1
|
Wilkinson M, López-Martínez G. The lifelong effects of anoxia hormesis in solitary bees. ENVIRONMENTAL ENTOMOLOGY 2025; 54:320-330. [PMID: 40084522 DOI: 10.1093/ee/nvaf013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 01/02/2025] [Accepted: 02/27/2025] [Indexed: 03/16/2025]
Abstract
The stimulatory and protective response known as hormesis elicits an often over compensatory response resulting in life-history trait improvements. There are an array of abiotic and biotic agents that have been shown to trigger hormesis; most commonly studied are chemicals, temperature, and low oxygen. Investigations into low-oxygen exposures that activate the hormetic response reveal that insect performance can be dramatically improved by single short low-oxygen events, but the focus of this work has been primarily on short-term, transitory protection afforded by hormesis. Few reports examine whether the effect is longer lasting or lifelong. We previously reported that one hour of anoxia was enough to induce a hormetic response in the alfalfa leafcutting bee, Megachile rotundata (Hymenoptera: Megachilidae). Here, we investigated the long-term effects of this response by looking at starvation resistance, flight, and locomotory activity throughout the life of the adult bees. In addition, we studied the effects of anoxia hormesis on multiple reproductive metrics. Anoxia hormesis had lifelong positive effects for flight in both sexes. We also recorded higher starvation survival in bees that experienced hormesis. This improvement in performance came at a steep reproductive cost (ie reduction in fecundity). However, no costs or benefits were passed to the next generation. We hypothesize that using anoxia hormesis in the context of pollination services by this species should result in bees that are more active in the field, thereby increasing the numbers of visits to flowers throughout their entire life.
Collapse
Affiliation(s)
- Michaelyne Wilkinson
- Entomology, Plant Pathology, and Weed Science, New Mexico State University, Las Cruces, NM, USA
| | | |
Collapse
|
2
|
Geng C, Zhou B, Calabrese EJ, Agathokleous E. Stimulation of Microcystis aeruginosa by subtoxic concentrations of contaminants: A meta-analysis. ENVIRONMENTAL RESEARCH 2025; 271:121105. [PMID: 39947381 DOI: 10.1016/j.envres.2025.121105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 01/24/2025] [Accepted: 02/10/2025] [Indexed: 02/19/2025]
Abstract
There is growing evidence for hormetic stimulation of Microcystis aeruginosa, a harmful algal bloom (HAB)-forming cyanobacterium, by subtoxic contaminant concentrations. Hence, the first meta-analysis of approximately 4000 dose responses was conducted to evaluate the underlying biological mechanisms, identify variation determinants, and reveal potential implications for algaecides effectiveness. Approximately 30 chemical contaminants caused significant stimulation (95% CI: 72-153%), which persisted in mixtures, regardless the level of mixture complexity. Stimulation by subtoxic antibiotic contamination occurred in the presence or absence of algaecides, highlighting the potential of chemical contamination to lower algaecide efficiency to control the cyanobacterium. The significant stimulation spanned a wide range of contaminant concentrations, from ≤0.0001 to 200 mg L-1, and the response amplitude varied with concentration and exposure duration, increasing from 16% in less than one day to 27% on average within 2-4 weeks. Various mechanisms regulating the defense system (39-46%) and photosynthetic physiology (10-12%) and determining productivity and yields (19-22%) were enhanced, ultimately resulting in increased population growth (cell density; 21%), growth rate (15%), and survival (39%). Importantly, intracellular and extracellular microcystins (MC-LR, MC-LW, MC-RR, MC-YR) and their release are enriched by 26-29% in tandem with mcyB over-expression (24%) and N (26%) and Ca (17%) enhancement. However, the stimulation degree depended on the specific MC. The findings not only close a significant gap in the scientific understanding of the underlying mechanisms of contaminant-induced stimulation but also provide critical information to improve HAB management and remediation strategies.
Collapse
Affiliation(s)
- Caiyu Geng
- Key Laboratory of Ecosystem Carbon Source and Sink, China Meteorological Administration (ECSS-CMA), Nanjing University of Information Science and Technology, Nanjing, 210044, PR China; School of Ecology and Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, Jiangsu, PR China
| | - Boya Zhou
- School of Ecology and Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, Jiangsu, PR China; Department of Life Sciences, Imperial College London, Silwood Park Campus, Buckhurst Road, Ascot, SL5 7PY, UK
| | - Edward J Calabrese
- Department of Environmental Health Sciences, Morrill I, N344, University of Massachusetts, Amherst, MA, 01003, USA
| | - Evgenios Agathokleous
- Key Laboratory of Ecosystem Carbon Source and Sink, China Meteorological Administration (ECSS-CMA), Nanjing University of Information Science and Technology, Nanjing, 210044, PR China; School of Ecology and Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, Jiangsu, PR China; Research Center for Global Changes and Ecosystem Carbon Sequestration & Mitigation, Nanjing University of Information Science and Technology, Nanjing, 210044, Jiangsu, PR China; Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science & Technology, Nanjing, 210044, Jiangsu, PR China.
| |
Collapse
|
3
|
Brzezniakiewicz-Janus K, Jarczak J, Konopko A, Ratajczak J, Kucia M, Ratajczak MZ. Mitochondria Express Functional Signaling Ligand-Binding Receptors that Regulate their Biological Responses - the Novel Role of Mitochondria as Stress-Response Sentinels. Stem Cell Rev Rep 2025; 21:597-604. [PMID: 39888573 PMCID: PMC11965210 DOI: 10.1007/s12015-025-10847-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/20/2025] [Indexed: 02/01/2025]
Abstract
Evidence accumulated mitochondria, as the "powerplants of the cell," express several functional receptors for external ligands that modify their function and regulate cell biology. This review sheds new light on the role of these organelles in sensing external stimuli to facilitate energy production for cellular needs. This is possible because mitochondria express some receptors on their membranes that are responsible for their autonomous responses. This is not surprising given the widely accepted hypothesis that these intracellular organelles originated from prokaryotic ancestors that fused with eukaryotic cells during early evolution. It has been reported that mitochondria express functional estrogen, androgen, glucocorticoid, 5-hydroxytryptamine, melatonin, and cannabinoid receptors. What is intriguing is recent evidence showing that mitochondria could also be directly regulated by active mediators of intracellular complement (complosome) and intrinsic mediators of purinergic signaling. Accordingly, they express receptors for intracellular complement cleavage fragments (C5a and C3a) as well as for adenosine triphosphate (ATP), which, besides its crucial role in transferring energy in the cells, is also an important signaling molecule interacting with P2X7 receptor expressed not only on the cell surface but also on the mitochondria membrane. Based on this, intrinsic complosome and purinergic signaling mediators emerge as important cooperating regulators of reactive oxygen species (ROS) release from mitochondria and activators of intracellular pattern recognition receptor Nlrp3 inflammasome. This activation within the beneficial "hormetic zone response" regulates cell metabolism, proliferation, migration, and adaptation to the surrounding challenges of the microenvironment in a favorable way.
Collapse
Affiliation(s)
| | - Justyna Jarczak
- Department of Regenerative Medicine, Warsaw Medical University, Warsaw, Poland
- Center for Preclinical Studies and Technology, Laboratory of Regenerative Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Adrian Konopko
- Department of Regenerative Medicine, Warsaw Medical University, Warsaw, Poland
- Center for Preclinical Studies and Technology, Laboratory of Regenerative Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Janina Ratajczak
- Stem Cell Institute at Graham Brown Cancer Center, University of Louisville, 500 S. Floyd Street, Rm. 107, Louisville, Kentucky, 40202, USA
| | - Magdalena Kucia
- Department of Regenerative Medicine, Warsaw Medical University, Warsaw, Poland
- Center for Preclinical Studies and Technology, Laboratory of Regenerative Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Mariusz Z Ratajczak
- Department of Regenerative Medicine, Warsaw Medical University, Warsaw, Poland.
- Stem Cell Institute at Graham Brown Cancer Center, University of Louisville, 500 S. Floyd Street, Rm. 107, Louisville, Kentucky, 40202, USA.
| |
Collapse
|
4
|
Camacho E, Dong Y, Chrissian C, Cordero RJ, Saraiva RG, Anglero-Rodriguez Y, Smith DF, Jacobs E, Hartshorn I, Patiño-Medina JA, DePasquale M, Dziedzic A, Jedlicka A, Smith B, Mlambo G, Tripathi A, Broderick NA, Stark RE, Dimopoulos G, Casadevall A. Dietary L-3,4-dihydroxyphenylalanine (L-DOPA) augments cuticular melanization in Anopheles mosquitos while reducing their lifespan and malaria parasite burden. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.09.30.615839. [PMID: 40166253 PMCID: PMC11956902 DOI: 10.1101/2024.09.30.615839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
L-3,4-dihydroxyphenylalanine (L-DOPA), a naturally occurring tyrosine derivative, is prevalent in environments that include mosquito habitats, potentially serving as part of their diet. Given its role as a precursor for melanin synthesis we investigate the effect of dietary L-DOPA on mosquito physiology and immunity to Plasmodium falciparum and Cryptococcus neoformans infection. Dietary L-DOPA is incorporated into mosquito melanin via a non-canonical pathway and has a profound transcriptional effect associated with enhanced immunity, increased pigmentation, and reduced lifespan. Increased melanization results in an enhanced capacity to absorb electromagnetic radiation that affects mosquito temperatures. Bacteria in the mosquito microbiome act as sources of dopamine, a substrate for melanization. Our results illustrate how an environmentally abundant amino acid analogue can affect mosquito physiology and suggest its potential usefulness as an environmentally friendly vector control agent to reduce malaria transmission, warranting further research and field studies.
Collapse
|
5
|
Ratajczak MZ, Thetchinamoorthy K, Wierzbicka D, Konopko A, Ratajczak J, Kucia M. Extracellular microvesicles/exosomes-magic bullets in horizontal transfer between cells of mitochondria and molecules regulating mitochondria activity. Stem Cells 2025; 43:sxae086. [PMID: 39949038 PMCID: PMC11979747 DOI: 10.1093/stmcls/sxae086] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 12/11/2024] [Indexed: 03/15/2025]
Abstract
Extracellular microvesicles (ExMVs) were one of the first communication platforms between cells that emerged early in evolution. Evidence indicates that all types of cells secrete these small circular structures surrounded by a lipid membrane that plays an important role in cellular physiology and some pathological processes. ExMVs interact with target cells and may stimulate them by ligands expressed on their surface and/or transfer to the target cells their cargo comprising various RNA species, proteins, bioactive lipids, and signaling nucleotides. These small vesicles can also hijack some organelles from the cells and, in particular, transfer mitochondria, which are currently the focus of scientific interest for their potential application in clinical settings. Different mechanisms exist for transferring mitochondria between cells, including their encapsulation in ExMVs or their uptake in a "naked" form. It has also been demonstrated that mitochondria transfer may involve direct cell-cell connections by signaling nanotubules. In addition, evidence accumulated that ExMVs could be enriched for regulatory molecules, including some miRNA species and proteins that regulate the function of mitochondria in the target cells. Recently, a new beneficial effect of mitochondrial transfer has been reported based on inducing the mitophagy process, removing damaged mitochondria in the recipient cells to improve their energetic state. Based on this novel role of ExMVs in powering the energetic state of target cells, we present a current point of view on this topic and review some selected most recent discoveries and recently published most relevant papers.
Collapse
Affiliation(s)
- Mariusz Z Ratajczak
- Stem Cell Institute at Brown Cancer Center, University of Louisville, Louisville, KY 40202, United States
- Department of Regenerative Medicine, Center for Preclinical Research and Technology, Medical University of Warsaw, Warsaw 02-097, Poland
| | - Kannathasan Thetchinamoorthy
- Department of Regenerative Medicine, Center for Preclinical Research and Technology, Medical University of Warsaw, Warsaw 02-097, Poland
| | - Diana Wierzbicka
- Department of Regenerative Medicine, Center for Preclinical Research and Technology, Medical University of Warsaw, Warsaw 02-097, Poland
| | - Adrian Konopko
- Department of Regenerative Medicine, Center for Preclinical Research and Technology, Medical University of Warsaw, Warsaw 02-097, Poland
| | - Janina Ratajczak
- Stem Cell Institute at Brown Cancer Center, University of Louisville, Louisville, KY 40202, United States
| | - Magdalena Kucia
- Stem Cell Institute at Brown Cancer Center, University of Louisville, Louisville, KY 40202, United States
- Department of Regenerative Medicine, Center for Preclinical Research and Technology, Medical University of Warsaw, Warsaw 02-097, Poland
| |
Collapse
|
6
|
Franczak S, Ulrich H, Ratajczak MZ. Hematopoietic stem cells on the crossroad between purinergic signaling and innate immunity. Purinergic Signal 2025; 21:3-9. [PMID: 37184740 PMCID: PMC11958923 DOI: 10.1007/s11302-023-09943-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 05/09/2023] [Indexed: 05/16/2023] Open
Abstract
Hematopoiesis is regulated by several mediators such as peptide-based growth factors, cytokines, and chemokines, whose biological effects have been studied for many years. However, several other mediators have been identified recently that affect the fate of hematopoietic stem/progenitor cells (HSPC) as well as non-hematopoietic cells in the bone marrow microenvironment. These new mediators comprise members of purinergic signaling pathways and are active mediators of the soluble arm of innate immunity, the complement cascade (ComC). In this review, we will discuss the coordinated effects of these pathways in regulating the biology of HSPC. Importantly, both purinergic signaling and the ComC are activated in stress situations and interact with specific receptors expressed on HSPC. Evidence has accumulated indicating that some of the purinergic as well as ComC receptors could also be activated intracellularly by intrinsically expressed ligands. To support this recent evidence, our work indicates that the major mediator of purinergic signaling, adenosine triphosphate, and the cleavage product of the fifth component of the ComC (C5), C5a anaphylatoxin, can activate their corresponding receptors expressed on the outer mitochondrial membrane in an autocrine manner. We will also discuss recent evidence that these responses, mediated by purinergic signaling and the ComC network, are coordinated by activation of the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 2 - reactive oxygen species - NLR family pyrin domain containing 3 (NLRP3) inflammasome (Nox2-ROS-NLRP3) axis.
Collapse
Affiliation(s)
- Stephanie Franczak
- Laboratory of Regenerative Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Henning Ulrich
- Department of Biochemistry, University of Sao Paulo, Sao Paulo, Brazil
| | - Mariusz Z Ratajczak
- Laboratory of Regenerative Medicine, Medical University of Warsaw, Warsaw, Poland.
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, 500 S. Floyd Street, Rm. 107, Louisville, KY, 40202, USA.
| |
Collapse
|
7
|
Sosin DV, Baranovskii DS, Nechaev DN, Sosina MA, Shaposhnikov AV, Trusov GA, Titova AG, Krasnikov BF, Lomov AN, Makarov VV, Yudin VS, Keskinov AA, Yudin SM, Klabukov ID. Population Studies and Molecular Mechanisms of Human Radioadaptive Capabilities: Is It Time to Rethink Radiation Safety Standards? Int J Mol Sci 2024; 25:13543. [PMID: 39769306 PMCID: PMC11676322 DOI: 10.3390/ijms252413543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/10/2024] [Accepted: 12/14/2024] [Indexed: 01/11/2025] Open
Abstract
The evolution of man on Earth took place under conditions of constant exposure to background ionizing radiation (IR). From this point of view, it would be reasonable to hypothesize the existence of adaptive mechanisms that enable the human organism to safely interact with IR at levels approximating long-term natural background levels. In some situations, the successful operation of molecular mechanisms of protection against IR is observed at values significantly exceeding the natural background level, for example, in cancer cells. In 15-25% of cancer patients, cancer cells develop a phenotype that is resistant to high doses of IR. While further investigations are warranted, the current evidence suggests a strong probability of observing positive health effects, including an increased lifespan, a reduced cancer risk, and a decreased incidence of congenital pathologies, precisely at low doses of ionizing radiation. This review offers arguments primarily based on a phenomenological approach and critically reconsidering existing methodologies for assessing the biological risks of IR to human health. Currently, in the most economically developed countries, there are radiation safety rules that interpret low-dose radiation as a clearly negative environmental factor. Nowadays, this approach may pose significant challenges to the advancement of radiomedicine and introduce complexities in the regulation of IR sources. The review also examines molecular mechanisms that may play a key role in the formation of the positive effects of low-dose IR on human radioadaptive capabilities.
Collapse
Affiliation(s)
- Dmitry Vitalievich Sosin
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical Biological Agency, 119121 Moscow, Russia (A.V.S.); (G.A.T.); (A.G.T.); (B.F.K.)
| | - Denis S. Baranovskii
- Department of Regenerative Medicine, National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, 249036 Obninsk, Russia;
| | - Denis Nikolaevich Nechaev
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical Biological Agency, 119121 Moscow, Russia (A.V.S.); (G.A.T.); (A.G.T.); (B.F.K.)
| | - Mariya Aleksandrovna Sosina
- Research and Practical Clinical Center for Diagnostics and Telemedicine Technologies of the Moscow Health Care Department, 127051 Moscow, Russia;
| | - Alexander Vladimirovich Shaposhnikov
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical Biological Agency, 119121 Moscow, Russia (A.V.S.); (G.A.T.); (A.G.T.); (B.F.K.)
| | - Georgy Aleksandrovich Trusov
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical Biological Agency, 119121 Moscow, Russia (A.V.S.); (G.A.T.); (A.G.T.); (B.F.K.)
| | - Anastasia Germanovna Titova
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical Biological Agency, 119121 Moscow, Russia (A.V.S.); (G.A.T.); (A.G.T.); (B.F.K.)
| | - Boris Fedorovich Krasnikov
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical Biological Agency, 119121 Moscow, Russia (A.V.S.); (G.A.T.); (A.G.T.); (B.F.K.)
| | - Alexey Nikolaevich Lomov
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical Biological Agency, 119121 Moscow, Russia (A.V.S.); (G.A.T.); (A.G.T.); (B.F.K.)
| | - Valentin Vladimirovich Makarov
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical Biological Agency, 119121 Moscow, Russia (A.V.S.); (G.A.T.); (A.G.T.); (B.F.K.)
| | - Vladimir Sergeevich Yudin
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical Biological Agency, 119121 Moscow, Russia (A.V.S.); (G.A.T.); (A.G.T.); (B.F.K.)
| | - Anton Arturovich Keskinov
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical Biological Agency, 119121 Moscow, Russia (A.V.S.); (G.A.T.); (A.G.T.); (B.F.K.)
| | - Sergey Mihailovich Yudin
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical Biological Agency, 119121 Moscow, Russia (A.V.S.); (G.A.T.); (A.G.T.); (B.F.K.)
| | - Ilya Dmitrievich Klabukov
- Department of Regenerative Medicine, National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, 249036 Obninsk, Russia;
| |
Collapse
|
8
|
Camacho E, Dong Y, Chrissian C, Cordero RJ, Saravia RG, Anglero-Rodriguez Y, Smith DF, Jacobs E, Hartshorn I, Patiño-Medina JA, DePasquale M, Dziedzic A, Jedlicka A, Smith B, Mlambo G, Tripathi A, Broderick NA, Stark RE, Dimopoulos G, Casadevall A. Dietary L-3,4-dihydroxyphenylalanine (L-DOPA) augments cuticular melanization in Anopheles mosquitos while reducing their lifespan and malaria parasite burden. RESEARCH SQUARE 2024:rs.3.rs-5167892. [PMID: 39483913 PMCID: PMC11527263 DOI: 10.21203/rs.3.rs-5167892/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
L-3,4-dihydroxyphenylalanine (L-DOPA), a naturally occurring tyrosine derivative, is prevalent in environments that include mosquito habitats, potentially serving as part of their diet. Given its role as a precursor for melanin synthesis we investigated the effect of dietary L-DOPA on mosquito physiology and immunity to Plasmodium falciparum and Cryptococcus neoformans infection. Dietary L-DOPA was incorporated into mosquito melanin via a non-canonical pathway and had profound transcriptional effects that were associated with enhanced immunity, increased pigmentation, and reduced lifespan. Increased melanization resulted in an enhanced capacity to absorb electromagnetic radiation that affected mosquito temperatures. Bacteria in the mosquito microbiome were sources of dopamine, which is a substrate for melanization. Our results illustrate how an environmentally abundant amino acid analogue can affect mosquito physiology and suggest its potential usefulness as an environmentally friendly vector control agent to reduce malaria transmission, warranting further research and field studies.
Collapse
|
9
|
Živančević K, Baralić K, Vukelić D, Marić Đ, Kotur-Stevuljević J, Ivanišević J, Savić M, Batinić B, Janković R, Djordjevic AB, Miljaković EA, Ćurčić M, Bulat Z, Antonijević B, Đukić-Ćosić D. Neurotoxic effects of low dose ranges of environmental metal mixture in a rat model: The benchmark approach. ENVIRONMENTAL RESEARCH 2024; 252:118680. [PMID: 38561120 DOI: 10.1016/j.envres.2024.118680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 03/02/2024] [Accepted: 03/10/2024] [Indexed: 04/04/2024]
Abstract
Metals exert detrimental effects on various systems within the body, including the nervous system. Nevertheless, the dose-response relationship concerning the administration of low doses of metal mixtures remains inadequately explored. The assessment of neurotoxic effects of lead, cadmium, mercury, and arsenic mixture (MIX) administered at low dose ranges, was conducted using an in vivo approach. A subacute study was conducted on a rat model consisting of a control and five treatment groups subjected to oral exposure with gradually increasing doses (from MIX 1 to MIX 5). The results indicated that behavioural patterns in an already developed nervous system displayed a reduced susceptibility to the metal mixture exposure with tendency of higher doses to alter short term memory. However, the vulnerability of the mature brain to even minimal amounts of the investigated metal mixture was evident, particularly in the context of oxidative stress. Moreover, the study highlights superoxide dismutase's sensitivity as an early-stage neurotoxicity marker, as indicated by dose-dependent induction of oxidative stress in the brain revealed through Benchmark analysis. The narrowest Benchmark Dose Interval (BMDI) for superoxide dismutase (SOD) activity (1e-06 - 3.18e-05 mg As/kg b.w./day) indicates that arsenic may dictate the alterations in SOD activity when co-exposed with the other examined metals. The predicted Benchmark doses for oxidative stress parameters were very low, supporting "no-threshold" concept. Histopathological alterations were most severe in the groups treated with higher doses of metal mixture. Similarly, the brain acetylcholinesterase (AChE) activity demonstrated a dose-dependent decrease significant in higher doses, while BMDI suggested Cd as the main contributor in the examined metal mixture. These findings imply varying susceptibility of neurotoxic endpoints to different doses of environmentally relevant metal mixtures, advocating for risk assessment and regulatory measures to address metal pollution and enhance remediation strategies.
Collapse
Affiliation(s)
- Katarina Živančević
- Department of Toxicology "Akademik Danilo Soldatović", Toxicological Risk Assessment Center, University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia; University of Belgrade - Faculty of Biology, Institute of Physiology and Biochemistry "Ivan Djaja", Department of General Physiology and Biophysics, Center for Laser Microscopy, Studentski trg 16, 11158, Belgrade, Serbia.
| | - Katarina Baralić
- Department of Toxicology "Akademik Danilo Soldatović", Toxicological Risk Assessment Center, University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
| | - Dragana Vukelić
- Department of Toxicology "Akademik Danilo Soldatović", Toxicological Risk Assessment Center, University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
| | - Đurđica Marić
- Department of Toxicology "Akademik Danilo Soldatović", Toxicological Risk Assessment Center, University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
| | - Jelena Kotur-Stevuljević
- University of Belgrade, Faculty of Pharmacy, Department of Medical Biochemistry, Vojvode Stepe 450, 11221, Belgrade, Serbia
| | - Jasmina Ivanišević
- University of Belgrade, Faculty of Pharmacy, Department of Medical Biochemistry, Vojvode Stepe 450, 11221, Belgrade, Serbia
| | - Miroslav Savić
- University of Belgrade, Faculty of Pharmacy, Department of Pharmacology, Vojvode Stepe 450, 11221, Belgrade, Serbia
| | - Bojan Batinić
- University of Belgrade, Faculty of Pharmacy, Department of Physiology, Vojvode Stepe 450, 11221, Belgrade, Serbia
| | - Radmila Janković
- University of Belgrade, Faculty of Medicine, Institute of Pathology, dr Subotića 1, 11000, Belgrade, Serbia
| | - Aleksandra Buha Djordjevic
- Department of Toxicology "Akademik Danilo Soldatović", Toxicological Risk Assessment Center, University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
| | - Evica Antonijević Miljaković
- Department of Toxicology "Akademik Danilo Soldatović", Toxicological Risk Assessment Center, University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
| | - Marijana Ćurčić
- Department of Toxicology "Akademik Danilo Soldatović", Toxicological Risk Assessment Center, University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
| | - Zorica Bulat
- Department of Toxicology "Akademik Danilo Soldatović", Toxicological Risk Assessment Center, University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
| | - Biljana Antonijević
- Department of Toxicology "Akademik Danilo Soldatović", Toxicological Risk Assessment Center, University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
| | - Danijela Đukić-Ćosić
- Department of Toxicology "Akademik Danilo Soldatović", Toxicological Risk Assessment Center, University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
| |
Collapse
|
10
|
Song P, Cai X, Qin D, Wang Q, Liu X, Zhong M, Li L, Yang Y. Analyzing psychological resilience in college students: A decision tree model. Heliyon 2024; 10:e32583. [PMID: 38961892 PMCID: PMC11219503 DOI: 10.1016/j.heliyon.2024.e32583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 05/27/2024] [Accepted: 06/05/2024] [Indexed: 07/05/2024] Open
Abstract
In the evolving landscape of higher education, particularly in the post-pandemic era, it is crucial for college students to face societal challenges and achieve success by understanding and predicting psychological resilience. To deepen our understanding of psychological resilience, this study used a decision tree model to explore influencing factors. We surveyed 776 college students and collected data on demographic information, self-esteem, sense of school belonging, pro-environmental behavior, subjective well-being, internet game addiction, life autonomy, and academic procrastination using several scales. The decision tree model identified eight key predictors of psychological resilience, which are as follows in order of importance: self-esteem, sense of school belonging, pro-environmental behavior, subjective well-being, academic procrastination, life autonomy, internet game addiction, and academic achievement. This model's accuracy reached 73.985 %, emphasizing its potential utility in educational settings. The findings not only provide a novel and data-driven perspective to understand psychological resilience in college students compared to existing research but also provide practical guidance for educational practitioners and policymakers on how to develop psychological resilience in college students.
Collapse
Affiliation(s)
- Pu Song
- Department of Preschool and Early Education, Guiyang Preschool Education College, Guizhou, China
| | - Xuan Cai
- Wenzhou Business College, Zhejiang, China
| | - Dan Qin
- Faculty of Educational Studies, University Putra Malaysia, Kuala Selangor, Malaysia
| | - Qingqing Wang
- Guizhou Aerospace Vocational and Technical College, Guizhou, China
| | - Xiangwei Liu
- School of Distance Education, Universiti Sains Malaysia, Penang, Malaysia
| | - Mengmeng Zhong
- Trade and Tourism Management School, Liuzhou Vocational & Technical College, Liuzhou, Guangxi Province, China
| | - Linying Li
- Division of Multi/Interdisciplinary Studies, Graduate School, Srinakharinwirot University, Thailand
| | - Yan Yang
- Research Institute of Higher Education, Yunnan University, China
| |
Collapse
|
11
|
Hidalgo-Lasso D, García-Villacís K, Urvina Ulloa J, Marín Tapia D, Gómez Ortega P, Coulon F. Updating risk remediation-endpoints for petroleum-contaminated soils? A case study in the Ecuadorian Amazon region. Heliyon 2024; 10:e30395. [PMID: 38720749 PMCID: PMC11076972 DOI: 10.1016/j.heliyon.2024.e30395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/12/2024] Open
Abstract
In Ecuador, the regulatory framework for the remediation of petroleum-contaminated soils is based on predefined concentration endpoints for a selected range of petroleum hydrocarbon compounds. However, such approach may lead to over or under-estimation of the environmental risk posed by contaminated soils. In this study, the end-point remediation criteria according to Ecuadorian Environmental legislation were evaluated using different approaches. The first one was based on Total Extractable Petroleum Hydrocarbons (TEPH) and the second one on Total Bioavailable Petroleum Hydrocarbons (TBPH). Both were compared with ecotoxicological determinations using EC50 -Microtox® bioassay at 5 and 15 min of exposure. The correlation (R2) between EC50 values vs TEPH was of 0.2 and 0.25 for 5 and 15 min, respectively. Meanwhile, R2 between EC50 and TBPH was of 0.9 and 0.65 for 5 and 15 min, respectively, demonstrating a stronger correlation. Our results suggest that a contaminated site where the concentration of the TEPH is higher than the relevant regulatory concentrations may be deemed to present an acceptable risk even though their concentrations exceed the target values in soils. The results also challenge the notion that hormesis is associated with TEPH, contrary to some literature. This study is the first in Ecuador to propose incorporating bioavailability into environmental regulations, highlighting the need for further research to establish realistic and achievable remediation goals based on toxicity studies involving various trophic levels.
Collapse
Affiliation(s)
- Daniel Hidalgo-Lasso
- Centro de Investigación de Tecnologías Ambientales del Proyecto Amazonía Viva, Empresa Pública de Hidrocarburos EP PETROECUADOR, 4 1/2 km vía Joya de los Sachas-Coca, Joya de los Sachas, 2201010, Ecuador
| | - Karina García-Villacís
- Centro de Investigación de Tecnologías Ambientales del Proyecto Amazonía Viva, Empresa Pública de Hidrocarburos EP PETROECUADOR, 4 1/2 km vía Joya de los Sachas-Coca, Joya de los Sachas, 2201010, Ecuador
| | - Jeaneth Urvina Ulloa
- Centro de Investigación de Tecnologías Ambientales del Proyecto Amazonía Viva, Empresa Pública de Hidrocarburos EP PETROECUADOR, 4 1/2 km vía Joya de los Sachas-Coca, Joya de los Sachas, 2201010, Ecuador
| | - Darwin Marín Tapia
- Centro de Investigación de Tecnologías Ambientales del Proyecto Amazonía Viva, Empresa Pública de Hidrocarburos EP PETROECUADOR, 4 1/2 km vía Joya de los Sachas-Coca, Joya de los Sachas, 2201010, Ecuador
| | - Patricio Gómez Ortega
- Centro de Investigación de Tecnologías Ambientales del Proyecto Amazonía Viva, Empresa Pública de Hidrocarburos EP PETROECUADOR, 4 1/2 km vía Joya de los Sachas-Coca, Joya de los Sachas, 2201010, Ecuador
| | - Frederic Coulon
- School of Water, Energy and Environment, Cranfield University, Cranfield, MK43 0AL, United Kingdom
| |
Collapse
|
12
|
Ratajczak MZ, Bujko K, Brzezniakiewicz-Janus K, Ratajczak J, Kucia M. Hematopoiesis Revolves Around the Primordial Evolutional Rhythm of Purinergic Signaling and Innate Immunity - A Journey to the Developmental Roots. Stem Cell Rev Rep 2024; 20:827-838. [PMID: 38363476 PMCID: PMC10984895 DOI: 10.1007/s12015-024-10692-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/04/2024] [Indexed: 02/17/2024]
Abstract
A cell's most significant existential task is to survive by ensuring proper metabolism, avoiding harmful stimuli, and adapting to changing environments. It explains why early evolutionary primordial signals and pathways remained active and regulate cell and tissue integrity. This requires energy supply and a balanced redox state. To meet these requirements, the universal intracellular energy transporter purine nucleotide-adenosine triphosphate (ATP) became an important signaling molecule and precursor of purinergic signaling after being released into extracellular space. Similarly, ancient proteins involved in intracellular metabolism gave rise to the third protein component (C3) of the complement cascade (ComC), a soluble arm of innate immunity. These pathways induce cytosol reactive oxygen (ROS) and reactive nitrogen species (RNS) that regulate the redox state of the cells. While low levels of ROS and RNS promote cell growth and differentiation, supra-physiological concentrations can lead to cell damage by pyroptosis. This balance explains the impact of purinergic signaling and innate immunity on cell metabolism, organogenesis, and tissue development. Subsequently, along with evolution, new regulatory cues emerge in the form of growth factors, cytokines, chemokines, and bioactive lipids. However, their expression is still modulated by both primordial signaling pathways. This review will focus on the data that purinergic signaling and innate immunity carry on their ancient developmental task in hematopoiesis and specification of hematopoietic stem/progenitor cells (HSPCs). Moreover, recent evidence shows both these regulatory pathways operate in a paracrine manner and inside HSPCs at the autocrine level.
Collapse
Affiliation(s)
- Mariusz Z Ratajczak
- Laboratory of Regenerative Medicine, Medical University of Warsaw, Warsaw, Poland.
- Department of Hematology, University of Zielona Gora, Multi-Specialist Hospital Gorzow Wlkp., Gorzow Wielkopolski, Poland.
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, 500 S. Floyd Street, Rm. 107, Louisville, KY, 40202, USA.
| | - Kamila Bujko
- Laboratory of Regenerative Medicine, Medical University of Warsaw, Warsaw, Poland
- Center for Preclinical Studies and Technology, Department of Regenerative Medicine at Medical, University of Warsaw, Warsaw, Poland
| | | | - Janina Ratajczak
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, 500 S. Floyd Street, Rm. 107, Louisville, KY, 40202, USA
| | - Magdalena Kucia
- Laboratory of Regenerative Medicine, Medical University of Warsaw, Warsaw, Poland
- Center for Preclinical Studies and Technology, Department of Regenerative Medicine at Medical, University of Warsaw, Warsaw, Poland
| |
Collapse
|
13
|
Cherednichenko O, Pilyugina A, Nuraliev S, Azizbekova D. Persons chronically exposed to low doses of ionizing radiation: A cytogenetic dosimetry study. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2024; 894:503728. [PMID: 38432778 DOI: 10.1016/j.mrgentox.2024.503728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/10/2024] [Accepted: 01/13/2024] [Indexed: 03/05/2024]
Abstract
The dosimetry and control of exposure for individuals chronically exposed to ionizing radiation are important and complex issues. Assessment may be optimized by evaluating individual adaptation and radiosensitivity, but it is not possible for a single model to account for all relevant parameters. Our goal was to develop approaches for the calculation of doses for persons chronically exposed to ionizing radiation, taking their radiosensitivities into consideration. On the basis of ex vivo radiation of blood samples, dose-effect models were constructed for dose ranges 0.01-2.0 and 0.01-0.4 Gy, using different cytogenetic criteria. The frequencies of "dicentric chromosomes and rings" at low doses are too low to have predictive value. The different responses of subjects to radiation made it possible to categorize them according to their radiosensitivities and to generate separate dose-effect curves for radiosensitive, average, and radioresistant individuals, reducing the amount of error in retrospective dosimetry.
Collapse
Affiliation(s)
- Oksana Cherednichenko
- Laboratory of Genetic Monitoring, Institute of Genetics and Physiology, Almaty 050060, Kazakhstan.
| | - Anastassiya Pilyugina
- Laboratory of Genetic Monitoring, Institute of Genetics and Physiology, Almaty 050060, Kazakhstan
| | - Serikbai Nuraliev
- Laboratory of Genetic Monitoring, Institute of Genetics and Physiology, Almaty 050060, Kazakhstan
| | - Dinara Azizbekova
- Laboratory of Genetic Monitoring, Institute of Genetics and Physiology, Almaty 050060, Kazakhstan
| |
Collapse
|
14
|
Gordillo L, Quiroga L, Ray M, Sanabria E. Changes in thermal sensitivity of Rhinella arenarum tadpoles (Anura: Bufonidae) exposed to sublethal concentrations of different pesticide fractions (Lorsban® 75WG). J Therm Biol 2024; 120:103816. [PMID: 38428105 DOI: 10.1016/j.jtherbio.2024.103816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 02/08/2024] [Accepted: 02/08/2024] [Indexed: 03/03/2024]
Abstract
The intensive use of agrochemicals and the rapid increase of global temperatures have modified the thermal conditions of aquatic environments, thus increasing amphibians' vulnerability to global warming and positioning them at great risk. Commercial formulations of chlorpyrifos (COM) are the pesticides most widely used in agricultural activities, with a high toxic potential on amphibians. However, little is known about the separate effects of the active ingredient (CPF) and adjuvants (AD). We studied the thermal sensitivity at different concentrations and pesticide fractions in Rhinella arenarum tadpoles, on thermal tolerance limits (CTmax = Critical thermal maximum and CTmin = Critical thermal minimum), swimming speed (Ss), Optimum temperature (Top), and Thermal breadth 50 (B50). Our results demonstrate that the pesticide active ingredient, the adjuvants, and the commercial formulation of chlorpyrifos differentially impair the thermal sensitivity of R. arenarum tadpoles. The pesticide fractions affected the heat and the cold tolerance (CTmax and CTmin), depending on the concentrations they were exposed to. The locomotor performance (Ss, Top, and B50) of tadpoles also varied among fractions, treatments, and environmental temperatures. In the context of climate change, the outcomes presented are particularly relevant, as mean temperatures are increasing at unprecedented rates, which suggests that tadpoles inhabiting warming and polluted ponds are currently experiencing deleterious conditions. Considering that larval stages of amphibians are the most susceptible to changing environmental conditions and the alarming predictions about environmental temperatures in the future, it is likely that the synergism between high temperatures and pesticide exposure raise the threat of population deletions in the coming years.
Collapse
Affiliation(s)
- Luciana Gordillo
- Instituto de Ciencias Básicas, Facultad de Filosofía Humanidades y Artes, Universidad Nacional de San Juan. Av. Ignacio de la Roza 230 (Oeste), (5400), San Juan, Argentina; CONICET, Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina.
| | - Lorena Quiroga
- Instituto de Ciencias Básicas, Facultad de Filosofía Humanidades y Artes, Universidad Nacional de San Juan. Av. Ignacio de la Roza 230 (Oeste), (5400), San Juan, Argentina; CONICET, Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina.
| | - Maribel Ray
- Instituto de Ciencias Básicas, Facultad de Filosofía Humanidades y Artes, Universidad Nacional de San Juan. Av. Ignacio de la Roza 230 (Oeste), (5400), San Juan, Argentina.
| | - Eduardo Sanabria
- Instituto de Ciencias Básicas, Facultad de Filosofía Humanidades y Artes, Universidad Nacional de San Juan. Av. Ignacio de la Roza 230 (Oeste), (5400), San Juan, Argentina; Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo. Padre Jorge Contreras 1300. (M5502JMA), Mendoza, Argentina; CONICET, Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina.
| |
Collapse
|
15
|
Belardo C, Jebali J, Boccella S, Infantino R, Fusco A, Perrone M, Bonsale R, Manzo I, Iannotta M, Scuteri D, Ferraraccio F, Panarese I, Ferrara G, Guida F, Luongo L, Palazzo E, Srairi-Abid N, Marrakchi N, Maione S. Biphasic Hormetic-like Effect of Lebecetin, a C-type Lectin of Snake Venom, on Formalin-induced Inflammation in Mice. Curr Neuropharmacol 2024; 22:1391-1405. [PMID: 38073106 PMCID: PMC11092918 DOI: 10.2174/1570159x22999231207105743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/21/2023] [Accepted: 03/23/2023] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND Integrins, important extracellular matrix (ECM) receptor proteins, are affected by inflammation and can participate in the maintenance of many painful conditions. Although they are ubiquitous and changeable across all cell types, the roles of these cell adhesion molecules in pathological pain have not been fully explored. OBJECTIVE We evaluated the effects of the subcutaneous injection of lebecetin, a C-type lectin isolated from Macrovipera lebetina snake venom, previously reported to inhibit α5β1 and αv integrin activity, on different components of inflammation induced by the formalin administration in the hind paw of mice. METHODS The formalin-induced nocifensive behavior, edema, and histopathological changes in the hind paw associated with cytokine, iNOS, and COX2 expression, nociceptive-specific neuron activity, and microglial activation analysis in the spinal cord were evaluated in mice receiving vehicle or lebecetin pretreatment. RESULTS Lebecetin inhibited the nocifensive responses in the formalin test, related edema, and cell infiltration in the injected paw in a biphasic, hormetic-like, and dose-dependent way. According to that hormetic trend, a reduction in pro-inflammatory cytokines IL-6, IL-8, and TNF-alpha and upregulation of the anti-inflammatory cytokine IL-10 in the spinal cord were found with the lowest doses of lebecetin. Moreover, COX2 and iNOS expression in serum and spinal cord followed the same biphasic pattern of cytokines. Finally, nociceptive neurons sensitization and activated microglia were normalized in the dorsal horn of the spinal cord by lebecetin. CONCLUSION These findings implicate specific roles of integrins in inflammation and tonic pain, as well as in the related central nervous system sequelae.
Collapse
Affiliation(s)
- Carmela Belardo
- Department of Experimental Medicine, Pharmacology Division, University of Campania “L. Vanvitelli”, Naples, Italy
| | - Jed Jebali
- Laboratory of Biomolecules, Venoms and Theranostic Applications, LR20IPT01, Institut Pasteur of Tunis, University of Tunis El Manar, Tunis 1002, Tunisia
| | - Serena Boccella
- Department of Experimental Medicine, Pharmacology Division, University of Campania “L. Vanvitelli”, Naples, Italy
| | - Rosmara Infantino
- Department of Experimental Medicine, Pharmacology Division, University of Campania “L. Vanvitelli”, Naples, Italy
| | - Antimo Fusco
- Department of Experimental Medicine, Pharmacology Division, University of Campania “L. Vanvitelli”, Naples, Italy
| | - Michela Perrone
- Department of Experimental Medicine, Pharmacology Division, University of Campania “L. Vanvitelli”, Naples, Italy
| | - Roozbe Bonsale
- Department of Experimental Medicine, Pharmacology Division, University of Campania “L. Vanvitelli”, Naples, Italy
| | - Iolanda Manzo
- Department of Experimental Medicine, Pharmacology Division, University of Campania “L. Vanvitelli”, Naples, Italy
| | - Monica Iannotta
- Department of Experimental Medicine, Pharmacology Division, University of Campania “L. Vanvitelli”, Naples, Italy
| | - Damiana Scuteri
- Pharmacotechnology Documentation and Transfer Unit, Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Franca Ferraraccio
- Pathology Unit, Department of Mental and Physical Health and Preventive Medicine, University of Campania “L. Vanvitelli”, Naples, Italy
| | - Iacopo Panarese
- Pathology Unit, Department of Mental and Physical Health and Preventive Medicine, University of Campania “L. Vanvitelli”, Naples, Italy
| | - Giovanna Ferrara
- Pathology Unit, Department of Mental and Physical Health and Preventive Medicine, University of Campania “L. Vanvitelli”, Naples, Italy
| | - Francesca Guida
- Department of Experimental Medicine, Pharmacology Division, University of Campania “L. Vanvitelli”, Naples, Italy
| | - Livio Luongo
- Department of Experimental Medicine, Pharmacology Division, University of Campania “L. Vanvitelli”, Naples, Italy
| | - Enza Palazzo
- Department of Experimental Medicine, Pharmacology Division, University of Campania “L. Vanvitelli”, Naples, Italy
| | - Najet Srairi-Abid
- Laboratory of Biomolecules, Venoms and Theranostic Applications, LR20IPT01, Institut Pasteur of Tunis, University of Tunis El Manar, Tunis 1002, Tunisia
| | - Naziha Marrakchi
- Laboratory of Biomolecules, Venoms and Theranostic Applications, LR20IPT01, Institut Pasteur of Tunis, University of Tunis El Manar, Tunis 1002, Tunisia
| | - Sabatino Maione
- Department of Experimental Medicine, Pharmacology Division, University of Campania “L. Vanvitelli”, Naples, Italy
| |
Collapse
|
16
|
Gil-Martín E, Ramos E, López-Muñoz F, Egea J, Romero A. Potential of melatonin to reverse epigenetic aberrations in oral cancer: new findings. EXCLI JOURNAL 2023; 22:1280-1310. [PMID: 38234969 PMCID: PMC10792176 DOI: 10.17179/excli2023-6624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 11/22/2023] [Indexed: 01/19/2024]
Abstract
It is now an accepted principle that epigenetic alterations cause cellular dyshomeostasis and functional changes, both of which are essential for the initiation and completion of the tumor cycle. Oral carcinogenesis is no exception in this regard, as most of the tumors in the different subsites of the oral cavity arise from the cross-reaction between (epi)genetic inheritance and the huge challenge of environmental stressors. Currently, the biochemical machinery is put at the service of the tumor program, halting the cell cycle, triggering uncontrolled proliferation, driving angiogenesis and resistance to apoptosis, until the archetypes of the tumor phenotype are reached. Melatonin has the ability to dynamically affect the epigenetic code. It has become accepted that melatonin can reverse (epi)genetic aberrations present in oral and other cancers, suggesting the possibility of enhancing the oncostatic capacity of standard multimodal treatments by incorporating this indolamine as an adjuvant. First steps in this direction confirm the potential of melatonin as a countermeasure to mitigate the detrimental side effects of conventional first-line radiochemotherapy. This single effect could produce synergies of extraordinary clinical importance, allowing doses to be increased and treatments not to be interrupted, ultimately improving patients' quality of life and prognosis. Motivated by the urgency of improving the medical management of oral cancer, many authors advocate moving from in vitro and preclinical research, where the bulk of melatonin cancer research is concentrated, to systematic randomized clinical trials on large cohorts. Recognizing the challenge to improve the clinical management of cancer, our motivation is to encourage comprehensive and robust research to reveal the clinical potential of melatonin in oral cancer control. To improve the outcome and quality of life of patients with oral cancer, here we provide the latest evidence of the oncolytic activity that melatonin can achieve by manipulating epigenetic patterns in oronasopharyngeal tissue.
Collapse
Affiliation(s)
- Emilio Gil-Martín
- Department of Biochemistry, Genetics and Immunology, Faculty of Biology, University of Vigo, 36310 Vigo, Spain
| | - Eva Ramos
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain
| | - Francisco López-Muñoz
- Faculty of Health, Camilo José Cela University of Madrid (UCJC), 28692 Madrid, Spain
- Neuropsychopharmacology Unit, Hospital 12 de Octubre Research Institute, 28041 Madrid, Spain
| | - Javier Egea
- Unidad de Investigación, Hospital Santa Cristina, Instituto de Investigación Sanitaria Princesa (IIS-IP), 28006 Madrid, Spain
| | - Alejandro Romero
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain
| |
Collapse
|
17
|
Maiti S, Bhattacharya K, Wider D, Hany D, Panasenko O, Bernasconi L, Hulo N, Picard D. Hsf1 and the molecular chaperone Hsp90 support a 'rewiring stress response' leading to an adaptive cell size increase in chronic stress. eLife 2023; 12:RP88658. [PMID: 38059913 PMCID: PMC10703448 DOI: 10.7554/elife.88658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023] Open
Abstract
Cells are exposed to a wide variety of internal and external stresses. Although many studies have focused on cellular responses to acute and severe stresses, little is known about how cellular systems adapt to sublethal chronic stresses. Using mammalian cells in culture, we discovered that they adapt to chronic mild stresses of up to two weeks, notably proteotoxic stresses such as heat, by increasing their size and translation, thereby scaling the amount of total protein. These adaptations render them more resilient to persistent and subsequent stresses. We demonstrate that Hsf1, well known for its role in acute stress responses, is required for the cell size increase, and that the molecular chaperone Hsp90 is essential for coupling the cell size increase to augmented translation. We term this translational reprogramming the 'rewiring stress response', and propose that this protective process of chronic stress adaptation contributes to the increase in size as cells get older, and that its failure promotes aging.
Collapse
Affiliation(s)
- Samarpan Maiti
- Département de Biologie Moléculaire et Cellulaire, Université de GenèveGenèveSwitzerland
| | - Kaushik Bhattacharya
- Département de Biologie Moléculaire et Cellulaire, Université de GenèveGenèveSwitzerland
| | - Diana Wider
- Département de Biologie Moléculaire et Cellulaire, Université de GenèveGenèveSwitzerland
| | - Dina Hany
- Département de Biologie Moléculaire et Cellulaire, Université de GenèveGenèveSwitzerland
- On leave from: Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Pharos University in AlexandriaAlexandriaEgypt
| | - Olesya Panasenko
- BioCode: RNA to Proteins Core Facility, Département de Microbiologie et Médecine Moléculaire, Faculté de Médecine, Université de GenèveGenèveSwitzerland
| | - Lilia Bernasconi
- Département de Biologie Moléculaire et Cellulaire, Université de GenèveGenèveSwitzerland
| | - Nicolas Hulo
- Institute of Genetics and Genomics of Geneva, Université de GenèveGenèveSwitzerland
| | - Didier Picard
- Département de Biologie Moléculaire et Cellulaire, Université de GenèveGenèveSwitzerland
| |
Collapse
|
18
|
Erofeeva EA. Environmental hormesis in living systems: The role of hormetic trade-offs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 901:166022. [PMID: 37541518 DOI: 10.1016/j.scitotenv.2023.166022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/22/2023] [Accepted: 08/01/2023] [Indexed: 08/06/2023]
Abstract
Hormesis (low-dose stimulation and high-dose inhibition) can be accompanied by hormetic trade-offs, that is, stimulation of some traits and inhibition (trade-off 1) or invariability (trade-off 2) of others. Currently, trade-off options and their biological significance are insufficiently studied. Therefore, the review analyses trade-off types, their relationship with asynchronous stress responses of indicators, the importance of trade-offs for preconditioning, hormesis transgenerational effects, fitness, and evolution. The analysis has shown that hormetic trade-offs 1 and 2 can be observed in evolutionarily distant groups of organisms and at different biological levels (cells, individuals, populations, and communities) with abiotic and biotic stressors, as well as various pollutants. Trade-offs 1 and 2 are found both between different functional traits (e.g., self-maintenance and reproduction in animals, growth and defense in plants), and between the endpoints of the same functional trait (e.g., seed weight and seed number in plants). Asynchronous responses of indicators to a low-dose stressor can lead to hormetic trade-offs in two cases: 1) these indicators have different responses (hormesis, inhibition or zero reaction) in the same dose range; 2) these indicators have hormetic responses with different hormetic zones. Trade-offs can have a positive, negative or zero effect on preconditioning, offspring, and fitness of the population. Trade-offs can potentially affect evolution in two ways: 1) the creation of trends in genotype selection; 2) participation in the assimilation of phenotypic adaptations in the genotype through the Baldwin effect (selection of mutations copying adaptive phenotypes).
Collapse
Affiliation(s)
- Elena A Erofeeva
- Department of Ecology, Institute of Biology and Biomedicine, Lobachevsky State University of Nizhni Novgorod, 23 Gagarina Pr, Nizhni Novgorod 603950, Russian Federation.
| |
Collapse
|
19
|
Moldovan OL, Vari CE, Tero-Vescan A, Cotoi OS, Cocuz IG, Tabaran FA, Pop R, Fülöp I, Chis RF, Lungu IA, Rusu A. Potential Defence Mechanisms Triggered by Monosodium Glutamate Sub-Chronic Consumption in Two-Year-Old Wistar Rats. Nutrients 2023; 15:4436. [PMID: 37892513 PMCID: PMC10610236 DOI: 10.3390/nu15204436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/15/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
Monosodium glutamate (MSG) is the sodium salt of glutamic acid (GLA), used as a flavour enhancer. MSG is considered a controversial substance. It is incriminated in disturbing the antioxidant system, but also has beneficial effects, as GLA metabolism plays a crucial role in homeostasis. This study highlights which positive or negative aspects of MSG sub-chronic consumption are better reflected in subjects potentially affected by advanced age. Daily doses of MSG were administered to four groups of two-year-old Wistar rats for 90 days: (I) 185 mg/kg bw, (II) 1500 mg/kg bw, (III) 3000 mg/kg bw and (IV) 6000 mg/kg bw, compared to a MSG non-consumer group. Aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, direct and total bilirubin, total cholesterol, triglycerides, creatinine and urea levels were analysed; stomach, liver and kidney samples were subjected to histopathological analysis. Although, in most cases, there were no statistical differences, interesting aspects of the dose-effect relationship were observed. After MSG sub-chronic consumption, the positive aspects of GLA seem to be reflected better than the negative ones. The hormesis effect, with low-level reactive oxygen species' protective effects and GLA metabolism, may represent the hypothesis of a potential defence mechanism triggered by MSG sub-chronic consumption in ageing rats.
Collapse
Affiliation(s)
- Octavia-Laura Moldovan
- Medicine and Pharmacy Doctoral School, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania;
| | - Camil-Eugen Vari
- Pharmacology and Clinical Pharmacy Department, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania;
| | - Amelia Tero-Vescan
- Medical Chemistry and Biochemistry Department, Faculty of Medicine in English, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania;
| | - Ovidiu Simion Cotoi
- Pathophysiology Department, Faculty of Medicine, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania; (O.S.C.); (I.G.C.)
- Pathology Department, Mures Clinical County Hospital, 540011 Targu Mures, Romania
| | - Iuliu Gabriel Cocuz
- Pathophysiology Department, Faculty of Medicine, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania; (O.S.C.); (I.G.C.)
- Pathology Department, Mures Clinical County Hospital, 540011 Targu Mures, Romania
| | - Flaviu Alexandru Tabaran
- Department of Pathology, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 400372 Cluj-Napoca, Romania; (F.A.T.); (R.P.)
| | - Romelia Pop
- Department of Pathology, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 400372 Cluj-Napoca, Romania; (F.A.T.); (R.P.)
| | - Ibolya Fülöp
- Toxicology and Biopharmacy Department, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania;
| | - Rafael Florin Chis
- Faculty of Medicine, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania;
| | - Ioana-Andreea Lungu
- Medicine and Pharmacy Doctoral School, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania;
| | - Aura Rusu
- Pharmaceutical and Therapeutic Chemistry Department, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania;
| |
Collapse
|
20
|
Bondy SC. The Hormesis Concept: Strengths and Shortcomings. Biomolecules 2023; 13:1512. [PMID: 37892194 PMCID: PMC10604602 DOI: 10.3390/biom13101512] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 10/29/2023] Open
Abstract
Hormesis implies that the effects of various materials or conditions that organisms are exposed to, may not have linear dose-response characteristics but rather, can be biphasic. Thus the response to a low dose of a stressor may be the opposite to that occurring at higher doses. Such a dual response is postulated for many toxicants and physical conditions and may involve a beneficial adaptive response. Such a non-linear effect is undoubtedly present in many useful pharmacological and nutraceutical agents with can be toxic at high concentrations. This somewhat divisive topic is an area of study that should be objectively studied and not clouded by political and policy considerations. The objective of this review is to examine claims concerning those exposures where hormesis seems to exist and also those where there is no good supporting evidence. The breadth of this phenomenon and potential mechanisms underlying hormetic events are discussed together with their limitations.
Collapse
Affiliation(s)
- Stephen C. Bondy
- Center for Occupational and Environmental Health, Department of Environmental & Occupational Health, University of California, Irvine, CA 92697, USA;
- Department of Medicine, University of California, Irvine, CA 92697, USA
| |
Collapse
|
21
|
Treviño-Alvarez AM, Cabeza de Baca T, Stinson EJ, Gluck ME, Chang DC, Piaggi P, Krakoff J. Greater anhedonia scores in healthy individuals are associated with less decline in 24-hour energy expenditure with fasting: Evidence for a link between behavioral traits and spendthrift phenotype. Physiol Behav 2023; 269:114281. [PMID: 37356515 PMCID: PMC10528212 DOI: 10.1016/j.physbeh.2023.114281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/02/2023] [Accepted: 06/22/2023] [Indexed: 06/27/2023]
Abstract
Obesity rates are increasing and affecting mental health. It is important to understand how behavioral traits such as anhedonia are associated with physiologic traits that may predict weight-change in clinical and non-clinical populations. We studied whether 24-hour energy expenditure (24hEE) changes with fasting and overfeeding are associated with anhedonia in a healthy cohort. We performed behavioral assessments (physical anhedonia scale (PAS) and inventory for depressive symptoms (IDS)) followed by measures of 24hEE and urinary catecholamines in a whole-room indirect calorimeter (respiratory chamber) during energy balance, and then randomly during fasting and 2 different overfeeding diets. Participants (n=98) were medically healthy, between 18 and 55 years of age, with normal glucose regulation and weight-stable 6 months before admission. Women were premenopausal and not pregnant. Higher PAS was significantly associated with lesser decrease in 24hEE with fasting and higher urinary catecholamine excretion rates - consistent with spendthrift metabolism. As IDS increased, the association between anhedonia and the change in 24hEE from energy balance to fasting decreased (B-values were lower for change in EE). Here, higher PAS scores may reflect the ability to respond with appropriate homeostatic reactions which balance energy needs. IDS scores blunting this response may explain how anhedonia and depression can lead to weight gain.
Collapse
Affiliation(s)
- Andrés M Treviño-Alvarez
- Department of Health and Human Services, Obesity and Diabetes Clinical Research Section, Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, AZ 85016, USA.
| | - Tomás Cabeza de Baca
- Department of Health and Human Services, Obesity and Diabetes Clinical Research Section, Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, AZ 85016, USA
| | - Emma J Stinson
- Department of Health and Human Services, Obesity and Diabetes Clinical Research Section, Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, AZ 85016, USA
| | - Marci E Gluck
- Department of Health and Human Services, Obesity and Diabetes Clinical Research Section, Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, AZ 85016, USA
| | - Douglas C Chang
- Department of Health and Human Services, Obesity and Diabetes Clinical Research Section, Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, AZ 85016, USA
| | - Paolo Piaggi
- Department of Health and Human Services, Obesity and Diabetes Clinical Research Section, Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, AZ 85016, USA
| | - Jonathan Krakoff
- Department of Health and Human Services, Obesity and Diabetes Clinical Research Section, Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, AZ 85016, USA
| |
Collapse
|
22
|
Flynn NE, Comas LH, Stewart CE, Fonte SJ. High N availability decreases N uptake and yield under limited water availability in maize. Sci Rep 2023; 13:14269. [PMID: 37652935 PMCID: PMC10471730 DOI: 10.1038/s41598-023-40459-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 08/10/2023] [Indexed: 09/02/2023] Open
Abstract
Water and nitrogen (N) are the most limiting factors to plant productivity globally, but we lack a critical understanding of how water availability impacts N dynamics in agricultural systems. Plant N requirements are particularly uncertain when water is limited because of the interactive effect of water and N on plant growth, N demand, and plant uptake. We investigated impacts of N application and water availability on plant growth and N movement, including above and belowground growth, water productivity, N productivity, N uptake, N recovery, and greenhouse gas emissions within a semi-arid system in northeastern Colorado, USA. Moderately high soil N availability depressed grain yield and shoot growth under both limited and full water availability, despite no indication of physical toxicity, and came with additional risk of deleterious N losses. Under low N availability, plant N concentrations in aboveground tissues showed greater recovery of N than what was applied in the low N treatments under both full and limited water availability. This enhanced recovery underscores the need to better understand both plant soil foraging and processes governing resource availability under these conditions. Finally, limited water availability reduced N uptake across all N treatments and left 30% more soil nitrate (NO3-) deep in the soil profile at the end of the season than under full water availability. Our results show that plant N needs are not linearly related to water use and emphasize the need for an integrated understanding of water and N interactions, plant foraging for these resources, and the dynamics of processes that make N available to plants.
Collapse
Affiliation(s)
- Nora E Flynn
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO, 80523, USA
- Water Management and Systems Research Unit, USDA Agricultural Research Service, 2150 Centre Avenue, Bldg D Suite 320, Fort Collins, CO, 80526, USA
| | - Louise H Comas
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO, 80523, USA.
- Water Management and Systems Research Unit, USDA Agricultural Research Service, 2150 Centre Avenue, Bldg D Suite 320, Fort Collins, CO, 80526, USA.
- Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO, 80523, USA.
| | - Catherine E Stewart
- Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO, 80523, USA
- Soil Management and Sugar Beet Research Unit, USDA Agricultural Research Service, Fort Collins, CO, 80526, USA
| | - Steven J Fonte
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO, 80523, USA
- Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO, 80523, USA
| |
Collapse
|
23
|
Unno K, Taguchi K, Fujita M, Sutoh K, Nakamura Y. Stress Reduction Potential in Mice Ingesting DNA from Salmon Milt. BIOLOGY 2023; 12:978. [PMID: 37508408 PMCID: PMC10376392 DOI: 10.3390/biology12070978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023]
Abstract
The functionality of food-derived nucleotides is revealed when nucleotide components are ingested in emergency situations, such as during stress loading, though it is difficult to elucidate the physiological function of dietary nucleotide supplementation. Using a stress load experimental system utilizing territoriality among male mice, we evaluated whether DNA sodium salt derived from salmon milt (DNA-Na) has stress-relieving effects. It was found that stress was reduced in mice fed a diet containing a 1% concentration of DNA-Na, but this was insignificant for yeast-derived RNA. Next, we attempted to elucidate the anti-stress effects of DNA-Na using another experimental system, in which mice were subjected to chronic crowding stress associated with aging: six mice in a cage were kept until they were 7 months of age, resulting in overcrowding. We compared these older mice with 2-month-old mice that were kept in groups for only one month. The results show that the expression of genes associated with hippocampal inflammation was increased in the older mice, whereas the expression of these genes was suppressed in the DNA-Na-fed group. This suggests that dietary DNA intake may suppress inflammation in the brain caused by stress, which increases with age.
Collapse
Affiliation(s)
- Keiko Unno
- Tea Science Center, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Kyoko Taguchi
- Tea Science Center, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Mica Fujita
- Fordays Co., Ltd., Koami-cho, Nihonbashi, Chuo-ku, Tokyo 103-0016, Japan
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan
| | - Keita Sutoh
- Fordays Co., Ltd., Koami-cho, Nihonbashi, Chuo-ku, Tokyo 103-0016, Japan
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan
| | - Yoriyuki Nakamura
- Tea Science Center, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| |
Collapse
|
24
|
Thapa A, Ratajczak J, Kucia M, Ratajczak MZ. External Liver-Derived Complement and Intrinsic Present in Hematopoietic Stem/Progenitor Cells Complosome Modulate Cell Metabolism and Response to Stress. Stem Cell Rev Rep 2023:10.1007/s12015-023-10533-1. [PMID: 36976465 PMCID: PMC10366307 DOI: 10.1007/s12015-023-10533-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/20/2023] [Indexed: 03/29/2023]
Abstract
Hematopoietic stem/progenitor cells (HSPCs) express receptors for complement cascade (ComC) cleavage fragments C3a and C5a and may respond to inflammation-related cues by sensing pathogen-associated molecular pattern molecules (PAMPs) released by pathogens as well as non-infectious danger associated molecular pattern molecules (DAMPs) or alarmin generated during stress/tissue damage sterile inflammation. To facilitate this HSPCs are equipped with C3a and C5a receptors, C3aR and C5aR, respectively, and express on the outer cell membrane and in cytosol pattern recognition receptors (PPRs) that sense PAMPs and DAMPs. Overall, danger-sensing mechanisms in HSPCs mimic those seen in immune cells, which should not surprise as hematopoiesis and the immune system develop from the same common stem cell precursor. This review will focus on the role of ComC-derived C3a and C5a that trigger nitric oxide synthetase-2 (Nox2) complex to release reactive oxygen species (ROS) that activate important cytosolic PRRs-Nlrp3 inflammasome, which orchestrates responsiveness of HSPCs to stress. Moreover, recent data indicate that in addition to circulating in peripheral blood (PB) activated liver-derived ComC proteins, a similar role plays ComC expressed and intrinsically activated in HSPCs known as "complosome". We postulate that ComC triggered Nox2-ROS-Nlrp3 inflammasome responses, if they occur within non-toxic to cells' "hormetic range of activation", positively regulate HSCs migration, metabolism, and proliferation. This sheds a new light on the immune-metabolic regulation of hematopoiesis.
Collapse
Affiliation(s)
- Arjun Thapa
- Stem Cell Program at Division of Hematology, Brown Cancer Center, University of Louisville, 500 S. Floyd Street, Rm. 107, Louisville, KY, 40202, USA
| | - Janina Ratajczak
- Stem Cell Program at Division of Hematology, Brown Cancer Center, University of Louisville, 500 S. Floyd Street, Rm. 107, Louisville, KY, 40202, USA
| | - Magdalena Kucia
- Laboratory of Regenerative Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Mariusz Z Ratajczak
- Stem Cell Program at Division of Hematology, Brown Cancer Center, University of Louisville, 500 S. Floyd Street, Rm. 107, Louisville, KY, 40202, USA.
- Laboratory of Regenerative Medicine, Medical University of Warsaw, Warsaw, Poland.
| |
Collapse
|
25
|
Low-Dose Radiotherapy for Patients with Pneumonia Due to COVID-19: A Single-Institution Prospective Study. Biomedicines 2023; 11:biomedicines11030858. [PMID: 36979837 PMCID: PMC10045009 DOI: 10.3390/biomedicines11030858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/03/2023] [Accepted: 03/08/2023] [Indexed: 03/18/2023] Open
Abstract
Purpose: Results of the low-dose radiation therapy (LDRT) in patients with pneumonia due to COVID-19 has been presented. Methods: Fifteen patients received a single-fraction radiation dose of 1 Gy to the bilateral lungs due to pre-ARDS pneumonia in the course of COVID-19. Follow-up was performed on days 1, 3, 5, 7, 14 after LDRT. Results: Eleven patients (73%) were released up until day 28. Median hospitalization was 20 days; 28-day mortality was 13%. Median O2 saturation improved within 24 h after LDRT in 14/15, with median SpO2 values of 84.5% vs. 87.5% p = 0.016, respectively. At day 14 of hospitalization, 46% did not require oxygen supplementation. Significant decline in CRP and IL-6 was observed within 24 h post LDRT. No organ toxicities were noted. Conclusion: LDRT is feasible, well tolerated and may translate to early clinical recovery in patients with severe pneumonia. Further studies are needed to determine optimal candidate, time and dose of LDRT for COVID-19 patients with pneumonia.
Collapse
|
26
|
Sharma V, Mehdi MM. Oxidative stress, inflammation and hormesis: The role of dietary and lifestyle modifications on aging. Neurochem Int 2023; 164:105490. [PMID: 36702401 DOI: 10.1016/j.neuint.2023.105490] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/01/2022] [Accepted: 01/19/2023] [Indexed: 01/25/2023]
Abstract
Oxidative stress (OS) is primarily caused by the formation of free radicals and reactive oxygen species; it is considered as one of the prominent factors in slowing down and degrading cellular machinery of an individual, and it eventually leads to aging and age-related diseases by its continuous higher state. The relation between molecular damage and OS should be particularized to understand the beginning of destruction at the cellular levels, extending outwards to affect tissues, organs, and ultimately to the organism. Several OS biomarkers, which are established at the biomolecular level, are useful in investigating the disease susceptibility during aging. Slowing down the aging process is a matter of reducing the rate of oxidative damage to the cellular machinery over time. The breakdown of homeostasis, the mild overcompensation, the reestablishment of homeostasis, and the adaptive nature of the process are the essential features of hormesis, which incorporates several factors, including calorie restriction, nutrition and lifestyle modifications that play an important role in reducing the OS. In the current review, along with the concept and theories of aging (with emphasis on free radical theory), various manifestations of OS with special attention on mitochondrial dysfunction and age-related diseases have been discussed. To alleviate the OS, hormetic approaches including caloric restriction, exercise, and nutrition have also been discussed.
Collapse
Affiliation(s)
- Vinita Sharma
- School of Bioengineering and Biosciences, Lovely Professional University, Punjab, 144401, India
| | - Mohammad Murtaza Mehdi
- School of Bioengineering and Biosciences, Lovely Professional University, Punjab, 144401, India.
| |
Collapse
|
27
|
Bernardo VS, Torres FF, da Silva DGH. FoxO3 and oxidative stress: a multifaceted role in cellular adaptation. J Mol Med (Berl) 2023; 101:83-99. [PMID: 36598531 DOI: 10.1007/s00109-022-02281-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/14/2022] [Accepted: 12/16/2022] [Indexed: 01/05/2023]
Abstract
Oxidative stress is a major cause of morbidity and mortality in human health and disease. In this review, we focus on the Forkhead Box (Fox) subclass O3 (FoxO3), an extensively studied transcription factor that plays a pleiotropic role in a wide range of physiological and pathological processes by regulating multiple gene regulatory networks involved in the modulation of numerous aspects of cellular metabolism, including fuel metabolism, cell death, and stress resistance. This review will also focus on regulatory mechanisms of FoxO3 expression and activity, such as crucial post-translational modifications and non-coding RNAs. Moreover, this work discusses and evidences some pathways to how this transcription factor and reactive oxygen species regulate each other, which may lead to the pathogenesis of various types of diseases. Therefore, in addition to being a promising therapeutic target, the FoxO3-regulated signaling pathways can also be used as reliable diagnostic and prognostic biomarkers and indicators for drug responsiveness.
Collapse
Affiliation(s)
| | | | - Danilo Grünig Humberto da Silva
- Department of Biology, Universidade Estadual Paulista (UNESP), São Paulo, Brazil.
- Campus de Três Lagoas, Universidade Federal de Mato Grosso Do Sul (CPTL/UFMS), Avenida Ranulpho Marques Leal, 3484, Três Lagoas, Mato Grosso Do Sul, Distrito Industrial-Post code 79613-000, Brazil.
| |
Collapse
|
28
|
Slaven JE, Wilkerson M, Soltis AR, Rittase WB, Bradfield DT, Bylicky M, Cary L, Tsioplaya A, Bouten R, Dalgard C, Day RM. Transcriptomic Profiling and Pathway Analysis of Mesenchymal Stem Cells Following Low Dose-Rate Radiation Exposure. Antioxidants (Basel) 2023; 12:antiox12020241. [PMID: 36829800 PMCID: PMC9951969 DOI: 10.3390/antiox12020241] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 01/26/2023] Open
Abstract
Low dose-rate radiation exposure can occur in medical imaging, as background from environmental or industrial radiation, and is a hazard of space travel. In contrast with high dose-rate radiation exposure that can induce acute life-threatening syndromes, chronic low-dose radiation is associated with Chronic Radiation Syndrome (CRS), which can alter environmental sensitivity. Secondary effects of chronic low dose-rate radiation exposure include circulatory, digestive, cardiovascular, and neurological diseases, as well as cancer. Here, we investigated 1-2 Gy, 0.66 cGy/h, 60Co radiation effects on primary human mesenchymal stem cells (hMSC). There was no significant induction of apoptosis or DNA damage, and cells continued to proliferate. Gene ontology (GO) analysis of transcriptome changes revealed alterations in pathways related to cellular metabolism (cholesterol, fatty acid, and glucose metabolism), extracellular matrix modification and cell adhesion/migration, and regulation of vasoconstriction and inflammation. Interestingly, there was increased hypoxia signaling and increased activation of pathways regulated by iron deficiency, but Nrf2 and related genes were reduced. The data were validated in hMSC and human lung microvascular endothelial cells using targeted qPCR and Western blotting. Notably absent in the GO analysis were alteration pathways for DNA damage response, cell cycle inhibition, senescence, and pro-inflammatory response that we previously observed for high dose-rate radiation exposure. Our findings suggest that cellular gene transcription response to low dose-rate ionizing radiation is fundamentally different compared to high-dose-rate exposure. We hypothesize that cellular response to hypoxia and iron deficiency are driving processes, upstream of the other pathway regulation.
Collapse
Affiliation(s)
- John E. Slaven
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Rd., Bethesda, MD 20814, USA
| | - Matthew Wilkerson
- Collaborative Health Initiative Research Program, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Anthony R. Soltis
- Collaborative Health Initiative Research Program, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - W. Bradley Rittase
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Rd., Bethesda, MD 20814, USA
| | - Dmitry T. Bradfield
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Rd., Bethesda, MD 20814, USA
| | - Michelle Bylicky
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Rd., Bethesda, MD 20814, USA
| | - Lynnette Cary
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Alena Tsioplaya
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Roxane Bouten
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Rd., Bethesda, MD 20814, USA
| | - Clifton Dalgard
- The American Genome Center, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Regina M. Day
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Rd., Bethesda, MD 20814, USA
- Correspondence: ; Tel.: +1-301-295-3236; Fax: +1-301-295-3220
| |
Collapse
|
29
|
The Nox2-ROS-Nlrp3 Inflammasome Signaling Stimulates in the Hematopoietic Stem/Progenitor Cells Lipogenesis to Facilitate Membrane Lipid Raft Formation. Stem Cell Rev Rep 2023; 19:92-103. [PMID: 36441489 PMCID: PMC9823029 DOI: 10.1007/s12015-022-10481-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/10/2022] [Indexed: 11/29/2022]
Abstract
Proliferation, metabolism, and migration of hematopoietic stem/progenitor cells (HSPCs) are coordinated by receptors expressed on outer cell membranes that are integrated into microdomains, known as membrane lipid rafts (MLRs). These structures float freely in the cell membrane bilayer and are enriched in cholesterol and sphingolipids for their functional integrity. Receptors, if expressed in MLRs, have prolonged occupancy on the cell surface and enhanced signaling power. Based on this, we have become interested in the regulation of synthesis of MLRs components in HSPCs. To address this, we tested the effect of selected factors that promote proliferation or migration and their potential involvement in the synthesis of MLRs components in HSPCs. Based on our previous research showing that HSPCs from Nox2-KO and Nlrp3-KO mice display a profound defect in MLRs formation, we focused on the role of Nox2-ROS-Nlrp3 inflammasome in regulating lipogenesis in HSPCs. We found that while at steady state conditions, Nox2-derived ROS is required for a proper expression of enzymes regulating lipogenesis, during inflammation, this effect is augmented by Nlrp3 inflammasome. Thus, our data sheds new light on the regulation of lipogenesis in HSPCs and the involvement of the Nox2-ROS-Nlrp3 inflammasome axis that differently regulates lipogenesis at steady state conditions and in response to inflammation, modulating MLRs-mediated responsiveness of these cells to external stimuli.
Collapse
|
30
|
Agathokleous E. Environmental pollution impacts: Are p values over-valued? THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 850:157807. [PMID: 35934042 DOI: 10.1016/j.scitotenv.2022.157807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 07/30/2022] [Accepted: 07/30/2022] [Indexed: 06/15/2023]
Abstract
An examination revealed the dominance of the published literature of environmental science by p values. Meanwhile, the use of effect size has been neglected in publications reporting primary data, yet the size of effect is often more informative than p values inference in assessing the effects of pollution on living organisms, comparing susceptibility/resistance among organisms, and ranking pollutants according to their potency, among others. Statistical significance does not necessarily mean biological, practical, or scientific significance, and its use based on (often misinterpreted) p values reflects the average response or effect at average conditions based on an assumed linear model fit to the entire sample. However, pollution impacts and organismal responses are rarely characterized by linear and symmetric features, and dichotomous 'statistical significance' based on p values is inadequate to fully describe data and findings. Considering 'the fallacy of the average', variance, and differential response of different population percentiles in new studies would provide otherwise wasted biologically, practically, or scientifically significant information. Since p values often inform as to whether some findings warrant further examination, journals should consider mandating the reporting of effect sizes and confidence intervals, together with p values (should they be used), to provide more integrated information regarding pollution impacts. Moreover, replacing 'statistical significance' with language of evidence, especially in key components of publications, such as abstracts and conclusions, could help preventing potential misleading of the public and decision and policy makers.
Collapse
Affiliation(s)
- Evgenios Agathokleous
- School of Applied Meteorology, Nanjing University of Information Science and Technology (NUIST), Ningliu Rd. 219, Nanjing, Jiangsu 210044, China.
| |
Collapse
|
31
|
Ratajczak MZ, Adamiak M, Deptała A, Domagała-Kulawik J, Ratajczak J, Kucia M. Myeloablative Conditioning for Transplantation Induces State of Sterile Inflammation in the Bone Marrow: Implications for Optimizing Homing and Engraftment of Hematopoietic Stem Cells. Antioxid Redox Signal 2022; 37:1254-1265. [PMID: 35383477 PMCID: PMC9805853 DOI: 10.1089/ars.2022.0042] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 03/23/2022] [Indexed: 01/13/2023]
Abstract
Significance: The success rate of hematopoietic stem cell transplantation depends mainly on the number of transplanted hematopoietic stem/progenitor cells (HSPCs) followed by the speed of their engraftment in the myeloablated transplant recipient. Therefore, clinical outcomes will significantly benefit from accelerating the homing and engraftment of these cells. This is, in particular, important when the number of cells available for the transplantation of HSPCs is limited. Recent Advances: We postulated that myeloablative conditioning for hematopoietic transplantation by radio- or chemotherapy induces a state of sterile inflammation in transplant recipient peripheral blood (PB) and bone marrow (BM). This state is mediated by activation of the BM stromal and innate immunity cells that survive myeloablative conditioning and respond to danger-associated molecular patterns released from the cells damaged by myeloablative conditioning. As a result of this, several factors are released that promote proper navigation of HSPCs infused into PB of transplant recipient and prime recipient BM to receive transplanted cells. Critical Issues: We will present data that cellular innate immunity arm and soluble arm comprised complement cascade proteins, promoting the induction of the BM sterile inflammation state that facilitates the navigation, homing, and engraftment of HSPCs. Future Directions: Deciphering these mechanisms would allow us to better understand the mechanisms that govern hematopoietic recovery after transplantation and, in parallel, provide important information on how to optimize this process in the clinic by employing small molecular modifiers of innate immunity and purinergic signaling. Antioxid. Redox Signal. 37, 1254-1265.
Collapse
Affiliation(s)
- Mariusz Z. Ratajczak
- Department of Medicine, Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, Kentucky, USA
- Department of Regenerative Medicine, Pulmonary Diseases and Allergy, Medical University of Warsaw, Warszawa, Poland
| | - Mateusz Adamiak
- Department of Regenerative Medicine, Pulmonary Diseases and Allergy, Medical University of Warsaw, Warszawa, Poland
| | - Andrzej Deptała
- Department of Cancer Prevention, Faculty of Health Sciences, and Pulmonary Diseases and Allergy, Medical University of Warsaw, Warszawa, Poland
| | - Joanna Domagała-Kulawik
- Department of Internal Medicine, Pulmonary Diseases and Allergy, Medical University of Warsaw, Warszawa, Poland
| | - Janina Ratajczak
- Department of Medicine, Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, Kentucky, USA
| | - Magdalena Kucia
- Department of Medicine, Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, Kentucky, USA
- Department of Regenerative Medicine, Pulmonary Diseases and Allergy, Medical University of Warsaw, Warszawa, Poland
| |
Collapse
|
32
|
Kopplin CS, Rosenthal L. The positive effects of combined breathing techniques and cold exposure on perceived stress: a randomised trial. CURRENT PSYCHOLOGY 2022; 42:1-13. [PMID: 36248220 PMCID: PMC9540300 DOI: 10.1007/s12144-022-03739-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 08/24/2022] [Accepted: 09/04/2022] [Indexed: 11/26/2022]
Abstract
A pranayama-inspired breathing technique, cold exposure, and their combined application were assessed for their potential to reduce perceived stress in adults and compared to a control group. An experiment involving four groups was conducted, yielding separate cells for breathing technique-only and cold exposure-only, as well as a combined treatment and a control group. Eighty-six individuals participated in the study. Perceived stress is measured employing the 10-item version of the Perceived Stress Scale (PSS-10) and the 20-item version of the Perceived Stress Questionnaire (PSQ). The instruments exhibit a substantial correlation (r = 0.842, p < 0.001). The combined group exhibited a medium to large positive effect on perceived stress compared to the control group. The breathing technique and cold exposure on their own were not found to yield substantial effects, indicating synergies between both exercises. Combinations of breathing techniques and cold exposure may be employed to decrease individuals' perceived stress.
Collapse
|
33
|
Mothersill C, Cocchetto A, Seymour C. Low Dose and Non-Targeted Radiation Effects in Environmental Protection and Medicine-A New Model Focusing on Electromagnetic Signaling. Int J Mol Sci 2022; 23:11118. [PMID: 36232421 PMCID: PMC9570230 DOI: 10.3390/ijms231911118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/16/2022] [Accepted: 09/17/2022] [Indexed: 11/17/2022] Open
Abstract
The role of signalling in initiating and perpetuating effects triggered by deposition of ionising radiation energy in parts of a system is very clear. Less clear are the very early steps involved in converting energy to chemical and biological effects in non-targeted parts of the system. The paper aims to present a new model, which could aid our understanding of the role of low dose effects in determining ultimate disease outcomes. We propose a key role for electromagnetic signals resulting from physico-chemical processes such as excitation decay, and acoustic waves. These lead to the initiation of damage response pathways such as elevation of reactive oxygen species and membrane associated changes in key ion channels. Critically, these signalling pathways allow coordination of responses across system levels. For example, depending on how these perturbations are transduced, adverse or beneficial outcomes may predominate. We suggest that by appreciating the importance of signalling and communication between multiple levels of organisation, a unified theory could emerge. This would allow the development of models incorporating time, space and system level to position data in appropriate areas of a multidimensional domain. We propose the use of the term "infosome" to capture the nature of radiation-induced communication systems which include physical as well as chemical signals. We have named our model "the variable response model" or "VRM" which allows for multiple outcomes following exposure to low doses or to signals from low dose irradiated cells, tissues or organisms. We suggest that the use of both dose and infosome in radiation protection might open up new conceptual avenues that could allow intrinsic uncertainty to be embraced within a holistic protection framework.
Collapse
Affiliation(s)
- Carmel Mothersill
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Alan Cocchetto
- National CFIDS Foundation, 285 Beach Ave., Hull, MA 02045-1602, USA
| | - Colin Seymour
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada
| |
Collapse
|
34
|
Quantitative Analysis of Plant Cytosolic Calcium Signals in Response to Water Activated by Low-Power Non-Thermal Plasma. Int J Mol Sci 2022; 23:ijms231810752. [PMID: 36142664 PMCID: PMC9506352 DOI: 10.3390/ijms231810752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/27/2022] [Accepted: 09/06/2022] [Indexed: 11/25/2022] Open
Abstract
Non-thermal plasma technology is increasingly being applied in the plant biology field. Despite the variety of beneficial effects of plasma-activated water (PAW) on plants, information about the mechanisms of PAW sensing by plants is still limited. In this study, in order to link PAW perception to the positive downstream responses of plants, transgenic Arabidopsis thaliana seedlings expressing the Ca2+-sensitive photoprotein aequorin in the cytosol were challenged with water activated by low-power non-thermal plasma generated by a dielectric barrier discharge (DBD) source. PAW sensing by plants resulted in the occurrence of cytosolic Ca2+ signals, whose kinetic parameters were found to strictly depend on the operational conditions of the plasma device and thus on the corresponding mixture of chemical species contained in the PAW. In particular, we highlighted the effect on the intracellular Ca2+ signals of low doses of DBD-PAW chemicals and also presented the effects of consecutive plant treatments. The results were discussed in terms of the possibility of using PAW-triggered Ca2+ signatures as benchmarks to accurately modulate the chemical composition of PAW in order to induce environmental stress resilience in plants, thus paving the way for further applications in agriculture.
Collapse
|
35
|
Agathokleous E, Moore MN, Calabrese EJ. Environmental hormesis: A tribute to Anthony Stebbing. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 832:154996. [PMID: 35417830 DOI: 10.1016/j.scitotenv.2022.154996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Affiliation(s)
- Evgenios Agathokleous
- School of Applied Meteorology, Nanjing University of Information Science & Technology (NUIST), Nanjing 210044, China.
| | - Michael N Moore
- European Centre for Environment & Human Health (ECEHH), University of Exeter Medical School, Knowledge Spa, Royal Cornwall Hospital, Truro, UK; Plymouth Marine Laboratory, Plymouth, Devon, UK; School of Biological & Marine Sciences, University of Plymouth, Plymouth, UK
| | - Edward J Calabrese
- Department of Environmental Health Sciences, Morrill I, N344, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
36
|
Sies H, Belousov VV, Chandel NS, Davies MJ, Jones DP, Mann GE, Murphy MP, Yamamoto M, Winterbourn C. Defining roles of specific reactive oxygen species (ROS) in cell biology and physiology. Nat Rev Mol Cell Biol 2022; 23:499-515. [PMID: 35190722 DOI: 10.1038/s41580-022-00456-z] [Citation(s) in RCA: 723] [Impact Index Per Article: 241.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2022] [Indexed: 02/06/2023]
Abstract
'Reactive oxygen species' (ROS) is a generic term that defines a wide variety of oxidant molecules with vastly different properties and biological functions that range from signalling to causing cell damage. Consequently, the description of oxidants needs to be chemically precise to translate research on their biological effects into therapeutic benefit in redox medicine. This Expert Recommendation article pinpoints key issues associated with identifying the physiological roles of oxidants, focusing on H2O2 and O2.-. The generic term ROS should not be used to describe specific molecular agents. We also advocate for greater precision in measurement of H2O2, O2.- and other oxidants, along with more specific identification of their signalling targets. Future work should also consider inter-organellar communication and the interactions of redox-sensitive signalling targets within organs and whole organisms, including the contribution of environmental exposures. To achieve these goals, development of tools that enable site-specific and real-time detection and quantification of individual oxidants in cells and model organisms are needed. We also stress that physiological O2 levels should be maintained in cell culture to better mimic in vivo redox reactions associated with specific cell types. Use of precise definitions and analytical tools will help harmonize research among the many scientific disciplines working on the common goal of understanding redox biology.
Collapse
Affiliation(s)
- Helmut Sies
- Institute for Biochemistry and Molecular Biology I, Faculty of Medicine, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany.
- Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany.
| | - Vsevolod V Belousov
- Federal Center of Brain Research and Neurotechnologies, Federal Medical Biological Agency, Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Navdeep S Chandel
- Division of Pulmonary & Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Michael J Davies
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Dean P Jones
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA, USA
| | - Giovanni E Mann
- King's British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine and Sciences, King's College London, London, UK
| | - Michael P Murphy
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Masayuki Yamamoto
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Christine Winterbourn
- Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| |
Collapse
|
37
|
Cutler GC, Amichot M, Benelli G, Guedes RNC, Qu Y, Rix RR, Ullah F, Desneux N. Hormesis and insects: Effects and interactions in agroecosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 825:153899. [PMID: 35181361 DOI: 10.1016/j.scitotenv.2022.153899] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/09/2022] [Accepted: 02/11/2022] [Indexed: 06/14/2023]
Abstract
Insects in agroecosystems contend with many stressors - e.g., chemicals, heat, nutrient deprivation - that are often encountered at low levels. Exposure to mild stress is now well known to induce hormetic (stimulatory) effects in insects, with implications for insect management, and ecological structure and function in agroecosystems. In this review, we examine the major ecological niches insects occupy or guilds to which they belong in agroecosystems and how hormesis can manifest within and across these groups. The mechanistic underpinnings of hormesis in insects are starting to become established, explaining the many phenotypic hormetic responses observed in insect reproduction, development, and behavior. Whereas potential effects on insect populations are well supported in laboratory experiments, field-based hypothesis-driven research on hormesis is greatly lacking. Furthermore, because most ecological paradigms are founded within the context of communities, entomological agroecologists interested in hormesis need to 'level up' and test hypotheses that explore effects on species interactions, and community structure and functioning. Embedded in this charge is to continue experimentation on herbivorous pest species while shifting more focus towards insect natural enemies, pollinators, and detritivores - guilds that play crucial roles in highly functioning agroecosystems that have been understudied in hormesis research. Important areas for future insect agroecology research on hormesis are discussed.
Collapse
Affiliation(s)
- G Christopher Cutler
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, PO Box 550, Truro, NS B2N 5E3, Canada.
| | - Marcel Amichot
- Université Côte d'Azur, INRAE, CNRS, UMR ISA, 06000 Nice, France.
| | - Giovanni Benelli
- Department of Agriculture, Food and Environment, University of Pisa, via del Borghetto 80, 56124 Pisa, Italy.
| | - Raul Narciso C Guedes
- Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa, MG 36570-900, Brazil.
| | - Yanyan Qu
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China.
| | - Rachel R Rix
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, PO Box 550, Truro, NS B2N 5E3, Canada.
| | - Farman Ullah
- Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing 100193, China.
| | - Nicolas Desneux
- Université Côte d'Azur, INRAE, CNRS, UMR ISA, 06000 Nice, France.
| |
Collapse
|
38
|
Agathokleous E, Barceló D, Rinklebe J, Sonne C, Calabrese EJ, Koike T. Hormesis induced by silver iodide, hydrocarbons, microplastics, pesticides, and pharmaceuticals: Implications for agroforestry ecosystems health. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 820:153116. [PMID: 35063521 DOI: 10.1016/j.scitotenv.2022.153116] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/10/2022] [Accepted: 01/10/2022] [Indexed: 06/14/2023]
Abstract
Increasing amounts of silver iodide (AgI) in the environment are expected because of the recent massive expansion of weather modification programs. Concurrently, pharmaceuticals, microplastics, hydrocarbons, and pesticides in terrestrial ecosystems continue contaminating forests and agroforests. Our review supports that AgI induces hormesis, a biphasic dose response characterized by often beneficial low-dose responses and toxic high-dose effects, which adds to the evidence for pharmaceuticals, microplastics, hydrocarbons, and pesticides induced hormesis in numerous species. Doses smaller than the no-observed-adverse-effect-level (NOAEL) positively affect defense physiology, growth, biomass, yields, survival, lifespan, and reproduction. They also lead to negative or undesirable outcomes, including stimulation of pathogenic microbes, pest insects, and weeds with enhanced resistance to drugs and potential negative multi- or trans-generational effects. Such sub-NOAEL effects perplex terrestrial ecosystems managements and may compromise combating outbreaks of disease vectors that can threaten not only forest and agroforestry health but also sensitive human subpopulations living in remote forested areas.
Collapse
Affiliation(s)
- Evgenios Agathokleous
- School of Applied Meteorology, Nanjing University of Information Science and Technology (NUIST), Ningliu Rd. 219, Nanjing, Jiangsu 210044, China.
| | - Damià Barceló
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, C/ Jordi Girona 18-26, 08034 Barcelona, Spain; Catalan Institute for Water Research, ICRA-CERCA, Emili Grahit 101, 17003 Girona, Spain
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Wuppertal, Germany; Department of Environment, Energy and Geoinformatics, Sejong University, Seoul, Republic of Korea
| | - Christian Sonne
- Department of Bioscience, Aarhus University, Arctic Research Center (ARC), Frederiksborgvej 399, PO box 358, DK-4000 Roskilde, Denmark; Henan Province Engineering Research Center for Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| | - Edward J Calabrese
- Department of Environmental Health Sciences, Morrill I, N344, University of Massachusetts, Amherst, MA 01003, USA
| | - Takayoshi Koike
- Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Hokkaido, Japan
| |
Collapse
|
39
|
Rico-Chávez AK, Franco JA, Fernandez-Jaramillo AA, Contreras-Medina LM, Guevara-González RG, Hernandez-Escobedo Q. Machine Learning for Plant Stress Modeling: A Perspective towards Hormesis Management. PLANTS 2022; 11:plants11070970. [PMID: 35406950 PMCID: PMC9003083 DOI: 10.3390/plants11070970] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/28/2022] [Accepted: 03/31/2022] [Indexed: 01/11/2023]
Abstract
Plant stress is one of the most significant factors affecting plant fitness and, consequently, food production. However, plant stress may also be profitable since it behaves hormetically; at low doses, it stimulates positive traits in crops, such as the synthesis of specialized metabolites and additional stress tolerance. The controlled exposure of crops to low doses of stressors is therefore called hormesis management, and it is a promising method to increase crop productivity and quality. Nevertheless, hormesis management has severe limitations derived from the complexity of plant physiological responses to stress. Many technological advances assist plant stress science in overcoming such limitations, which results in extensive datasets originating from the multiple layers of the plant defensive response. For that reason, artificial intelligence tools, particularly Machine Learning (ML) and Deep Learning (DL), have become crucial for processing and interpreting data to accurately model plant stress responses such as genomic variation, gene and protein expression, and metabolite biosynthesis. In this review, we discuss the most recent ML and DL applications in plant stress science, focusing on their potential for improving the development of hormesis management protocols.
Collapse
Affiliation(s)
- Amanda Kim Rico-Chávez
- Unidad de Ingeniería en Biosistemas, Facultad de Ingeniería Campus Amazcala, Universidad Autónoma de Querétaro, Carretera Chichimequillas, s/n km 1, El Marqués CP 76265, Mexico; (A.K.R.-C.); (L.M.C.-M.)
| | - Jesus Alejandro Franco
- Escuela Nacional de Estudios Superiores Unidad Juriquilla, UNAM, Querétaro CP 76230, Mexico;
| | - Arturo Alfonso Fernandez-Jaramillo
- Unidad Académica de Ingeniería Biomédica, Universidad Politécnica de Sinaloa, Carretera Municipal Libre Mazatlán Higueras km 3, Col. Genaro Estrada, Mazatlán CP 82199, Mexico;
| | - Luis Miguel Contreras-Medina
- Unidad de Ingeniería en Biosistemas, Facultad de Ingeniería Campus Amazcala, Universidad Autónoma de Querétaro, Carretera Chichimequillas, s/n km 1, El Marqués CP 76265, Mexico; (A.K.R.-C.); (L.M.C.-M.)
| | - Ramón Gerardo Guevara-González
- Unidad de Ingeniería en Biosistemas, Facultad de Ingeniería Campus Amazcala, Universidad Autónoma de Querétaro, Carretera Chichimequillas, s/n km 1, El Marqués CP 76265, Mexico; (A.K.R.-C.); (L.M.C.-M.)
- Correspondence: (R.G.G.-G.); (Q.H.-E.)
| | - Quetzalcoatl Hernandez-Escobedo
- Escuela Nacional de Estudios Superiores Unidad Juriquilla, UNAM, Querétaro CP 76230, Mexico;
- Correspondence: (R.G.G.-G.); (Q.H.-E.)
| |
Collapse
|
40
|
Mothersill C, Seymour C. Current Opinion in Toxicology "Hormesis and Dose-Response 2022” Title: Radiation hormesis and dose response: are our current concepts meaningful or useful? CURRENT OPINION IN TOXICOLOGY 2022. [DOI: 10.1016/j.cotox.2022.02.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
41
|
Baali H, Cosio C. Effects of carbamazepine in aquatic biota. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2022; 24:209-220. [PMID: 35014660 DOI: 10.1039/d1em00328c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Carbamazepine (CBZ) is one of the most common pharmaceuticals found in the aquatic environment. Here, we reviewed studies in aquatic animals highlighting that CBZ affected ROS homeostasis but also the neuroendocrine system, cell viability, immunity, reproduction, feeding behavior and growth. Notably, the acetylcholinesterase activity was modified by concentrations of the order of ng L-1 CBZ. At ≥10 μg L-1, data pointed that CBZ triggered the production of ROS, modifying the activity of antioxidant enzymes and produced a significant cellular stress at concentrations ≥100 μg L-1. However, the response appeared species-, organ- and time-dependent, and was impacted by different experimental conditions and the origin of animals. In this context, this review discusses the available data and proposes future research priorities.
Collapse
Affiliation(s)
- Hugo Baali
- Université Reims Champagne Ardenne, UMR-I 02 SEBIO, 51100 Reims, France.
| | - Claudia Cosio
- Université Reims Champagne Ardenne, UMR-I 02 SEBIO, 51100 Reims, France.
| |
Collapse
|
42
|
Investigation of the HelioVital filter foil revealed protective effects against UVA1 irradiation-induced DNA damage and against UVA1-induced expression of matrixmetalloproteinases (MMP) MMP1, MMP2, MMP3 and MMP15. Photochem Photobiol Sci 2022; 21:361-372. [PMID: 35174452 DOI: 10.1007/s43630-022-00177-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/21/2022] [Indexed: 10/19/2022]
Abstract
The damaging effects of solar ultraviolet (UV) radiation exposure to human skin are well known and can reach from accelerated skin aging (photoaging) to skin cancer. Much of the damaging effects of solar UVA (320-400 nm) radiation is associated with the induction of reactive oxygen species (ROS), which are capable to cause oxidative damage to DNA like the oxidized guanosine 8-hydroxy-2' -deoxyguanosine (8-OHdG). Therefore, new UV protective strategies, have to be tested for their efficiency to shield against UV induced damage. We investigated the protective effects of HelioVital sun protection filter foil against UVA1 irradiation in skin cells. It could be shown, that HelioVital sun protection filter foil has protective effects against UVA1 irradiation induced changes in matrix metalloproteinase (MMP) expression. Furthermore a UVA1-dependant regulation of MMP15 in human fibroblasts could be shown for the first time in this context. In addition, this study demonstrated the protective effect of the HelioVital filter film against UVA1-induced ROS production and DNA damage. These results could pave the way for clinical studies with HelioVital filter foil shielding against the damaging effects of phototherapy and other forms of irradiation therapy, thereby increasing the safety and treatment opportunities of these forms of therapy.
Collapse
|
43
|
XENOHORMESIS UNDERLYES THE ANTI-AGING AND HEALTHY PROPERTIES OF OLIVE POLYPHENOLS. Mech Ageing Dev 2022; 202:111620. [PMID: 35033546 DOI: 10.1016/j.mad.2022.111620] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 12/08/2021] [Accepted: 01/05/2022] [Indexed: 02/08/2023]
Abstract
The paper provides a comprehensive and foundational mechanistic framework of hormesis that establishes its centrality in medicine and public health. This hormetic framework is applied to the assessment of olive polyphenols with respect to their capacity to slow the onset and reduce the magnitude of a wide range of age-related disorders and neurodegenerative diseases, including Alzheimer's Disease and Parkinson's Disease. It is proposed that olive polyphenol-induced anti-inflammatory protective effects are mediated in large part via the activation of AMPK and the upregulation of Nrf2 pathway. Consistently, herein we also review the importance of the modulation of Nrf2-related stress responsive vitagenes by olive polyphenols, which at low concentration according to the hormesis theory activates this neuroprotective cascade to preserve brain health and its potential use in the prevention and therapy against aging and age-related cognitive disorders in humans.
Collapse
|
44
|
Raitiere MN. The Elusive "Switch Process" in Bipolar Disorder and Photoperiodism: A Hypothesis Centering on NADPH Oxidase-Generated Reactive Oxygen Species Within the Bed Nucleus of the Stria Terminalis. Front Psychiatry 2022; 13:847584. [PMID: 35782417 PMCID: PMC9243387 DOI: 10.3389/fpsyt.2022.847584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 05/09/2022] [Indexed: 11/13/2022] Open
Abstract
One of the most striking and least understood aspects of mood disorders involves the "switch process" which drives the dramatic state changes characteristic of bipolar disorder. In this paper we explore the bipolar switch mechanism as deeply grounded in forms of seasonal switching (for example, from summer to winter phenotypes) displayed by many mammalian species. Thus we develop a new and unifying hypothesis that involves four specific claims, all converging to demonstrate a deeper affinity between the bipolar switch process and the light-sensitive (photoperiodic) nonhuman switch sequence than has been appreciated. First, we suggest that rapid eye movement (REM) sleep in both human and nonhuman plays a key role in probing for those seasonal changes in length of day that trigger the organism's characteristic involutional response (in certain animals, hibernation) to shorter days. Second, we claim that this general mammalian response requires the integrity of a neural circuit centering on the anterior bed nucleus of the stria terminalis. Third, we propose that a key molecular mediator of the switch process in both nonhumans and seasonal humans involves reactive oxygen species (ROS) of a particular provenance, namely those created by the enzyme NADPH oxidase (NOX). This position diverges from one currently prominent among students of bipolar disorder. In that tradition, the fact that patients afflicted with bipolar-spectrum disorders display indices of oxidative damage is marshaled to support the conclusion that ROS, escaping adventitiously from mitochondria, have a near-exclusive pathological role. Instead, we believe that ROS, originating instead in membrane-affiliated NOX enzymes upstream from mitochondria, take part in an eminently physiological signaling process at work to some degree in all mammals. Fourth and finally, we speculate that the diversion of ROS from that purposeful, genetically rooted seasonal switching task into the domain of human pathology represents a surprisingly recent phenomenon. It is one instigated mainly by anthropogenic modifications of the environment, especially "light pollution."
Collapse
Affiliation(s)
- Martin N Raitiere
- Department of Psychiatry, Providence St. Vincent Medical Center, Portland, OR, United States
| |
Collapse
|
45
|
Hematopoiesis and innate immunity: an inseparable couple for good and bad times, bound together by an hormetic relationship. Leukemia 2022; 36:23-32. [PMID: 34853440 PMCID: PMC8727304 DOI: 10.1038/s41375-021-01482-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 11/11/2021] [Accepted: 11/15/2021] [Indexed: 12/13/2022]
Abstract
Hematopoietic and immune cells originate from a common hematopoietic/lymphopoietic stem cell what explains that these different cell types often share the same receptors and respond to similar factors. Moreover, the common goal of both lineages is to ensure tissue homeostasis under steady-state conditions, fight invading pathogens, and promote tissue repair. We will highlight accumulating evidence that innate and adaptive immunity modulate several aspects of hematopoiesis within the hormetic zone in which the biological response to low exposure to potential stressors generally is favorable and benefits hematopoietic stem/progenitor cells (HSPCs). Innate immunity impact on hematopoiesis is pleiotropic and involves both the cellular arm, comprised of innate immunity cells, and the soluble arm, whose major component is the complement cascade (ComC). In addition, several mediators released by innate immunity cells, including inflammatory cytokines and small antimicrobial cationic peptides, affect hematopoiesis. There are intriguing observations that HSPCs and immune cells share several cell-surface pattern-recognition receptors (PRRs), such as Toll-like receptors (TLRs) and cytosol-expressed NOD, NOD-like, and RIG-I-like receptors and thus can be considered "pathogen sensors". In addition, not only lymphocytes but also HSPCs express functional intracellular complement proteins, defined as complosome which poses challenging questions for further investigation of the intracellular ComC-mediated intracrine regulation of hematopoiesis.
Collapse
|
46
|
The Relationship between Ozone and Human Blood in the Course of a Well-Controlled, Mild, and Transitory Oxidative Eustress. Antioxidants (Basel) 2021; 10:antiox10121946. [PMID: 34943049 PMCID: PMC8750071 DOI: 10.3390/antiox10121946] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 12/11/2022] Open
Abstract
In the last twenty years there has been a proliferation of articles on the therapeutic use of ozone. As it is well-known, the term ozone therapy is very broad. It ranges from either systemic or loco-regional administration of unstable gaseous oxygen/ozone mixtures to the topical application of stable ozonated derivatives. Anyway, in relation to the absence of specific receptors and the extreme reactivity with the biological liquids with which it comes into contact, gaseous ozone cannot be classified as either a drug or a pro-drug. When the gaseous ozone impacts a biological matrix, both reactive oxygen species (ROS) and lipid oxidation products (LOPs) are formed. They represent the effector molecules responsible for modulating the therapeutic activity in the body. Apart from the merits of the action mechanisms resulting from the use of ozone, this article seeks to validate the practice of ozone therapy as an adjuvant treatment in full compliance with the physiology of the whole organism.
Collapse
|
47
|
Agathokleous E, Brown PH, Calabrese EJ. A gift from parent to offspring: transgenerational hormesis. TRENDS IN PLANT SCIENCE 2021; 26:1098-1100. [PMID: 34507888 DOI: 10.1016/j.tplants.2021.08.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/25/2021] [Accepted: 08/25/2021] [Indexed: 05/17/2023]
Abstract
Hormesis is a biological phenomenon characterized by opposite effects between low and high doses of stresses that can result in stimulatory and adaptive benefits to individuals within a population. While evidence of hormesis is well established, two recent studies (Nogueira et al., Belz and Sinkkonen) suggest that hormesis can also offer transgenerational benefit.
Collapse
Affiliation(s)
- Evgenios Agathokleous
- Key Laboratory of Agrometeorology of Jiangsu Province, Department of Ecology, School of Applied Meteorology, Nanjing University of Information Science and Technology (NUIST), Nanjing 210044, Jiangsu, People's Republic of China.
| | - Patrick H Brown
- Department of Plant Sciences, University of California-Davis, Davis, CA 95616, USA
| | - Edward J Calabrese
- Department of Public Health, Environmental Health Sciences, Morrill I, N344, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
48
|
Averbeck D, Rodriguez-Lafrasse C. Role of Mitochondria in Radiation Responses: Epigenetic, Metabolic, and Signaling Impacts. Int J Mol Sci 2021; 22:ijms222011047. [PMID: 34681703 PMCID: PMC8541263 DOI: 10.3390/ijms222011047] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/24/2021] [Accepted: 10/08/2021] [Indexed: 12/15/2022] Open
Abstract
Until recently, radiation effects have been considered to be mainly due to nuclear DNA damage and their management by repair mechanisms. However, molecular biology studies reveal that the outcomes of exposures to ionizing radiation (IR) highly depend on activation and regulation through other molecular components of organelles that determine cell survival and proliferation capacities. As typical epigenetic-regulated organelles and central power stations of cells, mitochondria play an important pivotal role in those responses. They direct cellular metabolism, energy supply and homeostasis as well as radiation-induced signaling, cell death, and immunological responses. This review is focused on how energy, dose and quality of IR affect mitochondria-dependent epigenetic and functional control at the cellular and tissue level. Low-dose radiation effects on mitochondria appear to be associated with epigenetic and non-targeted effects involved in genomic instability and adaptive responses, whereas high-dose radiation effects (>1 Gy) concern therapeutic effects of radiation and long-term outcomes involving mitochondria-mediated innate and adaptive immune responses. Both effects depend on radiation quality. For example, the increased efficacy of high linear energy transfer particle radiotherapy, e.g., C-ion radiotherapy, relies on the reduction of anastasis, enhanced mitochondria-mediated apoptosis and immunogenic (antitumor) responses.
Collapse
Affiliation(s)
- Dietrich Averbeck
- Laboratory of Cellular and Molecular Radiobiology, PRISME, UMR CNRS 5822/IN2P3, IP2I, Lyon-Sud Medical School, University Lyon 1, 69921 Oullins, France;
- Correspondence:
| | - Claire Rodriguez-Lafrasse
- Laboratory of Cellular and Molecular Radiobiology, PRISME, UMR CNRS 5822/IN2P3, IP2I, Lyon-Sud Medical School, University Lyon 1, 69921 Oullins, France;
- Department of Biochemistry and Molecular Biology, Lyon-Sud Hospital, Hospices Civils de Lyon, 69310 Pierre-Bénite, France
| |
Collapse
|
49
|
Agathokleous E, Barceló D, Calabrese EJ. US EPA: Is there room to open a new window for evaluating potential sub-threshold effects and ecological risks? ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 284:117372. [PMID: 34087668 DOI: 10.1016/j.envpol.2021.117372] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/08/2021] [Accepted: 05/04/2021] [Indexed: 05/17/2023]
Abstract
With a rule published on 6 January 2021, the US Environmental Protection Agency (EPA) considers for the first time sub-threshold responses, abandoning the use of default dose-response models. This may affect worldwide scientific research, in terms of research design and methodology, and regulatory actions in China and other countries.
Collapse
Affiliation(s)
- Evgenios Agathokleous
- Key Laboratory of Agrometeorology of Jiangsu Province, Department of Ecology, School of Applied Meteorology, Nanjing University of Information Science & Technology (NUIST), Nanjing, 210044, China.
| | - Damià Barceló
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, C/ Jordi Girona 18-26, 08034, Barcelona, Spain; Catalan Institute for Water Research, ICRA-CERCA, Emili Grahit 101, 17003, Girona, Spain
| | - Edward J Calabrese
- Department of Environmental Health Sciences, Morrill I, N344, University of Massachusetts, Amherst, MA, 01003, USA
| |
Collapse
|
50
|
Hazan R, Schoemann M, Klutstein M. Endurance of extremely prolonged nutrient prevention across kingdoms of life. iScience 2021; 24:102745. [PMID: 34258566 PMCID: PMC8258982 DOI: 10.1016/j.isci.2021.102745] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Numerous observations demonstrate that microorganisms can survive very long periods of nutrient deprivation and starvation. Moreover, it is evident that prolonged periods of starvation are a feature of many habitats, and many cells in all kingdoms of life are found in prolonged starvation conditions. Bacteria exhibit a range of responses to long-term starvation. These include genetic adaptations such as the long-term stationary phase and the growth advantage in stationary phase phenotypes characterized by mutations in stress-signaling genes and elevated mutation rates. Here, we suggest using the term "endurance of prolonged nutrient prevention" (EPNP phase), to describe this phase, which was also recently described in eukaryotes. Here, we review this literature and describe the current knowledge about the adaptations to very long-term starvation conditions in bacteria and eukaryotes, its conceptual and structural conservation across all kingdoms of life, and point out possible directions that merit further research.
Collapse
Affiliation(s)
- Ronen Hazan
- Institute of Biomedical and Oral Research, Faculty of Dental Medicine, The Hebrew University of Jerusalem, P.O.B. 12272, Ein Kerem, Jerusalem 9112001, Israel
| | - Miriam Schoemann
- Institute of Biomedical and Oral Research, Faculty of Dental Medicine, The Hebrew University of Jerusalem, P.O.B. 12272, Ein Kerem, Jerusalem 9112001, Israel
| | - Michael Klutstein
- Institute of Biomedical and Oral Research, Faculty of Dental Medicine, The Hebrew University of Jerusalem, P.O.B. 12272, Ein Kerem, Jerusalem 9112001, Israel
| |
Collapse
|