1
|
Ullah S, Zainol I. Fabrication and applications of biofunctional collagen biomaterials in tissue engineering. Int J Biol Macromol 2025; 298:139952. [PMID: 39824416 DOI: 10.1016/j.ijbiomac.2025.139952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 01/12/2025] [Accepted: 01/14/2025] [Indexed: 01/20/2025]
Abstract
Collagen is extensively used in tissue engineering for various organ tissue regeneration due to the main component of human organ extracellular matrix (ECM) and their inherent nature bioactivity. Collagen various types naturally exist in different organ ECMs. Collagen fabricated with natural ECM mimics architecture, composition and mechanical properties for various organ tissue regeneration. Collagen fabrication with organ-specific biofunctionality facilitated organ tissue engineering as compared to unmodified collagen biomaterials. Collagen biofunctionality improved by subjecting collagen to synthesis, fibers and surface modifications, and blending with other components. Furthermore, collagen is loaded with bioactive molecules, growth factors, drugs and cells also enhancing the biofunctionality of collagen biomaterials. In this review, we will explore the recent advancements in biofunctional collagen biomaterials fabrication with organ-specific biofunctionality in tissue engineering to resolve various organ tissue engineering issues and regeneration challenges. Biofunctional collagen biomaterials stimulate microenvironments inside and around the implants to excellently regulate cellular activities, differentiate cells into organ native cells, enhanced ECM production and remodeling to regenerate organ tissues with native structure, function and maturation. This review critically explored biofunctional collagen biomaterials fabrication in resolving various organ tissue engineering issues and regeneration challenges, and opening new directions of biofunctional collagen biomaterials fabrication, design and applications.
Collapse
Affiliation(s)
- Saleem Ullah
- Polymer Lab, Chemistry Department, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, 35900 Tanjung Malim, Perak, Darul Ridzuan, Malaysia.
| | - Ismail Zainol
- Polymer Lab, Chemistry Department, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, 35900 Tanjung Malim, Perak, Darul Ridzuan, Malaysia.
| |
Collapse
|
2
|
Li Y, Hao Y, Yang X, Zhao J, Chang R, Wang B, Zhan X. Structure characterization of a Bletilla striata homogeneous polysaccharide and its effects on reducing oxidative stress and promoting wound healing in diabetic rats. Int J Biol Macromol 2025; 307:141904. [PMID: 40064269 DOI: 10.1016/j.ijbiomac.2025.141904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 02/11/2025] [Accepted: 03/07/2025] [Indexed: 03/20/2025]
Abstract
The most common complication of diabetes is chronic non-healing wound, which can lead to amputation in severe cases. Therefore, identifying new and effective therapies is crucial. This study extracted, isolated, and purified a homogeneous polysaccharide named BSP1-1 from Bletilla striata. The yield of BSP1-1 was 2.17 %, with a molecular weight of 2.265 × 104 Da. The monosaccharide components were identified as mannose and glucose. Using a diabetic rat wound model to study the effects of BSP1-1 on wound healing. The results showed that the wound healing rate increased in a dose-dependent manner after treatment with BSP1-1. On the 15th day after administration, the wound healing rates of the low-, medium-, and high-dose groups increased by 11.2 %, 14.6 %, and 18.9 % compared with the control group, respectively. Histological analysis showed that BSP1-1 promoted angiogenesis and collagen deposition. In the high-dose group, the collagen content increased by 11.84 % compared with the control group, and the CD31 positive cell rate increased by 7.66 %. Furthermore, compared to the DM group, BSP1-1 treatment reduced malondialdehyde (MDA) content and increased superoxide dismutase (SOD), catalase (CAT), and glutathione (GSH) levels (P < 0.05). It was concluded that, BSP1-1 might alleviate oxidative stress and promote wound healing through up-regulation of Nrf2 and its downstream antioxidant factor, HO-1. In summary, this study demonstrates that Bletilla striata polysaccharide can effectively accelerate diabetic wound healing.
Collapse
Affiliation(s)
- Yuanlin Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yinxue Hao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xiaoqi Yang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jiahui Zhao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Ruiying Chang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Bo Wang
- Hubei Institute for Drug Control, Wuhan 430012, China; NMPA Key Laboratory of Quality Control of Chinese Medicine(HuBei), Wuhan 430075, China.
| | - Xueyan Zhan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China; Beijing Key Laboratory for Production Process Control and Quality Evaluation of Traditional Chinese Medicine, Beijing 100029, China.
| |
Collapse
|
3
|
Raafat AI, Ali AEH, Hassan AA. Radiation development and hemostatic performance of innovative hydroxypropyl methyl cellulose-based sponge dressings for controlling severe hemorrhagic wounds. Int J Biol Macromol 2025; 292:139132. [PMID: 39732259 DOI: 10.1016/j.ijbiomac.2024.139132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 12/16/2024] [Accepted: 12/22/2024] [Indexed: 12/30/2024]
Abstract
Globally, traumatic injuries and severe hemorrhagic wounds resulting from natural disasters, wars, traffic accidents, and operation rooms, especially during birth, are among the most difficult humanitarian and economic problems. Thus, the priority in emergency medical treatment is reducing unexpected blood loss, which can significantly influence a patient's rescue and recovery speed. For the immediate cessation of bleeding in severe hemorrhagic wounds and to speed up their healing, environmentally friendly γ-ionizing irradiation technology was used to develop innovative natural-based hydrogels impregnated with traditional medicinal plant extracts (MPE) with proven hemostatic and bactericidal potential as potential dressings for hemostasis, infection control, and wound healing. A series of superabsorbent hemostatic dressings composed of (hydroxypropyl methylcellulose/agar-agar/carbopol) (HPMC/AA/Cp) assisted with Salvadora persica (Miswak) (Mis), Achillea millefolium L. (Yarrow) (Yaro), (shepherd's purse) (Sheph), and Equisetum arvense L. (horsetail) (HoTa) extracts were prepared. The freeze-drying technique was used to obtain spongious (HPMC/AA/Cp)-Mis, (HPMC/AA/Cp)-Yaro, (HPMC/AA/Cp)-Sheph, and (HPMC/AA/Cp)-Hota, respectively. The developed dressings' swelling characteristics and the In-vitro cytocompatibility, hemostatic efficacy, and bactericidal potential were evaluated. The In-vivo hemostatic potential was assessed using a hemorrhaging liver rat model. Transferrin and calcium levels were measured to document their impact on the hemostasis process.
Collapse
Affiliation(s)
- Amany I Raafat
- Polymer Chemistry Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt.
| | - Amr El-Hag Ali
- Polymer Chemistry Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Asmaa A Hassan
- Radiation Biology Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| |
Collapse
|
4
|
Utpal BK, Sutradhar B, Zehravi M, Sweilam SH, Panigrahy UP, Urs D, Fatima AF, Nallasivan PK, Chhabra GS, Sayeed M, Alshehri MA, Rab SO, Khan SL, Emran TB. Polyphenols in wound healing: unlocking prospects with clinical applications. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:2459-2485. [PMID: 39453503 DOI: 10.1007/s00210-024-03538-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 10/10/2024] [Indexed: 10/26/2024]
Abstract
Wound healing is a multifaceted, complex process that factors like aging, metabolic diseases, and infections may influence. The potentiality of polyphenols, natural compounds, has shown anti-inflammatory and antimicrobial properties in promoting wound healing and their potential applications in wound management. The studies reviewed indicate that polyphenols have multiple mechanisms that promote wound healing. This involves enhancing antioxidant defenses, reducing oxidative stress, modulating inflammatory responses, improving healing times, reducing infection rates, and enhancing tissue regeneration in clinical trials and in vivo and in vitro studies. Polyphenols have been proven to be effective in managing hard-to-heal wounds, especially in diabetic and elderly populations. Polyphenols have shown significant benefits in promoting angiogenesis and stimulating collagen synthesis. Polyphenol treatment has been demonstrated to have therapeutic effects in wound healing and chronic wound management. Their ability to regulate key healing processes makes them suitable for new wound care products and treatments. Future research should enhance formulations and delivery methods to optimize polyphenols' bioavailability and therapeutic efficacy in wound management approaches.
Collapse
Affiliation(s)
- Biswajit Kumar Utpal
- Department of Pharmacy, Faculty of Health and Life Sciences, Daffodil International University, Dhaka, 1207, Bangladesh.
| | - Baishakhi Sutradhar
- Department of Microbiology, Gono University (Bishwabidyalay), Nolam, Mirzanagar, Savar, Dhaka, 1344, Bangladesh
| | - Mehrukh Zehravi
- Department of Clinical Pharmacy, College of Dentistry & Pharmacy, Buraydah Private Colleges, Buraydah, 51418, Saudi Arabia.
| | - Sherouk Hussein Sweilam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Egyptian Russian University, Cairo-Suez Road, Badr City, Cairo, 11829, Egypt
| | - Uttam Prasad Panigrahy
- Faculty of Pharmaceutical Science, Assam Down Town University, Gandhi Nagar, Sankar Madhab Path, Panikhaiti, Guwahati, Assam, 781026, India
| | - Deepadarshan Urs
- Inflammation Research Laboratory, Department of Studies & Research in Biochemistry, Mangalore University, Jnana Kaveri Post Graduate Campus, Kodagu, Karnataka, India
| | - Ayesha Farhath Fatima
- Department of Pharmaceutics, Anwarul Uloom College of Pharmacy, New Mallepally, Hyderabad, India
| | - P Kumar Nallasivan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Karpagam Academy of Higher Education, Pollachi Main Road, Eachanari, Coimbatore, Tamilnadu, India
| | - Gurmeet Singh Chhabra
- Department Pharmaceutical Chemistry, Indore Institute of Pharmacy, Opposite Indian Institute of Management Rau, Pithampur Road, Indore, Madhya Pradesh, India
| | - Mohammed Sayeed
- Department of Pharmacology, School of Pharmacy, Anurag University, Venkatapur, Ghatkesar, Hyderabad, Telangana, India
| | - Mohammed Ali Alshehri
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Safia Obaidur Rab
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Sharuk L Khan
- Department of Pharmaceutical Chemistry, N.B.S. Institute of Pharmacy, Ausa, 413520, Maharashtra, India
| | - Talha Bin Emran
- Department of Pharmacy, Faculty of Health and Life Sciences, Daffodil International University, Dhaka, 1207, Bangladesh.
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, 4381, Bangladesh.
| |
Collapse
|
5
|
Upadhyay NK, Keshri GK, Gupta A. Hippophae rhamnoides L. leaf extract augments dermal wound healing in streptozocin-induced diabetic rats. J Wound Care 2025; 34:146-153. [PMID: 39928468 DOI: 10.12968/jowc.2021.0309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2025]
Abstract
OBJECTIVE The present investigation was undertaken to determine the healing efficacy of Hippophae rhamnoides L. (sea buckthorn (SBT)) leaf aqueous lyophilised extract (SBTL-ALE) on a diabetic wound model in rats. The effect of SBTL-ALE was also evaluated on human epithelial cell lines (A431) by using in vitro wound closure and transwell migration assays. METHOD A total of four full-thickness excision-type wounds were created on the dorsal surface of streptozocin-induced diabetic rats. The animals were divided into two groups: control rats treated with soft white petroleum jelly and experimental rats treated with SBTL-ALE (5.0%, weight/weight) ointment applied topically, twice daily for seven days. RESULTS SBTL-ALE significantly (p<0.05) accelerated the migration of epithelial cells in in vitro wound closure and transwell migration assays. Further, SBTL-ALE augmented the healing process by significantly (p<0.05) enhanced wound area contraction, faster complete epithelial closure, increased hydroxyproline (collagen) and hexosamine levels in diabetic rats. Histopathological findings confirmed the healing potential of SBTL-ALE. Immunohistochemical analyses showed increased expression of transforming growth factor (TGF)-β and α-smooth muscle actin in SBTL-ALE-treated wounds of diabetic rats. Superoxide dismutase, catalase and reduced glutathione levels increased, whereas reactive oxygen levels were decreased significantly (p<0.05) in SBTL-ALE-treated wounds compared to diabetic controls, which conferred redox homeostasis. CONCLUSION Our results suggest that SBTL-ALE accelerated transdermal wound healing in diabetic rats by increasing the rate of wound contraction, enhancing levels of collagen, hexosamine and endogenous antioxidants, and reducing oxidative stress.
Collapse
Affiliation(s)
- Nitin K Upadhyay
- Defence Institute of Physiology and Allied Sciences (DIPAS), DRDO, Delhi, India
| | - Gaurav K Keshri
- Defence Institute of Physiology and Allied Sciences (DIPAS), DRDO, Delhi, India
| | - Asheesh Gupta
- Defence Institute of Physiology and Allied Sciences (DIPAS), DRDO, Delhi, India
| |
Collapse
|
6
|
Chowdhury A, Gorain B, Mitra Mazumder P. Recent advancements in drug delivery system of flavonoids with a special emphasis on the flavanone naringenin: exploring their application in wound healing and associated processes. Inflammopharmacology 2025; 33:69-90. [PMID: 39576423 DOI: 10.1007/s10787-024-01600-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 11/02/2024] [Indexed: 02/06/2025]
Abstract
Numerous flavonoids have been identified in citrus fruits which show potential to cure several complex diseases. These natural polyphenolic bioactive compounds are the secondary metabolites of various plants, among which naringenin has been explored in several pre-clinical research for its beneficial role in promoting health by modulating various biochemical processes. Its antioxidant, anti-inflammatory, and anti-microbial effects have been projected toward healing of wounds. Further, its application has also been shown to regrow vascular networks, which are known to facilitate the healing of chronic wounds. Thus, the potential of naringenin to modulate various molecular pathways aids in the healing process of wounds. Considering the recent literature, an update has been attempted to present the correlation between the healing mechanisms of wounds by the application of naringenin. Furthermore, the application of naringenin is challenging because of its properties of poor solubility and limited permeability, which can be overcome by the nanotechnology platform. Thus, several nanocarriers that have been employed for the improvement of naringenin delivery are highlighted. Thereby, it can be concluded that a suitable nanocarrier of naringenin could be an effective tool in treating wounds to improve the quality of life of such patients.
Collapse
Affiliation(s)
- Ankit Chowdhury
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| | - Bapi Gorain
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India.
| | - Papiya Mitra Mazumder
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India.
| |
Collapse
|
7
|
Barazesh P, Hajihassani H, Motalebi F, Neiresi SMH, Hajihassani R, Mehrabian AR. Unlocking the Healing Potential: A Comprehensive Review of Ecology and Biology of Medical-Grade Honey in Wound Management and Tissue Regeneration. Health Sci Rep 2025; 8:e70240. [PMID: 39831079 PMCID: PMC11739614 DOI: 10.1002/hsr2.70240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/19/2024] [Accepted: 11/21/2024] [Indexed: 01/22/2025] Open
Abstract
Background and Aims Honey has long been studied for its healing abilities in wound care. This narrative review examines its properties and their impact on wound healing, particularly its ability to accelerate wound closure and promote tissue regeneration. The review focuses on how honey's botanical origins affect its medical properties and wound-healing capabilities. Finally, clinical studies on honey's effectiveness in wound healing were reviewed compared to traditional treatments. Methods Relevant keywords were searched in databases, yielding 1250 documents. After excluding nonrelevant sources, 450 documents were refined, and 167 articles were selected based on thematic alignment and originality. Data extraction focused on study design, intervention details, and outcomes, with quality assessed using standardized criteria. The study adhered to CONSORT and SANRA guidelines to ensure methodological rigor and reporting transparency. Results Honey-based medical products have demonstrated significant antibacterial, anti-inflammatory, and tissue-regenerative properties, making them highly effective in improving wound healing outcomes, particularly in chronic and burn wounds. These products have also been shown to reduce infection rates and hospital stays. While some studies have reported positive outcomes in accelerating the healing process, others have found no significant difference compared to conventional treatments. Conclusion Medical-grade honey (MGH) holds potential for wound care due to its versatility, though variations in its composition present challenges. Further research is needed to optimize its clinical use. The effectiveness of MGH in wound healing remains debated, with mixed results from trials. Genetic modification of bees to enhance MGH's properties could make it more competitive against conventional treatments. Honey-based medications could reduce costs, improve energy efficiency, and have minimal side effects. Rigorous research is necessary to determine optimal use and fully unlock MGH's potential, which could revolutionize wound management globally.
Collapse
Affiliation(s)
- Parmis Barazesh
- Faculty of Life Sciences and BiotechnologyShahid Beheshti UniversityTehranIran
| | - Helia Hajihassani
- Faculty of Life Sciences and BiotechnologyShahid Beheshti UniversityTehranIran
| | - Fatemeh Motalebi
- Faculty of Life Sciences and BiotechnologyShahid Beheshti UniversityTehranIran
| | | | | | - Ahmad Reza Mehrabian
- Faculty of Life Sciences and BiotechnologyShahid Beheshti UniversityTehranIran
- Bee Products Research CentreShahid Beheshti UniversityTehranIran
| |
Collapse
|
8
|
Bonsignore G, Martinotti S, Ranzato E. Honey Bioactive Molecules: There Is a World Beyond the Sugars. BIOTECH 2024; 13:47. [PMID: 39584904 PMCID: PMC11587060 DOI: 10.3390/biotech13040047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/01/2024] [Accepted: 11/12/2024] [Indexed: 11/26/2024] Open
Abstract
Honey's many bioactive compounds have been utilized historically to cure infectious diseases. Beneficial effects are its antiviral, antibacterial, anti-inflammatory, antioxidant, and immune-stimulating qualities. The bee species, geographic location, botanical origin, harvest season, processing, and storage conditions all affect honey's potential for therapeutic use. Honey contains a number of antioxidants and active compounds, such as polyphenols, which have been shown to have disease-preventive properties. Based on their origins, categories, and functions, the main polyphenols found in various honey varieties are examined in this review.
Collapse
|
9
|
Chang XQ, Yue RS. Therapeutic Potential of Luteolin for Diabetes Mellitus and Its Complications. Chin J Integr Med 2024:10.1007/s11655-024-3917-z. [PMID: 39302570 DOI: 10.1007/s11655-024-3917-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2023] [Indexed: 09/22/2024]
Abstract
The global prevalence of diabetes mellitus (DM) and its complications has been showing an upward trend in the past few decades, posing an increased economic burden to society and a serious threat to human life and health. Therefore, it is urgent to investigate the effectiveness of complementary and alternative therapies for DM and its complications. Luteolin is a kind of polyphenol flavonoid with widely existence in some natural resources, as a safe dietary supplement, it has been widely studied and reported in the treatment of DM and its complications. This review demonstrates the therapeutic potential of luteolin in DM and its complications, and elucidates the action mode of luteolin at the molecular level. It is characterized by anti-inflammatory, antioxidant, and neuroprotective effects. In detail, luteolin can not only improve endothelial function, insulin resistance and β-cell dysfunction, but also inhibit the activities of dipeptidyl peptidase-4 and α-glucosidase. However, due to the low water solubility and oral bioavailability of luteolin, its application in the medical field is limited. Therefore, great importance should be attached to the joint application of luteolin with current advanced science and technology. And more high-quality human clinical studies are needed to clarify the effects of luteolin on DM patients.
Collapse
Affiliation(s)
- Xiao-Qin Chang
- Endocrinology Department, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Ren-Song Yue
- Endocrinology Department, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China.
| |
Collapse
|
10
|
Sharda D, Attri K, Choudhury D. Greener healing: sustainable nanotechnology for advanced wound care. DISCOVER NANO 2024; 19:127. [PMID: 39136798 PMCID: PMC11322481 DOI: 10.1186/s11671-024-04061-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 06/29/2024] [Indexed: 08/16/2024]
Abstract
Wound healing involves a carefully regulated sequence of events, encompassing pro-inflammatory and anti-inflammatory stages, tissue regeneration, and remodeling. However, in individuals with diabetes, this process gets disrupted due to dysregulation caused by elevated glucose levels and pro-inflammatory cytokines in the bloodstream. Consequently, the pro-inflammatory stage is prolonged, while the anti-inflammatory phase is delayed, leading to impaired tissue regeneration and remodeling with extended healing time. Furthermore, the increased glucose levels in open wounds create an environment conducive to microbial growth and tissue sepsis, which can escalate to the point of limb amputation. Managing diabetic wounds requires meticulous care and monitoring due to the lack of widely available preventative and therapeutic measures. Existing clinical interventions have limitations, such as slow recovery rates, high costs, and inefficient drug delivery methods. Therefore, exploring alternative avenues to develop effective wound-healing treatments is essential. Nature offers a vast array of resources in the form of secondary metabolites, notably polyphenols, known for their antimicrobial, anti-inflammatory, antioxidant, glucose-regulating, and cell growth-promoting properties. Additionally, nanoparticles synthesized through environmentally friendly methods hold promise for wound healing applications in diabetic and non-diabetic conditions. This review provides a comprehensive discussion and summary of the potential wound-healing abilities of specific natural polyphenols and their nanoparticles. It explores the mechanisms of action underlying their efficacy and presents effective formulations for promoting wound-healing activity.
Collapse
Affiliation(s)
- Deepinder Sharda
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala, Punjab, 147004, India
| | - Komal Attri
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala, Punjab, 147004, India
- Thapar Institute of Engineering and Technology-Virginia Tech (USA) Centre of Excellence in Emerging Materials, Thapar Institute of Engineering and Technology, Patiala, Punjab, 147004, India
| | - Diptiman Choudhury
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala, Punjab, 147004, India.
- Thapar Institute of Engineering and Technology-Virginia Tech (USA) Centre of Excellence in Emerging Materials, Thapar Institute of Engineering and Technology, Patiala, Punjab, 147004, India.
| |
Collapse
|
11
|
Sharma J, Bhargava P, Mishra P, Bhatia J, Arya DS. Molecular mechanisms of flavonoids in myocardial ischemia reperfusion injury: Evidence from in-vitro and in-vivo studies. Vascul Pharmacol 2024; 155:107378. [PMID: 38729253 DOI: 10.1016/j.vph.2024.107378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 05/12/2024]
Abstract
OBJECTIVES Flavonoids are polyphenolic compounds found in a wide range of foods, including fruits, vegetables, tea plants, and other natural products. They have been mainly classified as flavanols, flavonols, flavones, isoflavones, flavanones, and flavanonols. In this comprehensive review, we will discuss preclinical pieces of evidence on the potential of flavonoids for the prevention/treatment of myocardial ischemia-reperfusion (IR) injury. KEY FINDINGS In-vitro and in-vivo studies have shown that flavonoids play an important role in preventing ischemic heart disease (IHD). They possess strong anti-oxidant, anti-inflammatory, anti-bacterial, anti-thrombotic, anti-apoptotic, and anti-carcinogenic activities. In addition, at a molecular level, flavonoids also modulate various pathways like MAPK, NFκB etc. to confer beneficial effects. SUMMARY The current review of flavonoids in myocardial ischemia-reperfusion injury furnishes updated information that could drive future research. The in-vitro and in-vivo experiments have demonstrated various favourable pharmacological properties of flavonoids. This review provides valuable information to conduct clinical studies, validating the safety aspects of flavonoids in the clinical domain.
Collapse
Affiliation(s)
- Jatin Sharma
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi, India.
| | - Poorva Bhargava
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi, India
| | - Prashant Mishra
- Armed Forces Medical College, Pune, Maharashtra 411040, India
| | - Jagriti Bhatia
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Dharamvir Singh Arya
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi 110029, India.
| |
Collapse
|
12
|
Bajaj G, Singh V, Sagar P, Gupta R, Singhal NK. Phosphoenolpyruvate carboxykinase-1 targeted siRNA promotes wound healing in type 2 diabetic mice by restoring glucose homeostasis. Int J Biol Macromol 2024; 270:132504. [PMID: 38772464 DOI: 10.1016/j.ijbiomac.2024.132504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 05/02/2024] [Accepted: 05/17/2024] [Indexed: 05/23/2024]
Abstract
It is well-accepted that the liver plays a vital role in the metabolism of glucose and its homeostasis. Dysregulated hepatic glucose production and utilization, leads to type 2 diabetes (T2DM). In the current study, RNA sequencing and qRT-PCR analysis of nanoformulation-treated T2DM mice (TGthr group) revealed beneficial crosstalk of PCK-1 silencing with other pathways involved in T2DM. The comparison of precise genetic expression profiles of the different experimental groups showed significantly improved hepatic glucose, fatty acid metabolism and several other T2DM-associated crucial markers after the nanoformulation treatment. As a result of these improvements, we observed a significant acceleration in wound healing and improved insulin signaling in vascular endothelial cells in the TGthr group as compared to the T2DM group. Enhanced phosphorylation of PI3K/Akt pathway proteins in the TGthr group resulted in increased angiogenesis as observed by the increased expression of endothelial cell markers (CD31, CD34) thereby improving endothelial dysfunctions in the TGthr group. Additionally, therapeutic nanoformulation has been observed to improve the inflammatory cytokine profile in the TGthr group. Overall, our results demonstrated that the synthesized therapeutic nanoformulation referred to as GPR8:PCK-1siRNA holds the potential in ameliorating hyperglycemia-associated complications such as delayed wound healing in diabetes.
Collapse
Affiliation(s)
- Geetika Bajaj
- National Agri-Food Biotechnology Institute (NABI), Sector-81, S.A.S Nagar, Mohali 140306, Punjab, India; Department of Biotechnology, Panjab University, Sector 25, Chandigarh 160014, India
| | - Vishal Singh
- National Institute for Implementation Research on Non-Communicable Diseases, Jodhpur 342005, India
| | - Poonam Sagar
- National Agri-Food Biotechnology Institute (NABI), Sector-81, S.A.S Nagar, Mohali 140306, Punjab, India
| | - Ritika Gupta
- National Agri-Food Biotechnology Institute (NABI), Sector-81, S.A.S Nagar, Mohali 140306, Punjab, India
| | - Nitin Kumar Singhal
- National Agri-Food Biotechnology Institute (NABI), Sector-81, S.A.S Nagar, Mohali 140306, Punjab, India.
| |
Collapse
|
13
|
Wu X, Chen HW, Zhao ZY, Li L, Song C, Xiong J, Yang GX, Zhu Q, Hu JF. Carbopol 940-based hydrogels loading synergistic combination of quercetin and luteolin from the herb Euphorbia humifusa to promote Staphylococcus aureus infected wound healing. RSC Med Chem 2024; 15:553-560. [PMID: 38389873 PMCID: PMC10880921 DOI: 10.1039/d3md00611e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 11/28/2023] [Indexed: 02/24/2024] Open
Abstract
With the increasing prevalence of Staphylococcus aureus infections, rapid emergence of drug resistance and the slow healing of infected wounds, developing an efficient antibiotic-free multifunctional wound dressing for inhibiting S. aureus and simultaneously facilitating wound healing have become a huge challenge. Due to their excellent biocompatibility and biodegradability, some carbopol hydrogels based on plant extracts or purified compounds have already been applied in wound healing treatment. In China, Euphorbia humifusa Willd. (EuH) has been traditionally used as a medicine and food homologous medicine for the treatment of furuncles and carbuncles mainly caused by S. aureus infection. In an earlier study, EuH-originated flavonoids quercetin (QU) and luteolin (LU) could serve as a potential source for anti-S. aureus drug discovery when used in synergy. However, the in vivo effects of QU and LU on S. aureus-infected wound healing are still unknown. In this study, we found a series of Carbopol 940-based hydrogels loading QU and LU in combination could disinfect S. aureus and also could promote wound healing. In the full-thickness skin defect mouse model infected with S. aureus, the wound contraction ratio, bacterial burden, skin hyperplasia and inflammation score, as well as collagen deposition and blood vessels were then investigated. The results indicate that the optimized QL2 [QU (32 μg mL-1)-LU (8 μg mL-1)] hydrogel with biocompatibility significantly promoted S. aureus-infected wound healing through anti-infection, anti-inflammation, collagen deposition, and angiogenesis, revealing it as a promising alternative for infected wound repair.
Collapse
Affiliation(s)
- Xiying Wu
- School of Pharmaceutical Sciences, Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University Zhejiang 318000 China
- Department of Natural Medicine, School of Pharmacy, Fudan University Shanghai 201203 China
- Shanghai Skin Disease Hospital, Tongji University School of Medicine Shanghai 200443 China
| | - Hao-Wei Chen
- School of Pharmaceutical Sciences, Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University Zhejiang 318000 China
- Department of Natural Medicine, School of Pharmacy, Fudan University Shanghai 201203 China
| | - Ze-Yu Zhao
- School of Pharmaceutical Sciences, Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University Zhejiang 318000 China
- Department of Natural Medicine, School of Pharmacy, Fudan University Shanghai 201203 China
| | - Lisha Li
- Shanghai Skin Disease Hospital, Tongji University School of Medicine Shanghai 200443 China
| | - Chi Song
- School of Pharmaceutical Sciences, Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University Zhejiang 318000 China
- Department of Natural Medicine, School of Pharmacy, Fudan University Shanghai 201203 China
| | - Juan Xiong
- Department of Natural Medicine, School of Pharmacy, Fudan University Shanghai 201203 China
| | - Guo-Xun Yang
- Department of Natural Medicine, School of Pharmacy, Fudan University Shanghai 201203 China
| | - Quangang Zhu
- Shanghai Skin Disease Hospital, Tongji University School of Medicine Shanghai 200443 China
| | - Jin-Feng Hu
- School of Pharmaceutical Sciences, Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University Zhejiang 318000 China
- Department of Natural Medicine, School of Pharmacy, Fudan University Shanghai 201203 China
| |
Collapse
|
14
|
Canales-Alvarez O, Canales-Martinez MM, Dominguez-Verano P, Balderas-Cordero D, Madrigal-Bujaidar E, Álvarez-González I, Rodriguez-Monroy MA. Effect of Mexican Propolis on Wound Healing in a Murine Model of Diabetes Mellitus. Int J Mol Sci 2024; 25:2201. [PMID: 38396882 PMCID: PMC10889666 DOI: 10.3390/ijms25042201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/06/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
Diabetes mellitus (DM) affects the wound healing process, resulting in impaired healing or aberrant scarring. DM increases reactive oxygen species (ROS) production, fibroblast senescence and angiogenesis abnormalities, causing exacerbated inflammation accompanied by low levels of TGF-β and an increase in Matrix metalloproteinases (MMPs). Propolis has been proposed as a healing alternative for diabetic patients because it has antimicrobial, anti-inflammatory, antioxidant and proliferative effects and important properties in the healing process. An ethanolic extract of Chihuahua propolis (ChEEP) was obtained and fractionated, and the fractions were subjected to High-Performance Liquid Chromatography with diode-array (HPLC-DAD), High-Performance Liquid Chromatography-Mass Spectrometry (HPLC-MS) and Gas Chromatography-Mass Spectrometry (GC-MS) analyses and 46 compounds were detected. Deep wounds were made in a murine DM model induced by streptozotocin, and the speed of closure and the wound tensile strength were evaluated by the tensiometric method, which showed that ChEEP had similar activity to Recoveron, improving the speed of healing and increasing the wound tensile strength needed to open the wound again. A histological analysis of the wounds was performed using H&E staining, and when Matrix metalloproteinase 9 (MMP9) and α-actin were quantified by immunohistochemistry, ChEEP was shown to be associated with improved histological healing, as indicated by the reduced MMP9 and α-actin expression. In conclusion, topical ChEEP application enhances wound healing in diabetic mice.
Collapse
Affiliation(s)
- Octavio Canales-Alvarez
- Laboratorio de Genética, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu s/n, Zacatenco, Ciudad de México 07738, Mexico; (O.C.-A.); (E.M.-B.); (I.Á.-G.)
- Laboratorio de Investigación Biomédica en Productos Naturales, Carrera de Medicina, UNAM, FES Iztacala, Avenida de los Barrios Número 1, Tlalnepantla 54090, Estado de México, Mexico; (P.D.-V.); (D.B.-C.)
| | - Maria Margarita Canales-Martinez
- Laboratorio de Farmacognosia, UBIPRO, UNAM, FES Iztacala, Avenida de los Barrios Número 1, Tlalnepantla 54090, Estado de México, Mexico;
| | - Pilar Dominguez-Verano
- Laboratorio de Investigación Biomédica en Productos Naturales, Carrera de Medicina, UNAM, FES Iztacala, Avenida de los Barrios Número 1, Tlalnepantla 54090, Estado de México, Mexico; (P.D.-V.); (D.B.-C.)
| | - Daniela Balderas-Cordero
- Laboratorio de Investigación Biomédica en Productos Naturales, Carrera de Medicina, UNAM, FES Iztacala, Avenida de los Barrios Número 1, Tlalnepantla 54090, Estado de México, Mexico; (P.D.-V.); (D.B.-C.)
| | - Eduardo Madrigal-Bujaidar
- Laboratorio de Genética, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu s/n, Zacatenco, Ciudad de México 07738, Mexico; (O.C.-A.); (E.M.-B.); (I.Á.-G.)
| | - Isela Álvarez-González
- Laboratorio de Genética, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu s/n, Zacatenco, Ciudad de México 07738, Mexico; (O.C.-A.); (E.M.-B.); (I.Á.-G.)
| | - Marco Aurelio Rodriguez-Monroy
- Laboratorio de Investigación Biomédica en Productos Naturales, Carrera de Medicina, UNAM, FES Iztacala, Avenida de los Barrios Número 1, Tlalnepantla 54090, Estado de México, Mexico; (P.D.-V.); (D.B.-C.)
| |
Collapse
|
15
|
Yadav JP, Singh AK, Grishina M, Pathak P, Verma A, Kumar V, Kumar P, Patel DK. Insights into the mechanisms of diabetic wounds: pathophysiology, molecular targets, and treatment strategies through conventional and alternative therapies. Inflammopharmacology 2024; 32:149-228. [PMID: 38212535 DOI: 10.1007/s10787-023-01407-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 11/27/2023] [Indexed: 01/13/2024]
Abstract
Diabetes mellitus is a prevalent cause of mortality worldwide and can lead to several secondary issues, including DWs, which are caused by hyperglycemia, diabetic neuropathy, anemia, and ischemia. Roughly 15% of diabetic patient's experience complications related to DWs, with 25% at risk of lower limb amputations. A conventional management protocol is currently used for treating diabetic foot syndrome, which involves therapy using various substances, such as bFGF, pDGF, VEGF, EGF, IGF-I, TGF-β, skin substitutes, cytokine stimulators, cytokine inhibitors, MMPs inhibitors, gene and stem cell therapies, ECM, and angiogenesis stimulators. The protocol also includes wound cleaning, laser therapy, antibiotics, skin substitutes, HOTC therapy, and removing dead tissue. It has been observed that treatment with numerous plants and their active constituents, including Globularia Arabica, Rhus coriaria L., Neolamarckia cadamba, Olea europaea, Salvia kronenburgii, Moringa oleifera, Syzygium aromaticum, Combretum molle, and Myrtus communis, has been found to promote wound healing, reduce inflammation, stimulate angiogenesis, and cytokines production, increase growth factors production, promote keratinocyte production, and encourage fibroblast proliferation. These therapies may also reduce the need for amputations. However, there is still limited information on how to prevent and manage DWs, and further research is needed to fully understand the role of alternative treatments in managing complications of DWs. The conventional management protocol for treating diabetic foot syndrome can be expensive and may cause adverse side effects. Alternative therapies, such as medicinal plants and green synthesis of nano-formulations, may provide efficient and affordable treatments for DWs.
Collapse
Affiliation(s)
- Jagat Pal Yadav
- Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, 211007, India.
- Pharmacology Research Laboratory, Faculty of Pharmaceutical Sciences, Rama University, Kanpur, 209217, India.
- Bioorganic and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, 211007, India.
| | - Ankit Kumar Singh
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, 151401, India
| | - Maria Grishina
- Laboratory of Computational Modeling of Drugs, Higher Medical and Biological School, South Ural State University, Chelyabinsk, 454008, Russia
| | - Prateek Pathak
- Department of Pharmaceutical Analysis, Quality Assurance, and Pharmaceutical Chemistry, School of Pharmacy, GITAM (Deemed to Be University), Hyderabad, 502329, India
| | - Amita Verma
- Bioorganic and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, 211007, India
| | - Vikas Kumar
- Natural Product Drug Discovery Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, 211007, India
| | - Pradeep Kumar
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, 151401, India
| | - Dinesh Kumar Patel
- Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, 211007, India.
| |
Collapse
|
16
|
Choi CR, Kim EJ, Choi TH, Han J, Kang D. Enhancing Human Cutaneous Wound Healing through Targeted Suppression of Large Conductance Ca 2+-Activated K + Channels. Int J Mol Sci 2024; 25:803. [PMID: 38255877 PMCID: PMC10815220 DOI: 10.3390/ijms25020803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 12/28/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
The modulation of K+ channels plays a crucial role in cell migration and proliferation, but the effect of K+ channels on human cutaneous wound healing (CWH) remains underexplored. This study aimed to determine the necessity of modulating K+ channel activity and expression for human CWH. The use of 25 mM KCl as a K+ channel blocker markedly improved wound healing in vitro (in keratinocytes and fibroblasts) and in vivo (in rat and porcine models). K+ channel blockers, such as quinine and tetraethylammonium, aided in vitro wound healing, while Ba2+ was the exception and did not show similar effects. Single-channel recordings revealed that the Ba2+-insensitive large conductance Ca2+-activated K+ (BKCa) channel was predominantly present in human keratinocytes. NS1619, an opener of the BKCa channel, hindered wound healing processes like proliferation, migration, and filopodia formation. Conversely, charybdotoxin and iberiotoxin, which are BKCa channel blockers, dramatically enhanced these processes. The downregulation of BKCa also improved CWH, whereas its overexpression impeded these healing processes. These findings underscore the facilitative effect of BKCa channel suppression on CWH, proposing BKCa channels as potential molecular targets for enhancing human cutaneous wound healing.
Collapse
Affiliation(s)
- Chang-Rok Choi
- Department of Physiology, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea; (C.-R.C.); (E.-J.K.); (J.H.)
| | - Eun-Jin Kim
- Department of Physiology, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea; (C.-R.C.); (E.-J.K.); (J.H.)
- Institute of Medical Sciences, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Tae Hyun Choi
- Thenevus Plastic Surgery Clinic, Seoul 07013, Republic of Korea;
| | - Jaehee Han
- Department of Physiology, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea; (C.-R.C.); (E.-J.K.); (J.H.)
| | - Dawon Kang
- Department of Physiology, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea; (C.-R.C.); (E.-J.K.); (J.H.)
- Institute of Medical Sciences, Gyeongsang National University, Jinju 52727, Republic of Korea
| |
Collapse
|
17
|
Algandaby MM, Esmat A, Nasrullah MZ, Alhakamy NA, Abdel-Naim AB, Rashad OM, Elhady SS, Eltamany EE. LC-MS based metabolic profiling and wound healing activity of a chitosan nanoparticle-loaded formula of Teucrium polium in diabetic rats. Biomed Pharmacother 2023; 168:115626. [PMID: 37852098 DOI: 10.1016/j.biopha.2023.115626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/25/2023] [Accepted: 10/03/2023] [Indexed: 10/20/2023] Open
Abstract
Healing of wounds is the most deteriorating diabetic experience. Felty germander (Teucrium polium) possesses antioxidant, anti-inflammatory and antimicrobial activities that could accelerate wound healing. Further, nanohydrogels help quicken healing and are ideal biomaterials for drug delivery. In the current study, the chemical profiling, and standardization of T. polium methanolic extract by LC-ESI/TOF/MS/MS and quantitative HPLC-DAD analyses were achieved. The wound healing enhancement in diabetic rats by T. polium nanopreparation (TP-NP) as chitosan nanogel (CS-NG) and investigating the potential mechanisms were investigated. The prepared hydrogel-based TP-NP were characterized with respect to particle size, zeta potential, pH, viscosity, and release of major components. LC-ESI/TOF/MS/MS metabolomic profiling of T. polium revealed the richness of the plant with phenolic compounds, particularly flavonoids. In addition, several terpenoids were detected. Kaempferol content of T. polium was estimated to be 7.85 ± 0.022 mg/ g of dry extract. The wound healing activity of TP-NP was explored in streptozotocin-induced diabetic rats. Diabetic animals were subjected to surgical wounding (1 cm diameter). Then they were divided in 5 groups (10 each). These included Group 1 (untreated control rats), Group 2 received the vehicle of CS-NG; Group 3 (0.5 g of TP prepared in hydrogel), Group 4 (0.5 g of TP-NP), Group 5 represented a positive control treated with 0.5 g of a commercial product. All treatments were applied topically for 21 days. Application of TP-NP on skin wounds of diabetic animals accelerated the healing process as evidenced by epithelium regeneration, formation of granulation tissue followed by epidermal proliferation, along with keratinization as verified by H&E. This was confirmed through enhanced collagen synthesis, as shown by raised hydroxyproline content and Col1A1 gene expression. Moreover, TP-NP significantly alleviated wound oxidative burst and diminished the expressions of inflammatory biomarkers. Meanwhile, TP-NP could enhance the expressions of transforming growth factor beta1 (TGF-β1), in addition to the angiogenic markers; vascular endothelia growth factor A (VEGFA) and platelet-derived growth factor receptor alpha (PDGFRα). Collectively, chitosan nanogel of T. polium accelerates wound healing in diabetic rats, which could be explained - at least partly - through alleviating oxidative stress and inflammation coupled with pro-angiogenic capabilities.
Collapse
Affiliation(s)
- Mardi M Algandaby
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Ahmed Esmat
- Department of Pharmacology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Mohammed Z Nasrullah
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Nabil A Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Mohamed Saeed Tamer Chair for Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Ashraf B Abdel-Naim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Omar M Rashad
- Department of Pharmaceutical Technology, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt.
| | - Sameh S Elhady
- Department of Natural Products, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Enas E Eltamany
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt.
| |
Collapse
|
18
|
Miao L, Liu C, Cheong MS, Zhong R, Tan Y, Rengasamy KRR, Leung SWS, Cheang WS, Xiao J. Exploration of natural flavones' bioactivity and bioavailability in chronic inflammation induced-type-2 diabetes mellitus. Crit Rev Food Sci Nutr 2023; 63:11640-11667. [PMID: 35821658 DOI: 10.1080/10408398.2022.2095349] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Diabetes, being the most widespread illness, poses a serious threat to global public health. It seems that inflammation plays a critical role in the pathophysiology of diabetes. This review aims to demonstrate a probable link between type 2 diabetes mellitus (T2DM) and chronic inflammation during its development. Additionally, the current review examined the bioactivity of natural flavones and the possible molecular mechanisms by which they influence diabetes and inflammation. While natural flavones possess remarkable anti-diabetic and anti-inflammatory bioactivities, their therapeutic use is limited by the low oral bioavailability. Several factors contribute to the low bioavailability, including poor water solubility, food interaction, and unsatisfied metabolic behaviors, while the diseases (diabetes, inflammation, etc.) causing even less bioavailability. Throughout the years, different strategies have been developed to boost flavones' bioavailability, including structural alteration, biological transformation, and innovative drug delivery system design. This review addresses current advancements in improving the bioavailability of flavonoids in general, and flavones in particular. Clinical trials were also analyzed to provide insight into the potential application of flavonoids in diabetes and inflammatory therapies.
Collapse
Affiliation(s)
- Lingchao Miao
- State Key Laboratory of Quality Control in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China
| | - Conghui Liu
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Meang Sam Cheong
- State Key Laboratory of Quality Control in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China
| | - Ruting Zhong
- State Key Laboratory of Quality Control in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China
| | - Yi Tan
- State Key Laboratory of Quality Control in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China
| | - Kannan R R Rengasamy
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, India
| | - Susan Wai Sum Leung
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Wai San Cheang
- State Key Laboratory of Quality Control in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China
| | - Jianbo Xiao
- Department of Analytical and Food Chemistry, Faculty of Sciences, Universidade de Vigo, Nutrition and Bromatology Group, Ourense, Spain
| |
Collapse
|
19
|
Zhang L, Qin D, Feng J, Tang T, Cheng H. Rapid quantitative detection of luteolin using an electrochemical sensor based on electrospinning of carbon nanofibers doped with single-walled carbon nanoangles. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023. [PMID: 37318338 DOI: 10.1039/d3ay00497j] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
In this study, single-walled carbon nanoangles/carbon nanofibers (SWCNHs/CNFs) were synthesized by electrospinning, followed by annealing in a N2 atmosphere. The synthesized composite was structurally characterized by scanning electron microscopy, transmission electron microscopy, and X-ray photoelectron spectroscopy. The electrochemical sensor was fabricated by modifying a glassy carbon electrode (GCE) for luteolin detection, and its electrochemical characteristics were investigated using differential pulse voltammetry, cyclic voltammetry, and chronocoulometry. Under optimized conditions, the response range of the electrochemical sensor to luteolin was 0.01-50 μM, and the detection limit was 3.714 nM (S/N = 3). The SWCNHs/CNFs/GCE sensor showed excellent selectivity, repeatability, and reproducibility, thus enabling the development of an economical and practical electrochemical method for the detection of luteolin.
Collapse
Affiliation(s)
- Liwen Zhang
- Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou 545006, Guangxi Province, P. R. China.
| | - Danfeng Qin
- Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou 545006, Guangxi Province, P. R. China.
- School of Medicine, Guangxi University of Science and Technology, Liuzhou 545006, Guangxi Province, P. R. China
| | - Jun Feng
- Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou 545006, Guangxi Province, P. R. China.
- School of Medicine, Guangxi University of Science and Technology, Liuzhou 545006, Guangxi Province, P. R. China
| | - Tingfan Tang
- Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou 545006, Guangxi Province, P. R. China.
| | - Hao Cheng
- Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou 545006, Guangxi Province, P. R. China.
- Province and Ministry Co-sponsored Collaborative Innovation Center of Sugarcane and Sugar Industry, Nanning 530004, Guangxi Province, People's Republic of China
| |
Collapse
|
20
|
Accipe L, Abadie A, Neviere R, Bercion S. Antioxidant Activities of Natural Compounds from Caribbean Plants to Enhance Diabetic Wound Healing. Antioxidants (Basel) 2023; 12:antiox12051079. [PMID: 37237945 DOI: 10.3390/antiox12051079] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/23/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
Diabetic wound healing is a global medical challenge. Several studies showed that delayed healing in diabetic patients is multifactorial. Nevertheless, there is evidence that excessive production of ROS and impaired ROS detoxification in diabetes are the main cause of chronic wounds. Indeed, increased ROS promotes the expression and activity of metalloproteinase, resulting in a high proteolytic state in the wound with significant destruction of the extracellular matrix, which leads to a stop in the repair process. In addition, ROS accumulation increases NLRP3 inflammasome activation and macrophage hyperpolarization in the M1 pro-inflammatory phenotype. Oxidative stress increases the activation of NETosis. This leads to an elevated pro-inflammatory state in the wound and prevents the resolution of inflammation, an essential step for wound healing. The use of medicinal plants and natural compounds can improve diabetic wound healing by directly targeting oxidative stress and the transcription factor Nrf2 involved in the antioxidant response or the mechanisms impacted by the elevation of ROS such as NLRP3 inflammasome, the polarization of macrophages, and expression or activation of metalloproteinases. This study of the diabetic pro-healing activity of nine plants found in the Caribbean highlights, more particularly, the role of five polyphenolic compounds. At the end of this review, research perspectives are presented.
Collapse
Affiliation(s)
- Laura Accipe
- UR5_3 PC2E Cardiac Pathology, Environmental Toxicity and Envenomations, Université des Antilles, BP 250, CEDEX, 97157 Pointe à Pitre, France
| | - Alisson Abadie
- UR5_3 PC2E Cardiac Pathology, Environmental Toxicity and Envenomations, Université des Antilles, BP 250, CEDEX, 97157 Pointe à Pitre, France
| | - Remi Neviere
- UR5_3 PC2E Cardiac Pathology, Environmental Toxicity and Envenomations, Université des Antilles, BP 250, CEDEX, 97157 Pointe à Pitre, France
- CHU Martinique, University Hospital of Martinique, 97200 Fort de France, France
| | - Sylvie Bercion
- UR5_3 PC2E Cardiac Pathology, Environmental Toxicity and Envenomations, Université des Antilles, BP 250, CEDEX, 97157 Pointe à Pitre, France
| |
Collapse
|
21
|
El-Sherbeni SA, Negm WA. The wound healing effect of botanicals and pure natural substances used in in vivo models. Inflammopharmacology 2023; 31:755-772. [PMID: 36811778 PMCID: PMC10140094 DOI: 10.1007/s10787-023-01157-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 02/06/2023] [Indexed: 02/24/2023]
Abstract
Repairing the wound is a multistep process that includes the spatial and temporal synchronization of a different range of cell types to increase the speed of wound contraction, the proliferation of epithelial cells, and collagen formation. The need for proper management of acute wounds to be cured and not turned into chronic wounds is a significant clinical challenge. The traditional practice of medicinal plants in many regions of the world has been used in wound healing since ancient times. Recent scientific research introduced evidence of the efficacy of medicinal plants, their phyto-components, and the mechanisms underlying their wound-repairing activity. This review aims to briefly highlight the wound-curing effect of different plant extracts and purely natural substances in excision, incision, and burn experimental animal models with or without infection of mice, rats (diabetic and nondiabetic), and rabbits in the last 5 years. The in vivo studies represented reliable evidence of how powerful natural products are in healing wounds properly. They have good scavenging activity against Reactive oxygen species (ROS) and anti-inflammatory and antimicrobial effects that help in the process of wound healing. It is evident that incorporating bioactive natural products into wound dressings of bio- or synthetic polymers in nanofiber, hydrogel, film, scaffold, and sponge forms showed promising results in different phases of the wound-curing process of haemostasis, inflammation, growth, re-epithelialization, and remodelling.
Collapse
Affiliation(s)
- S. A. El-Sherbeni
- Department of Pharmacognosy, Faculty of Pharmacy, Tanta University, Tanta, 31527 Egypt
| | - W. A. Negm
- Department of Pharmacognosy, Faculty of Pharmacy, Tanta University, Tanta, 31527 Egypt
| |
Collapse
|
22
|
Sprouse J, Sampath C, Gangula P. 17β-Estradiol Suppresses Gastric Inflammatory and Apoptotic Stress Responses and Restores nNOS-Mediated Gastric Emptying in Streptozotocin (STZ)-Induced Diabetic Female Mice. Antioxidants (Basel) 2023; 12:758. [PMID: 36979006 PMCID: PMC10045314 DOI: 10.3390/antiox12030758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/09/2023] [Accepted: 03/12/2023] [Indexed: 03/30/2023] Open
Abstract
Gastroparesis (Gp) is a severe complication of diabetes mellitus (DM) observed predominantly in women. It is characterized by abnormal gastric emptying (GE) without mechanical obstruction in the stomach. Nitric oxide (NO) is an inhibitory neurotransmitter produced by neuronal nitric oxide synthase (nNOS). It plays a critical role in gastrointestinal (GI) motility and stomach emptying. Here, we wanted to demonstrate the protective effects of supplemental 17β-estradiol (E2) on NO-mediated gastric function. We showed E2 supplementation to alleviate oxidative and inflammatory stress in streptozotocin (STZ)-induced diabetic female mice. Our findings suggest that daily administration of E2 at therapeutic doses is beneficial for metabolic homeostasis. This restoration occurs via regulating and modulating the expression/function of glycogen synthase kinase-3β (GSK-3β), nuclear factor-erythroid 2 p45-related factor 2 (Nrf2), Phase II enzymes, MAPK- and nuclear factor kappa-light-chain-enhancer of activated B cells (NFkB)-mediated inflammatory cytokines (IL-1β, IL-6, TNFα, IGF-1), and gastric apoptotic regulators. We also showed E2 supplementation to elevate GCH-1 protein levels in female diabetic mice. Since GCH-1 facilitates the production of tetrahydrobiopterin (BH4, cofactor for nNOS), an increase in GCH-1 protein levels in diabetic mice may improve their GE and nitrergic function. Our findings provide new insights into the impact of estrogen on gastric oxidative stress and intracellular inflammatory cascades in the context of Gp.
Collapse
Affiliation(s)
- Jeremy Sprouse
- Department of Oral Diagnostic Sciences and Research, School of Dentistry, Meharry Medical College, Nashville, TN 37208, USA
- Department of Endodontics, School of Dentistry, Meharry Medical College, Nashville, TN 37208, USA
| | - Chethan Sampath
- Department of Oral Diagnostic Sciences and Research, School of Dentistry, Meharry Medical College, Nashville, TN 37208, USA
| | - Pandu Gangula
- Department of Oral Diagnostic Sciences and Research, School of Dentistry, Meharry Medical College, Nashville, TN 37208, USA
| |
Collapse
|
23
|
Zulkefli N, Che Zahari CNM, Sayuti NH, Kamarudin AA, Saad N, Hamezah HS, Bunawan H, Baharum SN, Mediani A, Ahmed QU, Ismail AFH, Sarian MN. Flavonoids as Potential Wound-Healing Molecules: Emphasis on Pathways Perspective. Int J Mol Sci 2023; 24:ijms24054607. [PMID: 36902038 PMCID: PMC10003005 DOI: 10.3390/ijms24054607] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/21/2023] [Accepted: 01/25/2023] [Indexed: 03/02/2023] Open
Abstract
Wounds are considered to be a serious problem that affects the healthcare sector in many countries, primarily due to diabetes and obesity. Wounds become worse because of unhealthy lifestyles and habits. Wound healing is a complicated physiological process that is essential for restoring the epithelial barrier after an injury. Numerous studies have reported that flavonoids possess wound-healing properties due to their well-acclaimed anti-inflammatory, angiogenesis, re-epithelialization, and antioxidant effects. They have been shown to be able to act on the wound-healing process via expression of biomarkers respective to the pathways that mainly include Wnt/β-catenin, Hippo, Transforming Growth Factor-beta (TGF-β), Hedgehog, c-Jun N-Terminal Kinase (JNK), NF-E2-related factor 2/antioxidant responsive element (Nrf2/ARE), Nuclear Factor Kappa B (NF-κB), MAPK/ERK, Ras/Raf/MEK/ERK, phosphatidylinositol 3-kinase (PI3K)/Akt, Nitric oxide (NO) pathways, etc. Hence, we have compiled existing evidence on the manipulation of flavonoids towards achieving skin wound healing, together with current limitations and future perspectives in support of these polyphenolic compounds as safe wound-healing agents, in this review.
Collapse
Affiliation(s)
- Nabilah Zulkefli
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | | | - Nor Hafiza Sayuti
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Ammar Akram Kamarudin
- UKM Molecular Biology Institute (UMBI), UKM Medical Center, Kuala Lumpur 56000, Selangor, Malaysia
| | - Norazalina Saad
- Laboratory of Cancer Research UPM-MAKNA (CANRES), Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Hamizah Shahirah Hamezah
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Hamidun Bunawan
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Syarul Nataqain Baharum
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Ahmed Mediani
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Qamar Uddin Ahmed
- Drug Discovery and Synthetic Chemistry Research Group, Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan 25200, Pahang, Malaysia
| | - Ahmad Fahmi Harun Ismail
- Kulliyyah of Allied Health Sciences, International Islamic University Malaysia, Kuantan 25200, Pahang, Malaysia
- Correspondence: (A.F.H.I.); (M.N.S.)
| | - Murni Nazira Sarian
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
- Correspondence: (A.F.H.I.); (M.N.S.)
| |
Collapse
|
24
|
Chen J, Qin S, Liu S, Zhong K, Jing Y, Wu X, Peng F, Li D, Peng C. Targeting matrix metalloproteases in diabetic wound healing. Front Immunol 2023; 14:1089001. [PMID: 36875064 PMCID: PMC9981633 DOI: 10.3389/fimmu.2023.1089001] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 02/06/2023] [Indexed: 02/19/2023] Open
Abstract
Chronic inflammation participates in the progression of multiple chronic diseases, including obesity, diabetes mellitus (DM), and DM related complications. Diabetic ulcer, characterized by chronic wounds that are recalcitrant to healing, is a serious complication of DM tremendously affecting the quality of life of patients and imposing a costly medical burden on society. Matrix metalloproteases (MMPs) are a family of zinc endopeptidases with the capacity of degrading all the components of the extracellular matrix, which play a pivotal part in healing process under various conditions including DM. During diabetic wound healing, the dynamic changes of MMPs in the serum, skin tissues, and wound fluid of patients are in connection with the degree of wound recovery, suggesting that MMPs can function as essential biomarkers for the diagnosis of diabetic ulcer. MMPs participate in various biological processes relevant to diabetic ulcer, such as ECM secretion, granulation tissue configuration, angiogenesis, collagen growth, re-epithelization, inflammatory response, as well as oxidative stress, thus, seeking and developing agents targeting MMPs has emerged as a potential way to treat diabetic ulcer. Natural products especially flavonoids, polysaccharides, alkaloids, polypeptides, and estrogens extracted from herbs, vegetables, as well as animals that have been extensively illustrated to treat diabetic ulcer through targeting MMPs-mediated signaling pathways, are discussed in this review and may contribute to the development of functional foods or drug candidates for diabetic ulcer therapy. This review highlights the regulation of MMPs in diabetic wound healing, and the potential therapeutic ability of natural products for diabetic wound healing by targeting MMPs.
Collapse
Affiliation(s)
- Junren Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Siqi Qin
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shengmeng Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Kexin Zhong
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yiqi Jing
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xuan Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau SAR, China
| | - Fu Peng
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Department of Pharmacology, Sichuan University, Chengdu, China
- Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Dan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
25
|
Huang L, Kim MY, Cho JY. Immunopharmacological Activities of Luteolin in Chronic Diseases. Int J Mol Sci 2023; 24:ijms24032136. [PMID: 36768462 PMCID: PMC9917216 DOI: 10.3390/ijms24032136] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/13/2023] [Accepted: 01/19/2023] [Indexed: 01/25/2023] Open
Abstract
Flavonoids have been shown to have anti-oxidative effects, as well as other health benefits (e.g., anti-inflammatory and anti-tumor functions). Luteolin (3', 4', 5,7-tetrahydroxyflavone) is a flavonoid found in vegetables, fruits, flowers, and herbs, including celery, broccoli, green pepper, navel oranges, dandelion, peppermint, and rosemary. Luteolin has multiple useful effects, especially in regulating inflammation-related symptoms and diseases. In this paper, we summarize the studies about the immunopharmacological activity of luteolin on anti-inflammatory, anti-cardiovascular, anti-cancerous, and anti-neurodegenerative diseases published since 2018 and available in PubMed or Google Scholar. In this review, we also introduce some additional formulations of luteolin to improve its solubility and bioavailability.
Collapse
Affiliation(s)
- Lei Huang
- Department of Biocosmetics, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Mi-Yeon Kim
- School of Systems Biomedical Science, Soongsil University, Seoul 06978, Republic of Korea
- Correspondence: (M.-Y.K.); (J.Y.C.); Tel.:+82-2-820-0458 (M.-Y.K.); +82-31-290-7868 (J.Y.C.)
| | - Jae Youl Cho
- Department of Biocosmetics, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Correspondence: (M.-Y.K.); (J.Y.C.); Tel.:+82-2-820-0458 (M.-Y.K.); +82-31-290-7868 (J.Y.C.)
| |
Collapse
|
26
|
Guo J, Zhang JX. [Research advances on the role of nuclear factor-erythroid 2-related factor 2 in wound healing]. ZHONGHUA SHAO SHANG YU CHUANG MIAN XIU FU ZA ZHI 2023; 39:91-95. [PMID: 36740433 DOI: 10.3760/cma.j.cn501225-20220531-00209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Wound healing is one of the common pathophysiological processes in the body. How to improve the condition of wound healing to promote rapid wound healing has always been a hotspot in research. Oxidative stress is one of the important factors affecting wound healing. Nuclear factor-erythroid 2-related factor 2 (Nrf2) is a classic antioxidant stress factor as well as a factor with great potential in facilitating wound healing. The activation of Nrf2 can regulate the downstream antioxidant stress elements and play roles of anti-apoptosis and cell homeostasis maintaining, which improves wound healing environment and promotes wound repair. This paper summarized the common agonists and inhibitors of Nrf2 and reviewed the roles of Nrf2 in promoting skin wound healing including diabetic ulcers, radiation injury, and ischemia-reperfusion injury, etc.
Collapse
Affiliation(s)
- J Guo
- School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - J X Zhang
- School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| |
Collapse
|
27
|
Martins-Gomes C, Nunes FM, Silva AM. Modulation of Cell Death Pathways for Cellular Protection and Anti-Tumoral Activity: The Role of Thymus spp. Extracts and Their Bioactive Molecules. Int J Mol Sci 2023; 24:ijms24021691. [PMID: 36675206 PMCID: PMC9864824 DOI: 10.3390/ijms24021691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/06/2023] [Accepted: 01/10/2023] [Indexed: 01/18/2023] Open
Abstract
Natural products used for their health-promoting properties have accompanied the evolution of humanity. Nowadays, as an effort to scientifically validate the health-promoting effects described by traditional medicine, an ever-growing number of bioactivities are being described for natural products and the phytochemicals that constitute them. Among them, medicinal plants and more specifically the Thymus genus spp., arise as products already present in the diet and with high acceptance, that are a source of phytochemicals with high pharmacological value. Phenolic acids, flavonoid glycoside derivatives, and terpenoids from Thymus spp. have been described for their ability to modulate cell death and survival pathways, much-valued bioactivities in the pharmaceutical industry, that continually sought-after new formulations to prevent undesired cell death or to control cell proliferation. Among these, wound treatment, protection from endogenous/exogenous toxic molecules, or the induction of selective cell death, such as the search for new anti-tumoral agents, arise as main objectives. This review summarizes and discusses studies on Thymus spp., as well as on compounds present in their extracts, with regard to their health-promoting effects involving the modulation of cell death or survival signaling pathways. In addition, studies regarding the main bioactive molecules and their cellular molecular targets were also reviewed. Concerning cell survival and proliferation, Thymus spp. present themselves as an option for new formulations designed for wound healing and protection against chemicals-induced toxicity. However, Thymus spp. extracts and some of their compounds regulate cell death, presenting anti-tumoral activity. Therefore Thymus spp. is a rich source of compounds with nutraceutical and pharmaceutical value.
Collapse
Affiliation(s)
- Carlos Martins-Gomes
- Centre for Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Cell Biology and Biochemistry Lab, University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5001-801 Vila Real, Portugal
- Chemistry Research Centre-Vila Real (CQ-VR), Food and Wine Chemistry Lab, UTAD Quinta de Prados, 5001-801 Vila Real, Portugal
| | - Fernando M. Nunes
- Chemistry Research Centre-Vila Real (CQ-VR), Food and Wine Chemistry Lab, UTAD Quinta de Prados, 5001-801 Vila Real, Portugal
- Department of Chemistry, School of Life Sciences and Environment, UTAD, 5001-801 Vila Real, Portugal
| | - Amélia M. Silva
- Centre for Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Cell Biology and Biochemistry Lab, University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5001-801 Vila Real, Portugal
- Department of Biology and Environment, School of Life Sciences and Environment, UTAD, 5001-801 Vila Real, Portugal
- Correspondence: ; Tel.: +351-259-350-921
| |
Collapse
|
28
|
Li Y, Ju S, Li X, Li W, Zhou S, Wang G, Cai Y, Dong Z. Characterization of the microenvironment of diabetic foot ulcers and potential drug identification based on scRNA-seq. Front Endocrinol (Lausanne) 2023; 13:997880. [PMID: 36686438 PMCID: PMC9845942 DOI: 10.3389/fendo.2022.997880] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 12/02/2022] [Indexed: 01/05/2023] Open
Abstract
Background Diabetes foot ulcers (DFUs) are a type of foot infection, ulcer, and/or deep tissue destruction caused by neuropathy and vascular disease in the distal extremities of diabetic patients. Its pathogenesis and its microenvironment are not entirely understood. Methods Initially, the GSE165816 data set from the GEO database was utilized for single cell analysis to reveal the microenvironment and functional status of DFUs. The GSE199939 RNA-seq data set was utilized for external validation. On the basis of the logistic regression machine learning algorithm (OCLR), pseudo time series analysis, dryness index analysis, and drug target gene analysis were then performed. By constructing drug-gene and gene-gene networks, we can locate the most recent DFUs treatments. Finally, immunofluorescence technology was used to detect the cell-related markers of the DFUs microenvironment, and qPCR was used to detect the expression of drug targets in DFUs. Results Firstly, we used the Cell Maker database to obtain information about human cells and related gene markers, and manually reviewed a total of 45 kinds of cells and maker information that may appear in the DFUs microenvironment, which were divided into 17 cell clusters after annotation. Subsequently, we counted the proportions of DM and DFUs in different types of cells, and the results showed that the proportions of macrophages, white blood cells, and monocytes were higher in patients with DFUs, while the proportions of pluripotent stem cells and stromal cells were higher in patients with DM. The Pseudo-time series analysis of cells in DFUs showed that the differentiation pathways of immune cells, mesenchymal cells and stem cells were similar in the three states, while the other cells were distributed in different stages. At the level of a single cell, the scores of both multipotential stem cells and hematopoietic stem cells were significantly lower in DFU healing and non-healing than in DM. Additionally, the highly expressed genes in DFU were chosen as drug targets. We identified seven potential target genes and discovered twenty drugs with high significance. Finally, the colocalization relationship between CD19, ITGAM, and HLA-DR expression in monocytes and macrophages of DFU skin tissue and healthy subjects was analyzed by laser confocal microscopy with the immunofluorescence triple labeling method. The results showed that the expressions of CD19, ITGAM, and HLA-DR in the skin of DFUs were significantly higher than those in the skin of healthy subjects, and the co-localization relationship was significant in DFUs. Conclusion This study can serve as a resource for the treatment of DFUs.
Collapse
Affiliation(s)
- Yao Li
- Vascular and wound center, Jinshan Hospital, Fudan University, Shanghai, China
| | - Shuai Ju
- Vascular and wound center, Jinshan Hospital, Fudan University, Shanghai, China
| | - Xiaoyan Li
- Vascular and wound center, Jinshan Hospital, Fudan University, Shanghai, China
| | - Wenqiang Li
- Vascular and wound center, Jinshan Hospital, Fudan University, Shanghai, China
| | - Siyuan Zhou
- Vascular and wound center, Jinshan Hospital, Fudan University, Shanghai, China
- Shanghai Medical College, Fudan University, Shanghai, China
| | - Guili Wang
- Vascular and wound center, Jinshan Hospital, Fudan University, Shanghai, China
- Shanghai Medical College, Fudan University, Shanghai, China
| | - Yunmin Cai
- Vascular and wound center, Jinshan Hospital, Fudan University, Shanghai, China
| | - Zhihui Dong
- Vascular and wound center, Jinshan Hospital, Fudan University, Shanghai, China
- Department of vascular surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
29
|
Chanu NR, Gogoi P, Barbhuiya PA, Dutta PP, Pathak MP, Sen S. Natural Flavonoids as Potential Therapeutics in the Management of Diabetic Wound: A Review. Curr Top Med Chem 2023; 23:690-710. [PMID: 37114791 DOI: 10.2174/1568026623666230419102140] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 02/25/2023] [Accepted: 02/27/2023] [Indexed: 04/29/2023]
Abstract
Flavonoids are important bioactive phenolic compounds abundant in plants and exhibit different therapeutic potentials. A wound is a significant problem in diabetic individuals. A hyperglycaemic environment alters the normal wound-healing process and increases the risk of microbial infection, leading to hospitalization, morbidity, and amputation. Flavonoids are an important class of phytochemicals with excellent antioxidant, anti-inflammatory, antimicrobial, antidiabetic, antitumor, and wound healing property. Quercetin, hesperidin, curcumin, kaempferol, apigenin, luteolin, morin, etc. have shown their wound healing potential. Flavonoids effectively exhibit antimicrobial activity, scavenge reactive oxygen species, augment endogenous antioxidants, reduce the expression and synthesis of inflammatory cytokines (i.e. IL-1β, IL-6, TNF-α, NF-κB), inhibit inflammatory enzymes, enhance anti-inflammatory cytokine (IL-10), enhance insulin section, reduce insulin resistance, and control blood glucose level. Several flavonoids like hesperidin, curcumin, quercetin, rutin, naringin, and luteolin have shown their potential in managing diabetic wounds. Natural products that maintain glucose haemostatic, exert anti-inflammatory activity, suppress/inhibit microbial growth, modulate cytokines, inhibit matrix metalloproteinase (MMP), stimulate angiogenesis and extracellular matrix, and modulate growth factor can be considered as a potential therapeutic lead to treat diabetic wound. Flavonoids were found to play a positive role in management of diabetic wounds by regulating MMP-2, MMP-8, MMP-9, MMP-13, Ras/Raf/ MEK/ERK, PI3K/Akt, and nitric oxide pathways. Therefore, it can be assumed that flavonoids could be potential therapeutics to prevent devastating effects of diabetic wounds. This paper focused on the potential role of flavonoids in managing diabetic wounds and discussed their possible mechanism of action.
Collapse
Affiliation(s)
| | - Pal Gogoi
- Faculty of Pharmaceutical Science, Assam down town University, Guwahati, Assam, 781026, India
| | - Pervej Alom Barbhuiya
- Faculty of Pharmaceutical Science, Assam down town University, Guwahati, Assam, 781026, India
| | - Partha Pratim Dutta
- Faculty of Pharmaceutical Science, Assam down town University, Guwahati, Assam, 781026, India
| | - Manash Pratim Pathak
- Faculty of Pharmaceutical Science, Assam down town University, Guwahati, Assam, 781026, India
| | - Saikat Sen
- Faculty of Pharmaceutical Science, Assam down town University, Guwahati, Assam, 781026, India
| |
Collapse
|
30
|
Deng P, Liang H, Wang S, Hao R, Han J, Sun X, Pan X, Li D, Wu Y, Huang Z, Xue J, Chen Z. Combined metabolomics and network pharmacology to elucidate the mechanisms of Dracorhodin Perchlorate in treating diabetic foot ulcer rats. Front Pharmacol 2022; 13:1038656. [PMID: 36532755 PMCID: PMC9752146 DOI: 10.3389/fphar.2022.1038656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 10/31/2022] [Indexed: 10/10/2023] Open
Abstract
Background: Diabetic foot ulcer (DFU) is a severe chronic complication of diabetes, that can result in disability or death. Dracorhodin Perchlorate (DP) is effective for treating DFU, but the potential mechanisms need to be investigated. We aimed to explore the mechanisms underlying the acceleration of wound healing in DFU by the topical application of DP through the combination of metabolomics and network pharmacology. Methods: A DFU rat model was established, and the rate of ulcer wound healing was assessed. Different metabolites were found in the skin tissues of each group, and MetaboAnalyst was performed to analyse metabolic pathways. The candidate targets of DP in the treatment of DFU were screened using network pharmacology. Cytoscape was applied to construct an integrated network of metabolomics and network pharmacology. Moreover, the obtained hub targets were validated using molecular docking. After the topical application of DP, blood glucose, the rate of wound healing and pro-inflammatory cytokine levels were assessed. Results: The levels of IL-1, hs-CRP and TNF-α of the Adm group were significantly downregulated. A total of 114 metabolites were identified. These could be important to the therapeutic effects of DP in the treatment of DFU. Based on the network pharmacology, seven hub genes were found, which were partially consistent with the metabolomics results. We focused on four hub targets by further integrated analysis, namely, PAH, GSTM1, DHFR and CAT, and the crucial metabolites and pathways. Molecular docking results demonstrated that DP was well combined with the hub targets. Conclusion: Our research based on metabolomics and network pharmacology demonstrated that DP improves wound healing in DFU through multiple targets and pathways, and it can potentially be used for DFU treatment.
Collapse
Affiliation(s)
- Pin Deng
- School of Graduates, Beijing University of Chinese Medicine, Beijing, China
- Department of Hand and Foot Surgery, Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, China
| | - Huan Liang
- Department of Orthopedics, Beijing Longfu Hospital, Beijing, China
| | - Shulong Wang
- School of Graduates, Beijing University of Chinese Medicine, Beijing, China
- Department of Hand and Foot Surgery, Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, China
| | - Ruinan Hao
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, China
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, China
| | - Jinglu Han
- School of Graduates, Beijing University of Chinese Medicine, Beijing, China
- Department of Hand and Foot Surgery, Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, China
| | - Xiaojie Sun
- School of Graduates, Beijing University of Chinese Medicine, Beijing, China
- Department of Hand and Foot Surgery, Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, China
| | - Xuyue Pan
- Department of Hand and Foot Surgery, Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, China
| | - Dongxiao Li
- School of Graduates, Beijing University of Chinese Medicine, Beijing, China
- Department of Hand and Foot Surgery, Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, China
| | - Yinwen Wu
- School of Graduates, Beijing University of Chinese Medicine, Beijing, China
| | - Zhichao Huang
- School of Graduates, Beijing University of Chinese Medicine, Beijing, China
- Department of Hand and Foot Surgery, Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, China
| | - Jiajia Xue
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, China
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, China
| | - Zhaojun Chen
- Department of Hand and Foot Surgery, Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, China
| |
Collapse
|
31
|
Chen H, Zheng T, Wu C, Wang J, Ye F, Cui M, Sun S, Zhang Y, Li Y, Dong Z. A Shape-Adaptive Gallic Acid Driven Multifunctional Adhesive Hydrogel Loaded with Scolopin2 for Wound Repair. Pharmaceuticals (Basel) 2022; 15:1422. [PMID: 36422552 PMCID: PMC9695609 DOI: 10.3390/ph15111422] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/05/2022] [Accepted: 11/08/2022] [Indexed: 07/22/2023] Open
Abstract
Wound healing is one of the major challenges in the biomedical fields. The conventional single drug treatment has unsatisfactory efficacy, and the drug delivery effectiveness is restricted by the short retention on the wound. Herein, we develop a multifunctional adhesive hydrogel that can realize robust adhesion, transdermal delivery, and combination therapy for wound healing. Multifunctional hydrogels (CS-GA-S) are mixed with chitosan-gallic acid (CS-GA), sodium periodate, and centipede peptide-scolopin2, which slowly releases scolopin2 in the layer of the dermis. The released scolopin2 induces the pro-angiogenesis of skin wounds and enables excellent antibacterial effects. Separately, GA as a natural reactive-oxygen-species-scavenger promotes antioxidation, and further enables excellent antibacterial effects and wet tissue adhesion due to a Schiff base and Michael addition reaction for accelerating wound healing. Once adhered to the wound, the precursor solution becomes both a physically and covalently cross-linked network hydrogel, which has potential advantages for wound healing with ease of use, external environment-isolating, and minimal tissue damage. The therapeutic effects of CS-GA-S on wound healing are demonstrated with the full thickness cutaneous wounds of a mouse model. The significant improvement of wound healing is achieved for mice treated with CS-GA-S. This preparation reduces wound system exposure, prolongs local drug residence time, and improves efficacy. Accordingly, with the incorporation of scolopin2 into the shape-adaptive CS-GA hydrogel, the composite hydrogel possesses multi-functions of mechanical adhesion, drug therapy, and skin wound healing. Overall, such an injectable or sprayable hydrogel plays an effective role in emergency wound treatment with the advantage of convenience and portability.
Collapse
Affiliation(s)
- Huan Chen
- Drug Delivery Research Center, Institute of Medicinal Plant Development, Chines Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Hebei Medical University, Shijiazhuang 050017, China
| | - Tingting Zheng
- Drug Delivery Research Center, Institute of Medicinal Plant Development, Chines Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| | - Chenyang Wu
- Drug Delivery Research Center, Institute of Medicinal Plant Development, Chines Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| | - Jinrui Wang
- Drug Delivery Research Center, Institute of Medicinal Plant Development, Chines Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Heilongjiang University of Chinese Medicine, Harbin 150036, China
| | - Fan Ye
- Drug Delivery Research Center, Institute of Medicinal Plant Development, Chines Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Hebei Medical University, Shijiazhuang 050017, China
| | - Mengyao Cui
- Drug Delivery Research Center, Institute of Medicinal Plant Development, Chines Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| | - Shuhui Sun
- Drug Delivery Research Center, Institute of Medicinal Plant Development, Chines Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Heilongjiang University of Chinese Medicine, Harbin 150036, China
| | - Yun Zhang
- Drug Delivery Research Center, Institute of Medicinal Plant Development, Chines Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100094, China
- Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Beijing 100700, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing 100700, China
| | - Ying Li
- Drug Delivery Research Center, Institute of Medicinal Plant Development, Chines Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100094, China
- Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Beijing 100700, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing 100700, China
| | - Zhengqi Dong
- Drug Delivery Research Center, Institute of Medicinal Plant Development, Chines Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100094, China
- Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Beijing 100700, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing 100700, China
| |
Collapse
|
32
|
Mssillou I, Bakour M, Slighoua M, Laaroussi H, Saghrouchni H, Ez-Zahra Amrati F, Lyoussi B, Derwich E. Investigation on wound healing effect of Mediterranean medicinal plants and some related phenolic compounds: A review. JOURNAL OF ETHNOPHARMACOLOGY 2022; 298:115663. [PMID: 36038091 DOI: 10.1016/j.jep.2022.115663] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/07/2022] [Accepted: 08/19/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The human skin constitutes a biological barrier against external stress and wounds can reduce the role of its physiological structure. In medical sciences, wounds are considered a major problem that requires urgent intervention. For centuries, medicinal plants have been used in the Mediterranean countries for many purposes and against wounds. AIM OF THIS REVIEW Provides an outlook on the Mediterranean medicinal plants used in wound healing. Furthermore, the wound healing effect of polyphenolic compounds and their chemical structures are also summarized. Moreover, we discussed the wound healing process, the structure of the skin, and the current therapies in wound healing. MATERIALS AND METHODS The search was performed in several databases such as ScienceDirect, PubMed, Google Scholar, Scopus, and Web of Science. The following Keywords were used individually and/or in combination: the Mediterranean, wound healing, medicinal plants, phenolic compounds, composition, flavonoid, tannin. RESULTS The wound healing process is distinguished by four phases, which are respectively, hemostasis, inflammation, proliferation, and remodeling. The Mediterranean medicinal plants are widely used in the treatment of wounds. The finding showed that eighty-nine species belonging to forty families were evaluated for their wound-healing effect in this area. The Asteraceae family was the most reported family with 12 species followed by Lamiaceae (11 species). Tunisia, Egypt, Morocco, and Algeria were the countries where these plants are frequently used in wound healing. In addition to medicinal plants, results showed that nineteen phenolic compounds from different classes are used in wound treatment. Tyrosol, hydroxytyrosol, curcumin, luteolin, chrysin, rutin, kaempferol, quercetin, icariin, morin, epigallocatechin gallate, taxifolin, silymarin, hesperidin, naringin, isoliquiritin, puerarin, genistein, and daidzein were the main compounds that showed wound-healing effect. CONCLUSION In conclusion, medicinal plants and polyphenolic compounds provide therapeutic evidence in wound healing and for the development of new drugs in this field.
Collapse
Affiliation(s)
- Ibrahim Mssillou
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health & Quality of Life (SNAMOPEQ), Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco.
| | - Meryem Bakour
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health & Quality of Life (SNAMOPEQ), Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco
| | - Meryem Slighoua
- Laboratory of Biotechnology, Health, Agrofood and Environment (LBEAS), Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, 30000, Morocco
| | - Hassan Laaroussi
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health & Quality of Life (SNAMOPEQ), Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco
| | - Hamza Saghrouchni
- Department of Biotechnology, Institute of Natural and Applied Sciences, Çukurova University, 01330 Balcalı/Sarıçam, Adana, Turkey
| | - Fatima Ez-Zahra Amrati
- Laboratory of Biotechnology, Health, Agrofood and Environment (LBEAS), Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, 30000, Morocco
| | - Badiaa Lyoussi
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health & Quality of Life (SNAMOPEQ), Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco
| | - Elhoussine Derwich
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health & Quality of Life (SNAMOPEQ), Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco; Unity of GC/MS and GC, City of Innovation, Sidi Mohamed Ben Abdellah University, Fez, 30000, Morocco
| |
Collapse
|
33
|
A Comprehensive Review of Natural Compounds for Wound Healing: Targeting Bioactivity Perspective. Int J Mol Sci 2022; 23:ijms23179573. [PMID: 36076971 PMCID: PMC9455684 DOI: 10.3390/ijms23179573] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/20/2022] [Accepted: 08/20/2022] [Indexed: 11/17/2022] Open
Abstract
Wound healing is a recovering process of damaged tissues by replacing dysfunctional injured cellular structures. Natural compounds for wound treatment have been widely used for centuries. Numerous published works provided reviews of natural compounds for wound healing applications, which separated the approaches based on different categories such as characteristics, bioactivities, and modes of action. However, current studies provide reviews of natural compounds that originated from only plants or animals. In this work, we provide a comprehensive review of natural compounds sourced from both plants and animals that target the different bioactivities of healing to promote wound resolution. The compounds were classified into four main groups (i.e., anti-inflammation, anti-oxidant, anti-bacterial, and collagen promotion), mostly studied in current literature from 1992 to 2022. Those compounds are listed in tables for readers to search for their origin, bioactivity, and targeting phases in wound healing. We also reviewed the trend in using natural compounds for wound healing.
Collapse
|
34
|
El-Aasr M, Nohara T, Ikeda T, Abu-Risha SE, Elekhnawy E, Tawfik HO, Shoeib N, Attia G. LC-MS/MS metabolomics profiling of Glechoma hederacea L. methanolic extract; in vitro antimicrobial and in vivo with in silico wound healing studies on Staphylococcus aureus infected rat skin wound. Nat Prod Res 2022; 37:1730-1734. [PMID: 35942893 DOI: 10.1080/14786419.2022.2108421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
LC-MS/MS analysis of Glechoma hederacea L. methanolic extract (GHME), revealed the identification of 25 metabolites. Ursolic acid (1), 2α-hydroxyursolic acid or corosolic acid (2), 2β-hydroxyursolic acid or epi-corosolic (3), luteolin 7-O-β-D-glucopyranoside (4) and rosmarinic acid (5) were isolated and identified using spectroscopy. Antibacterial activity of GHME against multi drug resistance Staphylococcus aureus clinical isolates was measured. Minimum inhibitory concentrations (MICs) were ranged from 62.5 to 500 µg/ml. In vivo wound healing potential of 2%, and 5% GHME prepared hydrogels were criticized on Staphylococcus aureus infected wound rat model. 5% GHME prepared hydrogel treated group showed significant (p < 0.05) shrinkage of their colony forming unit/ml (CFU/ml) values in comparison with standard Fucidin. Meanwhile, wound closure associated with full re-epithelization and hair follicles proliferation was noticed after ten days of treatment. Finally, among the GHME isolated compounds, luteolin 7-O-β-D-glucopyranoside (4) exhibited the highest molecular docking score (-9.6 kcal/mol) against matrix metalloproteinase-8 target (MMP-8).
Collapse
Affiliation(s)
- Mona El-Aasr
- Pharmacognosy Department, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Toshihiro Nohara
- Natural Medicines Laboratory, Faculty of Pharmaceutical Sciences, Sojo University, Kumamoto, Japan
| | - Tsuyushi Ikeda
- Natural Medicines Laboratory, Faculty of Pharmaceutical Sciences, Sojo University, Kumamoto, Japan
| | - Sally E Abu-Risha
- Pharmacology & Toxicology Department, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Engy Elekhnawy
- Pharmaceutical Microbiology Department, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Haytham O Tawfik
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Nagwa Shoeib
- Pharmacognosy Department, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Ghada Attia
- Pharmacognosy Department, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| |
Collapse
|
35
|
Amah CC, Joshua PE, Ekpo DE, Okoro JI, Asomadu RO, Obelenwa UC, Odiba AS. Ethyl acetate fraction of Fagara zanthoxyloides root-bark possess antidiabetic property against alloxan-induced diabetes and its complications in Wistar rat model. JOURNAL OF ETHNOPHARMACOLOGY 2022; 293:115259. [PMID: 35381308 DOI: 10.1016/j.jep.2022.115259] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 03/17/2022] [Accepted: 03/29/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Fagara zanthoxyloides Lam., an African traditional medicinal plant, is used for treatment of malaria and diabetes. AIM To investigate the antidiabetic property of ethyl acetate fraction of F. zanthoxyloides root-bark (EAFFZRB) on alloxan-induced diabetic rats. MATERIALS AND METHODS Extraction, isolation, preliminary phytochemical analysis, and acute toxicity study of ethanol extract and fractions of F. zanthoxyloides root-bark were achieved using standard methods. Phyto-constituents in EAFFZRB were identified using HPLC technique. Forty-eight male Wistar rats (140-185 g) were randomized into 6 groups (n = 8). Groups 1 and 2 served as normal and negative controls, respectively. Diabetes was induced in test groups (2-6) using 150 mg/kg body weight (b.w) Alloxan monohydrate. Rats in groups 4-6 received of 200, 400 and 600 mg/kg b.w. EAFFZRB orally, respectively, for 21 days. Group 3 rats received 5 mg/kg b.w Glibenclamide. The effect of EAFFZRB on alterations in hematological, biochemical, and histological indices of study rats were assessed. RESULTS Extraction of 3500 g ethanol extract yielded 15.71 g EAFFZRB. HPLC fingerprint of EAFFZRB indicated presence of luteolin, rutin, quercetin, apigenin, cinnamic acid and catechin. Diabetes triggered significant (p < 0.05) alterations in b.w., hematological, biochemical and histological indices of test rats relative to normal control. Treatment with EAFFZRB (LD50 = 3807.9 mg/kg b.w.) resulted in remarkable improvements in altered b.w. changes, hematological, biochemical and histological parameters of diabetic rats. CONCLUSION The study demonstrated the antidiabetic potential of EAFFZRB, providing scientific basis for traditional use of the plant in treatment of diabetes and its complications.
Collapse
Affiliation(s)
- Christian Chijioke Amah
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, 410001, Nsukka, Enugu State, Nigeria.
| | - Parker Elijah Joshua
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, 410001, Nsukka, Enugu State, Nigeria.
| | - Daniel Emmanuel Ekpo
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, 410001, Nsukka, Enugu State, Nigeria.
| | - Jacob Ikechukwu Okoro
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, 410001, Nsukka, Enugu State, Nigeria.
| | - Rita Onyekachukwu Asomadu
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, 410001, Nsukka, Enugu State, Nigeria.
| | - Ursula Chidimma Obelenwa
- Department of Microbiology, Alex Ekwueme Federal University, Ndufu-Alike Ikwo, Ebonyi State, Nigeria.
| | - Arome Solomon Odiba
- Department of Molecular Genetics and Biotechnology, Faculty of Biological Sciences, University of Nigeria, 410001, Nsukka, Enugu State, Nigeria; Department of Biochemistry, College of Life Science and Technology, Guangxi University, Nanning, People's Republic of China; National Engineering Research Centre for Non-Food Biorefinery, Guangxi Academy of Sciences, Nanning, People's Republic of China.
| |
Collapse
|
36
|
Liu QP, Chen YY, Yu YY, An P, Xing YZ, Yang HX, Zhang YJ, Rahman K, Zhang L, Luan X, Zhang H. Bie-Jia-Ruan-Mai-Tang, a Chinese Medicine Formula, Inhibits Retinal Neovascularization in Diabetic Mice Through Inducing the Apoptosis of Retinal Vascular Endothelial Cells. Front Cardiovasc Med 2022; 9:959298. [PMID: 35903668 PMCID: PMC9314569 DOI: 10.3389/fcvm.2022.959298] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 06/17/2022] [Indexed: 11/18/2022] Open
Abstract
Proliferative diabetic retinopathy (PDR) is one of the main complications of diabetes, mainly caused by the aberrant proliferation of retinal vascular endothelial cells and the formation of new blood vessels. Traditional Chinese medicines possess great potential in the prevention and treatment of PDR. Bie-Jia-Ruan-Mai-Tang (BJ), a Chinese medicine formula, has a good therapeutic effect on PDR clinically; however, the mechanism of action involved remains unclear. Therefore, we investigated the effect of BJ on PDR through in vitro and in vivo experiments. A diabetic mouse model with PDR was established by feeding a high-fat–high-glucose diet combined with an intraperitoneal injection of streptozotocin (STZ), while high-glucose-exposed human retinal capillary endothelial cells (HRCECs) were employed to mimic PDR in vitro. The in vivo experiments indicated that BJ inhibited the formation of acellular capillaries, decreased the expression of VEGF, and increased the level of ZO-1 in diabetic mice retina. In vitro experiments showed that high glucose significantly promoted cell viability and proliferation. However, BJ inhibited cell proliferation by cycle arrest in the S phase, thus leading to apoptosis; it also increased the production of ROS, decreased the mitochondrial membrane potential, reduced the ATP production, and also reduced the expressions of p-PI3K, p-AKT, and Bcl-xL, but increased the expressions of Bax and p-NF-κB. These results suggest that BJ induces the apoptosis of HRCECs exposed to high glucose through activating the mitochondrial death pathway by decreasing the PI3K/AKT signaling and increasing the NF-κB signaling to inhibit the formation of acellular capillaries in the retina, thus impeding the development of PDR.
Collapse
Affiliation(s)
- Qiu-Ping Liu
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yu-Ying Chen
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuan-Yuan Yu
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Pei An
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yi-Zhuo Xing
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hong-Xuan Yang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yin-Jian Zhang
- Ophthalmology Department of Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Khalid Rahman
- School of Pharmacy and Biomolecular Sciences, Faculty of Science, Liverpool John Moores University, Liverpool, United Kingdom
| | - Lei Zhang
- Department of Vascular Surgery, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Lei Zhang,
| | - Xin Luan
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Xin Luan,
| | - Hong Zhang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Hong Zhang,
| |
Collapse
|
37
|
Relevance of NLRP3 Inflammasome-Related Pathways in the Pathology of Diabetic Wound Healing and Possible Therapeutic Targets. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9687925. [PMID: 35814271 PMCID: PMC9262551 DOI: 10.1155/2022/9687925] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/30/2022] [Accepted: 06/01/2022] [Indexed: 11/30/2022]
Abstract
Wound healing is a major secondary complication in type 2 diabetes, which results in significant disability and mortality, imposing a significant clinical and social burden. Sustained activation of the Nod-like receptor protein (NLRP) inflammasome in wounds is responsible for excessive inflammatory responses and aggravates wound damage. The activation of the NLRP3 inflammasome is regulated by a two-step process: the priming/licensing (signal 1) step involved in transcription and posttranslation and the protein complex assembly (signal 2) step triggered by danger molecules. This review focuses on the advances made in understanding the pathophysiological mechanisms underlying wound healing in the diabetic microenvironment. Simultaneously, this review summarizes the molecular mechanisms of the main regulatory pathways associated with signal 1 and signal 2, which trigger the NLRP3 inflammasome complex assembly in the development of diabetic wounds (DW). Activation of the NLRP3 inflammasome-related pathway, involving the disturbance in Nrf2 and the NF-κB/NLRP3 inflammasome, TLR receptor-mediated activation of the NF-κB/NLRP3 inflammasome, and various stimuli inducing NLRP3 inflammasome assembly play a pivotal role in DW healing. Furthermore, therapeutics targeting the NLRP3 inflammasome-related pathways may promote angiogenesis, reprogram immune cells, and improve DW healing.
Collapse
|
38
|
Chaiprasongsuk A, Panich U. Role of Phytochemicals in Skin Photoprotection via Regulation of Nrf2. Front Pharmacol 2022; 13:823881. [PMID: 35645796 PMCID: PMC9133606 DOI: 10.3389/fphar.2022.823881] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 04/11/2022] [Indexed: 12/13/2022] Open
Abstract
Ethnopharmacological studies have become increasingly valuable in the development of botanical products and their bioactive phytochemicals as novel and effective preventive and therapeutic strategies for various diseases including skin photoaging and photodamage-related skin problems including abnormal pigmentation and inflammation. Exploring the roles of phytochemicals in mitigating ultraviolet radiation (UVR)-induced skin damage is thus of importance to offer insights into medicinal and ethnopharmacological potential for development of novel and effective photoprotective agents. UVR plays a role in the skin premature aging (or photoaging) or impaired skin integrity and function through triggering various biological responses of skin cells including apoptosis, oxidative stress, DNA damage and inflammation. In addition, melanin produced by epidermal melanocytes play a protective role against UVR-induced skin damage and therefore hyperpigmentation mediated by UV irradiation could reflect a sign of defensive response of the skin to stress. However, alteration in melanin synthesis may be implicated in skin damage, particularly in individuals with fair skin. Oxidative stress induced by UVR contributes to the process of skin aging and inflammation through the activation of related signaling pathways such as the mitogen-activated protein kinase (MAPK)/activator protein-1 (AP-1), the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt), the nuclear factor kappa B (NF-κB) and the signal transducer and activator of transcription (STAT) in epidermal keratinocytes and dermal fibroblasts. ROS formation induced by UVR also plays a role in regulation of melanogenesis in melanocytes via modulating MAPK, PI3K/Akt and the melanocortin 1 receptor (MC1R)-microphthalmia-associated transcription factor (MITF) signaling cascades. Additionally, nuclear factor erythroid 2-related factor 2 (Nrf2)-regulated antioxidant defenses can affect the major signaling pathways involved in regulation of photoaging, inflammation associated with skin barrier dysfunction and melanogenesis. This review thus highlights the roles of phytochemicals potentially acting as Nrf2 inducers in improving photoaging, inflammation and hyperpigmentation via regulation of cellular homeostasis involved in skin integrity and function. Taken together, understanding the role of phytochemicals targeting Nrf2 in photoprotection could provide an insight into potential development of natural products as a promising strategy to delay skin photoaging and improve skin conditions.
Collapse
Affiliation(s)
| | - Uraiwan Panich
- Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- *Correspondence: Uraiwan Panich,
| |
Collapse
|
39
|
Juszczak AM, Jakimiuk K, Czarnomysy R, Strawa JW, Zovko Končić M, Bielawski K, Tomczyk M. Wound Healing Properties of Jasione montana Extracts and Their Main Secondary Metabolites. Front Pharmacol 2022; 13:894233. [PMID: 35620288 PMCID: PMC9127232 DOI: 10.3389/fphar.2022.894233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 04/21/2022] [Indexed: 01/11/2023] Open
Abstract
The effects of different extracts obtained from Jasione montana L. (JM1-JM6) and their main metabolites on biological processes during wound healing were evaluated. The effect on wound closure in the scratch test was established, and collagen type I synthesis and anti-inflammatory effects were assessed by flow cytometry in a human dermal fibroblast model (PCS-201-012). Additionally, the antioxidant activity (DPPH and FRAP) and degree of inhibition of elastase participating in the proliferation processes of skin fibroblasts were determined in an in vitro model. The extracts and fractions were analyzed using high-performance liquid chromatography-photodiode array detection (HPLC-PDA) to quantitatively characterize their main polyphenolic compounds. The high antioxidant activity of the JM4-JM5 fractions correlated with the content of luteolin and its derivative 7-O-glucoside. Luteolin also showed the highest anti-elastase activity with an IC50 value of 39.93 ± 1.06 μg/mL, and its substantial content in the JM4 fraction presumably determines its activity (359.03 ± 1.65 μg/mL). At lower concentrations (<50 μg/mL) of all extracts, cell proliferation and migration were significantly stimulated after 24 h of treatment. The stimulation of cell migration was comparable with that of allantoin, which was used as a positive control. However, most of the tested extracts showed limited capacity to affect collagen type I biosynthesis. Moreover, the tested samples exhibited a complex effect on cytokine secretion, and the strongest anti-inflammatory activity through the moderation of IL-1β, IL-6 and IL-8 was observed for JM4 and luteolin. Based on the obtained results of the quantitative analysis, the anti-inflammatory activity of JM4 may be due to the high content of luteolin. In summary, extracts from J. montana, which is flavonoid-rich, promote the viability and accelerate the migration of fibroblasts as well as moderate oxidant and inflammatory processes and elastase activity. Hence, they may be potentially useful for topical therapeutic applications to stimulate the wound healing process.
Collapse
Affiliation(s)
- Aleksandra Maria Juszczak
- Department of Pharmacognosy, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Białystok, Białystok, Poland
| | - Katarzyna Jakimiuk
- Department of Pharmacognosy, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Białystok, Białystok, Poland
| | - Robert Czarnomysy
- Department of Synthesis and Technology of Drugs, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Białystok, Białystok, Poland
| | - Jakub Władysław Strawa
- Department of Pharmacognosy, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Białystok, Białystok, Poland
| | - Marijana Zovko Končić
- Department of Pharmacognosy, Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - Krzysztof Bielawski
- Department of Synthesis and Technology of Drugs, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Białystok, Białystok, Poland
| | - Michał Tomczyk
- Department of Pharmacognosy, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Białystok, Białystok, Poland
| |
Collapse
|
40
|
Zhou X, Guo Y, Yang K, Liu P, Wang J. The signaling pathways of traditional Chinese medicine in promoting diabetic wound healing. JOURNAL OF ETHNOPHARMACOLOGY 2022; 282:114662. [PMID: 34555452 DOI: 10.1016/j.jep.2021.114662] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 09/14/2021] [Accepted: 09/18/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The diabetic wound is one of the common chronic complications of diabetes, which seriously affects patients' quality of life and even causes disability and death. Traditional Chinese medicine (TCM) is a unique and precious resource in China, which has a good curative effect and safety. At present, it has been found that Chinese herbal compounds and effective active ingredients can effectively promote diabetic wound healing, and its mechanism needs to be further studied. Signaling pathways are involved in the pathogenesis and progression of diabetic wounds, which is one of the main targets for the pathologic mechanism of diabetic wounds and the pharmacological research of therapeutic drugs. AIM OF THE REVIEW This study has been carried out to reveal the classical signaling pathways and potential targets by the action of TCM on diabetic wound healing and provides evidence for its clinical efficacy. MATERIALS AND METHODS "diabetic wound", "diabetic foot ulcer", "traditional Chinese medicine", "natural plant" and "medicinal plant", were selected as the main keywords, and various online search engines, such as PubMed, Web of Science, CNKI and other publication resources, were used for searching literature. RESULTS The results showed that TCM could regulate the signaling pathways to promote diabetic wound healing, such as Wnt, Nrf2/ARE, MAPK, PI3K/Akt, NF-κB, Notch, TGF-β/Smad, HIF-1α/VEGF, which maintaining inflammatory interaction balance, inhibiting oxidative stress and regulating abnormal glucose metabolism. CONCLUSION The effect of TCM on diabetic wound healing was reflected in multiple levels and multiple pathways. It is envisaged to carry out further research from precision-targeted therapy, provide ideas for screening the core target of TCM in treating diabetic wounds and create modern innovative drugs based on this target.
Collapse
Affiliation(s)
- Xin Zhou
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture Moxibustion, No.88 Changling Road, Xiqing District, Tianjin, 300193, China; Graduate School of Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Yanling Guo
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture Moxibustion, No.88 Changling Road, Xiqing District, Tianjin, 300193, China; Graduate School of Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Kun Yang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture Moxibustion, No.88 Changling Road, Xiqing District, Tianjin, 300193, China; Graduate School of Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Peng Liu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture Moxibustion, No.88 Changling Road, Xiqing District, Tianjin, 300193, China; Graduate School of Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Jun Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture Moxibustion, No.88 Changling Road, Xiqing District, Tianjin, 300193, China.
| |
Collapse
|
41
|
Wu CY, Lin YH, Hsieh HH, Lin JJ, Peng SL. Sex Differences in the Effect of Diabetes on Cerebral Glucose Metabolism. Biomedicines 2021; 9:1661. [PMID: 34829890 PMCID: PMC8615590 DOI: 10.3390/biomedicines9111661] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/05/2021] [Accepted: 11/08/2021] [Indexed: 12/25/2022] Open
Abstract
The neuroimaging literature indicates that brain structure and function both deteriorate with diabetes, but information on sexual dimorphism in diabetes-related brain alterations is limited. This study aimed to ascertain whether brain metabolism is influenced by sex in an animal model of diabetes. Eleven rats (male, n = 5; female, n = 6) received a single intraperitoneal injection of 70 mg/kg streptozotocin (STZ) to develop diabetes. Another 11 rats (male, n = 5; female, n = 6) received the same amount of solvent through a single intraperitoneal injection. Longitudinal positron emission tomography scans were used to assess cerebral glucose metabolism before and 4 weeks after STZ or solvent administration. Before STZ or solvent injections, there was no evidence of sexual dimorphism in cerebral metabolism (p > 0.05). Compared with healthy control animals, rats with diabetes had significantly decreased brain metabolism in all brain regions (all p < 0.05). In addition, female diabetic rats exhibited further reduction in cerebral metabolism, relative to male diabetic rats (p < 0.05). The results of this study may provide some biological evidence, supporting the existence of a sexual dimorphism in diabetes-related complications.
Collapse
Affiliation(s)
- Chun-Yi Wu
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei Branch, Taipei 112304, Taiwan; (C.-Y.W.); (H.-H.H.)
| | - Yu-Hsin Lin
- Department of Pharmacy, National Yang Ming Chiao Tung University, Taipei Branch, Taipei 112304, Taiwan;
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404333, Taiwan
| | - Hsin-Hua Hsieh
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei Branch, Taipei 112304, Taiwan; (C.-Y.W.); (H.-H.H.)
| | - Jia-Jia Lin
- Center for Advanced Molecular Imaging and Translation, Chang Gung Memorial Hospital, Taoyuan 404333, Taiwan;
| | - Shin-Lei Peng
- Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung 404332, Taiwan
| |
Collapse
|
42
|
Herrera-Calderón O, Calero-Armijos LL, Cardona-G W, Herrera-R A, Moreno G, Algarni MA, Alqarni M, El-Saber Batiha G. Phytochemical Screening of Himatanthus sucuuba (Spruce) Woodson (Apocynaceae) Latex, In Vitro Cytotoxicity and Incision Wound Repair in Mice. PLANTS 2021; 10:plants10102197. [PMID: 34686006 PMCID: PMC8541601 DOI: 10.3390/plants10102197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 11/16/2022]
Abstract
Himatanthus sucuuba, also known as "Bellaco caspi", is a medicinal plant whose latex, stem bark, and leaves possess phenolic acids, lupeol, β-dihydro-plumbericinic acid, plumericin, and plumeride, among other components. Some of these have been linked to such biological activities as antiulcer, anti-inflammatory, and wound healing. The aim of this study was to determine the phytochemical compounds of H. sucuuba latex, as well as its in vitro cytotoxicity and wound healing effect in mice. Latex was collected in the province of Iquitos, Peru. Phytochemical analysis was carried out with UPLC-ESI-MS/MS. The cytotoxicity was evaluated on two colon tumor cell lines (SW480 and SW620) and non-malignant cells (human keratinocytes, HaCaT, and Chinese hamster ovary, CHO-K1). The mice were distributed into two groups, as follows: Group I-control (n = 10; without treatment); II-(n = 10) H. sucuuba latex; wounds were induced with a scalpel in the dorsal-cervical area and treatments were applied topically twice a day on the incision for 10 days. Molecular docking was carried out on the glycogen synthase kinase 3β protein. Twenty-four chemical compounds were determined, mainly flavonoid-type compounds. Latex did not have a cytotoxic effect on tumor cells with IC50 values of more than 500 µg/mL. The latex had a regenerative effect on wounds in mice. Acacetin-7-O-neohesperidoside had the best docking score of -9.9 kcal/mol. In conclusion, H. sucuuba latex had a wound healing effect in mice, as confirmed by histological study. However, a non-cytotoxic effect was observed on colon tumor cells SW480 and SW620.
Collapse
Affiliation(s)
- Oscar Herrera-Calderón
- Department of Pharmacology, Bromatology, Toxicology, Faculty of Pharmacy and Biochemistry, Universidad Nacional Mayor de San Marcos, Jr. Puno 1002, Lima 15001, Peru;
- Correspondence: ; Tel.: +51-956-550-510
| | - Lisbeth Lucia Calero-Armijos
- Department of Pharmacology, Bromatology, Toxicology, Faculty of Pharmacy and Biochemistry, Universidad Nacional Mayor de San Marcos, Jr. Puno 1002, Lima 15001, Peru;
| | - Wilson Cardona-G
- Química de Plantas Colombianas, Faculty of Exact and Natural Sciences, Institute of Chemistry, University of Antioquia (UdeA), Calle 70 No. 52–21, Medellín 1226, Colombia; (W.C.-G.); (A.H.-R.); (G.M.)
| | - Angie Herrera-R
- Química de Plantas Colombianas, Faculty of Exact and Natural Sciences, Institute of Chemistry, University of Antioquia (UdeA), Calle 70 No. 52–21, Medellín 1226, Colombia; (W.C.-G.); (A.H.-R.); (G.M.)
| | - Gustavo Moreno
- Química de Plantas Colombianas, Faculty of Exact and Natural Sciences, Institute of Chemistry, University of Antioquia (UdeA), Calle 70 No. 52–21, Medellín 1226, Colombia; (W.C.-G.); (A.H.-R.); (G.M.)
| | - Majed A. Algarni
- Department of Clinical Pharmacy, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Mohammed Alqarni
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22515, Egypt;
| |
Collapse
|
43
|
Dermal Drug Delivery of Phytochemicals with Phenolic Structure via Lipid-Based Nanotechnologies. Pharmaceuticals (Basel) 2021; 14:ph14090837. [PMID: 34577536 PMCID: PMC8471500 DOI: 10.3390/ph14090837] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/17/2021] [Accepted: 08/20/2021] [Indexed: 12/11/2022] Open
Abstract
Phenolic compounds are a large, heterogeneous group of secondary metabolites found in various plants and herbal substances. From the perspective of dermatology, the most important benefits for human health are their pharmacological effects on oxidation processes, inflammation, vascular pathology, immune response, precancerous and oncological lesions or formations, and microbial growth. Because the nature of phenolic compounds is designed to fit the phytochemical needs of plants and not the biopharmaceutical requirements for a specific route of delivery (dermal or other), their utilization in cutaneous formulations sets challenges to drug development. These are encountered often due to insufficient water solubility, high molecular weight and low permeation and/or high reactivity (inherent for the set of representatives) and subsequent chemical/photochemical instability and ionizability. The inclusion of phenolic phytochemicals in lipid-based nanocarriers (such as nanoemulsions, liposomes and solid lipid nanoparticles) is so far recognized as a strategic physico-chemical approach to improve their in situ stability and introduction to the skin barriers, with a view to enhance bioavailability and therapeutic potency. This current review is focused on recent advances and achievements in this area.
Collapse
|
44
|
Formulation and Evaluation of Helichrysum italicum Essential Oil-Based Topical Formulations for Wound Healing in Diabetic Rats. Pharmaceuticals (Basel) 2021; 14:ph14080813. [PMID: 34451910 PMCID: PMC8400224 DOI: 10.3390/ph14080813] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/09/2021] [Accepted: 08/10/2021] [Indexed: 12/20/2022] Open
Abstract
As proper wound management is crucial to reducing morbidity and improving quality of life, this study evaluated for the first time the wound healing potential of H. italicum essential oil (HIEO) prepared in the form of ointment and gel in streptozotocin-induced diabetic wound models in rats. After creating full-thickness cutaneous wounds, forty-eight diabetic rats were divided into six groups: (1) negative control; (2) positive control; (3) ointment base; (4) gel base; (5) 0.5% HIEO ointment (6) 0.5% HIEO gel. Wound healing potential was determined by the percentage of wound contraction, hydroxyproline content, redox status, and histological observation. A significant decrease in the wound size was observed in animals treated with HIEO formulations compared with other groups. The HIEO groups also showed a higher level of total hydroxyproline content, and more pronounced restitution of adnexal structures with only the underlying muscle defect indicating the incision site. Hence, our results legitimate the traditional data of the pro-healing effect of HIEO because HIEO in both formulations such as gel and ointment exhibited the significant wound repairing effect in the incision wound model.
Collapse
|