1
|
Mahapatra AD, Paul I, Dasgupta S, Roy O, Sarkar S, Ghosh T, Basu S, Chattopadhyay D. Antiviral Potential and In Silico Insights of Polyphenols as Sustainable Phytopharmaceuticals: A Comprehensive Review. Chem Biodivers 2025; 22:e202401913. [PMID: 39648847 DOI: 10.1002/cbdv.202401913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 11/23/2024] [Accepted: 12/06/2024] [Indexed: 12/10/2024]
Abstract
Polyphenols, particularly flavonoids, are reported to have health-promoting, disease-preventing abilities and several polyphenols having a wide spectrum of antiviral activities can be explored for preventive and/or therapeutic purposes. We have compiled the updated literature of diverse polyphenols active against common viral diseases, including herpes, hepatitis, influenza, rota and SARS-corona-viruses. The antiviral activity of bioactive polyphenols depends on the hydroxyl and ester groups of polyphenol molecules, as compounds with five or more hydroxyl groups and three specific methoxy groups showed antiviral potential, like anti-rabies activity. This comprehensive review will explore selective polyphenols isolated from common ethnomedicinal or food plants. Comparing bioactivities of structurally related polyphenols and using bioinformatics studies, we have explored the three most promising phyto-antivirals, including chrysin, resveratrol and quercetin, available in many foods and medicinal plants. Quercetin showed a maximum interaction score with human genes. We also explore the intricate structure-activity relationship between these polyphenols and pathogenic viruses with their mechanisms of antiviral action in selected virus models. Here, we report the promising potential of some phyto-polyphenols in the management of viral diseases through an in-depth analysis of the structure and bioactivity of these compounds.
Collapse
Affiliation(s)
| | - Indrani Paul
- Department of Biotechnology, Brainware University, Barasat, Kolkata, India
| | - Sanjukta Dasgupta
- Department of Biotechnology, Brainware University, Barasat, Kolkata, India
- Center for Multidisciplinary Research & Innovations, Brainware University, Barasat, Kolkata, India
| | - Oliva Roy
- Department of Biotechnology, Brainware University, Barasat, Kolkata, India
| | - Srinjoy Sarkar
- Department of Biotechnology, Brainware University, Barasat, Kolkata, India
| | - Tusha Ghosh
- Department of Biotechnology, Brainware University, Barasat, Kolkata, India
| | - Sayantan Basu
- Department of Biotechnology, Brainware University, Barasat, Kolkata, India
| | - Debprasad Chattopadhyay
- School of Life Sciences, Swami Vivekananda University, Barrackpore, Kolkata, India
- ICMR-National Institute of Traditional Medicine, Belagavi, Karnataka, India
| |
Collapse
|
2
|
Sahu S, Kumari D, Kusam, Kuila A, Gurjar RS, Sharma K, Verma R. Deep eutectic solvent extraction of polyphenol from plant materials: Current status and future prospects in food applications. Food Chem 2025; 482:144125. [PMID: 40187311 DOI: 10.1016/j.foodchem.2025.144125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 03/09/2025] [Accepted: 03/28/2025] [Indexed: 04/07/2025]
Abstract
The increasing environmental concerns related to biomass waste have led to the exploration of sustainable methods for extracting bioactive compounds from plant materials, especially polyphenols, which are valued for their health benefits and use in functional foods and natural additives. These bioactive compounds are abundant in fruits, vegetables, tea, and herbs, and encompass flavonoids, phenolic acids, tannins, stilbenes, and lignans. Traditional extraction methods often rely on harmful petrochemical solvents, which pose significant environmental and health risks. In contrast, Deep Eutectic Solvents (DESs) have emerged as an eco-friendly alternative, offering advantages such as low toxicity, cost-efficiency, and a wide range of solubility. This review focused recent advancements in DES-based polyphenol extraction, emphasizing their applications in the food industry. It highlights the potential of DES to efficiently extract polyphenols, improving their bioavailability and stability, and exploring future prospect for enhancing food quality, safety, and functionality through functional foods and natural preservatives.
Collapse
Affiliation(s)
- Shivani Sahu
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Rajasthan 304022, India
| | - Diksha Kumari
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Rajasthan 304022, India
| | - Kusam
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Rajasthan 304022, India
| | - Arindam Kuila
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Rajasthan 304022, India.
| | | | - Kuldeep Sharma
- Centre of Research Impact and Outcome, Chitkara University Institute of Engineering and Technology, Rajpura, Punjab 140401, India
| | - Rajan Verma
- Chitkara Centre for Research and Development, Chitkara University, Himachal Pradesh 174103, India
| |
Collapse
|
3
|
Carpena M, Pereira CSGP, Silva A, Barciela P, Jorge AOS, Perez-Vazquez A, Pereira AG, Barreira JCM, Oliveira MBPP, Prieto MA. Metabolite Profiling of Macroalgae: Biosynthesis and Beneficial Biological Properties of Active Compounds. Mar Drugs 2024; 22:478. [PMID: 39452886 PMCID: PMC11509156 DOI: 10.3390/md22100478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/14/2024] [Accepted: 10/15/2024] [Indexed: 10/26/2024] Open
Abstract
Macroalgae are known as abundant sources of phytochemicals, which offer a plethora of beneficial biological properties. Besides being the most notable classes of compounds found in macroalgae, phlorotannins, bromophenols, and terpenoids comprise some of the most relevant for their biological properties. Phlorotannins, mainly prevalent in brown algae and structurally characterized as complex polyphenolic compounds derived from phloroglucinol units, possess robust antioxidant, anti-inflammatory, antitumor, and cytotoxic activities, modulated by factors such as the degree of polymerization and environmental conditions. Bromophenols, halogenated compounds found in algae and other marine organisms, exhibit significant antioxidant and antiviral properties. Their diverse structures and bromination patterns contribute to their potential as therapeutic and chemical defense agents. Pigments (chemically described as primary terpenoids) play a critical role in light absorption and energy transfer in macroalgae and are divided into three main groups: (i) carotenoids, which are primarily found in brown algae and provide photoprotective and antioxidant benefits; (ii) chlorophylls, known for facilitating the conversion of light into biological energy; and (iii) phycobilins, which are mostly found in red algae and play important roles in light absorption and energy transfer, besides providing remarkable health benefits. Finally, secondary terpenoids, which are particularly abundant in red algae (e.g., the Rhodomelaceae family) are central to cellular interactions and exhibit significant antioxidant, antimicrobial, antidiabetic, and anti-inflammatory properties. This study represents a detailed analysis of the biosynthesis, structural diversity, and biological activities of these macroalgae metabolites, emphasizing their potential biological properties.
Collapse
Affiliation(s)
- Maria Carpena
- Department of Analytical Chemistry and Food Science, Instituto de Agroecoloxía e Alimentación (IAA)—CITEXVI, Universidade de Vigo, Nutrition and Bromatology Group, 36310 Vigo, Spain; (M.C.); (A.S.); (P.B.); (A.O.S.J.); (A.P.-V.); (A.G.P.)
| | - Cláudia S. G. P. Pereira
- LAQV/REQUIMTE, Department of Chemical Sciences, Faculdade de Farmácia, Universidade do Porto, R. Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal; (C.S.G.P.P.); (M.B.P.P.O.)
| | - Aurora Silva
- Department of Analytical Chemistry and Food Science, Instituto de Agroecoloxía e Alimentación (IAA)—CITEXVI, Universidade de Vigo, Nutrition and Bromatology Group, 36310 Vigo, Spain; (M.C.); (A.S.); (P.B.); (A.O.S.J.); (A.P.-V.); (A.G.P.)
- LAQV/REQUIMTE, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal
| | - Paula Barciela
- Department of Analytical Chemistry and Food Science, Instituto de Agroecoloxía e Alimentación (IAA)—CITEXVI, Universidade de Vigo, Nutrition and Bromatology Group, 36310 Vigo, Spain; (M.C.); (A.S.); (P.B.); (A.O.S.J.); (A.P.-V.); (A.G.P.)
| | - A. Olivia S. Jorge
- Department of Analytical Chemistry and Food Science, Instituto de Agroecoloxía e Alimentación (IAA)—CITEXVI, Universidade de Vigo, Nutrition and Bromatology Group, 36310 Vigo, Spain; (M.C.); (A.S.); (P.B.); (A.O.S.J.); (A.P.-V.); (A.G.P.)
- LAQV/REQUIMTE, Department of Chemical Sciences, Faculdade de Farmácia, Universidade do Porto, R. Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal; (C.S.G.P.P.); (M.B.P.P.O.)
| | - Ana Perez-Vazquez
- Department of Analytical Chemistry and Food Science, Instituto de Agroecoloxía e Alimentación (IAA)—CITEXVI, Universidade de Vigo, Nutrition and Bromatology Group, 36310 Vigo, Spain; (M.C.); (A.S.); (P.B.); (A.O.S.J.); (A.P.-V.); (A.G.P.)
| | - Antia G. Pereira
- Department of Analytical Chemistry and Food Science, Instituto de Agroecoloxía e Alimentación (IAA)—CITEXVI, Universidade de Vigo, Nutrition and Bromatology Group, 36310 Vigo, Spain; (M.C.); (A.S.); (P.B.); (A.O.S.J.); (A.P.-V.); (A.G.P.)
- Investigaciones Agroalimentarias Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36312 Vigo, Spain
| | - João C. M. Barreira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal;
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - M. Beatriz P. P. Oliveira
- LAQV/REQUIMTE, Department of Chemical Sciences, Faculdade de Farmácia, Universidade do Porto, R. Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal; (C.S.G.P.P.); (M.B.P.P.O.)
| | - Miguel A. Prieto
- Department of Analytical Chemistry and Food Science, Instituto de Agroecoloxía e Alimentación (IAA)—CITEXVI, Universidade de Vigo, Nutrition and Bromatology Group, 36310 Vigo, Spain; (M.C.); (A.S.); (P.B.); (A.O.S.J.); (A.P.-V.); (A.G.P.)
| |
Collapse
|
4
|
Zeb L, Gerhardt AS, Johannesen BA, Underhaug J, Jordheim M. Ultrasonic-Assisted Water-Rich Natural Deep Eutectic Solvents for Sustainable Polyphenol Extraction from Seaweed: A Case Study on Cultivated Saccharina latissima. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2024; 12:14921-14929. [PMID: 39391092 PMCID: PMC11462601 DOI: 10.1021/acssuschemeng.4c06736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/11/2024] [Accepted: 09/13/2024] [Indexed: 10/12/2024]
Abstract
This case study introduces a green, 1 h single-step method using water-rich natural deep eutectic solvent (WRNADES) for ultrasound-assisted extraction (UAE) of polyphenols fromSaccharina latissima, a commercially cultivated brown seaweed. The extraction efficiency was evaluated using a selective quantitative NMR method (s-qNMR) and the traditional nonselective colorimetric total phenolic content assay (TPC). Initial 6 h extractions in traditional solvents (methanol, ethanol, acetone, and ethyl acetate) showed a 40-60% increase in polyphenolic yields in 50% aqueous solutions measured by the TPC method. Six different water-rich (50%) NADES (WRNADES) combinations were tested (choline chloride/betaine with lactic acid, citric acid, and 1,3-butanediol), with betaine and 1,3-butanediol (1:1) proving most effective. Parameters for the WRNADES were optimized using Box-Behnken design response surface methodology, resulting in a 1:20 w/w biomass to solvent ratio and a 1 h extraction time at 50 °C. The WRNADES extraction process was refined into a scalable, single-step procedure and compared with traditional solvent extractions (6 h, 50% aqueous methanol and acetone). A final XAD-7 polyphenol recovery step was included in all extractions. The optimized WRNADES extraction yielded 15.97 mg GAE/g of the dry weight recovered polyphenolic extract (s-qNMR), exceeding the 6 h 50% aqueous methanol (12.4 mg GAE/g) and acetone (11.4 mg GAE/g) extractions. Thus, the UAE-WRNADES method presented in this case study provides a cost-effective, sustainable, and eco-friendly alternative for the extraction of phenolic compounds from seaweed. It promotes the development of environmentally friendly production processes within the seaweed biorefinery.
Collapse
Affiliation(s)
- Liaqat Zeb
- Department of Chemistry, University of Bergen, Bergen 5007, Norway
| | | | | | - Jarl Underhaug
- Department of Chemistry, University of Bergen, Bergen 5007, Norway
| | - Monica Jordheim
- Department of Chemistry, University of Bergen, Bergen 5007, Norway
| |
Collapse
|
5
|
Mirzapour-Kouhdasht A, Garcia-Vaquero M, Huang JY. Algae-derived compounds: Bioactivity, allergenicity and technologies enhancing their values. BIORESOURCE TECHNOLOGY 2024; 406:130963. [PMID: 38876282 DOI: 10.1016/j.biortech.2024.130963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/02/2024] [Accepted: 06/11/2024] [Indexed: 06/16/2024]
Abstract
As a rapidly growing source of human nutrients, algae biosynthesize diverse metabolites which have promising bioactivities. However, the potential allergenicity of algal components hinder their widespread adoption. This review provides a comprehensive review of various macro and micronutrients derived from algal biomass, with particular focus on bioactive compounds, including peptides, polyphenols, carotenoids, omega-3 fatty acids and phycocyanins. The approaches used to produce algal bioactive compounds and their health benefits (antioxidant, antidiabetic, cardioprotective, anti-inflammatory and immunomodulatory) are summarised. This review particularly focuses on the state-of-the-art of precision fermentation, encapsulation, cold plasma, high-pressure processing, pulsed electric field, and subcritical water to reduce the allergenicity of algal compounds while increasing their bioactivity and bioavailability. By providing insights into current challenges of algae-derived compounds and opportunities for advancement, this review contributes to the ongoing discourse on maximizing their application potential in the food nutraceuticals, and pharmaceuticals industries.
Collapse
Affiliation(s)
- Armin Mirzapour-Kouhdasht
- Department of Chemical Sciences, SSPC, Science Foundation Ireland Research Centre for Pharmaceuticals, Bernal Institute, University of Limerick, Castletroy, Limerick, V94 T9PX, Ireland
| | - Marco Garcia-Vaquero
- School of Agriculture and Food Science, University College Dublin, Belfield, D04V1W8 Dublin, Ireland
| | - Jen-Yi Huang
- Department of Food Science, Purdue University, West Lafayette, IN 47907, USA; Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN 47907, USA; Environmental and Ecological Engineering, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
6
|
Lim MCX, Loo CT, Wong CY, Lee CS, Koh RY, Lim CL, Kok YY, Chye SM. Prospecting bioactivity in Antarctic algae: A review of extracts, isolated compounds and their effects. Fitoterapia 2024; 176:106025. [PMID: 38768797 DOI: 10.1016/j.fitote.2024.106025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 05/09/2024] [Accepted: 05/17/2024] [Indexed: 05/22/2024]
Abstract
Algae and its metabolites have been a popular subject of research in numerous fields over the years. Various reviews have been written on algal bioactive components, but a specific focus on Antarctic-derived algae is seldom reviewed. Due to the extreme climate conditions of Antarctica, it is hypothesized that the acclimatized algae may have given rise to a new set of bioactive compounds as a result of adaptation. Although most studies done on Antarctic algae are based on ecological and physiological studies, as well as in the field of nanomaterial synthesis, some studies point out the potential therapeutic properties of these compounds. As an effort to shed light on a different application of Antarctic algae, this review focuses on evaluating its different medicinal properties, including antimicrobial, anticancer, antioxidative, anti-inflammatory, and skin protective effects.
Collapse
Affiliation(s)
- Mervyn Chen Xi Lim
- School of Health Science, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Chee Tou Loo
- School of Health Science, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Chiew Yen Wong
- Division of Biomedical Science and Biotechnology, School of Health Science, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Choy Sin Lee
- School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Rhun Yian Koh
- Division of Biomedical Science and Biotechnology, School of Health Science, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Chooi Ling Lim
- Division of Biomedical Science and Biotechnology, School of Health Science, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Yih Yih Kok
- Division of Biomedical Science and Biotechnology, School of Health Science, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Soi Moi Chye
- Division of Biomedical Science and Biotechnology, School of Health Science, International Medical University, Kuala Lumpur 57000, Malaysia.
| |
Collapse
|
7
|
Mayer AMS, Mayer VA, Swanson-Mungerson M, Pierce ML, Rodríguez AD, Nakamura F, Taglialatela-Scafati O. Marine Pharmacology in 2019-2021: Marine Compounds with Antibacterial, Antidiabetic, Antifungal, Anti-Inflammatory, Antiprotozoal, Antituberculosis and Antiviral Activities; Affecting the Immune and Nervous Systems, and Other Miscellaneous Mechanisms of Action. Mar Drugs 2024; 22:309. [PMID: 39057418 PMCID: PMC11278370 DOI: 10.3390/md22070309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/22/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024] Open
Abstract
The current 2019-2021 marine pharmacology literature review provides a continuation of previous reviews covering the period 1998 to 2018. Preclinical marine pharmacology research during 2019-2021 was published by researchers in 42 countries and contributed novel mechanism-of-action pharmacology for 171 structurally characterized marine compounds. The peer-reviewed marine natural product pharmacology literature reported antibacterial, antifungal, antiprotozoal, antituberculosis, and antiviral mechanism-of-action studies for 49 compounds, 87 compounds with antidiabetic and anti-inflammatory activities that also affected the immune and nervous system, while another group of 51 compounds demonstrated novel miscellaneous mechanisms of action, which upon further investigation, may contribute to several pharmacological classes. Thus, in 2019-2021, a very active preclinical marine natural product pharmacology pipeline provided novel mechanisms of action as well as new lead chemistry for the clinical marine pharmaceutical pipeline targeting the therapy of several disease categories.
Collapse
Affiliation(s)
- Alejandro M. S. Mayer
- Department of Pharmacology, College of Graduate Studies, Midwestern University, 555 31st Street, Downers Grove, IL 60515, USA;
| | - Veronica A. Mayer
- Department of Nursing Education, School of Nursing, Aurora University, 347 S. Gladstone Ave., Aurora, IL 60506, USA;
| | - Michelle Swanson-Mungerson
- Department of Microbiology and Immunology, College of Graduate Studies, Midwestern University, 555 31st Street, Downers Grove, IL 60515, USA;
| | - Marsha L. Pierce
- Department of Pharmacology, College of Graduate Studies, Midwestern University, 555 31st Street, Downers Grove, IL 60515, USA;
| | - Abimael D. Rodríguez
- Molecular Sciences Research Center, University of Puerto Rico, 1390 Ponce de León Avenue, San Juan, PR 00926, USA;
| | - Fumiaki Nakamura
- Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku 169-8555, Tokyo, Japan;
| | | |
Collapse
|
8
|
Bogolitsyn K, Dobrodeeva L, Samodova A, Parshina A. In vitro Immunostimulant Activity of the Polyphenolic Extract from the Arctic Brown Algae Fucus vesiculosus. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2024; 79:511-517. [PMID: 38613704 DOI: 10.1007/s11130-024-01174-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/27/2024] [Indexed: 04/15/2024]
Abstract
Polyphenols (PP) found in brown algae are known for their wide range of biological activities including noteworthy antitumor properties. This article presents a method for obtaining an active polyphenolic extract from the Arctic alga Fucus vesiculosus with 98% purity and radical scavenging activity equivalent to 862 mg of ascorbic acid per gram of extract. Immunostimulant effects of polyphenols were assessed in vitro using venous blood from two groups of people: healthy people (HP) and people with chronic undifferentiated lymphocytic leukemia (LP). Polyphenols activated the surface properties of immunocompetent cells. Specifically, polyphenols dose-dependently increased the percentage of cells' spreading and adhesion by 2-3 times. Additionally, polyphenols increased the number of activated lymphocytes in the LP blood to levels characteristic of HP. Given their natural origin, high activity, non-toxicity, and straightforward production process, these studied polyphenols exhibit immense potential for use as new pharmaceuticals or as active components with immunostimulatory effects.
Collapse
Affiliation(s)
- Konstantin Bogolitsyn
- Northern (Arctic) Federal University named after M.V. Lomonosov, 17, Northern Dvina Emb, Arkhangelsk, Russian Federation
- N.P. Laverov Federal Center for Integrated Arctic Research of the Ural Branch of the Russian Academy of Sciences, 20, Nikolskiy Ave, Arkhangelsk, Russian Federation
| | - Liliya Dobrodeeva
- N.P. Laverov Federal Center for Integrated Arctic Research of the Ural Branch of the Russian Academy of Sciences, 20, Nikolskiy Ave, Arkhangelsk, Russian Federation
| | - Anna Samodova
- N.P. Laverov Federal Center for Integrated Arctic Research of the Ural Branch of the Russian Academy of Sciences, 20, Nikolskiy Ave, Arkhangelsk, Russian Federation
| | - Anastasia Parshina
- Northern (Arctic) Federal University named after M.V. Lomonosov, 17, Northern Dvina Emb, Arkhangelsk, Russian Federation.
| |
Collapse
|
9
|
Wu GJ, Hsiao PW. Assessment of Anti-Prostate Cancer Activity among Four Seaweeds, with Focus on Caulerpa lentillifera J.Agardh. Foods 2024; 13:1411. [PMID: 38731782 PMCID: PMC11083060 DOI: 10.3390/foods13091411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 04/24/2024] [Accepted: 05/02/2024] [Indexed: 05/13/2024] Open
Abstract
In response to a global shift towards health-conscious and environmentally sustainable food choices, seaweed has emerged as a focus for researchers due to its large-scale cultivation potential and the development of bioactive substances. This research explores the potential anticancer properties of seaweed extracts, focusing on analyzing the impact of four common edible seaweeds in Taiwan on prostate cancer (PCa) cells' activity. The study used bioassay-guided fractionation to extract Cl80 from various seaweeds with androgen receptor (AR)-inhibitory activity. Cl80 demonstrated effective suppression of 5α-dihydrotestosterone (DHT)-induced AR activity in 103E cells and attenuated the growth and prostate-specific antigen (PSA) protein expression in LNCaP and 22Rv1 cells. Additionally, Cl80 exhibited differential effects on various PCa cell lines. Concentrations above 5 μg/mL significantly inhibited LNCaP cell proliferation, while 22Rv1 cells were more resistant to Cl80. PC-3 cell proliferation was inhibited at 5 μg/mL but not completely at 50 μg/mL. A clonogenic assay showed that at a concentration of 0.5 μg/mL, the colony formation in LNCaP and PC-3 cells was significantly reduced, with a dose-dependent effect. Cl80 induced apoptosis in all PCa cell types, especially in LNCaP cells, with increased apoptotic cells observed at higher concentrations. Cl80 also decreased the mitochondrial membrane potential (ΔΨm) in a dose-dependent manner in all PCa cell lines. Furthermore, Cl80 suppressed the migration ability of PCa cells, with significant reductions observed in LNCaP, 22Rv1, and PC-3 cells at various concentrations. These compelling findings highlight the promising therapeutic potential of C. lentillifera J.Agardh and its isolated compound Cl80 in the treatment of PCa.
Collapse
Affiliation(s)
- Guan-James Wu
- Department of Food Science, National Penghu University of Science and Technology, Magong 880011, Taiwan
| | - Pei-Wen Hsiao
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115201, Taiwan;
| |
Collapse
|
10
|
Cotas J, Lomartire S, Gonçalves AMM, Pereira L. From Ocean to Medicine: Harnessing Seaweed's Potential for Drug Development. Int J Mol Sci 2024; 25:797. [PMID: 38255871 PMCID: PMC10815561 DOI: 10.3390/ijms25020797] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/05/2024] [Accepted: 01/06/2024] [Indexed: 01/24/2024] Open
Abstract
Seaweed, a miscellaneous group of marine algae, has long been recognized for its rich nutritional composition and bioactive compounds, being considered nutraceutical ingredient. This revision delves into the promising role of seaweed-derived nutrients as a beneficial resource for drug discovery and innovative product development. Seaweeds are abundant sources of essential vitamins, minerals, polysaccharides, polyphenols, and unique secondary metabolites, which reveal a wide range of biological activities. These bioactive compounds possess potential therapeutic properties, making them intriguing candidates for drug leads in various medical applications and pharmaceutical drug development. It explores their pharmacological properties, including antioxidant, anti-inflammatory, antimicrobial, and anticancer activities, shedding light on their potential as therapeutic agents. Moreover, the manuscript provides insights into the development of formulation strategies and delivery systems to enhance the bioavailability and stability of seaweed-derived compounds. The manuscript also discusses the challenges and opportunities associated with the integration of seaweed-based nutrients into the pharmaceutical and nutraceutical industries. Regulatory considerations, sustainability, and scalability of sustainable seaweed sourcing and cultivation methods are addressed, emphasizing the need for a holistic approach in harnessing seaweed's potential. This revision underscores the immense potential of seaweed-derived compounds as a valuable reservoir for drug leads and product development. By bridging the gap between marine biology, pharmacology, and product formulation, this research contributes to the critical advancement of sustainable and innovative solutions in the pharmaceutical and nutraceutical sectors.
Collapse
Affiliation(s)
- João Cotas
- Marine Resources, Conservation and Technology, Marine Algae Lab, CFE—Centre for Functional Ecology: Science for People & Planet, Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal; (J.C.); (S.L.); (A.M.M.G.)
| | - Silvia Lomartire
- Marine Resources, Conservation and Technology, Marine Algae Lab, CFE—Centre for Functional Ecology: Science for People & Planet, Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal; (J.C.); (S.L.); (A.M.M.G.)
| | - Ana M. M. Gonçalves
- Marine Resources, Conservation and Technology, Marine Algae Lab, CFE—Centre for Functional Ecology: Science for People & Planet, Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal; (J.C.); (S.L.); (A.M.M.G.)
- Department of Biology and CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Leonel Pereira
- Marine Resources, Conservation and Technology, Marine Algae Lab, CFE—Centre for Functional Ecology: Science for People & Planet, Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal; (J.C.); (S.L.); (A.M.M.G.)
| |
Collapse
|
11
|
Roney M, Issahaku AR, Huq AM, Soliman MES, Tajuddin SN, Aluwi MFFM. Exploring the potential of biologically active phenolic acids from marine natural products as anticancer agents targeting the epidermal growth factor receptor. J Biomol Struct Dyn 2023; 42:13564-13587. [PMID: 37909584 DOI: 10.1080/07391102.2023.2276879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 10/22/2023] [Indexed: 11/03/2023]
Abstract
The epidermal growth factor receptor (EGFR) dimerizes upon ligand bindings to the extracellular domain that initiates the downstream signaling cascades and activates intracellular kinase domain. Thus, activation of autophosphorylation through kinase domain results in metastasis, cell proliferation, and angiogenesis. The main objective of this research is to discover more promising anti-cancer lead compound against EGRF from the phenolic acids of marine natural products using in-silico approaches. Phenolic compounds reported from marine sources are reviewed from previous literatures. Furthermore, molecular docking was carried out using the online tool CB-Dock. The molecules with good docking and binding energies scores were subjected to ADME, toxicity and drug-likeness analysis. Subsequently, molecules from the docking experiments were also evaluated using the acute toxicity and MD simulation studies. Fourteen phenolic compounds from the reported literatures were reviewed based on the findings, isolation, characterized and applications. Molecular docking studies proved that the phenolic acids have good binding fitting by forming hydrogen bonds with amino acid residues at the binding site of EGFR. Chlorogenic acid, Chicoric acid and Rosmarinic acid showed the best binding energies score and forming hydrogen bonds with amino acid residues compare to the reference drug Erlotinib. Among these compounds, Rosmarinic acid showed the good pharmacokinetics profiles as well as acute toxicity profile. The MD simulation study further revealed that the lead complex is stable and could be future drug to treat the cancer disease. Furthermore, in a wet lab environment, both in-vitro and in-vivo testing will be employed to validate the existing computational results.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Miah Roney
- Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuhraya Tun Razak, Kuantan, Pahang Darul Makmur, Malaysia
- Centre for Bio-aromatic Research, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuhraya Tun Razak, Kuantan, Pahang Darul Makmur, Malaysia
| | - Abdul Rashid Issahaku
- Department of Chemistry, University of the Free State, Bloemfontein, South Africa
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Akm Moyeenul Huq
- Centre for Bio-aromatic Research, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuhraya Tun Razak, Kuantan, Pahang Darul Makmur, Malaysia
- School of Medicine, Department of Pharmacy, University of Asia Pacific, Bangladesh
| | - Mahmoud E S Soliman
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Saiful Nizam Tajuddin
- Centre for Bio-aromatic Research, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuhraya Tun Razak, Kuantan, Pahang Darul Makmur, Malaysia
| | - Mohd Fadhlizil Fasihi Mohd Aluwi
- Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuhraya Tun Razak, Kuantan, Pahang Darul Makmur, Malaysia
- Centre for Bio-aromatic Research, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuhraya Tun Razak, Kuantan, Pahang Darul Makmur, Malaysia
| |
Collapse
|
12
|
Graikini D, Soro AB, Sivagnanam SP, Tiwari BK, Sánchez L. Bioactivity of Fucoidan-Rich Extracts from Fucus vesiculosus against Rotavirus and Foodborne Pathogens. Mar Drugs 2023; 21:478. [PMID: 37755091 PMCID: PMC10532486 DOI: 10.3390/md21090478] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/26/2023] [Accepted: 08/28/2023] [Indexed: 09/28/2023] Open
Abstract
Marine algae are sources of bioactive components with defensive properties of great value against microbial infections. This study investigated the bioactivity of extracts from brown algae Fucus vesiculosus against rotavirus, the worldwide leading cause of acute gastroenteritis in infants and young children. Moreover, one of the extracts was tested against four foodborne bacteria: Campylobacter jejuni, Escherichia coli, Salmonella Typhimurium, and Listeria monocytogenes, and the non-pathogenic: E. coli K12. In vitro tests using MA104 cells revealed that both whole algae extracts and crude fucoidan precipitates neutralized rotavirus in a dose-responsive manner. The maximum neutralization activity was observed when the rotavirus was incubated with 100 μg mL-1 of the hydrochloric acid-obtained crude fucoidan (91.8%), although crude fucoidan extracted using citric acid also demonstrated high values (89.5%) at the same concentration. Furthermore, molecular weight fractionation of extracts decreased their antirotaviral activity and high molecular weight fractions exhibited higher activity compared to those of lower molecular weight. A seaweed extract with high antirotaviral activity was also found to inhibit the growth of C. jejuni, S. Typhimurium, and L. monocytogenes at a concentration of 0.2 mg mL-1. Overall, this study expands the current knowledge regarding the antimicrobial mechanisms of action of extracts from F. vesiculosus.
Collapse
Affiliation(s)
- Dimitra Graikini
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad de Zaragoza, 50013 Zaragoza, Spain;
- Instituto Agroalimentario de Aragón IA2 (UNIZAR-CITA), 50013 Zaragoza, Spain
| | - Arturo B. Soro
- Foodborne Pathogens Unit, Department of Infectious Diseases in Humans, Sciensano, 1050 Brussels, Belgium;
- Teagasc Ashtown Food Research Centre, D15 DY05 Dublin, Ireland; (S.P.S.); (B.K.T.)
| | - Saravana P. Sivagnanam
- Teagasc Ashtown Food Research Centre, D15 DY05 Dublin, Ireland; (S.P.S.); (B.K.T.)
- Department of Biological Sciences, Munster Technological University, Bishopstown, T12P928 Cork Ireland
| | - Brijesh K. Tiwari
- Teagasc Ashtown Food Research Centre, D15 DY05 Dublin, Ireland; (S.P.S.); (B.K.T.)
| | - Lourdes Sánchez
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad de Zaragoza, 50013 Zaragoza, Spain;
- Instituto Agroalimentario de Aragón IA2 (UNIZAR-CITA), 50013 Zaragoza, Spain
| |
Collapse
|
13
|
Fredsgaard M, Kaniki SEK, Antonopoulou I, Chaturvedi T, Thomsen MH. Phenolic Compounds in Salicornia spp. and Their Potential Therapeutic Effects on H1N1, HBV, HCV, and HIV: A Review. Molecules 2023; 28:5312. [PMID: 37513186 PMCID: PMC10384198 DOI: 10.3390/molecules28145312] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/07/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Despite public health risk mitigation measures and regulation efforts by many countries, regions, and sectors, viral outbreaks remind the world of our vulnerability to biological hazards and the importance of mitigation actions. The saltwater-tolerant plants in the Salicornia genus belonging to the Amaranthaceae family are widely recognized and researched as producers of clinically applicable phytochemicals. The plants in the Salicornia genus contain flavonoids, flavonoid glycosides, and hydroxycinnamic acids, including caffeic acid, ferulic acid, chlorogenic acid, apigenin, kaempferol, quercetin, isorhamnetin, myricetin, isoquercitrin, and myricitrin, which have all been shown to support the antiviral, virucidal, and symptom-suppressing activities. Their potential pharmacological usefulness as therapeutic medicine against viral infections has been suggested in many studies, where recent studies suggest these phenolic compounds may have pharmacological potential as therapeutic medicine against viral infections. This study reviews the antiviral effects, the mechanisms of action, and the potential as antiviral agents of the aforementioned phenolic compounds found in Salicornia spp. against an influenza A strain (H1N1), hepatitis B and C (HBV/HCV), and human immunodeficiency virus 1 (HIV-1), as no other literature has described these effects from the Salicornia genus at the time of publication. This review has the potential to have a significant societal impact by proposing the development of new antiviral nutraceuticals and pharmaceuticals derived from phenolic-rich formulations found in the edible Salicornia spp. These formulations could be utilized as a novel strategy by which to combat viral pandemics caused by H1N1, HBV, HCV, and HIV-1. The findings of this review indicate that isoquercitrin, myricetin, and myricitrin from Salicornia spp. have the potential to exhibit high efficiency in inhibiting viral infections. Myricetin exhibits inhibition of H1N1 plaque formation and reverse transcriptase, as well as integrase integration and cleavage. Isoquercitrin shows excellent neuraminidase inhibition. Myricitrin inhibits HIV-1 in infected cells. Extracts of biomass in the Salicornia genus could contribute to the development of more effective and efficient measures against viral infections and, ultimately, improve public health.
Collapse
Affiliation(s)
| | | | - Io Antonopoulou
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, SE-97187 Luleå, Sweden
| | | | | |
Collapse
|
14
|
Ko SC, Kim JY, Lee JM, Yim MJ, Kim HS, Oh GW, Kim CH, Kang N, Heo SJ, Baek K, Lee DS. Angiotensin I-Converting Enzyme (ACE) Inhibition and Molecular Docking Study of Meroterpenoids Isolated from Brown Alga, Sargassum macrocarpum. Int J Mol Sci 2023; 24:11065. [PMID: 37446242 PMCID: PMC10341620 DOI: 10.3390/ijms241311065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/16/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
Angiotensin I-converting enzyme (ACE) is an important blood pressure regulator. In this study, we aimed to investigate the ACE-inhibitory effects of meroterpenoids isolated from the brown alga, Sargassum macrocarpum, and the molecular mechanisms underlying ACE inhibition. Four fractions of S. macrocarpum were prepared using hexane, chloroform, ethyl acetate, and water as solvents and analyzed for their potential ACE-inhibitory effects. The chloroform fraction showed the strongest ACE-inhibitory effect, with an IC50 value of 0.18 mg/mL. Three meroterpenoids, sargachromenol, 7-methyl sargachromenol, and sargaquinoic acid, were isolated from the chloroform fraction. Meroterpenoids isolated from S. macrocarpum had IC50 values of 0.44, 0.37, and 0.14 mM. The molecular docking study revealed that the ACE-inhibitory effect of the isolated meroterpenoids was mainly attributed to Zn-ion, hydrogen bonds, pi-anion, and pi-alkyl interactions between the meroterpenoids and ACE. These results suggest that S. macrocarpum could be a potential raw material for manufacturing antihypertensive nutraceutical ingredients.
Collapse
Affiliation(s)
- Seok-Chun Ko
- National Marine Biodiversity Institute of Korea, Seocheon 33662, Republic of Korea; (S.-C.K.); (J.M.L.); (M.-J.Y.); (H.-S.K.); (G.-W.O.); (C.H.K.); (K.B.)
| | - Ji-Yul Kim
- National Marine Biodiversity Institute of Korea, Seocheon 33662, Republic of Korea; (S.-C.K.); (J.M.L.); (M.-J.Y.); (H.-S.K.); (G.-W.O.); (C.H.K.); (K.B.)
| | - Jeong Min Lee
- National Marine Biodiversity Institute of Korea, Seocheon 33662, Republic of Korea; (S.-C.K.); (J.M.L.); (M.-J.Y.); (H.-S.K.); (G.-W.O.); (C.H.K.); (K.B.)
| | - Mi-Jin Yim
- National Marine Biodiversity Institute of Korea, Seocheon 33662, Republic of Korea; (S.-C.K.); (J.M.L.); (M.-J.Y.); (H.-S.K.); (G.-W.O.); (C.H.K.); (K.B.)
| | - Hyun-Soo Kim
- National Marine Biodiversity Institute of Korea, Seocheon 33662, Republic of Korea; (S.-C.K.); (J.M.L.); (M.-J.Y.); (H.-S.K.); (G.-W.O.); (C.H.K.); (K.B.)
| | - Gun-Woo Oh
- National Marine Biodiversity Institute of Korea, Seocheon 33662, Republic of Korea; (S.-C.K.); (J.M.L.); (M.-J.Y.); (H.-S.K.); (G.-W.O.); (C.H.K.); (K.B.)
| | - Chul Hwan Kim
- National Marine Biodiversity Institute of Korea, Seocheon 33662, Republic of Korea; (S.-C.K.); (J.M.L.); (M.-J.Y.); (H.-S.K.); (G.-W.O.); (C.H.K.); (K.B.)
| | - Nalae Kang
- Jeju Marine Research Center, Korea Institute of Ocean Science and Technology (KIOST), Jeju 63349, Republic of Korea; (N.K.); (S.-J.H.)
| | - Soo-Jin Heo
- Jeju Marine Research Center, Korea Institute of Ocean Science and Technology (KIOST), Jeju 63349, Republic of Korea; (N.K.); (S.-J.H.)
| | - Kyunghwa Baek
- National Marine Biodiversity Institute of Korea, Seocheon 33662, Republic of Korea; (S.-C.K.); (J.M.L.); (M.-J.Y.); (H.-S.K.); (G.-W.O.); (C.H.K.); (K.B.)
| | - Dae-Sung Lee
- National Marine Biodiversity Institute of Korea, Seocheon 33662, Republic of Korea; (S.-C.K.); (J.M.L.); (M.-J.Y.); (H.-S.K.); (G.-W.O.); (C.H.K.); (K.B.)
| |
Collapse
|
15
|
Li Y, Liu X, Zheng Y, Zhang Y, Li Z, Cui Z, Jiang H, Zhu S, Wu S. Ultrasmall Cortex Moutan Nanoclusters for the Therapy of Pneumonia and Colitis. Adv Healthc Mater 2023; 12:e2300402. [PMID: 36898770 DOI: 10.1002/adhm.202300402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Indexed: 03/12/2023]
Abstract
Infectious pneumonia and colitis are hard to be treated due to tissue infection, mucosal immune disorders, and dysbacteriosis. Although conventional nanomaterials can eliminate infection, they also damage normal tissues and intestinal flora. Herein, this work reports bactericidal nanoclusters formed through self-assembly for efficient treatment of infectious pneumonia and enteritis. The ultrasmall (about 2.3 nm) cortex moutan nanoclusters (CMNCs) has excellent antibacterial, antiviral, and immune regulation activity. The formation of nanoclusters is analyzed from the molecular dynamics mainly through the binding between polyphenol structures through hydrogen bonding and ππ stacking interaction. CMNCs have enhanced tissue and mucus permeability ability compared with natural CM. CMNCs precisely targeted bacteria due to polyphenol-rich surface structure and inhibited broad spectrum of bacteria. Besides, they killed H1N1 virus mainly through the inhibition of the neuraminidase. These CMNCs are effective in treating infectious pneumonia and enteritis relative to natural CM. In addition, they can be used for adjuvant colitis treatment by protecting colonic epithelium and altering the composition of gut microbiota. Therefore, CMNCs showed excellent application and clinical translation prospects in the treatment of immune and infectious diseases.
Collapse
Affiliation(s)
- Yuan Li
- School of Materials Science & Engineering, Peking University, Beijing, 100871, China
- The Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, School of Materials Science & Engineering, Tianjin University, Tianjin, 300072, China
| | - Xiangmei Liu
- School of Life Science and Health Engineering, Hebei University of Technology, Xiping Avenue 5340, Beichen District, Tianjin, 300401, China
| | - Yufeng Zheng
- School of Materials Science & Engineering, Peking University, Beijing, 100871, China
| | - Yu Zhang
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Zhaoyang Li
- The Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, School of Materials Science & Engineering, Tianjin University, Tianjin, 300072, China
| | - Zhenduo Cui
- The Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, School of Materials Science & Engineering, Tianjin University, Tianjin, 300072, China
| | - Hui Jiang
- The Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, School of Materials Science & Engineering, Tianjin University, Tianjin, 300072, China
| | - Shengli Zhu
- The Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, School of Materials Science & Engineering, Tianjin University, Tianjin, 300072, China
| | - Shuilin Wu
- School of Materials Science & Engineering, Peking University, Beijing, 100871, China
- The Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, School of Materials Science & Engineering, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
16
|
Pereira L, Cotas J. Therapeutic Potential of Polyphenols and Other Micronutrients of Marine Origin. Mar Drugs 2023; 21:323. [PMID: 37367648 DOI: 10.3390/md21060323] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/22/2023] [Accepted: 05/25/2023] [Indexed: 06/28/2023] Open
Abstract
Polyphenols are compounds found in various plants and foods, known for their antioxidant and anti-inflammatory properties. Recently, researchers have been exploring the therapeutic potential of marine polyphenols and other minor nutrients that are found in algae, fish and crustaceans. These compounds have unique chemical structures and exhibit diverse biological properties, including anti-inflammatory, antioxidant, antimicrobial and antitumor action. Due to these properties, marine polyphenols are being investigated as possible therapeutic agents for the treatment of a wide variety of conditions, such as cardiovascular disease, diabetes, neurodegenerative diseases and cancer. This review focuses on the therapeutic potential of marine polyphenols and their applications in human health, and also, in marine phenolic classes, the extraction methods, purification techniques and future applications of marine phenolic compounds.
Collapse
Affiliation(s)
- Leonel Pereira
- MARE-Marine and Environmental Sciences Centre/ARNET-Aquatic Research Network, IATV-Institute of Environment, Technology and Life, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
- Instituto do Ambiente Tecnologia e Vida, Faculdade de Ciências e Tecnologia, Rua Sílvio Lima, 3030-790 Coimbra, Portugal
| | - João Cotas
- MARE-Marine and Environmental Sciences Centre/ARNET-Aquatic Research Network, IATV-Institute of Environment, Technology and Life, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| |
Collapse
|
17
|
Tabakaev A, Tabakaeva O, Prikhodko Y. Functional instant beverages. FOODS AND RAW MATERIALS 2023. [DOI: 10.21603/2308-4057-2023-2-565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023] Open
Abstract
Brown algae are a source of hydrothermal extracts that can serve as an effective raw material for instant beverages. This article offers new formulations of functional instant beverages made of concentrated fruit juices and algal extracts of Saccharina japonica and Sargassum miyabei Yendo. The research objective was to define their bioactive and antioxidant profiles.
The research featured S. miyabei Yendo and S. japonica brown algae from the Far East of Russia, their dry hydrothermal extracts, and instant drinks based on these extracts combined with concentrated juices of cranberry, sea buckthorn, and chokeberry. The list of methods included spectrophotometry, high-performance liquid chromatography, and gas chromatography.
The hydrothermal algal extracts of S. miyabei and S. japonica were rich in fucoidan, phenolic compounds, and iodine. The new instant beverages underwent a sensory evaluation. They contained iodine, phenolic compounds, vitamins (ascorbic acid), fucoidan, pectin, flavonoids, anthocyanins, catechins, carotenoids, and tocopherols. All the samples could be classified as functional, but the best antiradical properties belonged to the sample with black chokeberry juice and S. miyabei.
The new functional instant beverages had a high radical-binding activity, which reached 96.3%. One portion (200 mL) covered 27–30 % of the recommended daily intake of iodine and 22–50% of vitamin C. The obtained results prove that instant beverages made of S. japonica and S. miyabei Yendo can be used as functional products.
Collapse
|
18
|
Rathod NB, Elabed N, Punia S, Ozogul F, Kim SK, Rocha JM. Recent Developments in Polyphenol Applications on Human Health: A Review with Current Knowledge. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12061217. [PMID: 36986905 PMCID: PMC10053535 DOI: 10.3390/plants12061217] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/04/2023] [Accepted: 03/06/2023] [Indexed: 06/01/2023]
Abstract
Polyphenol has been used in treatment for some health disorders due to their diverse health promoting properties. These compounds can reduce the impacts of oxidation on the human body, prevent the organs and cell structure against deterioration and protect their functional integrity. The health promoting abilities are attributed to their high bioactivity imparting them high antioxidative, antihypertensive, immunomodulatory, antimicrobial, and antiviral activity, as well as anticancer properties. The application of polyphenols such as flavonoids, catechin, tannins, and phenolic acids in the food industry as bio-preservative substances for foods and beverages can exert a superb activity on the inhibition of oxidative stress via different types of mechanisms. In this review, the detailed classification of polyphenolic compunds and their important bioactivity with special focus on human health are addressed. Additionally, their ability to inhibit SARS-CoV-2 could be used as alternative therapy to treat COVID patients. Inclusions of polyphenolic compounds in various foods have demonstrated their ability to extend shelf life and they positive impacts on human health (antioxidative, antihypertensive, immunomodulatory, antimicrobial, anticancer). Additionally, their ability to inhibit the SARS-CoV-2 virus has been reported. Considering their natural occurrence and GRAS status they are highly recommended in food.
Collapse
Affiliation(s)
- Nikheel Bhojraj Rathod
- Post-Graduate Institute of Post-Harvest Technology and Management, Dr. Balasaheb Sawant Konkan Krishi Vidyapeeth, Roha 402 116, India
| | - Nariman Elabed
- Laboratory of Protein Engineering and Bioactive Molecules (LIP-MB), National Institute of Applied Sciences and Technology (INSAT), University of Carthage, BP 77-1054 Amilcar, Carthage 1054, Tunisia
| | - Sneh Punia
- Department of Food, Nutrition and Packaging Sciences, Clemoson University, Clemosn, SC 29634, USA
| | - Fatih Ozogul
- Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, 01330 Adana, Turkey
- Biotechnology Research and Application Center, Cukurova University, 01330 Adana, Turkey
| | - Se-Kwon Kim
- Department of Marine Science & Convergence Engineering, College of Science & Technology, Hanyang University, ERICA Campus, Ansan 11558, Republic of Korea
| | - João Miguel Rocha
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| |
Collapse
|
19
|
Kumari A, Garima, Bharadvaja N. A comprehensive review on algal nutraceuticals as prospective therapeutic agent for different diseases. 3 Biotech 2023; 13:44. [PMID: 36643398 PMCID: PMC9834485 DOI: 10.1007/s13205-022-03454-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 12/25/2022] [Indexed: 01/13/2023] Open
Abstract
Ongoing research in the food supplement sector provides insightful information regarding algae as a new-generation nutritional supplement and is also referred to as a superfood. Due to the diverse nutritional components, algae have documented numerous health benefits like fighting microbial diseases, hypertension, obesity, and diabetes. Therefore, algae-derived nutraceuticals account for a rapidly expanding market in the food supplements sector. The concept of algal prebiotics and their role in modulating gut microbiota have also been a chief contributor to this. This review evaluates the use of possible algal species and their specific bioactive compounds for the management of several chronic diseases. Proteins, peptides, polysaccharides, phenolics, and vitamins give an insight into the significance of algae in boosting the immune system and improving the body's nutritional makeup. In addition, phyco-compounds such as polysaccharides and polyphenols are also receiving a lot more interest in cosmeceutical applications for protecting skin from photodamage. The incorporation of algae in the diet for the management and prevention of chronic diseases like cancer, lung, and heart disease has been discussed in this review along with their action mechanism. This review provides a brief overview of several bioactive compounds present in micro and macroalgae and their therapeutic effect on lifestyle diseases, gastrointestinal diseases as well as neurodegenerative diseases.
Collapse
Affiliation(s)
- Asmita Kumari
- Plant Biotechnology Laboratory, Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Main Bawana Road, Delhi, 110042 India
| | - Garima
- Plant Biotechnology Laboratory, Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Main Bawana Road, Delhi, 110042 India
| | - Navneeta Bharadvaja
- Plant Biotechnology Laboratory, Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Main Bawana Road, Delhi, 110042 India
| |
Collapse
|
20
|
Rudrapal M, Issahaku AR, Agoni C, Bendale AR, Nagar A, Soliman MES, Lokwani D. In silico screening of phytopolyphenolics for the identification of bioactive compounds as novel protease inhibitors effective against SARS-CoV-2. J Biomol Struct Dyn 2022; 40:10437-10453. [PMID: 34182889 DOI: 10.1080/07391102.2021.1944909] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Due to the unavailability specific drugs or vaccines (FDA approved) that can cure COVID-19, the development of potent antiviral drug candidates/therapeutic molecules against COVID-19 is urgently required. This study was aimed at in silico screening and study of polyphenolic phytochemical compounds in a rational way by virtual screening, molecular docking and molecular dynamics studies against SARS-CoV-2 main protease (Mpro) and papain-like protease (PLpro) enzymes. The objective of the study was to identify plant-derived polyphenolic compounds and/or flavonoid molecules as possible antiviral agents with protease inhibitory potential against SARS-CoV-2. In this study, we report plant-derived polyphenolic compounds (including flavonoids) as novel protease inhibitors against SARS-CoV-2. From virtual docking and molecular docking study, 31 polyphenolic compounds were identified as active antiviral molecules possessing well-defined binding affinity with acceptable ADMET, toxicity and lead-like or drug-like properties. Six polyphenolic compounds, namely, enterodiol, taxifolin, eriodictyol, leucopelargonidin, morin and myricetin were found to exhibit remarkable binding affinities against the proteases with taxifolin and morin exhibiting the highest binding affinity toward Mpro and PLpro respectively. Molecular dynamics simulation studies of these compounds in complex with the proteases showed that the binding of the compounds is characterized by structural perturbations of the proteases suggesting their antiviral activities. These compounds can therefore be investigated further by in vivo and in vitro techniques to assess their potential efficacy against SARS-CoV-2 and thus serve as the starting point for the development of potent antiviral agents against the deadly COVID-19.
Collapse
Affiliation(s)
- Mithun Rudrapal
- Rasiklal M. Dhariwal Institute of Pharmaceutical Education and Research, Pune, Maharashtra, India
| | - Abdul Rashid Issahaku
- Molecular Bio-Computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Clement Agoni
- Molecular Bio-Computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Atul R Bendale
- Sandip Institute of Pharmaceutical Sciences, Nashik, Maharashtra, India
| | - Akhil Nagar
- R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, India
| | - Mahmoud E S Soliman
- Molecular Bio-Computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Deepak Lokwani
- R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, India
| |
Collapse
|
21
|
Graff Reis J, Dai Prá I, Michelon W, Viancelli A, Piedrahita Marquez DG, Schmitz C, Maraschin M, Moura S, Thaís Silva I, de Oliveira Costa G, Tizziani T, Sandjo LP, Rodríguez-Lázaro D, Fongaro G. Characterization of Planktochlorella nurekis Extracts and Virucidal Activity against a Coronavirus Model, the Murine Coronavirus 3. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:15823. [PMID: 36497896 PMCID: PMC9735810 DOI: 10.3390/ijerph192315823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
Certain members of the Coronaviridae family have emerged as zoonotic agents and have recently caused severe respiratory diseases in humans and animals, such as SARS, MERS, and, more recently, COVID-19. Antivirals (drugs and antiseptics) capable of controlling viruses at the site of infection are scarce. Microalgae from the Chlorellaceae family are sources of bioactive compounds with antioxidant, antiviral, and antitumor activity. In the present study, we aimed to evaluate various extracts from Planktochlorella nurekis in vitro against murine coronavirus-3 (MHV-3), which is an essential human coronavirus surrogate for laboratory assays. Methanol, hexane, and dichloromethane extracts of P. nurekis were tested in cells infected with MHV-3, and characterized by UV-vis spectrophotometry, nuclear magnetic resonance (NMR) spectroscopy, ultraperformance liquid chromatography-mass spectrometry (UPLC-MS), and the application of chemometrics through principal component analysis (PCA). All the extracts were highly efficient against MHV-3 (more than a 6 Log unit reduction), regardless of the solvent used or the concentration of the extract, but the dichloromethane extract was the most effective. Chemical characterization by spectrophotometry and NMR, with the aid of statistical analysis, showed that polyphenols, carbohydrates, and isoprene derivatives, such as terpenes and carotenoids have a more significant impact on the virucidal potential. Compounds identified by UPLC-MS were mainly lipids and only found in the dichloromethane extract. These results open new biotechnological possibilities to explore the biomass of P. nurekis; it is a natural extract and shows low cytotoxicity and an excellent antiviral effect, with low production costs, highlighting a promising potential for development and implementation of therapies against coronaviruses, such as SARS-CoV-2.
Collapse
Affiliation(s)
- Jacqueline Graff Reis
- Laboratory of Applied Virology, Department of Microbiology, Immunology, and Parasitology, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil
| | - Isabella Dai Prá
- Laboratory of Applied Virology, Department of Microbiology, Immunology, and Parasitology, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil
- Department of Pharmaceutical Sciences, Federal University Santa Catarina, Florianópolis 88040-900, SC, Brazil
| | - William Michelon
- Mestrado Profissional em Engenharia Civil, Sanitária e Ambiental, Universidade do Contestado Concórdia, Concórdia 89520-000, SC, Brazil
| | - Aline Viancelli
- Mestrado Profissional em Engenharia Civil, Sanitária e Ambiental, Universidade do Contestado Concórdia, Concórdia 89520-000, SC, Brazil
| | | | - Caroline Schmitz
- Plant Morphogenesis and Biochemistry Laboratory, Federal University of Santa Catarina, Florianópolis 88034-000, SC, Brazil
| | - Marcelo Maraschin
- Plant Morphogenesis and Biochemistry Laboratory, Federal University of Santa Catarina, Florianópolis 88034-000, SC, Brazil
| | - Sidnei Moura
- LBIOP—Laboratory of Biotechnology of Natural and Synthetics Products, Technology Department, Biotechnology Institute, University of Caxias do Sul, Caxias do Sul 95070-560, RS, Brazil
| | - Izabella Thaís Silva
- Laboratory of Applied Virology, Department of Microbiology, Immunology, and Parasitology, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil
- Department of Pharmaceutical Sciences, Federal University Santa Catarina, Florianópolis 88040-900, SC, Brazil
| | - Geovanna de Oliveira Costa
- Programa de Pós-Graduação em Química, Department of Chemistry, CFM, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil
| | - Tiago Tizziani
- Programa de Pós-Graduação em Química, Department of Chemistry, CFM, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil
| | - Louis P. Sandjo
- Programa de Pós-Graduação em Química, Department of Chemistry, CFM, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil
| | - David Rodríguez-Lázaro
- Microbiology Section, Faculty of Sciences, University of Burgos, 09001 Burgos, Spain
- Centre for Emerging pathogens and Global Health, University of Burgos, 09001 Burgos, Spain
| | - Gislaine Fongaro
- Laboratory of Applied Virology, Department of Microbiology, Immunology, and Parasitology, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil
| |
Collapse
|
22
|
Wekre ME, Hellesen Brunvoll S, Jordheim M. Advancing quantification methods for polyphenols in brown seaweeds-applying a selective qNMR method compared with the TPC assay. PHYTOCHEMICAL ANALYSIS : PCA 2022; 33:1099-1110. [PMID: 35796295 PMCID: PMC9796469 DOI: 10.1002/pca.3162] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/15/2022] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
INTRODUCTION Brown seaweeds are a sustainable biomass with a potential for various industrial applications. Polyphenols are an important contributor to this potential. OBJECTIVE The aim was total quantification of polyphenols in brown seaweeds from different tidal zones, using a selective 1 H quantitative NMR (qNMR) method, comparing the results with the colorimetric Folin-Ciocalteu total phenolic content (TPC) assay. METHOD qNMR was performed with integration of selected peaks in the aromatic region (7-5.5 ppm). Deselection of non-polyphenolic 1 H signals was based on information from 2D (1 H-13 C, 1 H-15 N) NMR spectra. 13 C NMR phlorotannin characterisation facilitated the average number of protons expected to be found per aromatic ring used for the 1 H quantification. RESULTS Selective qNMR and the TPC assay showed similar results for the three sublittoral growing species from the Laminariaceae; lower amounts for Laminaria hyperborea and Laminaria digitata (qNMR: 0.4%-0.6%; TPC: 0.6%-0.8%, phloroglucinol equivalents (PGE), dry weight (DW)) and higher amounts for Saccharina latissima (qNMR: 1.2%; TPC: 1.5%, PGE, DW). For the eulittoral Fucaceae, Fucus vesiculosus (qNMR: 1.1%; TPC: 4.1%; PGE, DW) and Ascophyllum nodosum (qNMR: 0.9%; TPC: 2.0%; PGE, DW), the TPC results were found to be up to three times higher than the qNMR results. The 13 C NMR characterisation showed the highest phlorotannin polymerisation degree for F. vesiculosus. CONCLUSION The TPC assay provided similar polyphenolic amounts to the selective qNMR method for sublittoral species. For eulittoral growing species, the TPC method showed amounts up to three times higher than the qNMR method-most likely illustrating the lack of selectivity in the TPC assay.
Collapse
Affiliation(s)
- Marie Emilie Wekre
- Department of ChemistryUniversity of BergenBergenNorway
- Alginor ASAHaugesundNorway
| | | | | |
Collapse
|
23
|
Kalasariya HS, Patel NB, Gacem A, Alsufyani T, Reece LM, Yadav VK, Awwad NS, Ibrahium HA, Ahn Y, Yadav KK, Jeon BH. Marine Alga Ulva fasciata-Derived Molecules for the Potential Treatment of SARS-CoV-2: An In Silico Approach. Mar Drugs 2022; 20:586. [PMID: 36135775 PMCID: PMC9506351 DOI: 10.3390/md20090586] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 12/13/2022] Open
Abstract
SARS-CoV-2 is the causative agent of the COVID-19 pandemic. This in silico study aimed to elucidate therapeutic efficacies against SARS-CoV-2 of phyco-compounds from the seaweed, Ulva fasciata. Twelve phyco-compounds were isolated and toxicity was analyzed by VEGA QSAR. Five compounds were found to be nonmutagenic, noncarcinogenic and nontoxic. Moreover, antiviral activity was evaluated by PASS. Binding affinities of five of these therapeutic compounds were predicted to possess probable biological activity. Fifteen SARS-CoV-2 target proteins were analyzed by the AutoDock Vina program for molecular docking binding energy analysis and the 6Y84 protein was determined to possess optimal binding affinities. The Desmond program from Schrödinger's suite was used to study high performance molecular dynamic simulation properties for 3,7,11,15-Tetramethyl-2-hexadecen-1-ol-6Y84 for better drug evaluation. The ligand with 6Y84 had stronger binding affinities (-5.9 kcal/mol) over two standard drugs, Chloroquine (-5.6 kcal/mol) and Interferon α-2b (-3.8 kcal/mol). Swiss ADME calculated physicochemical/lipophilicity/water solubility/pharmacokinetic properties for 3,7,11,15-Tetramethyl-2-hexadecen-1-ol, showing that this therapeutic agent may be effective against SARS-CoV-2.
Collapse
Affiliation(s)
- Haresh S. Kalasariya
- Centre for Natural Products Discovery, School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, UK
| | - Nikunj B. Patel
- Microbiology Department, Sankalchand Patel University, Visnagar 384315, India
| | - Amel Gacem
- Department of Physics, Faculty of Sciences, University 20 Août 1955, Skikda 21000, Algeria
| | - Taghreed Alsufyani
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Lisa M. Reece
- Reece Life Science Consulting Agency, 819 N Amburn Rd, Texas City, TX 77591, USA
| | - Virendra Kumar Yadav
- Department of Biosciences, School of Liberal Arts & Sciences, Mody University of Science and Technology, Lakshmangarh, Sikar 332311, India
| | - Nasser S. Awwad
- Department of Chemistry, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Hala A. Ibrahium
- Biology Department, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
- Department of Semi Pilot Plant, Nuclear Materials Authority, El Maadi, P.O. Box 530, Cairo 11381, Egypt
| | - Yongtae Ahn
- Department of Earth Resources & Environmental Engineering, Hanyang University, 222-Wangsimni-ro, Seongdong-gu, Seoul 04763, Korea
| | - Krishna Kumar Yadav
- Faculty of Science and Technology, Madhyanchal Professional University, Ratibad, Bhopal 462044, India
| | - Byong-Hun Jeon
- Department of Earth Resources & Environmental Engineering, Hanyang University, 222-Wangsimni-ro, Seongdong-gu, Seoul 04763, Korea
| |
Collapse
|
24
|
Pradhan B, Nayak R, Bhuyan PP, Patra S, Behera C, Sahoo S, Ki JS, Quarta A, Ragusa A, Jena M. Algal Phlorotannins as Novel Antibacterial Agents with Reference to the Antioxidant Modulation: Current Advances and Future Directions. Mar Drugs 2022; 20:403. [PMID: 35736206 PMCID: PMC9228090 DOI: 10.3390/md20060403] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/14/2022] [Accepted: 06/16/2022] [Indexed: 01/27/2023] Open
Abstract
The increasing drug resistance of infectious microorganisms is considered a primary concern of global health care. The screening and identification of natural compounds with antibacterial properties have gained immense popularity in recent times. It has previously been shown that several bioactive compounds derived from marine algae exhibit antibacterial activity. Similarly, polyphenolic compounds are generally known to possess promising antibacterial capacity, among other capacities. Phlorotannins (PTs), an important group of algae-derived polyphenolic compounds, have been considered potent antibacterial agents both as single drug entities and in combination with commercially available antibacterial drugs. In this context, this article reviews the antibacterial properties of polyphenols in brown algae, with particular reference to PTs. Cell death through various molecular modes of action and the specific inhibition of biofilm formation by PTs were the key discussion of this review. The synergy between drugs was also discussed in light of the potential use of PTs as adjuvants in the pharmacological antibacterial treatment.
Collapse
Affiliation(s)
- Biswajita Pradhan
- Algal Biotechnology and Molecular Systematic Laboratory, Post Graduate Department of Botany, Berhampur University, Bhanja Bihar, Berhampur 760007, Odisha, India; (B.P.); (R.N.); (C.B.)
- Department of Biotechnology, Sangmyung University, Seoul 03016, Korea;
| | - Rabindra Nayak
- Algal Biotechnology and Molecular Systematic Laboratory, Post Graduate Department of Botany, Berhampur University, Bhanja Bihar, Berhampur 760007, Odisha, India; (B.P.); (R.N.); (C.B.)
| | - Prajna Paramita Bhuyan
- Department of Botany, Maharaja Sriram Chandra Bhanja Deo University, Baripada 757003, Odisha, India;
| | - Srimanta Patra
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Rourkela 769008, Odisha, India;
| | - Chhandashree Behera
- Algal Biotechnology and Molecular Systematic Laboratory, Post Graduate Department of Botany, Berhampur University, Bhanja Bihar, Berhampur 760007, Odisha, India; (B.P.); (R.N.); (C.B.)
| | - Sthitaprajna Sahoo
- Department of Botany, Berhampur University, Berhampur 760007, Odisha, India;
| | - Jang-Seu Ki
- Department of Biotechnology, Sangmyung University, Seoul 03016, Korea;
| | - Alessandra Quarta
- CNR-Nanotec, Institute of Nanotechnology, Via Monteroni, 73100 Lecce, Italy;
| | - Andrea Ragusa
- CNR-Nanotec, Institute of Nanotechnology, Via Monteroni, 73100 Lecce, Italy;
- Department of Biological and Environmental Sciences and Technologies, Campus Ecotekne, University of Salento, Via Monteroni, 73100 Lecce, Italy
| | - Mrutyunjay Jena
- Algal Biotechnology and Molecular Systematic Laboratory, Post Graduate Department of Botany, Berhampur University, Bhanja Bihar, Berhampur 760007, Odisha, India; (B.P.); (R.N.); (C.B.)
| |
Collapse
|
25
|
Khan F, Jeong GJ, Khan MSA, Tabassum N, Kim YM. Seaweed-Derived Phlorotannins: A Review of Multiple Biological Roles and Action Mechanisms. Mar Drugs 2022; 20:384. [PMID: 35736187 PMCID: PMC9227776 DOI: 10.3390/md20060384] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/01/2022] [Accepted: 06/04/2022] [Indexed: 12/31/2022] Open
Abstract
Phlorotannins are a group of phenolic secondary metabolites isolated from a variety of brown algal species belonging to the Fucaceae, Sargassaceae, and Alariaceae families. The isolation of phlorotannins from various algal species has received a lot of interest owing to the fact that they have a range of biological features and are very biocompatible in their applications. Phlorotannins have a wide range of therapeutic biological actions, including antimicrobial, antidiabetic, antioxidant, anticancer, anti-inflammatory, anti-adipogenesis, and numerous other biomedical applications. The current review has extensively addressed the application of phlorotannins, which have been extensively investigated for the above-mentioned biological action and the underlying mechanism of action. Furthermore, the current review offers many ways to use phlorotannins to avoid certain downsides, such as low stability. This review article will assist the scientific community in investigating the greater biological significance of phlorotannins and developing innovative techniques for treating both infectious and non-infectious diseases in humans.
Collapse
Affiliation(s)
- Fazlurrahman Khan
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Korea
| | - Geum-Jae Jeong
- Department of Food Science and Technology, Pukyong National University, Busan 48513, Korea;
| | - Mohd Sajjad Ahmad Khan
- Department of Basic Sciences, Deanship of Preparatory Year and Supporting Studies, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 34212, Saudi Arabia;
| | - Nazia Tabassum
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Korea;
| | - Young-Mog Kim
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Korea
- Department of Food Science and Technology, Pukyong National University, Busan 48513, Korea;
| |
Collapse
|
26
|
Antiviral Activity and Mechanisms of Seaweeds Bioactive Compounds on Enveloped Viruses-A Review. Mar Drugs 2022; 20:md20060385. [PMID: 35736188 PMCID: PMC9228758 DOI: 10.3390/md20060385] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/02/2022] [Accepted: 06/03/2022] [Indexed: 12/13/2022] Open
Abstract
In the last decades, the interest in seaweed has significantly increased. Bioactive compounds from seaweed’s currently receive major attention from pharmaceutical companies as they express several interesting biological activities which are beneficial for humans. The structural diversity of seaweed metabolites provides diverse biological activities which are expressed through diverse mechanisms of actions. This review mainly focuses on the antiviral activity of seaweed’s extracts, highlighting the mechanisms of actions of some seaweed molecules against infection caused by different types of enveloped viruses: influenza, Lentivirus (HIV-1), Herpes viruses, and coronaviruses. Seaweed metabolites with antiviral properties can act trough different pathways by increasing the host’s defense system or through targeting and blocking virus replication before it enters host cells. Several studies have already established the large antiviral spectrum of seaweed’s bioactive compounds. Throughout this review, antiviral mechanisms and medical applications of seaweed’s bioactive compounds are analyzed, suggesting seaweed’s potential source of antiviral compounds for the formulation of novel and natural antiviral drugs.
Collapse
|
27
|
Ahirwar A, Kesharwani K, Deka R, Muthukumar S, Khan MJ, Rai A, Vinayak V, Varjani S, Joshi KB, Morjaria S. Microalgal drugs: A promising therapeutic reserve for the future. J Biotechnol 2022; 349:32-46. [PMID: 35339574 DOI: 10.1016/j.jbiotec.2022.03.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/17/2022] [Accepted: 03/20/2022] [Indexed: 12/16/2022]
Abstract
Over the decades, a variety of chemically synthesized drugs are being used to cure existing diseases but often these drugs could not be effectively employed for the treatment of serious and newly emerging diseases. Fortunately, in nature there occurs immense treasure of plants and microorganisms which are living jewels with respect to their richness of medically important metabolites of high value. Hence, amongst the existing microorganism(s), the marine world offers a plethora of biological entities that can contribute to alleviate numerous human ailments. Algae are one such photosynthetic microorganism found in both marine as well as fresh water which are rich source of metabolites known for their nutrient content and health benefits. Various algal species like Haematococcus, Diatoms, Griffithsia, Chlorella, Spirulina, Ulva, etc. have been identified and isolated to produce biologically active and pharmaceutically important high value compounds like astaxanthin, fucoxanthin, sulphur polysaccharides mainly galactose, rhamnose, xylose, fucose etc., which show antimicrobial, antifungal, anti-cancer, and antiviral activities. However, the production of either of these bio compounds is favored under conditions of stress. This review gives detailed information on various nutraceutical metabolites extracted from algae. Additionally focus has been made on the role of these bio compounds extracted from algae especially sulphur polysaccharides to treat several diseases with prospective treatment for SARS-CoV-2. Lastly it covers the knowledge gaps and future perspectives in this area of research.
Collapse
Affiliation(s)
- Ankesh Ahirwar
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. Harisingh Gour Central University, Sagar (MP) 470003, India
| | - Khushboo Kesharwani
- Department of Chemistry, Dr. Harisingh Gour Central University, Sagar (MP) 470003, India
| | - Rahul Deka
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. Harisingh Gour Central University, Sagar (MP) 470003, India
| | - Shreya Muthukumar
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. Harisingh Gour Central University, Sagar (MP) 470003, India
| | - Mohd Jahir Khan
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. Harisingh Gour Central University, Sagar (MP) 470003, India
| | - Anshuman Rai
- MMU, Deemed University, School of Engineering, Department of Biotechnology, Ambala, Haryana, 133203, India
| | - Vandana Vinayak
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. Harisingh Gour Central University, Sagar (MP) 470003, India.
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar, Gujarat, 382 010, India.
| | - Khashti Ballabh Joshi
- Department of Chemistry, Dr. Harisingh Gour Central University, Sagar (MP) 470003, India
| | - Shruti Morjaria
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. Harisingh Gour Central University, Sagar (MP) 470003, India
| |
Collapse
|
28
|
Gunaseelan S, Arunkumar M, Aravind MK, Gayathri S, Rajkeerthana S, Mohankumar V, Ashokkumar B, Varalakshmi P. Probing marine brown macroalgal phlorotannins as antiviral candidate against SARS-CoV-2: molecular docking and dynamics simulation approach. Mol Divers 2022; 26:3205-3224. [PMID: 35152367 PMCID: PMC9636370 DOI: 10.1007/s11030-022-10383-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/11/2022] [Indexed: 11/25/2022]
Abstract
Abstract Over the past year, owing to the emergent demand for the search for potential COVID-19 therapeutics, identifying alternative candidates from biological sources is one of the sustainable ways to reinforce the drug discovery process. Marine macroalgae have numerous advantages because of the richest availability of underexploited bioactive compounds. Polyphenolic compounds like phlorotannins obtained from brown macroalgae are reported as proven antiviral and immunostimulatory agents. Thus, the present study evaluated the possibility of phlorotannins as antagonists to the multiple target proteins essential for SARS-CoV-2 replication. Twenty different types of potent phlorotannins were targeted against druggable target proteins, viz., 3CLpro, RdRp, and Spro using AutoDock molecular docking, drug-likeness were assessed by ADMET profiling (QikProp module). Further, validated with 200 ns molecular dynamics (MD) simulation (Desmond module) for the top-ranked phlorotannins based on docking binding affinities. Among the twenty phlorotannins studied, eckol hexacetate, phlorofucofuroeckol, fucofuroeckol, and bifuhalol-hexacetate showed significant binding affinities across the selected targets. Besides, MD simulations highlighted Glu166, Gln189, Cys145, and Thr190 tetrad as potential interaction sites to inhibit 3CLpro's activity. Moreover, phlorotannins were confirmed to be druglike, with no major deviation observed in ADMET-profiling. Hence, phlorotannins could be therapeutic candidates against SARS-CoV-2. However, further investigations are needed to prove its efficacy as an antiviral agent. Conclusively, this study may envisage that the novel finding could notably impact the advancement of antiviral interventions for COVID-19 in the near future. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1007/s11030-022-10383-y.
Collapse
Affiliation(s)
- Sathaiah Gunaseelan
- Department of Molecular Microbiology, School of Biotechnology, Madurai Kamaraj University, Madurai, Tamil Nadu, 625 021, India
| | - Malaisamy Arunkumar
- Department of Genetic Engineering, School of Biotechnology, Madurai Kamaraj University, Madurai, Tamil Nadu, India
- Transcription Regulation Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Manikka Kubendran Aravind
- Department of Genetic Engineering, School of Biotechnology, Madurai Kamaraj University, Madurai, Tamil Nadu, India
| | - Santhalingam Gayathri
- Department of Genetic Engineering, School of Biotechnology, Madurai Kamaraj University, Madurai, Tamil Nadu, India
| | - Senthil Rajkeerthana
- Department of Molecular Microbiology, School of Biotechnology, Madurai Kamaraj University, Madurai, Tamil Nadu, 625 021, India
| | - Verma Mohankumar
- Department of Molecular Microbiology, School of Biotechnology, Madurai Kamaraj University, Madurai, Tamil Nadu, 625 021, India
| | - Balasubramaniem Ashokkumar
- Department of Genetic Engineering, School of Biotechnology, Madurai Kamaraj University, Madurai, Tamil Nadu, India
| | - Perumal Varalakshmi
- Department of Molecular Microbiology, School of Biotechnology, Madurai Kamaraj University, Madurai, Tamil Nadu, 625 021, India.
| |
Collapse
|
29
|
Reis JG, Cadamuro RD, Cabral AC, Thaís da Silva I, Rodríguez-Lázaro D, Fongaro G. Broad Spectrum Algae Compounds Against Viruses. Front Microbiol 2022; 12:809296. [PMID: 35095816 PMCID: PMC8795700 DOI: 10.3389/fmicb.2021.809296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 12/24/2021] [Indexed: 12/24/2022] Open
Abstract
The pharmaceutical industry is currently trying to develop new bioactive compounds to inactivate both enveloped and non-enveloped viruses for therapeutic purposes. Consequently, microalgal and macroalgal bioactive compounds are being explored by pharmaceutical, as well as biotechnology and food industries. In this review, we show how compounds produced by algae include important candidates for viral control applications. We discuss their mechanisms of action and activity against enveloped and non-enveloped viruses, including those causing infections by enteric, parenteral, and respiratory routes. Indeed, algal products have potential in human and animal medicine.
Collapse
Affiliation(s)
- Jacqueline Graff Reis
- Laboratory of Applied Virology, Department of Microbiology, Immunology, and Parasitology, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Rafael Dorighello Cadamuro
- Laboratory of Applied Virology, Department of Microbiology, Immunology, and Parasitology, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Ariadne Cristiane Cabral
- Laboratory of Applied Virology, Department of Microbiology, Immunology, and Parasitology, Federal University of Santa Catarina, Florianópolis, Brazil
- Department of Dentistry, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Izabella Thaís da Silva
- Laboratory of Applied Virology, Department of Microbiology, Immunology, and Parasitology, Federal University of Santa Catarina, Florianópolis, Brazil
- Department of Pharmaceutical Sciences, Federal University of Santa Catarina, Florianópolis, Brazil
| | - David Rodríguez-Lázaro
- Microbiology Division, Faculty of Sciences, University of Burgos, Burgos, Spain
- Research Centre for Emerging Pathogens and Global Health, University of Burgos, Burgos, Spain
| | - Gislaine Fongaro
- Laboratory of Applied Virology, Department of Microbiology, Immunology, and Parasitology, Federal University of Santa Catarina, Florianópolis, Brazil
- *Correspondence: Gislaine Fongaro,
| |
Collapse
|
30
|
Fumia A, Cicero N, Gitto M, Nicosia N, Alesci A. Role of nutraceuticals on neurodegenerative diseases: neuroprotective and immunomodulant activity. Nat Prod Res 2021; 36:5916-5933. [PMID: 34963389 DOI: 10.1080/14786419.2021.2020265] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Neurodegeneration is a degenerative process characterized by the progressive loss of the structure and function of neurons that involves several immune cells. It is the primary cause of dementia and other several syndromes, known as neurodegenerative diseases. These disorders are age-related and it is estimated that by 2040 there will be approximately 81.1 million people suffering from these diseases. In addition to the traditional pharmacological therapy, in recent years nutraceuticals, naturally based compounds with a broad spectrum of biological effects: anti-aging, antioxidants, hypoglycaemic, hypocholesterolemic, anticancer, anxiolytic, antidepressant, etc., assumed an important role in counteracting these pathologies. In particular, several compounds such as astaxanthin, baicalein, glycyrrhizin, St. John's wort, and Ginkgo biloba L. extracts show particular neuroprotective and immunomodulatory abilities, involving several immune cells and some neurotransmitters that play a critical role in neurodegeneration, making them particularly useful in improving the symptoms and progression of neurodegenerative diseases.
Collapse
Affiliation(s)
- Angelo Fumia
- Department of Clinical and Experimental Medicine, University of Messina, Padiglione C, A. O. U. Policlinico 'G. Martino', Messina, Italy
| | - Nicola Cicero
- Department of Biomedical and Dental Science and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Marco Gitto
- Department of Clinical and Community Sciences, Fondazione IRCCS Ca' Granada, Ospedale Maggiore Policlinico, U.O.S. di Audiologia, Milano, Italy
| | - Noemi Nicosia
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy.,Foundation 'Prof. Antonio Imbesi', University of Messina, Messina, Italy.,Department of Pharmacological Screening, Jagiellonian University, Medical College, Cracow, PL, Poland
| | - Alessio Alesci
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| |
Collapse
|
31
|
Sangiovanni E, Dell’Agli M. Special Issue: Anti-Inflammatory Activity of Plant Polyphenols 2.0. Biomedicines 2021; 10:biomedicines10010037. [PMID: 35052716 PMCID: PMC8773051 DOI: 10.3390/biomedicines10010037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 12/15/2022] Open
|
32
|
Meng W, Mu T, Sun H, Garcia-Vaquero M. Phlorotannins: A review of extraction methods, structural characteristics, bioactivities, bioavailability, and future trends. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102484] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
33
|
Abstract
Cancer remains a major life-threatening disease worldwide. The development of anticancer drugs using natural products obtained from marine organisms has been proposed as an alternative approach. Seaweeds are the mainstay of marine ecosystems; therefore, they are highly enriched with diverse bioactive compounds. In the past decade, a vast number of natural compounds, such as polysaccharides, polyphenols, carotenoids, and terpenoids, have been isolated from seaweeds. Seaweeds have bioactive compounds that show cytotoxicity in various cancer cell lines. These compounds prevent tumor growth by inducing apoptotic cell death and arrest growth by interfering with different kinases and cell cycle pathways. This review discussed the anticancer properties of various bioactive compounds isolated from different types of seaweeds and their therapeutic potential against cancers.
Collapse
|
34
|
Chojnacka K, Skrzypczak D, Izydorczyk G, Mikula K, Szopa D, Witek-Krowiak A. Antiviral Properties of Polyphenols from Plants. Foods 2021; 10:foods10102277. [PMID: 34681326 PMCID: PMC8534698 DOI: 10.3390/foods10102277] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/03/2021] [Accepted: 09/21/2021] [Indexed: 02/06/2023] Open
Abstract
Polyphenols are active substances against various types of viral infections. Researchers have characterized methods of how to isolate polyphenols without losing their potential to formulate pharmaceutical products. Researchers have also described mechanisms against common viral infections (i.e., influenza, herpes, hepatitis, rotavirus, coronavirus). Particular compounds have been discussed together with the plants in the biomass in which they occur. Quercetin, gallic acid and epigallocatechin are exemplary compounds that inhibit the growth cycle of viruses. Special attention has been paid to identify plants and polyphenols that can be efficient against coronavirus infections. It has been proven that polyphenols present in the diet and in pharmaceuticals protect us from viral infections and, in case of infection, support the healing process by various mechanisms, i.e., they block the entry into the host cells, inhibit the multiplication of the virus, seal blood vessels and protect against superinfection.
Collapse
|
35
|
Jalal Z, Bakour M, Lyoussi B. Medicinal Plants and Zinc: Impact on COVID-19 Pandemic. ScientificWorldJournal 2021; 2021:9632034. [PMID: 34602868 PMCID: PMC8483924 DOI: 10.1155/2021/9632034] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 08/22/2021] [Accepted: 09/16/2021] [Indexed: 12/15/2022] Open
Abstract
The world is currently grappling with the coronavirus disease (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The infection can cause fever, a dry cough, fatigue, severe pneumonia, respiratory distress syndrome, and in some cases death. There is currently no effective antiviral SARS-CoV-2 drug. To reduce the number of infections and deaths, it is critical to focus on strengthening immunity. This review aims to conduct a comprehensive search on the previous studies using Google Scholar, ScienceDirect, Medline, PubMed, and Scopus for the collection of research papers based on the role of zinc in the immune system, the antiviral activity of zinc, the effect of zinc supplementation in respiratory infections, the therapeutic approaches against viral infections based on medicinal plants, and the role of plants' bioactive molecules in fighting viral infections. In conclusion, we highlighted the pivotal role of zinc in antiviral immunity and we suggested the bioactive molecules derived from medicinal plants as a search matrix for the development of anti-SARS-CoV-2 drugs.
Collapse
Affiliation(s)
- Zineb Jalal
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health and Quality of Life (SNAMOPEQ). Faculty of Sciences Dhar El Mahraz, University Sidi Mohamed Ben Abdellah, Fez, Morocco
| | - Meryem Bakour
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health and Quality of Life (SNAMOPEQ). Faculty of Sciences Dhar El Mahraz, University Sidi Mohamed Ben Abdellah, Fez, Morocco
| | - Badiaa Lyoussi
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health and Quality of Life (SNAMOPEQ). Faculty of Sciences Dhar El Mahraz, University Sidi Mohamed Ben Abdellah, Fez, Morocco
| |
Collapse
|
36
|
Ślusarczyk J, Adamska E, Czerwik-Marcinkowska J. Fungi and Algae as Sources of Medicinal and Other Biologically Active Compounds: A Review. Nutrients 2021; 13:3178. [PMID: 34579055 PMCID: PMC8464797 DOI: 10.3390/nu13093178] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/04/2021] [Accepted: 09/08/2021] [Indexed: 12/26/2022] Open
Abstract
Many species of fungi including lichenized fungi (lichens) and algae have the ability to biosynthesize biologically active compounds. They produce, among others, polysaccharides with anticancer and immunostimulatory properties: (1) Background: This paper presents the characteristics of the most important bioactive compounds produced by fungi and algae; (2) Methods: Based on the example of the selected species of mushrooms, lichens and algae, the therapeutic properties of the secondary metabolites that they produce and the possibilities of their use are presented; (3) Results: The importance of fungi, especially large-fruited mushrooms, lichens and algae, in nature and human life is discussed, in particular, with regard to their use in the pharmaceutical industry and their nutritional value; (4) Conclusions: The natural organisms, such as fungi, lichenized fungi and algae, could be used as supplementary medicine, in the form of pharmaceutical preparations and food sources. Further advanced studies are required on the pharmacological properties and bioactive compounds of these organisms.
Collapse
Affiliation(s)
- Joanna Ślusarczyk
- Institute of Biology, Jan Kochanowski University, 25-420 Kielce, Poland;
| | - Edyta Adamska
- Department of Geobotany and Landscape Planning, Faculty of Biology and Veterinary Sciences, Nicolaus Copernicus University, 87-100 Toruń, Poland;
| | | |
Collapse
|
37
|
Zou F, Zhao X, Wang F. A review on the fruit components affecting uric acid level and their underlying mechanisms. J Food Biochem 2021; 45:e13911. [PMID: 34426969 DOI: 10.1111/jfbc.13911] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 07/12/2021] [Accepted: 08/09/2021] [Indexed: 12/11/2022]
Abstract
Uric acid (UA) is produced in the liver and excreted through the kidneys and intestines. If UA is overproduced or its excretion reduces, the concentration of UA increases, leading to hyperuricemia and gout. The high concentration of UA is also related to cardiovascular disease, hypertension, obesity, and other diseases. Fruits are healthy foods. However, fruits contain fructose and small amounts of purine, and the product of their metabolism is UA. Therefore, theoretically, eating fruits will increase the concentration of serum UA. Fruit components are numerous, and their effects on serum UA are complex. According to the current research, fructose, purine, polyphenols, vitamin C, dietary fiber, and minerals present in fruits influence serum UA concentrations. In addition to the UA synthesized by fructose and purine metabolism, the mechanisms by which other components affect the concentration of serum UA can be summarized as follows: (a) inhibiting xanthine oxidase; (b) reducing reabsorption of UA; and (c) improving the excretion of UA. In this review, we comprehensively discussed the fruit components that affect serum UA concentrations, and explained their mechanisms for the first time, which references for patients with hyperuricemia to take fruits. PRACTICAL APPLICATIONS: With the rising prevalence, hyperuricemia and gout have become public health problems that endanger our daily life. The key to the treatment of hyperuricemia is to control the level of serum UA within the normal range. Fruits are healthy foods. However, fruit components are numerous, and their effects on serum UA are complex. According to the current research, fructose, purine, polyphenols, vitamin C, dietary fiber, and minerals present in fruits influence serum UA concentrations. In this review, we comprehensively discussed the fruit components that affect serum UA concentrations. We also explained their mechanisms, which references for patients with hyperuricemia to take fruits.
Collapse
Affiliation(s)
- Fengmao Zou
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Xu Zhao
- Faculty of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang, China
| | - Fuqi Wang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
38
|
Unlocking the Health Potential of Microalgae as Sustainable Sources of Bioactive Compounds. Int J Mol Sci 2021; 22:ijms22094383. [PMID: 33922258 PMCID: PMC8122763 DOI: 10.3390/ijms22094383] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/14/2021] [Accepted: 04/18/2021] [Indexed: 12/15/2022] Open
Abstract
Microalgae are known to produce a plethora of compounds derived from the primary and secondary metabolism. Different studies have shown that these compounds may have allelopathic, antimicrobial, and antipredator activities. In addition, in vitro and in vivo screenings have shown that several compounds have interesting bioactivities (such as antioxidant, anti-inflammatory, anticancer, and antimicrobial) for the possible prevention and treatment of human pathologies. Additionally, the enzymatic pathways responsible for the synthesis of these compounds, and the targets and mechanisms of their action have also been investigated for a few species. However, further research is necessary for their full exploitation and possible pharmaceutical and other industrial applications. Here, we review the current knowledge on the chemical characteristics, biological activities, mechanism of action, and the enzymes involved in the synthesis of microalgal metabolites with potential benefits for human health.
Collapse
|
39
|
Negara BFSP, Sohn JH, Kim JS, Choi JS. Antifungal and Larvicidal Activities of Phlorotannins from Brown Seaweeds. Mar Drugs 2021; 19:223. [PMID: 33923448 PMCID: PMC8073715 DOI: 10.3390/md19040223] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/13/2021] [Accepted: 04/15/2021] [Indexed: 12/19/2022] Open
Abstract
Phlorotannins are secondary metabolites produced by brown seaweeds with antiviral, antibacterial, antifungal, and larvicidal activities. Phlorotannins' structures are formed by dibenzodioxin, ether and phenyl, ether, or phenyl linkages. The polymerization of phlorotannins is used to classify and characterize. The structural diversity of phlorotannins grows as polymerization increases. They have been characterized extensively with respect to chemical properties and functionality. However, review papers of the biological activities of phlorotannins have focused on their antibacterial and antiviral effects, and reviews of their broad antifungal and larvicidal effects are lacking. Accordingly, evidence for the effectiveness of phlorotannins as antifungal and larvicidal agents is discussed in this review. Online databases (ScienceDirect, PubMed, MEDLINE, and Web of Science) were used to identify relevant articles. In total, 11 articles were retrieved after duplicates were removed and exclusion criteria were applied. Phlorotannins from brown seaweeds show antifungal activity against dermal and plant fungi, and larvicidal activity against mosquitos and marine invertebrate larvae. However, further studies of the biological activity of phlorotannins against fungal and parasitic infections in aquaculture fish, livestock, and companion animals are needed for systematic analyses of their effectiveness. The research described in this review emphasizes the potential applications of phlorotannins as pharmaceutical, functional food, pesticide, and antifouling agents.
Collapse
Affiliation(s)
- Bertoka Fajar Surya Perwira Negara
- Seafood Research Center, Industry-Academic Cooperation Foundation, Silla University, 606, Advanced Seafood Processing Complex, Wonyang-ro, Amnam-dong, Seo-gu, Busan 49277, Korea; (B.F.S.P.N.); (J.-H.S.)
- Department of Food Biotechnology, College of Medical and Life Sciences, Silla University, 140, Baegyang-daero 700beon-gil, Sasang-gu, Busan 46958, Korea
| | - Jae-Hak Sohn
- Seafood Research Center, Industry-Academic Cooperation Foundation, Silla University, 606, Advanced Seafood Processing Complex, Wonyang-ro, Amnam-dong, Seo-gu, Busan 49277, Korea; (B.F.S.P.N.); (J.-H.S.)
- Department of Food Biotechnology, College of Medical and Life Sciences, Silla University, 140, Baegyang-daero 700beon-gil, Sasang-gu, Busan 46958, Korea
| | - Jin-Soo Kim
- Department of Seafood and Aquaculture Science, Gyeongsang National University, 38 Cheondaegukchi-gil, Tongyeong-si, Gyeongsangnam-do 53064, Korea
| | - Jae-Suk Choi
- Seafood Research Center, Industry-Academic Cooperation Foundation, Silla University, 606, Advanced Seafood Processing Complex, Wonyang-ro, Amnam-dong, Seo-gu, Busan 49277, Korea; (B.F.S.P.N.); (J.-H.S.)
- Department of Food Biotechnology, College of Medical and Life Sciences, Silla University, 140, Baegyang-daero 700beon-gil, Sasang-gu, Busan 46958, Korea
| |
Collapse
|