1
|
Wei L, Yu P, Wang H, Liu J. Adeno-associated viral vectors deliver gene vaccines. Eur J Med Chem 2025; 281:117010. [PMID: 39488197 DOI: 10.1016/j.ejmech.2024.117010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/24/2024] [Accepted: 10/27/2024] [Indexed: 11/04/2024]
Abstract
Adeno-associated viruses (AAVs) are leading platforms for in vivo delivery of gene therapies, with six licensed AAV-based therapeutics attributed to their non-pathogenic nature, low immunogenicity, and high efficiency. In the realm of gene-based vaccines, one of the most vital therapeutic areas, AAVs are also emerging as promising delivery tools. We scrutinized AAVs, focusing on their virological properties, as well as bioengineering and chemical modifications to demonstrate their significant potential in gene vaccine delivery, and detailing the preparation of AAV particles. Additionally, we summarized the use of AAV vectors in vaccines for both infectious and non-infectious diseases, such as influenza, COVID-19, Alzheimer's disease, and cancer. Furthermore, this review, along with the latest clinical trial updates, provides a comprehensive overview of studies on the potential of using AAV vectors for gene vaccine delivery. It aims to deepen our understanding of the challenges and limitations in nucleic acid delivery and pave the way for future clinical success.
Collapse
Affiliation(s)
- Lai Wei
- College of Life Science and Technology, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Peng Yu
- College of Biotechnology, Tianjin University of Science & Technology, 300457 Tianjin, China
| | - Haomeng Wang
- CanSino (Shanghai) Biological Research Co., Ltd, 201208, Shanghai, China.
| | - Jiang Liu
- Rosalind Franklin Institute, Harwell Campus, OX11 0QS, Oxford, United Kingdom; Department of Pharmacology, University of Oxford, Mansfield Road, OX1 3QT, Oxford, United Kingdom.
| |
Collapse
|
2
|
Rghei AD, Yates JGE, Lopes JA, Zhan X, Guilleman MM, Pei Y, van Lieshout LP, Santry LA, Bridle BW, Karimi K, Thompson B, Susta L, Crowe JE, Wootton SK. Antibody-based protection against respiratory syncytial virus in mice and their offspring through vectored immunoprophylaxis. Gene Ther 2025; 32:38-49. [PMID: 36732618 DOI: 10.1038/s41434-023-00385-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 01/13/2023] [Accepted: 01/23/2023] [Indexed: 02/04/2023]
Abstract
Respiratory syncytial virus (RSV) causes acute lower respiratory tract infections, with potential lower respiratory tract infections, which can be particularly problematic in infants and the elderly. There are no approved vaccines for RSV. The current standard of care for high-risk individuals is monthly administration of palivizumab, a humanized murine monoclonal antibody (mAb) targeting the RSV fusion protein. Adeno-associated virus (AAV)-mediated expression of mAbs has previously led to sustained expression of therapeutic concentrations of mAbs in several animal models, representing an alternative to repetitive passive administration. Intramuscular (IM) administration of AAV6.2FF expressing RSV antibodies, palivizumab or hRSV90, resulted in high concentrations of human (h)IgG1 mAbs in the serum and at various mucosal surfaces, while intranasal administration limited hIgG expression to the respiratory tract. IM administration of AAV6.2FF-hRSV90 or AAV6.2FF-palivizumab in a murine model provided sterilizing immunity against challenge with RSV A2. Evidence of maternal passive transfer of vectorized hRSV90 was detected in both murine and ovine models, with circulating mAbs providing sterilizing immunity in mouse progeny. Finally, addition of a "kill switch" comprised of LoxP sites flanking the mAb genes resulted in diminished serum hIgG after AAV-DJ-mediated delivery of Cre recombinase to the same muscle group that was originally transduced with the AAV-mAb vector. The ability of this AAV-mAb system to mediate robust, sustained mAb expression for maternal transfer to progeny in murine and ovine models emphasizes the potential of this platform for use as an alternative prophylactic vaccine for protection against neonatal infections, particularly in high-risk infants.
Collapse
Affiliation(s)
- Amira D Rghei
- Department of Pathobiology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Jacob G E Yates
- Department of Pathobiology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Jordyn A Lopes
- Department of Pathobiology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Xuiaoyan Zhan
- Vanderbilt Vaccine Center, Vanderbilt University, Nashville, TN, 37232-0417, USA
| | - Matthew M Guilleman
- Department of Pathobiology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Yanlong Pei
- Department of Pathobiology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | | | - Lisa A Santry
- Department of Pathobiology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Byram W Bridle
- Department of Pathobiology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Khalil Karimi
- Department of Pathobiology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | | | - Leonardo Susta
- Department of Pathobiology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - James E Crowe
- Vanderbilt Vaccine Center, Vanderbilt University, Nashville, TN, 37232-0417, USA
| | - Sarah K Wootton
- Department of Pathobiology, University of Guelph, Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|
3
|
Rghei AD, van Lieshout LP, Cao W, He S, Tierney K, Lopes JA, Zielinska N, Baracuhy EM, Campbell ESB, Minott JA, Guilleman MM, Hasson PC, Thompson B, Karimi K, Bridle BW, Susta L, Qiu X, Banadyga L, Wootton SK. Adeno-associated virus mediated expression of monoclonal antibody MR191 protects mice against Marburg virus and provides long-term expression in sheep. Gene Ther 2025; 32:50-59. [PMID: 36050451 DOI: 10.1038/s41434-022-00361-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 08/09/2022] [Accepted: 08/19/2022] [Indexed: 11/08/2022]
Abstract
Vectored monoclonal antibody (mAb) expression mediated by adeno-associated virus (AAV) gene delivery leads to sustained therapeutic mAb expression and protection against a wide range of infectious diseases in both small and large animal models, including nonhuman primates. Using our rationally engineered AAV6 triple mutant capsid, termed AAV6.2FF, we demonstrate rapid and robust expression of two potent human antibodies against Marburg virus, MR78 and MR191, following intramuscular (IM) administration. IM injection of mice with 1 × 1011 vector genomes (vg) of AAV6.2FF-MR78 and AAV6.2FF-MR191 resulted in serum concentrations of approximately 141 μg/mL and 195 μg/mL of human IgG, respectively, within the first four weeks. Mice receiving 1 × 1011 vg (high) and 1 × 1010 vg (medium) doses of AAV6.2FF-MR191 were completely protected against lethal Marburg virus challenge. No sex-based differences in serum human IgG concentrations were observed; however, administering the AAV-mAb over multiple injection sites significantly increased serum human IgG concentrations. IM administration of three two-week-old lambs with 5 × 1012 vg/kg of AAV6.2FF-MR191 resulted in serum human IgG expression that was sustained for more than 460 days, concomitant with low levels of anti-capsid and anti-drug antibodies. AAV-mAb expression is a viable method for prolonging the therapeutic effect of recombinant mAbs and represents a potential alternative "vaccine" strategy for those with compromised immune systems or in possible outbreak response scenarios.
Collapse
Affiliation(s)
- Amira D Rghei
- Department of Pathobiology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | | | - Wenguang Cao
- Special Pathogens Program, Public Health Agency of Canada, Winnipeg, MB, R3E 3R2, Canada
| | - Shihua He
- Special Pathogens Program, Public Health Agency of Canada, Winnipeg, MB, R3E 3R2, Canada
| | - Kevin Tierney
- Special Pathogens Program, Public Health Agency of Canada, Winnipeg, MB, R3E 3R2, Canada
| | - Jordyn A Lopes
- Department of Pathobiology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Nicole Zielinska
- Department of Pathobiology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Enzo M Baracuhy
- Department of Pathobiology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Elena S B Campbell
- Department of Pathobiology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Jessica A Minott
- Department of Pathobiology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Matthew M Guilleman
- Department of Pathobiology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Pamela C Hasson
- Department of Pathobiology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | | | - Khalil Karimi
- Department of Pathobiology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Byram W Bridle
- Department of Pathobiology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Leonardo Susta
- Department of Pathobiology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Xiangguo Qiu
- Special Pathogens Program, Public Health Agency of Canada, Winnipeg, MB, R3E 3R2, Canada
| | - Logan Banadyga
- Special Pathogens Program, Public Health Agency of Canada, Winnipeg, MB, R3E 3R2, Canada
| | - Sarah K Wootton
- Department of Pathobiology, University of Guelph, Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|
4
|
Lopes JA, Garnier NE, Pei Y, Yates JGE, Campbell ESB, Goens MM, Hughes ME, Rghei AD, Stevens BAY, Guilleman MM, Thompson B, Khursigara CM, Susta L, Wootton SK. AAV-vectored expression of monospecific or bispecific monoclonal antibodies protects mice from lethal Pseudomonas aeruginosa pneumonia. Gene Ther 2024; 31:400-412. [PMID: 38678160 DOI: 10.1038/s41434-024-00453-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 04/08/2024] [Accepted: 04/12/2024] [Indexed: 04/29/2024]
Abstract
Pseudomonas aeruginosa poses a significant threat to immunocompromised individuals and those with cystic fibrosis. Treatment relies on antibiotics, but persistent infections occur due to intrinsic and acquired resistance of P. aeruginosa towards multiple classes of antibiotics. To date, there are no licensed vaccines for this pathogen, prompting the urgent need for novel treatment approaches to combat P. aeruginosa infection and persistence. Here we validated AAV vectored immunoprophylaxis as a strategy to generate long-term plasma and mucosal expression of highly protective monoclonal antibodies (mAbs) targeting the exopolysaccharide Psl (Cam-003) and the PcrV (V2L2MD) component of the type-III secretion system injectosome either as single mAbs or together as a bispecific mAb (MEDI3902) in a mouse model. When administered intramuscularly, AAV-αPcrV, AAV-αPsl, and AAV-MEDI3902 significantly protected mice challenged intranasally with a lethal dose of P. aeruginosa strains PAO1 and PA14 and reduced bacterial burden and dissemination to other organs. While all AAV-mAbs provided protection, AAV-αPcrV and AAV-MEDI3902 provided 100% and 87.5% protection from a lethal challenge with 4.47 × 107 CFU PAO1 and 87.5% and 75% protection from a lethal challenge with 3 × 107 CFU PA14, respectively. Serum concentrations of MEDI3902 were ~10× lower than that of αPcrV, but mice treated with this vector showed a greater reduction in bacterial dissemination to the liver, lung, spleen, and blood compared to other AAV-mAbs. These results support further investigation into the use of AAV vectored immunoprophylaxis to prevent and treat P. aeruginosa infections and other bacterial pathogens of public health concern for which current treatment strategies are limited.
Collapse
Affiliation(s)
- Jordyn A Lopes
- Department of Pathobiology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Nicole E Garnier
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Yanlong Pei
- Department of Pathobiology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Jacob G E Yates
- Department of Pathobiology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Elena S B Campbell
- Department of Pathobiology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Melanie M Goens
- Department of Pathobiology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Madison E Hughes
- Department of Pathobiology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Amira D Rghei
- Department of Pathobiology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Brenna A Y Stevens
- Department of Pathobiology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Matthew M Guilleman
- Department of Pathobiology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Brad Thompson
- Avamab Pharma Inc., 120, 4838 Richard Road SW, Calgary, AB, T3E 6L1, Canada
| | - Cezar M Khursigara
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Leonardo Susta
- Department of Pathobiology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Sarah K Wootton
- Department of Pathobiology, University of Guelph, Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|
5
|
Chung C, Kudchodkar SB, Chung CN, Park YK, Xu Z, Pardi N, Abdel-Mohsen M, Muthumani K. Expanding the Reach of Monoclonal Antibodies: A Review of Synthetic Nucleic Acid Delivery in Immunotherapy. Antibodies (Basel) 2023; 12:46. [PMID: 37489368 PMCID: PMC10366852 DOI: 10.3390/antib12030046] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/27/2023] [Accepted: 06/29/2023] [Indexed: 07/26/2023] Open
Abstract
Harnessing the immune system to combat disease has revolutionized medical treatment. Monoclonal antibodies (mAbs), in particular, have emerged as important immunotherapeutic agents with clinical relevance in treating a wide range of diseases, including allergies, autoimmune diseases, neurodegenerative disorders, cancer, and infectious diseases. These mAbs are developed from naturally occurring antibodies and target specific epitopes of single molecules, minimizing off-target effects. Antibodies can also be designed to target particular pathogens or modulate immune function by activating or suppressing certain pathways. Despite their benefit for patients, the production and administration of monoclonal antibody therapeutics are laborious, costly, and time-consuming. Administration often requires inpatient stays and repeated dosing to maintain therapeutic levels, limiting their use in underserved populations and developing countries. Researchers are developing alternate methods to deliver monoclonal antibodies, including synthetic nucleic acid-based delivery, to overcome these limitations. These methods allow for in vivo production of monoclonal antibodies, which would significantly reduce costs and simplify administration logistics. This review explores new methods for monoclonal antibody delivery, including synthetic nucleic acids, and their potential to increase the accessibility and utility of life-saving treatments for several diseases.
Collapse
Affiliation(s)
| | | | - Curtis N Chung
- GeneOne Life Science, Inc., Seoul 04500, Republic of Korea
| | - Young K Park
- GeneOne Life Science, Inc., Seoul 04500, Republic of Korea
| | - Ziyang Xu
- Massachusetts General Hospital, Harvard University, Boston, MA 02114, USA
| | - Norbert Pardi
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Kar Muthumani
- GeneOne Life Science, Inc., Seoul 04500, Republic of Korea
| |
Collapse
|
6
|
Wu F, Luo S, Zhang Y, Ou Y, Wang H, Guo Z, He C, Bai S, He P, Jiang M, Chen X, Du G, Sun X. Single-shot AAV-vectored vaccine against SARS-CoV-2 with fast and long-lasting immunity. Acta Pharm Sin B 2023; 13:2219-2233. [PMID: 35846427 PMCID: PMC9273293 DOI: 10.1016/j.apsb.2022.07.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 06/28/2022] [Accepted: 06/30/2022] [Indexed: 12/05/2022] Open
Abstract
Due to the insufficient long-term protection and significant efficacy reduction to new variants of current COVID-19 vaccines, the epidemic prevention and control are still challenging. Here, we employ a capsid and antigen structure engineering (CASE) strategy to manufacture an adeno-associated viral serotype 6-based vaccine (S663V-RBD), which expresses trimeric receptor binding domain (RBD) of spike protein fused with a biological adjuvant RS09. Impressively, the engineered S663V-RBD could rapidly induce a satisfactory RBD-specific IgG titer within 2 weeks and maintain the titer for more than 4 months. Compared to the licensed BBIBP-CorV (Sinopharm, China), a single-dose S663V-RBD induced more endurable and robust immune responses in mice and elicited superior neutralizing antibodies against three typical SARS-CoV-2 pseudoviruses including wild type, C.37 (Lambda) and B.1.617.2 (Delta). More interestingly, the intramuscular injection of S663V-RBD could overcome pre-existing immunity against the capsid. Given its effectiveness, the CASE-based S663V-RBD may provide a new solution for the current and next pandemic.
Collapse
Affiliation(s)
| | | | - Yongshun Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yangsen Ou
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Hairui Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Zhaofei Guo
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Chunting He
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Shuting Bai
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Penghui He
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Min Jiang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xiaoyan Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Guangsheng Du
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xun Sun
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
7
|
Sydney-Smith JD, Koltchev AM, Moon LDF, Warren PM. Delayed viral vector mediated delivery of neurotrophin-3 improves skilled hindlimb function and stability after thoracic contusion. Exp Neurol 2023; 360:114278. [PMID: 36455639 DOI: 10.1016/j.expneurol.2022.114278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/07/2022] [Accepted: 11/19/2022] [Indexed: 11/30/2022]
Abstract
Intramuscular injection of an Adeno-associated viral vector serotype 1 (AAV1) encoding Neurotrophin-3 (NT3) into hindlimb muscles 24 h after a severe T9 spinal level contusion in rats has been shown to induce lumbar spinal neuroplasticity, partially restore locomotive function and reduce spasms during swimming. Here we investigate whether a targeted delivery of NT3 to lumbar and thoracic motor neurons 48 h following a severe contusive injury aids locomotive recovery in rats. AAV1-NT3 was injected bilaterally into the tibialis anterior, gastrocnemius and rectus abdominus muscles 48-h following trauma, persistently elevating serum levels of the neurotrophin. NT3 modestly improved trunk stability, accuracy of stepping during skilled locomotion, and alternation of the hindlimbs during swimming, but it had no effect on gross locomotor function in the open field. The number of vGlut1+ boutons, likely arising from proprioceptive afferents, on gastrocnemius α-motor neurons was increased after injury but normalised following NT3 treatment, suggestive of a mechanism in which functional benefits may be mediated through proprioceptive feedback. Ex vivo MRI revealed substantial loss of grey and white matter at the lesion epicentre but no effect of delayed NT3 treatment to induce neuroprotection. Lower body spasms and hyperreflexia of an intrinsic paw muscle were not reliably induced in this severe injury model suggesting a more complex anatomical or physiological cause to their induction. We have shown that delayed intramuscular AAV-NT3 treatment can promote recovery in skilled stepping and coordinated swimming, supporting a role for NT3 as a therapeutic strategy for spinal injuries potentially through modulation of somatosensory feedback.
Collapse
Affiliation(s)
- Jared D Sydney-Smith
- The Wolfson Centre for Age-Related Diseases, Guy's Campus, King's College London, London Bridge, London SE1 1UL, UK
| | - Alice M Koltchev
- The Wolfson Centre for Age-Related Diseases, Guy's Campus, King's College London, London Bridge, London SE1 1UL, UK
| | - Lawrence D F Moon
- The Wolfson Centre for Age-Related Diseases, Guy's Campus, King's College London, London Bridge, London SE1 1UL, UK
| | - Philippa M Warren
- The Wolfson Centre for Age-Related Diseases, Guy's Campus, King's College London, London Bridge, London SE1 1UL, UK.
| |
Collapse
|
8
|
van Lieshout LP, Rghei AD, Cao W, He S, Soule G, Zhu W, Thomas SP, Sorensen D, Frost K, Tierney K, Thompson B, Booth S, Safronetz D, Kulkarni RR, Bridle BW, Qiu X, Banadyga L, Wootton SK. AAV-monoclonal antibody expression protects mice from Ebola virus without impeding the endogenous antibody response to heterologous challenge. Mol Ther Methods Clin Dev 2022; 26:505-518. [PMID: 36092367 PMCID: PMC9436706 DOI: 10.1016/j.omtm.2022.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 08/09/2022] [Indexed: 11/12/2022]
Abstract
Filoviruses cause severe hemorrhagic fever with case fatality rates as high as 90%. Filovirus-specific monoclonal antibodies (mAbs) confer protection in nonhuman primates as late as 5 days after challenge, and FDA-approved mAbs REGN-EB3 and mAb114 have demonstrated efficacy against Ebola virus (EBOV) infection in humans. Vectorized antibody expression mediated by adeno-associated virus (AAV) can generate protective and sustained concentrations of therapeutic mAbs in animal models for a variety of infectious diseases, including EBOV. Here we demonstrate that AAV6.2FF-mediated expression of murine IgG2a EBOV mAbs, 2G4 and 5D2, protects from mouse-adapted (MA)-EBOV infection with none of the surviving mice developing anti-VP40 antibodies above background. Protective serum concentrations of AAV6.2FF-2G4/AAV6.2FF-5D2 did not alter endogenous antibody responses to heterologous virus infection. AAV-mediated expression of EBOV mAbs 100 and 114, and pan-ebolavirus mAbs, FVM04, ADI-15878, and CA45, as human IgG1 antibodies conferred protection against MA-EBOV at low serum concentrations, with minimum protective serum levels as low as 2 μg/mL. Vectorized expression of murine IgG2a or human IgG1 mAbs led to sustained expression in the serum of mice for >400 days or for the lifetime of the animal, respectively. AAV6.2FF-mediated mAb expression offers an alternative to recombinant antibody administration in scenarios where long-term protection is preferable to passive immunization.
Collapse
|
9
|
Stegelmeier AA, Santry LA, Guilleman MM, Matuszewska K, Minott JA, Yates JGE, Stevens BAY, Thomas SP, Vanderkamp S, Hanada K, Pei Y, Rghei AD, van Vloten JP, Pereira M, Thompson B, Major PP, Petrik JJ, Bridle BW, Wootton SK. AAV-Vectored Expression of the Vascular Normalizing Agents 3TSR and Fc3TSR, and the Anti-Angiogenic Bevacizumab Extends Survival in a Murine Model of End-Stage Epithelial Ovarian Carcinoma. Biomedicines 2022; 10:biomedicines10020362. [PMID: 35203573 PMCID: PMC8962366 DOI: 10.3390/biomedicines10020362] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 01/24/2022] [Accepted: 01/28/2022] [Indexed: 11/16/2022] Open
Abstract
Epithelial ovarian cancer is the deadliest gynecological malignancy. The lack of effective treatments highlights the need for novel therapeutic interventions. The aim of this study was to investigate whether sustained adeno-associated virus (AAV) vector-mediated expression of vascular normalizing agents 3TSR and Fc3TSR and the antiangiogenic monoclonal antibody, Bevacizumab, with or without oncolytic virus treatment would improve survival in an orthotopic syngeneic mouse model of epithelial ovarian carcinoma. AAV vectors were administered 40 days post-tumor implantation and combined with oncolytic avian orthoavulavirus-1 (AOaV-1) 20 days later, at the peak of AAV-transgene expression, to ascertain whether survival could be extended. Flow cytometry conducted on blood samples, taken at an acute time point post-AOaV-1 administration (36 h), revealed a significant increase in activated NK cells in the blood of all mice that received AOaV-1. T cell analysis revealed a significant increase in CD8+ tumor specific T cells in the blood of AAV-Bevacizumab+AOaV-1 treated mice compared to control mice 10 days post AOaV-1 administration. Immunohistochemical staining of primary tumors harvested from a subset of mice euthanized 90 days post tumor implantation, when mice typically have large primary tumors, secondary peritoneal lesions, and extensive ascites fluid production, revealed that AAV-3TSR, AAV-Fc3TSR+AOaV-1, or AAV-Bevacizumab+AOaV-1 treated mice had significantly more tumor-infiltrating CD8+ T cells than PBS controls. Despite AAV-mediated transgene expression waning faster in tumor-bearing mice than in non-tumor bearing mice, all three of the AAV therapies significantly extended survival compared to control mice; with AAV-Bevacizumab performing the best in this model. However, combining AAV therapies with a single dose of AOaV-1 did not lead to significant extensions in survival compared to AAV therapies on their own, suggesting that additional doses of AOaV-1 may be required to improve efficacy in this model. These results suggest that vectorizing anti-angiogenic and vascular normalizing agents is a viable therapeutic option that warrants further investigation, including optimizing combination therapies.
Collapse
Affiliation(s)
- Ashley A. Stegelmeier
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada; (A.A.S.); (L.A.S.); (M.M.G.); (J.A.M.); (J.G.E.Y.); (B.A.Y.S.); (S.P.T.); (S.V.); (K.H.); (Y.P.); (A.D.R.); (J.P.v.V.); (B.W.B.)
| | - Lisa A. Santry
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada; (A.A.S.); (L.A.S.); (M.M.G.); (J.A.M.); (J.G.E.Y.); (B.A.Y.S.); (S.P.T.); (S.V.); (K.H.); (Y.P.); (A.D.R.); (J.P.v.V.); (B.W.B.)
| | - Matthew M. Guilleman
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada; (A.A.S.); (L.A.S.); (M.M.G.); (J.A.M.); (J.G.E.Y.); (B.A.Y.S.); (S.P.T.); (S.V.); (K.H.); (Y.P.); (A.D.R.); (J.P.v.V.); (B.W.B.)
| | - Kathy Matuszewska
- Department of Biomedical Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada; (K.M.); (M.P.); (J.J.P.)
| | - Jessica A. Minott
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada; (A.A.S.); (L.A.S.); (M.M.G.); (J.A.M.); (J.G.E.Y.); (B.A.Y.S.); (S.P.T.); (S.V.); (K.H.); (Y.P.); (A.D.R.); (J.P.v.V.); (B.W.B.)
| | - Jacob G. E. Yates
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada; (A.A.S.); (L.A.S.); (M.M.G.); (J.A.M.); (J.G.E.Y.); (B.A.Y.S.); (S.P.T.); (S.V.); (K.H.); (Y.P.); (A.D.R.); (J.P.v.V.); (B.W.B.)
| | - Brenna A. Y. Stevens
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada; (A.A.S.); (L.A.S.); (M.M.G.); (J.A.M.); (J.G.E.Y.); (B.A.Y.S.); (S.P.T.); (S.V.); (K.H.); (Y.P.); (A.D.R.); (J.P.v.V.); (B.W.B.)
| | - Sylvia P. Thomas
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada; (A.A.S.); (L.A.S.); (M.M.G.); (J.A.M.); (J.G.E.Y.); (B.A.Y.S.); (S.P.T.); (S.V.); (K.H.); (Y.P.); (A.D.R.); (J.P.v.V.); (B.W.B.)
| | - Sierra Vanderkamp
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada; (A.A.S.); (L.A.S.); (M.M.G.); (J.A.M.); (J.G.E.Y.); (B.A.Y.S.); (S.P.T.); (S.V.); (K.H.); (Y.P.); (A.D.R.); (J.P.v.V.); (B.W.B.)
| | - Kiersten Hanada
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada; (A.A.S.); (L.A.S.); (M.M.G.); (J.A.M.); (J.G.E.Y.); (B.A.Y.S.); (S.P.T.); (S.V.); (K.H.); (Y.P.); (A.D.R.); (J.P.v.V.); (B.W.B.)
| | - Yanlong Pei
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada; (A.A.S.); (L.A.S.); (M.M.G.); (J.A.M.); (J.G.E.Y.); (B.A.Y.S.); (S.P.T.); (S.V.); (K.H.); (Y.P.); (A.D.R.); (J.P.v.V.); (B.W.B.)
| | - Amira D. Rghei
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada; (A.A.S.); (L.A.S.); (M.M.G.); (J.A.M.); (J.G.E.Y.); (B.A.Y.S.); (S.P.T.); (S.V.); (K.H.); (Y.P.); (A.D.R.); (J.P.v.V.); (B.W.B.)
| | - Jacob P. van Vloten
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada; (A.A.S.); (L.A.S.); (M.M.G.); (J.A.M.); (J.G.E.Y.); (B.A.Y.S.); (S.P.T.); (S.V.); (K.H.); (Y.P.); (A.D.R.); (J.P.v.V.); (B.W.B.)
| | - Madison Pereira
- Department of Biomedical Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada; (K.M.); (M.P.); (J.J.P.)
| | | | - Pierre P. Major
- Juravinski Cancer Centre, 699 Concession Street, Hamilton, ON L8V 5C2, Canada;
| | - James J. Petrik
- Department of Biomedical Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada; (K.M.); (M.P.); (J.J.P.)
| | - Byram W. Bridle
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada; (A.A.S.); (L.A.S.); (M.M.G.); (J.A.M.); (J.G.E.Y.); (B.A.Y.S.); (S.P.T.); (S.V.); (K.H.); (Y.P.); (A.D.R.); (J.P.v.V.); (B.W.B.)
| | - Sarah K. Wootton
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada; (A.A.S.); (L.A.S.); (M.M.G.); (J.A.M.); (J.G.E.Y.); (B.A.Y.S.); (S.P.T.); (S.V.); (K.H.); (Y.P.); (A.D.R.); (J.P.v.V.); (B.W.B.)
- Correspondence: ; Tel.: +1-519-824-4210 (ext. 54729)
| |
Collapse
|