1
|
Carver AJ, Dunnwald M, Stevens HE. A head start: The relationship of placental factors to craniofacial and brain development. Dev Dyn 2025. [PMID: 40105397 DOI: 10.1002/dvdy.70018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/17/2025] [Accepted: 03/02/2025] [Indexed: 03/20/2025] Open
Abstract
In recent years, the importance of placental function for fetal neurodevelopment has become increasingly studied. This field, known as neuroplacentology, has greatly expanded possible etiologies of neurodevelopmental disorders by exploring the influence of placental function on brain development. It is also well-established that brain development is influenced by craniofacial morphogenesis. However, there is less focus on the impact of the placenta on craniofacial development. Recent research suggests the functional influence of placental nutrients and hormones on craniofacial skeletal growth, such as prolactin, growth hormone, insulin-like growth factor 1, vitamin D, sulfate, and calcium, impacting both craniofacial and brain development. Therefore, interactions between the placenta and both fetal neurodevelopment and craniofacial development likely influence the growth and morphology of the head as a whole. This review discusses the role of placental hormone production and nutrient delivery in the development of the fetal head-defined as craniofacial and brain tissue together-expanding on the more established focus on brain development to also include the skull (or cranium) and face.
Collapse
Affiliation(s)
- Annemarie Jenna Carver
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, Iowa, USA
- Psychiatry Department, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
- Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Martine Dunnwald
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, Iowa, USA
- Department of Anatomy and Cell Biology, Carver College of Medicine, Iowa City, Iowa, USA
| | - Hanna Elizabeth Stevens
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, Iowa, USA
- Psychiatry Department, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
- Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
- Hawk Intellectual and Developmental Disabilities Research Center, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
2
|
Dursun I, Korkmaz ND, Firtina S, Erkoyuncu MS, Akbas F, Elibol B. Exploring epigenetic modification of the stress-related FKBP5 gene in mice exposed to alcohol during early postnatal development. Alcohol 2025; 123:11-17. [PMID: 39245355 DOI: 10.1016/j.alcohol.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/31/2024] [Accepted: 09/04/2024] [Indexed: 09/10/2024]
Abstract
Early developmental exposure to alcohol has been implicated in adverse effects on the brain, often associated with the onset of neurodevelopmental disorders. Moreover, maternal alcohol consumption during pregnancy has been linked to the manifestation of mental health disorders, such as depression and anxiety, in subsequent generations. These mood disturbances may be attributed to alterations in protein expressions related to depression and anxiety within the hippocampus. While the precise mechanisms remain elusive, it is likely that pre- and postnatal exposure to alcohol induces changes in hippocampus, potentially through epigenetic modifications. The FKBP5 gene, known to modulate the stress response, is particularly relevant in this context. We postulate that alcohol-induced methylation of the FKBP5 gene disrupts HPA axis function, thereby prompting individuals to anxiety-like and depressive-like behaviors. To investigate this hypothesis, female C57BL/6 pups were subjected to early alcohol exposure via intubation with ethanol mixed in artificial milk from Postnatal Day 3 to Day 20. The intubation control pups were subjected to the same procedures without ethanol or milk, and a non-intubated control group included. Anxiety-like and depressive-like behaviors were assessed using the open field test, plus maze test, forced swim test, and tail suspension test when the pups reached 3 months of age. For epigenetic analysis of the FKBP5 gene, genomic DNA was isolated from hippocampal tissues and subjected to bisulfite conversion to distinguish methylated and unmethylated cytosines. Then, methylation-specific PCR was performed to assess methylation levels. Pups exposed to early postnatal alcohol exhibited increased levels of depression-like behavior and susceptibility to anxiety-like behavior during adolescence, as verified by behavioral assessments. Methylation profiling revealed higher rates of methylation within the stress-associated gene FKBP5 in both the early postnatal alcohol-exposed cohort (13.82%) and the intubation control group (3.93%), in contrast to the control cohort devoid of stress or alcohol exposure. These findings suggest a potential epigenetic mechanism underlying the observed behavioral alterations, implicating FKBP5 methylation as a candidate mediator of the increased vulnerability to mood disorders following early postnatal alcohol exposure.
Collapse
Affiliation(s)
- Ilknur Dursun
- Department of Physiology, Faculty of Medicine, Istinye University, Istanbul, Turkey
| | - Nur Damla Korkmaz
- Department of Medical Biology, Faculty of Medicine, Bezmialem Vakif University, Istanbul, Turkey
| | - Sinem Firtina
- Department of Medical Genetics, Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Muhammed Salih Erkoyuncu
- Department of Neuroscience, Graduate School of Health Sciences, Bezmialem Vakif University, Istanbul, Turkey
| | - Fahri Akbas
- Department of Medical Biology, Faculty of Medicine, Bezmialem Vakif University, Istanbul, Turkey
| | - Birsen Elibol
- Department of Medical Biology, Faculty of Medicine, Istanbul Medeniyet University, Istanbul, Turkey.
| |
Collapse
|
3
|
Lima Silva ARD, Silva MLSCD, Silva JFD, Falcão E Falcão KE, Marrs JA, Sales Cadena MR, Cadena PG. Single essential oils and their binary mixtures protect against ethanol-induced defects in a zebrafish fetal alcohol spectrum disorder model at the same level as folic acid. Alcohol 2025; 123:77-86. [PMID: 39536958 DOI: 10.1016/j.alcohol.2024.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/30/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
This study evaluated protective effects of clove (SEO), thyme white (TEO), oregano (OEO), and caraway (CEO) essential oils (EOs), and their binary mixtures, in a zebrafish fetal alcohol spectrum disorder model. Furthermore, folic acid (FA) was used for comparison as it had previously shown protection against ethanol (EtOH)-induced defects. The co-exposure of zebrafish embryos to EtOH (150 mM) and FA (75 μM) or EOs and their binary mixtures (0.5-1 mg/L) was carried out during 6 or 22 h postfertilization (hpf). Different developmental endpoints (epiboly measurement, survival rate at 24 hpf, embryonic developmental progression measurement at 24 hpf, larval development at 48-96 hpf, and hatching rate at 72-96 hpf) were evaluated at 8-96 hpf. EtOH exposure reduced epiboly. Only FA and the SEO + TEO binary mixture protected against these defects, and SEO and TEO single exposure showed partial protection. Therefore, these groups were chosen for subsequent experiments. At 24 hpf, EtOH showed developmental delay and hatching rate was delayed at 72 hpf. FA, SEO, TEO, and SEO + TEO partially protected against these defects. This study supports the conclusion that FA partially protects against EtOH-induced defects. SEO and TEO single exposure partially protect against EtOH-induced defects. However, the binary mixture of SEO + TEO was more effective, showing similar efficacy as FA.
Collapse
Affiliation(s)
- Andressa Raphaely de Lima Silva
- Departamento de Morfologia e Fisiologia Animal (DMFA), Universidade Federal Rural de Pernambuco, Av. Dom Manoel de Medeiros s/n, 52171-900, Dois Irmãos, Recife, PE, Brazil
| | - Maria Letícia Santos Carnaúba da Silva
- Departamento de Morfologia e Fisiologia Animal (DMFA), Universidade Federal Rural de Pernambuco, Av. Dom Manoel de Medeiros s/n, 52171-900, Dois Irmãos, Recife, PE, Brazil; Laboratório de Imunopatologia Keizo Asami (LIKA), Universidade Federal de Pernambuco (UFPE), Av. Prof. Moraes Rego, s/n 50780-901, Recife, PE, Brazil
| | - Jadson Freitas da Silva
- Departamento de Morfologia e Fisiologia Animal (DMFA), Universidade Federal Rural de Pernambuco, Av. Dom Manoel de Medeiros s/n, 52171-900, Dois Irmãos, Recife, PE, Brazil
| | - Katarine Evelyn Falcão E Falcão
- Departamento de Morfologia e Fisiologia Animal (DMFA), Universidade Federal Rural de Pernambuco, Av. Dom Manoel de Medeiros s/n, 52171-900, Dois Irmãos, Recife, PE, Brazil
| | - James A Marrs
- Department of Biology, Indiana University Indianapolis, 723 West Michigan, Indianapolis, IN 46202, USA
| | - Marilia Ribeiro Sales Cadena
- Departamento de Biologia (DB), Universidade Federal Rural de Pernambuco, Av. Dom Manoel de Medeiros s/n, 52171-900, Dois Irmãos, Recife, PE, Brazil
| | - Pabyton Gonçalves Cadena
- Departamento de Morfologia e Fisiologia Animal (DMFA), Universidade Federal Rural de Pernambuco, Av. Dom Manoel de Medeiros s/n, 52171-900, Dois Irmãos, Recife, PE, Brazil; Laboratório de Imunopatologia Keizo Asami (LIKA), Universidade Federal de Pernambuco (UFPE), Av. Prof. Moraes Rego, s/n 50780-901, Recife, PE, Brazil.
| |
Collapse
|
4
|
Nahar M, Rai R, Jat D. Therapeutic intervention of vitamin B12 in mitigating chronic alcoholism induced alterations in adult zebrafish ( Danio rerio): a holistic in vivo approach. Int J Neurosci 2024:1-15. [PMID: 39207796 DOI: 10.1080/00207454.2024.2398564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 08/08/2024] [Accepted: 08/24/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Chronic alcoholism refers to the unpleasant symptoms directly resulting from excessive drinking. Increased alcohol metabolites and an unbalanced oxidative state are likely to blame for the reported effects under these circumstances. According to preclinical and clinical research, vitamin B12 can act on several organ systems with demonstrated neuroprotective, antioxidant, and glutamate modulating properties. OBJECTIVE This research sought to examine the ameliorative effects of vitamin B12 (VtB12) in persistent alcohol (AlOH) exposed adult zebrafish with the help of following parameters like the anxiety related behavior test, Oxidative stress, and antioxidant assays, histological and immunofluorescence analysis. METHODS Zebrafish pretreated with 0.40% AlOH (v/v) for 120 min (+AlOH) or not (-AlOH), were exposed for 6 h to home tank water (-VtB12) or to 59 µg-VtB12/kg-fish food (+VtB12) to analyze anxiety behavior in the geotaxis (novel tank) test as well as the oxidative brain damage in the adult zebrafish. RESULTS Adult zebrafish exposed to chronic AlOH showed a decrease in the distance travelled, average and mobility speed, and increased the average frozen time, the explored area, and total no. of the site explored in the trapezoid tank. AlOH exposure also resulted in oxidative damage, enhanced lipid peroxidation, advanced oxidative protein products, decreased enzymatic and non-enzymatic antioxidant activities, and enhanced reactive oxygen species generation. Additionally, VtB12 supplementation improved neurogenesis, evident in increased Nissl cell numbers and NeuN expression in the brain. CONCLUSION Chronic alcoholism may be effect on the brain cells as well as on the neuro-behavior of zebrafish. This research demonstrated that VtB12 shows promise as a neuroprotective agent against chronic alcoholism induced alterations in zebrafish's brain.
Collapse
Affiliation(s)
- Manisha Nahar
- Neuroscience Research Laboratory, Department of Zoology, School of Biological Sciences, Dr. Harisingh Gour Central University, Sagar, M.P, India
| | - Ravina Rai
- Neuroscience Research Laboratory, Department of Zoology, School of Biological Sciences, Dr. Harisingh Gour Central University, Sagar, M.P, India
| | - Deepali Jat
- Neuroscience Research Laboratory, Department of Zoology, School of Biological Sciences, Dr. Harisingh Gour Central University, Sagar, M.P, India
| |
Collapse
|
5
|
Król M, Skowron P, Skowron K, Gil K. The Fetal Alcohol Spectrum Disorders-An Overview of Experimental Models, Therapeutic Strategies, and Future Research Directions. CHILDREN (BASEL, SWITZERLAND) 2024; 11:531. [PMID: 38790526 PMCID: PMC11120554 DOI: 10.3390/children11050531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/26/2024]
Abstract
Since the establishment of a clear link between maternal alcohol consumption during pregnancy and certain birth defects, the research into the treatment of FASD has become increasingly sophisticated. The field has begun to explore the possibility of intervening at different levels, and animal studies have provided valuable insights into the pathophysiology of the disease, forming the basis for implementing potential therapies with increasingly precise mechanisms. The recent reports suggest that compounds that reduce the severity of neurodevelopmental deficits, including glial cell function and myelination, and/or target oxidative stress and inflammation may be effective in treating FASD. Our goal in writing this article was to analyze and synthesize current experimental therapeutic interventions for FASD, elucidating their potential mechanisms of action, translational relevance, and implications for clinical application. This review exclusively focuses on animal models and the interventions used in these models to outline the current direction of research. We conclude that given the complexity of the underlying mechanisms, a multifactorial approach combining nutritional supplementation, pharmacotherapy, and behavioral techniques tailored to the stage and severity of the disease may be a promising avenue for further research in humans.
Collapse
Affiliation(s)
- Magdalena Król
- Department of Pathophysiology, Jagiellonian University Medical College, Czysta St. 18, 31-121 Krakow, Poland; (M.K.); (K.S.)
| | - Paweł Skowron
- Department of Physiology and Pathophysiology, Wroclaw Medical University, T. Chalubinskiego St. 10, 50-368 Wrocław, Poland;
| | - Kamil Skowron
- Department of Pathophysiology, Jagiellonian University Medical College, Czysta St. 18, 31-121 Krakow, Poland; (M.K.); (K.S.)
| | - Krzysztof Gil
- Department of Pathophysiology, Jagiellonian University Medical College, Czysta St. 18, 31-121 Krakow, Poland; (M.K.); (K.S.)
| |
Collapse
|
6
|
Boschen KE, Dragicevich CJ, Fish EW, Hepperla AJ, Simon JM, Parnell SE. Gastrulation-stage alcohol exposure induces similar rates of craniofacial malformations in male and female C57BL/6J mice. Birth Defects Res 2024; 116:e2292. [PMID: 38116840 PMCID: PMC10872400 DOI: 10.1002/bdr2.2292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/18/2023] [Accepted: 12/06/2023] [Indexed: 12/21/2023]
Abstract
BACKGROUND Prenatal alcohol exposure during gastrulation (embryonic day [E] 7 in mice, ~3rd week of human pregnancy) impairs eye, facial, and cortical development, recapitulating birth defects characteristic of Fetal Alcohol Syndrome (FAS). However, it is not known whether the prevalence or severity of craniofacial features associated with FAS is affected by biological sex. METHODS The current study administered either alcohol (2.9 g/kg, two i.p. doses, 4 hr apart) or vehicle to pregnant C57BL/6J females on E7, prior to gonadal sex differentiation, and assessed fetal morphology at E17. RESULTS Whereas sex did not affect fetal size in controls, alcohol-exposed females were smaller than both control females and alcohol-treated males. Alcohol exposure increased the incidence of eye defects to a similar degree in males and females. Together, these data suggest that females might be more sensitive to the general developmental effects of alcohol, but not effects specific to the craniofacies. Whole transcriptomic analysis of untreated E7 embryos found 214 differentially expressed genes in females vs. males, including those in pathways related to cilia and mitochondria, histone demethylase activity, and pluripotency. CONCLUSION Gastrulation-stage alcohol induces craniofacial malformations in male and female mouse fetuses at similar rates and severity, though growth deficits are more prevalent females. These findings support the investigation of biological sex as a contributing factor in prenatal alcohol studies.
Collapse
Affiliation(s)
- Karen E. Boschen
- Bowles Center for Alcohol Studies, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Constance J. Dragicevich
- Bowles Center for Alcohol Studies, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Eric W. Fish
- Bowles Center for Alcohol Studies, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Austin J. Hepperla
- Carolina Institute for Developmental Disabilities, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jeremy M. Simon
- Carolina Institute for Developmental Disabilities, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Scott E. Parnell
- Bowles Center for Alcohol Studies, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
7
|
Li Y, Cai T, Liu H, Liu J, Chen SY, Fan H. Exosome-shuttled miR-126 mediates ethanol-induced disruption of neural crest cell-placode cell interaction by targeting SDF1. Toxicol Sci 2023; 195:184-201. [PMID: 37490477 PMCID: PMC10801442 DOI: 10.1093/toxsci/kfad068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023] Open
Abstract
During embryonic development, 2 populations of multipotent stem cells, cranial neural crest cells (NCCs) and epibranchial placode cells (PCs), are anatomically adjacent to each other. The coordinated migration of NCCs and PCs plays a major role in the morphogenesis of craniofacial skeletons and cranial nerves. It is known that ethanol-induced dysfunction of NCCs and PCs is a key contributor to the defects of craniofacial skeletons and cranial nerves implicated in fetal alcohol spectrum disorder (FASD). However, how ethanol disrupts the coordinated interaction between NCCs and PCs was not elucidated. To fill in this gap, we established a well-designed cell coculture system to investigate the reciprocal interaction between human NCCs (hNCCs) and human PCs (hPCs), and also monitored the migration behavior of NCCs and PCs in zebrafish embryos. We found that ethanol exposure resulted in a disruption of coordinated hNCCs-hPCs interaction, as well as in zebrafish embryos. Treating hNCCs-hPCs with exosomes derived from ethanol-exposed hNCCs (ExoEtOH) mimicked ethanol-induced impairment of hNCCs-hPCs interaction. We also observed that SDF1, a chemoattractant, was downregulated in ethanol-treated hPCs and zebrafish embryos. Meanwhile, miR-126 level in ExoEtOH was significantly higher than that in control exosomes (ExoCon). We further validated that ExoEtOH-encapsulated miR-126 from hNCCs can be transferred to hPCs to suppress SDF1 expression in hPCs. Knockdown of SDF1 replicated ethanol-induced abnormalities either in vitro or in zebrafish embryos. On the contrary, overexpression of SDF1 or inhibiting miR-126 strongly rescued ethanol-induced impairment of hNCCs-hPCs interaction and developmental defects.
Collapse
Affiliation(s)
- Yihong Li
- Ningbo No.2 Hospital, Ningbo 315099, China
- Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo 315000, China
- Lab of Nanopharmacology Research for Neurodegeneration, Department of Research and Development of Science and Technology, Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, Zhejiang Province 315000, China
- Department of Pharmacology and Toxicology, University of Louisville Health Sciences Center, Louisville, Kentucky 40292, USA
| | - Ting Cai
- Ningbo No.2 Hospital, Ningbo 315099, China
- Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo 315000, China
| | - Huina Liu
- Ningbo No.2 Hospital, Ningbo 315099, China
- Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo 315000, China
| | - Jie Liu
- Department of Pharmacology and Toxicology, University of Louisville Health Sciences Center, Louisville, Kentucky 40292, USA
| | - Shao-Yu Chen
- Department of Pharmacology and Toxicology, University of Louisville Health Sciences Center, Louisville, Kentucky 40292, USA
| | - Huadong Fan
- Ningbo No.2 Hospital, Ningbo 315099, China
- Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo 315000, China
- Department of Pharmacology and Toxicology, University of Louisville Health Sciences Center, Louisville, Kentucky 40292, USA
- Lab of Dementia and Neurorehabilitation Research, Department of Research and Development of Science and Technology, Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, Zhejiang Province 315000, China
| |
Collapse
|
8
|
Chen SY, Kannan M. Neural crest cells and fetal alcohol spectrum disorders: Mechanisms and potential targets for prevention. Pharmacol Res 2023; 194:106855. [PMID: 37460002 PMCID: PMC10528842 DOI: 10.1016/j.phrs.2023.106855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/23/2023] [Accepted: 07/14/2023] [Indexed: 07/26/2023]
Abstract
Fetal alcohol spectrum disorders (FASD) are a group of preventable and nongenetic birth defects caused by prenatal alcohol exposure that can result in a range of cognitive, behavioral, emotional, and functioning deficits, as well as craniofacial dysmorphology and other congenital defects. During embryonic development, neural crest cells (NCCs) play a critical role in giving rise to many cell types in the developing embryos, including those in the peripheral nervous system and craniofacial structures. Ethanol exposure during this critical period can have detrimental effects on NCC induction, migration, differentiation, and survival, leading to a broad range of structural and functional abnormalities observed in individuals with FASD. This review article provides an overview of the current knowledge on the detrimental effects of ethanol on NCC induction, migration, differentiation, and survival. The article also examines the molecular mechanisms involved in ethanol-induced NCC dysfunction, such as oxidative stress, altered gene expression, apoptosis, epigenetic modifications, and other signaling pathways. Furthermore, the review highlights potential therapeutic strategies for preventing or mitigating the detrimental effects of ethanol on NCCs and reducing the risk of FASD. Overall, this article offers a comprehensive overview of the current understanding of the impact of ethanol on NCCs and its role in FASD, shedding light on potential avenues for future research and intervention.
Collapse
Affiliation(s)
- Shao-Yu Chen
- Department of Pharmacology and Toxicology, University of Louisville Health Sciences Center, Louisville, KY 40292, USA; University of Louisville Alcohol Research Center, Louisville, KY 40292, USA.
| | - Maharajan Kannan
- Department of Pharmacology and Toxicology, University of Louisville Health Sciences Center, Louisville, KY 40292, USA; University of Louisville Alcohol Research Center, Louisville, KY 40292, USA.
| |
Collapse
|
9
|
Samrid R, Taoto C, Wu A, Sawatpanich T, Phunchago N, Uabundit N, Iamsaard S. Protective effect of Mucuna pruriens (L.) DC. var. pruriens seed extract on apoptotic germ cells in ethanolic male rats. BRAZ J BIOL 2023; 83:e272629. [PMID: 37436191 DOI: 10.1590/1519-6984.272629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 06/02/2023] [Indexed: 07/13/2023] Open
Abstract
Thai Mucuna pruriens (L.) DC. var pruriens (T-MP) seed containing levodopa (L-DOPA) and antioxidant capacity has been shown to improve sexual behavior and male reproductive parameters in rats treated with ethanol (Eth). However, its protective effect on testicular apoptotic germ cells has never been reported. This study aimed to investigate the potential effects of T-MP seed extract on expressions of caspase, proliferating cell nuclear antigen (PCNA), and dopamine D2 receptor (D2R) proteins in Eth rats. Thirty-six male Wistar rats were divided into four groups (9 animals/group), including control, Eth, T-MP150+Eth, and T-MP300+Eth, respectively. Control rats received distilled water, and Eth rats received Eth (3g/kg BW; 40%v/v). The T-MP groups were treated with T-MP seed extract at a dose of 150 or 300 mg/kg before Eth administration for 56 consecutive days. The results showed that the seminiferous tubule diameter and epithelial height were significantly increased in both T-MP treated groups compared to the Eth group. Additionally, the caspase-9 and -3, and PCNA expressions were decreased, but D2R expression was markedly increased in T-MP groups. It was concluded that T-MP seed extract could protect testicular apoptosis induced by Eth via changes in caspase, PCNA, and D2R protein expressions.
Collapse
Affiliation(s)
- R Samrid
- Khon Kaen University, Faculty of Medicine, Department of Anatomy, Khon Kaen, Thailand
| | - C Taoto
- Khon Kaen University, Faculty of Medicine, Department of Anatomy, Khon Kaen, Thailand
| | - A Wu
- Taipei Medical University, The PhD Program of Translational Medicine, Taipei, Taiwan
| | - T Sawatpanich
- Khon Kaen University, Faculty of Medicine, Department of Anatomy, Khon Kaen, Thailand
| | - N Phunchago
- Khon Kaen University, Faculty of Medicine, Department of Anatomy, Khon Kaen, Thailand
| | - N Uabundit
- Khon Kaen University, Faculty of Medicine, Department of Anatomy, Khon Kaen, Thailand
| | - S Iamsaard
- Khon Kaen University, Faculty of Medicine, Department of Anatomy, Khon Kaen, Thailand
| |
Collapse
|
10
|
Weinmann T, Finkeldey L, Wittmann E, Kerber K, Schlueter JA, Zillinger I, Maciejok A, Heinen F, Landgraf MN. Prognostic factors for long-term outcome in children with fetal alcohol spectrum disorders. RESEARCH IN DEVELOPMENTAL DISABILITIES 2023; 136:104481. [PMID: 36924617 DOI: 10.1016/j.ridd.2023.104481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 02/22/2023] [Accepted: 03/09/2023] [Indexed: 06/18/2023]
Abstract
INTRODUCTION Known protective factors for long-term outcome in children with fetal alcohol spectrum disorders (FASD) are early diagnosis and a stable, non-violent supportive environment. Which factors contribute to the stability of care is not yet known. Thus, the aim of our study was to evaluate whether the age at diagnosis and the complexity of brain dysfunction play a role for placement changes in children with FASD. MATERIALS AND METHODS An online survey was conducted among caregivers and professionals caring for children with FASD and seeking help at the German FASD Competence Centre Bavaria (N = 232). The survey collected information about diagnosis, brain dysfunctions, behavioural factors influencing everyday life and changes of placement. The association of timing of diagnosis, brain dysfunctions and neurobehavioral impairment with changes of placement (<2 vs. 2 or more changes) was evaluated via logistic regression models. RESULTS About 50% of the children received their diagnosis of FASD after the age of 5 years. The complexity of brain dysfunctions in children with FASD affecting everyday life was high. 15% of the children experienced four or more changes of placement. Children with more neuropsychological impairments experienced more changes of placement (OR: 2.53, 95% CI: 1.36-4.71). CONCLUSIONS Even though our results need to be interpreted with caution due to methodological limitations such as the use of a convenience sample and limited statistical power, they imply that severely affected children with FASD experience a less stable environment. These children may therefore be at high risk for a negative prognosis. To warrant a better prognosis for the affected children, professionals urgently need to pay attention to early recognition and the complexity of neuropsychological impairments in children with FASD as well as to the support that caregivers urgently need.
Collapse
Affiliation(s)
- Tobias Weinmann
- Institute and Clinic for Occupational, Social and Environmental Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Lukas Finkeldey
- Department of Paediatric Neurology and Developmental Medicine, German FASD Competence Centre Bavaria, Dr. von Hauner Children's Hospital, LMU Hospital Munich, Ludwig-Maximilians-Universität, Lindwurmstr. 5, 80337 Munich, Germany
| | - Esther Wittmann
- Department of Paediatric Neurology and Developmental Medicine, German FASD Competence Centre Bavaria, Dr. von Hauner Children's Hospital, LMU Hospital Munich, Ludwig-Maximilians-Universität, Lindwurmstr. 5, 80337 Munich, Germany
| | - Katharina Kerber
- Department of Paediatric Neurology and Developmental Medicine, German FASD Competence Centre Bavaria, Dr. von Hauner Children's Hospital, LMU Hospital Munich, Ludwig-Maximilians-Universität, Lindwurmstr. 5, 80337 Munich, Germany
| | - Julia A Schlueter
- Department of Paediatric Neurology and Developmental Medicine, German FASD Competence Centre Bavaria, Dr. von Hauner Children's Hospital, LMU Hospital Munich, Ludwig-Maximilians-Universität, Lindwurmstr. 5, 80337 Munich, Germany
| | - Iris Zillinger
- Department of Paediatric Neurology and Developmental Medicine, German FASD Competence Centre Bavaria, Dr. von Hauner Children's Hospital, LMU Hospital Munich, Ludwig-Maximilians-Universität, Lindwurmstr. 5, 80337 Munich, Germany
| | - Anja Maciejok
- Department of Paediatric Neurology and Developmental Medicine, German FASD Competence Centre Bavaria, Dr. von Hauner Children's Hospital, LMU Hospital Munich, Ludwig-Maximilians-Universität, Lindwurmstr. 5, 80337 Munich, Germany
| | - Florian Heinen
- Department of Paediatric Neurology and Developmental Medicine, German FASD Competence Centre Bavaria, Dr. von Hauner Children's Hospital, LMU Hospital Munich, Ludwig-Maximilians-Universität, Lindwurmstr. 5, 80337 Munich, Germany
| | - Mirjam N Landgraf
- Department of Paediatric Neurology and Developmental Medicine, German FASD Competence Centre Bavaria, Dr. von Hauner Children's Hospital, LMU Hospital Munich, Ludwig-Maximilians-Universität, Lindwurmstr. 5, 80337 Munich, Germany.
| |
Collapse
|
11
|
Rouzer SK, Gutierrez J, Larin KV, Miranda RC. Alcohol & cannabinoid co-use: Implications for impaired fetal brain development following gestational exposure. Exp Neurol 2023; 361:114318. [PMID: 36627039 PMCID: PMC9892278 DOI: 10.1016/j.expneurol.2023.114318] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/31/2022] [Accepted: 01/06/2023] [Indexed: 01/09/2023]
Abstract
Alcohol and marijuana are two of the most consumed psychoactive substances by pregnant people, and independently, both substances have been associated with lifelong impacts on fetal neurodevelopment. Importantly, individuals of child-bearing age are increasingly engaging in simultaneous alcohol and cannabinoid (SAC) use, which amplifies each drug's pharmacodynamic effects and increases craving for both substances. However, to date, investigations of prenatal polysubstance use are notably limited in both human and non-human populations. In this review paper, we will address what is currently known about combined exposure to these substances, both directly and prenatally, and identify shared prenatal targets from single-exposure paradigms that may highlight susceptible neurobiological mechanisms for future investigation and therapeutic intervention. Finally, we conclude this manuscript by discussing factors that we feel are essential in the consideration and experimental design of future preclinical SAC studies.
Collapse
Affiliation(s)
- Siara Kate Rouzer
- Department of Neuroscience & Experimental Therapeutics, Texas A&M School of Medicine, Bryan, TX 77807, United States.
| | - Jessica Gutierrez
- Department of Biomedical Engineering, University of Houston, Houston, TX 77204, United States
| | - Kirill V Larin
- Department of Biomedical Engineering, University of Houston, Houston, TX 77204, United States
| | - Rajesh C Miranda
- Department of Neuroscience & Experimental Therapeutics, Texas A&M School of Medicine, Bryan, TX 77807, United States
| |
Collapse
|
12
|
Ghosal R, Borrego-Soto G, Eberhart JK. Embryonic ethanol exposure disrupts craniofacial neuromuscular integration in zebrafish larvae. Front Physiol 2023; 14:1131075. [PMID: 36824468 PMCID: PMC9941677 DOI: 10.3389/fphys.2023.1131075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 01/24/2023] [Indexed: 02/10/2023] Open
Abstract
Forming a vertebrate head involves the meticulous integration of multiple tissue types during development. Prenatal alcohol exposure is known to cause a variety of birth defects, especially to tissues in the vertebrate head. However, a systematic analysis of coordinated defects across tissues in the head is lacking. Here, we delineate the effects of ethanol on individual tissue types and their integration during craniofacial development. We found that exposure to 1% ethanol induced ectopic cranial muscle and nerve defects with only slight effects on skeletal pattern. Ectopic muscles were, however, unaccompanied by ectopic tendons and could be partially rescued by anesthetizing the larvae before muscle fibers appeared. This finding suggests that the ectopic muscles result from fiber detachment and are not due to an underlying muscle patterning defect. Interestingly, immobilization did not rescue the nerve defects, thus ethanol has an independent effect on each tissue even though they are linked in developmental time and space. Time-course experiments demonstrated an increase in nerve defects with ethanol exposure between 48hpf-4dpf. Time-lapse imaging confirmed the absence of nerve pathfinding or misrouting defects until 48hpf. These results indicate that ethanol-induced nerve defects occur at the time of muscle innervation and after musculoskeletal patterning. Further, we investigated the effect of ethanol on the neuromuscular junctions of the craniofacial muscles and found a reduced number of postsynaptic receptors with no significant effect on the presynaptic terminals. Our study shows that craniofacial soft tissues are particularly susceptible to ethanol-induced damage and that these defects appear independent from one another. Thus, the effects of ethanol on the vertebrate head appear highly pleiotropic.
Collapse
Affiliation(s)
| | | | - Johann K. Eberhart
- Department of Molecular Biosciences, College of Natural Sciences and Waggoner Center for Alcohol and Addiction Research, University of Texas at Austin, Austin, TX, United States
| |
Collapse
|
13
|
Subramoney S, Joshi SH, Wedderburn CJ, Lee D, Roos A, Woods RP, Zar HJ, Narr K, Stein DJ, Donald KA. The impact of prenatal alcohol exposure on gray matter volume and cortical surface area of 2 to 3-year-old children in a South African birth cohort. Alcohol Clin Exp Res 2022; 46:1233-1247. [PMID: 35581528 PMCID: PMC9357164 DOI: 10.1111/acer.14873] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 04/30/2022] [Accepted: 05/07/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND There is a growing literature that demonstrates the effects of prenatal alcohol exposure (PAE) on brain development in school-aged children. Less is known, however, on how PAE impacts the brain early in life. We investigated the effects of PAE and child sex on subcortical gray matter volume, cortical surface area (CSA), cortical volume (CV), and cortical thickness (CT) in children aged 2 to 3 years. METHODS The sample was recruited as a nested cross-sectional substudy of the Drakenstein Child Health Study. Images from T1-weighted magnetic resonance imaging were acquired on 47 alcohol-exposed and 124 control children (i.e., with no or minimal alcohol exposure), aged 2 to 3 years, some of whom were scanned as neonates. Brain images were processed through automated processing pipelines using FreeSurfer version 6.0. Subcortical and a priori selected cortical regions of interest were compared. RESULTS Subcortical volume analyses revealed a PAE by child sex interaction for bilateral putamen volumes (Left: p = 0.02; Right: p = 0.01). There was no PAE by child sex interaction effect on CSA, CV, and CT. Analyses revealed an impact of PAE on CSA (p = 0.04) and CV (p = 0.04), but not CT in this age group. Of note, the inferior parietal gyrus CSA was significantly smaller in children with PAE compared to control children. CONCLUSIONS Findings from this subgroup scanned at age 2 to 3 years build on previously described subcortical volume differences in neonates from this cohort. Findings suggest that PAE persistently affects gray matter development through the critical early years of life. The detectable influence of PAE on brain structure at this early age further highlights the importance of brain imaging studies on the impact of PAE on the young developing brain.
Collapse
Affiliation(s)
- Sivenesi Subramoney
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's HospitalUniversity of Cape TownCape TownSouth Africa
| | - Shantanu H. Joshi
- Department of NeurologyUniversity of California Los AngelesLos AngelesCaliforniaUSA
- Department of BioengineeringUniversity of California Los AngelesLos AngelesCaliforniaUSA
| | - Catherine J. Wedderburn
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's HospitalUniversity of Cape TownCape TownSouth Africa
- Department of Clinical ResearchLondon School of Hygiene and Tropical MedicineLondonUK
- The Neuroscience InstituteUniversity of Cape TownCape TownSouth Africa
| | - David Lee
- Department of BioengineeringUniversity of California Los AngelesLos AngelesCaliforniaUSA
| | - Annerine Roos
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's HospitalUniversity of Cape TownCape TownSouth Africa
- The Neuroscience InstituteUniversity of Cape TownCape TownSouth Africa
- SA MRC Unit on Risk and Resilience in Mental Disorders, Department of PsychiatryStellenbosch UniversityStellenboschSouth Africa
| | - Roger P. Woods
- Departments of Neurology, Psychiatry and Biobehavioral SciencesUniversity of California Los AngelesLos AngelesCaliforniaUSA
| | - Heather J. Zar
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's HospitalUniversity of Cape TownCape TownSouth Africa
- Unit on Child & Adolescent Health, South African Medical Research Council (SAMRC)University of Cape TownCape TownSouth Africa
| | - Katherine L. Narr
- Departments of Neurology, Psychiatry and Biobehavioral SciencesUniversity of California Los AngelesLos AngelesCaliforniaUSA
| | - Dan J. Stein
- The Neuroscience InstituteUniversity of Cape TownCape TownSouth Africa
- Department of Psychiatry and Mental HealthUniversity of Cape TownCape TownSouth Africa
- SU/UCT MRC Unit on Risk and Resilience in Mental DisordersUniversity of Cape TownCape TownSouth Africa
| | - Kirsten A. Donald
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's HospitalUniversity of Cape TownCape TownSouth Africa
- The Neuroscience InstituteUniversity of Cape TownCape TownSouth Africa
| |
Collapse
|
14
|
Pai VP, Levin M. HCN2 Channel-induced Rescue of Brain, Eye, Heart, and Gut Teratogenesis Caused by Nicotine, Ethanol, and Aberrant Notch Signaling. Wound Repair Regen 2022; 30:681-706. [PMID: 35662339 DOI: 10.1111/wrr.13032] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/28/2022] [Accepted: 05/19/2022] [Indexed: 11/30/2022]
Abstract
Organogenesis is a complex process that can be disrupted by embryonic exposure to teratogens or mutation-induced alterations in signaling pathways, both of which result in organ mispatterning. Building on prior work in Xenopus laevis that showed that increased HCN2 ion channel activity rescues nicotine-induced brain & eye morphogenesis, we demonstrate much broader HCN2-based rescue of organ patterning defects. Induced HCN2 expression in both local or distant tissues can rescue CNS (brain & eye) as well as non-CNS (heart, & gut) organ defects induced by three different teratogenic conditions: nicotine exposure, ethanol exposure, or aberrant Notch protein. Rescue can also be induced by small-molecule HCN2 channel activators, even with delayed treatment initiation. Our results suggest that HCN2 (likely mediated by bioelectric signals) can be an effective regulator of organogenesis from all three germ layers (ectoderm, mesoderm, and endoderm) and reveal non-cell-autonomous influences on organ formation that work at considerable distance during embryonic development. These results suggest molecular bioelectric strategies for repair that could be explored in the future for regenerative medicine. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Vaibhav P Pai
- Allen Discovery Center at Tufts University, Medford, Massachusetts, USA
| | - Michael Levin
- Allen Discovery Center at Tufts University, Medford, Massachusetts, USA
| |
Collapse
|
15
|
Sabzali M, Eidi A, Khaksari M, Khastar H. Anti-inflammatory, Antioxidant, and Antiapoptotic Action of Metformin Attenuates Ethanol Neurotoxicity in the Animal Model of Fetal Alcohol Spectrum Disorders. Neurotox Res 2022; 40:605-613. [PMID: 35386022 DOI: 10.1007/s12640-022-00499-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/26/2022] [Accepted: 03/28/2022] [Indexed: 10/18/2022]
Abstract
Fetal alcohol exposure has permanent effects on the brain structure, leading to functional deficits in several aspects of behavior, including learning and memory. Alcohol-induced neurocognitive impairment in offsprings is included with activation of oxidative- inflammatory cascade followed with wide apoptotic neurodegeneration in several brain areas, such as the hippocampus. Metformin is the first-line treatment for diabetic patients. It rapidly crosses the blood-brain barrier (BBB) and exerts antioxidant, anti-inflammatory, and neuroprotective effects. In this study, we evaluated the protective effects of metformin on ethanol-related neuroinflammation, as well as neuron apoptosis in the hippocampus of adult male rat in animal model of fetal alcohol spectrum disorders. Treatment with ethanol in milk solution (5.25 and 27.8 g/kg, respectively) was conducted by intragastric intubation at 2-10 days after birth. To examine the antioxidant and anti-inflammatory properties of metformin, an ELISA assay was performed for determining the tumor necrosis factor-α (TNF-α) and antioxidant enzyme concentrations. Immunohistochemical staining was conducted for evaluating the glial fibrillary acidic protein (GFAP) and cleaved caspase-3 expression. Based on the results, metformin caused a significant increase in the superoxide dismutase (SOD) (P < 0.05) and glutathione peroxidase (GSH-Px) (P < 0.01) activities. On the other hand, it reduced the concentrations of TNF-α and malondialdehyde, compared to the ethanol group (P < 0.01). In the metformin group, there was a reduction in cell apoptosis in the hippocampus, as well as GFAP-positive cells (P < 0.01). Overall, apoptotic signaling, regulated by the oxidative inflammatory cascade, can be suppressed by metformin in adult brain rats following animal model of fetal alcohol spectrum disorders.
Collapse
Affiliation(s)
- Maryam Sabzali
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Akram Eidi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mehdi Khaksari
- Addiction Research Center, Shahroud University of Medical Sciences, Shahroud, Iran.
| | - Hossein Khastar
- Addiction Research Center, Shahroud University of Medical Sciences, Shahroud, Iran
| |
Collapse
|
16
|
Alsakran A, Kudoh T. Zebrafish as a Model for Fetal Alcohol Spectrum Disorders. Front Pharmacol 2022; 12:721924. [PMID: 34975467 PMCID: PMC8714738 DOI: 10.3389/fphar.2021.721924] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 10/25/2021] [Indexed: 11/29/2022] Open
Abstract
In this review, we will discuss zebrafish as a model for studying mechanisms of human fetal alcohol spectrum disorders (FASDs). We will overview the studies on FASDs so far and will discuss with specific focus on the mechanisms by which alcohol alters cell migration during the early embryogenesis including blastula, gastrula, and organogenesis stages which later cause morphological defects in the brain and other tissues. FASDs are caused by an elevated alcohol level in the pregnant mother’s body. The symptoms of FASDs include microcephaly, holoprosencephaly, craniofacial abnormalities, and cardiac defects with birth defect in severe cases, and in milder cases, the symptoms lead to developmental and learning disabilities. The transparent zebrafish embryo offers an ideal model system to investigate the genetic, cellular, and organismal responses to alcohol. In the zebrafish, the effects of alcohol were observed in many places during the embryo development from the stem cell gene expression at the blastula/gastrula stage, gastrulation cell movement, morphogenesis of the central nervous system, and neuronal development. The data revealed that ethanol suppresses convergence, extension, and epiboly cell movement at the gastrula stage and cause the failure of normal neural plate formation. Subsequently, other cell movements including neurulation, eye field morphogenesis, and neural crest migration are also suppressed, leading to the malformation of the brain and spinal cord, including microcephaly, cyclopia, spinal bifida, and craniofacial abnormalities. The testing cell migration in zebrafish would provide convenient biomarkers for the toxicity of alcohol and other related chemicals, and investigate the molecular link between the target signaling pathways, following brain development.
Collapse
Affiliation(s)
- Amena Alsakran
- Department of Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Tetsuhiro Kudoh
- Department of Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom.,University of Exeter, Exeter, United Kingdom
| |
Collapse
|
17
|
Affiliation(s)
- Vishal D Naik
- Department of Obstetrics & Gynecology, C.S. Mott Center for Human Growth and Development, School of Medicine, Wayne State University, Detroit, Michigan, USA
| | - Jehoon Lee
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, Texas, USA
| | - Shannon Washburn
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Jayanth Ramadoss
- J. Ramadoss, Department of Obstetrics & Gynecology and Department of Physiology, 275 E Hancock St, C.S. Mott Center for Human Growth and Development, Rm 195, School of Medicine, Wayne State University, Detroit, MI 48201, USA. E-mail:
| |
Collapse
|
18
|
Drake DM, Wells PG. Novel mechanisms in alcohol neurodevelopmental disorders via BRCA1 depletion and BRCA1-dependent NADPH oxidase regulation. Redox Biol 2021; 48:102148. [PMID: 34736119 PMCID: PMC8577473 DOI: 10.1016/j.redox.2021.102148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 09/20/2021] [Accepted: 09/20/2021] [Indexed: 11/27/2022] Open
Abstract
The breast cancer 1 protein (BRCA1) facilitates DNA repair, preventing embryolethality and protecting the fetus from reactive oxygen species (ROS)-induced developmental disorders mediated by oxidatively damaged DNA. Alcohol (ethanol, EtOH) exposure during pregnancy causes fetal alcohol spectrum disorders (FASD), characterized by aberrant behaviour and enhanced ROS formation and proteasomal protein degradation. Herein, ROS-producing NADPH oxidase (NOX) activity was higher in Brca1 +/- vs. +/+ fetal and adult brains, and further enhanced by a single EtOH exposure. EtOH also enhanced catalase and proteasomal activities, while conversely reducing BRCA1 protein levels without affecting Brca1 gene expression. EtOH-initiated adaptive postnatal freezing behaviour was lost in Brca1 +/- progeny. Pretreatment with the free radical spin trap and ROS inhibitor phenylbutylnitrone blocked all EtOH effects, suggesting ROS-dependent mechanisms. This is the first in vivo evidence of NOX regulation by BRCA1, and of EtOH-induced, ROS-mediated depletion of BRCA1, revealing novel mechanisms of BRCA1 protection in FASD.
Collapse
Affiliation(s)
- Danielle M Drake
- Department of Pharmaceutical Sciences and Centre for Pharmaceutical Oncology, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Peter G Wells
- Department of Pharmaceutical Sciences and Centre for Pharmaceutical Oncology, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada; Department of Pharmacology and Toxicology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
19
|
Differential effects of maternal diets on birth outcomes and metabolic parameters in rats after ethanol consumption during pregnancy. Br J Nutr 2020; 126:1130-1139. [PMID: 33355064 DOI: 10.1017/s0007114520005152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Maternal nutrition status plays an important role in the development of fetal alcohol spectrum disorders (FASD), but its direct evidence is lacking. This study compared a standard chow with a semi-purified energy-dense (E-dense) diet on birth and metabolic outcomes in rats after ethanol (EtOH) consumption during pregnancy. Pregnant Sprague-Dawley rats were randomised into four groups: chow (n 6), chow + EtOH (20 %, v/v) (n 7), E-dense (n 6) and E-dense + EtOH (n 8). Birth outcomes including litter size, body and organ weights were collected. Metabolic parameters were measured in dams and pups at postnatal day (PD) 7. Maternal EtOH consumption decreased body weights (P < 0·0001) and litter sizes (P < 0·05) in chow-fed dams. At PD7, pups born to dams fed the E-dense diet had higher body (P < 0·002) and liver weights (P < 0·0001). These pups also had higher plasma total cholesterol (P < 0·0001), TAG (P < 0·003) and alanine aminotransferase (P < 0·03) compared with those from chow-fed dams. Dams fed the E-dense diet had higher plasma total (P < 0·0001) and HDL-cholesterol (P < 0·0001) and lower glucose (P < 0·0001). EtOH increased total cholesterol (P < 0·03) and glucose (P < 0·05) only in dams fed the E-dense diet. Maternal exposure to the E-dense diet attenuated prenatal EtOH-induced weight loss and produced different metabolic outcomes in both dams and pups. While the long-lasting effects of these outcomes are unknown, this study highlights the importance of maternal diet quality for maternal health and infant growth and suggests that maternal nutrition intervention may be a potential target for alleviating FASD.
Collapse
|
20
|
Cadena PG, Sales Cadena MR, Sarmah S, Marrs JA. Protective effects of quercetin, polydatin, and folic acid and their mixtures in a zebrafish (Danio rerio) fetal alcohol spectrum disorder model. Neurotoxicol Teratol 2020; 82:106928. [PMID: 32861842 PMCID: PMC7669573 DOI: 10.1016/j.ntt.2020.106928] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 08/26/2020] [Accepted: 08/27/2020] [Indexed: 12/26/2022]
Abstract
Protective effects of quercetin (QUE), polydatin (POL), and folic acid (FA) and their mixtures were tested using zebrafish to model fetal alcohol spectrum disorder in this study. Zebrafish embryos were exposed to 150 mM ethanol for 6 or 22 h and co-treated with QUE, POL, FA, and their mixtures (37.5-100.0 μM). Epiboly progression, teratogenic effects, and behavior were evaluated. Ethanol exposure reduced epiboly, and FA and QUE protected against these ethanol-induced defects. POL did not reduce epiboly defects. The mixture QUE + FA showed a possible antagonistic effect. The observed teratogenic effects were similar in all ethanol exposed groups. QUE, FA and QUE + POL reduced the percentage of affected animals, but treatments did not eliminate teratogenic effects. Behavioral measurements were divided into small (between 4 and 8 mm/s) and high swimming activity (>8 mm/s). All experimental groups displayed a reduction in small swimming activity as compared to control and ethanol groups when exposed to bright light. Additionally, larvae exposed to ethanol were more inhibited than control, not showing a habituation period (after 60 min of experiment) in high swimming activity. Chemical treatments like QUE and POL reduced behavioral defects induced by ethanol exposure. In conclusion, this study presents new evidence that QUE, POL, FA and their mixtures partially protected epiboly, teratogenic, and behavioral defects induced by ethanol exposure. QUE, FA and QUE + POL were more effective in reducing these defects than the other studied compounds and mixtures.
Collapse
Affiliation(s)
- Pabyton Gonçalves Cadena
- Departamento de Morfologia e Fisiologia Animal (DMFA), Universidade Federal Rural de Pernambuco, Av. Dom Manoel de Medeiros s/n, Dois Irmãos, 52171-900, Recife, PE, Brazil; Department of Biology, Indiana University Purdue University Indianapolis, 723 West Michigan St., Indianapolis, IN 46202, USA.
| | - Marilia Ribeiro Sales Cadena
- Departamento de Biologia (DB), Universidade Federal Rural de Pernambuco, Av. Dom Manoel de Medeiros s/n, Dois Irmãos, 52171-900 Recife, PE, Brazil; Department of Biology, Indiana University Purdue University Indianapolis, 723 West Michigan St., Indianapolis, IN 46202, USA
| | - Swapnalee Sarmah
- Department of Biology, Indiana University Purdue University Indianapolis, 723 West Michigan St., Indianapolis, IN 46202, USA
| | - James A Marrs
- Department of Biology, Indiana University Purdue University Indianapolis, 723 West Michigan St., Indianapolis, IN 46202, USA.
| |
Collapse
|
21
|
Yuan F, Yun Y, Fan H, Li Y, Lu L, Liu J, Feng W, Chen SY. MicroRNA-135a Protects Against Ethanol-Induced Apoptosis in Neural Crest Cells and Craniofacial Defects in Zebrafish by Modulating the Siah1/p38/p53 Pathway. Front Cell Dev Biol 2020; 8:583959. [PMID: 33134300 PMCID: PMC7561719 DOI: 10.3389/fcell.2020.583959] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 09/14/2020] [Indexed: 12/24/2022] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that are involved in various biological processes, including apoptosis, by regulating gene expression. This study was designed to test the hypothesis that ethanol-induced downregulation of miR-135a contributes to ethanol-induced apoptosis in neural crest cells (NCCs) by upregulating Siah1 and activating the p38 mitogen-activated protein kinase (MAPK)/p53 pathway. We found that treatment with ethanol resulted in a significant decrease in miR-135a expression in both NCCs and zebrafish embryos. Ethanol-induced downregulation of miR-135a resulted in the upregulation of Siah1 and the activation of the p38 MAPK/p53 pathway and increased apoptosis in NCCs and zebrafish embryos. Ethanol exposure also resulted in growth retardation and developmental defects that are characteristic of fetal alcohol spectrum disorders (FASD) in zebrafish. Overexpression of miRNA-135a significantly reduced ethanol-induced upregulation of Siah1 and the activation of the p38 MAPK/p53 pathway and decreased ethanol-induced apoptosis in NCCs and zebrafish embryos. In addition, ethanol-induced growth retardation and craniofacial defects in zebrafish larvae were dramatically diminished by the microinjection of miRNA-135a mimics. These results demonstrated that ethanol-induced downregulation of miR-135a contributes to ethanol-induced apoptosis in NCCs by upregulating Siah1 and activating the p38 MAPK/p53 pathway and that the overexpression of miRNA-135a can protect against ethanol-induced apoptosis in NCCs and craniofacial defects in a zebrafish model of FASD.
Collapse
Affiliation(s)
- Fuqiang Yuan
- Department of Pharmacology and Toxicology, University of Louisville Health Sciences Center, Louisville, KY, United States.,University of Louisville Alcohol Research Center, Louisville, KY, United States
| | - Yang Yun
- Department of Pharmacology and Toxicology, University of Louisville Health Sciences Center, Louisville, KY, United States.,University of Louisville Alcohol Research Center, Louisville, KY, United States.,College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, China
| | - Huadong Fan
- Department of Pharmacology and Toxicology, University of Louisville Health Sciences Center, Louisville, KY, United States.,University of Louisville Alcohol Research Center, Louisville, KY, United States
| | - Yihong Li
- Department of Pharmacology and Toxicology, University of Louisville Health Sciences Center, Louisville, KY, United States.,University of Louisville Alcohol Research Center, Louisville, KY, United States
| | - Lanhai Lu
- Department of Pharmacology and Toxicology, University of Louisville Health Sciences Center, Louisville, KY, United States.,University of Louisville Alcohol Research Center, Louisville, KY, United States
| | - Jie Liu
- Department of Pharmacology and Toxicology, University of Louisville Health Sciences Center, Louisville, KY, United States.,University of Louisville Alcohol Research Center, Louisville, KY, United States
| | - Wenke Feng
- Department of Pharmacology and Toxicology, University of Louisville Health Sciences Center, Louisville, KY, United States.,University of Louisville Alcohol Research Center, Louisville, KY, United States.,Department of Medicine, University of Louisville, Louisville, KY, United States
| | - Shao-Yu Chen
- Department of Pharmacology and Toxicology, University of Louisville Health Sciences Center, Louisville, KY, United States.,University of Louisville Alcohol Research Center, Louisville, KY, United States
| |
Collapse
|
22
|
van der Ven LTM, Schoonen WG, Groot RM, den Ouden F, Heusinkveld HJ, Zwart EP, Hodemaekers HM, Rorije E, de Knecht J. The effects of aliphatic alcohols and related acid metabolites in zebrafish embryos - correlations with rat developmental toxicity and with effects in advanced life stages in fish. Toxicol Appl Pharmacol 2020; 407:115249. [PMID: 32979392 DOI: 10.1016/j.taap.2020.115249] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 09/02/2020] [Accepted: 09/21/2020] [Indexed: 01/05/2023]
Abstract
The zebrafish embryo toxicity test (ZFET) is a simple medium-throughput test to inform about (sub)acute lethal effects in embryos. Enhanced analysis through morphological and teratological scoring, and through gene expression analysis, detects developmental effects and the underlying toxicological pathways. Altogether, the ZFET may inform about hazard of chemical exposure for embryonal development in humans, as well as for lethal effects in juvenile and adult fish. In this study, we compared the effects within a series of 12 aliphatic alcohols and related carboxylic acid derivatives (ethanol, acetic acid, 2-methoxyethanol, 2-methoxyacetic acid, 2-butoxyethanol, 2-butoxyacetic acid, 2-hydroxyacetic acid, 2-ethylhexan-1-ol, 2-ethylhexanoic acid, valproic acid, 2-aminoethanol, 2-(2-hydroxyethylamino)ethanol) in ZFET and early life stage (ELS, 28d) exposures, and compared ZFET results with existing results of rat developmental studies and LC50s in adult fish. High correlation scores were observed between compound potencies in ZFET with either ELS, LC50 in fish and developmental toxicity in rats, indicating similar potency ranking among the models. Compounds could be mapped to specific pathways in an adverse outcome pathway (AOP) network through morphological scoring and gene expression analysis in ZFET. Similarity of morphological effects and gene expression profiles in pairs of alcohols with their acid metabolites suggested metabolic activation of the parent alcohols, although with additional, metabolite-independent activity independent for ethanol and 2-ethylhexanol. Overall, phenotypical and gene expression analysis with these compounds indicates that the ZFET can potentially contribute to the AOP for developmental effects in rodents, and to predict toxicity of acute and chronic exposure in advanced life stages in fish.
Collapse
Affiliation(s)
- Leo T M van der Ven
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands.
| | - Willem G Schoonen
- Centre for Nutrition, Prevention and Health Services, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Renate M Groot
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Fatima den Ouden
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Harm J Heusinkveld
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Edwin P Zwart
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Hennie M Hodemaekers
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Emiel Rorije
- Centre for Safety of Substances and Products, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Joop de Knecht
- Centre for Safety of Substances and Products, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| |
Collapse
|
23
|
Cadena PG, Cadena MRS, Sarmah S, Marrs JA. Folic acid reduces the ethanol-induced morphological and behavioral defects in embryonic and larval zebrafish (Danio rerio) as a model for fetal alcohol spectrum disorder (FASD). Reprod Toxicol 2020; 96:249-257. [PMID: 32763456 PMCID: PMC7858698 DOI: 10.1016/j.reprotox.2020.07.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 07/08/2020] [Accepted: 07/29/2020] [Indexed: 12/18/2022]
Abstract
The objective of this work was to determine whether folic acid (FA) reduces the embryonic ethanol (EtOH) exposure induced behavioral and morphological defects in our zebrafish fetal alcohol spectrum disorder (FASD) model. Teratogenic effects, mortality, the excitatory light-dark locomotion (ELD), sleep (SL), thigmotaxis (TH), touch sensitivity (TS), and optomotor response (OMR) tests were evaluated in larvae (6-7 days post-fertilization) using four treatment conditions: Untreated, FA, EtOH and EtOH + FA. FA reduced morphological defects on heart, eyes and swim bladder inflation seen in EtOH exposed fish. The larvae were more active in the dark than in light conditions, and EtOH reduced the swimming activity in the ELD test. EtOH affected the sleep pattern, inducing several arousal periods and increasing inactivity in zebrafish. FA reduces these toxic effects and produced more consistent inactivity during the night, reducing the arousal periods. FA also prevented the EtOH-induced defects in thigmotaxis and optomotor response of the larvae. We conclude that in this FASD model, EtOH exposure produced several teratogenic and behavioral defects, FA reduced, but did not totally prevent, these defects. Understanding of EtOH-induced behavioral defects could help to identify new therapeutic or prevention strategies for FASD.
Collapse
Affiliation(s)
- Pabyton Gonçalves Cadena
- Departamento de Morfologia e Fisiologia Animal (DMFA), Universidade Federal Rural de Pernambuco, Av. Dom Manoel de Medeiros s/n, 52171-900, Dois Irmãos, Recife - PE, Brazil; Department of Biology, Indiana University - Purdue University Indianapolis, 723 West Michigan, Indianapolis, IN, 46202, USA.
| | - Marilia Ribeiro Sales Cadena
- Departamento de Biologia (DB), Universidade Federal Rural de Pernambuco. Av. Dom Manoel de Medeiros s/n, 52171-900, Dois Irmãos, Recife - PE, Brazil; Department of Biology, Indiana University - Purdue University Indianapolis, 723 West Michigan, Indianapolis, IN, 46202, USA
| | - Swapnalee Sarmah
- Department of Biology, Indiana University - Purdue University Indianapolis, 723 West Michigan, Indianapolis, IN, 46202, USA
| | - James A Marrs
- Department of Biology, Indiana University - Purdue University Indianapolis, 723 West Michigan, Indianapolis, IN, 46202, USA.
| |
Collapse
|
24
|
Marijuana and Opioid Use during Pregnancy: Using Zebrafish to Gain Understanding of Congenital Anomalies Caused by Drug Exposure during Development. Biomedicines 2020; 8:biomedicines8080279. [PMID: 32784457 PMCID: PMC7460517 DOI: 10.3390/biomedicines8080279] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 08/03/2020] [Accepted: 08/06/2020] [Indexed: 01/09/2023] Open
Abstract
Marijuana and opioid addictions have increased alarmingly in recent decades, especially in the United States, posing threats to society. When the drug user is a pregnant mother, there is a serious risk to the developing baby. Congenital anomalies are associated with prenatal exposure to marijuana and opioids. Here, we summarize the current data on the prevalence of marijuana and opioid use among the people of the United States, particularly pregnant mothers. We also summarize the current zebrafish studies used to model and understand the effects of these drug exposures during development and to understand the behavioral changes after exposure. Zebrafish experiments recapitulate the drug effects seen in human addicts and the birth defects seen in human babies prenatally exposed to marijuana and opioids. Zebrafish show great potential as an easy and inexpensive model for screening compounds for their ability to mitigate the drug effects, which could lead to new therapeutics.
Collapse
|
25
|
Sun SN, Jiang Q, Lu D, Gui YH. [Effect of dhfr gene overexpression on ethanol-induced abnormal cardiovascular development in zebrafish embryos]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2020; 22:916-922. [PMID: 32800042 PMCID: PMC7441502 DOI: 10.7499/j.issn.1008-8830.2006079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 07/15/2020] [Indexed: 06/11/2023]
Abstract
OBJECTIVE To study the effect of dhfr gene overexpression on ethanol-induced abnormal cardiac and vascular development in zebrafish embryos and underlying mechanisms. METHODS dhfr mRNA was transcribed in vitro and microinjected into zebrafish fertilized eggs to induce the overexpression of dhfr gene, and the efficiency of overexpression was verified. Wild-type zebrafish were divided into a control group, an ethanol group, and an ethanol+dhfr overexpression group (microinjection of 6 nL dhfr mRNA). The embryonic development was observed for each group. The transgenic zebrafish Tg (cmlc2:mcherry) with heart-specific red fluorescence was used to observe atrial and ventricular development. Fluorescence microscopy was performed to observe the development of cardiac outflow tract and blood vessels. Heart rate and ventricular shortening fraction were used to assess cardiac function. Gene probes were constructed, and embryo in situ hybridization and real-time PCR were used to measure the expression of nkx2.5, tbx1, and flk-1 in the embryo. RESULTS Compared with the ethanol group, the ethanol+dhfr overexpression group had a significant reduction in the percentage of abnormal embryonic development and a significant increase in the percentage of embryonic survival (P<0.05), with significant improvements in the abnormalities of the atrium, ventricle, outflow tract, and blood vessels and cardiac function. Compared with the control group, the ethanol group had significant reductions in the expression of nkx2.5, tbx1, and flk-1 (P<0.05), and compared with the ethanol group, the ethanol+dhfr overexpression group had significant increases in the expression of nkx2.5, tbx1, and flk-1 (P<0.05), which were still lower than their expression in the control group. CONCLUSIONS The overexpression of the dhfr gene can partially improve the abnormal development of embryonic heart and blood vessels induced by ethanol, possibly by upregulating the decreased expression of nkx2.5, tbx1, and flk-1 caused by ethanol.
Collapse
Affiliation(s)
- Shu-Na Sun
- Department of Cardiology, Children's Hospital, Fudan University, Shanghai 201102, China.
| | | | | | | |
Collapse
|
26
|
Sun SN, Jiang Q, Lu D, Gui YH. [Effect of dhfr gene overexpression on ethanol-induced abnormal cardiovascular development in zebrafish embryos]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2020; 22:916-922. [PMID: 32800042 PMCID: PMC7441502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 07/15/2020] [Indexed: 11/13/2023]
Abstract
OBJECTIVE To study the effect of dhfr gene overexpression on ethanol-induced abnormal cardiac and vascular development in zebrafish embryos and underlying mechanisms. METHODS dhfr mRNA was transcribed in vitro and microinjected into zebrafish fertilized eggs to induce the overexpression of dhfr gene, and the efficiency of overexpression was verified. Wild-type zebrafish were divided into a control group, an ethanol group, and an ethanol+dhfr overexpression group (microinjection of 6 nL dhfr mRNA). The embryonic development was observed for each group. The transgenic zebrafish Tg (cmlc2:mcherry) with heart-specific red fluorescence was used to observe atrial and ventricular development. Fluorescence microscopy was performed to observe the development of cardiac outflow tract and blood vessels. Heart rate and ventricular shortening fraction were used to assess cardiac function. Gene probes were constructed, and embryo in situ hybridization and real-time PCR were used to measure the expression of nkx2.5, tbx1, and flk-1 in the embryo. RESULTS Compared with the ethanol group, the ethanol+dhfr overexpression group had a significant reduction in the percentage of abnormal embryonic development and a significant increase in the percentage of embryonic survival (P<0.05), with significant improvements in the abnormalities of the atrium, ventricle, outflow tract, and blood vessels and cardiac function. Compared with the control group, the ethanol group had significant reductions in the expression of nkx2.5, tbx1, and flk-1 (P<0.05), and compared with the ethanol group, the ethanol+dhfr overexpression group had significant increases in the expression of nkx2.5, tbx1, and flk-1 (P<0.05), which were still lower than their expression in the control group. CONCLUSIONS The overexpression of the dhfr gene can partially improve the abnormal development of embryonic heart and blood vessels induced by ethanol, possibly by upregulating the decreased expression of nkx2.5, tbx1, and flk-1 caused by ethanol.
Collapse
Affiliation(s)
- Shu-Na Sun
- Department of Cardiology, Children's Hospital, Fudan University, Shanghai 201102, China.
| | | | | | | |
Collapse
|
27
|
Jiang Q, Lu D, Wang F, Zhang Y, Cao L, Gui Y, Sun S. Folic acid supplement rescues ethanol-induced developmental defects in the zebrafish embryos. Acta Biochim Biophys Sin (Shanghai) 2020; 52:536-545. [PMID: 32369106 DOI: 10.1093/abbs/gmaa030] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Indexed: 12/11/2022] Open
Abstract
Fetal alcohol syndrome (FASD) describes a range of birth defects. Mechanisms of FASD-associated defects are not well understood. It has great significance to investigate whether nutrient supplements like folic acid (FA) can effectively rescue ethanol-induced defects. Moreover, it is very important to determine the optimal time for FA supplementation when it can most effectively antagonize the teratogenic effects of ethanol during embryonic development. Our results indicated that ethanol exposure interrupted the development of zebrafish embryos and induced multiple defects in cardiac function, pharyngeal arch arteries, vessel, craniofacial cartilage, pharyngeal arches, brain, somite and hemoglobin formation. The expressions of critical genes that play important roles in above organs such as tbx1, flk-1, hand2, ngn1, huc, titin, gata-1 and c-myb were reduced, and the apoptosis was increased in ethanol-treated group. FA supplementation could reverse ethanol-induced defects, improve the decreased expressions of above genes and reduce the apoptosis. We also found that giving FA at 6-12 h post-fertilization (hpf), which is at the gastrula period (5.25-10 hpf), can obviously prevent the teratogenicity of ethanol. This research provides clues for elucidating the mechanism of fetal abnormalities caused by alcohol intake and for preventing FASD.
Collapse
Affiliation(s)
- Qiu Jiang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institute of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Ding Lu
- Department of Pediatrics, Shanghai Municipal Eighth People's Hospital, Shanghai 200235, China
| | - Feng Wang
- Children’s Hospital, Fudan University, Shanghai 201102, China
| | - Yawen Zhang
- Children’s Hospital, Fudan University, Shanghai 201102, China
| | - Li Cao
- Department of Ultrasound, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China
| | - Yonghao Gui
- Children’s Hospital, Fudan University, Shanghai 201102, China
| | - Shuna Sun
- Children’s Hospital, Fudan University, Shanghai 201102, China
| |
Collapse
|
28
|
Sarmah S, Srivastava R, McClintick JN, Janga SC, Edenberg HJ, Marrs JA. Embryonic ethanol exposure alters expression of sox2 and other early transcripts in zebrafish, producing gastrulation defects. Sci Rep 2020; 10:3951. [PMID: 32127575 PMCID: PMC7054311 DOI: 10.1038/s41598-020-59043-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 01/21/2020] [Indexed: 01/10/2023] Open
Abstract
Ethanol exposure during prenatal development causes fetal alcohol spectrum disorder (FASD), the most frequent preventable birth defect and neurodevelopmental disability syndrome. The molecular targets of ethanol toxicity during development are poorly understood. Developmental stages surrounding gastrulation are very sensitive to ethanol exposure. To understand the effects of ethanol on early transcripts during embryogenesis, we treated zebrafish embryos with ethanol during pre-gastrulation period and examined the transcripts by Affymetrix GeneChip microarray before gastrulation. We identified 521 significantly dysregulated genes, including 61 transcription factors in ethanol-exposed embryos. Sox2, the key regulator of pluripotency and early development was significantly reduced. Functional annotation analysis showed enrichment in transcription regulation, embryonic axes patterning, and signaling pathways, including Wnt, Notch and retinoic acid. We identified all potential genomic targets of 25 dysregulated transcription factors and compared their interactions with the ethanol-dysregulated genes. This analysis predicted that Sox2 targeted a large number of ethanol-dysregulated genes. A gene regulatory network analysis showed that many of the dysregulated genes are targeted by multiple transcription factors. Injection of sox2 mRNA partially rescued ethanol-induced gene expression, epiboly and gastrulation defects. Additional studies of this ethanol dysregulated network may identify therapeutic targets that coordinately regulate early development.
Collapse
Affiliation(s)
- Swapnalee Sarmah
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202, USA
| | - Rajneesh Srivastava
- Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202, USA
| | - Jeanette N McClintick
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Sarath C Janga
- Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202, USA
| | - Howard J Edenberg
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - James A Marrs
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202, USA.
| |
Collapse
|
29
|
Nesfatin-1 Ameliorate Learning and Memory Deficit via Inhibiting Apoptosis and Neuroinflammation Following Ethanol-Induced Neurotoxicity in Early Postnatal Rats. Int J Pept Res Ther 2020. [DOI: 10.1007/s10989-019-09999-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
30
|
Pai VP, Adams DS. Preventing Ethanol-Induced Brain and Eye Morphology Defects Using Optogenetics. Bioelectricity 2019; 1:260-272. [PMID: 32685918 DOI: 10.1089/bioe.2019.0008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Background: Embryonic exposure to the teratogen ethanol leads to dysmorphias, including eye and brain morphology defects associated with fetal alcohol spectrum disorder (FASD). Exposure of Xenopus laevis embryos to ethanol leads to similar developmental defects, including brain and eye dysmorphism, confirming our work and the work of others showing Xenopus as a useful system for studies of the brain and eye birth defects associated with FASD. Several targets of ethanol action have been hypothesized, one being regulation of Kir2.1 potassium channel. Endogenous ion fluxes and membrane voltage variation (bioelectric signals) have been shown to be powerful regulators of embryonic cell behaviors that are required for correct brain and eye morphology. Disruptions to these voltage patterns lead to spatially correlated disruptions in gene expression patterns and corresponding morphology. Materials and Methods: Here, we use controlled membrane voltage modulation to determine when and where voltage modulation is sufficient to rescue ethanol-induced brain and eye defects in Xenopus embryos. Results: We found (1) that modulating membrane voltage using light activation of the channelrhodopsin-2 variant D156A rescues ethanol exposed embryos, resulting in normal brain and eye morphologies; (2) hyperpolarization is required for the full duration of ethanol exposure; (3) hyperpolarization of only superficial ectoderm is sufficient for this effect; and(4) the rescue effect acts at a distance. Conclusions: These results, particularly the last, raise the exciting possibility of using bioelectric modulation to treat ethanol-induced brain and eye birth defects, possibly with extant ion channel drugs already prescribed to pregnant women. This may prove to be a simple and cost-effective strategy for reducing the impact of FASD.
Collapse
Affiliation(s)
- Vaibhav P Pai
- Department of Biology, Tufts Center for Regenerative and Developmental Biology, Tufts University, Medford, Massachusetts
| | - Dany Spencer Adams
- Department of Biology, Tufts University, Medford, Massachusetts.,Ion Diagnostics LLC, Watertown, Massachusetts
| |
Collapse
|
31
|
MicroRNA-34a mediates ethanol-induced impairment of neural differentiation of neural crest cells by targeting autophagy-related gene 9a. Exp Neurol 2019; 320:112981. [PMID: 31247197 DOI: 10.1016/j.expneurol.2019.112981] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 06/12/2019] [Accepted: 06/22/2019] [Indexed: 02/07/2023]
Abstract
Neural crest cells (NCCs) are multipotent progenitor cells that are sensitive to ethanol and are implicated in Fetal Alcohol Spectrum Disorders (FASD). The objective of this study is to test whether ethanol exposure can inhibit the neural differentiation of NCCs by inhibiting autophagy and whether miR-34a is involved in ethanol-induced inhibition of autophagy in NCCs. We found that ethanol exposure resulted in the inhibition of neural differentiation of NCCs. Exposure to ethanol also significantly decreased autophagy in NCCs, as indicated by a decreased LC3II/I ratio and an elevated expression of p62 protein. Knockdown of p62 restored the expression of the neurogenesis genes, NF and Mash1, in ethanol-exposed NCCs, suggesting that ethanol exposure can inhibit the neural differentiation of NCCs by inhibiting autophagy. We also found that ethanol exposure resulted in a significant increase in miR-34a expression in NCCs. Inhibition of miR-34a restored the expression of Atg9a, a direct target of miR-34a and significantly decreased ethanol-induced inhibition of autophagy in NCCs. Down-regulation of miR-34a also prevented ethanol-induced inhibition of neural differentiation of NCCs. These results demonstrate that ethanol-induced inhibition of neural differentiation of NCCs is mediated by the miR-34a through targeting Atg9a.
Collapse
|
32
|
Bhatia S, Drake DM, Miller L, Wells PG. Oxidative stress and DNA damage in the mechanism of fetal alcohol spectrum disorders. Birth Defects Res 2019; 111:714-748. [PMID: 31033255 DOI: 10.1002/bdr2.1509] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 03/07/2019] [Accepted: 03/14/2019] [Indexed: 12/18/2022]
Abstract
This review covers molecular mechanisms involving oxidative stress and DNA damage that may contribute to morphological and functional developmental disorders in animal models resulting from exposure to alcohol (ethanol, EtOH) in utero or in embryo culture. Components covered include: (a) a brief overview of EtOH metabolism and embryopathic mechanisms other than oxidative stress; (b) mechanisms within the embryo and fetal brain by which EtOH increases the formation of reactive oxygen species (ROS); (c) critical embryonic/fetal antioxidative enzymes and substrates that detoxify ROS; (d) mechanisms by which ROS can alter development, including ROS-mediated signal transduction and oxidative DNA damage, the latter of which leads to pathogenic genetic (mutations) and epigenetic changes; (e) pathways of DNA repair that mitigate the pathogenic effects of DNA damage; (f) related indirect mechanisms by which EtOH enhances risk, for example by enhancing the degradation of some DNA repair proteins; and, (g) embryonic/fetal pathways like NRF2 that regulate the levels of many of the above components. Particular attention is paid to studies in which chemical and/or genetic manipulation of the above mechanisms has been shown to alter the ability of EtOH to adversely affect development. Alterations in the above components are also discussed in terms of: (a) individual embryonic and fetal determinants of risk and (b) potential risk biomarkers and mitigating strategies. FASD risk is likely increased in progeny which/who are biochemically predisposed via genetic and/or environmental mechanisms, including enhanced pathways for ROS formation and/or deficient pathways for ROS detoxification or DNA repair.
Collapse
Affiliation(s)
- Shama Bhatia
- Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada.,Centre for Pharmaceutical Oncology, University of Toronto, Toronto, Ontario, Canada
| | - Danielle M Drake
- Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada.,Centre for Pharmaceutical Oncology, University of Toronto, Toronto, Ontario, Canada
| | | | - Peter G Wells
- Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada.,Centre for Pharmaceutical Oncology, University of Toronto, Toronto, Ontario, Canada.,Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
33
|
Buckley DM, Sidik A, Kar RD, Eberhart JK. Differentially sensitive neuronal subpopulations in the central nervous system and the formation of hindbrain heterotopias in ethanol-exposed zebrafish. Birth Defects Res 2019; 111:700-713. [PMID: 30793540 DOI: 10.1002/bdr2.1477] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 01/22/2019] [Accepted: 01/24/2019] [Indexed: 12/21/2022]
Abstract
BACKGROUND A cardinal feature of prenatal ethanol exposure is CNS damage, resulting in a continuum of neurological and behavioral impairments that are described by the term fetal alcohol spectrum disorders (FASD). FASDs are variable and depend on several factors, including the amount, timing, and duration of prenatal ethanol exposure. To enhance interventions for CNS dysfunction, it is necessary to identify ethanol-sensitive neuronal populations and expand the understanding of factors that modify ethanol teratogenesis. METHODS To investigate the susceptibility of different neuronal subtypes, we exposed transgenic zebrafish (Danio rerio) to several ethanol concentrations (0.25, 0.5, 1.0, 1.5, or 2.0%), at different hours post fertilization (hpf; 0, 6, or 24 hpf), for various durations (0-24, 0-48, 4-24, 6-24, 6-48,or 24-48 hpf). Following exposure, embryo survival rates were determined, and CNS neurogenesis, differentiation, and patterning were assessed. RESULTS Embryo survival rates decrease as ethanol concentrations increase and drastically decline when exposed from 0-24 hpf compared to 4-24 hpf. Abnormal tangential migration of facial motor neurons is observed in isl1:gfp embryos exposed to ethanol concentrations as low as 0.25%, and the formation of IVth ventricle heterotopias are revealed by embryos exposed to ≥1.0% ethanol. Whereas, expression of olig2:dsred and ptf1a:gfp in the cerebellum and spinal cord are largely unaffected. While levels of etv4 mRNA are overtly resistant to ethanol, we observe significant reductions in ptch2 mRNA levels. CONCLUSIONS These data show differentially sensitive CNS neuron subpopulations with susceptibility to low levels of ethanol. In addition, these data reveal the formation of ethanol-induced hindbrain heterotopias.
Collapse
Affiliation(s)
- Desire M Buckley
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas
| | - Alfire Sidik
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas
| | - Ranjeet D Kar
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas
| | - Johann K Eberhart
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas
| |
Collapse
|
34
|
Petrelli B, Bendelac L, Hicks GG, Fainsod A. Insights into retinoic acid deficiency and the induction of craniofacial malformations and microcephaly in fetal alcohol spectrum disorder. Genesis 2019; 57:e23278. [DOI: 10.1002/dvg.23278] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 12/03/2018] [Accepted: 12/04/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Berardino Petrelli
- Regenerative Medicine Program and the Department of Biochemistry & Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health SciencesUniversity of Manitoba Winnipeg Manitoba Canada
| | - Liat Bendelac
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel‐CanadaFaculty of Medicine, Hebrew University Jerusalem Israel
| | - Geoffrey G. Hicks
- Regenerative Medicine Program and the Department of Biochemistry & Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health SciencesUniversity of Manitoba Winnipeg Manitoba Canada
| | - Abraham Fainsod
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel‐CanadaFaculty of Medicine, Hebrew University Jerusalem Israel
| |
Collapse
|
35
|
Watson JN, Seagraves NJ. RNA-Seq analysis in an avian model of maternal phenylketonuria. Mol Genet Metab 2019; 126:23-29. [PMID: 30600150 DOI: 10.1016/j.ymgme.2018.09.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 09/03/2018] [Accepted: 09/03/2018] [Indexed: 01/28/2023]
Abstract
Cardiac malformations (CVMs) are a leading cause of infant morbidity and mortality. CVMs are particularly prevalent when the developing fetus is exposed to high levels of phenylalanine in-utero in mothers with Phenylketonuria. Yet, elucidating the underlying molecular mechanism leading to CVMs has proven difficult. In this study we used RNA-Seq to investigate an avian model of MPKU and establish differential gene expression (DEG) characteristics of the early developmental stages HH10, 12, and 14. In total, we identified 633 significantly differentially expressed genes across stages HH10, 12, and 14. As expected, functional annotation of significant DEGs identified associations seen in clinical phenotypes of MPKU including CVMs, congenital heart defects, craniofacial anomalies, central nervous system defects, and growth anomalies. Additionally, there was an overrepresentation of genes involved in cardiac muscle contraction, adrenergic signaling in cardiomyocytes, migration, proliferation, metabolism, and cell survival. Strikingly, we identified significant changes in expression with multiple genes involved in Retinoic Acid (RA) metabolism and downstream targets. Using qRTPCR, we validated these findings and identified a total of 42 genes within the RA pathway that are differentially expressed. Here, we report the first elucidation of the molecular mechanisms of cardiovascular malformations in MPKU conducted at early developmental timepoints. We provide evidence suggesting a link between PHE exposure and the alteration of RA pathway. These results are promising and offer novel findings associated with congenital heart defects in MPKU.
Collapse
Affiliation(s)
- Jamie N Watson
- Department of Biology, University of Central Oklahoma, Edmond, OK, USA.
| | - Nikki J Seagraves
- Department of Biology, University of Central Oklahoma, Edmond, OK, USA.
| |
Collapse
|
36
|
Ornoy A, Koren G, Yanai J. Is post exposure prevention of teratogenic damage possible: Studies on diabetes, valproic acid, alcohol and anti folates in pregnancy: Animal studies with reflection to human. Reprod Toxicol 2018; 80:92-104. [DOI: 10.1016/j.reprotox.2018.05.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 05/06/2018] [Accepted: 05/25/2018] [Indexed: 12/20/2022]
|
37
|
Muralidharan P, Sarmah S, Marrs JA. Retinal Wnt signaling defect in a zebrafish fetal alcohol spectrum disorder model. PLoS One 2018; 13:e0201659. [PMID: 30067812 PMCID: PMC6070267 DOI: 10.1371/journal.pone.0201659] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 07/19/2018] [Indexed: 12/11/2022] Open
Abstract
Fetal alcohol spectrum disorder caused by prenatal alcohol exposure includes ocular abnormalities (microphthalmia, photoreceptor dysfunction, cataracts). Zebrafish embryos exposed to ethanol from gastrulation through somitogenesis show severe ocular defects, including microphthalmia and photoreceptor differentiation defects. Ethanol-treated zebrafish had an enlarged ciliary marginal zone (CMZ) relative to the retina size and reduced Müller glial cells (MGCs). Ethanol exposure produced immature photoreceptors with increased proliferation, indicating cell cycle exit failure. Signaling mechanisms in the CMZ were affected by embryonic ethanol exposure, including Wnt signaling in the CMZ, Notch signaling and neurod gene expression. Retinoic acid or folic acid co-supplementation with ethanol rescued Wnt signaling and retinal differentiation. Activating Wnt signaling using GSK3 inhibitor (LSN 2105786; Eli Lilly and Co.) restored retinal cell differentiation pathways. Ethanol exposed embryos were treated with Wnt agonist, which rescued Wnt-active cells in the CMZ, Notch-active cells in the retina, proliferation, and photoreceptor terminal differentiation. Our results illustrate the critical role of Wnt signaling in ethanol-induced retinal defects.
Collapse
Affiliation(s)
- Pooja Muralidharan
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana, United States of America
| | - Swapnalee Sarmah
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana, United States of America
| | - James A Marrs
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana, United States of America
| |
Collapse
|
38
|
Zhang K, Wang H, Xu M, Frank JA, Luo J. Role of MCP-1 and CCR2 in ethanol-induced neuroinflammation and neurodegeneration in the developing brain. J Neuroinflammation 2018; 15:197. [PMID: 29976212 PMCID: PMC6034273 DOI: 10.1186/s12974-018-1241-2] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 06/26/2018] [Indexed: 01/06/2023] Open
Abstract
Background Neuroinflammation and microglial activation have been implicated in both alcohol use disorders (AUD) and fetal alcohol spectrum disorders (FASD). Chemokine monocyte chemoattractant protein 1 (MCP-1) and its receptor C-C chemokine receptor type 2 (CCR2) are critical mediators of neuroinflammation and microglial activation. FASD is the leading cause of mental retardation, and one of the most devastating outcomes of FASD is the loss of neurons in the central nervous system (CNS). The underlying molecular mechanisms, however, remain unclear. We hypothesize that MCP-1/CCR2 signaling mediates ethanol-induced neuroinflammation and microglial activation, which exacerbates neurodegeneration in the developing brain. Methods C57BL/6 mice and mice deficient of MCP-1 (MCP-1−/−) and CCR2 (CCR2−/−) were exposed to ethanol on postnatal day 4 (PD4). Neuroinflammation, and microglial activation, and neurodegeneration in the brain were evaluated by immunohistochemistry and immunoblotting. A neuronal and microglial co-culture system was used to evaluate the role of microglia and MCP-1/CCR2 signaling in ethanol-induced neurodegeneration. Specific inhibitors were employed to delineate the involved signaling pathways. Results Ethanol-induced microglial activation, neuroinflammation, and a drastic increase in the mRNA and protein levels of MCP-1. Treatment of Bindarit (MCP-1 synthesis inhibitor) and RS504393 (CCR2 antagonist) significantly reduced ethanol-induced microglia activation/neuroinflammation, and neuroapoptosis in the developing brain. MCP-1−/− and CCR2−/− mice were more resistant to ethanol-induced neuroapoptosis. Moreover, ethanol plus MCP-1 caused more neuronal death in a neuron/microglia co-culture system than neuronal culture alone, and Bindarit and RS504393 attenuated ethanol-induced neuronal death in the co-culture system. Ethanol activated TLR4 and GSK3β, two key mediators of microglial activation in the brain and cultured microglial cells (SIM-A9). Blocking MCP-1/CCR2 signaling attenuated ethanol-induced activation of TLR4 and GSK3β. Conclusion MCP-1/CCR2 signaling played an important role in ethanol-induced microglial activation/neuroinflammation and neurodegeneration in the developing brain. The effects may be mediated by the interaction among MCP-1/CCR2 signaling, TLR4, and GSK3β.
Collapse
Affiliation(s)
- Kai Zhang
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, 132 Health Sciences Research Building, 1095 Veterans Drive, Lexington, KY, 40536, USA
| | - Haiping Wang
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, 132 Health Sciences Research Building, 1095 Veterans Drive, Lexington, KY, 40536, USA
| | - Mei Xu
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, 132 Health Sciences Research Building, 1095 Veterans Drive, Lexington, KY, 40536, USA
| | - Jacqueline A Frank
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, 132 Health Sciences Research Building, 1095 Veterans Drive, Lexington, KY, 40536, USA
| | - Jia Luo
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, 132 Health Sciences Research Building, 1095 Veterans Drive, Lexington, KY, 40536, USA.
| |
Collapse
|
39
|
Lippert T, Gelineau L, Napoli E, Borlongan CV. Harnessing neural stem cells for treating psychiatric symptoms associated with fetal alcohol spectrum disorder and epilepsy. Prog Neuropsychopharmacol Biol Psychiatry 2018; 80:10-22. [PMID: 28365374 DOI: 10.1016/j.pnpbp.2017.03.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 03/09/2017] [Indexed: 12/20/2022]
Abstract
Brain insults with progressive neurodegeneration are inherent in pathological symptoms that represent many psychiatric illnesses. Neural network disruptions characterized by impaired neurogenesis have been recognized to precede, accompany, and possibly even exacerbate the evolution and progression of symptoms of psychiatric disorders. Here, we focus on the neurodegeneration and the resulting psychiatric symptoms observed in fetal alcohol spectrum disorder and epilepsy, in an effort to show that these two diseases are candidate targets for stem cell therapy. In particular, we provide preclinical evidence in the transplantation of neural stem cells (NSCs) in both conditions, highlighting the potential of this cell-based treatment for correcting the psychiatric symptoms that plague these two disorders. Additionally, we discuss the challenges of NSC transplantation and offer insights into the mechanisms that may mediate the therapeutic benefits and can be exploited to overcome the hurdles of translating this therapy from the laboratory to the clinic. Our ultimate goal is to advance stem cell therapy for the treatment of psychiatric disorders.
Collapse
Affiliation(s)
- Trenton Lippert
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B. Downs Blvd. MDC 78, Tampa, FL 33612, USA
| | - Lindsey Gelineau
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B. Downs Blvd. MDC 78, Tampa, FL 33612, USA
| | - Eleonora Napoli
- Department of Molecular Biosciences, 3011 VM3B 1089 Veterinary Medicine Drive, University of California Davis, Davis, CA 95616, USA..
| | - Cesar V Borlongan
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B. Downs Blvd. MDC 78, Tampa, FL 33612, USA.
| |
Collapse
|
40
|
Embryonic Ethanol Exposure Affects Early- and Late-Added Cardiac Precursors and Produces Long-Lasting Heart Chamber Defects in Zebrafish. TOXICS 2017; 5:toxics5040035. [PMID: 29194345 PMCID: PMC5750563 DOI: 10.3390/toxics5040035] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 11/20/2017] [Accepted: 11/22/2017] [Indexed: 11/28/2022]
Abstract
Drinking mothers expose their fetuses to ethanol, which produces birth defects: craniofacial defects, cognitive impairment, sensorimotor disabilities and organ deformities, collectively termed as fetal alcohol spectrum disorder (FASD). Various congenital heart defects (CHDs) are present in FASD patients, but the mechanisms of alcohol-induced cardiogenesis defects are not completely understood. This study utilized zebrafish embryos and older larvae to understand FASD-associated CHDs. Ethanol-induced cardiac chamber defects initiated during embryonic cardiogenesis persisted in later zebrafish life. In addition, myocardial damage was recognizable in the ventricle of the larvae that were exposed to ethanol during embryogenesis. Our studies of the pathogenesis revealed that ethanol exposure delayed differentiation of first and second heart fields and reduced the number of early- and late-added cardiomyocytes in the heart. Ethanol exposure also reduced the number of endocardial cells. Together, this study showed that ethanol-induced heart defects were present in late-stage zebrafish larvae. Reduced numbers of cardiomyocytes partly accounts for the ethanol-induced zebrafish heart defects.
Collapse
|
41
|
Kirischuk S, Sinning A, Blanquie O, Yang JW, Luhmann HJ, Kilb W. Modulation of Neocortical Development by Early Neuronal Activity: Physiology and Pathophysiology. Front Cell Neurosci 2017; 11:379. [PMID: 29238291 PMCID: PMC5712676 DOI: 10.3389/fncel.2017.00379] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 11/13/2017] [Indexed: 12/23/2022] Open
Abstract
Animal and human studies revealed that patterned neuronal activity is an inherent feature of developing nervous systems. This review summarizes our current knowledge about the mechanisms generating early electrical activity patterns and their impact on structural and functional development of the cerebral cortex. All neocortical areas display distinct spontaneous and sensory-driven neuronal activity patterns already at early phases of development. At embryonic stages, intermittent spontaneous activity is synchronized within small neuronal networks, becoming more complex with further development. This transition is accompanied by a gradual shift from electrical to chemical synaptic transmission, with a particular role of non-synaptic tonic currents before the onset of phasic synaptic activity. In this review article we first describe functional impacts of classical neurotransmitters (GABA, glutamate) and modulatory systems (e.g., acetylcholine, ACh) on early neuronal activities in the neocortex with special emphasis on electrical synapses, nonsynaptic and synaptic currents. Early neuronal activity influences probably all developmental processes and is crucial for the proper formation of neuronal circuits. In the second part of our review, we illustrate how specific activity patterns might interfere with distinct neurodevelopmental processes like proliferation, migration, axonal and dendritic sprouting, synapse formation and neurotransmitter specification. Finally, we present evidence that transient alterations in neuronal activity during restricted perinatal periods can lead to persistent changes in functional connectivity and therefore might underlie the manifestation of neurological and neuropsychiatric diseases.
Collapse
Affiliation(s)
- Sergei Kirischuk
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Anne Sinning
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Oriane Blanquie
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Jenq-Wei Yang
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Heiko J Luhmann
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Werner Kilb
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
42
|
Jarmasz JS, Basalah DA, Chudley AE, Del Bigio MR. Human Brain Abnormalities Associated With Prenatal Alcohol Exposure and Fetal Alcohol Spectrum Disorder. J Neuropathol Exp Neurol 2017; 76:813-833. [PMID: 28859338 PMCID: PMC5901082 DOI: 10.1093/jnen/nlx064] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Fetal alcohol spectrum disorder (FASD) is a common neurodevelopmental problem, but neuropathologic descriptions are rare and focused on the extreme abnormalities. We conducted a retrospective survey (1980–2016) of autopsies on 174 individuals with prenatal alcohol exposure or an FASD diagnosis. Epidemiologic details and neuropathologic findings were categorized into 5 age groups. Alcohol exposure was difficult to quantify. When documented, almost all mothers smoked tobacco, many abused other substances, and prenatal care was poor or nonexistent. Placental abnormalities were common (68%) in fetal cases. We identified micrencephaly (brain weight <5th percentile) in 31, neural tube defects in 5, isolated hydrocephalus in 6, corpus callosum defects in 6 (including some with complex anomalies), probable prenatal ischemic lesions in 5 (excluding complications of prematurity), minor subarachnoid heterotopias in 4, holoprosencephaly in 1, lissencephaly in 1, and cardiac anomalies in 26 cases. The brain abnormalities associated with prenatal alcohol exposure are varied; cause–effect relationships cannot be determined. FASD is likely not a monotoxic disorder. The animal experimental literature, which emphasizes controlled exposure to ethanol alone, is therefore inadequate. Prevention must be the main societal goal, however, a clear understanding of the neuropathology is necessary for provision of care to individuals already affected.
Collapse
Affiliation(s)
- Jessica S Jarmasz
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, Manitoba, Canada; Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada; Department of Pathology, University of Manitoba, Winnipeg, Manitoba; and Department of Paediatrics and Child Health, University of Manitoba, Winnipeg, Manitoba, Canada; and Diagnostic Services Manitoba, Winnipeg, Manitoba, Canada
| | - Duaa A Basalah
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, Manitoba, Canada; Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada; Department of Pathology, University of Manitoba, Winnipeg, Manitoba; and Department of Paediatrics and Child Health, University of Manitoba, Winnipeg, Manitoba, Canada; and Diagnostic Services Manitoba, Winnipeg, Manitoba, Canada
| | - Albert E Chudley
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, Manitoba, Canada; Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada; Department of Pathology, University of Manitoba, Winnipeg, Manitoba; and Department of Paediatrics and Child Health, University of Manitoba, Winnipeg, Manitoba, Canada; and Diagnostic Services Manitoba, Winnipeg, Manitoba, Canada
| | - Marc R Del Bigio
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, Manitoba, Canada; Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada; Department of Pathology, University of Manitoba, Winnipeg, Manitoba; and Department of Paediatrics and Child Health, University of Manitoba, Winnipeg, Manitoba, Canada; and Diagnostic Services Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
43
|
Wells PG, Bhatia S, Drake DM, Miller-Pinsler L. Fetal oxidative stress mechanisms of neurodevelopmental deficits and exacerbation by ethanol and methamphetamine. ACTA ACUST UNITED AC 2017; 108:108-30. [PMID: 27345013 DOI: 10.1002/bdrc.21134] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 06/09/2016] [Indexed: 11/06/2022]
Abstract
In utero exposure of mouse progeny to alcohol (ethanol, EtOH) and methamphetamine (METH) causes substantial postnatal neurodevelopmental deficits. One emerging pathogenic mechanism underlying these deficits involves fetal brain production of reactive oxygen species (ROS) that alter signal transduction, and/or oxidatively damage cellular macromolecules like lipids, proteins, and DNA, the latter leading to altered gene expression, likely via non-mutagenic mechanisms. Even physiological levels of fetal ROS production can be pathogenic in biochemically predisposed progeny, and ROS formation can be enhanced by drugs like EtOH and METH, via activation/induction of ROS-producing NADPH oxidases (NOX), drug bioactivation to free radical intermediates by prostaglandin H synthases (PHS), and other mechanisms. Antioxidative enzymes, like catalase in the fetal brain, while low, provide critical protection. Oxidatively damaged DNA is normally rapidly repaired, and fetal deficiencies in several DNA repair proteins, including oxoguanine glycosylase 1 (OGG1) and breast cancer protein 1 (BRCA1), enhance the risk of drug-initiated postnatal neurodevelopmental deficits, and in some cases deficits in untreated progeny, the latter of which may be relevant to conditions like autism spectrum disorders (ASD). Risk is further regulated by fetal nuclear factor erythroid 2-related factor 2 (Nrf2), a ROS-sensing protein that upregulates an array of proteins, including antioxidative enzymes and DNA repair proteins. Imbalances between conceptal pathways for ROS formation, versus those for ROS detoxification and DNA repair, are important determinants of risk. Birth Defects Research (Part C) 108:108-130, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Peter G Wells
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Toronto, Toronto, Canada.,Department of Pharmacology & Toxicology, Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Shama Bhatia
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Toronto, Toronto, Canada
| | - Danielle M Drake
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Toronto, Toronto, Canada
| | - Lutfiya Miller-Pinsler
- Department of Pharmacology & Toxicology, Faculty of Medicine, University of Toronto, Toronto, Canada
| |
Collapse
|
44
|
Louis LK, Gopurappilly R, Surendran H, Dutta S, Pal R. Transcriptional profiling of human neural precursors post alcohol exposure reveals impaired neurogenesis via dysregulation of ERK signaling and miR-145. J Neurochem 2017; 146:47-62. [PMID: 28833141 DOI: 10.1111/jnc.14155] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 08/14/2017] [Accepted: 08/14/2017] [Indexed: 12/13/2022]
Abstract
Gestational alcohol exposure causes a range of neuropsychological disorders by modulating neurodevelopmental genes and proteins. The extent of damage depends on the stage of the embryo as well as dosage, duration and frequency of exposure. Here, we investigated the neurotoxic effects of alcohol using human embryonic stem cells. Multiple read-outs were engaged to assess the proliferation and differentiation capacity of neural precursor cells upon exposure to 100 mM ethanol for 48 h corresponding to the blood alcohol levels for binge drinkers. Whole-genome analysis revealed a spatiotemporal dysregulation of neuronal- and glial-specific gene expression that play critical roles in central nervous system (CNS) development. Alterations observed in the transcriptome may be attributed to epigenetic constitution witnessed by differential histone H3 Lys-4/Lys-27 modifications and acetylation status. In-depth mRNA and protein expression studies revealed abrogated extracellular signal-regulated kinases signaling in alcohol-treated cells. Consistent with this finding, ingenuity pathway analysis and micro-RNA profiling demonstrated up-regulation of miR-145 by targeting the neural specifier Sox-2. We also show that the neurite branching complexity of tubulin, beta 3 class III+ neurons was greatly reduced in response to alcohol. Finally, in vivo studies using zebrafish embryos reconfirmed the in vitro findings. Employing molecular endpoints in a human model, this report indicates for the first time that acute alcohol exposure could lead to impaired brain development via perturbation of extracellular signal-regulated kinases pathway and miR-145. However, it still needs to be addressed whether these modulations sustain throughout development, compromising the ability of the individual during adulthood and aging.
Collapse
Affiliation(s)
- Lithin K Louis
- School of Regenerative Medicine, Manipal University, Bangalore, India
| | | | - Harshini Surendran
- School of Regenerative Medicine, Manipal University, Bangalore, India
- Eyestem Research, Centre for Cellular and Molecular Platforms (C-CAMP), Bangalore, India
| | - Sunit Dutta
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Rajarshi Pal
- School of Regenerative Medicine, Manipal University, Bangalore, India
- Eyestem Research, Centre for Cellular and Molecular Platforms (C-CAMP), Bangalore, India
- School of Life Sciences, TransDisciplinary University, Yelahanka, Bangalore, India
| |
Collapse
|
45
|
Muralidharan P, Connors CT, Mohammed AS, Sarmah S, Marrs K, Marrs JA, Chism GW. Turmeric Extract Rescues Ethanol-Induced Developmental Defect in the Zebrafish Model for Fetal Alcohol Spectrum Disorder (FASD). J Food Sci 2017; 82:2221-2225. [PMID: 28796310 DOI: 10.1111/1750-3841.13830] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 06/03/2017] [Accepted: 07/10/2017] [Indexed: 12/22/2022]
Abstract
Prenatal ethanol exposure causes the most frequent preventable birth disorder, fetal alcohol spectrum disorder (FASD). The effect of turmeric extracts in rescuing an ethanol-induced developmental defect using zebrafish as a model was determined. Ethanol-induced oxidative stress is one of the major mechanisms underlying FASD. We hypothesize that antioxidant inducing properties of turmeric may alleviate ethanol-induced defects. Curcuminoid content of the turmeric powder extract (5 mg/mL turmeric in ethanol) was determined by UPLC and found to contain Curcumin (124.1 ± 0.2 μg/mL), Desmethoxycurcumin (43.4 ± 0.1 μg/mL), and Bisdemethoxycurcumin (36.6 ± 0.1 μg/mL). Zebrafish embryos were treated with 100 mM (0.6% v/v) ethanol during gastrulation through organogenesis (2 to 48 h postfertilization (hpf)) and supplemented with turmeric extract to obtain total curcuminoid concentrations of 0, 1.16, 1.72, or 2.32 μM. Turmeric supplementation showed significant rescue of the body length at 72 hpf compared to ethanol-treated embryos. The mechanism underlying the rescue remains to be determined.
Collapse
Affiliation(s)
- Pooja Muralidharan
- Dept. of Biology, Indiana Univ.-Purdue Univ. Indianapolis, Indianapolis, Ind., 46202, U.S.A
| | - Craig T Connors
- Dept. of Biology, Indiana Univ.-Purdue Univ. Indianapolis, Indianapolis, Ind., 46202, U.S.A
| | - Arooj S Mohammed
- Dept. of Biology, Indiana Univ.-Purdue Univ. Indianapolis, Indianapolis, Ind., 46202, U.S.A
| | - Swapnalee Sarmah
- Dept. of Biology, Indiana Univ.-Purdue Univ. Indianapolis, Indianapolis, Ind., 46202, U.S.A
| | - Kathleen Marrs
- Dept. of Biology, Indiana Univ.-Purdue Univ. Indianapolis, Indianapolis, Ind., 46202, U.S.A
| | - James A Marrs
- Dept. of Biology, Indiana Univ.-Purdue Univ. Indianapolis, Indianapolis, Ind., 46202, U.S.A
| | - Grady W Chism
- Dept. of Biology, Indiana Univ.-Purdue Univ. Indianapolis, Indianapolis, Ind., 46202, U.S.A
| |
Collapse
|
46
|
Sarmah S, Muralidharan P, Marrs JA. Common congenital anomalies: Environmental causes and prevention with folic acid containing multivitamins. ACTA ACUST UNITED AC 2016; 108:274-286. [PMID: 27718306 DOI: 10.1002/bdrc.21138] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Accepted: 09/23/2016] [Indexed: 12/13/2022]
Abstract
Congenital anomalies, congenital defects, or birth defects are significant causes of death in infants. The most common congenital defects are congenital heart defects (CHDs) and neural tube defects (NTDs). Defects induced by genetic mutations, environmental exposure to toxins, or a combination of these effects can result in congenital malformations, leading to infant death or long-term disabilities. These defects produce significant mortality and morbidity in the affected individuals, and families are affected emotional and financially. Also, society is impacted on many levels. Congenital anomalies may be reduced by dietary supplements of folic acid and other vitamins. Here, we review the evidence for specific roles of toxins (alcohol, cigarette smoke) in causing common severe congenital anomalies like CHDs, NTDs, and ocular defects. We also review the evidence for beneficial effects for dietary supplementation, and highlight gaps in our knowledge, where research may contribute to additional benefits of intervention that can reduce birth defects. Extensive discussion of common severe congenital anomalies (CHDs, NTDs, and ocular defects) illustrates the effects of diet on the frequency and severity of these defects. Birth Defects Research (Part C) 108:274-286, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Swapnalee Sarmah
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana, 46202.
| | - Pooja Muralidharan
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana, 46202
| | - James A Marrs
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana, 46202.
| |
Collapse
|
47
|
Embryonic Ethanol Exposure Dysregulates BMP and Notch Signaling, Leading to Persistent Atrio-Ventricular Valve Defects in Zebrafish. PLoS One 2016; 11:e0161205. [PMID: 27556898 PMCID: PMC4996461 DOI: 10.1371/journal.pone.0161205] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 08/01/2016] [Indexed: 12/30/2022] Open
Abstract
Fetal alcohol spectrum disorder (FASD), birth defects associated with ethanol exposure in utero, includes a wide spectrum of congenital heart defects (CHDs), the most prevalent of which are septal and conotruncal defects. Zebrafish FASD model was used to dissect the mechanisms underlying FASD-associated CHDs. Embryonic ethanol exposure (3–24 hours post fertilization) led to defects in atrio-ventricular (AV) valvulogenesis beginning around 37 hpf, a morphogenetic event that arises long after ethanol withdrawal. Valve leaflets of the control embryos comprised two layers of cells confined at the compact atrio-ventricular canal (AVC). Ethanol treated embryos had extended AVC and valve forming cells were found either as rows of cells spanning the AVC or as unorganized clusters near the AV boundary. Ethanol exposure reduced valve precursors at the AVC, but some ventricular cells in ethanol treated embryos exhibited few characteristics of valve precursors. Late staged larvae and juvenile fish exposed to ethanol during embryonic development had faulty AV valves. Examination of AVC morphogenesis regulatory networks revealed that early ethanol exposure disrupted the Bmp signaling gradient in the heart during valve formation. Bmp signaling was prominent at the AVC in controls, but ethanol-exposed embryos displayed active Bmp signaling throughout the ventricle. Ethanol exposure also led to mislocalization of Notch signaling cells in endocardium during AV valve formation. Normally, highly active Notch signaling cells were organized at the AVC. In ethanol-exposed embryos, highly active Notch signaling cells were dispersed throughout the ventricle. At later stages, ethanol-exposed embryos exhibited reduced Wnt/β-catenin activity at the AVC. We conclude that early embryonic ethanol exposure alters Bmp, Notch and other signaling activities during AVC differentiation leading to faulty valve morphogenesis and valve defects persist in juvenile fish.
Collapse
|
48
|
Dworkin S, Boglev Y, Owens H, Goldie SJ. The Role of Sonic Hedgehog in Craniofacial Patterning, Morphogenesis and Cranial Neural Crest Survival. J Dev Biol 2016; 4:jdb4030024. [PMID: 29615588 PMCID: PMC5831778 DOI: 10.3390/jdb4030024] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 07/20/2016] [Accepted: 07/26/2016] [Indexed: 01/01/2023] Open
Abstract
Craniofacial defects (CFD) are a significant healthcare problem worldwide. Understanding both the morphogenetic movements which underpin normal facial development, as well as the molecular factors which regulate these processes, forms the cornerstone of future diagnostic, and ultimately, preventative therapies. The soluble morphogen Sonic hedgehog (Shh), a vertebrate orthologue of Drosophila hedgehog, is a key signalling factor in the regulation of craniofacial skeleton development in vertebrates, operating within numerous tissue types in the craniofacial primordia to spatiotemporally regulate the formation of the face and jaws. This review will provide an overview of normal craniofacial skeleton development, and focus specifically on the known roles of Shh in regulating the development and progression of the first pharyngeal arch, which in turn gives rise to both the upper jaw (maxilla) and lower jaw (mandible).
Collapse
Affiliation(s)
- Sebastian Dworkin
- Department of Medicine, Monash University Central Clinical School, Prahran, Victoria 3004, Australia.
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, Victoria 3086, Australia.
| | - Yeliz Boglev
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia.
| | - Harley Owens
- Department of Medicine, Monash University Central Clinical School, Prahran, Victoria 3004, Australia.
| | - Stephen J Goldie
- Department of Medicine, Monash University Central Clinical School, Prahran, Victoria 3004, Australia.
- Department of Surgery, Monash University Central Clinical School, Prahran, Victoria 3004, Australia.
| |
Collapse
|
49
|
Gupta KK, Gupta VK, Shirasaka T. An Update on Fetal Alcohol Syndrome-Pathogenesis, Risks, and Treatment. Alcohol Clin Exp Res 2016; 40:1594-602. [PMID: 27375266 DOI: 10.1111/acer.13135] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Accepted: 05/23/2016] [Indexed: 11/27/2022]
Abstract
Alcohol is a well-established teratogen that can cause variable physical and behavioral effects on the fetus. The most severe condition in this spectrum of diseases is known as fetal alcohol syndrome (FAS). The differences in maternal and fetal enzymes, in terms of abundance and efficiency, in addition to reduced elimination, allow for alcohol to have a prolonged effect on the fetus. This can act as a teratogen through numerous methods including reactive oxygen species (generated as by products of CYP2E1), decreased endogenous antioxidant levels, mitochondrial damage, lipid peroxidation, disrupted neuronal cell-cell adhesion, placental vasoconstriction, and inhibition of cofactors required for fetal growth and development. More recently, alcohol has also been shown to have epigenetic effects. Increased fetal exposure to alcohol and sustained alcohol intake during any trimester of pregnancy is associated with an increased risk of FAS. Other risk factors include genetic influences, maternal characteristics, for example, lower socioeconomic statuses and smoking, and paternal chronic alcohol use. The treatment options for FAS have recently started to be explored although none are currently approved clinically. These include prenatal antioxidant administration food supplements, folic acid, choline, neuroactive peptides, and neurotrophic growth factors. Tackling the wider impacts of FAS, such as comorbidities, and the family system have been shown to improve the quality of life of FAS patients. This review aimed to focus on the pathogenesis, especially mechanisms of alcohol teratogenicity, and risks of developing FAS. Recent developments in potential management strategies, including prenatal interventions, are discussed.
Collapse
Affiliation(s)
| | - Vinay K Gupta
- School of Medicine, University of Birmingham, Birmingham, UK
| | - Tomohiro Shirasaka
- Department of Neuropsychiatry, School of Medicine, Sapporo Medical University, Sapporo, Japan
| |
Collapse
|
50
|
Pelição R, Santos MC, Freitas-Lima LC, Meyrelles SS, Vasquez EC, Nakamura-Palacios EM, Rodrigues LCM. URB597 inhibits oxidative stress induced by alcohol binging in the prefrontal cortex of adolescent rats. Neurosci Lett 2016; 624:17-22. [PMID: 27150075 DOI: 10.1016/j.neulet.2016.04.068] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 04/09/2016] [Accepted: 04/30/2016] [Indexed: 12/21/2022]
Abstract
Heavy episodic drinking (binging), which is highly prevalent among teenagers, results in oxidative damage. Because the prefrontal cortex (PFC) is not completely mature in adolescents, this brain region may be more vulnerable to the effects of alcohol during adolescence. As endocannabinoids may protect the immature PFC from the harmful effects of high doses of alcohol, this study investigated the effect of the fatty acid amide hydrolase (FAAH) inhibitor URB597 on oxidative stress induced by acute or chronic binge alcohol intake in adolescent rats. At 40min after intraperitoneal pre-treatment with URB597 (0.3mg/kg) or vehicle (Veh), ethanol (EtOH; 3 or 6g/kg, intragastrically) or distilled water (DW) was administered in 3 consecutive sessions (acute binging) or 3 consecutive sessions over 4 weeks (chronic binging). Oxidative stress in PFC slices in situ was measured by dihydroethidium fluorescence staining. At the higher EtOH dose (6g/kg), pre-treatment with URB597 significantly reduced (p<0.01) the production of superoxide anions in the PFC after acute (42.8% decrease) and chronic binge EtOH consumption (44.9% decrease) compared with pre-treatment with Veh. As URB597 decreases anandamide metabolism, this evidence shows an antioxidant effect of endocannabinoids to suppress acute and chronic binge alcohol intake-induced oxidative stress in the PFC of adolescent rats.
Collapse
Affiliation(s)
- Renan Pelição
- Department of Physiological Sciences, CCS/UFES, Vitória, ES, Brazil
| | - Matheus C Santos
- Department of Physiological Sciences, CCS/UFES, Vitória, ES, Brazil
| | | | | | | | | | | |
Collapse
|