1
|
Afroze N, Sundaram MK, Haque S, Hussain A. Long non-coding RNA involved in the carcinogenesis of human female cancer - a comprehensive review. Discov Oncol 2025; 16:122. [PMID: 39912983 PMCID: PMC11803034 DOI: 10.1007/s12672-025-01848-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 01/22/2025] [Indexed: 02/07/2025] Open
Abstract
Recent years have seen an increase in our understanding of lncRNA and their role in various disease states. lncRNA molecules have been shown to contribute to carcinogenesis and influence the various cancer hallmarks and signalling pathways. It is pertinent to understand the specific contributions and mechanisms of action of these molecules in various cancers. This review provides an overview of the various lncRNA entities that influence and regulate the gynaecological cancers, namely, cervical, breast, ovarian and uterine cancers. The review curates a list of the key players and their effect on cellular processes. lncRNA molecules show immense potential to be used as diagnostic and prognostic indicators and in therapeutic strategies. Several phytochemicals, small molecules, RNA-based regulators, oligos and gene editing tools show promise as a therapeutic strategy. While this review highlights the promising developments in this field, it also underscores the necessity for further research to delineate the complex role of lncRNAs in cancer.
Collapse
Affiliation(s)
- Nazia Afroze
- School of Life Sciences, Manipal Academy of Higher Education, Dubai Campus, P.O. Box 345050, Dubai, United Arab Emirates
| | - Madhumitha K Sundaram
- School of Life Sciences, Manipal Academy of Higher Education, Dubai Campus, P.O. Box 345050, Dubai, United Arab Emirates
| | - Shafiul Haque
- Department of Nursing, College of Nursing and Health Sciences, Jazan University, Jazan, Saudi Arabia
- School of Medicine, Universidad Espiritu Santo, Samborondon, Ecuador
| | - Arif Hussain
- School of Life Sciences, Manipal Academy of Higher Education, Dubai Campus, P.O. Box 345050, Dubai, United Arab Emirates.
| |
Collapse
|
2
|
Ding J, Teng Y, Cui R, Liu J, Xiao K, Dong Z, Zhang Y, Xu X. LncRNAs in serum-derived extracellular vesicles are potential biomarker and correlated with immune infiltration in gastric cancer. Front Immunol 2025; 16:1533111. [PMID: 39925803 PMCID: PMC11802516 DOI: 10.3389/fimmu.2025.1533111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Accepted: 01/06/2025] [Indexed: 02/11/2025] Open
Abstract
Background Long non-coding RNAs (lncRNAs) in extracellular vesicles (EVs) have been confirmed as effective non-invasive biomarkers for multiple diseases. However, their expression and clinical value in gastric cancer (GC) remain poorly understood. Materials and methods Serum EV RNA was extracted from four patients with GC and four healthy controls, followed by high-throughput RNA sequencing. LncRNAs were further validated in training and validation sets using quantitative real-time reverse transcription polymerase chain reaction. Results A total of 37,684 lncRNAs were obtained, and 10 lncRNAs were selected based on the criteria (P < 0.05 and |log2FoldChange| ≥1). Serum EV lncRNA RMRP, RPPH1, and linc-ROR were significantly higher in patients with GC than in those with chronic gastritis, atypical hyperplasia, or healthy control (all P < 0.05). Three lncRNAs were also significantly correlated with tumor diameter, lymphatic metastasis, distal metastasis, and TNM stage (all P < 0.05). The area under the curve (AUC) values for lncRNA RMRP, RPPH1, and linc-ROR were 0.727, 0.774, and 0.811, respectively. Corresponding sensitivity and specificity were 63.4% and 85.4%, 50.7% and 89.6%, and 78.5% and 66.7%. The combination of these three lncRNAs with carcinoembryonic antigen (CEA) yielded an AUC of 0.909, with a sensitivity and specificity of 83.3% each. Furthermore, high EV linc-ROR and RMRP expression levels were associated with worse disease-free survival and overall survival (OS). Univariate and multivariate Cox regression analyses confirmed that linc-ROR was the only independent prognostic factor for GC. Finally, the lncRNA-miRNA-mRNA network showed that three lncRNAs were predicted to interact with 15 miRNAs and 69 mRNAs. In addition, lncRNA RMRP and linc-ROR were correlated with immune cell infiltration, including neutrophils, central memory CD4 T cells, macrophage, and natural kill T cells. Conclusion EV lncRNAs are prospective biomarker and correlated with immune cell infiltration in GC. It provides a foundation for the development of serum EV-targeted novel biomarkers and immunotherapy targets of GC.
Collapse
Affiliation(s)
- Juan Ding
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, China
| | - Yunyan Teng
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, China
| | - Rongshu Cui
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, China
| | - Jin Liu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, China
| | - Ke Xiao
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, China
| | - Zhaogang Dong
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, China
| | - Yi Zhang
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, China
| | - Xiaofei Xu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
3
|
Li H, Bian J, Liu M, Wang Y, Shang Y, Zheng Y, Li X. LINC02418 suppresses endometrial cancer progression via regulating miR-494-3p/RASGRF1 axis. J Mol Histol 2025; 56:72. [PMID: 39841298 DOI: 10.1007/s10735-024-10327-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 12/01/2024] [Indexed: 01/23/2025]
Abstract
Long non-coding RNAs (lncRNAs) have emerged as pivotal regulatory molecules in cancer biology. Among these, long intergenic non-protein coding RNA 02418 (LINC02418), a recently identified lncRNA, has been linked to endometrial cancer (EC), although its function and operational mechanisms are largely unclear. The present investigation aims to elucidate the molecular mechanism through which LINC02418 influences EC pathogenesis. We employed Western blotting and quantitative real-time PCR to analyze Ras protein specific guanine nucleotide releasing factor 1 (RASGRF1) and LINC02418 expression profiles in EC tissues and cell lines. Functional analyses, including cell proliferation, migration, and invasion assays, were conducted to evaluate the impact of LINC02418 overexpression on EC cells. Xenograft mouse models were established for in vivo validation. The molecular interactions between LINC02418, miR-494-3p, and RASGRF1 were characterized using luciferase reporter and RNA pull-down assays. LINC02418 expression was significantly downregulated in EC tissues and cell lines compared to their normal counterparts. Forced expression of LINC02418 significantly suppressed EC cell proliferation, migration, and invasion in vitro. In xenograft models, LINC02418 overexpression resulted in reduced tumor burden and enhanced cell death. Mechanistically, LINC02418 enhanced RASGRF1 expression by sequestering miR-494-3p, a finding substantiated by RNA pull-down assays. The tumor-suppressive effects of LINC02418 were partially reversed by RASGRF1 silencing and miR-494-3p overexpression. Clinical analyses revealed that reduced RASGRF1 expression correlated with poor histological differentiation, advanced tumor stages, and decreased overall survival in EC patients. Our findings establish LINC02418 as a tumor suppressor that regulates EC progression through modulation of the miR-494-3p/RASGRF1 axis, highlighting its potential as a therapeutic target in EC treatment.
Collapse
Affiliation(s)
- Hongfeng Li
- Obstetrics and Gynecology, The Affiliated People's Hospital of Ningbo University, 251 East Baizhang Road, Ningbo, 315040, Zhejiang, China
| | - Jia Bian
- Obstetrics and Gynecology, The Affiliated People's Hospital of Ningbo University, 251 East Baizhang Road, Ningbo, 315040, Zhejiang, China
| | - Minjie Liu
- Obstetrics and Gynecology, The Affiliated People's Hospital of Ningbo University, 251 East Baizhang Road, Ningbo, 315040, Zhejiang, China
| | - Yijie Wang
- Obstetrics and Gynecology, The Affiliated People's Hospital of Ningbo University, 251 East Baizhang Road, Ningbo, 315040, Zhejiang, China
| | - Yapping Shang
- Obstetrics and Gynecology, The Affiliated People's Hospital of Ningbo University, 251 East Baizhang Road, Ningbo, 315040, Zhejiang, China
| | - Yu Zheng
- Obstetrics and Gynecology, The Affiliated People's Hospital of Ningbo University, 251 East Baizhang Road, Ningbo, 315040, Zhejiang, China
| | - Xuehe Li
- Obstetrics and Gynecology, The Affiliated People's Hospital of Ningbo University, 251 East Baizhang Road, Ningbo, 315040, Zhejiang, China.
| |
Collapse
|
4
|
He Y, Liao K, Peng H, Zou X, Guo Z. Advances in MiRNAs Involved in Endometrial Carcinoma. Comb Chem High Throughput Screen 2025; 28:3-11. [PMID: 38504572 DOI: 10.2174/0113862073299444240308145725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/07/2024] [Accepted: 02/20/2024] [Indexed: 03/21/2024]
Abstract
Endometrial carcinoma (EC) is a common malignancy worldwide. Existing evidence has revealed that EC could be associated with abnormal gene expression. Meantime, evidence supports that miRNAs act as critical regulators in gene expression through the binding to the 3'- untranslated region (3'-UTR). Accordingly, this review concludes some recent studies focusing on miRNAs that influence EC, aiming at understanding the association between miRNAs and EC more clearly and providing a reference for further studies on miRNA-related drugs treating EC.
Collapse
Affiliation(s)
- Yan He
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Ke Liao
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Hua Peng
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
- Hunan Institute of Traffic Engineering, Hengyang, Hunan, 421019, China
| | - Xiangman Zou
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Zifen Guo
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| |
Collapse
|
5
|
Hong J, Gu R, Cheng W, Lu C, Wang X. LncRNA MACC1-AS1 facilitates the cell growth of small cell lung cancer by sequestering miR-579-3p and mediating NOTCH1-pathway. Int J Biol Macromol 2024; 281:136579. [PMID: 39401633 DOI: 10.1016/j.ijbiomac.2024.136579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/09/2024] [Accepted: 10/12/2024] [Indexed: 10/20/2024]
Abstract
As reported, long non-coding RNAs (lncRNAs) have been confirmed to be of great importance in regulating the progression of diseases, especially of cancers. LncRNA MACC1 antisense RNA 1 (MACC1-AS1) has been studied in some cancers, whereas its biological role and underlying mechanism is still unclear in small cell lung cancer (SCLC). In the current research, we found high level of MACC1-AS1 in SCLC cells. Subsequently, it was discovered that MACC1-AS1 knockdown considerably restrained the proliferative and migratory ability of SCLC cells by inducing the apoptosis. Importantly, the knockdown of MACC1-AS1 inhibited protein levels of genes of NOTCH pathway, and NOTCH pathway activator (Jagged1) countervailed the inhibition of MACC1-AS1 depletion on SCLC cell growth. Further, the deficiency of NOTCH1 hampered SCLC cell growth. More importantly, miR-579-3p was identified as a downstream gene of MACC1-AS1 and thereby targeted to NOTCH1. In addition, miR-579-3p repression recovered the suppressive role of MACC1-AS1 knockdown in NOTCH1 expression. Rescue assays indicated that repressed SCLC cell growth caused by MACC1-AS1 knockdown could be reserved by miR-579-3p repression or NOTCH1 overexpression. In brief, lncRNA MACC1-AS1 boosted SCLC cell growth via sequestering miR-579-3p and mediating NOTCH1-pathway.
Collapse
Affiliation(s)
- Jiang Hong
- Department of Thoracic Surgery, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Rentong Gu
- Department of Thoracic Surgery, Third Affiliated Hospital of Naval Medical University, Shanghai 200438, China
| | - Wen Cheng
- Department of Thoracic Surgery, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Chaojing Lu
- Department of Thoracic Surgery, Changhai Hospital, Naval Medical University, Shanghai 200433, China.
| | - Xiaowei Wang
- Department of Thoracic Surgery, Changhai Hospital, Naval Medical University, Shanghai 200433, China.
| |
Collapse
|
6
|
Qian Y, Chen H, Miao P, Ma R, Lu B, Hu C, Fan R, Xu B, Chen B. Integrated Identification and Immunotherapy Response Analysis of the Prognostic Signature Associated With m6A, Cuproptosis-Related, Ferroptosis-Related lncRNA in Endometrial Cancer. Cancer Rep (Hoboken) 2024; 7:e70009. [PMID: 39324703 PMCID: PMC11425647 DOI: 10.1002/cnr2.70009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/23/2024] [Accepted: 08/10/2024] [Indexed: 09/27/2024] Open
Abstract
BACKGROUND Endometrial cancer (EC) stands as the predominant gynecological malignancy impacting the female reproductive system on a global scale. N6-methyladenosine, cuproptosis- and ferroptosis-related biomarker is beneficial to the prognostic of tumor patients. Nevertheless, the correlation between m6A-modified lncRNAs and ferroptosis, copper-induced apoptosis in the initiation and progression of EC remains unexplored in existing literature. AIMS In this study, based on bioinformatics approach, we identified lncRNAs co-expressing with cuproptosis-, ferroptosis-, m6A- related lncRNAs from expression data of EC. By constructing the prognosis model in EC, we screened hub lncRNA signatures affecting prognosis of EC patients. Furthermore, the guiding value of m6A-modified ferroptosis-related lncRNA (mfrlncRNA) features was assessed in terms of prognosis, immune microenvironment, and drug sensitivity. METHOD Our research harnessed gene expression data coupled with clinical insights derived from The Cancer Genome Atlas (TCGA) collection. To forge prognostic models, we adopted five machine learning approaches, assessing their efficacy through C-index and time-independent ROC analysis. We pinpointed prognostic indicators using the LASSO Cox regression approach. Moreover, we delved into the biological and immunological implications of the discovered lncRNA prognostic signatures. RESULTS The survival rate for the low-risk group was markedly higher than that for the high-risk group, as evidenced by a significant log-rank test (p < 0.001). The LASSO Cox regression model yielded concordance indices of 0.76 for the training set and 0.77 for the validation set, indicating reliable prognostic accuracy. Enrichment analysis of gene functions linked the identified signature predominantly to endopeptidase inhibitor activity, highlighting the signature's potential implications. Additionally, immune function and drug density emphasized the importance of early diagnosis in EC. CONCLUSION Five hub lncRNAs in EC were identified through constructing the prognosis model. Those genes might be potential biomarkers to provide valuable reference for targeted therapy and prognostic assessment of EC.
Collapse
Affiliation(s)
- Yongkang Qian
- Department of Epidemiology and Biostatistics, School of Public Health, Southeast University, Nanjing, China
| | - Hualing Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Southeast University, Nanjing, China
| | - Pengcheng Miao
- Department of Epidemiology and Biostatistics, School of Public Health, Southeast University, Nanjing, China
| | - Rongji Ma
- Department of Epidemiology and Biostatistics, School of Public Health, Southeast University, Nanjing, China
| | - Beier Lu
- Department of Epidemiology and Biostatistics, School of Public Health, Southeast University, Nanjing, China
| | - Chenhua Hu
- Department of Epidemiology and Biostatistics, School of Public Health, Southeast University, Nanjing, China
| | - Ru Fan
- Medical Statistics and Analysis Center, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Biyun Xu
- Medical Statistics and Analysis Center, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Bingwei Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Southeast University, Nanjing, China
| |
Collapse
|
7
|
Niebora J, Woźniak S, Domagała D, Data K, Farzaneh M, Zehtabi M, Dari MAG, Pour FK, Bryja A, Kulus M, Mozdziak P, Dzięgiel P, Kempisty B. The role of ncRNAs and exosomes in the development and progression of endometrial cancer. Front Oncol 2024; 14:1418005. [PMID: 39188680 PMCID: PMC11345653 DOI: 10.3389/fonc.2024.1418005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/26/2024] [Indexed: 08/28/2024] Open
Abstract
Endometrial cancer (EC) is one of the most common gynecologic cancers. In recent years, research has focused on the genetic characteristics of the tumors to detail their prognosis and tailor therapy. In the case of EC, genetic mutations have been shown to underlie their formation. It is very important to know the mechanisms of EC formation related to mutations induced by estrogen, among other things. Noncoding RNAs (ncRNAs), composed of nucleotide transcripts with very low protein-coding capacity, are proving to be important. Their expression patterns in many malignancies can inhibit tumor formation and progression. They also regulate protein coding at the epigenetic, transcriptional, and posttranscriptional levels. MicroRNAs (miRNAs), several varieties of which are associated with normal endometrium as well as its tumor, also play a particularly important role in gene expression. MiRNAs and long noncoding RNAs (lncRNAs) affect many pathways in EC tissues and play important roles in cancer development, invasion, and metastasis, as well as resistance to anticancer drugs through mechanisms such as suppression of apoptosis and progression of cancer stem cells. It is also worth noting that miRNAs are highly precise, sensitive, and robust, making them potential markers for diagnosing gynecologic cancers and their progression. Unfortunately, as the incidence of EC increases, treatment becomes challenging and is limited to invasive tools. The prospect of using microRNAs as potential candidates for diagnostic and therapeutic use in EC seems promising. Exosomes are extracellular vesicles that are released from many types of cells, including cancer cells. They contain proteins, DNA, and various types of RNA, such as miRNAs. The noncoding RNA components of exosomes vary widely, depending on the physiology of the tumor tissue and the cells from which they originate. Exosomes contain both DNA and RNA and have communication functions between cells. Exosomal miRNAs mediate communication between EC cells, tumor-associated fibroblasts (CAFs), and tumor-associated macrophages (TAMs) and play a key role in tumor cell proliferation and tumor microenvironment formation. Oncogenes carried by tumor exosomes induce malignant transformation of target cells. During the synthesis of exosomes, various factors, such as genetic and proteomic data are upregulated. Thus, they are considered an interesting therapeutic target for the diagnosis and prognosis of endometrial cancer by analyzing biomarkers contained in exosomes. Expression of miRNAs, particularly miR-15a-5p, was elevated in exosomes derived from the plasma of EC patients. This may suggest the important utility of this biomarker in the diagnosis of EC. In recent years, researchers have become interested in the topic of prognostic markers for EC, as there are still too few identified markers to support the limited treatment of endometrial cancer. Further research into the effects of ncRNAs and exosomes on EC may allow for cancer treatment breakthroughs.
Collapse
Affiliation(s)
- Julia Niebora
- Division of Anatomy, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Sławomir Woźniak
- Division of Anatomy, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Dominika Domagała
- Division of Anatomy, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Krzysztof Data
- Division of Anatomy, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Maryam Farzaneh
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Clinical Research Development Unit, Imam Khomeini Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mojtaba Zehtabi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahrokh Abouali Gale Dari
- Department of Obstetrics and Gynecology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Fatemeh Khojasteh Pour
- Department of Obstetrics and Gynecology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Artur Bryja
- Division of Anatomy, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Magdalena Kulus
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, Torun, Poland
| | - Paul Mozdziak
- Physiology Graduate Program, North Carolina State University, Raleigh, NC, United States
| | - Piotr Dzięgiel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Bartosz Kempisty
- Division of Anatomy, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, Torun, Poland
- Physiology Graduate Program, North Carolina State University, Raleigh, NC, United States
- Department of Obstetrics and Gynecology, University Hospital and Masaryk University, Brno, Czechia
| |
Collapse
|
8
|
Alzahrani AK, Khan A, Singla N, Hai A, Alzahrani AR, Kamal M, Asdaq SMB, Alsalman AJ, Hawaj MAA, Al Odaini LH, Dzinamarira T, Imran M. From diagnosis to therapy: The critical role of lncRNAs in hepatoblastoma. Pathol Res Pract 2024; 260:155412. [PMID: 38889493 DOI: 10.1016/j.prp.2024.155412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/07/2024] [Accepted: 06/13/2024] [Indexed: 06/20/2024]
Abstract
According to findings, long non-coding RNAs (lncRNAs) serves an integral part in growth and development of a variety of human malignancies, including Hepatoblastoma (HB). HB is a rare kind of carcinoma of the liver that mostly affects kids and babies under the age of three. Its manifestations include digestive swelling, abdominal discomfort, and losing weight. This thorough investigation digs into the many roles that lncRNAs serve in HB, giving views into their varied activities as well as possible therapeutic consequences. The function of lncRNAs in HB cell proliferation, apoptosis, migratory and penetrating capacities, epithelial-mesenchymal transition, and therapy tolerance is discussed. Various lncRNA regulatory roles are investigated in depth, yielding information on their effect on essential cell processes such as angiogenesis, apoptosis, immunity, and growth. Circulating lncRNAs are currently acknowledged as potential indications for the initial stages of identification of cancer, with the ability to diagnose as well as forecast. In addition to their diagnostic utility, lncRNAs provide curative opportunities as locations and actors, contributing to the expanding landscape of cancer research. Several HB-linked lncRNAs have been demonstrated to exhibit abnormal expression and are involved in tumor-like characteristics via DNA, RNA, or protein binding or encoding short peptides. As a result, a better knowledge of lncRNA instability might bring fresh perspectives into HB etiology as well as innovative strategies for HB early diagnosis and therapy. We describe the abnormalities of lncRNA expression in HB and their tumor-suppressive or carcinogenic activities during HB carcinogenesis in this study. Furthermore, we explore lncRNAs' diagnostic and therapeutic possibilities in HB.
Collapse
Affiliation(s)
- A Khuzaim Alzahrani
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Northern Border University, Arar 91431, Saudi Arabia
| | - Abida Khan
- Department of Pharmaceutical Chemistry, College of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia
| | - Neelam Singla
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur 302017, India
| | - Abdul Hai
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Northern Border University, Arar 91431, Saudi Arabia
| | - Abdullah R Alzahrani
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Al-Abidiyah, P.O. Box 13578, Makkah 21955, Saudi Arabia
| | - Mehnaz Kamal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | | | | | - Maitham Abdullah Al Hawaj
- Department of Pharmacy Practice, College of Clinical Pharmacy, King Faisal University, Al Ahsa 31982, Saudi Arabia
| | - Lulu Homeed Al Odaini
- Department of Ambulatory Care Pharmacy, King Fahad Medical City, Riyadh 12242, Saudi Arabia
| | - Tafadzwa Dzinamarira
- School of Health Systems and Public Health, University of Pretoria, Pretoria, South Africa
| | - Mohd Imran
- Department of Pharmaceutical Chemistry, College of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia.
| |
Collapse
|
9
|
Lotfi M, Maharati A, Hamidi AA, Taghehchian N, Moghbeli M. MicroRNA-532 as a probable diagnostic and therapeutic marker in cancer patients. Mutat Res 2024; 829:111874. [PMID: 38986233 DOI: 10.1016/j.mrfmmm.2024.111874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 07/01/2024] [Accepted: 07/05/2024] [Indexed: 07/12/2024]
Abstract
The high mortality rate in cancer patients is always one of the main challenges of the health systems globally. Several factors are involved in the high rate of cancer related mortality, including late diagnosis and drug resistance. Cancer is mainly diagnosed in the advanced stages of tumor progression that causes the failure of therapeutic strategies and increases the death rate in these patients. Therefore, assessment of the molecular mechanisms associated with the occurrence of cancer can be effective to introduce early tumor diagnostic markers. MicroRNAs (miRNAs) as the stable non-coding RNAs in the biological body fluids are involved in regulation of cell proliferation, migration, and apoptosis. MiR-532 deregulation has been reported in different tumor types. Therefore, in the present review we discussed the role of miR-532 during tumor growth. It has been shown that miR-532 has mainly a tumor suppressor role through the regulation of transcription factors, chemokines, and signaling pathways such as NF-kB, MAPK, PI3K/AKT, and WNT. In addition to the independent role of miR-532 in regulation of cellular processes, it also functions as a mediator of lncRNAs and circRNAs. Therefore, miR-532 can be considered as a non-invasive diagnostic/prognostic marker as well as a therapeutic target in cancer patients.
Collapse
Affiliation(s)
- Malihe Lotfi
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhosein Maharati
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Abbas Hamidi
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Negin Taghehchian
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
10
|
Xiong H, Zhang W, Xie M, Chen R, Chen H, Lin Q. Long non-coding RNA JPX promotes endometrial carcinoma progression via janus kinase 2/signal transducer and activator of transcription 3. Front Oncol 2024; 14:1340050. [PMID: 38784043 PMCID: PMC11112342 DOI: 10.3389/fonc.2024.1340050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 04/03/2024] [Indexed: 05/25/2024] Open
Abstract
Introduction Although LncRNA JPX has been linked to a number of malignancies, it is yet unknown how it relates to endometrial carcinoma (EC). Investigating the expression, functional activities, and underlying molecular processes of lncRNA JPX in EC was the goal of this work. Methods RT-qPCR was used to examine the differences in lncRNA/microRNA (miRNA, miR)/mRNA expression between normal cervical and EC tissues or cells. Cell Counting Kit-8, flow cytometry, and transwell were used to evaluate the association between lncRNA JPX/miR-140-3p/phosphoinositide-3-kinase catalytic subunit α (PIK3CA) in Ishikawa and JEC cell lines. The impact of JPX on the downstream janus kinase (JAK)2/signal transducer and activator of transcription (STAT)3 signaling pathway was investigated using Western blot analysis. Results When comparing EC tissues to nearby normal tissues, JPX expression is markedly increased in EC tissues, with greater expression in advanced-stage EC. Furthermore, compared to normal epithelial cells, EC cell lines have higher levels of JPX expression. In Ishikawa and JEC endometrial cancer cell lines, we used siRNA-mediated suppression of JPX to find lower cell viability, increased apoptosis, cell cycle arrest, and reduced migration and invasion. We next verified that miR-140-3p binds to downstream target cells to impede the transcription and translation of PIK3CA, which in turn prevents the growth of Ishikawa and JEC cells. JPX functions as a ceRNA to adsorb miR-140-3p. This procedure required controlling JAK2/STAT3, a downstream signal. Conclusion JPX enhances the development of Ishikawa and JEC cells and activates downstream JAK2/STAT3 signal transduction via the miR-140-3p/PIK3CA axis, offering a possible therapeutic target for the treatment of EC.
Collapse
Affiliation(s)
- Hanzhen Xiong
- Department of Pathology, Guangdong Provincial Key Laboratory of Major Obstetric Disease, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Wei Zhang
- Department of Pathology, Guangdong Provincial Key Laboratory of Major Obstetric Disease, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Mingyu Xie
- Department of Pathology, Guangdong Provincial Key Laboratory of Major Obstetric Disease, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
- Department of Pathology, Central People’s Hospital of Zhanjiang, Zhanjiang, Guangdong, China
| | - Ruichao Chen
- Department of Pathology, Guangdong Provincial Key Laboratory of Major Obstetric Disease, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Hui Chen
- Department of Pathology, Guangdong Provincial Key Laboratory of Major Obstetric Disease, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Qiongyan Lin
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
- Department of Gynecologic Oncology Research Office, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
11
|
Ali ES, Yalın AE, Yalın S. Long noncoding RNAs and their possible roles in tumorigenesis and drug resistance in cancer chemotherapy. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2024; 44:170-184. [PMID: 38575568 DOI: 10.1080/15257770.2024.2336210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/15/2024] [Accepted: 03/22/2024] [Indexed: 04/06/2024]
Abstract
Cancer is still one of the most important diseases that have a high mortality rate around the world. The management of cancer involves many procedures, which include surgery, radiotherapy, and chemotherapy. Drug resistance in cancer chemotherapy is considered one of the most important problems in clinical oncology. A good understanding of the tumorigenesis process and the mechanisms of developing chemotherapy resistance in cancer cells will help achieve significant advances in cancer treatment protocols. In recent years, there has been an increasing interest in long noncoding RNAs (lncRNAs). LncRNAs are no longer just a transcriptional noise, and many investigations proved their possible roles in regulating mandatory cellular functions. A lot of newly published studies confirmed the implication of lncRNAs in the tumor formation process and the multiple drug resistance in cancer chemotherapy. The main aim of this review is to focus on the lncRNAs' functions in the cell, their possible roles in the tumor formation process, and their roles in the development of chemotherapy resistance in different cancer cells.
Collapse
Affiliation(s)
- Ehsan Sayed Ali
- Department of Biochemistry, Faculty of Pharmacy, Mersin University, Mersin, Turkey
| | - Ali Erdinç Yalın
- Department of Biochemistry, Faculty of Pharmacy, Mersin University, Mersin, Turkey
| | - Serap Yalın
- Department of Biochemistry, Faculty of Pharmacy, Mersin University, Mersin, Turkey
| |
Collapse
|
12
|
Xia Y, Pei T, Zhao J, Wang Z, Shen Y, Yang Y, Liang J. Long noncoding RNA H19: functions and mechanisms in regulating programmed cell death in cancer. Cell Death Discov 2024; 10:76. [PMID: 38355574 PMCID: PMC10866971 DOI: 10.1038/s41420-024-01832-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/16/2024] [Accepted: 01/25/2024] [Indexed: 02/16/2024] Open
Abstract
Long noncoding RNAs (lncRNAs) are a group of noncoding RNAs with transcript lengths of >200 nucleotides. Mounting evidence suggests that lncRNAs are closely associated with tumorigenesis. LncRNA H19 (H19) was the first lncRNA to function as an oncogene in many malignant tumors. Apart from the established role of H19 in promoting cell growth, proliferation, invasion, migration, epithelial-mesenchymal transition (EMT), and metastasis, it has been recently discovered that H19 also inhibits programmed cell death (PCD) of cancer cells. In this review, we summarize the mechanisms by which H19 regulates PCD in cancer cells through various signaling pathways, molecular mechanisms, and epigenetic modifications. H19 regulates PCD through the Wnt/β-catenin pathway and the PI3K-Akt-mTOR pathway. It also acts as a competitive endogenous RNA (ceRNA) in PCD regulation. The interaction between H19 and RNA-binding proteins (RBP) regulates apoptosis in cancer. Moreover, epigenetic modifications, including DNA and RNA methylation and histone modifications, are also involved in H19-associated PCD regulation. In conclusion, we summarize the role of H19 signaling via PCD in cancer chemoresistance, highlighting the promising research significance of H19 as a therapeutic target. We hope that our study will contribute to a broader understanding of H19 in cancer development and treatment.
Collapse
Affiliation(s)
- Yuyang Xia
- Department of Urology, Institute of Urology, West China Hospital, West China School of Medicine, Sichuan University, 610041, Chengdu, China
| | - Tianjiao Pei
- Department of Reproductive Medicine, West China Second University Hospital of Sichuan University, Chengdu, China.
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital of Sichuan University, Chengdu, China.
| | - Junjie Zhao
- Department of Urology, Institute of Urology, West China Hospital, West China School of Medicine, Sichuan University, 610041, Chengdu, China
| | - Zilin Wang
- Department of Urology, Institute of Urology, West China Hospital, West China School of Medicine, Sichuan University, 610041, Chengdu, China
| | - Yu Shen
- Department of Urology, Institute of Urology, West China Hospital, West China School of Medicine, Sichuan University, 610041, Chengdu, China
| | - Yang Yang
- Department of Urology, Institute of Urology, West China Hospital, West China School of Medicine, Sichuan University, 610041, Chengdu, China
| | - Jiayu Liang
- Department of Urology, Institute of Urology, West China Hospital, West China School of Medicine, Sichuan University, 610041, Chengdu, China.
| |
Collapse
|
13
|
Yang B, Jiao Z, Feng N, Zhang Y, Wang S. Long non-coding RNA MIR600HG as a ceRNA inhibits the pancreatic cancer progression through regulating the miR-1197/PITPNM3 axis. Heliyon 2024; 10:e24546. [PMID: 38312687 PMCID: PMC10834820 DOI: 10.1016/j.heliyon.2024.e24546] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/12/2023] [Accepted: 01/10/2024] [Indexed: 02/06/2024] Open
Abstract
Objective Pancreatic cancer (PC) is considered to be a highly malignant cancer with poor prognosis. Long non-coding RNAs (lncRNAs) is the potential factor to predict cancer prognosis. The effect of MIR600HG in PC needs to be further studied. Our work mainly focused on the importance of MIR600HG for PC prognosis and its underlying molecular mechanism of regulating PC progression. Methods Data set was acquired from TCGA database to find differentially expressed genes and prognostic significance of MIR600HG in PC, and to construct the MIR600HG competitive endogenous RNA (ceRNA). Clinical specimens were collected to prove the analysis results. Vector over-expressed MIR600HG was transfected to study the roles of MIR600HG in proliferation, apoptosis, invasion and migration. The methods of CCK-8, flow cytometry, Transwell and scratch assays were all used in order to explore the apoptosis, migration and invasion. We evaluated the proliferation-related genes (PCNA, CyclinD1 and P27), as well as invasion and migration-related genes such as MMP-9, MMP-7 and ICAM-1. The transcriptional regulation between MIR600HG and miR-1197/PITPNM3 axis was determined with luciferase reporter assays. Results In present study, MIR600HG was dropped in both PC tissues and cells, and the down-regulated MIR600HG was closely related to the poor clinical outcomes in PC patients. MIR600HG could inhibit proliferation, migration and invasion in PC cells. We also investigated whether MIR600HG acting as a sponge of microRNA-1197 (miR-1197) and miR-1197 acting on PITPNM3. We found the positive association between MIR600HG and PITPNM3, as well as the negative association of miR-1197 and MIR600HG (or PITPNM3). Moreover, PITPNM3 mRNA and protein expression saw a simultaneous increase after the MIR600HG-overexpression (MIR600HG-OE), but this result partially diminished in MIR600HG-OE cells and miR-1197 mimics. Conclusions Our study explored the anticancer action of MIR600HG in PC by regulating miR-1197 to increase the expression of PITPNM3, which might help the diagnosis and therapy of PC.
Collapse
Affiliation(s)
- Baoming Yang
- Department of Hepatobiliary Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Zhikai Jiao
- Department of Hepatobiliary Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Ningning Feng
- Department of Hepatobiliary Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Yueshan Zhang
- Department of Hepatobiliary Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Shunxiang Wang
- Department of Hepatobiliary Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| |
Collapse
|
14
|
Hussain MS, Afzal O, Gupta G, Goyal A, Almalki WH, Kazmi I, Alzarea SI, Alfawaz Altamimi AS, Kukreti N, Chakraborty A, Singh SK, Dua K. Unraveling NEAT1's complex role in lung cancer biology: a comprehensive review. EXCLI JOURNAL 2024; 23:34-52. [PMID: 38343745 PMCID: PMC10853633 DOI: 10.17179/excli2023-6553] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 11/30/2023] [Indexed: 09/05/2024]
Abstract
This review delves into the pivotal role of the long non-coding RNA NEAT1 in cancer biology, particularly in lung cancer (LC). It emphasizes NEAT1's unique subcellular localization and active involvement in gene regulation and chromatin remodeling. The review highlights NEAT1's impact on LC development and progression, including cell processes such as proliferation, migration, invasion, and resistance to therapy, positioning it as a potential diagnostic marker and therapeutic target. The complex web of NEAT1's regulatory interactions with proteins and microRNAs is explored, alongside challenges in targeting it therapeutically. The review concludes optimistically, suggesting future avenues for research and personalized LC therapies, shedding light on NEAT1's crucial role in LC. See also the Graphical abstract(Fig. 1).
Collapse
Affiliation(s)
- Md Sadique Hussain
- School of Pharmaceutical Sciences, Jaipur National University, Jagatpura 302017, Jaipur, India
| | - Obaid Afzal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj, 11942, Saudi Arabia
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura 302017, Mahal Road, Jaipur, India
- Centre for Transdisciplinary Research, Saveetha Institute of Medical and Technical Science, Saveetha University, Chennai, India
| | - Ahsas Goyal
- Institute of Pharmaceutical Research, GLA University, Mathura, U. P., India
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sami I. Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Al-Jouf, Saudi Arabia
| | | | - Neelam Kukreti
- School of Pharmacy, Graphic Era Hill University, Dehradun 248007, India
| | - Amlan Chakraborty
- Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
- Cardiovascular Disease Program, Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton, VIC 3800, Australia
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia
| |
Collapse
|
15
|
Alharthi NS, Al-Zahrani MH, Hazazi A, Alhuthali HM, Gharib AF, Alzahrani S, Altalhi W, Almalki WH, Khan FR. Exploring the lncRNA-VEGF axis: Implications for cancer detection and therapy. Pathol Res Pract 2024; 253:154998. [PMID: 38056133 DOI: 10.1016/j.prp.2023.154998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/16/2023] [Accepted: 11/27/2023] [Indexed: 12/08/2023]
Abstract
Cancer is a complicated illness that spreads indefinitely owing to epigenetic, genetic, and genomic alterations. Cancer cell multidrug susceptibility represents a severe barrier in cancer therapy. As a result, creating effective therapies requires a better knowledge of the mechanisms driving cancer development, progress, and resistance to medications. The human genome is predominantly made up of long non coding RNAs (lncRNAs), which are currently identified as critical moderators in a variety of biological functions. Recent research has found that changes in lncRNAs are closely related to cancer biology. The vascular endothelial growth factor (VEGF) signalling system is necessary for angiogenesis and vascular growth and has been related to an array of health illnesses, such as cancer. LncRNAs have been identified to alter a variety of cancer-related processes, notably the division of cells, movement, angiogenesis, and treatment sensitivity. Furthermore, lncRNAs may modulate immune suppression and are being investigated as possible indicators for early identification of cancer. Various lncRNAs have been associated with cancer development and advancement, serving as cancer-causing or suppressing genes. Several lncRNAs have been demonstrated through research to impact the VEGF cascade, resulting in changes in angiogenesis and tumor severity. For example, the lncRNA nuclear paraspeckle assembly transcript 1 (NEAT1) has been shown to foster the formation of oral squamous cell carcinoma and the epithelial-mesenchymal transition by stimulating the VEGF-A and Notch systems. Plasmacytoma variant translocation 1 (PVT1) promotes angiogenesis in non-small-cell lung cancer by affecting miR-29c and boosting the VEGF cascade. Furthermore, lncRNAs regulate VEGF production and angiogenesis by interacting with multiple downstream signalling networks, including Wnt, p53, and AKT systems. Identifying how lncRNAs engage with the VEGF cascade in cancer gives beneficial insights into tumor biology and possible treatment strategies. Exploring the complicated interaction between lncRNAs and the VEGF pathway certainly paves avenues for novel ways to detect better accurately, prognosis, and cure cancers. Future studies in this area could open avenues toward the creation of innovative cancer therapy regimens that enhance the lives of patients.
Collapse
Affiliation(s)
- Nahed S Alharthi
- Department of Medical Laboratory, College of Applied Medical Sciences in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudia Arabia
| | | | - Ali Hazazi
- Department of Pathology and Laboratory Medicine, Security Forces Hospital Program, Riyadh, Saudi Arabia
| | - Hayaa Moeed Alhuthali
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Amal F Gharib
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Shatha Alzahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Wafa Altalhi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Farhan R Khan
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences AlQuwayiyah, Shaqra University, Saudi Arabia.
| |
Collapse
|
16
|
Chen T, Sun Z, Cui Y, Ji J, Li Y, Qu X. Identification of long noncoding RNA NEAT1 as a key gene involved in the extramedullary disease of multiple myeloma by bioinformatics analysis. HEMATOLOGY (AMSTERDAM, NETHERLANDS) 2023; 28:2164449. [PMID: 36657019 DOI: 10.1080/16078454.2022.2164449] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
OBJECTIVE Long non-coding RNAs (lncRNAs) are involved in tumorigenesis and play a key role in cancer progression. To determine whether lncRNAs are involved in extramedullary disease of multiple myeloma (EMD), we analyzed the expression profile of lncRNAs in EMD. METHODS Three pairs of EMD patients and their intramedullary MM cells were screened by microarray first. We extracted data from gene chips and made an identification of lncRNAs and mRNAs with significant differences between EMD group and non EMD group. WGCNA confirmed the EMD related gene module and drew a heat map to further determine the key gene lncRNA-NEAT1. In the meantime, bone marrow and extramedullary samples (hydrothorax and ascites) were collected from 2 MM patients and subjected to single-cell RNA-seq. Single cell Transcriptome analysis was conducted to verify the gene expression difference of malignant plasma cells derived from intramedullary and extramedullary. Then we verified high expression level of lncRNA-NEAT1 in EMD patients by using quantitative real-time PCR (qRT-PCR) and analyzed the correlation between expression patterns and survival and molecular genetics analysis of the LncRNA (NEAT1) involved in MM patients. At last, cell experiments were conducted to observe the effects of down-regulation of NEAT1on the proliferation, cell cycle and PTEN pathway related proteins of multiple myeloma cell lines U266 and RPMI8226. RESULTS We identified one of the EMD related key gene is lncRNA-NEAT1. Compared with patients without extramedullary lesions, intramedullary MM cells in EMD patients expressed NEAT1 highly. The outcome of parallel single-cell RNA sequencing (RNA-seq) revealed NEAT1 level of plasma cells came from pleural effusion /ascites increased significantly compared with myeloma-stricken bone marrow. By survival and molecular genetic analysis, NEAT1 gene expression was not associated with OS and PFS in MM patients. However, the expression of NEAT1 is related to adverse therapeutic reactions and the progression of MM. We found that the expressions of NEAT1 were negatively associated with albumin levels and were positively associated with gain of chromosome 1q, IGH-CCND1, IGH@-FGFR3/WHSC1,and IGH-MAF gene fusion, respectively. At the level of cell experiment, CCK-8, soft agar clone formation experiment and CFSE staining showed that down regulating NEAT1 could inhibit the proliferation of U266 and RPMI8226 cells; Cell cycle detection showed that down-regulation of NEAT1 would interfere with the cell cycle process, and RPMI 8226 cells were blocked in G1 phase. Western blot analysis showed that when the expression of NEAT1 was down regulated in U266 and RPMI 8226 cells, the expression of PTEN and p-PTEN (phosphorylated phosphatase and tensin homologue) was up-regulated, and the expression of PI3K, p-PI3K (human phosphorylated inositol 3 kinase), Akt, p-Akt (phosphorylated protein kinase B). DISCUCCION AND CONCLUSION This study provides novel insights into the lncRNA-NEAT1 and reveals that NEAT1 maybe a potential lncRNA biomarkers in EMD.
Collapse
Affiliation(s)
- Ting Chen
- Department of Hematology, Key Laboratory of Hematology of Nanjing Medical University, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, People's Republic of China.,Department of Hematology, Rugao Hospital, Nantong, People's Republic of China
| | - Zhengxu Sun
- Department of Hematology, Key Laboratory of Hematology of Nanjing Medical University, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, People's Republic of China
| | - Yunqi Cui
- Department of Hematology, Key Laboratory of Hematology of Nanjing Medical University, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, People's Republic of China
| | - Jiamei Ji
- Department of Hematology, Key Laboratory of Hematology of Nanjing Medical University, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, People's Republic of China
| | - Yating Li
- Department of Hematology, Key Laboratory of Hematology of Nanjing Medical University, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, People's Republic of China
| | - Xiaoyan Qu
- Department of Hematology, Key Laboratory of Hematology of Nanjing Medical University, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, People's Republic of China
| |
Collapse
|
17
|
Qi W, Liu Q, Fu W, Shi J, Shi M, Duan S, Li Z, Song S, Wang J, Liu Y. BHLHE40, a potential immune therapy target, regulated by FGD5-AS1/miR-15a-5p in pancreatic cancer. Sci Rep 2023; 13:16400. [PMID: 37773521 PMCID: PMC10541890 DOI: 10.1038/s41598-023-43577-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 09/26/2023] [Indexed: 10/01/2023] Open
Abstract
Pancreatic cancer, as one of the neoplasms with the highest degree of malignancy, has become a main disease of concerns in recent years. BHLHE40, a critical transcription factor for remodeling of the tumor immune microenvironment, has been described to be substantially increased in a variety of tumor-associated immune cells. Nevertheless, the pro-cancer biological functions and underlying molecular mechanisms of BHLHE40 for pancreatic cancer and its unique microenvironment are unclear. Hereby, we investigated the pro-oncogenic role of BHLHE40 in the pancreatic cancer microenvironment by bioinformatics analysis and cell biology experiments and determined that the expression of BHLHE40 was obviously elevated in pancreatic cancer tissues than in adjacent normal tissues. In parallel, Kaplan-Meier survival analysis unveiled that lower expression of BHLHE40 was strongly associated with better prognosis of patients. Receiver operating characteristic (ROC) curve analysis confirmed the accuracy of the BHLHE40-related prediction model. Subsequent, spearman correlation analysis observed that higher expression of BHLHE40 might be involved in immunosuppression of pancreatic cancer. Silencing of BHLHE40 could inhibit proliferation, invasion, and apoptosis of pancreatic cancer in vitro and in vivo, implying that BHLHE40 is expected to be a potential therapeutic target for pancreatic cancer. In addition, we explored and validated the FGD5-AS1/miR-15a-5p axis as a potential upstream regulatory mode for high expression of BHLHE40 in pancreatic cancer. In summary, our data showed that ceRNA involved in the regulation of BHLHE40 contributes to the promotion of immunosuppressive response in pancreatic and is expected to be a diagnostic marker and potential immunotherapeutic target for pancreatic cancer.
Collapse
Affiliation(s)
- Wenxin Qi
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Qian Liu
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Wenjun Fu
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Jiaming Shi
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Minmin Shi
- Department of General Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
| | - Songqi Duan
- College of Food Science, Sichuan Agricultural University, Yaan, China
| | - Zhe Li
- School of Life Sciences, Shanghai University, Shanghai, China.
| | - Shaohua Song
- Department of General Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China.
| | - Jiao Wang
- School of Life Sciences, Shanghai University, Shanghai, China.
| | - Yihao Liu
- Department of General Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
18
|
Almalki WH. LncRNAs and PTEN/PI3K signaling: A symphony of regulation in cancer biology. Pathol Res Pract 2023; 249:154764. [PMID: 37643526 DOI: 10.1016/j.prp.2023.154764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/11/2023] [Accepted: 08/12/2023] [Indexed: 08/31/2023]
Abstract
The Emergence of Long Non-coding RNAs (lncRNAs) as Key Regulators in Diverse Biological Processes: A Paradigm Shift in Understanding Gene Expression and its Impact on Cancer. The PTEN/PI3K pathway, a pivotal signaling cascade involved in cancer progression, orchestrates critical cellular functions such as survival, proliferation, and growth. In light of these advances, our investigation delves into the intricate and multifaceted interplay between lncRNAs and the PTEN/PI3K signaling pathway, unearthing previously undisclosed mechanisms that underpin cancer growth and advancement. These elusive lncRNAs exert their influence through direct targeting of the PTEN/PI3K pathway or by skillfully regulating the expression and activity of specific lncRNAs. This comprehensive review underscores the paramount significance of the interaction between lncRNAs and the PTEN/PI3K signaling pathway in cancer biology, unveiling an auspicious avenue for novel diagnostic tools and targeted therapeutic interventions. In this review, we navigate through the functional roles of specific lncRNAs in modulating PTEN/PI3K expression and activity. Additionally, we scrutinize their consequential effects on downstream components of the PTEN/PI3K pathway, unraveling the intricacies of their mutual regulation. By advancing our understanding of this complex regulatory network, this study holds the potential to revolutionize the landscape of cancer research, paving the way for tailored and efficacious treatments to combat this devastating disease.
Collapse
Affiliation(s)
- Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia.
| |
Collapse
|
19
|
Wang M, Fu L, Xu Y, Ma S, Zhang X, Zheng L. A comprehensive overview of exosome lncRNAs: Emerging biomarkers and potential therapeutics in gynecological cancers. Front Oncol 2023; 13:1138142. [PMID: 37007117 PMCID: PMC10063919 DOI: 10.3389/fonc.2023.1138142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/06/2023] [Indexed: 03/19/2023] Open
Abstract
Ovarian, endometrial, and cervical cancer are common gynecologic malignancies, and their incidence is increasing year after year, with a younger patient population at risk. An exosome is a tiny “teacup-like” blister that can be secreted by most cells, is highly concentrated and easily enriched in body fluids, and contains a large number of lncRNAs carrying some biological and genetic information that can be stable for a long time and is not affected by ribonuclease catalytic activity. As a cell communication tool, exosome lncRNA has the advantages of high efficiency and high targeting. Changes in serum exosome lncRNA expression in cancer patients can accurately reflect the malignant biological behavior of cancer cells. Exosome lncRNA has been shown in studies to have broad application prospects in cancer diagnosis, monitoring cancer recurrence or progression, cancer treatment, and prognosis. The purpose of this paper is to provide a reference for clinical research on the pathogenesis, diagnosis, and treatment of gynecologic malignant tumors by reviewing the role of exosome lncRNA in gynecologic cancers and related molecular mechanisms.
Collapse
|
20
|
Liu Y, Xie C, Li T, Lu C, Fan L, Zhang Z, Peng S, Lv N, Lu D. PCGEM1 promotes cell proliferation and migration in endometriosis by targeting miR-124-3p-mediated ANTXR2 expression. BMC Womens Health 2023; 23:104. [PMID: 36915057 PMCID: PMC10012497 DOI: 10.1186/s12905-023-02250-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 02/28/2023] [Indexed: 03/16/2023] Open
Abstract
BACKGROUND Endometriosis, a common gynaecological disease in women, affects 10% of women of childbearing age. Among infertile women, this proportion is as high as 30-50%. Despite the high prevalence of endometriosis, the pathogenesis of endometriosis is still unclear. METHODS In the present study, bioinformatics analysis and molecular and animal experiments were employed to explore the functions of PCGEM1 in the pathogenesis of endometriosis. We established an endometriosis rat model and isolated endometrial stromal cells (ESCs) and primary normal ESCs (NESCs). Bioinformatics analysis was adopted to study the roles of PCGEM1 in promoting the pathogenesis of endometriosis. Luciferase reporter assays and RNA pull-down assays were carried out to study the mechanism by which PCGEM1 regulates ANTXR2. RESULTS Our results indicated that PCGEM1 promoted the motility and proliferation of ectopic endometrial cells, and the underlying mechanism was due to the direct binding of PCGEM1 to miR-124-3p to modulate ANTXR2 expression. CONCLUSION PCGEM1 can influence endometrial stromal cell proliferation and motility and may be a novel therapeutic target for endometriosis.
Collapse
Affiliation(s)
- Yong Liu
- Department of Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, 100026, Beijing, China
| | - Chengmao Xie
- Department of Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, 100026, Beijing, China
| | - Ting Li
- Department of Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, 100026, Beijing, China
| | - Chang Lu
- Department of Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, 100026, Beijing, China
| | - Linyuan Fan
- Department of Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, 100026, Beijing, China
| | - Zhan Zhang
- Department of Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, 100026, Beijing, China
| | - Sha Peng
- Department of Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, 100026, Beijing, China
| | - Na Lv
- Department of Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, 100026, Beijing, China
| | - Dan Lu
- Department of Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, 100026, Beijing, China.
| |
Collapse
|
21
|
Lv N, Shen S, Chen Q, Tong J. Long noncoding RNAs: glycolysis regulators in gynaecologic cancers. Cancer Cell Int 2023; 23:4. [PMID: 36639695 PMCID: PMC9838043 DOI: 10.1186/s12935-023-02849-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 01/05/2023] [Indexed: 01/15/2023] Open
Abstract
The three most common gynaecologic cancers that seriously threaten female lives and health are ovarian cancer, cervical cancer, and endometrial cancer. Glycolysis plays a vital role in gynaecologic cancers. Several long noncoding RNAs (lncRNAs) are known to function as oncogenic molecules. LncRNAs impact downstream target genes by acting as ceRNAs, guides, scaffolds, decoys, or signalling molecules. However, the role of glycolysis-related lncRNAs in regulating gynaecologic cancers remains poorly understood. In this review, we emphasize the functional roles of many lncRNAs that have been found to promote glycolysis in gynaecologic cancers and discuss reasonable strategies for future research.
Collapse
Affiliation(s)
- Nengyuan Lv
- grid.268505.c0000 0000 8744 8924Department of the Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053 Zhejiang Province People’s Republic of China ,grid.13402.340000 0004 1759 700XDepartment of Obstetrics and Gynecology, Affiliated Hangzhou First People’s Hospital, Zhejiang University of Medicine, Hangzhou, 310006 Zhejiang Province People’s Republic of China
| | - Siyi Shen
- grid.268505.c0000 0000 8744 8924Department of the Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053 Zhejiang Province People’s Republic of China ,grid.13402.340000 0004 1759 700XDepartment of Obstetrics and Gynecology, Affiliated Hangzhou First People’s Hospital, Zhejiang University of Medicine, Hangzhou, 310006 Zhejiang Province People’s Republic of China
| | - Qianying Chen
- grid.268505.c0000 0000 8744 8924Department of the Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053 Zhejiang Province People’s Republic of China ,grid.13402.340000 0004 1759 700XDepartment of Obstetrics and Gynecology, Affiliated Hangzhou First People’s Hospital, Zhejiang University of Medicine, Hangzhou, 310006 Zhejiang Province People’s Republic of China
| | - Jinyi Tong
- grid.268505.c0000 0000 8744 8924Department of the Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053 Zhejiang Province People’s Republic of China ,grid.13402.340000 0004 1759 700XDepartment of Obstetrics and Gynecology, Affiliated Hangzhou First People’s Hospital, Zhejiang University of Medicine, Hangzhou, 310006 Zhejiang Province People’s Republic of China
| |
Collapse
|
22
|
Azizidoost S, Ghaedrahmati F, Sheykhi-Sabzehpoush M, Uddin S, Ghafourian M, Mousavi Salehi A, Keivan M, Cheraghzadeh M, Nazeri Z, Farzaneh M, Khoshnam SE. The role of LncRNA MCM3AP-AS1 in human cancer. CLINICAL & TRANSLATIONAL ONCOLOGY : OFFICIAL PUBLICATION OF THE FEDERATION OF SPANISH ONCOLOGY SOCIETIES AND OF THE NATIONAL CANCER INSTITUTE OF MEXICO 2023; 25:33-47. [PMID: 36002764 DOI: 10.1007/s12094-022-02904-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 07/18/2022] [Indexed: 01/07/2023]
Abstract
Long noncoding RNAs (lncRNA) play pivotal roles in every level of gene and genome regulation. MCM3AP-AS1 is a lncRNA that has an oncogenic role in several kinds of cancers. Aberrant expression of MCM3AP-AS1 has been reported to be involved in the progression of diverse malignancies, including colorectal, cervical, prostate, lymphoma, lung, ovary, liver, bone, and breast cancers. It is generally believed that MCM3AP-AS1 expression is associated with cancer cell growth, proliferation, angiogenesis, and metastasis. MCM3AP-AS1 by targeting various signaling pathways and microRNAs (miRNAs) presents an important role in cancer pathogenesis. MCM3AP-AS1 as a competitive endogenous RNA has the ability to sponge miRNA, inhibit their expressions, and bind to different target mRNAs related to cancer development. Therefore, MCM3AP-AS1 by targeting several signaling pathways, including the FOX family, Wnt, EGF, and VEGF can be a potent target for cancer prediction and diagnosis. In this review, we will summarize the role of MCM3AP-AS1 in various human cancers.
Collapse
Affiliation(s)
- Shirin Azizidoost
- Atherosclerosis Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Farhoodeh Ghaedrahmati
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Shahab Uddin
- Translational Research Institute and Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Mehri Ghafourian
- Department of Immunology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Abdolah Mousavi Salehi
- Department of Immunology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mona Keivan
- Fertility and Infertility Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Maryam Cheraghzadeh
- Department of Biochemistry, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Zahra Nazeri
- Department of Biochemistry, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Maryam Farzaneh
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Seyed Esmaeil Khoshnam
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
23
|
Hayakawa S, Ohishi T, Oishi Y, Isemura M, Miyoshi N. Contribution of Non-Coding RNAs to Anticancer Effects of Dietary Polyphenols: Chlorogenic Acid, Curcumin, Epigallocatechin-3-Gallate, Genistein, Quercetin and Resveratrol. Antioxidants (Basel) 2022; 11:antiox11122352. [PMID: 36552560 PMCID: PMC9774417 DOI: 10.3390/antiox11122352] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/18/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
Growing evidence has been accumulated to show the anticancer effects of daily consumption of polyphenols. These dietary polyphenols include chlorogenic acid, curcumin, epigallocatechin-3-O-gallate, genistein, quercetin, and resveratrol. These polyphenols have similar chemical and biological properties in that they can act as antioxidants and exert the anticancer effects via cell signaling pathways involving their reactive oxygen species (ROS)-scavenging activity. These polyphenols may also act as pro-oxidants under certain conditions, especially at high concentrations. Epigenetic modifications, including dysregulation of noncoding RNAs (ncRNAs) such as microRNAs, long noncoding RNAs, and circular RNAs are now known to be involved in the anticancer effects of polyphenols. These polyphenols can modulate the expression/activity of the component molecules in ROS-scavenger-triggered anticancer pathways (RSTAPs) by increasing the expression of tumor-suppressive ncRNAs and decreasing the expression of oncogenic ncRNAs in general. Multiple ncRNAs are similarly modulated by multiple polyphenols. Many of the targets of ncRNAs affected by these polyphenols are components of RSTAPs. Therefore, ncRNA modulation may enhance the anticancer effects of polyphenols via RSTAPs in an additive or synergistic manner, although other mechanisms may be operating as well.
Collapse
Affiliation(s)
- Sumio Hayakawa
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, Nippon Medical School, Bunkyo-ku, Tokyo 113-8602, Japan
- Correspondence: (S.H.); (N.M.); Tel.: +81-3-3822-2131 (S.H.); +81-54-264-5531 (N.M.)
| | - Tomokazu Ohishi
- Institute of Microbial Chemistry (BIKAKEN), Numazu, Microbial Chemistry Research Foundation, Shizuoka 410-0301, Japan
- Institute of Microbial Chemistry (BIKAKEN), Laboratory of Oncology, Microbial Chemistry Research Foundation, Shinagawa-ku, Tokyo 141-0021, Japan
| | - Yumiko Oishi
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, Nippon Medical School, Bunkyo-ku, Tokyo 113-8602, Japan
| | - Mamoru Isemura
- Tea Science Center, University of Shizuoka, Shizuoka 422-8526, Japan
| | - Noriyuki Miyoshi
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
- Correspondence: (S.H.); (N.M.); Tel.: +81-3-3822-2131 (S.H.); +81-54-264-5531 (N.M.)
| |
Collapse
|
24
|
Gu H, Song J, Chen Y, Wang Y, Tan X, Zhao H. Inflammation-Related LncRNAs Signature for Prognosis and Immune Response Evaluation in Uterine Corpus Endometrial Carcinoma. Front Oncol 2022; 12:923641. [PMID: 35719911 PMCID: PMC9201290 DOI: 10.3389/fonc.2022.923641] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 05/05/2022] [Indexed: 11/16/2022] Open
Abstract
Backgrounds Uterine corpus endometrial carcinoma (UCEC) is one of the greatest threats on the female reproductive system. The aim of this study is to explore the inflammation-related LncRNA (IRLs) signature predicting the clinical outcomes and response of UCEC patients to immunotherapy and chemotherapy. Methods Consensus clustering analysis was employed to determine inflammation-related subtype. Cox regression methods were used to unearth potential prognostic IRLs and set up a risk model. The prognostic value of the prognostic model was calculated by the Kaplan-Meier method, receiver operating characteristic (ROC) curves, and univariate and multivariate analyses. Differential abundance of immune cell infiltration, expression levels of immunomodulators, the status of tumor mutation burden (TMB), the response to immune checkpoint inhibitors (ICIs), drug sensitivity, and functional enrichment in different risk groups were also explored. Finally, we used quantitative real-time PCR (qRT-PCR) to confirm the expression patterns of model IRLs in clinical specimens. Results All UCEC cases were divided into two clusters (C1 = 454) and (C2 = 57) which had significant differences in prognosis and immune status. Five hub IRLs were selected to develop an IRL prognostic signature (IRLPS) which had value in forecasting the clinical outcome of UCEC patients. Biological processes related to tumor and immune response were screened. Function enrichment algorithm showed tumor signaling pathways (ERBB signaling, TGF-β signaling, and Wnt signaling) were remarkably activated in high-risk group scores. In addition, the high-risk group had a higher infiltration level of M2 macrophages and lower TMB value, suggesting patients with high risk were prone to a immunosuppressive status. Furthermore, we determined several potential molecular drugs for UCEC. Conclusion We successfully identified a novel molecular subtype and inflammation-related prognostic model for UCEC. Our constructed risk signature can be employed to assess the survival of UCEC patients and offer a valuable reference for clinical treatment regimens.
Collapse
Affiliation(s)
- Hongmei Gu
- Department of Radiotherapy Oncology, Affiliated Hospital of Nantong University, Nantong, China
| | - Jiahang Song
- Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yizhang Chen
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yichun Wang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaofang Tan
- Affiliated Maternity and Child Health Care Hospital of Nantong University, Nantong, China
| | - Hongyu Zhao
- Department of Radiotherapy Oncology, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
25
|
Dong P, Wang F, Taheri M, Xiong Y, Ihira K, Kobayashi N, Konno Y, Yue J, Watari H. Long Non-Coding RNA TMPO-AS1 Promotes GLUT1-Mediated Glycolysis and Paclitaxel Resistance in Endometrial Cancer Cells by Interacting With miR-140 and miR-143. Front Oncol 2022; 12:912935. [PMID: 35712514 PMCID: PMC9195630 DOI: 10.3389/fonc.2022.912935] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 04/29/2022] [Indexed: 01/05/2023] Open
Abstract
Increased glycolysis in tumor cells is frequently associated with drug resistance. Overexpression of glucose transporter-1 (GLUT1) promotes the Warburg effect and mediates chemoresistance in various cancers. Aberrant GLUT1 expression is considered as an essential early step in the development of endometrial cancer (EC). However, its role in EC glycolysis and chemoresistance and the upstream mechanisms underlying GLUT1 overexpression, remain undefined. Here, we demonstrated that GLUT1 was highly expressed in EC tissues and cell lines and that high GLUT1 expression was associated with poor prognosis in EC patients. Both gain-of-function and loss-of-function studies showed that GLUT1 increased EC cell proliferation, invasion, and glycolysis, while also making them resistant to paclitaxel. The long non-coding RNA TMPO-AS1 was found to be overexpressed in EC tissues and to be negatively associated with EC patient outcomes. RNA-immunoprecipitation and luciferase reporter assays confirmed that TMPO-AS1 elevated GLUT1 expression by directly binding to two critical tumor suppressor microRNAs (miR-140 and miR-143). Downregulation of TMPO-AS1 remarkably reduced EC cell proliferation, invasion, glycolysis, and paclitaxel resistance in EC cells. This study established that dysregulation of the TMPO-AS1-miR-140/miR-143 axis contributes to glycolysis and drug resistance in EC cells by up-regulating GLUT1 expression. Thus, inhibiting TMPO-AS1 and GLUT1 may prove beneficial in overcoming glycolysis-induced paclitaxel resistance in patients with EC.
Collapse
Affiliation(s)
- Peixin Dong
- Department of Obstetrics and Gynecology, Hokkaido University School of Medicine, Hokkaido University, Sapporo, Japan
| | - Feng Wang
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Jiangsu, China
| | - Mohammad Taheri
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Institute of Human Genetics, Jena University Hospital, Jena, Germany
| | - Ying Xiong
- Department of Gynecology, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Kei Ihira
- Department of Obstetrics and Gynecology, Hokkaido University School of Medicine, Hokkaido University, Sapporo, Japan
| | - Noriko Kobayashi
- Department of Obstetrics and Gynecology, Hokkaido University School of Medicine, Hokkaido University, Sapporo, Japan
| | - Yosuke Konno
- Department of Obstetrics and Gynecology, Hokkaido University School of Medicine, Hokkaido University, Sapporo, Japan
| | - Junming Yue
- Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center, Memphis, TN, United States.,Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Hidemichi Watari
- Department of Obstetrics and Gynecology, Hokkaido University School of Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
26
|
Wang C, Kong F, Ma J, Miao J, Su P, Yang H, Li Q, Ma X. IGF2BP3 enhances the mRNA stability of E2F3 by interacting with LINC00958 to promote endometrial carcinoma progression. Cell Death Discov 2022; 8:279. [PMID: 35676262 PMCID: PMC9177600 DOI: 10.1038/s41420-022-01045-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 04/20/2022] [Accepted: 04/26/2022] [Indexed: 11/21/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) play important regulatory roles in a variety of pathological processes involving cancer. However, the exact molecular mechanisms of lncRNA regulation in endometrial carcinoma (EC) remain poorly defined. The aim of this study was to illustrate the mechanism of LINC00958 in regulating the function of IGF2BP3, an RNA binding protein involved in mRNA stability, and their clinical implications in EC. First, we investigated the clinical role of IGF2BP3 in EC and demonstrated its prognostic value. Loss-of-function and gain-of-function studies showed that IGF2BP3 promoted EC cell proliferation, migration and invasion. Then, we carried out RNA immunoprecipitation sequencing (RIP-seq) analysis, RNA pulldown and immunofluorescence-RNA fluorescence in situ hybridization to identify LINC00958 that interacted with IGF2BP3 in the cytoplasm of EC cells. Rescue experiments indicated that knockdown of LINC00958 partially offset the EC cell progression mediated by IGF2BP3. After that, RNA sequencing was used to screen out the downstream genes of IGF2BP3 and LINC00958. The results revealed that IGF2BP3 upregulated E2F3 expression by interacting with LINC00958. Furthermore, RNA stability assays demonstrated that silencing LINC00958 partially rescued the IGF2BP3-mediated promoting effect on the mRNA stability of E2F3. Collectively, this study suggests that LINC00958, as an oncogene, assists IGF2BP3 in stabilizing E2F3 mRNA and ultimately promotes EC progression, providing a promising therapeutic target for patients with EC.
Collapse
Affiliation(s)
- Cuicui Wang
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning Province, 110000, PR China
- Key Laboratory of Gynecological Oncology of Liaoning Province, Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning Province, 110000, PR China
- Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning Province, 110000, PR China
| | - Fanfei Kong
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning Province, 110000, PR China
- Key Laboratory of Gynecological Oncology of Liaoning Province, Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning Province, 110000, PR China
- Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning Province, 110000, PR China
| | - Jian Ma
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning Province, 110000, PR China
- Key Laboratory of Gynecological Oncology of Liaoning Province, Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning Province, 110000, PR China
- Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning Province, 110000, PR China
| | - Jianing Miao
- Medical Research Center, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning Province, 110000, PR China
| | - Peng Su
- Medical Research Center, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning Province, 110000, PR China
| | - Hui Yang
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning Province, 110000, PR China
- Key Laboratory of Gynecological Oncology of Liaoning Province, Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning Province, 110000, PR China
- Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning Province, 110000, PR China
| | - Qing Li
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning Province, 110000, PR China
- Key Laboratory of Gynecological Oncology of Liaoning Province, Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning Province, 110000, PR China
- Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning Province, 110000, PR China
| | - Xiaoxin Ma
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning Province, 110000, PR China.
- Key Laboratory of Gynecological Oncology of Liaoning Province, Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning Province, 110000, PR China.
- Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning Province, 110000, PR China.
| |
Collapse
|
27
|
Liu J, Cui G, Ye J, Wang Y, Wang C, Bai J. Comprehensive Analysis of the Prognostic Signature of Mutation-Derived Genome Instability-Related lncRNAs for Patients With Endometrial Cancer. Front Cell Dev Biol 2022; 10:753957. [PMID: 35433686 PMCID: PMC9012522 DOI: 10.3389/fcell.2022.753957] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 02/21/2022] [Indexed: 01/18/2023] Open
Abstract
Background: Emerging evidence shows that genome instability-related long non-coding RNAs (lncRNAs) contribute to tumor–cell proliferation, differentiation, and metastasis. However, the biological functions and molecular mechanisms of genome instability-related lncRNAs in endometrial cancer (EC) are underexplored.Methods: EC RNA sequencing and corresponding clinical data obtained from The Cancer Genome Atlas (TCGA) database were used to screen prognostic lncRNAs associated with genomic instability via univariate and multivariate Cox regression analysis. The genomic instability-related lncRNA signature (GILncSig) was developed to assess the prognostic risk of high- and low-risk groups. The prediction performance was analyzed using receiver operating characteristic (ROC) curves. The immune status and mutational loading of different risk groups were compared. The Genomics of Drug Sensitivity in Cancer (GDSC) and the CellMiner database were used to elucidate the relationship between the correlation of prognostic lncRNAs and drug sensitivity. Finally, we used quantitative real-time PCR (qRT-PCR) to detect the expression levels of genomic instability-related lncRNAs in clinical samples.Results: GILncSig was built using five lncRNAs (AC007389.3, PIK3CD-AS2, LINC01224, AC129507.4, and GLIS3-AS1) associated with genomic instability, and their expression levels were verified using qRT-PCR. Further analysis revealed that risk score was negatively correlated with prognosis, and the ROC curve demonstrated the higher accuracy of GILncSig. Patients with a lower risk score had higher immune cell infiltration, a higher immune score, lower tumor purity, higher immunophenoscores (IPSs), lower mismatch repair protein expression, higher microsatellite instability (MSI), and a higher tumor mutation burden (TMB). Furthermore, the level of expression of prognostic lncRNAs was significantly related to the sensitivity of cancer cells to anti-tumor drugs.Conclusion: A novel signature composed of five prognostic lncRNAs associated with genome instability can be used to predict prognosis, influence immune status, and chemotherapeutic drug sensitivity in EC.
Collapse
Affiliation(s)
- Jinhui Liu
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Guoliang Cui
- Department of Gastroenterology, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Jun Ye
- The First Clinical Medical College of Nanjing Medical University, Nanjing, China
| | - Yutong Wang
- The First Clinical Medical College of Nanjing Medical University, Nanjing, China
| | - Can Wang
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jianling Bai
- Department of Biostatistics, School of Public Heath, Nanjing Medical University, Nanjing, China
- *Correspondence: Jianling Bai,
| |
Collapse
|
28
|
Mou J, Wang B, Liu Y, Zhao F, Wu Y, Xu W, Zeng D, Zhang Q, Yuan C. FER1L4:A long non-coding RNA with multiple roles in the occurrence and development of tumors. Curr Pharm Des 2022; 28:1334-1341. [PMID: 35331091 DOI: 10.2174/1381612828666220324141016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 02/04/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND FER-1 family member 4 (FER1L4), a 6.7 kb lncRNA located at 20q11.22, plays an important biological function in a variety of tumor diseases. The purpose of this review is to clarify the pathophysiological mechanism and potential biological function of FER1L4 in different tumors. METHODS By searching the relevant literature of PubMed, the specific pathophysiological mechanism of FER1L4 in different tumors was summarized. RESULTS LncRNA FER1L4 is one of the key factors in tumorigenesis and is abnormally down-regulated in many tumors, including osteosarcoma, lung cancer, laryngeal squamous cell carcinoma, laryngeal cancer, colorectal cancer, ovarian cancer, prostate cancer, esophageal cancer, gastric cancer, endometrial cancer, osteoarthritis, rheumatoid arthritis and so on. However, FER1L4 is downregulated in breast cancer, glioma, oral squamous cell carcinoma, renal clear cell carcinoma and periodontitis, and plays a protective role in orthodontic teeth. In addition, as a tumor suppressor gene or oncogene, FER1L4 affects tumor proliferation, invasion, migration and apoptosis. Conclusion:LncRNA FER1L4 has a good application prospect in the treatment and diagnosis of many kinds of tumors.
Collapse
Affiliation(s)
- Jie Mou
- Medical College,China Three Gorges University, Yichang 443002, China
| | - Bei Wang
- Medical College,China Three Gorges University, Yichang 443002, China
| | - Yuling Liu
- Medical College,China Three Gorges University, Yichang 443002, China
| | - Fengnan Zhao
- Medical College,China Three Gorges University, Yichang 443002, China
| | - Yinxin Wu
- Medical College,China Three Gorges University, Yichang 443002, China
| | - Wen Xu
- Medical College,China Three Gorges University, Yichang 443002, China
| | - Deyuan Zeng
- Medical College,China Three Gorges University, Yichang 443002, China
| | - Qi Zhang
- Medical College,China Three Gorges University, Yichang 443002, China
| | - Chengfu Yuan
- Medical College,China Three Gorges University, Yichang 443002, China
| |
Collapse
|
29
|
Liu H, Cheng Y. Identification of autophagy-related long non-coding RNAs in endometrial cancer via comprehensive bioinformatics analysis. BMC Womens Health 2022; 22:85. [PMID: 35321716 PMCID: PMC8943986 DOI: 10.1186/s12905-022-01667-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 03/10/2022] [Indexed: 01/20/2023] Open
Abstract
Background Endometrial cancer is a common gynaecological malignancy with an increasing incidence. It is of great importance and value to uncover its effective and accurate prognostic indicators of disease outcomes. Methods The sequencing data and clinical information of endometrial cancer patients in the TCGA database were downloaded, and autophagy-related genes in the human autophagy database were downloaded. R software was used to perform a Pearson correlation analysis on autophagy-related genes and long non-coding RNAs (lncRNAs) to screen autophagy-related lncRNAs. Next, univariate and multivariate Cox regression analyses were performed to select autophagy-related lncRNAs and construct the prognostic model. Finally, the accuracy of the prognostic prediction of the model was evaluated, the lncRNA–mRNA network was constructed and visualized by Cytoscape, and the gene expression profile of endometrial cancer patients was analysed by GSEA. Results A total of 10 autophagy-related lncRNAs were screened to construct the prognostic model. The risk factors were AC084117.1, SOS1-IT1, AC019080.5, FIRRE and MCCC1-AS, and the protective factors were AC034236.2, POC1B-AS1, AC137630.1, AC083799.1 and AL133243.2. This prognostic model could independently predict the prognosis of endometrial cancer patients and had better predictive performance than that of using age and tumour grade. In addition, after classifying patients as high-risk or low-risk based on the prognostic model, we found that the enrichment of the JAK-STAT and MAPK pathways was significantly higher in the high-risk group than that in the low-risk group. Conclusions The 10 autophagy-related lncRNAs are potential prognostic biomarkers. Compared with using age and tumour grade, this prognostic model is more predictive for the prognosis of endometrial cancer patients.
Collapse
Affiliation(s)
- Heng Liu
- Department of Obstetrics and Gynecology, Huangpi District Renmin Hospital of Jianghan University, Wuhan, 430300, China
| | - Yanxiang Cheng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
30
|
Prognostic Implications of MALAT1 and BACH1 Expression and Their Correlation with CTCs and Mo-MDSCs in Triple Negative Breast Cancer and Surgical Management Options. Int J Breast Cancer 2022; 2022:8096764. [PMID: 35096427 PMCID: PMC8791720 DOI: 10.1155/2022/8096764] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/28/2021] [Indexed: 02/06/2023] Open
Abstract
Background. Triple negative breast cancer (TNBC) is a biologically separate entity of breast cancer that cannot get benefits from targeted or endocrine therapy. Objective. To assess the expression of MALAT1 and BACH1, as well as monocyte-myeloid-derived suppressor cell (Mo-MDSC) levels and circulating tumor cell (CTC) count in TNBC to correlate these markers with the clinic-pathological criteria of TNCB patients and to evaluate their roles as predictive markers for selection of the patients that can be operated by oncoplastic conserving breast surgery. Methods. Eighty-eight TNBC were managed by modified doughnut breast oncoplastic surgery in early stages and by modified radical mastectomy for patients with late stages unsuitable for breast-conserving. All were examined for MALAT1 and BACH1 expression by immunohistochemistry and RT-PCR as well as Mo-MDSC levels and CTCs. Results. MALAT1 and BACH1 expressions are correlated with the larger size, lymph node, distance metastasis, and TNM staging (
).
and high MO-MDSCs were significantly more in TNBC with MALAT1 and BACH1 overexpression. The survival study proved that DFS for patients with both positive expression of MALAT1 and BACH1 was shorter than that of one positive expression, and both negative expression
,
, and high Mo-MDSCs are associated with poor outcomes. No significant difference between modified round block and modified radical mastectomy techniques as regards recurrence. However, all postoperative management outcomes were significantly better in patients operated by oncoplastic conserving breast surgery. Conclusion. BACH1 and MALAT1 expressions are significantly upregulated in TNBC. They are correlated with CTCs and Mo-MDCs, and all are associated with poor outcomes. Not all TNBC patients have a bad prognosis, patients negative for one of MALAT1 and BACH1 or both, have a slightly good prognosis, and so can be managed by breast oncoplastic conserving surgery.
Collapse
|
31
|
Role of Precision Oncology in Type II Endometrial and Prostate Cancers in the African Population: Global Cancer Genomics Disparities. Int J Mol Sci 2022; 23:ijms23020628. [PMID: 35054814 PMCID: PMC8776204 DOI: 10.3390/ijms23020628] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/29/2021] [Accepted: 12/30/2021] [Indexed: 02/05/2023] Open
Abstract
Precision oncology can be defined as molecular profiling of tumors to identify targetable alterations. Emerging research reports the high mortality rates associated with type II endometrial cancer in black women and with prostate cancer in men of African ancestry. The lack of adequate genetic reference information from the African genome is one of the major obstacles in exploring the benefits of precision oncology in the African context. Whilst external factors such as the geography, environment, health-care access and socio-economic status may contribute greatly towards the disparities observed in type II endometrial and prostate cancers in black populations compared to Caucasians, the contribution of African ancestry to the contribution of genetics to the etiology of these cancers cannot be ignored. Non-coding RNAs (ncRNAs) continue to emerge as important regulators of gene expression and the key molecular pathways involved in tumorigenesis. Particular attention is focused on activated/repressed genes and associated pathways, while the redundant pathways (pathways that have the same outcome or activate the same downstream effectors) are often ignored. However, comprehensive evidence to understand the relationship between type II endometrial cancer, prostate cancer and African ancestry remains poorly understood. The sub-Saharan African (SSA) region has both the highest incidence and mortality of both type II endometrial and prostate cancers. Understanding how the entire transcriptomic landscape of these two reproductive cancers is regulated by ncRNAs in an African cohort may help elucidate the relationship between race and pathological disparities of these two diseases. This review focuses on global disparities in medicine, PCa and ECa. The role of precision oncology in PCa and ECa in the African population will also be discussed.
Collapse
|
32
|
Yu K, Wang Y. The Advance and Correlation of KRAS Mutation With the Fertility-Preservation Treatment of Endometrial Cancer in the Background of Molecular Classification Application. Pathol Oncol Res 2021; 27:1609906. [PMID: 34975345 PMCID: PMC8716400 DOI: 10.3389/pore.2021.1609906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 11/10/2021] [Indexed: 11/13/2022]
Abstract
The annually increasing incidence of endometrial cancer in younger women has created a growing demand for fertility preservation. However, the diverse therapeutic efficacy among patients under the same histological subtype and the same tumor grade suggests the potential interference of the innate molecular characteristics. The molecular classification has now been applied in clinical practice and might help to stratify the endometrial cancer patients and individualize the therapy, but the candidates for the fertility-spared treatment are most likely to be subdivided in the subgroup lacking the specific signature. KRAS mutation has been linked to the malignant transition of the endometrium, while its role in molecular classification and fertility preservation is vague. Here, we mainly review the advance of molecular classification and the role of KRAS in endometrial cancer, as well as their correlation with fertility-preservation treatment.
Collapse
|
33
|
Wang Z, Yang X, Gui S, Yang F, Cao Z, Cheng R, Xia X, Li C. The Roles and Mechanisms of lncRNAs in Liver Fibrosis. Front Pharmacol 2021; 12:779606. [PMID: 34899344 PMCID: PMC8652206 DOI: 10.3389/fphar.2021.779606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 11/02/2021] [Indexed: 12/12/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) can potentially regulate all aspects of cellular activity including differentiation and development, metabolism, proliferation, apoptosis, and activation, and benefited from advances in transcriptomic and genomic research techniques and database management technologies, its functions and mechanisms in physiological and pathological states have been widely reported. Liver fibrosis is typically characterized by a reversible wound healing response, often accompanied by an excessive accumulation of extracellular matrix. In recent years, a range of lncRNAs have been investigated and found to be involved in several cellular-level regulatory processes as competing endogenous RNAs (ceRNAs) that play an important role in the development of liver fibrosis. A variety of lncRNAs have also been shown to contribute to the altered cell cycle, proliferation profile associated with the accelerated development of liver fibrosis. This review aims to discuss the functions and mechanisms of lncRNAs in the development and regression of liver fibrosis, to explore the major lncRNAs involved in the signaling pathways regulating liver fibrosis, to elucidate the mechanisms mediated by lncRNA dysregulation and to provide new diagnostic and therapeutic strategies for liver fibrosis.
Collapse
Affiliation(s)
- Zhifa Wang
- Department of Rehabilitation Medicine, Chaohu Hospital of Anhui Medical University, Hefei Anhui, China
| | - Xiaoke Yang
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Siyu Gui
- Department of Ophthalmology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Fan Yang
- The First Clinical Medical College, Anhui Medical University, Hefei, China
| | - Zhuo Cao
- The First Clinical Medical College, Anhui Medical University, Hefei, China
| | - Rong Cheng
- Department of Gastroenterology, Anhui Provincial Children's Hospital, Hefei, China
| | - Xiaowei Xia
- Department of Gastroenterology, Anhui Provincial Children's Hospital, Hefei, China
| | - Chuanying Li
- Department of Gastroenterology, Anhui Provincial Children's Hospital, Hefei, China
| |
Collapse
|
34
|
Naz F, Tariq I, Ali S, Somaida A, Preis E, Bakowsky U. The Role of Long Non-Coding RNAs (lncRNAs) in Female Oriented Cancers. Cancers (Basel) 2021; 13:6102. [PMID: 34885213 PMCID: PMC8656502 DOI: 10.3390/cancers13236102] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/14/2021] [Accepted: 11/30/2021] [Indexed: 12/15/2022] Open
Abstract
Recent advances in molecular biology have discovered the mysterious role of long non-coding RNAs (lncRNAs) as potential biomarkers for cancer diagnosis and targets for advanced cancer therapy. Studies have shown that lncRNAs take part in the incidence and development of cancers in humans. However, previously they were considered as mere RNA noise or transcription byproducts lacking any biological function. In this article, we present a summary of the progress on ascertaining the biological functions of five lncRNAs (HOTAIR, NEAT1, H19, MALAT1, and MEG3) in female-oriented cancers, including breast and gynecological cancers, with the perspective of carcinogenesis, cancer proliferation, and metastasis. We provide the current state of knowledge from the past five years of the literature to discuss the clinical importance of such lncRNAs as therapeutic targets or early diagnostic biomarkers. We reviewed the consequences, either oncogenic or tumor-suppressing features, of their aberrant expression in female-oriented cancers. We tried to explain the established mechanism by which they regulate cancer proliferation and metastasis by competing with miRNAs and other mechanisms involved via regulating genes and signaling pathways. In addition, we revealed the association between stated lncRNAs and chemo-resistance or radio-resistance and their potential clinical applications and future perspectives.
Collapse
Affiliation(s)
- Faiza Naz
- Punjab University College of Pharmacy, Allama Iqbal Campus, University of the Punjab, Lahore 54000, Pakistan;
| | - Imran Tariq
- Punjab University College of Pharmacy, Allama Iqbal Campus, University of the Punjab, Lahore 54000, Pakistan;
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany or (S.A.); (A.S.); (E.P.)
| | - Sajid Ali
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany or (S.A.); (A.S.); (E.P.)
- Angström Laboratory, Department of Chemistry, Uppsala University, 75123 Uppsala, Sweden
| | - Ahmed Somaida
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany or (S.A.); (A.S.); (E.P.)
| | - Eduard Preis
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany or (S.A.); (A.S.); (E.P.)
| | - Udo Bakowsky
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany or (S.A.); (A.S.); (E.P.)
| |
Collapse
|
35
|
Bone morphogenetic protein 9 enhances osteogenic and angiogenic responses of human amniotic mesenchymal stem cells cocultured with umbilical vein endothelial cells through the PI3K/AKT/m-TOR signaling pathway. Aging (Albany NY) 2021; 13:24829-24849. [PMID: 34837694 PMCID: PMC8660623 DOI: 10.18632/aging.203718] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 10/25/2021] [Indexed: 01/06/2023]
Abstract
Background: Neovascularization plays an essential part in bone fracture and defect healing, constructing tissue engineered bone that targets bone regeneration. Bone morphogenetic protein 9 (BMP9) is a regular indicator that potentiates osteogenic and angiogenic differentiation of MSCs. Objectives: To investigate the effects of BMP9 on osteogenesis and angiogenesis of human amniotic mesenchymal stem cells (hAMSCs) cocultured with human umbilical vein endothelial cells (HUVECs) and determine the possible underlying molecular mechanism. Results: The isolated hAMSCs expressed surface markers of MSCs. hAMSCs cocultured with HUVECs enhance osteogenic differentiation and upregulate the expression of angiogenic factors. BMP9 not only potentiates angiogenic signaling of hAMSCs cocultured with HUVECs also increases ectopic bone formation and subcutaneous vessel invasion. Mechanically, the coupling effect between osteogenesis and angiogenesis induced by BMP9 was activated by the BMP/Smad and PI3K/AKT/m-TOR signaling pathways. Conclusions: BMP9-enhanced osteoblastic and angiogenic differentiation in cocultivation with hAMSCs and HUVECs in vitro and in vivo also provide a chance to harness the BMP9-regulated coordinated effect between osteogenic and angiogenic pathways through BMP/Smad and PI3K/AKT/m-TOR signalings. Materials and Methods: The ALP and Alizarin Red S staining assay to determine the effects of osteoblastic differentiation. RT-qPCR and western blot was measured the expression of angiogenesis-related factors. Ectopic bone formation was established and retrieved bony masses were subjected to histochemical staining. The angiogenesis ability and vessel invasion were subsequently determined by immunofluorescence staining. Molecular mechanisms such as the BMP/Smad and PI3K/AKT/m-TOR signaling pathways were detected by ELISA and western blot analysis.
Collapse
|
36
|
Ghafouri-Fard S, Fathi M, Zhai T, Taheri M, Dong P. LncRNAs: Novel Biomarkers for Pancreatic Cancer. Biomolecules 2021; 11:1665. [PMID: 34827663 PMCID: PMC8615627 DOI: 10.3390/biom11111665] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/31/2021] [Accepted: 11/09/2021] [Indexed: 12/31/2022] Open
Abstract
Pancreatic cancer is one of the most deadly neoplasms and the seventh major cause of cancer-related deaths among both males and females. This cancer has a poor prognosis due to the lack of appropriate methods for early detection of cancer. Long non-coding RNAs (lncRNAs) have been recently found to influence the progression and initiation of pancreatic cancer. MACC1-AS1, LINC00976, LINC00462, LINC01559, HOXA-AS2, LINC00152, TP73-AS1, XIST, SNHG12, LUCAT1, and UCA1 are among the oncogenic lncRNAs in pancreatic cancer. On the other hand, LINC01111, LINC01963, DGCR5, MEG3, GAS5, and LINC00261 are among tumor suppressor lncRNAs in this tissue. In the current review, we summarize the roles of these two classes of lncRNAs in pancreatic cancer and discuss their potential as attractive diagnostic and prognostic biomarkers for pancreatic cancer. We also identified that the low expression of MEG3, LINC01963, and LINC00261 and the high expression of MACC1-AS1, LINC00462, LINC01559, and UCA1 were significantly correlated with worse survival in pancreatic cancer patients. Further research on these lncRNAs will provide new clues that could potentially improve the early diagnosis, prognostic prediction, and personalized treatments of patients with pancreatic cancer.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 1983535511, Iran;
| | - Mohadeseh Fathi
- Men’s Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran 1983535511, Iran;
| | - Tianyue Zhai
- Department of Obstetrics and Gynecology, Hokkaido University School of Medicine, Hokkaido University, N15, W7, Kita-ku, Sapporo 0608638, Japan;
| | - Mohammad Taheri
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran 1983535511, Iran
| | - Peixin Dong
- Department of Obstetrics and Gynecology, Hokkaido University School of Medicine, Hokkaido University, N15, W7, Kita-ku, Sapporo 0608638, Japan;
| |
Collapse
|
37
|
Yu X, Zheng Q, Zhang Q, Zhang S, He Y, Guo W. MCM3AP-AS1: An Indispensable Cancer-Related LncRNA. Front Cell Dev Biol 2021; 9:752718. [PMID: 34692706 PMCID: PMC8529123 DOI: 10.3389/fcell.2021.752718] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 09/22/2021] [Indexed: 12/24/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are a class of RNA molecules with transcripts longer than 200 nucleotides that have no protein-coding ability. MCM3AP-AS1, a novel lncRNA, is aberrantly expressed in human cancers. It is significantly associated with many clinical characteristics, such as tumor size, tumor-node-metastasis (TNM) stage, and pathological grade. Additionally, it considerably promotes or suppresses tumor progression by controlling the biological functions of cells. MCM3AP-AS1 is a promising biomarker for cancer diagnosis, prognosis evaluation, and treatment. In this review, we briefly summarized the published studies on the expression, biological function, and regulatory mechanisms of MCM3AP-AS1. We also discussed the clinical applications of MCM3AP-AS1 as a biomarker.
Collapse
Affiliation(s)
- Xiao Yu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China.,Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, China
| | - Qingyuan Zheng
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China.,Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, China
| | - Qiyao Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China.,Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, China
| | - Shuijun Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China.,Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, China
| | - Yuting He
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China.,Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, China
| | - Wenzhi Guo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China.,Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, China
| |
Collapse
|
38
|
Wang J, Lei C, Shi P, Teng H, Lu L, Guo H, Wang X. LncRNA DCST1-AS1 Promotes Endometrial Cancer Progression by Modulating the MiR-665/HOXB5 and MiR-873-5p/CADM1 Pathways. Front Oncol 2021; 11:714652. [PMID: 34497766 PMCID: PMC8420713 DOI: 10.3389/fonc.2021.714652] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 07/22/2021] [Indexed: 11/13/2022] Open
Abstract
Dysregulation of long noncoding RNA (lncRNA) is implicated in the initiation and progression of various tumors, including endometrial cancer (EC). However, the mechanism of lncRNAs in EC tumorigenesis and progression remains largely unexplored. In this work, we identified a novel lncRNA DC-STAMP domain-containing 1-antisense 1 (DCST1-AS1), which is highly upregulated and correlated with poor survival in EC patients. Overexpression of DCST1-AS1 significantly enhanced EC cell proliferation, colony formation, migration, and invasion in vitro and promoted tumor growth of EC in vivo. Mechanistically, DCST1-AS1 mediated EC progression by inducing the expression of homeobox B5 (HOXB5) and cell adhesion molecule 1 (CADM1), via acting as a competing endogenous RNA for microRNA-665 (miR-665) and microRNA-873-5p (miR-873-5p), respectively. In addition, we found that the expression of miR-665 and miR-873-5p was significantly downregulated, while HOXB5 and CADM1 expression levels were increased in EC tissues. Taken together, our findings support the important role of DCST1-AS1 in EC progression, and DCST1-AS1 may be used as a prognostic biomarker as well as a potential therapeutic target for EC.
Collapse
Affiliation(s)
- Jie Wang
- Gynaecology Clinic, People's Hospital of Rizhao, Rizhao, China
| | - Changjiang Lei
- Department of Oncology, the Second Affiliated Hospital of Jianghan University, Wuhan, China
| | - Pingping Shi
- No. 2 Department of Gynaecology, People's Hospital of Rizhao, Rizhao, China
| | - Huaixiang Teng
- Reproductive Medicine Center, Maternal and Child Health Hospital of Rizhao, Rizhao, China
| | - Lixiang Lu
- No. 2 Department of Gynaecology, Baiqiuen Hospital of Rizhao, Rizhao, China
| | - Hailong Guo
- No. 2 Department of Gynaecology, People's Hospital of Rizhao, Rizhao, China
| | - Xiuqin Wang
- No. 2 Department of Gynaecology, People's Hospital of Rizhao, Rizhao, China
| |
Collapse
|
39
|
Ma X, Zhang H, Li Q, Schiferle E, Qin Y, Xiao S, Li T. FOXM1 Promotes Head and Neck Squamous Cell Carcinoma via Activation of the Linc-ROR/LMO4/AKT/PI3K Axis. Front Oncol 2021; 11:658712. [PMID: 34447693 PMCID: PMC8383294 DOI: 10.3389/fonc.2021.658712] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 06/25/2021] [Indexed: 01/15/2023] Open
Abstract
Background/Aim Previous literature has implicated the sustained expression of FOXM1 in numerous human cancers, including head and neck squamous cell carcinoma (HNSCC). The current study aimed to elucidate the function and regulatory mechanism of FOXM1 in HNSCC. Methods Western blot and RT-qPCR methods were performed to evaluate the expression of Linc-ROR, FOXM1, and LMO4 in HNSCC tissue samples and cells. The binding between FOXM1 and Linc-ROR was analyzed using a ChIP assay. Various cellular processes including proliferation and invasion abilities were assessed following alteration of FOXM1, Linc-ROR and LMO4 expression in HNSCC cells. Xenograft mouse models were established to validate the in vitro findings. Results Linc-ROR and FOXM1 were highly expressed in HNSCC tissues and cells. FOXM1 operated as a potential transcription factor to bind to the promoter region of Linc-ROR. Linc-ROR and FOXM1 exhibited high expression levels in both the clinical tissue samples as well as the HNSCC cells, which could facilitate the proliferation and invasion of HNSCC cells. Linc-ROR upregulated the expression of LMO4 and promoted activation of the AKT/PI3K signaling pathway, thus stimulating the proliferation and invasion of HNSCC cells. Silencing of Linc-ROR brought about a contrasting effect relative to that seen when FOXM1 was overexpressed in HNSCC in vivo. Conclusions Overall, FOXM1 promoted the expression of Linc-ROR and induced the activation of the LMO4-dependent AKT/PI3K signaling pathway, thus facilitating the occurrence and development of HNSCC.
Collapse
Affiliation(s)
- Xiao Ma
- Department of Head and Neck Surgery, Perking University Cancer Hospital and Institute, Beijing, China
| | - Hong Zhang
- Department of Pathology, Peking University First Hospital, Beijing, China
| | - Qian Li
- Department of Radiology, Massachusetts General Hospital, Boston, MA, United States
| | - Erik Schiferle
- Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Yao Qin
- Department of Otorhinolaryngology-Head and Neck Surgery, Peking University First Hospital, Beijing, China
| | - Suifang Xiao
- Department of Otorhinolaryngology-Head and Neck Surgery, Peking University First Hospital, Beijing, China
| | - Tiancheng Li
- Department of Otorhinolaryngology-Head and Neck Surgery, Peking University First Hospital, Beijing, China
| |
Collapse
|
40
|
lncRNA OIP5-AS1 Suppresses Cell Proliferation and Invasion of Endometrial Cancer by Regulating PTEN/AKT via Sponging miR-200c-3p. J Immunol Res 2021; 2021:4861749. [PMID: 34368370 PMCID: PMC8342140 DOI: 10.1155/2021/4861749] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 07/05/2021] [Indexed: 11/17/2022] Open
Abstract
Background Endometrial carcinoma (EC) is one of the major gynecologic malignancy cancers affecting females with dismal prognosis and high mortality around the world. Numerous studies have proven that an aberrant level of long noncoding RNAs is present in many endometrial cancer patients, while the underlying molecular mechanism remains unclear. Method The expression levels of lncRNA OIP5-AS1, miR200c-3p, and PTEN were measured by a quantitative real-time polymerase chain reaction in endometrial cancer tissue and endometrial cancer cells. CCK8 assay, wound-healing assay, and cell colony formation were applied to evaluate cell proliferation, cell migration, and cell colony formation ability. Cell cycle and cell apoptosis were detected by flow cytometry. The interactions between OIP5-AS1, miR200c-3p, and PTEN were explored by luciferase activity. Results In the present study, we demonstrated that long noncoding RNA OIP5-AS1 was significantly reduced in EC tissue compared with normal tissue. The lower expression level of OIP5-AS1 was also confirmed in four kinds of EC cell lines compared with the normal endometrial cell line. Gain- and loss-of-function of experiments indicated that upregulation of OIP5-AS1 could inhibit the proliferation, migration, and invasion of EC cells in vitro. Meanwhile, overexpression of OIP5-AS1 could also suppress the growth of tumor in the xenograft model. Moreover, further study revealed that miR-200c-3p could bind to OIP5-AS1, and the loss function of miR-200c-3p could reverse the elevated OIP5-AS1's inhibitory effect on the progression of EC. Furthermore, we found that downregulation of miR-200c-3p was inversely correlated with PTEN expression in EC cells. Reduced OIP5-AS1 could lead to the accumulation of miR-200c-3p, which could induce the upregulation of PTEN indirectly. Conclusion Our study demonstrated a novel molecular mechanism that lncRNA OIP5-AS1 could modulate the progression of EC by combining competitively with miR-200c-3p to control the PTEN/AKT pathway in EC cells, which might supply important information for developing novel therapeutic strategies for EC patients.
Collapse
|
41
|
Dong P, Xiong Y, Konno Y, Ihira K, Kobayashi N, Yue J, Watari H. Long non-coding RNA DLEU2 drives EMT and glycolysis in endometrial cancer through HK2 by competitively binding with miR-455 and by modulating the EZH2/miR-181a pathway. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:216. [PMID: 34174908 PMCID: PMC8235565 DOI: 10.1186/s13046-021-02018-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 06/14/2021] [Indexed: 01/27/2023]
Abstract
Background Epithelial-to-mesenchymal transition (EMT) and aerobic glycolysis are fundamental processes implicated in cancer metastasis. Although increasing evidence demonstrates an association between EMT induction and enhanced aerobic glycolysis in human cancer, the mechanisms linking these two conditions in endometrial cancer (EC) cells remain poorly defined. Methods We characterized the role and molecular mechanism of the glycolytic enzyme hexokinase 2 (HK2) in mediating EMT and glycolysis and investigated how long noncoding RNA DLEU2 contributes to the stimulation of EMT and glycolysis via upregulation of HK2 expression. Results HK2 was highly expressed in EC tissues, and its expression was associated with poor overall survival. Overexpression of HK2 effectively promoted EMT phenotypes and enhanced aerobic glycolysis in EC cells via activating FAK and its downstream ERK1/2 signaling. Moreover, microRNA-455 (miR-455) served as a tumor suppressor by directly interacting with HK2 mRNA and inhibiting its expression. Furthermore, DLEU2 displayed a significantly higher expression in EC tissues, and increased DLEU2 expression was correlated with worse overall survival. DLEU2 acted as an upstream activator for HK2-induced EMT and glycolysis in EC cells through two distinct mechanisms: (i) DLEU2 induced HK2 expression by competitively binding with miR-455, and (ii) DLEU2 also interacted with EZH2 to silence a direct inhibitor of HK2, miR-181a. Conclusions This study identified DLEU2 as an upstream activator of HK2-driven EMT and glycolysis in EC cells and provided significant mechanistic insights for the potential treatment of EC. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-021-02018-1.
Collapse
Affiliation(s)
- Peixin Dong
- Department of Obstetrics and Gynecology, Hokkaido University School of Medicine, Hokkaido University, Sapporo, 0608638, Japan.
| | - Ying Xiong
- Department of Gynecology, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Yosuke Konno
- Department of Obstetrics and Gynecology, Hokkaido University School of Medicine, Hokkaido University, Sapporo, 0608638, Japan.
| | - Kei Ihira
- Department of Obstetrics and Gynecology, Hokkaido University School of Medicine, Hokkaido University, Sapporo, 0608638, Japan
| | - Noriko Kobayashi
- Department of Obstetrics and Gynecology, Hokkaido University School of Medicine, Hokkaido University, Sapporo, 0608638, Japan
| | - Junming Yue
- Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center, Memphis, TN, 38163, USA.,Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Hidemichi Watari
- Department of Obstetrics and Gynecology, Hokkaido University School of Medicine, Hokkaido University, Sapporo, 0608638, Japan
| |
Collapse
|
42
|
Cong R, Kong F, Ma J, Li Q, Yang H, Ma X. The PVT1/miR-612/CENP-H/CDK1 axis promotes malignant progression of advanced endometrial cancer. Am J Cancer Res 2021; 11:1480-1502. [PMID: 33948369 PMCID: PMC8085881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 02/24/2021] [Indexed: 06/12/2023] Open
Abstract
Our previous study introduced the oncogenic role of the long non-coding RNA plasmacytoma variant translocation 1 (PVT1) in endometrial cancer (EC). In this study, we aimed to construct a PVT1-centered competing endogenous RNA (ceRNA) network to outline a regulatory axis that might promote the malignant progression of advanced EC. Raw Uterine Corpus Endometrial Carcinoma (UCEC) datasets were collected from The Cancer Genome Atlas (TCGA) database and used for construction of the PVT1-centered ceRNA network. The ceRNA binding sites were established using dual-luciferase assays. FISH assays displayed the co-location of PVT1 and miR-612 in EC cells. Immunohistochemistry, in situ hybridization, qRT-PCR, and western blots were used to assess the expression of miR-612 and CENP-H in EC tissues, and their functions on biological behaviours were examined by a series of in vitro and in vivo assays. Molecule interactions were illustrated by co-transfection assays. The bioinformatics analysis showed that PVT1/miR-612/CENP-H/CDK1 axis played a vital role in the malignant progression of advanced EC. MiR-612 was downregulated in EC tissues and acted as a tumour suppressor to inhibit cell proliferation, migration, invasion, and promote cell apoptosis. CENP-H was found overexpressed in EC tissues, and the expression level was correlated to diagnosis and prognosis of EC. Hyperactivated CENP-H promoted cell proliferation, migration, invasion, and inhibited cell apoptosis. Overexpressed CENP-H prevented the anti-tumour effects observed with upregulated miR-612; knockdown of miR-612 also suppressed the anti-tumour effects of downregulated PVT1. Knockdown of PVT1 together with upregulated miR-612 exerted the strongest anti-tumour effects in nude mice. These effects were mediated by CDK1 through modulation of the Akt/mTOR signaling pathway. In conclusion, the PVT1/miR-612/CENP-H/CDK1 axis promoted the malignant progression of advanced EC and could serve as a promising target for potential treatments.
Collapse
Affiliation(s)
- Rong Cong
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University Sanhao Street, Shenyang, People's Republic of China
| | - Fanfei Kong
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University Sanhao Street, Shenyang, People's Republic of China
| | - Jian Ma
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University Sanhao Street, Shenyang, People's Republic of China
| | - Qing Li
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University Sanhao Street, Shenyang, People's Republic of China
| | - Hui Yang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University Sanhao Street, Shenyang, People's Republic of China
| | - Xiaoxin Ma
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University Sanhao Street, Shenyang, People's Republic of China
| |
Collapse
|
43
|
Jiang B, Zhu H, Tang L, Gao T, Zhou Y, Gong F, Tan Y, Xie L, Wu X, Li Y. Apatinib Inhibits Stem Properties and Malignant Biological Behaviors of Breast Cancer Stem Cells by Blocking Wnt/β-catenin Signal Pathway Through Down-regulating LncRNA ROR. Anticancer Agents Med Chem 2021; 22:1723-1734. [PMID: 33845750 DOI: 10.2174/1871520621666210412103849] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 02/01/2021] [Accepted: 02/21/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Cancer stem cells could influence tumor recurrence and metastasis. OBJECTIVE To develop a new effective treatment modality targeting breast cancer stem cells (BCSCs), and to explore the role of Apatinib in BCSCs. METHODS BCSCs were isolated from MDA-MB-231 cells by immune magnetic beads method. BCSCs were treated with Apatinib, lentiviral plasmids (lncRNA ROR) and iCRT-3 (Wnt pathway inhibitors). Viability, colony numbers, sphere numbers, apoptosis, migration, invasion of BCSCs were detected by MTT, colony formation, tumor sphere, flow cytometry, wound-healing, transwell assays, respectively. The expressions of markers (ABCG2, CD44, CD90, and CD24), epithelial-mesenchymal transition (EMT)-related molecules (E-cadherin, N-cadherin, Vimentin, MMP-2, MMP-9), and Wnt/β-catenin pathway-related proteins (Wnt3a, Wnt5a, β-catenin) in breast cancer stem cells were determined by performing Western blot and qRT-PCR analysis. RESULTS Apatinib decreased the viability and colony numbers of BCSCs in a concentration-dependent manner, and it also reduced sphere numbers, suppressed migration, invasion and lncRNA ROR expression, and induced apoptosis of BCSCs. However, these results were partially reversed by lncRNA ROR overexpression. Apatinib suppressed stem property, EMT process and Wnt/β-catenin pathway in BCSCs, which was partially reversed by lncRNA ROR overexpression. Moreover, lncRNA ROR overexpression increased the colony and sphere numbers, and promoted the cell viability, apoptosis inhibition, migration and invasion of BCSCs, but these effects were partially reversed by iCRT-3. LncRNA ROR overexpression increased the stem property, EMT process and Wnt/β-catenin pathway, which were partially counteracted by iCRT-3. CONCLUSION Apatinib inhibited stem property and malignant biological behaviors of BCSCs by blocking Wnt/β-catenin signal pathway through down-regulating lncRNA ROR.
Collapse
Affiliation(s)
- Baohong Jiang
- Department of Pharmacy, The First Affiliated Hospital, University of South China. China
| | - Hongbo Zhu
- Department of Medical Oncology, The First Affiliated Hospital, University of South China. China
| | - Liting Tang
- Department of Medical Oncology, The First Affiliated Hospital, University of South China. China
| | - Ting Gao
- Department of Medical Oncology, The First Affiliated Hospital, University of South China. China
| | - Yu Zhou
- Department of Medical Oncology, The First Affiliated Hospital, University of South China. China
| | - Fuqiang Gong
- Department of Medical Oncology, The First Affiliated Hospital, University of South China. China
| | - Yeru Tan
- Department of Medical Oncology, The First Affiliated Hospital, University of South China. China
| | - Liming Xie
- Department of Medical Oncology, The First Affiliated Hospital, University of South China. China
| | - Xiaoping Wu
- Department of Medical Oncology, The First Affiliated Hospital, University of South China. China
| | - Yuehua Li
- Department of Medical Oncology, The First Affiliated Hospital, University of South China, No.69, Chuanshan Road, Hengyang, Hunan Province, 421001. China
| |
Collapse
|
44
|
Li L, Peng Q, Gong M, Ling L, Xu Y, Liu Q. Using lncRNA Sequencing to Reveal a Putative lncRNA-mRNA Correlation Network and the Potential Role of PCBP1-AS1 in the Pathogenesis of Cervical Cancer. Front Oncol 2021; 11:634732. [PMID: 33833992 PMCID: PMC8023048 DOI: 10.3389/fonc.2021.634732] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 02/24/2021] [Indexed: 12/12/2022] Open
Abstract
Background/Aims Long non-coding RNAs (lncRNAs) play important roles in many diseases and participate in posttranscriptional regulatory networks in tumors. However, the functions of major lncRNAs in cervical cancer are unclear. Therefore, the aim of this study was to construct a lncRNA-mRNA coexpression functional network and analyze lncRNAs that might contribute to the pathogenesis of cervical cancer. Methods Differentially expressed lncRNAs (DElncRNAs) and mRNAs (DEmRNAs) between three pairs of cervical cancer tissues and adjacent mucosa were identified by lncRNA microarray analysis. LncRNA-mRNA correlation analysis and functional enrichment were performed on the DEGs. From the correlation network, PCBP1-AS1 was selected as a candidate for further analysis. PCBP1-AS1 expression was examined by qPCR, and Kaplan-Meier survival, clinicopathology, GSEA, and immune infiltration analysis of PCBP1-AS1 were performed. The immune responses of PCBP1-AS1 expression in cervical cancer were analyzed using TIMER and western blot. PCBP1-AS1 was knocked down and overexpressed to evaluate its role in cell proliferation, migration, and invasion. Results A total of 130 lncRNAs were significantly differentially expressed in cervical cancer patient samples compared with control samples. Differentially expressed mRNAs in the lncRNA-mRNA interaction network were involved in the EMT process. Combined with the Kaplan-Meier survival analyses, the coexpression network revealed that PCBP1-AS1 was significantly associated with OS and clinicopathological parameters in cervical cancer patients. Moreover, PCBP1-AS1 expression was not only significantly increased in cervical cancer specimens but also associated with tumor stage, TNM, and invasion. GSEA revealed that PCBP1-AS1 is closely correlated with cell biological function via the p53 and notch signaling pathways. TIMER analysis revealed that the numbers of NK cells and M2 macrophages decreased when PCBP1-AS1 expression was high, which was consistent with the western blot results in clinical samples. Furthermore, in vitro experiments showed that high expression of PCBP1-AS1 promoted cell proliferation, migration, and invasion. Conclusions Transcriptomic and lncRNA-mRNA correlation analyses revealed that PCBP1-AS1 plays a key role as an independent prognostic factor in patients with cervical cancer. The identification of PCBP1-AS1 as a new biomarker for cervical cancer could help explain how changes in the immune environment promote cervical cancer development.
Collapse
Affiliation(s)
- Linhan Li
- Department of Gynaecology and Obstetrics, Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
| | - Qisong Peng
- Department of Clinical Laboratory, Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
| | - Min Gong
- Department of Gynaecology and Obstetrics, Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
| | - Ling Ling
- Department of Gynaecology and Obstetrics, Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
| | - Yingxue Xu
- Department of Gynaecology and Obstetrics, Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
| | - Qiaoling Liu
- Department of Gynaecology and Obstetrics, Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
45
|
Wang X, Dai C, Ye M, Wang J, Lin W, Li R. Prognostic value of an autophagy-related long-noncoding-RNA signature for endometrial cancer. Aging (Albany NY) 2021; 13:5104-5119. [PMID: 33534780 PMCID: PMC7950257 DOI: 10.18632/aging.202431] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 11/13/2020] [Indexed: 12/12/2022]
Abstract
This study retrieved the transcriptome profiling data of 552 endometrial cancer (EC) patients from the TCGA (The Cancer Genome Atlas) database, and identified 1297 lncRNAs (long noncoding RNAs) related to autophagy genes using Pearson correlation analysis. Univariate Cox regression analysis of the training data set revealed that 14 autophagy-related lncRNAs had significantly prognostic value for endometrial cancer (P < 0.01). Multivariate Cox regression analysis of these autophagy-related lncRNAs established the following autophagy-related lncRNA prognosis signature for endometrial cancer: PI = (0.255 × AC005229.4 expression) + (0.405 × BX322234.1 expression) + (0.169 × FIRRE expression value) + (-0.122 × RAB11B-AS1 expression) + (-0.338 × AC003102.1 expression). This signature was validated in both the testing data set and the entire data set. The areas under the receiver operating characteristics curves for the 1-, 3-, and 5-year overall survival rates in the entire data set were 0.772, 0.733, and 0.714, respectively. In addition, a gene set enrichment analysis confirmed that cancer-related and autophagy-related pathways were significantly up-regulated in the high-risk group. In summary, this study has demonstrated that a signature comprising five autophagy-related lncRNAs has potential as an independent prognostic indicator of endometrial cancer, and also that these lncRNAs may play a key role in the development of endometrial cancer.
Collapse
Affiliation(s)
- Xiufang Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Chenyang Dai
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Minqing Ye
- Department of Obstetrics and Gynecology, Foshan Women and Children Hospital, Foshan 528000, China
| | - Jingyun Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Weizhao Lin
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Ruiman Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| |
Collapse
|
46
|
Wang P, Guo Q, Hao Y, Liu Q, Gao Y, Zhi H, Li X, Shang S, Guo S, Zhang Y, Ning S, Li X. LnCeCell: a comprehensive database of predicted lncRNA-associated ceRNA networks at single-cell resolution. Nucleic Acids Res 2021; 49:D125-D133. [PMID: 33219686 PMCID: PMC7778920 DOI: 10.1093/nar/gkaa1017] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/03/2020] [Accepted: 11/09/2020] [Indexed: 12/13/2022] Open
Abstract
Within the tumour microenvironment, cells exhibit different behaviours driven by fine-tuning of gene regulation. Identification of cellular-specific gene regulatory networks will deepen the understanding of disease pathology at single-cell resolution and contribute to the development of precision medicine. Here, we describe a database, LnCeCell (http://www.bio-bigdata.net/LnCeCell/ or http://bio-bigdata.hrbmu.edu.cn/LnCeCell/), which aims to document cellular-specific long non-coding RNA (lncRNA)-associated competing endogenous RNA (ceRNA) networks for personalised characterisation of diseases based on the ‘One Cell, One World’ theory. LnCeCell is curated with cellular-specific ceRNA regulations from >94 000 cells across 25 types of cancers and provides >9000 experimentally supported lncRNA biomarkers, associated with tumour metastasis, recurrence, prognosis, circulation, drug resistance, etc. For each cell, LnCeCell illustrates a global map of ceRNA sub-cellular locations, which have been manually curated from the literature and related data sources, and portrays a functional state atlas for a single cancer cell. LnCeCell also provides several flexible tools to infer ceRNA functions based on a specific cellular background. LnCeCell serves as an important resource for investigating the gene regulatory networks within a single cell and can help researchers understand the regulatory mechanisms underlying complex microbial ecosystems and individual phenotypes.
Collapse
Affiliation(s)
- Peng Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Qiuyan Guo
- Department of Gynecology, the First Affiliated Hospital of Harbin Medical University, Harbin 150081, China
| | - Yangyang Hao
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Qian Liu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Yue Gao
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Hui Zhi
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Xin Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Shipeng Shang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Shuang Guo
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Yunpeng Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Shangwei Ning
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Xia Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| |
Collapse
|
47
|
RP11-323N12.5 promotes the malignancy and immunosuppression of human gastric cancer by increasing YAP1 transcription. Gastric Cancer 2021; 24:85-102. [PMID: 32623586 DOI: 10.1007/s10120-020-01099-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 06/12/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND YAP1 is a core protein of the Hippo signaling pathway and is associated with malignancy and immunosuppression. In the present study, we discovered a novel lncRNA, RP11-323N12.5, with tumor promotion and immunosuppression activities through enhancing transcription of YAP1. METHODS RP11-323N12.5 was identified using GEPIA. Its expression levels and their relationship with clinical features were investigated using clinical samples. The regulation of YAP1 transcription by RP11-323N12.5 was investigated in both GC and T cells, the tumor and immunosuppression promotion roles of RP11-323N12.5 were explored in vitro and in vivo. RESULTS RP11-323N12.5 was the most up-regulated lncRNA in human GC, based on data from the TCGA database. Its transcription was significantly positively correlated with YAP1 transcription, YAP1 downstream gene expression which contribute to tumor growth and immunosuppression. RP11-323N12.5 promoted YAP1 transcription by binding to c-MYC in the YAP1 promoter region. Meanwhile, transcription of RP11-323N12.5 was also regulated by YAP1/TAZ/TEADs activation in GC cells. RP11-323N12.5 had tumor- and immnosuppression-promoting effects by enhancing YAP1 downstream genes in GC cells. Excessive RP11-323N12.5 was also observed in tumor-infiltrating leukocytes (TILs), which may be exosome-derived and also be related to enhanced Treg differentiation as a result YAP1 up-regulation. Moreover, RP11-323N12.5 promoted tumor growth and immunosuppression via YAP1 up-regulation in vivo. CONCLUSIONS RP11-323N12.5 was the most up-regulated lncRNA in human GC and it promoted YAP1 transcription by binding to c-MYC within the YAP1 promoter in both GC and T cells. RP11-323N12.5 is an ideal therapeutic target in human GC due to its tumor-promoting and immunosuppression characteristics.
Collapse
|
48
|
Xu D, Dong P, Xiong Y, Chen R, Konno Y, Ihira K, Yue J, Watari H. PD-L1 Is a Tumor Suppressor in Aggressive Endometrial Cancer Cells and Its Expression Is Regulated by miR-216a and lncRNA MEG3. Front Cell Dev Biol 2020; 8:598205. [PMID: 33363153 PMCID: PMC7755603 DOI: 10.3389/fcell.2020.598205] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 11/12/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Poorly differentiated endometrioid adenocarcinoma and serous adenocarcinoma represent an aggressive subtype of endometrial cancer (EC). Programmed death-ligand-1 (PD-L1) was known to exhibit a tumor cell-intrinsic function in mediating immune-independent tumor progression. However, the functional relevance of tumor cell-intrinsic PD-L1 expression in aggressive EC cells and the mechanisms regulating its expression remain unknown. METHODS PD-L1 expression in 65 EC tissues and 18 normal endometrium samples was analyzed using immunohistochemical staining. The effects of PD-L1 on aggressive EC cell growth, migration and invasion were investigated by cell functional assays. Luciferase reporter assays were used to reveal the microRNA-216a (miR-216a)-dependent mechanism modulating the expression of PD-L1. RESULTS Positive PD-L1 expression was identified in 84% of benign cases but only in 12% of the EC samples, and the staining levels of PD-L1 in EC tissues were significantly lower than those in the normal tissues. Higher PD-L1 expression predicts favorable survival in EC. Ectopic expression of PD-L1 in aggressive EC cells results in decreased cell proliferation and the loss of mesenchymal phenotypes. Mechanistically, PD-L1 exerts the anti-tumor effects by downregulating MCL-1 expression. We found that PD-L1 levels in aggressive EC cells are regulated by miR-216a, which directly targets PD-L1. We further identified a mechanism whereby the long non-coding RNA MEG3 represses the expression of miR-216a, thereby leading to increased PD-L1 expression and significant inhibition of cell migration and invasion. CONCLUSION These results reveal an unappreciated tumor cell-intrinsic role for PD-L1 as a tumor suppressor in aggressive EC cells, and identify MEG3 and miR-216a as upstream regulators of PD-L1.
Collapse
Affiliation(s)
- Daozhi Xu
- Department of Obstetrics and Gynecology, Hokkaido University School of Medicine, Hokkaido University, Sapporo, Japan
| | - Peixin Dong
- Department of Obstetrics and Gynecology, Hokkaido University School of Medicine, Hokkaido University, Sapporo, Japan
| | - Ying Xiong
- Department of Gynecology, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Rui Chen
- Department of Gynecology, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yosuke Konno
- Department of Obstetrics and Gynecology, Hokkaido University School of Medicine, Hokkaido University, Sapporo, Japan
| | - Kei Ihira
- Department of Obstetrics and Gynecology, Hokkaido University School of Medicine, Hokkaido University, Sapporo, Japan
| | - Junming Yue
- Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
- Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Hidemichi Watari
- Department of Obstetrics and Gynecology, Hokkaido University School of Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
49
|
Li Y, Zhang J, Liu YD, Zhou XY, Chen X, Zhe J, Zhang QY, Zhang XF, Chen YX, Wang Z, Chen SL. Long non-coding RNA TUG1 and its molecular mechanisms in polycystic ovary syndrome. RNA Biol 2020; 17:1798-1810. [PMID: 32559120 PMCID: PMC7714456 DOI: 10.1080/15476286.2020.1783850] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 05/26/2020] [Accepted: 06/12/2020] [Indexed: 02/09/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) causes anovulatory infertility in women of reproductive age, but etiopathogenesis of PCOS remains undetermined. Taurine up-regulated 1 (TUG1), an evolutionarily conserved long non-coding RNA, performs various biological functions; however, the role of TUG1 in PCOS remains unclear. Herein, TUG1 expression was assayed in granulosa cells (GCs) of 100 patients with PCOS and 100 control participants. Receiver operating characteristic (ROC) curve analysis was conducted to determine the diagnostic value of TUG1 in PCOS. TUG1 expression was also silenced in KGN cells to explore the role of TUG1 in cellular proliferation, apoptosis, cell-cycle progression, autophagy, and steroidogenesis. We found that TUG1 levels were dramatically increased in the PCOS group compared with those of the control group; this increased expression was related to a rising antral follicle count (R = 0.209, P < 0.001 versus control). The ROC curve indicated a significant separation between PCOS group and the control group (AUC: 0.702; 95% CI: 0.630-0.773; P < 0.001). TUG1 showed a predominantly nuclear localization in human GCs. TUG1 knockdown reduced cellular proliferation, and promoted MAPKs pathway-dependent apoptosis and P21-dependent autophagy, but may not affect cell-cycle progression. TUG1 knockdown increased aromatase expression and oestradiol biosynthesis. Our results indicate that increased TUG1 expression in PCOS GCs may contribute to excessive follicular activation and growth, and may disrupt the selection of dominant follicle. Our study shows that TUG1 can be used as a diagnostic biomarker for PCOS.
Collapse
Affiliation(s)
- Ying Li
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Jun Zhang
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Yu-Dong Liu
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Xing-Yu Zhou
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Xin Chen
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Jing Zhe
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Qing-Yan Zhang
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Xiao-Fei Zhang
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Ying-Xue Chen
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Zhe Wang
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Shi-Ling Chen
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| |
Collapse
|
50
|
Shin TJ, Lee KH, Cho JY. Epigenetic Mechanisms of LncRNAs Binding to Protein in Carcinogenesis. Cancers (Basel) 2020; 12:E2925. [PMID: 33050646 PMCID: PMC7599656 DOI: 10.3390/cancers12102925] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/09/2020] [Accepted: 10/09/2020] [Indexed: 02/06/2023] Open
Abstract
Epigenetic dysregulation is an important feature for cancer initiation and progression. Long non-coding RNAs (lncRNAs) are transcripts that stably present as RNA forms with no translated protein and have lengths larger than 200 nucleotides. LncRNA can epigenetically regulate either oncogenes or tumor suppressor genes. Nowadays, the combined research of lncRNA plus protein analysis is gaining more attention. LncRNA controls gene expression directly by binding to transcription factors of target genes and indirectly by complexing with other proteins to bind to target proteins and cause protein degradation, reduced protein stability, or interference with the binding of other proteins. Various studies have indicated that lncRNA contributes to cancer development by modulating genes epigenetically and studies have been done to determine which proteins are combined with lncRNA and contribute to cancer development. In this review, we look in depth at the epigenetic regulatory function of lncRNAs that are capable of complexing with other proteins in cancer development.
Collapse
Affiliation(s)
| | | | - Je-Yoel Cho
- Department of Biochemistry, BK21 Plus and Research Institute for Veterinary Science, School of Veterinary Medicine, Seoul National University, Seoul 08826, Korea; (T.-J.S.); (K.-H.L.)
| |
Collapse
|