondary pulmonary arterial hypertension (PAH). Here, we present the clinical journey of a 73-year-old Ecuadorian man who developed severe COVID-19 pneumonia complicated by an opportunistic Candida krusei infection and ARDS, subsequently progressing to long-term PAH, managed with bosentan, an endothelin 1 (ET-1) antagonist. CASE REPORT The patient, vaccinated with 2 doses of CoronaVac, experienced severe COVID-19 complications, including ARDS and secondary PAH, further complicated by a C. krusei infection. Despite prompt mechanical ventilation and intensive care, his condition rapidly deteriorated. Clinical evaluation confirmed COVID-19-associated ARDS, secondary PAH, and C. krusei infection through bronchoalveolar lavage. The therapeutic approach combined bosentan (125 mg twice daily) with dual antifungal therapy, leading to significant stabilization and eventual discharge. Post-discharge assessments showed persistent cardiopulmonary dysfunction, consistent with post-COVID-19 syndrome. CONCLUSIONS This case highlights critical COVID-19 complications in a vaccinated patient. While vaccination may provide substantial protection, COVID-19 pneumonia treated with corticosteroids can increase the risk of opportunistic infections like C. krusei, and ARDS can lead to pulmonary fibrosis and PAH. This case underscores the need for research on therapeutic strategies for complex COVID-19 cases and emphasizes comprehensive, personalized care for managing COVID-19 complications and sequelae.
Collapse
Affiliation(s)
- Killen H. Briones-Claudett
- Faculty of Medical, Health and Life Sciences, Universidad Internacional del Ecuador. UIDE, Quito, Ecuador
- Faculty of Medical Sciences, Universidad Espíritu Santo, Samborondón, Ecuador
- Intensive Care Unit, Omni Hospital, Guayaquil, Ecuador
| | - Killen H. Briones-Zamora
- Faculty of Medical Sciences, Universidad Espíritu Santo, Samborondón, Ecuador
- Department of Pulmonary and Intensive Care, Briones PulmoCare, Guayaquil, Ecuador
| | - Jaime Galo Benites Solís
- Intensive Care Unit, Omni Hospital, Guayaquil, Ecuador
- Department of Pulmonary and Intensive Care, Briones PulmoCare, Guayaquil, Ecuador
| | | | | | | | - Pedro Barberán-Torres
- Faculty of Medical, Health and Life Sciences, Universidad Internacional del Ecuador. UIDE, Quito, Ecuador
| | - Michelle Grunauer
- School of Medicine, College of Health Sciences, Universidad San Francisco de Quito (USFQ), Quito, Ecuador
| |
Collapse
|
7
|
Kelly MP, Nikolaev VO, Gobejishvili L, Lugnier C, Hesslinger C, Nickolaus P, Kass DA, Pereira de Vasconcelos W, Fischmeister R, Brocke S, Epstein PM, Piazza GA, Keeton AB, Zhou G, Abdel-Halim M, Abadi AH, Baillie GS, Giembycz MA, Bolger G, Snyder G, Tasken K, Saidu NEB, Schmidt M, Zaccolo M, Schermuly RT, Ke H, Cote RH, Mohammadi Jouabadi S, Roks AJM. Cyclic nucleotide phosphodiesterases as drug targets. Pharmacol Rev 2025; 77:100042. [PMID: 40081105 DOI: 10.1016/j.pharmr.2025.100042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 01/13/2025] [Indexed: 03/15/2025] Open
Abstract
Cyclic nucleotides are synthesized by adenylyl and/or guanylyl cyclase, and downstream of this synthesis, the cyclic nucleotide phosphodiesterase families (PDEs) specifically hydrolyze cyclic nucleotides. PDEs control cyclic adenosine-3',5'monophosphate (cAMP) and cyclic guanosine-3',5'-monophosphate (cGMP) intracellular levels by mediating their quick return to the basal steady state levels. This often takes place in subcellular nanodomains. Thus, PDEs govern short-term protein phosphorylation, long-term protein expression, and even epigenetic mechanisms by modulating cyclic nucleotide levels. Consequently, their involvement in both health and disease is extensively investigated. PDE inhibition has emerged as a promising clinical intervention method, with ongoing developments aiming to enhance its efficacy and applicability. In this comprehensive review, we extensively look into the intricate landscape of PDEs biochemistry, exploring their diverse roles in various tissues. Furthermore, we outline the underlying mechanisms of PDEs in different pathophysiological conditions. Additionally, we review the application of PDE inhibition in related diseases, shedding light on current advancements and future prospects for clinical intervention. SIGNIFICANCE STATEMENT: Regulating PDEs is a critical checkpoint for numerous (patho)physiological conditions. However, despite the development of several PDE inhibitors aimed at controlling overactivated PDEs, their applicability in clinical settings poses challenges. In this context, our focus is on pharmacodynamics and the structure activity of PDEs, aiming to illustrate how selectivity and efficacy can be optimized. Additionally, this review points to current preclinical and clinical evidence that depicts various optimization efforts and indications.
Collapse
Affiliation(s)
- Michy P Kelly
- Department of Neurobiology, Center for Research on Aging, University of Maryland School of Medicine, Baltimore, Maryland
| | - Viacheslav O Nikolaev
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Leila Gobejishvili
- Department of Physiology, School of Medicine, University of Louisville, Kentucky, Louisville
| | - Claire Lugnier
- Translational CardioVascular Medicine, CRBS, UR 3074, Strasbourg, France
| | | | - Peter Nickolaus
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - David A Kass
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | - Rodolphe Fischmeister
- Université Paris-Saclay, Inserm, Signaling and Cardiovascular Pathophysiology, UMR-S 1180, Orsay, France
| | - Stefan Brocke
- Department of Immunology, UConn Health, Farmington, Connecticut
| | - Paul M Epstein
- Department of Cell Biology, UConn Health, Farmington, Connecticut
| | - Gary A Piazza
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, Alabama
| | - Adam B Keeton
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, Alabama
| | - Gang Zhou
- Georgia Cancer Center, Augusta University, Augusta, Georgia
| | - Mohammad Abdel-Halim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Ashraf H Abadi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - George S Baillie
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, UK
| | - Mark A Giembycz
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | | | - Gretchen Snyder
- Molecular Neuropharmacology, Intra-Cellular Therapies Inc (ITI), New York, New York
| | - Kjetil Tasken
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Nathaniel E B Saidu
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Martina Schmidt
- Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands; Groningen Research Institute for Asthma and COPD, GRIAC, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Manuela Zaccolo
- Department of Physiology, Anatomy and Genetics and National Institute for Health and Care Research Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - Ralph T Schermuly
- Department of internal Medicine, Justus Liebig University of Giessen, Giessen, Germany
| | - Hengming Ke
- Department of Biochemistry and Biophysics, The University of North Carolina, Chapel Hill, North Carolina
| | - Rick H Cote
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, New Hampshire
| | - Soroush Mohammadi Jouabadi
- Section of Vascular and Metabolic Disease, Department of Internal Medicine, Erasmus MC University Medical Center, Erasmus University Rotterdam, Rotterdam, The Netherlands
| | - Anton J M Roks
- Section of Vascular and Metabolic Disease, Department of Internal Medicine, Erasmus MC University Medical Center, Erasmus University Rotterdam, Rotterdam, The Netherlands.
| |
Collapse
|
8
|
Pei Y, Ren D, Yin Y, Shi J, Ai Q, Hao W, Luo X, Zhang C, Zhao Y, Bai C, Zhu L, Wang Q, Li S, Zhang Y, Lu J, Liu L, Zhou L, Wu Y, Weng Y, Jing Y, Lu C, Cui Y, Zheng H, Li Y, Chen G, Hu G, Chen Q, Liao X. Endothelial FUNDC1 Deficiency Drives Pulmonary Hypertension. Circ Res 2025; 136:e1-e19. [PMID: 39655444 DOI: 10.1161/circresaha.124.325156] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 11/21/2024] [Accepted: 11/26/2024] [Indexed: 01/30/2025]
Abstract
BACKGROUND Pulmonary hypertension (PH) is associated with endothelial dysfunction. However, the cause of endothelial dysfunction and its impact on PH remain incompletely understood. We aimed to investigate whether the hypoxia-inducible FUNDC1 (FUN14 domain-containing 1)-dependent mitophagy pathway underlies PH pathogenesis and progression. METHODS We first analyzed FUNDC1 protein levels in lung samples from patients with PH and animal models. Using rodent PH models induced by HySu (hypoxia+SU5416) or chronic hypoxia, we further investigated PH pathogenesis and development in response to global and cell-type-specific Fundc1 loss/gain-of-function. We also investigated the spontaneous PH in mice with inducible loss of endothelial Fundc1. In addition, histological, metabolic, and transcriptomic studies were performed to delineate molecular mechanisms. Finally, findings were validated in vivo by compound deficiency of HIF2α (hypoxia-inducible factor 2α; Epas1) and pharmacological intervention. RESULTS FUNDC1 protein levels were reduced in PH lung vessels from clinical subjects and animal models. Global Fundc1 deficiency exacerbated PH, while its overexpression was protective. The effect of FUNDC1 was mediated by endothelial cells rather than smooth muscle cells. Further, inducible loss of endothelial Fundc1 in postnatal mice was sufficient to cause PH spontaneously, whereas augmenting endothelial Fundc1 protected against PH before and after the onset of disease. Mechanistically, Fundc1 deficiency impaired basal mitophagy in endothelial cells, leading to the accumulation of dysfunctional mitochondria, metabolic reprogramming toward aerobic glycolysis, pseudohypoxia, and senescence, likely via a mtROS-HIF2α signaling pathway. Subsequently, Fundc1-deficient endothelial cells increased IGFBP2 (insulin-like growth factor-binding protein 2) secretion that drove pulmonary arterial remodeling to instigate PH. Finally, proof-of-principle in vivo studies showed significant efficacy on PH amelioration by targeting endothelial mitophagy, pseudohypoxia, senescence, or IGFBP2. CONCLUSIONS Collectively, we show that FUNDC1-mediated basal mitophagy is critical for endothelial homeostasis, and its disruption instigates PH pathogenesis. Given that similar changes in FUNDC1 and IGFBP2 were observed in PH patients, our findings are of significant clinical relevance and provide novel therapeutic strategies for PH.
Collapse
Affiliation(s)
- Yandong Pei
- State Key Laboratory of Medicinal Chemistry Biology, Haihe Laboratory of Cell Ecosystem, College of Life Sciences (Y.P., D.R., Y.Y., J.S., Q.A., W.H., X. Luo, C.B., L. Zhu, Q.W., S.L., Y. Zhang, J.L., L.L., H.Z., Y.L., G.C., Q.C., X. Liao), Nankai University, China
| | - Dongfeng Ren
- State Key Laboratory of Medicinal Chemistry Biology, Haihe Laboratory of Cell Ecosystem, College of Life Sciences (Y.P., D.R., Y.Y., J.S., Q.A., W.H., X. Luo, C.B., L. Zhu, Q.W., S.L., Y. Zhang, J.L., L.L., H.Z., Y.L., G.C., Q.C., X. Liao), Nankai University, China
| | - Yuanhao Yin
- State Key Laboratory of Medicinal Chemistry Biology, Haihe Laboratory of Cell Ecosystem, College of Life Sciences (Y.P., D.R., Y.Y., J.S., Q.A., W.H., X. Luo, C.B., L. Zhu, Q.W., S.L., Y. Zhang, J.L., L.L., H.Z., Y.L., G.C., Q.C., X. Liao), Nankai University, China
| | - Jiajia Shi
- State Key Laboratory of Medicinal Chemistry Biology, Haihe Laboratory of Cell Ecosystem, College of Life Sciences (Y.P., D.R., Y.Y., J.S., Q.A., W.H., X. Luo, C.B., L. Zhu, Q.W., S.L., Y. Zhang, J.L., L.L., H.Z., Y.L., G.C., Q.C., X. Liao), Nankai University, China
| | - Qianyuan Ai
- State Key Laboratory of Medicinal Chemistry Biology, Haihe Laboratory of Cell Ecosystem, College of Life Sciences (Y.P., D.R., Y.Y., J.S., Q.A., W.H., X. Luo, C.B., L. Zhu, Q.W., S.L., Y. Zhang, J.L., L.L., H.Z., Y.L., G.C., Q.C., X. Liao), Nankai University, China
| | - Wenxin Hao
- State Key Laboratory of Medicinal Chemistry Biology, Haihe Laboratory of Cell Ecosystem, College of Life Sciences (Y.P., D.R., Y.Y., J.S., Q.A., W.H., X. Luo, C.B., L. Zhu, Q.W., S.L., Y. Zhang, J.L., L.L., H.Z., Y.L., G.C., Q.C., X. Liao), Nankai University, China
| | - Xiaofan Luo
- State Key Laboratory of Medicinal Chemistry Biology, Haihe Laboratory of Cell Ecosystem, College of Life Sciences (Y.P., D.R., Y.Y., J.S., Q.A., W.H., X. Luo, C.B., L. Zhu, Q.W., S.L., Y. Zhang, J.L., L.L., H.Z., Y.L., G.C., Q.C., X. Liao), Nankai University, China
| | - Chenyue Zhang
- School of Statistics and Data Science, LPMC and KLMDASR (C.Z., Y. Zhao, G.H.), Nankai University, China
| | - Yanping Zhao
- School of Statistics and Data Science, LPMC and KLMDASR (C.Z., Y. Zhao, G.H.), Nankai University, China
| | - Chenyu Bai
- State Key Laboratory of Medicinal Chemistry Biology, Haihe Laboratory of Cell Ecosystem, College of Life Sciences (Y.P., D.R., Y.Y., J.S., Q.A., W.H., X. Luo, C.B., L. Zhu, Q.W., S.L., Y. Zhang, J.L., L.L., H.Z., Y.L., G.C., Q.C., X. Liao), Nankai University, China
| | - Lin Zhu
- State Key Laboratory of Medicinal Chemistry Biology, Haihe Laboratory of Cell Ecosystem, College of Life Sciences (Y.P., D.R., Y.Y., J.S., Q.A., W.H., X. Luo, C.B., L. Zhu, Q.W., S.L., Y. Zhang, J.L., L.L., H.Z., Y.L., G.C., Q.C., X. Liao), Nankai University, China
| | - Qiong Wang
- State Key Laboratory of Medicinal Chemistry Biology, Haihe Laboratory of Cell Ecosystem, College of Life Sciences (Y.P., D.R., Y.Y., J.S., Q.A., W.H., X. Luo, C.B., L. Zhu, Q.W., S.L., Y. Zhang, J.L., L.L., H.Z., Y.L., G.C., Q.C., X. Liao), Nankai University, China
| | - Shuangling Li
- State Key Laboratory of Medicinal Chemistry Biology, Haihe Laboratory of Cell Ecosystem, College of Life Sciences (Y.P., D.R., Y.Y., J.S., Q.A., W.H., X. Luo, C.B., L. Zhu, Q.W., S.L., Y. Zhang, J.L., L.L., H.Z., Y.L., G.C., Q.C., X. Liao), Nankai University, China
| | - Yuwei Zhang
- State Key Laboratory of Medicinal Chemistry Biology, Haihe Laboratory of Cell Ecosystem, College of Life Sciences (Y.P., D.R., Y.Y., J.S., Q.A., W.H., X. Luo, C.B., L. Zhu, Q.W., S.L., Y. Zhang, J.L., L.L., H.Z., Y.L., G.C., Q.C., X. Liao), Nankai University, China
| | - Jiangtao Lu
- State Key Laboratory of Medicinal Chemistry Biology, Haihe Laboratory of Cell Ecosystem, College of Life Sciences (Y.P., D.R., Y.Y., J.S., Q.A., W.H., X. Luo, C.B., L. Zhu, Q.W., S.L., Y. Zhang, J.L., L.L., H.Z., Y.L., G.C., Q.C., X. Liao), Nankai University, China
| | - Lin Liu
- State Key Laboratory of Medicinal Chemistry Biology, Haihe Laboratory of Cell Ecosystem, College of Life Sciences (Y.P., D.R., Y.Y., J.S., Q.A., W.H., X. Luo, C.B., L. Zhu, Q.W., S.L., Y. Zhang, J.L., L.L., H.Z., Y.L., G.C., Q.C., X. Liao), Nankai University, China
| | - Lin Zhou
- Department of Cardiology, Tongji Hospital, Tongji University, China (L. Zhou)
| | - Yuli Wu
- Department of Anesthesiology (Y. Wu, Y. Weng), Tianjin First Central Hospital, China
| | - Yiqi Weng
- Department of Anesthesiology (Y. Wu, Y. Weng), Tianjin First Central Hospital, China
| | - Yongle Jing
- Department of Cardiology (Y.J., C.L.), Tianjin First Central Hospital, China
| | - Chengzhi Lu
- Department of Cardiology (Y.J., C.L.), Tianjin First Central Hospital, China
| | - Yujie Cui
- School of Medical Laboratory, Tianjin Medical University, China (Y.C.)
| | - Hao Zheng
- State Key Laboratory of Medicinal Chemistry Biology, Haihe Laboratory of Cell Ecosystem, College of Life Sciences (Y.P., D.R., Y.Y., J.S., Q.A., W.H., X. Luo, C.B., L. Zhu, Q.W., S.L., Y. Zhang, J.L., L.L., H.Z., Y.L., G.C., Q.C., X. Liao), Nankai University, China
| | - Yanjun Li
- State Key Laboratory of Medicinal Chemistry Biology, Haihe Laboratory of Cell Ecosystem, College of Life Sciences (Y.P., D.R., Y.Y., J.S., Q.A., W.H., X. Luo, C.B., L. Zhu, Q.W., S.L., Y. Zhang, J.L., L.L., H.Z., Y.L., G.C., Q.C., X. Liao), Nankai University, China
| | - Guo Chen
- State Key Laboratory of Medicinal Chemistry Biology, Haihe Laboratory of Cell Ecosystem, College of Life Sciences (Y.P., D.R., Y.Y., J.S., Q.A., W.H., X. Luo, C.B., L. Zhu, Q.W., S.L., Y. Zhang, J.L., L.L., H.Z., Y.L., G.C., Q.C., X. Liao), Nankai University, China
| | - Gang Hu
- School of Statistics and Data Science, LPMC and KLMDASR (C.Z., Y. Zhao, G.H.), Nankai University, China
| | - Quan Chen
- State Key Laboratory of Medicinal Chemistry Biology, Haihe Laboratory of Cell Ecosystem, College of Life Sciences (Y.P., D.R., Y.Y., J.S., Q.A., W.H., X. Luo, C.B., L. Zhu, Q.W., S.L., Y. Zhang, J.L., L.L., H.Z., Y.L., G.C., Q.C., X. Liao), Nankai University, China
| | - Xudong Liao
- State Key Laboratory of Medicinal Chemistry Biology, Haihe Laboratory of Cell Ecosystem, College of Life Sciences (Y.P., D.R., Y.Y., J.S., Q.A., W.H., X. Luo, C.B., L. Zhu, Q.W., S.L., Y. Zhang, J.L., L.L., H.Z., Y.L., G.C., Q.C., X. Liao), Nankai University, China
| |
Collapse
|
9
|
Qian C, Dong G, Yang C, Zheng W, Zhong C, Shen Q, Lu Y, Zhao Y. Broadening horizons: molecular mechanisms and disease implications of endothelial-to-mesenchymal transition. Cell Commun Signal 2025; 23:16. [PMID: 39789529 PMCID: PMC11720945 DOI: 10.1186/s12964-025-02028-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 01/03/2025] [Indexed: 01/12/2025] Open
Abstract
Endothelial-mesenchymal transition (EndMT) is defined as an important process of cellular differentiation by which endothelial cells (ECs) are prone to lose their characteristics and transform into mesenchymal cells. During EndMT, reduced expression of endothelial adhesion molecules disrupts intercellular adhesion, triggering cytoskeletal reorganization and mesenchymal transition. Numerous studies have proved that EndMT is a multifaceted biological event driven primarily by cytokines such as TGF-β, TNF-α, and IL-1β, alongside signaling pathways like WNT, Smad, MEK-ERK, and Notch. Nevertheless, the exact roles of EndMT in complicated diseases have not been comprehensively reviewed. In this review, we summarize the predominant molecular regulatory mechanisms and signaling pathways that contribute to the development of EndMT, as well as highlight the contributions of a series of imperative non-coding RNAs in curbing the initiation of EndMT. Furthermore, we discuss the significant impact of EndMT on worsening vasculature-related diseases, including cancer, cardiovascular diseases, atherosclerosis, pulmonary vascular diseases, diabetes-associated fibrotic conditions, and cerebral cavernous malformation, providing the implications that targeting EndMT holds promise as a therapeutic strategy to mitigate disease progression.
Collapse
Affiliation(s)
- Cheng Qian
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Guanglu Dong
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Chunmei Yang
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Weiwei Zheng
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Chongjin Zhong
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Qiuhong Shen
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Yin Lu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Yang Zhao
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
10
|
You N, Liu G, Yu M, Chen W, Fei X, Sun T, Han M, Qin Z, Wei Z, Wang D. Reconceptualizing Endothelial-to-mesenchymal transition in atherosclerosis: Signaling pathways and prospective targeting strategies. J Adv Res 2025:S2090-1232(24)00627-1. [PMID: 39756576 DOI: 10.1016/j.jare.2024.12.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 12/27/2024] [Accepted: 12/28/2024] [Indexed: 01/07/2025] Open
Abstract
BACKGROUND The modification of endothelial cells (ECs) biological function under pathogenic conditions leads to the expression of mesenchymal stromal cells (MSCs) markers, defined as endothelial-to-mesenchymal transition (EndMT). Invisible in onset and slow in progression, atherosclerosis (AS) is a potential contributor to various atherosclerotic cardiovascular diseases (ASCVD). By triggering AS, EndMT, the "initiator" of AS, induces the progression of ASCVD such as coronary atherosclerotic heart disease (CHD) and ischemic cerebrovascular disease (ICD), with serious clinical complications such as myocardial infarction (MI) and stroke. In-depth research of the pathomechanisms of EndMT and identification of potential targeted therapeutic strategies hold considerable research value for the prevention and treatment of ASCVD-associated with delayed EndMT. Although previous studies have progressively unraveled the complexity of EndMT and its pathogenicity triggered by alterations in vascular microenvironmental factors, systematic descriptions of the most recent pathogenic roles of EndMT in the progression of AS, targeted therapeutic strategies, and their future research directions are scarce. AIM OF REVIEW We aim to provide new researchers with comprehensive knowledge of EndMT in AS. We exhaustively review the latest research advancements in the field and provide a theoretical basis for investigating EndMT, a biological process with sophisticated mechanisms. KEY SCIENTIFIC CONCEPTS OF REVIEW This review summarized that altered hemodynamics with microenvironmental crosstalk consisting of inflammatory responses or glycolysis, oxidative stress, lactate or acetyl-CoA (Ac-CoA), fatty acid oxidation (FAO), intracellular iron overload, and transcription factors, including ELK1 and STAT3, modulate the EndMT and affect AS progression. In addition, we provide new paradigms for the development of promising therapeutic agents against these disease-causing processes and indicate promising directions and challenges that need to be addressed to elucidate the EndMT process.
Collapse
Affiliation(s)
- Nanlin You
- Department of Neurosurgery, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| | - Guohao Liu
- Department of Neurosurgery, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Mengchen Yu
- Department of Neurosurgery, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Wenbo Chen
- Department of Neurosurgery, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Xiaoyao Fei
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Infection and Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Tao Sun
- Department of Neurosurgery, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Mengtao Han
- Department of Neurosurgery, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Zhen Qin
- Department of Neurosurgery, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Zhaosheng Wei
- Department of Neurosurgery, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Donghai Wang
- Department of Neurosurgery, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; Qilu Hospital of Shandong University Dezhou Hospital, Dezhou, Shandong 253032, China.
| |
Collapse
|
11
|
Rao RJ, Yang J, Jiang S, El-Khoury W, Hafeez N, Okawa S, Tai YY, Tang Y, Aaraj YA, Sembrat JC, Chan SY. Post-transcriptional regulation of IFI16 promotes inflammatory endothelial pathophenotypes observed in pulmonary arterial hypertension. Am J Physiol Lung Cell Mol Physiol 2025; 328:L148-L158. [PMID: 39657959 PMCID: PMC11905863 DOI: 10.1152/ajplung.00048.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 10/22/2024] [Accepted: 10/31/2024] [Indexed: 12/12/2024] Open
Abstract
Pulmonary arterial hypertension (PAH) is a progressive disease driven by endothelial cell inflammation and dysfunction, resulting in the pathological remodeling of the pulmonary vasculature. Innate immune activation has been linked to PAH development; however, the regulation, propagation, and reversibility of the induction of inflammation in PAH are poorly understood. Here, we demonstrate the role of interferon-inducible protein 16 (IFI16), an innate immune sensor, as a modulator of endothelial inflammation in pulmonary hypertension, using human pulmonary artery endothelial cells (PAECs). Inflammatory stimulus of PAECs with IL-1β upregulates IFI16 expression, inducing proinflammatory cytokine upregulation and cellular apoptosis. IFI16 mRNA stability is regulated by post-transcriptional m6A modification, mediated by Wilms' tumor 1-associated protein (WTAP), a structural stabilizer of the methyltransferase complex, via regulation of m6A methylation of IFI16. In addition, m6A levels are increased in the peripheral blood mononuclear cells of patients with PAH compared with control, indicating that quantifying this epigenetic change in patients may hold potential as a biomarker for disease identification. In summary, our study demonstrates that IFI16 mediates inflammatory endothelial pathophenotypes seen in pulmonary arterial hypertension.NEW & NOTEWORTHY Our work establishes a paradigm of the regulatory role of the Wilms' tumor 1-associated protein (WTAP)-interferon inducible protein 16 (IFI16) axis that uses m6A RNA methylation to drive endothelial inflammatory activation in pulmonary hypertension. Consequently, because m6A epigenetic modifications are both reversible and dynamic, this axis is an attractive diagnostic and therapeutic target in pulmonary hypertension and more broadly in endothelial immune activation.
Collapse
Affiliation(s)
- Rashmi J Rao
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, United States
| | - Jimin Yang
- Department of Molecular Biology, Jeonbuk National University, Jeonju, South Korea
| | - Siyi Jiang
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, United States
| | - Wadih El-Khoury
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, United States
| | - Neha Hafeez
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, United States
- Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Satoshi Okawa
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, United States
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, United States
- McGowan Institute for Regenerative Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, United States
| | - Yi Yin Tai
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, United States
| | - Ying Tang
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, United States
| | - Yassmin Al Aaraj
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, United States
| | - John C Sembrat
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
| | - Stephen Y Chan
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, United States
| |
Collapse
|
12
|
Marinho Y, Villarreal ES, Loya O, Oliveira SD. Mechanisms of lung endothelial cell injury and survival in pulmonary arterial hypertension. Am J Physiol Lung Cell Mol Physiol 2024; 327:L972-L983. [PMID: 39406383 PMCID: PMC11684956 DOI: 10.1152/ajplung.00208.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/02/2024] [Accepted: 10/13/2024] [Indexed: 12/06/2024] Open
Abstract
Pulmonary arterial hypertension (PAH) is a progressive, chronic, and incurable inflammatory pulmonary vascular disease characterized by significant sex bias and largely unexplored microbial-associated molecular mechanisms that may influence its development and sex prevalence across various subgroups. PAH can be subclassified as idiopathic, heritable, or associated with conditions such as connective tissue diseases, congenital heart defects, liver disease, infections, and chronic exposure to drugs or toxins. During PAH progression, lung vascular endothelial cells (ECs) undergo dramatic morphofunctional transformations in response to acute and chronic inflammation. These transformations include the appearance and expansion of abnormal vascular cell phenotypes such as those derived from apoptosis-resistant cell growth and endothelial-to-mesenchymal transition (EndoMT). Compelling evidence indicates that these endothelial phenotypes seem to be triggered by chronic lung vascular injury and dysfunction, often characterized by reduced secretion of vasoactive molecules like nitric oxide (NO) and exacerbated response to vasoconstrictors such as Endothelin-1 (ET-1), both long-term known contributors of PAH pathogenesis. This review sheds light on the mechanisms of EC dysfunction, apoptosis, and EndoMT in PAH, aiming to unravel the intricate interactions between ECs, pathogens, and other cell types that drive the onset and progression of this devastating disease. Ultimately, we hope to provide an overview of the complex functions of lung vascular ECs in PAH, inspiring novel therapeutic strategies that target these dysfunctional cells to improve the treatment landscape for PAH, particularly in the face of current and emerging global pathogenic threats.
Collapse
Affiliation(s)
- Ygor Marinho
- Vascular Immunobiology Lab, Department of Anesthesiology, College of Medicine, University of Illinois Chicago, Chicago, Illinois, United States
| | - Elizabeth S Villarreal
- Vascular Immunobiology Lab, Department of Anesthesiology, College of Medicine, University of Illinois Chicago, Chicago, Illinois, United States
| | - Omar Loya
- Vascular Immunobiology Lab, Department of Anesthesiology, College of Medicine, University of Illinois Chicago, Chicago, Illinois, United States
| | - Suellen D Oliveira
- Vascular Immunobiology Lab, Department of Anesthesiology, College of Medicine, University of Illinois Chicago, Chicago, Illinois, United States
- Department of Physiology and Biophysics, College of Medicine, University of Illinois Chicago, Chicago, Illinois, United States
| |
Collapse
|
13
|
Brownstein AJ, Mura M, Ruffenach G, Channick RN, Saggar R, Kim A, Umar S, Eghbali M, Yang X, Hong J. Dissecting the lung transcriptome of pulmonary fibrosis-associated pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 2024; 327:L520-L534. [PMID: 39137526 PMCID: PMC11482468 DOI: 10.1152/ajplung.00166.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/15/2024] [Accepted: 08/09/2024] [Indexed: 08/15/2024] Open
Abstract
Integrative multiomics can help elucidate the pathophysiology of pulmonary fibrosis (PF)-associated pulmonary hypertension (PH) (PF-PH). Weighted gene coexpression network analysis (WGCNA) was performed on a transcriptomic dataset of explanted lung tissue from 116 patients with PF. Patients were stratified by pulmonary vascular resistance (PVR), and differential gene expression analysis was conducted. Gene modules were correlated with hemodynamics at the time of transplantation and tested for enrichment in the lung transcriptomics signature of an independent pulmonary arterial hypertension (PAH) cohort. We found 1,250 differentially expressed genes between high and low PVR groups. WGCNA identified that black and yellowgreen modules negatively correlated with PVR, whereas the tan and darkgrey modules are positively correlated with PVR in PF-PH. In addition, the tan module showed the strongest enrichment for an independent PAH gene signature, suggesting shared gene expression patterns between PAH and PF-PH. Pharmacotranscriptomic analysis using the Connectivity Map implicated the tan and darkgrey modules as potentially pathogenic in PF-PH, given their combined module signature demonstrated a high negative connectivity score for treprostinil, a medication used in the treatment of PF-PH, and a high positive connectivity score for bone morphogenetic protein (BMP) loss of function. Pathway enrichment analysis revealed that inflammatory pathways and oxidative phosphorylation were downregulated, whereas epithelial-mesenchymal transition was upregulated in modules associated with increased PVR. Our integrative systems biology approach to the lung transcriptome of PF with and without PH identified several PH-associated coexpression modules and gene targets with shared molecular features with PAH warranting further investigation to uncover potential new therapies for PF-PH.NEW & NOTEWORTHY An integrative systems biology approach that included transcriptomic analysis of explanted lung tissue from patients with pulmonary fibrosis (PF) with and without pulmonary hypertension (PH) undergoing lung transplantation, combined with hemodynamic correlation and pharmacotranscriptomics, identified modules of genes associated with pulmonary vascular disease severity. Comparison with an independent pulmonary arterial hypertension (PAH) dataset identified shared gene expression patterns between PAH and PF-PH.
Collapse
Grants
- R01HL147586,R01HL159865 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- K08169982 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- K08 HL141995 NHLBI NIH HHS
- UL1TR001881 HHS | NIH | National Center for Advancing Translational Sciences (NCATS)
- K08 HL169982 NHLBI NIH HHS
- R01 HL159507 NHLBI NIH HHS
- R01HL16038,K08HL141995 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01 HL161038 NHLBI NIH HHS
- R01 HL159865 NHLBI NIH HHS
- R01 NS117148 NINDS NIH HHS
- R01NS117148,R01NS111378 HHS | NIH | National Institute of Neurological Disorders and Stroke (NINDS)
- UL1 TR001881 NCATS NIH HHS
- R01HL159507 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
Collapse
Affiliation(s)
- Adam J Brownstein
- Division of Pulmonary and Critical Care Medicine, University of California, Los Angeles, California, United States
| | - Marco Mura
- Division of Respirology, Western University, London, Ontario, Canada
| | - Gregoire Ruffenach
- Division of Molecular Medicine, Department of Anesthesiology, David Geffen School of Medicine, University of California, Los Angeles, California, United States
| | - Richard N Channick
- Division of Pulmonary and Critical Care Medicine, University of California, Los Angeles, California, United States
| | - Rajan Saggar
- Division of Pulmonary and Critical Care Medicine, University of California, Los Angeles, California, United States
| | - Airie Kim
- Division of Pulmonary and Critical Care Medicine, University of California, Los Angeles, California, United States
| | - Soban Umar
- Division of Molecular Medicine, Department of Anesthesiology, David Geffen School of Medicine, University of California, Los Angeles, California, United States
| | - Mansoureh Eghbali
- Division of Molecular Medicine, Department of Anesthesiology, David Geffen School of Medicine, University of California, Los Angeles, California, United States
| | - Xia Yang
- Department of Integrative Biology and Physiology, University of California, Los Angeles, California, United States
| | - Jason Hong
- Division of Pulmonary and Critical Care Medicine, University of California, Los Angeles, California, United States
| |
Collapse
|
14
|
Jadamba B, Jin Y, Lee H. Harmonising cellular conversations: decoding the vital roles of extracellular vesicles in respiratory system intercellular communications. Eur Respir Rev 2024; 33:230272. [PMID: 39537245 PMCID: PMC11558538 DOI: 10.1183/16000617.0272-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 08/22/2024] [Indexed: 11/16/2024] Open
Abstract
Extracellular vesicles (EVs) released by various cells play crucial roles in intercellular communication within the respiratory system. This review explores the historical context and significance of research into extracellular vesicles. Categorised into exosomes (sized 30-150 nm), microvesicles (sized 50-1000 nm) and apoptotic bodies (sized 500-2000nm), based on their generation mechanisms, extracellular vesicles carry diverse cargoes of biomolecules, including proteins, lipids and nucleic acids. Respiratory ailments are the primary contributors to both mortality and morbidity across various populations globally, significantly impacting public health. Recent studies have underscored the pivotal role of extracellular vesicles, particularly their cargo content, in mediating intercellular communication between lung cells in respiratory diseases. This comprehensive review provides insights into extracellular vesicle mechanisms and emphasises their significance in major respiratory conditions, including acute lung injury, COPD, pulmonary hypertension, pulmonary fibrosis, asthma and lung cancer.
Collapse
Affiliation(s)
- Budjav Jadamba
- Department of Biology and Chemistry, Changwon National University, Changwon, Korea
| | - Yang Jin
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Heedoo Lee
- Department of Biology and Chemistry, Changwon National University, Changwon, Korea
| |
Collapse
|
15
|
Tóth EN, Celant LR, Niglas M, Jansen S, Tramper J, Baxan N, Ashek A, Wessels JN, Marcus JT, Meijboom LJ, Houweling AC, Nossent EJ, Aman J, Grynblat J, Perros F, Montani D, Vonk Noordegraaf A, Zhao L, de Man FS, Bogaard HJ. Deep phenotyping of unaffected carriers of pathogenic BMPR2 variants screened for pulmonary arterial hypertension. Eur Respir J 2024; 64:2400442. [PMID: 38991711 PMCID: PMC11447285 DOI: 10.1183/13993003.00442-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 06/19/2024] [Indexed: 07/13/2024]
Abstract
INTRODUCTION Pathogenic variants in the gene encoding for BMPR2 are a major genetic risk factor for heritable pulmonary arterial hypertension. Owing to incomplete penetrance, deep phenotyping of unaffected carriers of a pathogenic BMPR2 variant through multimodality screening may aid in early diagnosis and identify susceptibility traits for future development of pulmonary arterial hypertension. METHODS 28 unaffected carriers (44±16 years, 57% female) and 21 healthy controls (44±18 years, 48% female) underwent annual screening, including cardiac magnetic resonance imaging, transthoracic echocardiography, cardiopulmonary exercise testing and right heart catheterisation. Right ventricular pressure-volume loops were constructed to assess load-independent contractility and compared with a healthy control group. A transgenic Bmpr2Δ71Ex1/+ rat model was employed to validate findings from humans. RESULTS Unaffected carriers had lower indexed right ventricular end-diastolic (79.5±17.6 mL·m-2 versus 62.7±15.3 mL·m-2; p=0.001), end-systolic (34.2±10.5 mL·m-2 versus 27.1±8.3 mL·m-2; p=0.014) and left ventricular end-diastolic (68.9±14.1 mL·m-2 versus 58.5±10.7 mL·m-2; p=0.007) volumes than control subjects. Bmpr2Δ71Ex1/+ rats were also observed to have smaller cardiac volumes than wild-type rats. Pressure-volume loop analysis showed that unaffected carriers had significantly higher afterload (arterial elastance 0.15±0.06 versus 0.27±0.08 mmHg·mL-1; p<0.001) and end-systolic elastance (0.28±0.07 versus 0.35±0.10 mmHg·mL-1; p=0.047) in addition to lower right ventricular pulmonary artery coupling (end-systolic elastance/arterial elastance 2.24±1.03 versus 1.36±0.37; p=0.006). During the 4-year follow-up period, two unaffected carriers developed pulmonary arterial hypertension, with normal N-terminal pro-brain natriuretic peptide and transthoracic echocardiography indices at diagnosis. CONCLUSION Unaffected BMPR2 mutation carriers have an altered cardiac phenotype mimicked in Bmpr2Δ71Ex1/+ transgenic rats. Future efforts to establish an effective screening protocol for individuals at risk for developing pulmonary arterial hypertension warrant longer follow-up periods.
Collapse
Affiliation(s)
- Eszter N Tóth
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Pulmonary Medicine, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Pulmonary Hypertension and Thrombosis, Amsterdam, The Netherlands
- Contributed equally
| | - Lucas R Celant
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Pulmonary Medicine, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Pulmonary Hypertension and Thrombosis, Amsterdam, The Netherlands
- Contributed equally
| | - Marili Niglas
- Imperial College London, National Heart and Lung Institute, London, UK
| | - Samara Jansen
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Pulmonary Medicine, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Pulmonary Hypertension and Thrombosis, Amsterdam, The Netherlands
| | - Jelco Tramper
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Pulmonary Medicine, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Pulmonary Hypertension and Thrombosis, Amsterdam, The Netherlands
| | - Nicoleta Baxan
- Imperial College London, National Heart and Lung Institute, London, UK
| | - Ali Ashek
- Imperial College London, National Heart and Lung Institute, London, UK
| | - Jeroen N Wessels
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Pulmonary Medicine, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Pulmonary Hypertension and Thrombosis, Amsterdam, The Netherlands
| | - J Tim Marcus
- Amsterdam Cardiovascular Sciences, Pulmonary Hypertension and Thrombosis, Amsterdam, The Netherlands
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Radiology and Nuclear Medicine, Amsterdam, The Netherlands
| | - Lilian J Meijboom
- Amsterdam Cardiovascular Sciences, Pulmonary Hypertension and Thrombosis, Amsterdam, The Netherlands
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Radiology and Nuclear Medicine, Amsterdam, The Netherlands
| | - Arjan C Houweling
- Amsterdam UMC location AMC, Department of Human Genetics, Amsterdam, The Netherlands
| | - Esther J Nossent
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Pulmonary Medicine, Amsterdam, The Netherlands
| | - Jurjan Aman
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Pulmonary Medicine, Amsterdam, The Netherlands
| | - Julien Grynblat
- INSERM UMR_S 999 "Pulmonary Hypertension: Pathophysiology and Novel Therapies", Marie Lannelongue Hospital and Bicêtre Hospital, Le Plessis-Robinson, France
- AP-HP, Department of Respiratory and Intensive Care Medicine, Pulmonary Hypertension National Referral Center, Bicêtre Hospital, Le Kremlin-Bicêtre, France
- Université Paris-Saclay, School of Medicine Gif-sur-Yvette, Gif-sur-Yvette, France
- M3C-Necker, Hôpital Necker-Enfants Malades, AP-HP, Université de Paris Cité, Cardiologie Congénitale et Pédiatrique, Paris, France
| | - Frédéric Perros
- CarMeN Laboratory, INSERM U1060, INRAE U1397, Université Claude Bernard Lyon 1, Pierre-Bénite, France
| | - David Montani
- INSERM UMR_S 999 "Pulmonary Hypertension: Pathophysiology and Novel Therapies", Marie Lannelongue Hospital and Bicêtre Hospital, Le Plessis-Robinson, France
- AP-HP, Department of Respiratory and Intensive Care Medicine, Pulmonary Hypertension National Referral Center, Bicêtre Hospital, Le Kremlin-Bicêtre, France
- Université Paris-Saclay, School of Medicine Gif-sur-Yvette, Gif-sur-Yvette, France
| | - Anton Vonk Noordegraaf
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Pulmonary Medicine, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Pulmonary Hypertension and Thrombosis, Amsterdam, The Netherlands
| | - Lan Zhao
- Imperial College London, National Heart and Lung Institute, London, UK
| | - Frances S de Man
- Amsterdam Cardiovascular Sciences, Pulmonary Hypertension and Thrombosis, Amsterdam, The Netherlands
| | - Harm Jan Bogaard
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Pulmonary Medicine, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Pulmonary Hypertension and Thrombosis, Amsterdam, The Netherlands
| |
Collapse
|
16
|
Krzyżewska A, Kurakula K. Sex Dimorphism in Pulmonary Arterial Hypertension Associated With Autoimmune Diseases. Arterioscler Thromb Vasc Biol 2024; 44:2169-2190. [PMID: 39145392 DOI: 10.1161/atvbaha.124.320886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Pulmonary hypertension is a rare, incurable, and progressive disease. Although there is increasing evidence that immune disorders, particularly those associated with connective tissue diseases, are a strong predisposing factor in the development of pulmonary arterial hypertension (PAH), there is currently a lack of knowledge about the detailed molecular mechanisms responsible for this phenomenon. Exploring this topic is crucial because patients with an immune disorder combined with PAH have a worse prognosis and higher mortality compared with patients with other PAH subtypes. Moreover, data recorded worldwide show that the prevalence of PAH in women is 2× to even 4× higher than in men, and the ratio of PAH associated with autoimmune diseases is even higher (9:1). Sexual dimorphism in the pathogenesis of cardiovascular disease was explained for many years by the action of female sex hormones. However, there are increasing reports of interactions between sex hormones and sex chromosomes, and differences in the pathogenesis of cardiovascular disease may be controlled not only by sex hormones but also by sex chromosome pathways that are not dependent on the gonads. This review discusses the role of estrogen and genetic factors including the role of genes located on the X chromosome, as well as the potential protective role of the Y chromosome in sexual dimorphism, which is prominent in the occurrence of PAH associated with autoimmune diseases. Moreover, an overview of animal models that could potentially play a role in further investigating the aforementioned link was also reviewed.
Collapse
Affiliation(s)
- Anna Krzyżewska
- Department of Experimental Physiology and Pathophysiology, Medical University of Białystok, Poland (A.K.)
| | - Kondababu Kurakula
- Department of Physiology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Center, Free University Medical Center, the Netherlands (K.K.)
| |
Collapse
|
17
|
Chen Z, Song L, Zhong M, Pang L, Sun J, Xian Q, Huang T, Xie F, Cheng J, Fu K, Huang Z, Guo D, Chen R, Sun X, Huang C. A comprehensive analysis of genes associated with hypoxia and cuproptosis in pulmonary arterial hypertension using machine learning methods and immune infiltration analysis: AHR is a key gene in the cuproptosis process. Front Med (Lausanne) 2024; 11:1435068. [PMID: 39391037 PMCID: PMC11464361 DOI: 10.3389/fmed.2024.1435068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 09/16/2024] [Indexed: 10/12/2024] Open
Abstract
Background Pulmonary arterial hypertension (PAH) is a serious condition characterized by elevated pulmonary artery pressure, leading to right heart failure and increased mortality. This study investigates the link between PAH and genes associated with hypoxia and cuproptosis. Methods We utilized expression profiles and single-cell RNA-seq data of PAH from the GEO database and genecad. Genes related to cuproptosis and hypoxia were identified. After normalizing the data, differential gene expression was analyzed between PAH and control groups. We performed clustering analyses on cuproptosis-related genes and constructed a weighted gene co-expression network (WGCNA) to identify key genes linked to cuproptosis subtype scores. KEGG, GO, and DO enrichment analyses were conducted for hypoxia-related genes, and a protein-protein interaction (PPI) network was created using STRING. Immune cell composition differences were examined between groups. SingleR and Seurat were used for scRNA-seq data analysis, with PCA and t-SNE for dimensionality reduction. We analyzed hub gene expression across single-cell clusters and built a diagnostic model using LASSO and random forest, optimizing parameters with 10-fold cross-validation. A total of 113 combinations of 12 machine learning algorithms were employed to evaluate model accuracy. GSEA was utilized for pathway enrichment analysis of AHR and FAS, and a Nomogram was created to assess risk impact. We also analyzed the correlation between key genes and immune cell types using Spearman correlation. Results We identified several diagnostic genes for PAH linked to hypoxia and cuproptosis. PPI networks illustrated relationships among these hub genes, with immune infiltration analysis highlighting associations with monocytes, macrophages, and CD8 T cells. The genes AHR, FAS, and FGF2 emerged as key markers, forming a robust diagnostic model (NaiveBayes) with an AUC of 0.9. Conclusion AHR, FAS, and FGF2 were identified as potential biomarkers for PAH, influencing cell proliferation and inflammatory responses, thereby offering new insights for PAH prevention and treatment.
Collapse
Affiliation(s)
- Zuguang Chen
- Central People’s Hospital of Zhanjiang, Zhanjiang, Guangdong, China
| | - Lingyue Song
- Emergency Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Ming Zhong
- Emergency Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Lingpin Pang
- Emergency Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Jie Sun
- Emergency Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Qian Xian
- Emergency Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Tao Huang
- Emergency Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Fengwei Xie
- Emergency Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Junfen Cheng
- Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Kaili Fu
- Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Zhihai Huang
- Emergency Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Dingyu Guo
- Emergency Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Riken Chen
- Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Xishi Sun
- Emergency Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Chunyi Huang
- Central People’s Hospital of Zhanjiang, Zhanjiang, Guangdong, China
| |
Collapse
|
18
|
Rao RJ, Yang J, Jiang S, El-Khoury W, Hafeez N, Okawa S, Tai YY, Tang Y, Al Aaraj Y, Sembrat J, Chan SY. Post-transcriptional regulation of IFI16 promotes inflammatory endothelial pathophenotypes observed in pulmonary arterial hypertension. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.19.613988. [PMID: 39345560 PMCID: PMC11429958 DOI: 10.1101/2024.09.19.613988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Pulmonary arterial hypertension (PAH) is a progressive disease driven by endothelial cell inflammation and dysfunction, resulting in the pathological remodeling of the pulmonary vasculature. Innate immune activation has been linked to PAH development; however, the regulation, propagation, and reversibility of the induction of inflammation in PAH is poorly understood. Here, we demonstrate a role for interferon inducible protein 16 (IFI16), an innate immune sensor, as a modulator of endothelial inflammation in pulmonary hypertension, utilizing human pulmonary artery endothelial cells (PAECs). Inflammatory stimulus of PAECs with IL-1β up-regulates IFI16 expression, inducing proinflammatory cytokine up-regulation and cellular apoptosis. IFI16 mRNA stability is regulated by post-transcriptional m6A modification, mediated by Wilms' tumor 1-associated protein (WTAP), a structural stabilizer of the methyltransferase complex, via regulation of m6A methylation of IFI16. Additionally, m6A levels are increased in the peripheral blood mononuclear cells of PAH patients compared to control, indicating that quantifying this epigenetic change in patients may hold potential as a biomarker for disease identification. In summary, our study demonstrates IFI16 mediates inflammatory endothelial pathophenotypes seen in pulmonary arterial hypertension.
Collapse
Affiliation(s)
- Rashmi J. Rao
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Jimin Yang
- Department of Molecular Biology, Jeonbuk National University, Jeonju, South Korea
| | - Siyi Jiang
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Wadih El-Khoury
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Neha Hafeez
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA, USA
- Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Satoshi Okawa
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA, USA
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Yi Yin Tai
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Ying Tang
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Yassmin Al Aaraj
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - John Sembrat
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Stephen Y. Chan
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| |
Collapse
|
19
|
Renaud J, Foroshani S, Frishman WH, Aronow WS. The Influence of Pulmonary Arterial Hypertension In Pregnancy: A Review. Cardiol Rev 2024:00045415-990000000-00322. [PMID: 39254515 DOI: 10.1097/crd.0000000000000777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Pulmonary arterial hypertension (PAH) is a severe condition characterized by increased pulmonary vascular resistance and right ventricular failure. This review examines the intersection of PAH and pregnancy, highlighting the significant physiological, hemodynamic, and hormonal changes that exacerbate PAH during gestation. Pregnancy is contraindicated in PAH patients due to high maternal and fetal morbidity and mortality rates. However, some patients choose to continue their pregnancies, necessitating a comprehensive understanding of the implications and management strategies. Effective management of PAH in pregnant patients involves individualized treatment plans. Prepartum management focuses on optimizing therapy and monitoring hemodynamic status. Prostacyclin analogs and phosphodiesterase inhibitors are commonly used, though their safety profiles require further investigation. Intrapartum management prioritizes preventing right ventricular failure, utilizing therapies such as intravenous epoprostenol, inhaled iloprost, and inhaled nitric oxide. Managing PAH in pregnancy requires careful planning, continuous monitoring, and tailored therapeutic strategies to navigate the complex interplay of physiological changes and mitigate risks. Future research should focus on elucidating the pathophysiology of PAH during pregnancy and developing safer, more effective treatments to improve maternal and fetal outcomes.
Collapse
Affiliation(s)
- Jodie Renaud
- From the Department of Medicine, New York Medical College, Valhalla, NY
| | - Saam Foroshani
- From the Department of Medicine, New York Medical College, Valhalla, NY
| | | | - Wilbert S Aronow
- Departments of Cardiology and Medicine, Westchester Medical Center and New York Medical College, Valhalla, NY
| |
Collapse
|
20
|
Tangmahakul N, Rungsipipat A, Surachetpong SD. Investigation of pulmonary artery and circulating endothelin-1 expression in dogs with pulmonary hypertension secondary to myxomatous mitral valve disease. Vet World 2024; 17:2144-2151. [PMID: 39507783 PMCID: PMC11536742 DOI: 10.14202/vetworld.2024.2144-2151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 08/26/2024] [Indexed: 11/08/2024] Open
Abstract
Background and Aim Pulmonary hypertension (PH) is a condition characterized by abnormally elevated pressure in the pulmonary vasculature. It is a common complication of myxomatous mitral valve disease (MMVD) in dogs. Several vasoactive substances, including endothelin-1 (ET-1), have been suggested to contribute to pathological changes in the pulmonary arteries of patients with PH. This study aimed to examine the local and systemic expression of ET-1 in dogs with PH secondary to MMVD. Materials and Methods Lung tissues were collected from 20 client-owned dogs during the first stage of the study and divided into three groups: normal dogs (n = 5), MMVD dogs (n = 8), and MMVD+PH dogs (n = 7). The expression of ET-1 and endothelin A receptor (ETAR) in the pulmonary arteries was determined using immunohistochemistry. Blood samples were collected from 61 client-owned dogs for the second stage of the study and divided into three groups: normal (n = 22), MMVD (n = 20), and MMVD+PH (n = 19). Plasma ET-1 concentration was measured using a sandwich enzyme-linked immunosorbent assay. Results There was no difference in ET-1 and ETAR expression in the pulmonary arteries among the three groups. Similarly, there was no difference in the plasma ET-1 concentration between the groups. In addition, no correlation was found between the immunohistochemical expression of ET-1 and ETAR and the thickness of the pulmonary arteries or between the plasma ET-1 level and echocardiographic variables. Conclusion The lack of difference in the expression of ET-1 and ETAR in the pulmonary arteries and in the circulating ET-1 concentration among the studied groups suggests that ET-1 may not be related to the pathological development of PH secondary to MMVD in dogs. Due to the small sample size in this study, further research is needed to confirm these findings.
Collapse
Affiliation(s)
- Nattawan Tangmahakul
- Department of Veterinary Medicine, Faculty of Veterinary Science, Chulalongkorn University, Henri-Dunant Road, Pathumwan, Bangkok 10330, Thailand
| | - Anudep Rungsipipat
- Center of Excellence for Companion Animal Cancer (CE-CAC), Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Henri-Dunant Road, Pathumwan, Bangkok 10330, Thailand
| | - Sirilak Disatian Surachetpong
- Department of Veterinary Medicine, Faculty of Veterinary Science, Chulalongkorn University, Henri-Dunant Road, Pathumwan, Bangkok 10330, Thailand
| |
Collapse
|
21
|
Albulushi A, Kashoub M, Al-Saidi K, Al-Farhan H. Iron Deficiency in Pulmonary Hypertension. Int Heart J 2024; 65:593-600. [PMID: 39010221 DOI: 10.1536/ihj.24-055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Pulmonary hypertension (PH) is a complex cardiovascular condition that is characterized by elevated pulmonary arterial pressure, which leads to significant morbidity and mortality. Among the various factors that influence the pathophysiology and progression of PH, iron deficiency has become a critical, yet often overlooked, element. In this review, the prevalence, implications, and therapeutic potential of addressing iron deficiency in patients with PH are elucidated.Iron deficiency, which is prevalent in a significant proportion of patients with PH, has been associated with worsened clinical outcomes, including diminished exercise capacity, impaired oxygen transport and utilization, and compromised right ventricular function. The pathophysiological linkages between iron deficiency and PH are multifaceted and involve alterations in oxygen sensing, endothelial function, and metabolic disturbances.In this review, the evidence from recent clinical trials and studies that assess the impact of iron supplementation, both oral and intravenous, on PH outcomes is critically analyzed. Although some studies suggest improvements in exercise capacity and hemodynamic parameters following iron repletion, the responses appear variable and are not universally beneficial. This review highlights the complexities of iron metabolism in PH and the challenges in effectively diagnosing and treating iron deficiency in this patient population.Furthermore, the potential mechanisms through which iron supplementation might influence pulmonary vascular and right ventricular function, emphasizing the need for personalized treatment approaches are discussed. In this review, the importance of recognizing iron deficiency in the management of patients with PH is highlighted, and further research is warranted to establish comprehensive, evidence-based guidelines for iron supplementation in this unique patient cohort. The ultimate goal of this review is to improve clinical outcomes and quality of life for patients suffering from this debilitating condition.
Collapse
Affiliation(s)
- Arif Albulushi
- Division of Cardiovascular Medicine, University of Nebraska Medical Center
- Division of Adult Cardiology, National Heart Center, Royal Hospital
| | - Masoud Kashoub
- Department of Medicine, Sultan Qaboos University Hospital
| | - Khalid Al-Saidi
- Division of Adult Cardiology, National Heart Center, Royal Hospital
| | | |
Collapse
|
22
|
Weinstein N, Carlsen J, Schulz S, Stapleton T, Henriksen HH, Travnik E, Johansson PI. A Lifelike guided journey through the pathophysiology of pulmonary hypertension-from measured metabolites to the mechanism of action of drugs. Front Cardiovasc Med 2024; 11:1341145. [PMID: 38845688 PMCID: PMC11153715 DOI: 10.3389/fcvm.2024.1341145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 04/12/2024] [Indexed: 06/09/2024] Open
Abstract
Introduction Pulmonary hypertension (PH) is a pathological condition that affects approximately 1% of the population. The prognosis for many patients is poor, even after treatment. Our knowledge about the pathophysiological mechanisms that cause or are involved in the progression of PH is incomplete. Additionally, the mechanism of action of many drugs used to treat pulmonary hypertension, including sotatercept, requires elucidation. Methods Using our graph-powered knowledge mining software Lifelike in combination with a very small patient metabolite data set, we demonstrate how we derive detailed mechanistic hypotheses on the mechanisms of PH pathophysiology and clinical drugs. Results In PH patients, the concentration of hypoxanthine, 12(S)-HETE, glutamic acid, and sphingosine 1 phosphate is significantly higher, while the concentration of L-arginine and L-histidine is lower than in healthy controls. Using the graph-based data analysis, gene ontology, and semantic association capabilities of Lifelike, led us to connect the differentially expressed metabolites with G-protein signaling and SRC. Then, we associated SRC with IL6 signaling. Subsequently, we found associations that connect SRC, and IL6 to activin and BMP signaling. Lastly, we analyzed the mechanisms of action of several existing and novel pharmacological treatments for PH. Lifelike elucidated the interplay between G-protein, IL6, activin, and BMP signaling. Those pathways regulate hallmark pathophysiological processes of PH, including vasoconstriction, endothelial barrier function, cell proliferation, and apoptosis. Discussion The results highlight the importance of SRC, ERK1, AKT, and MLC activity in PH. The molecular pathways affected by existing and novel treatments for PH also converge on these molecules. Importantly, sotatercept affects SRC, ERK1, AKT, and MLC simultaneously. The present study shows the power of mining knowledge graphs using Lifelike's diverse set of data analytics functionalities for developing knowledge-driven hypotheses on PH pathophysiological and drug mechanisms and their interactions. We believe that Lifelike and our presented approach will be valuable for future mechanistic studies of PH, other diseases, and drugs.
Collapse
Affiliation(s)
- Nathan Weinstein
- CAG Center for Endotheliomics, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Jørn Carlsen
- CAG Center for Endotheliomics, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Cardiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Sebastian Schulz
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Timothy Stapleton
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Hanne H. Henriksen
- CAG Center for Endotheliomics, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Evelyn Travnik
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Pär Ingemar Johansson
- CAG Center for Endotheliomics, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
23
|
Surak A, Mahgoub L, Ting JY. Hemodynamic management of congenital diaphragmatic hernia: the role of targeted neonatal echocardiography. WORLD JOURNAL OF PEDIATRIC SURGERY 2024; 7:e000790. [PMID: 38737963 PMCID: PMC11086387 DOI: 10.1136/wjps-2024-000790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 04/17/2024] [Indexed: 05/14/2024] Open
Abstract
Congenital diaphragmatic hernia (CDH) is a major congenital anomaly, resulting from the herniation of abdominal contents into the thoracic cavity, thereby impeding the proper development of the lungs and pulmonary vasculature. CDH severity correlates with a spectrum of pulmonary hypoplasia, pulmonary hypertension (PHT), and cardiac dysfunction, constituting the pathophysiological triad of this complex condition. The accurate diagnosis and effective management of PHT and cardiac dysfunction is pivotal to optimizing patient outcomes. Targeted neonatal echocardiography is instrumental in delivering real-time data crucial for the bespoke, pathophysiology-targeted hemodynamic management of CDH-associated PHT.
Collapse
Affiliation(s)
- Aimann Surak
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Linda Mahgoub
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Joseph Y Ting
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
24
|
Correale M, Chirivì F, Bevere EML, Tricarico L, D’Alto M, Badagliacca R, Brunetti ND, Vizza CD, Ghio S. Endothelial Function in Pulmonary Arterial Hypertension: From Bench to Bedside. J Clin Med 2024; 13:2444. [PMID: 38673717 PMCID: PMC11051060 DOI: 10.3390/jcm13082444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/09/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
Pulmonary arterial hypertension is a complex pathology whose etiology is still not completely well clarified. The pathogenesis of pulmonary arterial hypertension involves different molecular mechanisms, with endothelial dysfunction playing a central role in disease progression. Both individual genetic predispositions and environmental factors seem to contribute to its onset. To further understand the complex relationship between endothelial and pulmonary hypertension and try to contribute to the development of future therapies, we report a comprehensive and updated review on endothelial function in pulmonary arterial hypertension.
Collapse
Affiliation(s)
- Michele Correale
- Cardiothoracic Department, Policlinico Riuniti University Hospital, 71100 Foggia, Italy;
| | - Francesco Chirivì
- Department of Medical and Surgical Sciences, University of Foggia, 71100 Foggia, Italy; (F.C.); (E.M.L.B.); (N.D.B.)
| | - Ester Maria Lucia Bevere
- Department of Medical and Surgical Sciences, University of Foggia, 71100 Foggia, Italy; (F.C.); (E.M.L.B.); (N.D.B.)
| | - Lucia Tricarico
- Cardiothoracic Department, Policlinico Riuniti University Hospital, 71100 Foggia, Italy;
| | - Michele D’Alto
- Department of Cardiology, A.O.R.N. dei Colli, Monaldi Hospital, University of Campania L. ‘Vanvitelli’, 80133 Naples, Italy;
| | - Roberto Badagliacca
- Department of Clinical, Anesthesiological and Cardiovascular Sciences, I School of Medicine, Sapienza University of Rome, 00185 Rome, Italy; (R.B.); (C.D.V.)
| | - Natale D. Brunetti
- Department of Medical and Surgical Sciences, University of Foggia, 71100 Foggia, Italy; (F.C.); (E.M.L.B.); (N.D.B.)
| | - Carmine Dario Vizza
- Department of Clinical, Anesthesiological and Cardiovascular Sciences, I School of Medicine, Sapienza University of Rome, 00185 Rome, Italy; (R.B.); (C.D.V.)
| | - Stefano Ghio
- Division of Cardiology, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy;
| |
Collapse
|
25
|
Chai Y, Gu X, Zhang H, Xu X, Chen L. Phoenixin 20 ameliorates pulmonary arterial hypertension via inhibiting inflammation and oxidative stress. Aging (Albany NY) 2024; 16:5027-5037. [PMID: 38517365 PMCID: PMC11006497 DOI: 10.18632/aging.205468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 11/15/2023] [Indexed: 03/23/2024]
Abstract
Pulmonary arterial hypertension (PAH) is a severe pathophysiological syndrome resulting in heart failure, which is found to be induced by pulmonary vascular remodeling mediated by oxidative stress (OS) and inflammation. Phoenixin-20 (PNX-20) is a reproductive peptide first discovered in mice with potential suppressive properties against OS and inflammatory response. Our study will explore the possible therapeutic functions of PHN-20 against PAH for future clinical application. Rats were treated with normal saline, PHN-20 (100 ng/g body weight daily), hypoxia, hypoxia+PHN-20 (100 ng/g body weight daily), respectively. A signally elevated RVSP, mPAP, RV/LV + S, and W%, increased secretion of cytokines, enhanced malondialdehyde (MDA) level, repressed superoxide dismutase (SOD) activity, and activated NLRP3 signaling were observed in hypoxia-stimulated rats, which were notably reversed by PHN-20 administration. Pulmonary microvascular endothelial cells (PMECs) were treated with hypoxia with or without PHN-20 (10 and 20 nM). Marked elevation of inflammatory cytokine secretion, increased MDA level, repressed SOD activity, and activated NLRP3 signaling were observed in hypoxia-stimulated PMECs, accompanied by a downregulation of SIRT1. Furthermore, the repressive effect of PHN-20 on the domains-containing protein 3 (NLRP3) pathway in hypoxia-stimulated PMECs was abrogated by sirtuin1 (SIRT1) knockdown. Collectively, PHN-20 alleviated PAH via inhibiting OS and inflammation by mediating the transcriptional function of SIRT1.
Collapse
Affiliation(s)
- Yaqin Chai
- Department of Pulmonary and Critical Care Medicine, Xi’an Chest Hospital, Xi’an 710100, China
| | - Xing Gu
- Department of Pulmonary and Critical Care Medicine, Xi’an Chest Hospital, Xi’an 710100, China
| | - HongJun Zhang
- Department of Pulmonary and Critical Care Medicine, Xi’an Chest Hospital, Xi’an 710100, China
| | - Xinting Xu
- Department of Pulmonary and Critical Care Medicine, Xi’an International Medical Center Hospital, Xi’an 710100, China
| | - Lizhan Chen
- Department of Pulmonary and Critical Care Medicine, Xi’an International Medical Center Hospital, Xi’an 710100, China
| |
Collapse
|
26
|
Li N, Su S, Xie X, Yang Z, Li Z, Lu D. Tsantan Sumtang, a traditional Tibetan medicine, protects pulmonary vascular endothelial function of hypoxia-induced pulmonary hypertension rats through AKT/eNOS signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 320:117436. [PMID: 37979813 DOI: 10.1016/j.jep.2023.117436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/07/2023] [Accepted: 11/13/2023] [Indexed: 11/20/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Tsantan Sumtang (TS), originated from the Four Tantras, is an empirical Tibetan medicine prescription, which has been widely used for treating cardiovascular diseases in the clinic in Qinghai Province of China. Our previous studies found that TS alleviated hypoxia-induced pulmonary hypertension (HPH) in rats. However, the effect and bioactive fractions of TS on hypoxia-injured pulmonary vascular endothelium are unknown. AIM OF THE STUDY To investigate the effect, bioactive fractions and pharmacological mechanism of TS on hypoxia-injured pulmonary vascular endothelium in vivo and in vitro. MATERIALS AND METHODS In vivo studies, HPH animal model was established, and TS was administrated for four weeks. Then, hemodynamic indexes, ex vivo pulmonary artery perfusion experiment, morphological characteristics, nitric oxide (NO) production, and the protein expression of protein kinase B (AKT)/endothelial nitric oxide synthase (eNOS) and AMP-activated protein kinase (AMPK)/eNOS signaling were determined. In vitro studies, 1% O2-induced pulmonary artery endothelial cells (PAECs) injury model was applied for screening bioactive fractions of TS by cell proliferation assay and NO production measurement. The associated proteins of AKT/eNOS signaling were further measured to elucidate underlying mechanism of bioactive fraction of TS via using phosphatidylinositol-3 kinase (PI3K) inhibitor LY294002. Ultra-high performance liquid chromatography with hybrid quadrupole-orbitrap mass spectrometry (UHPLC-Q-Exactive Orbitrap-MS) was used to reveal the chemical profile of bioactive fraction of TS. RESULTS TS showed protective effect on the integrity of distal pulmonary arterial endothelium in HPH rats. Tsantan Sumtang dilated pulmonary arterial rings in HPH rats. TS enhanced NO bioavailability in lung tissue via regulating AKT/eNOS signaling. Furthermore, in the cellular level, cell viability as well as NO content of hypoxia-injured PAECs were elevated by fraction 17 of water extract of TS (WTS), through activating the AKT/eNOS signaling. Ellagic acid could be one of compositions in fraction 17 of WTS to produce NO in hypoxia-injured PAECs. CONCLUSION TS restored pulmonary arterial endothelial function in HPH rats. The bioactive fraction 17 was screened, which protected hypoxia-injured PAECs via upregulating AKT/eNOS signaling.
Collapse
Affiliation(s)
- Na Li
- Research Center for High Altitude Medicine, Key Laboratory of High Altitude Medicine (Ministry of Education), Laboratory for High Altitude Medicine of Qinghai Province, Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Xining, 810001, PR China; Affiliated Hospital of Qinghai University, Xining, 810001, PR China
| | - Shanshan Su
- Technical Center of Xining Customs, Key Laboratory of Food Safety Research in Qinghai Province, Xining, 810003, PR China
| | - Xin Xie
- Research Center for High Altitude Medicine, Key Laboratory of High Altitude Medicine (Ministry of Education), Laboratory for High Altitude Medicine of Qinghai Province, Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Xining, 810001, PR China
| | - Zhanting Yang
- Research Center for High Altitude Medicine, Key Laboratory of High Altitude Medicine (Ministry of Education), Laboratory for High Altitude Medicine of Qinghai Province, Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Xining, 810001, PR China
| | - Zhanqiang Li
- Research Center for High Altitude Medicine, Key Laboratory of High Altitude Medicine (Ministry of Education), Laboratory for High Altitude Medicine of Qinghai Province, Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Xining, 810001, PR China.
| | - Dianxiang Lu
- Research Center for High Altitude Medicine, Key Laboratory of High Altitude Medicine (Ministry of Education), Laboratory for High Altitude Medicine of Qinghai Province, Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Xining, 810001, PR China; Clinical Medical College & Affiliated Hospital of Chengdu University, Chengdu, Sichuan, 610086, PR China.
| |
Collapse
|
27
|
Lee D, Lee H, Jo HN, Yun E, Kwon BS, Kim J, Lee A. Endothelial periostin regulates vascular remodeling by promoting endothelial dysfunction in pulmonary arterial hypertension. Anim Cells Syst (Seoul) 2024; 28:1-14. [PMID: 38186856 PMCID: PMC10769143 DOI: 10.1080/19768354.2023.2300437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 12/20/2023] [Indexed: 01/09/2024] Open
Abstract
Pulmonary arterial hypertension (PAH) is characterized by vascular remodeling associated with extracellular matrix (ECM) deposition, vascular cell hyperproliferation, and neointima formation in the small pulmonary artery. Endothelial dysfunction is considered a key feature in the initiation of vascular remodeling. Although vasodilators have been used for the treatment of PAH, it remains a life-threatening disease. Therefore, it is necessary to identify novel therapeutic targets for PAH treatment. Periostin (POSTN) is a secretory ECM protein involved in physiological and pathological processes, such as tissue remodeling, cell adhesion, migration, and proliferation. Although POSTN has been proposed as a potential target for PAH treatment, its role in endothelial cells has not been fully elucidated. Here, we demonstrated that POSTN upregulation correlates with PAH by analyzing a public microarray conducted on the lung tissues of patients with PAH and biological experimental results from in vivo and in vitro models. Moreover, POSTN overexpression leads to ECM deposition and endothelial abnormalities such as migration. We found that PAH-associated endothelial dysfunction is mediated at least in part by the interaction between POSTN and integrin-linked protein kinase (ILK), followed by activation of nuclear factor-κB signaling. Silencing POSTN or ILK decreases PAH-related stimuli-induced ECM accumulation and attenuates endothelial abnormalities. In conclusion, our study suggests that POSTN serves as a critical regulator of PAH by regulating vascular remodeling, and targeting its role as a potential therapeutic strategy for PAH.
Collapse
Affiliation(s)
- Dawn Lee
- Division of Biological Sciences, Sookmyung Women’s University, Seoul, Republic of Korea
| | - Heeyoung Lee
- Division of Biological Sciences, Sookmyung Women’s University, Seoul, Republic of Korea
| | - Ha-neul Jo
- Division of Biological Sciences, Sookmyung Women’s University, Seoul, Republic of Korea
| | - Eunsik Yun
- Division of Biological Sciences, Sookmyung Women’s University, Seoul, Republic of Korea
| | - Byung Su Kwon
- Department of Obstetrics and Gynecology, School of Medicine, Kyung Hee University Medical Center, Kyung Hee University, Seoul, Republic of Korea
| | - Jongmin Kim
- Division of Biological Sciences, Sookmyung Women’s University, Seoul, Republic of Korea
- Research Institute for Women’s Health, Sookmyung Women’s University, Seoul, Republic of Korea
| | - Aram Lee
- Division of Biological Sciences, Sookmyung Women’s University, Seoul, Republic of Korea
- Research Institute for Women’s Health, Sookmyung Women’s University, Seoul, Republic of Korea
| |
Collapse
|
28
|
Abstract
PURPOSE OF REVIEW Tissue fibrosis is an increasingly prevalent condition associated with various diseases and heavily impacting on global morbidity and mortality rates. Growing evidence indicates that common cellular and molecular mechanisms may drive fibrosis of diverse cause and affecting different organs. The scope of this review is to highlight recent findings in support for an important role of vascular endothelial cells in the pathogenesis of fibrosis, with a special focus on systemic sclerosis as a prototypic multisystem fibrotic disorder. RECENT FINDINGS Although transition of fibroblasts to chronically activated myofibroblasts is widely considered the central profibrotic switch, the endothelial cell involvement in development and progression of fibrosis has been increasingly recognized over the last few years. Endothelial cells can contribute to the fibrotic process either directly by acting as source of myofibroblasts through endothelial-to-myofibroblast transition (EndMT) and concomitant microvascular rarefaction, or indirectly by becoming senescent and/or secreting a variety of profibrotic and proinflammatory mediators with consequent fibroblast activation and recruitment of inflammatory/immune cells that further promote fibrosis. SUMMARY An in-depth understanding of the mechanisms underlying EndMT or the acquisition of a profibrotic secretory phenotype by endothelial cells will provide the rationale for novel endothelial cell reprogramming-based therapeutic approaches to prevent and/or treat fibrosis.
Collapse
Affiliation(s)
- Eloisa Romano
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | | | | | | |
Collapse
|
29
|
Yegambaram M, Sun X, Flores AG, Lu Q, Soto J, Richards J, Aggarwal S, Wang T, Gu H, Fineman JR, Black SM. Novel Relationship between Mitofusin 2-Mediated Mitochondrial Hyperfusion, Metabolic Remodeling, and Glycolysis in Pulmonary Arterial Endothelial Cells. Int J Mol Sci 2023; 24:17533. [PMID: 38139362 PMCID: PMC10744129 DOI: 10.3390/ijms242417533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
The disruption of mitochondrial dynamics has been identified in cardiovascular diseases, including pulmonary hypertension (PH), ischemia-reperfusion injury, heart failure, and cardiomyopathy. Mitofusin 2 (Mfn2) is abundantly expressed in heart and pulmonary vasculature cells at the outer mitochondrial membrane to modulate fusion. Previously, we have reported reduced levels of Mfn2 and fragmented mitochondria in pulmonary arterial endothelial cells (PAECs) isolated from a sheep model of PH induced by pulmonary over-circulation and restoring Mfn2 normalized mitochondrial function. In this study, we assessed the effect of increased expression of Mfn2 on mitochondrial metabolism, bioenergetics, reactive oxygen species production, and mitochondrial membrane potential in control PAECs. Using an adenoviral expression system to overexpress Mfn2 in PAECs and utilizing 13C labeled substrates, we assessed the levels of TCA cycle metabolites. We identified increased pyruvate and lactate production in cells, revealing a glycolytic phenotype (Warburg phenotype). Mfn2 overexpression decreased the mitochondrial ATP production rate, increased the rate of glycolytic ATP production, and disrupted mitochondrial bioenergetics. The increase in glycolysis was linked to increased hypoxia-inducible factor 1α (HIF-1α) protein levels, elevated mitochondrial reactive oxygen species (mt-ROS), and decreased mitochondrial membrane potential. Our data suggest that disrupting the mitochondrial fusion/fission balance to favor hyperfusion leads to a metabolic shift that promotes aerobic glycolysis. Thus, therapies designed to increase mitochondrial fusion should be approached with caution.
Collapse
Affiliation(s)
- Manivannan Yegambaram
- Center for Translational Science, Florida International University, 11350 SW Village Parkway, Port St. Lucie, FL 34987-2352, USA; (M.Y.); (X.S.); (A.G.F.); (Q.L.); (J.S.); (J.R.); (T.W.); (H.G.)
- Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL 33199, USA
| | - Xutong Sun
- Center for Translational Science, Florida International University, 11350 SW Village Parkway, Port St. Lucie, FL 34987-2352, USA; (M.Y.); (X.S.); (A.G.F.); (Q.L.); (J.S.); (J.R.); (T.W.); (H.G.)
- Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL 33199, USA
| | - Alejandro Garcia Flores
- Center for Translational Science, Florida International University, 11350 SW Village Parkway, Port St. Lucie, FL 34987-2352, USA; (M.Y.); (X.S.); (A.G.F.); (Q.L.); (J.S.); (J.R.); (T.W.); (H.G.)
- Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL 33199, USA
| | - Qing Lu
- Center for Translational Science, Florida International University, 11350 SW Village Parkway, Port St. Lucie, FL 34987-2352, USA; (M.Y.); (X.S.); (A.G.F.); (Q.L.); (J.S.); (J.R.); (T.W.); (H.G.)
- Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL 33199, USA
| | - Jamie Soto
- Center for Translational Science, Florida International University, 11350 SW Village Parkway, Port St. Lucie, FL 34987-2352, USA; (M.Y.); (X.S.); (A.G.F.); (Q.L.); (J.S.); (J.R.); (T.W.); (H.G.)
| | - Jaime Richards
- Center for Translational Science, Florida International University, 11350 SW Village Parkway, Port St. Lucie, FL 34987-2352, USA; (M.Y.); (X.S.); (A.G.F.); (Q.L.); (J.S.); (J.R.); (T.W.); (H.G.)
| | - Saurabh Aggarwal
- Department of Cellular Biology & Pharmacology, Howard Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA;
| | - Ting Wang
- Center for Translational Science, Florida International University, 11350 SW Village Parkway, Port St. Lucie, FL 34987-2352, USA; (M.Y.); (X.S.); (A.G.F.); (Q.L.); (J.S.); (J.R.); (T.W.); (H.G.)
- Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL 33199, USA
| | - Haiwei Gu
- Center for Translational Science, Florida International University, 11350 SW Village Parkway, Port St. Lucie, FL 34987-2352, USA; (M.Y.); (X.S.); (A.G.F.); (Q.L.); (J.S.); (J.R.); (T.W.); (H.G.)
- Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL 33199, USA
| | - Jeffrey R. Fineman
- Department of Pediatrics, University of California San Francisco, San Francisco, CA 94143, USA;
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA 94143, USA
| | - Stephen M. Black
- Center for Translational Science, Florida International University, 11350 SW Village Parkway, Port St. Lucie, FL 34987-2352, USA; (M.Y.); (X.S.); (A.G.F.); (Q.L.); (J.S.); (J.R.); (T.W.); (H.G.)
- Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL 33199, USA
- Department of Cellular Biology & Pharmacology, Howard Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA;
| |
Collapse
|
30
|
Khachigian LM. The MEK-ERK-Egr-1 axis and its regulation in cardiovascular disease. Vascul Pharmacol 2023; 153:107232. [PMID: 37734428 DOI: 10.1016/j.vph.2023.107232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/14/2023] [Accepted: 09/18/2023] [Indexed: 09/23/2023]
Abstract
Cardiovascular disease (CVD) is the primary cause of morbidity and mortality in the Western world. Multiple molecular and cellular processes underpinning the pathogenesis of CVD are regulated by the zinc finger transcription factor and product of an immediate-early gene, early growth response-1 (Egr-1). Egr-1 regulates multiple pro-inflammatory processes that underpin the manifestation of CVD. The activity of Egr-1 itself is influenced by a range of post-translational modifications including sumoylation, ubiquitination and acetylation. Egr-1 also undergoes phosphorylation by protein kinases, such as extracellular-signal regulated kinase (ERK) which is itself phosphorylated by MEK. This article reviews recent progress on the MEK-ERK-Egr-1 cascade, notably regulation in conjunction with factors and agents such as TET2, TRIB2, MIAT, SphK1, cAMP, teneligliptin, cholinergic drugs, red wine and flavonoids, wogonin, febuxostat, docosahexaenoic acid and AT1R blockade. Such insights should provide new opportunity for therapeutic intervention in CVD.
Collapse
Affiliation(s)
- Levon M Khachigian
- Vascular Biology and Translational Research, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
31
|
Jiang HX, Wang XD, Wang HX, Liu T. Baicalin attenuates pulmonary vascular remodeling by inhibiting calpain-1 mediated endothelial-to-mesenchymal transition. Heliyon 2023; 9:e23076. [PMID: 38144352 PMCID: PMC10746466 DOI: 10.1016/j.heliyon.2023.e23076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 12/26/2023] Open
Abstract
BACKGROUND Previous studies have demonstrated the beneficial effect of baicalin on pulmonary arterial hypertension (PAH), but the mechanism is unclear. AIM The aim of the present study was to evaluate the effect of baicalin on pulmonary vascular remodeling (PVR) with a focus on calpain-1-mediated endothelial-to-mesenchymal transition (EndMT). METHODS PAH was induced by intraperitoneal injection of monocrotaline (MCT) in rats and hypoxia in calpain-1 gene knockout (Capn1-/-) and wild-type C57BL/6 mice. An in vitro PVR model was established in PASMCs and HPAECs. RESULTS The data showed that baicalin treatment and calpain-1 inhibition alleviated MCT and hypoxia-induced increases in right ventricular systolic pressure (RVSP), prevented right ventricle hypertrophy and PVR, and attenuated cardiopulmonary fibrosis. Moreover, baicalin ameliorated PAH-induced EndMT, as evidenced by the suppressed expression of mesenchymal markers vimentin, and α-SMA and restored expression of endothelial markers CD31, and VE-cadherin. In vitro studies showed that baicalin treatment blocked TGF-β1-induced EndMT in HPAECs and abolished hypoxia-induced PASMC proliferation and migration. All the beneficial effects of baicalin on PVR in vitro and in vivo were accompanied by suppressed calpain-1 expression. Further study demonstrated that baicalin treatment and calpain-1 inhibition inhibited the enhanced expression of PI3K and p-AKT both in vitro and in vivo. CONCLUSIONS In conclusion, baicalin treatment attenuates PVR by inhibiting calpain-1 and PI3K/Akt-mediated EndMT.
Collapse
Affiliation(s)
- He-xi Jiang
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Xiao-di Wang
- Department of Neurology, The First Affiliated Hospital of Jinzhou Medical University, 121001, China
| | - Hong-xin Wang
- Key Laboratory of Cardiovascular and Cerebrovascular Drug Research of Liaoning Province, Jinzhou Medical University, Jinzhou, 121000, China
| | - Tong Liu
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| |
Collapse
|
32
|
Li C, Lv J, Wumaier G, Zhao Y, Dong L, Zeng Y, Zhu N, Zhang X, Wang J, Xia J, Li S. NDRG1 promotes endothelial dysfunction and hypoxia-induced pulmonary hypertension by targeting TAF15. PRECISION CLINICAL MEDICINE 2023; 6:pbad024. [PMID: 37885911 PMCID: PMC10599394 DOI: 10.1093/pcmedi/pbad024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/26/2023] [Accepted: 10/07/2023] [Indexed: 10/28/2023] Open
Abstract
Background Pulmonary hypertension (PH) represents a threatening pathophysiologic state that can be induced by chronic hypoxia and is characterized by extensive vascular remodeling. However, the mechanism underlying hypoxia-induced vascular remodeling is not fully elucidated. Methods and Results By using quantitative polymerase chain reactions, western blotting, and immunohistochemistry, we demonstrate that the expression of N-myc downstream regulated gene-1 (NDRG1) is markedly increased in hypoxia-stimulated endothelial cells in a time-dependent manner as well as in human and rat endothelium lesions. To determine the role of NDRG1 in endothelial dysfunction, we performed loss-of-function studies using NDRG1 short hairpin RNAs and NDRG1 over-expression plasmids. In vitro, silencing NDRG1 attenuated proliferation, migration, and tube formation of human pulmonary artery endothelial cells (HPAECs) under hypoxia, while NDRG1 over-expression promoted these behaviors of HPAECs. Mechanistically, NDRG1 can directly interact with TATA-box binding protein associated factor 15 (TAF15) and promote its nuclear localization. Knockdown of TAF15 abrogated the effect of NDRG1 on the proliferation, migration and tube formation capacity of HPAECs. Bioinformatics studies found that TAF15 was involved in regulating PI3K-Akt, p53, and hypoxia-inducible factor 1 (HIF-1) signaling pathways, which have been proved to be PH-related pathways. In addition, vascular remodeling and right ventricular hypertrophy induced by hypoxia were markedly alleviated in NDRG1 knock-down rats compared with their wild-type littermates. Conclusions Taken together, our results indicate that hypoxia-induced upregulation of NDRG1 contributes to endothelial dysfunction through targeting TAF15, which ultimately contributes to the development of hypoxia-induced PH.
Collapse
Affiliation(s)
- Chengwei Li
- Department of Pulmonary and Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Junzhu Lv
- Department of Pulmonary and Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Gulinuer Wumaier
- Department of Pulmonary and Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Yu Zhao
- Department of Pulmonary and Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Liang Dong
- Department of Pulmonary and Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Yuzhen Zeng
- Department of Pulmonary and Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Ning Zhu
- Department of Pulmonary and Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Xiujuan Zhang
- Department of Pulmonary and Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Jing Wang
- Department of Pulmonary and Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Jingwen Xia
- Department of Pulmonary and Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Shengqing Li
- Department of Pulmonary and Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| |
Collapse
|
33
|
Sarkar T, Moinuddin SM, Isbatan A, Chen J, Mann D, Ahsan F. Intratracheally Administered Peptide-Modified Lipid Admixture Containing Fasudil and/or DETA NONOate Ameliorates Various Pathologies of Pulmonary Arterial Hypertension. Pharmaceuticals (Basel) 2023; 16:1656. [PMID: 38139783 PMCID: PMC10747237 DOI: 10.3390/ph16121656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/18/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023] Open
Abstract
This study examined the therapeutic potential of a combination therapy using fasudil, a Rho-kinase inhibitor, and DETA NONOate (DN), a nitric oxide donor, delivered as a lipid admixture modified with a cyclic homing peptide known as CAR (CAR-lipid mixture) for the treatment of pulmonary arterial hypertension (PAH). CAR-lipid mixtures were initially prepared via a thin-film hydration method and then combined with fasudil, DN, or a mixture of both. The therapeutic efficacy of this drug-laden lipid mixture was evaluated in a Sugen/Hypoxia (Su/Hx) rat model of PAH by measuring RV systolic pressure (RVSP), mean pulmonary arterial pressure (mPAP), Fulton indices, and assessing right ventricular (RV) functions, as well as evaluating pulmonary vascular morphology. Rats that received no treatment exhibited increases in RVSP, mPAP, Fulton indices, and changes in RV functional parameters. However, the treatment with the CAR-lipid mixture containing either fasudil or DN or a combination of both led to a decline in mPAP, RVSP, and Fulton indices compared to saline-treated rats. Similarly, rats that received these treatments showed concurrent improvement in various echocardiographic parameters such as pulmonary acceleration time (PAT), tricuspid annular plane systolic excursion (TAPSE), and ventricular free wall thickness (RVFWT). A significant decrease in the wall thickness of pulmonary arteries larger than 100 µm was observed with the combination therapy. The findings reveal that fasudil, DN, and their combination in a CAR-modified lipid mixture improved pulmonary hemodynamics, RV functions, and pathological alterations in the pulmonary vasculature. This study underscores the potential of combination therapy and targeted drug delivery in PAH treatment, laying the groundwork for future investigations into the optimization of these treatments, their long-term safety and efficacy, and the underlying mechanism of action of the proposed therapy.
Collapse
Affiliation(s)
- Tanoy Sarkar
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, California Northstate University, Elk Grove, CA 95757, USA
| | - Sakib M. Moinuddin
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, California Northstate University, Elk Grove, CA 95757, USA
| | - Ayman Isbatan
- Cardiovascular Research Center, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Jiwang Chen
- Cardiovascular Research Center, University of Illinois at Chicago, Chicago, IL 60612, USA
- Department of Medicine, Section of Pulmonary, Critical Care Medicine, Sleep and Allergy, University of Illinois at Chicago, Chicago, IL 60612, USA
- Department of Anesthesiology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - David Mann
- Vascular BioSciences, Goleta, CA 93117, USA
| | - Fakhrul Ahsan
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, California Northstate University, Elk Grove, CA 95757, USA
| |
Collapse
|
34
|
Mutgan AC, Jandl K, Radic N, Valzano F, Kolb D, Hoffmann J, Foris V, Wilhelm J, Boehm PM, Hoetzenecker K, Olschewski A, Olschewski H, Heinemann A, Wygrecka M, Marsh LM, Kwapiszewska G. Pentastatin, a matrikine of the collagen IVα5, is a novel endogenous mediator of pulmonary endothelial dysfunction. Am J Physiol Cell Physiol 2023; 325:C1294-C1312. [PMID: 37694286 PMCID: PMC11550886 DOI: 10.1152/ajpcell.00391.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 08/28/2023] [Accepted: 08/28/2023] [Indexed: 09/12/2023]
Abstract
Deposition of basement membrane components, such as collagen IVα5, is associated with altered endothelial cell function in pulmonary hypertension. Collagen IVα5 harbors a functionally active fragment within its C-terminal noncollageneous (NC1) domain, called pentastatin, whose role in pulmonary endothelial cell behavior remains unknown. Here, we demonstrate that pentastatin serves as a mediator of pulmonary endothelial cell dysfunction, contributing to pulmonary hypertension. In vitro, treatment with pentastatin induced transcription of immediate early genes and proinflammatory cytokines and led to a functional loss of endothelial barrier integrity in pulmonary arterial endothelial cells. Mechanistically, pentastatin leads to β1-integrin subunit clustering and Rho/ROCK activation. Blockage of the β1-integrin subunit or the Rho/ROCK pathway partially attenuated the pentastatin-induced endothelial barrier disruption. Although pentastatin reduced the viability of endothelial cells, smooth muscle cell proliferation was induced. These effects on the pulmonary vascular cells were recapitulated ex vivo in the isolated-perfused lung model, where treatment with pentastatin-induced swelling of the endothelium accompanied by occasional endothelial cell apoptosis. This was reflected by increased vascular permeability and elevated pulmonary arterial pressure induced by pentastatin. This study identifies pentastatin as a mediator of endothelial cell dysfunction, which thus might contribute to the pathogenesis of pulmonary vascular disorders such as pulmonary hypertension.NEW & NOTEWORTHY This study is the first to show that pentastatin, the matrikine of the basement membrane (BM) collagen IVα5 polypeptide, triggers rapid pulmonary arterial endothelial cell barrier disruption, activation, and apoptosis in vitro and ex vivo. Mechanistically, pentastatin partially acts through binding to the β1-integrin subunit and the Rho/ROCK pathway. These findings are the first to link pentastatin to pulmonary endothelial dysfunction and, thus, suggest a major role for BM-matrikines in pulmonary vascular diseases such as pulmonary hypertension.
Collapse
Affiliation(s)
- Ayse Ceren Mutgan
- Division of Physiology and Pathophysiology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Katharina Jandl
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Nemanja Radic
- Division of Physiology and Pathophysiology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Francesco Valzano
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Dagmar Kolb
- Core Facility Ultrastructure Analysis, Center for Medical Research, Medical University of Graz, Graz, Austria
| | - Julia Hoffmann
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Vasile Foris
- Division of Pulmonology, Medical University of Graz, Graz, Austria
| | - Jochen Wilhelm
- Institute for Lung Health, Member of the German Lung Center (DZL), Giessen, Germany
| | - Panja M Boehm
- Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - Konrad Hoetzenecker
- Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - Andrea Olschewski
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
- Department of Anaesthesiology and Intensive Care Medicine, Medical University of Graz, Graz, Austria
| | - Horst Olschewski
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
- Division of Pulmonology, Medical University of Graz, Graz, Austria
| | - Akos Heinemann
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Malgorzata Wygrecka
- Institute for Lung Health, Member of the German Lung Center (DZL), Giessen, Germany
- Center for Infection and Genomics of the Lung, Universities of Giessen and Marburg Lung Center, Giessen, Germany
| | - Leigh M Marsh
- Division of Physiology and Pathophysiology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Grazyna Kwapiszewska
- Division of Physiology and Pathophysiology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
- Institute for Lung Health, Member of the German Lung Center (DZL), Giessen, Germany
| |
Collapse
|
35
|
Alqarni AA, Aldhahir AM, Alghamdi SA, Alqahtani JS, Siraj RA, Alwafi H, AlGarni AA, Majrshi MS, Alshehri SM, Pang L. Role of prostanoids, nitric oxide and endothelin pathways in pulmonary hypertension due to COPD. Front Med (Lausanne) 2023; 10:1275684. [PMID: 37881627 PMCID: PMC10597708 DOI: 10.3389/fmed.2023.1275684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 09/19/2023] [Indexed: 10/27/2023] Open
Abstract
Pulmonary hypertension (PH) due to chronic obstructive pulmonary disease (COPD) is classified as Group 3 PH, with no current proven targeted therapies. Studies suggest that cigarette smoke, the most risk factor for COPD can cause vascular remodelling and eventually PH as a result of dysfunction and proliferation of pulmonary artery smooth muscle cells (PASMCs) and pulmonary artery endothelial cells (PAECs). In addition, hypoxia is a known driver of pulmonary vascular remodelling in COPD, and it is also thought that the presence of hypoxia in patients with COPD may further exaggerate cigarette smoke-induced vascular remodelling; however, the underlying cause is not fully understood. Three main pathways (prostanoids, nitric oxide and endothelin) are currently used as a therapeutic target for the treatment of patients with different groups of PH. However, drugs targeting these three pathways are not approved for patients with COPD-associated PH due to lack of evidence. Thus, this review aims to shed light on the role of impaired prostanoids, nitric oxide and endothelin pathways in cigarette smoke- and hypoxia-induced pulmonary vascular remodelling and also discusses the potential of using these pathways as therapeutic target for patients with PH secondary to COPD.
Collapse
Affiliation(s)
- Abdullah A. Alqarni
- Department of Respiratory Therapy, Faculty of Medical Rehabilitation Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Respiratory Therapy Unit, King Abdulaziz University Hospital, Jeddah, Saudi Arabia
| | - Abdulelah M. Aldhahir
- Respiratory Therapy Department, Faculty of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Sara A. Alghamdi
- Respiratory Care Department, Al Murjan Hospital, Jeddah, Saudi Arabia
| | - Jaber S. Alqahtani
- Department of Respiratory Care, Prince Sultan Military College of Health Sciences, Dammam, Saudi Arabia
| | - Rayan A. Siraj
- Department of Respiratory Care, College of Applied Medical Sciences, King Faisal University, Al Ahsa, Saudi Arabia
| | - Hassan Alwafi
- Faculty of Medicine, Umm Al-Qura University, Mecca, Saudi Arabia
| | - Abdulkareem A. AlGarni
- King Abdulaziz Hospital, The Ministry of National Guard Health Affairs, Al Ahsa, Saudi Arabia
- King Saud bin Abdulaziz University for Health Sciences, College of Applied Medical Sciences, Al Ahsa, Saudi Arabia
| | - Mansour S. Majrshi
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
- Respiratory Medicine, Royal Brompton Hospital, London, United Kingdom
| | - Saad M. Alshehri
- Department of Respiratory Therapy, King Fahad General Hospital, Jeddah, Saudi Arabia
| | - Linhua Pang
- Respiratory Medicine Research Group, Academic Unit for Translational Medical Sciences, University of Nottingham School of Medicine, Nottingham, United Kingdom
| |
Collapse
|
36
|
Sakarin S, Rungsipipat A, Surachetpong SD. Perivascular inflammatory cells and their association with pulmonary arterial remodelling in dogs with pulmonary hypertension due to myxomatous mitral valve disease. Vet Res Commun 2023; 47:1505-1521. [PMID: 36976445 DOI: 10.1007/s11259-023-10106-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/15/2023] [Indexed: 03/29/2023]
Abstract
Pulmonary hypertension (PH), an increase in pulmonary arterial pressure (PAP), may occur in dogs affected with myxomatous mitral valve disease (MMVD). Recent studies suggest that an accumulation of perivascular inflammatory cells may be involved with medial thickening which is a sign of the pulmonary artery remodelling in PH. The aim of this study was to characterise perivascular inflammatory cells in the surrounding pulmonary arteries of dogs with PH due to MMVD compared to MMVD dogs and healthy control dogs. Nineteen lung samples were collected from cadavers of small-breed dogs (control n = 5; MMVD n = 7; MMVD + PH n = 7). Toluidine blue stain and multiple IHC targeting α-SMA, vWF, CD20, CD68 and CD3 was performed to examine intimal and medial thickening, assess muscularisation of the small pulmonary arteries and characterise perivascular leucocytes. Medial thickening without intimal thickening of pulmonary arteries and muscularisation of normally non-muscularised small pulmonary arteries was observed in the MMVD and MMVD + PH groups compared with the control group. The perivascular numbers of B lymphocytes, T lymphocytes and macrophages was significantly increased in the MMVD + PH group compared with the MMVD and control groups. In contrast, the perivascular number of mast cells was significantly higher in the MMVD group compared with the MMVD + PH and control groups. This study suggested that pulmonary artery remodelling as medial thickening and muscularisation of the normally non-muscular small pulmonary arteries is accompanied by the accumulation of perivascular inflammatory cells.
Collapse
Affiliation(s)
- Siriwan Sakarin
- Department of Veterinary Medicine, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Anudep Rungsipipat
- Companion Animal Cancer Research Unit, Department of Veterinary Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Sirilak Disatian Surachetpong
- Department of Veterinary Medicine, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
37
|
Xiong Y, Wang Y, Yang T, Luo Y, Xu S, Li L. Receptor Tyrosine Kinase: Still an Interesting Target to Inhibit the Proliferation of Vascular Smooth Muscle Cells. Am J Cardiovasc Drugs 2023; 23:497-518. [PMID: 37524956 DOI: 10.1007/s40256-023-00596-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/05/2023] [Indexed: 08/02/2023]
Abstract
Vascular smooth muscle cells (VSMCs) proliferation is a critical event that contributes to the pathogenesis of vascular remodeling such as hypertension, restenosis, and pulmonary hypertension. Increasing evidences have revealed that VSMCs proliferation is associated with the activation of receptor tyrosine kinases (RTKs) by their ligands, including the insulin-like growth factor receptor (IGFR), fibroblast growth factor receptor (FGFR), epidermal growth factor receptor (EGFR), vascular endothelial growth factor receptor (VEGFR), and platelet-derived growth factor receptor (PDGFR). Moreover, some receptor tyrosinase inhibitors (TKIs) have been found and can prevent VSMCs proliferation to attenuate vascular remodeling. Therefore, this review will describe recent research progress on the role of RTKs and their inhibitors in controlling VSMCs proliferation, which helps to better understand the function of VSMCs proliferation in cardiovascular events and is beneficial for the prevention and treatment of vascular disease.
Collapse
Affiliation(s)
- Yilin Xiong
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563000, China
- Department of Pharmacology, Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, No. 6 Xuefu West Road, Zunyi, 563000, Guizhou, China
| | - Yan Wang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563000, China
- Department of Pharmacology, Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, No. 6 Xuefu West Road, Zunyi, 563000, Guizhou, China
| | - Tao Yang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563000, China
- Department of Pharmacology, Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, No. 6 Xuefu West Road, Zunyi, 563000, Guizhou, China
| | - Yunmei Luo
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563000, China
- Department of Pharmacology, Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, No. 6 Xuefu West Road, Zunyi, 563000, Guizhou, China
| | - Shangfu Xu
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563000, China
- Department of Pharmacology, Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, No. 6 Xuefu West Road, Zunyi, 563000, Guizhou, China
| | - Lisheng Li
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563000, China.
- Department of Pharmacology, Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, No. 6 Xuefu West Road, Zunyi, 563000, Guizhou, China.
| |
Collapse
|
38
|
Wang Y, Yixiong Z, Wang L, Huang X, Xin HB, Fu M, Qian Y. E3 Ubiquitin Ligases in Endothelial Dysfunction and Vascular Diseases: Roles and Potential Therapies. J Cardiovasc Pharmacol 2023; 82:93-103. [PMID: 37314134 PMCID: PMC10527814 DOI: 10.1097/fjc.0000000000001441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 05/23/2023] [Indexed: 06/15/2023]
Abstract
ABSTRACT Ubiquitin E3 ligases are a structurally conserved family of enzymes that exert a variety of regulatory functions in immunity, cell death, and tumorigenesis through the ubiquitination of target proteins. Emerging evidence has shown that E3 ubiquitin ligases play crucial roles in the pathogenesis of endothelial dysfunction and related vascular diseases. Here, we reviewed the new findings of E3 ubiquitin ligases in regulating endothelial dysfunction, including endothelial junctions and vascular integrity, endothelial activation, and endothelial apoptosis. The critical role and potential mechanism of E3 ubiquitin ligases in vascular diseases, such as atherosclerosis, diabetes, hypertension, pulmonary hypertension, and acute lung injury, were summarized. Finally, the clinical significance and potential therapeutic strategies associated with the regulation of E3 ubiquitin ligases were also proposed.
Collapse
Affiliation(s)
- Yihan Wang
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China
| | - Zhan Yixiong
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China
- Chongqing Research Institute, Nanchang University, Chongqing, 402660, China
| | - Linsiqi Wang
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China
| | - Xuan Huang
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China
| | - Hong-Bo Xin
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China
| | - Mingui Fu
- Department of Biomedical Sciences and Shock/Trauma Research Center, School of Medicine, University of Missouri Kansas City, 2411 Holmes Street, Kansas City, MO 64108, USA
| | - Yisong Qian
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China
- Chongqing Research Institute, Nanchang University, Chongqing, 402660, China
| |
Collapse
|
39
|
Immanuel J, Yun S. Vascular Inflammatory Diseases and Endothelial Phenotypes. Cells 2023; 12:1640. [PMID: 37371110 PMCID: PMC10297687 DOI: 10.3390/cells12121640] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/06/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
The physiological functions of endothelial cells control vascular tone, permeability, inflammation, and angiogenesis, which significantly help to maintain a healthy vascular system. Several cardiovascular diseases are characterized by endothelial cell activation or dysfunction triggered by external stimuli such as disturbed flow, hypoxia, growth factors, and cytokines in response to high levels of low-density lipoprotein and cholesterol, hypertension, diabetes, aging, drugs, and smoking. Increasing evidence suggests that uncontrolled proinflammatory signaling and further alteration in endothelial cell phenotypes such as barrier disruption, increased permeability, endothelial to mesenchymal transition (EndMT), and metabolic reprogramming further induce vascular diseases, and multiple studies are focusing on finding the pathways and mechanisms involved in it. This review highlights the main proinflammatory stimuli and their effects on endothelial cell function. In order to provide a rational direction for future research, we also compiled the most recent data regarding the impact of endothelial cell dysfunction on vascular diseases and potential targets that impede the pathogenic process.
Collapse
Affiliation(s)
| | - Sanguk Yun
- Department of Biotechnology, Inje University, Gimhae-si 50834, Republic of Korea;
| |
Collapse
|
40
|
Zhang H, Li QW, Li YY, Tang X, Gu L, Liu HM. Myeloid-derived suppressor cells and pulmonary hypertension. Front Immunol 2023; 14:1189195. [PMID: 37350962 PMCID: PMC10282836 DOI: 10.3389/fimmu.2023.1189195] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 05/18/2023] [Indexed: 06/24/2023] Open
Abstract
Pulmonary hypertension (PH) is a chronic pulmonary vascular disorder characterized by an increase in pulmonary vascular resistance and pulmonary arterial pressure. The detailed molecular mechanisms remain unclear. In recent decades, increasing evidence shows that altered immune microenvironment, comprised of immune cells, mesenchymal cells, extra-cellular matrix and signaling molecules, might induce the development of PH. Myeloid-derived suppressor cells (MDSCs) have been proposed over 30 years, and the functional importance of MDSCs in the immune system is appreciated recently. MDSCs are a heterogeneous group of cells that expand during cancer, chronic inflammation and infection, which have a remarkable ability to suppress T-cell responses and may exacerbate the development of diseases. Thus, targeting MDSCs has become a novel strategy to overcome immune evasion, especially in tumor immunotherapy. Nowadays, severe PH is accepted as a cancer-like disease, and MDSCs are closely related to the development and prognosis of PH. Here, we review the relationship between MDSCs and PH with respect to immune cells, cytokines, chemokines and metabolism, hoping that the key therapeutic targets of MDSCs can be identified in the treatment of PH, especially in severe PH.
Collapse
Affiliation(s)
- Hui Zhang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
- The Fifth People’s Hospital of Chengdu, Chengdu, China
- Sichuan Birth Defects Clinical Research Center, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Chronobiology (Sichuan University), National Health Commission of China, Chengdu, China
- The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, West China Institute of Women and Children’s Health, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Qi-Wei Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
- Sichuan Birth Defects Clinical Research Center, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Chronobiology (Sichuan University), National Health Commission of China, Chengdu, China
- The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, West China Institute of Women and Children’s Health, West China Second University Hospital, Sichuan University, Chengdu, China
- Department of Pediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yuan-Yuan Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
- Sichuan Birth Defects Clinical Research Center, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Chronobiology (Sichuan University), National Health Commission of China, Chengdu, China
- The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, West China Institute of Women and Children’s Health, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Xue Tang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
- Sichuan Birth Defects Clinical Research Center, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Chronobiology (Sichuan University), National Health Commission of China, Chengdu, China
- The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, West China Institute of Women and Children’s Health, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Ling Gu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
- Sichuan Birth Defects Clinical Research Center, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Chronobiology (Sichuan University), National Health Commission of China, Chengdu, China
- The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, West China Institute of Women and Children’s Health, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Han-Min Liu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
- Sichuan Birth Defects Clinical Research Center, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Chronobiology (Sichuan University), National Health Commission of China, Chengdu, China
- The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, West China Institute of Women and Children’s Health, West China Second University Hospital, Sichuan University, Chengdu, China
- Department of Pediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
41
|
Wu J, Ma W, Qiu Z, Zhou Z. Roles and mechanism of IL-11 in vascular diseases. Front Cardiovasc Med 2023; 10:1171697. [PMID: 37304948 PMCID: PMC10250654 DOI: 10.3389/fcvm.2023.1171697] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/28/2023] [Indexed: 06/13/2023] Open
Abstract
Vascular diseases are the leading cause of morbidity and mortality worldwide. Therefore, effective treatment strategies that can reduce the risk of vascular diseases are urgently needed. The relationship between Interleukin-11 (IL-11) and development of vascular diseases has gained increasing attention. IL-11, a target for therapeutic research, was initially thought to participate in stimulating platelet production. Additional research concluded that IL-11 is effective in treating several vascular diseases. However, the function and mechanism of IL-11 in these diseases remain unknown. This review summarizes IL-11 expression, function, and signal transduction mechanism. This study also focuses on the role of IL-11 in coronary artery disease, hypertension, pulmonary hypertension, cerebrovascular disease, aortic disease, and other vascular diseases and its potential as a therapeutic target. Consequently, this study provides new insight into the clinical diagnosis and treatment of vascular diseases.
Collapse
Affiliation(s)
- Jiacheng Wu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenrui Ma
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Radiology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Wuhan, China
| | - Zhihua Qiu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zihua Zhou
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
42
|
Gallardo-Vara E, Ntokou A, Dave JM, Jovin DG, Saddouk FZ, Greif DM. Vascular pathobiology of pulmonary hypertension. J Heart Lung Transplant 2023; 42:544-552. [PMID: 36604291 PMCID: PMC10121751 DOI: 10.1016/j.healun.2022.12.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 10/31/2022] [Accepted: 12/10/2022] [Indexed: 12/24/2022] Open
Abstract
Pulmonary hypertension (PH), increased blood pressure in the pulmonary arteries, is a morbid and lethal disease. PH is classified into several groups based on etiology, but pathological remodeling of the pulmonary vasculature is a common feature. Endothelial cell dysfunction and excess smooth muscle cell proliferation and migration are central to the vascular pathogenesis. In addition, other cell types, including fibroblasts, pericytes, inflammatory cells and platelets contribute as well. Herein, we briefly note most of the main cell types active in PH and for each cell type, highlight select signaling pathway(s) highly implicated in that cell type in this disease. Among others, the role of hypoxia-inducible factors, growth factors (e.g., vascular endothelial growth factor, platelet-derived growth factor, transforming growth factor-β and bone morphogenetic protein), vasoactive molecules, NOTCH3, Kruppel-like factor 4 and forkhead box proteins are discussed. Additionally, deregulated processes of endothelial-to-mesenchymal transition, extracellular matrix remodeling and intercellular crosstalk are noted. This brief review touches upon select critical facets of PH pathobiology and aims to incite further investigation that will result in discoveries with much-needed clinical impact for this devastating disease.
Collapse
Affiliation(s)
- Eunate Gallardo-Vara
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale Cardiovascular Research Center, New Haven, Connecticut; Department of Genetics, Yale University, New Haven, Connecticut
| | - Aglaia Ntokou
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale Cardiovascular Research Center, New Haven, Connecticut; Department of Genetics, Yale University, New Haven, Connecticut
| | - Jui M Dave
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale Cardiovascular Research Center, New Haven, Connecticut; Department of Genetics, Yale University, New Haven, Connecticut
| | - Daniel G Jovin
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale Cardiovascular Research Center, New Haven, Connecticut; Department of Genetics, Yale University, New Haven, Connecticut
| | - Fatima Z Saddouk
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale Cardiovascular Research Center, New Haven, Connecticut; Department of Genetics, Yale University, New Haven, Connecticut
| | - Daniel M Greif
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale Cardiovascular Research Center, New Haven, Connecticut; Department of Genetics, Yale University, New Haven, Connecticut.
| |
Collapse
|
43
|
Pizzuto DA, Buonsenso D, Morello R, De Rose C, Valentini P, Fragano A, Baldi F, Di Giuda D. Lung perfusion assessment in children with long-COVID: A pilot study. Pediatr Pulmonol 2023. [PMID: 37097045 DOI: 10.1002/ppul.26432] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 04/09/2023] [Accepted: 04/16/2023] [Indexed: 04/26/2023]
Abstract
BACKGROUND There is increasing evidence that chronic endotheliopathy can play a role in patients with Post-Covid Condition (PCC, or Long Covid) by affecting peripheral vascularization. This pilot study aimed at assessing lung perfusion in children with Long-COVID with 99m Tc-MAA SPECT/CT. MATERIALS AND METHODS lung 99m Tc-MAA SPECT/CT was performed in children with Long-COVID and a pathological cardiopulmonary exercise testing (CPET). Intravenous injections were performed on patients in the supine position immediately before the planar scan according to the EANM guidelines for lung scintigraphy in children, followed by lung SPECT/CT acquisition. Reconstructed studies were visually analyzed. RESULTS Clinical and biochemical data were collected during acute infection and follow-up in 14 children (6 females, mean age: 12.6 years) fulfilling Long-COVID diagnostic criteria and complaining of chronic fatigue and postexertional malaise after mild efforts, documented by CPET. Imaging results were compared with clinical scenarios during acute infection and follow-up. Six out of 14 (42.8%) children showed perfusion defects on 99m Tc-MAA SPECT/CT scan, without morphological alterations on coregistered CT. CONCLUSIONS This pilot investigation confirmed previous data suggesting that a small subgroup of children can develop lung perfusion defects after severe acute respiratory syndrome coronavirus 2 infection. Larger cohort studies are needed to confirm these preliminary results, providing also a better understanding of which children may deserve this test and how to manage those with lung perfusion defects.
Collapse
Affiliation(s)
- Daniele Antonio Pizzuto
- Department of Radiology, Radiotherapy and Hematology, Nuclear Medicine Unit, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy
| | - Danilo Buonsenso
- Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A Gemelli IRCCS, Rome, Italy
- GlobalHealth Research Institute, Istituto di Igiene, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Rosa Morello
- Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A Gemelli IRCCS, Rome, Italy
| | - Cristina De Rose
- Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A Gemelli IRCCS, Rome, Italy
| | - Piero Valentini
- Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A Gemelli IRCCS, Rome, Italy
| | - A Fragano
- Department of Radiology, Radiotherapy and Hematology, Nuclear Medicine Unit, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy
| | - Fabiana Baldi
- Division of Respiratory Medicine, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| | - Daniela Di Giuda
- Department of Radiology, Radiotherapy and Hematology, Nuclear Medicine Unit, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy
- University Department of Radiological Sciences and Hematology, Section of Nuclear Medicine, Uniiversità Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
44
|
Xiao M, Lai D, Yu Y, Wu Q, Zhang C. Pathogenesis of pulmonary hypertension caused by left heart disease. Front Cardiovasc Med 2023; 10:1079142. [PMID: 36937903 PMCID: PMC10020203 DOI: 10.3389/fcvm.2023.1079142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 02/14/2023] [Indexed: 03/06/2023] Open
Abstract
Pulmonary hypertension has high disability and mortality rates. Among them, pulmonary hypertension caused by left heart disease (PH-LHD) is the most common type. According to the 2022 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension, PH-LHD is classified as group 2 pulmonary hypertension. PH-LHD belongs to postcapillary pulmonary hypertension, which is distinguished from other types of pulmonary hypertension because of its elevated pulmonary artery wedge pressure. PH-LHD includes PH due to systolic or diastolic left ventricular dysfunction, mitral or aortic valve disease and congenital left heart disease. The primary strategy in managing PH-LHD is optimizing treatment of the underlying cardiac disease. Recent clinical studies have found that mechanical unloading of left ventricle by an implantable non-pulsatile left ventricular assist device with continuous flow properties can reverse pulmonary hypertension in patients with heart failure. However, the specific therapies for PH in LHD have not yet been identified. Treatments that specifically target PH in LHD could slow its progression and potentially improve disease severity, leading to far better clinical outcomes. Therefore, exploring the current research on the pathogenesis of PH-LHD is important. This paper summarizes and classifies the research articles on the pathogenesis of PH-LHD to provide references for the mechanism research and clinical treatment of PH-LHD, particularly molecular targeted therapy.
Collapse
Affiliation(s)
- Mingzhu Xiao
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Disheng Lai
- Department of Cardiology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Yumin Yu
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Qingqing Wu
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Caojin Zhang
- Department of Cardiology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
45
|
Inhibition of poly (ADP-ribose) Polymerase-1 (PARP-1) improves endothelial function in pulmonary hypertension. Pulm Pharmacol Ther 2023; 80:102200. [PMID: 36842770 DOI: 10.1016/j.pupt.2023.102200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 02/02/2023] [Accepted: 02/15/2023] [Indexed: 02/27/2023]
Abstract
Endothelial dysfunction is critical in the pulmonary vasculature during pulmonary hypertension (PH). Moreover, in PH, increased inflammation and oxidative/nitrosative stress cause DNA damage, activating poly (ADP-ribose) polymerase-1 (PARP-1). Meloche et al. (2014) and our previous research have shown that inhibiting PARP-1 is protective in PH and associated RV hypertrophy. However, the role of PARP-1 in pulmonary arterial endothelial dysfunction has not been explored completely. Therefore, the current study aims to investigate the involvement of PARP-1 in endothelial dysfunction associated with PH. Hypoxia (1% O2) was used to induce a PH-like phenotype in human pulmonary artery endothelial cells (HPAECs), and PARP-1 inhibition was achieved via siRNA (60 nM). For the in vivo study, male Sprague Dawley rats were administered monocrotaline (MCT; 60 mg/kg, SC, once) to induce PH, and 1, 5-isoquinolinediol (ISO; 3 mg/kg) was administered daily intraperitoneally to inhibit PARP-1. PARP-1 inhibition decreased proliferation and inflammation, as well as improved mitochondrial dysfunction in hypoxic HPAECs. Furthermore, PARP-1 inhibition also promoted apoptosis by increasing DNA damage in hypoxic HPAECs. In addition, inhibition of PARP-1 reduced cell migration, VEGF expression, and tubule formation in hypoxic HPAECs. In in vivo studies, PARP-1 inhibition by ISO significantly decreased the RVP and RVH as well as improved endothelial function by increasing the pulmonary vascular reactivity and expression of p-eNOS in MCT-treated rats.
Collapse
|
46
|
Pulmonary Vascular Remodeling in Pulmonary Hypertension. J Pers Med 2023; 13:jpm13020366. [PMID: 36836600 PMCID: PMC9967990 DOI: 10.3390/jpm13020366] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Pulmonary vascular remodeling is the critical structural alteration and pathological feature in pulmonary hypertension (PH) and involves changes in the intima, media and adventitia. Pulmonary vascular remodeling consists of the proliferation and phenotypic transformation of pulmonary artery endothelial cells (PAECs) and pulmonary artery smooth muscle cells (PASMCs) of the middle membranous pulmonary artery, as well as complex interactions involving external layer pulmonary artery fibroblasts (PAFs) and extracellular matrix (ECM). Inflammatory mechanisms, apoptosis and other factors in the vascular wall are influenced by different mechanisms that likely act in concert to drive disease progression. This article reviews these pathological changes and highlights some pathogenetic mechanisms involved in the remodeling process.
Collapse
|
47
|
Jiang Y, Huang J, Xia Y, Sun Z, Hu P, Wang D, Liu Y, Tao T, Liu Y. Hypoxia activates GPR146 which participates in pulmonary vascular remodeling by promoting pyroptosis of pulmonary artery endothelial cells. Eur J Pharmacol 2023; 941:175502. [PMID: 36638952 DOI: 10.1016/j.ejphar.2023.175502] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 12/28/2022] [Accepted: 01/10/2023] [Indexed: 01/12/2023]
Abstract
BACKGROUND Hypoxia is a risk factor of pulmonary hypertension (PH) and may induce pulmonary artery endothelial cells (PAECs) injury and inflammation. Pyroptosis is a form of cell death through maturation and secretion of inflammatory mediators. However, the mechanistic association of pyroptosis, PAECs injury, and inflammation remain unknown. Here, we explored in detail the effects of hypoxia on pyroptosis of PAECs. EXPERIMENTAL APPROACH Using RNA sequencing, we screened differentially expressed genes in pulmonary artery tissue of a Sugen5416/hypoxia-induced (SuHx) rat PH model. We examined the role of the differentially expressed gene G-protein coupled receptor 146 (GPR146) in PAECs through immunohistochemistry, immunofluorescence, CCK-8 assays, western blotings, real-time PCR, detection of reactive oxygen species, and lactate dehydrogenase release experiments. KEY RESULTS According to RNA sequencing, GPR146 was 11.64-fold increased in the SuHx-induced PH model, compared to the controls. Further, GPR146 was highly expressed in pulmonary arterial hypertension human lung tissue and SuHx-induced rat PH lung tissues. Our results suggested that the expression of pyroptosis-related proteins was markedly increased under hypoxia, both in vivo and in vitro, which was inhibited by silencing GPR146. Moreover, inhibiting NLRP3 or caspase-1 effectively suppressed cleavage of caspase-1, production of interleukin (IL)-1β, IL-6, and IL-18 in PAECs by hypoxia and overexpression of GPR146. CONCLUSION Our results indicated that GPR146 induced pyroptosis and inflammatory responses through the NLRP3/caspase-1 signaling axis, thus triggering endothelial injury and vascular remodeling. Hypoxia may promote PAECs pyroptosis through upregulation of GPR146 and thereby facilitate the progression of PH. Taken together, these insights may help identify a novel target for the treatment of PH.
Collapse
Affiliation(s)
- Yanjiao Jiang
- Department of Pharmacy, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, 222061, China
| | - Jie Huang
- Department of Pharmacy, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, 222061, China
| | - Yu Xia
- Department of Pharmacy, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, 222061, China
| | - Zengxian Sun
- Department of Pharmacy, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, 222061, China; Department of Pharmacy, Lianyungang Clinical College of Nanjing Medical University, Lianyungang, 222061, China
| | - Panpan Hu
- Department of Pharmacy, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, 222061, China
| | - Dapeng Wang
- Department of Intensive Medicine, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu, China
| | - Yi Liu
- Department of Pharmacy, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, 222061, China
| | - Ting Tao
- Department of Pharmacy, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, 222061, China
| | - Yun Liu
- Department of Pharmacy, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, 222061, China; Department of Pharmacy, Lianyungang Clinical College of Nanjing Medical University, Lianyungang, 222061, China.
| |
Collapse
|
48
|
Kameshima S, Nakamura Y, Uehara K, Kodama T, Yamawaki H, Nishi K, Okano S, Niijima R, Kimura Y, Itoh N. Effects of a Soluble Guanylate Cyclase Stimulator Riociguat on Contractility of Isolated Pulmonary Artery and Hemodynamics of U46619-Induced Pulmonary Hypertension in Dogs. Vet Sci 2023; 10:vetsci10020159. [PMID: 36851463 PMCID: PMC9960282 DOI: 10.3390/vetsci10020159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023] Open
Abstract
Soluble guanylate cyclase (sGC) stimulator riociguat is a relatively novel therapeutic agent for pulmonary hypertension (PH) in human medicine. Riociguat induces endothelium-independent pulmonary artery (PA) relaxation by directly activating the sGC-cyclic guanosine-3',5'-monophosphate (cGMP) pathway in muscle cells. Although riociguat may be effective in the treatment of dogs with refractory PH, basic studies on its clinical application in veterinary medicine are lacking. The present study aimed to explore the effects of riociguat on the contractility of an isolated canine PA and the hemodynamics of dogs with acute PH. In an isolated endothelium-denuded canine PA, the effects of riociguat on endothelin (ET)-1-induced contraction and cGMP levels were investigated using the Magnus method and ELISA, respectively. The effect of riociguat on the hemodynamics of the thromboxane A2 analog U46619-induced PH model dog was examined by invasive catheterization. Riociguat increased cGMP levels and reduced ET-1-induced contraction of the isolated PA. Riociguat inhibited the U46619-induced elevation of PA pressure and pulmonary vascular resistance and increased cardiac output, but it had no effect on basal systemic blood pressure. These results demonstrate for the first time that riociguat can inhibit the elevation of PA pressure through PA relaxation via an endothelium-independent increase in cGMP in dogs with PH.
Collapse
Affiliation(s)
- Satoshi Kameshima
- Laboratory of Small Animal Internal Medicine 1, School of Veterinary Medicine, Kitasato University, Higashi 23 Bancho 35-1, Towada 034-8628, Aomori, Japan
- Correspondence: ; Tel.: +81-176-23-4371
| | - Yuki Nakamura
- Laboratory of Small Animal Internal Medicine 1, School of Veterinary Medicine, Kitasato University, Higashi 23 Bancho 35-1, Towada 034-8628, Aomori, Japan
| | - Kenji Uehara
- Laboratory of Small Animal Internal Medicine 1, School of Veterinary Medicine, Kitasato University, Higashi 23 Bancho 35-1, Towada 034-8628, Aomori, Japan
| | - Tomoko Kodama
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University, Higashi 23 Bancho 35-1, Towada 034-8628, Aomori, Japan
| | - Hideyuki Yamawaki
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University, Higashi 23 Bancho 35-1, Towada 034-8628, Aomori, Japan
| | - Kotaro Nishi
- Laboratory of Small Animal Surgery 2, School of Veterinary Medicine, Kitasato University, Higashi 23 Bancho 35-1, Towada 034-8628, Aomori, Japan
| | - Shozo Okano
- Laboratory of Small Animal Surgery 2, School of Veterinary Medicine, Kitasato University, Higashi 23 Bancho 35-1, Towada 034-8628, Aomori, Japan
| | - Ryo Niijima
- Small Animal Teaching Hospital, School of Veterinary Medicine, Kitasato University, Higashi 23 Bancho 35-1, Towada 034-8628, Aomori, Japan
| | - Yuya Kimura
- Laboratory of Small Animal Internal Medicine 1, School of Veterinary Medicine, Kitasato University, Higashi 23 Bancho 35-1, Towada 034-8628, Aomori, Japan
| | - Naoyuki Itoh
- Laboratory of Small Animal Internal Medicine 1, School of Veterinary Medicine, Kitasato University, Higashi 23 Bancho 35-1, Towada 034-8628, Aomori, Japan
| |
Collapse
|
49
|
Betageri KR, Link PA, Haak AJ, Ligresti G, Tschumperlin DJ, Caporarello N. The matricellular protein CCN3 supports lung endothelial homeostasis and function. Am J Physiol Lung Cell Mol Physiol 2023; 324:L154-L168. [PMID: 36573684 PMCID: PMC9925165 DOI: 10.1152/ajplung.00248.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 11/23/2022] [Accepted: 12/19/2022] [Indexed: 12/28/2022] Open
Abstract
Aberrant vascular remodeling contributes to the progression of many aging-associated diseases, including idiopathic pulmonary fibrosis (IPF), where heterogeneous capillary density, endothelial transcriptional alterations, and increased vascular permeability correlate with poor disease outcomes. Thus, identifying disease-driving mechanisms in the pulmonary vasculature may be a promising strategy to limit IPF progression. Here, we identified Ccn3 as an endothelial-derived factor that is upregulated in resolving but not in persistent lung fibrosis in mice, and whose function is critical for vascular homeostasis and repair. Loss and gain of function experiments were carried out to test the role of CCN3 in lung microvascular endothelial function in vitro through RNAi and the addition of recombinant human CCN3 protein, respectively. Endothelial migration, permeability, proliferation, and in vitro angiogenesis were tested in cultured human lung microvascular endothelial cells (ECs). Loss of CCN3 in lung ECs resulted in transcriptional alterations along with impaired wound-healing responses, in vitro angiogenesis, barrier integrity as well as an increased profibrotic activity through paracrine signals, whereas the addition of recombinant CCN3 augmented endothelial function. Altogether, our results demonstrate that the matricellular protein CCN3 plays an important role in lung endothelial function and could serve as a promising therapeutic target to facilitate vascular repair and promote lung fibrosis resolution.
Collapse
Affiliation(s)
- Kalpana R Betageri
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Patrick A Link
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Andrew J Haak
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Giovanni Ligresti
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Daniel J Tschumperlin
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Nunzia Caporarello
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
50
|
Karpov AA, Vachrushev NS, Shilenko LA, Smirnov SS, Bunenkov NS, Butskih MG, Chervaev AKA, Vaulina DD, Ivkin DY, Moiseeva OM, Galagudza MM. Sympathetic Denervation and Pharmacological Stimulation of Parasympathetic Nervous System Prevent Pulmonary Vascular Bed Remodeling in Rat Model of Chronic Thromboembolic Pulmonary Hypertension. J Cardiovasc Dev Dis 2023; 10:jcdd10020040. [PMID: 36826536 PMCID: PMC9965116 DOI: 10.3390/jcdd10020040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/28/2022] [Accepted: 01/18/2023] [Indexed: 01/26/2023] Open
Abstract
Chronic thromboembolic pulmonary hypertension (CTEPH) develops in 1.5-2.0% of patients experiencing pulmonary embolism (PE) and is characterized by stable pulmonary artery obstruction, heart failure, and poor prognosis. Little is known about involvement of autonomic nervous system (ANS) in the mechanisms of CTEPH. This study was aimed at evaluation of the effect of vagal and sympathetic denervation, as well as stimulation of the parasympathetic nervous system, on the outcomes of CTEPH in rats. CTEPH was induced by multiple intravenous injections of alginate microspheres. Sympathetic and vagal denervation was performed using unilateral surgical ablation of the stellate ganglion and vagotomy, respectively. Stimulation of the parasympathetic nervous system was carried out by administering pyridostigmine. The effect of neuromodulatory effects was assessed in terms of hemodynamics, histology, and gene expression. The results demonstrated the key role of ANS in the development of CTEPH. Sympathetic denervation as well as parasympathetic stimulation resulted in attenuated pulmonary vascular remodeling. These salutary changes were associated with altered MMP2 and TIMP1 expression in the lung and decreased FGFb level in the blood. Unilateral vagotomy had no effect on physiological and morphological outcomes of the study. The data obtained contribute to the identification of new therapeutic targets for CTEPH treatment.
Collapse
Affiliation(s)
- Andrei A. Karpov
- Institute of Experimental Medicine, Almazov National Medical Research Centre, 2 Akkuratova Street, 197341 St. Petersburg, Russia
- Department of Experimental Pharmacology, State Federal-Funded Educational Institution of Higher Education, Saint Petersburg State Chemical and Pharmaceutical University of the Ministry of Healthcare of the Russian Federation, 14 Professora Popova Street, 197022 St. Petersburg, Russia
| | - Nikita S. Vachrushev
- Institute of Molecular Biology and Genetics, Almazov National Medical Research Centre, 2 Akkuratova Street, 197341 St. Petersburg, Russia
| | - Leonid A. Shilenko
- Institute of Experimental Medicine, Almazov National Medical Research Centre, 2 Akkuratova Street, 197341 St. Petersburg, Russia
| | - Sergey S. Smirnov
- Institute of Experimental Medicine, Almazov National Medical Research Centre, 2 Akkuratova Street, 197341 St. Petersburg, Russia
| | - Nikolay S. Bunenkov
- Institute of Experimental Medicine, Almazov National Medical Research Centre, 2 Akkuratova Street, 197341 St. Petersburg, Russia
- Department of Bone Marrow Transplantation, Raisa Gorbacheva Research Institute of Children Oncology, Hematology and Transplantation of Pavlov First Saint Petersburg State Medical University, 6–8 L’va Tolstogo Street, 197022 St. Petersburg, Russia
| | - Maxim G. Butskih
- Institute of Experimental Medicine, Almazov National Medical Research Centre, 2 Akkuratova Street, 197341 St. Petersburg, Russia
- Department of Pathophysiology with Clinical Pathophysiology Course, Pavlov First Saint Petersburg State Medical University, 6–8 L’va Tolstogo Street, 197022 St. Petersburg, Russia
| | - Al-Khalim A. Chervaev
- Institute of Experimental Medicine, Almazov National Medical Research Centre, 2 Akkuratova Street, 197341 St. Petersburg, Russia
- Department of Pathophysiology with Clinical Pathophysiology Course, Pavlov First Saint Petersburg State Medical University, 6–8 L’va Tolstogo Street, 197022 St. Petersburg, Russia
| | - Dariya D. Vaulina
- Institute of Experimental Medicine, Almazov National Medical Research Centre, 2 Akkuratova Street, 197341 St. Petersburg, Russia
| | - Dmitry Yu. Ivkin
- Department of Experimental Pharmacology, State Federal-Funded Educational Institution of Higher Education, Saint Petersburg State Chemical and Pharmaceutical University of the Ministry of Healthcare of the Russian Federation, 14 Professora Popova Street, 197022 St. Petersburg, Russia
| | - Olga M. Moiseeva
- Institute of Heart and Vessels, Almazov National Medical Research Centre, 2 Akkuratova Street, 197022 St. Petersburg, Russia
| | - Michael M. Galagudza
- Institute of Experimental Medicine, Almazov National Medical Research Centre, 2 Akkuratova Street, 197341 St. Petersburg, Russia
- Department of Pathophysiology with Clinical Pathophysiology Course, Pavlov First Saint Petersburg State Medical University, 6–8 L’va Tolstogo Street, 197022 St. Petersburg, Russia
- Correspondence: ; Tel.: +7-921-345-5243
| |
Collapse
|