1
|
Fan J, Qin Y, Qiu W, Liang J, Xiao C, Xie Q, Tong C, Yuan L, Long Y, Liu B. Gamabufotalin loaded micro-nanocomposites for multimodal therapy of metastatic TNBC by efficiently inducing ICD. Biomaterials 2025; 314:122851. [PMID: 39366186 DOI: 10.1016/j.biomaterials.2024.122851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/30/2024] [Accepted: 09/26/2024] [Indexed: 10/06/2024]
Abstract
Gamabufotalin (CS-6), a main active compound derived from Chinese medicine Chansu, exhibits a robust inhibitory effect on programmed death-ligand 1 (PD-L1) in triple-negative breast cancer (TNBC) cells. Despite its potential for tumor therapy, the medical application of CS-6 is constrained by its hydrophobic nature, lack of targeting capability, and weak immunogenic cell death (ICD) effect. To address these limitations and improve the therapeutic efficiency of this drug against metastatic TNBC, we designed a new kind of CS-6@CPB-S.lux that integrates carboxy-Prussian blue nanoparticles (CPB NPs), CS-6, and attenuated Salmonella typhimurium (S.lux) for TNBC therapy. In vitro and in vivo results have confirmed that CS-6@CPB NPs were efficiently delivered to neoplastic tissue by the tumor hypoxic chemotaxis property of S.lux, wherein the nanomedicine induced significant tumor cell necroptosis and apoptosis via photothermal therapy (PTT) of CPB NPs and chemotherapy of CS-6, which elicited ICD and inhibited PD-L1 expression, resulting in dendritic cells (DCs) maturation and effector T cells activation to comprehensively eliminate tumors. Additionally, the CS-6@CPB-S.lux + Laser treatment significantly transformed the immunosuppressive tumor microenvironment (TME), enhancing antitumor immunity through promoting the polarization of tumor-associated macrophages into antitumorigenic M1 and reducing Tregs recruitment. Consequently, this comprehensive therapy not only inhibited primary and abscopal tumor progression but also prevented TNBC metastasis, which significantly prolonged survival time in animal models. In summary, these findings indicated an alternative approach for metastatic TNBC therapy.
Collapse
Affiliation(s)
- Jialong Fan
- College of Biology, School of Biomedical Sciences, Hunan University, Changsha, 410082, China
| | - Yan Qin
- College of Biology, School of Biomedical Sciences, Hunan University, Changsha, 410082, China; TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Wensheng Qiu
- College of Biology, School of Biomedical Sciences, Hunan University, Changsha, 410082, China
| | - Jiahao Liang
- College of Biology, School of Biomedical Sciences, Hunan University, Changsha, 410082, China
| | - Chang Xiao
- College of Biology, School of Biomedical Sciences, Hunan University, Changsha, 410082, China
| | - Qian Xie
- Department of Pharmacy, Maternal and Child Health of Hunan Province, Changsha, 410008, China
| | - Chunyi Tong
- College of Biology, School of Biomedical Sciences, Hunan University, Changsha, 410082, China
| | - Liqin Yuan
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, China.
| | - Ying Long
- College of Biology, School of Biomedical Sciences, Hunan University, Changsha, 410082, China.
| | - Bin Liu
- College of Biology, School of Biomedical Sciences, Hunan University, Changsha, 410082, China; NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan, 750004, China.
| |
Collapse
|
2
|
Panda VK, Mishra B, Mahapatra S, Swain B, Malhotra D, Saha S, Khanra S, Mishra P, Majhi S, Kumari K, Nath AN, Saha S, Jena S, Kundu GC. Molecular Insights on Signaling Cascades in Breast Cancer: A Comprehensive Review. Cancers (Basel) 2025; 17:234. [PMID: 39858015 PMCID: PMC11763662 DOI: 10.3390/cancers17020234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/27/2024] [Accepted: 01/01/2025] [Indexed: 01/27/2025] Open
Abstract
The complex signaling network within the breast tumor microenvironment is crucial for its growth, metastasis, angiogenesis, therapy escape, stem cell maintenance, and immunomodulation. An array of secretory factors and their receptors activate downstream signaling cascades regulating breast cancer progression and metastasis. Among various signaling pathways, the EGFR, ER, Notch, and Hedgehog signaling pathways have recently been identified as crucial in terms of breast cancer proliferation, survival, differentiation, maintenance of CSCs, and therapy failure. These receptors mediate various downstream signaling pathways such as MAPK, including MEK/ERK signaling pathways that promote common pro-oncogenic signaling, whereas dysregulation of PI3K/Akt, Wnt/β-catenin, and JAK/STAT activates key oncogenic events such as drug resistance, CSC enrichment, and metabolic reprogramming. Additionally, these cascades orchestrate an intricate interplay between stromal cells, immune cells, and tumor cells. Metabolic reprogramming and adaptations contribute to aggressive breast cancer and are unresponsive to therapy. Herein, recent insights into the novel signaling pathways operating within the breast TME that aid in their advancement are emphasized and current developments in practices targeting the breast TME to enhance treatment efficacy are reviewed.
Collapse
Affiliation(s)
- Venketesh K. Panda
- School of Biotechnology, KIIT Deemed to Be University, Bhubaneswar 751024, India; (V.K.P.); (B.M.); (S.M.); (B.S.); (D.M.); (S.S.); (S.K.); (P.M.); (S.M.); (K.K.); (A.N.N.); (S.S.); (S.J.)
- School of Applied Sciences, KIIT Deemed to Be University, Bhubaneswar 751024, India
| | - Barnalee Mishra
- School of Biotechnology, KIIT Deemed to Be University, Bhubaneswar 751024, India; (V.K.P.); (B.M.); (S.M.); (B.S.); (D.M.); (S.S.); (S.K.); (P.M.); (S.M.); (K.K.); (A.N.N.); (S.S.); (S.J.)
| | - Samikshya Mahapatra
- School of Biotechnology, KIIT Deemed to Be University, Bhubaneswar 751024, India; (V.K.P.); (B.M.); (S.M.); (B.S.); (D.M.); (S.S.); (S.K.); (P.M.); (S.M.); (K.K.); (A.N.N.); (S.S.); (S.J.)
| | - Biswajit Swain
- School of Biotechnology, KIIT Deemed to Be University, Bhubaneswar 751024, India; (V.K.P.); (B.M.); (S.M.); (B.S.); (D.M.); (S.S.); (S.K.); (P.M.); (S.M.); (K.K.); (A.N.N.); (S.S.); (S.J.)
| | - Diksha Malhotra
- School of Biotechnology, KIIT Deemed to Be University, Bhubaneswar 751024, India; (V.K.P.); (B.M.); (S.M.); (B.S.); (D.M.); (S.S.); (S.K.); (P.M.); (S.M.); (K.K.); (A.N.N.); (S.S.); (S.J.)
| | - Suryendu Saha
- School of Biotechnology, KIIT Deemed to Be University, Bhubaneswar 751024, India; (V.K.P.); (B.M.); (S.M.); (B.S.); (D.M.); (S.S.); (S.K.); (P.M.); (S.M.); (K.K.); (A.N.N.); (S.S.); (S.J.)
| | - Sinjan Khanra
- School of Biotechnology, KIIT Deemed to Be University, Bhubaneswar 751024, India; (V.K.P.); (B.M.); (S.M.); (B.S.); (D.M.); (S.S.); (S.K.); (P.M.); (S.M.); (K.K.); (A.N.N.); (S.S.); (S.J.)
| | - Priyanka Mishra
- School of Biotechnology, KIIT Deemed to Be University, Bhubaneswar 751024, India; (V.K.P.); (B.M.); (S.M.); (B.S.); (D.M.); (S.S.); (S.K.); (P.M.); (S.M.); (K.K.); (A.N.N.); (S.S.); (S.J.)
| | - Sambhunath Majhi
- School of Biotechnology, KIIT Deemed to Be University, Bhubaneswar 751024, India; (V.K.P.); (B.M.); (S.M.); (B.S.); (D.M.); (S.S.); (S.K.); (P.M.); (S.M.); (K.K.); (A.N.N.); (S.S.); (S.J.)
| | - Kavita Kumari
- School of Biotechnology, KIIT Deemed to Be University, Bhubaneswar 751024, India; (V.K.P.); (B.M.); (S.M.); (B.S.); (D.M.); (S.S.); (S.K.); (P.M.); (S.M.); (K.K.); (A.N.N.); (S.S.); (S.J.)
| | - Angitha N. Nath
- School of Biotechnology, KIIT Deemed to Be University, Bhubaneswar 751024, India; (V.K.P.); (B.M.); (S.M.); (B.S.); (D.M.); (S.S.); (S.K.); (P.M.); (S.M.); (K.K.); (A.N.N.); (S.S.); (S.J.)
| | - Swarnali Saha
- School of Biotechnology, KIIT Deemed to Be University, Bhubaneswar 751024, India; (V.K.P.); (B.M.); (S.M.); (B.S.); (D.M.); (S.S.); (S.K.); (P.M.); (S.M.); (K.K.); (A.N.N.); (S.S.); (S.J.)
| | - Sarmistha Jena
- School of Biotechnology, KIIT Deemed to Be University, Bhubaneswar 751024, India; (V.K.P.); (B.M.); (S.M.); (B.S.); (D.M.); (S.S.); (S.K.); (P.M.); (S.M.); (K.K.); (A.N.N.); (S.S.); (S.J.)
| | - Gopal C. Kundu
- School of Biotechnology, KIIT Deemed to Be University, Bhubaneswar 751024, India; (V.K.P.); (B.M.); (S.M.); (B.S.); (D.M.); (S.S.); (S.K.); (P.M.); (S.M.); (K.K.); (A.N.N.); (S.S.); (S.J.)
- School of Applied Sciences, KIIT Deemed to Be University, Bhubaneswar 751024, India
- Kalinga Institute of Medical Sciences (KIMS), KIIT Deemed to Be University, Bhubaneswar 751024, India
| |
Collapse
|
3
|
Ben-Baruch A. The Tumor Immune Environment: Advances in the Cancer Immunotherapy Era. Methods Mol Biol 2025; 2926:15-34. [PMID: 40266514 DOI: 10.1007/978-1-0716-4542-0_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
For over the last hundred years, the scientific community has demonstrated much interest in the roles of the immune system in regulating tumor progression. Extensive research that was performed in this context has revealed that mechanisms of acquired immunity can be highly potent in eradicating cancer cells, if given the right conditions to do so. Basic and clinical studies have paved the way toward the design of sophisticated modalities that improve the ability of T cells to efficiently recognize cancer antigens (when expressed by the tumor cells) and to expand thereafter; alongside developing procedures that prevent immune suppression caused by inhibitory immune checkpoints, these approaches offer cancer patients improved immunotherapies, which increase remission and prolong survival. The current chapter provides a summary of key aspects relevant to such immunotherapies, including the following: (1) cancer vaccines that enhance cancer antigen presentation; (2) adoptive cell transfer (ACT)-based therapies, like tumor-infiltrating lymphocytes (TILs) and chimeric antigen receptor expressing T cells (CAR-T cells); and (3) immune checkpoint blockades (ICBs) that downregulate the extent of immune suppression mediated by inhibitory immune checkpoint molecules, like cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), programmed cell death protein 1 (PD-1) and its ligands, primarily PD-L1 (and also PD-L2). These treatments have revolutionized the immunotherapy field, demonstrating the strong power of acquired immunity in preventing tumor growth and progression, giving much hope to cancer patients worldwide.
Collapse
Affiliation(s)
- Adit Ben-Baruch
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
4
|
Famta P, Shah S, Dey B, Kumar KC, Bagasariya D, Vambhurkar G, Pandey G, Sharma A, Srinivasarao DA, Kumar R, Guru SK, Raghuvanshi RS, Srivastava S. Despicable role of epithelial-mesenchymal transition in breast cancer metastasis: Exhibiting de novo restorative regimens. CANCER PATHOGENESIS AND THERAPY 2025; 3:30-47. [PMID: 39872366 PMCID: PMC11764040 DOI: 10.1016/j.cpt.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/03/2024] [Accepted: 01/10/2024] [Indexed: 01/30/2025]
Abstract
Breast cancer (BC) is the most prevalent cancer in women globally. Anti-cancer advancements have enabled the killing of BC cells through various therapies; however, cancer relapse is still a major limitation and decreases patient survival and quality of life. Epithelial-to-mesenchymal transition (EMT) is responsible for tumor relapse in several cancers. This highly regulated event causes phenotypic, genetic, and epigenetic changes in the tumor microenvironment (TME). This review summarizes the recent advancements regarding EMT using de-differentiation and partial EMT theories. We extensively review the mechanistic pathways, TME components, and various anti-cancer adjuvant and neo-adjuvant therapies responsible for triggering EMT in BC tumors. Information regarding essential clinical studies and trials is also discussed. Furthermore, we also highlight the recent strategies targeting various EMT pathways. This review provides a holistic picture of BC biology, molecular pathways, and recent advances in therapeutic strategies.
Collapse
Affiliation(s)
- Paras Famta
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Saurabh Shah
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Biswajit Dey
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, India
| | - Kondasingh Charan Kumar
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Deepkumar Bagasariya
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Ganesh Vambhurkar
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Giriraj Pandey
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Anamika Sharma
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, India
| | - Dadi A. Srinivasarao
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Rahul Kumar
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, India
| | - Santosh Kumar Guru
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, India
| | | | - Saurabh Srivastava
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| |
Collapse
|
5
|
Hodgins JJ, Abou-Hamad J, O’Dwyer CE, Hagerman A, Yakubovich E, Tanese de Souza C, Marotel M, Buchler A, Fadel S, Park MM, Fong-McMaster C, Crupi MF, Makinson OJ, Kurdieh R, Rezaei R, Dhillon HS, Ilkow CS, Bell JC, Harper ME, Rotstein BH, Auer RC, Vanderhyden BC, Sabourin LA, Bourgeois-Daigneault MC, Cook DP, Ardolino M. PD-L1 promotes oncolytic virus infection via a metabolic shift that inhibits the type I IFN pathway. J Exp Med 2024; 221:e20221721. [PMID: 38869480 PMCID: PMC11176258 DOI: 10.1084/jem.20221721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 02/04/2024] [Accepted: 03/14/2024] [Indexed: 06/14/2024] Open
Abstract
While conventional wisdom initially postulated that PD-L1 serves as the inert ligand for PD-1, an emerging body of literature suggests that PD-L1 has cell-intrinsic functions in immune and cancer cells. In line with these studies, here we show that engagement of PD-L1 via cellular ligands or agonistic antibodies, including those used in the clinic, potently inhibits the type I interferon pathway in cancer cells. Hampered type I interferon responses in PD-L1-expressing cancer cells resulted in enhanced efficacy of oncolytic viruses in vitro and in vivo. Consistently, PD-L1 expression marked tumor explants from cancer patients that were best infected by oncolytic viruses. Mechanistically, PD-L1 promoted a metabolic shift characterized by enhanced glycolysis rate that resulted in increased lactate production. In turn, lactate inhibited type I IFN responses. In addition to adding mechanistic insight into PD-L1 intrinsic function, our results will also help guide the numerous ongoing efforts to combine PD-L1 antibodies with oncolytic virotherapy in clinical trials.
Collapse
Affiliation(s)
- Jonathan J. Hodgins
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Canada
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Canada
- Center for Infection, Immunity, and Inflammation, University of Ottawa, Ottawa, Canada
| | - John Abou-Hamad
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada
| | - Colin Edward O’Dwyer
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Canada
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Canada
- Center for Infection, Immunity, and Inflammation, University of Ottawa, Ottawa, Canada
| | - Ash Hagerman
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Canada
- Center for Infection, Immunity, and Inflammation, University of Ottawa, Ottawa, Canada
| | - Edward Yakubovich
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada
| | | | - Marie Marotel
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Canada
- Center for Infection, Immunity, and Inflammation, University of Ottawa, Ottawa, Canada
| | - Ariel Buchler
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Canada
- University of Ottawa Heart Institute, Ottawa, Canada
| | - Saleh Fadel
- The Ottawa Hospital, Ottawa, Canada
- Department of Pathology and Laboratory Medicine, The Ottawa Hospital, Ottawa, Canada
| | - Maria M. Park
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Canada
- Center for Infection, Immunity, and Inflammation, University of Ottawa, Ottawa, Canada
| | - Claire Fong-McMaster
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Canada
- Ottawa Institute for Systems Biology, Ottawa, Canada
| | - Mathieu F. Crupi
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Canada
| | - Olivia Joan Makinson
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Canada
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Canada
- Center for Infection, Immunity, and Inflammation, University of Ottawa, Ottawa, Canada
| | - Reem Kurdieh
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Canada
| | - Reza Rezaei
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Canada
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Canada
- Center for Infection, Immunity, and Inflammation, University of Ottawa, Ottawa, Canada
| | - Harkirat Singh Dhillon
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Canada
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Canada
- Center for Infection, Immunity, and Inflammation, University of Ottawa, Ottawa, Canada
| | - Carolina S. Ilkow
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Canada
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Canada
- Center for Infection, Immunity, and Inflammation, University of Ottawa, Ottawa, Canada
| | - John C. Bell
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Canada
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Canada
| | - Mary-Ellen Harper
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Canada
- Center for Infection, Immunity, and Inflammation, University of Ottawa, Ottawa, Canada
- Ottawa Institute for Systems Biology, Ottawa, Canada
| | - Benjamin H. Rotstein
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Canada
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Canada
- University of Ottawa Heart Institute, Ottawa, Canada
| | - Rebecca C. Auer
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Canada
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Canada
| | - Barbara C. Vanderhyden
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Canada
- Center for Infection, Immunity, and Inflammation, University of Ottawa, Ottawa, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada
| | - Luc A. Sabourin
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada
| | - Marie-Claude Bourgeois-Daigneault
- Department of Microbiology, Infectious Diseases, and Immunology, University of Montreal, Montreal, Canada
- Centre Hospitalier de l’Université de Montréal Research Centre, Cancer and Immunopathology axes, Montreal, Canada
| | - David P. Cook
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada
| | - Michele Ardolino
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Canada
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Canada
- Center for Infection, Immunity, and Inflammation, University of Ottawa, Ottawa, Canada
| |
Collapse
|
6
|
Cordani M, Strippoli R, Trionfetti F, Barzegar Behrooz A, Rumio C, Velasco G, Ghavami S, Marcucci F. Immune checkpoints between epithelial-mesenchymal transition and autophagy: A conflicting triangle. Cancer Lett 2024; 585:216661. [PMID: 38309613 DOI: 10.1016/j.canlet.2024.216661] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/01/2024] [Accepted: 01/17/2024] [Indexed: 02/05/2024]
Abstract
Inhibitory immune checkpoint (ICP) molecules are pivotal in inhibiting innate and acquired antitumor immune responses, a mechanism frequently exploited by cancer cells to evade host immunity. These evasion strategies contribute to the complexity of cancer progression and therapeutic resistance. For this reason, ICP molecules have become targets for antitumor drugs, particularly monoclonal antibodies, collectively referred to as immune checkpoint inhibitors (ICI), that counteract such cancer-associated immune suppression and restore antitumor immune responses. Over the last decade, however, it has become clear that tumor cell-associated ICPs can also induce tumor cell-intrinsic effects, in particular epithelial-mesenchymal transition (EMT) and macroautophagy (hereafter autophagy). Both of these processes have profound implications for cancer metastasis and drug responsiveness. This article reviews the positive or negative cross-talk that tumor cell-associated ICPs undergo with autophagy and EMT. We discuss that tumor cell-associated ICPs are upregulated in response to the same stimuli that induce EMT. Moreover, ICPs themselves, when overexpressed, become an EMT-inducing stimulus. As regards the cross-talk with autophagy, ICPs have been shown to either stimulate or inhibit autophagy, while autophagy itself can either up- or downregulate the expression of ICPs. This dynamic equilibrium also extends to the autophagy-apoptosis axis, further emphasizing the complexities of cellular responses. Eventually, we delve into the intricate balance between autophagy and apoptosis, elucidating its role in the broader interplay of cellular dynamics influenced by ICPs. In the final part of this article, we speculate about the driving forces underlying the contradictory outcomes of the reciprocal, inhibitory, or stimulatory effects between ICPs, EMT, and autophagy. A conclusive identification of these driving forces may allow to achieve improved antitumor effects when using combinations of ICIs and compounds acting on EMT and/or autophagy. Prospectively, this may translate into increased and/or broadened therapeutic efficacy compared to what is currently achieved with ICI-based clinical protocols.
Collapse
Affiliation(s)
- Marco Cordani
- Department of Biochemistry and Molecular Biology, Faculty of Biology, Complutense University of Madrid, 28040 Madrid, Spain; Instituto de Investigación Sanitaria San Carlos (IdISSC), 28040 Madrid, Spain
| | - Raffaele Strippoli
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy; Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases L., Spallanzani, IRCCS, Via Portuense, 292, 00149 Rome, Italy
| | - Flavia Trionfetti
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy; Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases L., Spallanzani, IRCCS, Via Portuense, 292, 00149 Rome, Italy
| | - Amir Barzegar Behrooz
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Cristiano Rumio
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Trentacoste 2, 20134 Milan, Italy
| | - Guillermo Velasco
- Department of Biochemistry and Molecular Biology, Faculty of Biology, Complutense University of Madrid, 28040 Madrid, Spain; Instituto de Investigación Sanitaria San Carlos (IdISSC), 28040 Madrid, Spain
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; Faculty of Medicine in Zabrze, University of Technology in Katowice, 41-800 Zabrze, Poland; Research Institute of Oncology and Hematology, Cancer Care Manitoba, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
| | - Fabrizio Marcucci
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Trentacoste 2, 20134 Milan, Italy.
| |
Collapse
|
7
|
Zhang L, Zhao X, Niu Y, Ma X, Yuan W, Ma J. Engineering high-affinity dual targeting cellular nanovesicles for optimised cancer immunotherapy. J Extracell Vesicles 2023; 12:e12379. [PMID: 37974395 PMCID: PMC10654473 DOI: 10.1002/jev2.12379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 09/28/2023] [Accepted: 10/22/2023] [Indexed: 11/19/2023] Open
Abstract
Dual targeting to immune checkpoints has achieved a better therapeutic efficacy than single targeting due to synergistic extrication of tumour immunity. However, most dual targeting strategies are usually antibody dependent which facing drawbacks of antibodies, such as poor solid tumour penetration and unsatisfied affinity. To meet the challenges, we engineered a cell membrane displaying a fusion protein composed of SIRPα and PD-1 variants, the high-affinity consensus (HAC) of wild-type molecules, and with which prepared nanovesicles (NVs). Through disabling both SIRPα/CD47 and PD-1/PD-L1 signalling, HAC NVs significantly preserved the phagocytosis and antitumour effect of macrophages and T cells, respectively. In vivo study revealed that HAC NVs had better tumour penetration than monoclonal antibodies and higher binding affinity to CD47 and PD-L1 on tumour cells compared with the NVs expressing wild-type fusion protein. Exhilaratingly, dual-blockade of CD47 and PD-L1 with HAC NVs exhibited excellent therapeutic efficacy and biosafety. This study provided a novel biomaterial against tumoural immune escape and more importantly an attractive biomimetic technology of protein delivery for multi-targeting therapies.
Collapse
Affiliation(s)
- Luyao Zhang
- Center of Biotherapy, Beijing Hospital, National Center of GerontologyInstitute of Geriatric Medicine Chinese Academy of Medical SciencesBeijingChina
| | - Xu Zhao
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Yanan Niu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Xiaoya Ma
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Wei Yuan
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Jie Ma
- Center of Biotherapy, Beijing Hospital, National Center of GerontologyInstitute of Geriatric Medicine Chinese Academy of Medical SciencesBeijingChina
| |
Collapse
|
8
|
Erlichman N, Meshel T, Baram T, Abu Raiya A, Horvitz T, Ben-Yaakov H, Ben-Baruch A. The Cell-Autonomous Pro-Metastatic Activities of PD-L1 in Breast Cancer Are Regulated by N-Linked Glycosylation-Dependent Activation of STAT3 and STAT1. Cells 2023; 12:2338. [PMID: 37830552 PMCID: PMC10571791 DOI: 10.3390/cells12192338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/12/2023] [Accepted: 09/15/2023] [Indexed: 10/14/2023] Open
Abstract
PD-L1 has been characterized as an inhibitory immune checkpoint, leading to the suppression of potential anti-tumor immune activities in many cancer types. In view of the relatively limited efficacy of immune checkpoint blockades against PD-L1 in breast cancer, our recent study addressed the possibility that in addition to its immune-inhibitory functions, PD-L1 promotes the pro-metastatic potential of the cancer cells themselves. Indeed, our published findings demonstrated that PD-L1 promoted pro-metastatic functions of breast cancer cells in a cell-autonomous manner, both in vitro and in vivo. These functions fully depended on the integrity of the S283 intracellular residue of PD-L1. Here, using siRNAs and the S283A-PD-L1 variant, we demonstrate that the cell-autonomous pro-metastatic functions of PD-L1-tumor cell proliferation and invasion, and release of the pro-metastatic chemokine CXCL8-required the activation of STAT3 and STAT1 in luminal A and triple-negative breast cancer cells. The cell-autonomous pro-metastatic functions of PD-L1 were potently impaired upon inhibition of N-linked glycosylation (kifunensine). Site-specific mutants at each of the N-linked glycosylation sites of PD-L1 (N35, N192, N200, and N219) revealed that they were all required for PD-L1-induced pro-metastatic functions to occur; the N219 site was the main regulator of STAT3 and STAT1 activation, with accompanying roles for N192 and N200 (depending on the cell type). Using a T cell-independent mouse system, we found that cells expressing N35A-PD-L1 and N219A-PD-L1 had a significantly lower tumorigenic and metastatic potential than cells expressing WT-PD-L1. TCGA analyses revealed significant associations between reduced survival and high levels of α-mannosidase II (inferring on N-linked glycosylation) in breast cancer patients. These findings suggest that N-linked glycosylation of PD-L1 may be used to screen for patients who are at greater risk of disease progression, and that modalities targeting N-linked glycosylated PD-L1 may lead to the inhibition of its cell-autonomous pro-metastatic functions and to lower tumor progression in breast cancer.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Adit Ben-Baruch
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel; (N.E.); (T.M.); (T.B.); (A.A.R.); (T.H.); (H.B.-Y.)
| |
Collapse
|
9
|
Endo Y, Winarski KL, Sajib MS, Ju A, Wu WJ. Atezolizumab Induces Necroptosis and Contributes to Hepatotoxicity of Human Hepatocytes. Int J Mol Sci 2023; 24:11694. [PMID: 37511454 PMCID: PMC10380327 DOI: 10.3390/ijms241411694] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/13/2023] [Accepted: 07/15/2023] [Indexed: 07/30/2023] Open
Abstract
Atezolizumab is an immune checkpoint inhibitor (ICI) targeting PD-L1 for treatment of solid malignancies. Immune checkpoints control the immune tolerance, and the adverse events such as hepatotoxicity induced by ICIs are often considered as an immune-related adverse event (irAE). However, PD-L1 is also highly expressed in normal tissues, e.g., hepatocytes. It is still not clear whether, targeting PD-L1 on hepatocytes, the atezolizumab may cause damage to liver cells contributing to hepatotoxicity. Here, we reveal a novel mechanism by which the atezolizumab induces hepatotoxicity in human hepatocytes. We find that the atezolizumab treatment increases a release of LDH in the cell culture medium of human hepatocytes (human primary hepatocytes and THLE-2 cells), decreases cell viability, and inhibits the THLE-2 and THLE-3 cell growth. We demonstrate that both the atezolizumab and the conditioned medium (T-CM) derived from activated T cells can induce necroptosis of the THLE-2 cells, which is underscored by the fact that the atezolizumab and T-CM enhance the phosphorylation of RIP3 and MLKL proteins. Furthermore, we also show that necrostatin-1, a necrosome inhibitor, decreases the amount of phosphorylated RIP3 induced by the atezolizumab, resulting in a reduced LDH release in the culture media of the THLE-2 cells. This finding is further supported by the data that GSK872 (a RIP3 inhibitor) significantly reduced the atezolizumab-induced LDH release. Taken together, our data indicate that the atezolizumab induces PD-L1-mediated necrosome formation, contributing to hepatotoxicity in PD-L1+-human hepatocytes. This study provides the molecular basis of the atezolizumab-induced hepatotoxicity and opens a new avenue for developing a novel therapeutic approach to reducing hepatotoxicity induced by ICIs.
Collapse
Affiliation(s)
- Yukinori Endo
- Division of Biotechnology Review and Research 1, Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, U.S. Food and Drug Administration (FDA), Silver Spring, MD 20993, USA
| | - Katie L Winarski
- Division of Biotechnology Review and Research 1, Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, U.S. Food and Drug Administration (FDA), Silver Spring, MD 20993, USA
| | - Md Sanaullah Sajib
- Division of Biotechnology Review and Research 1, Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, U.S. Food and Drug Administration (FDA), Silver Spring, MD 20993, USA
| | - Anna Ju
- Division of Biotechnology Review and Research 1, Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, U.S. Food and Drug Administration (FDA), Silver Spring, MD 20993, USA
| | - Wen Jin Wu
- Division of Biotechnology Review and Research 1, Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, U.S. Food and Drug Administration (FDA), Silver Spring, MD 20993, USA
| |
Collapse
|
10
|
Alkaabi D, Arafat K, Sulaiman S, Al-Azawi AM, Attoub S. PD-1 Independent Role of PD-L1 in Triple-Negative Breast Cancer Progression. Int J Mol Sci 2023; 24:ijms24076420. [PMID: 37047395 PMCID: PMC10094894 DOI: 10.3390/ijms24076420] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/25/2023] [Accepted: 01/31/2023] [Indexed: 04/01/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is a type of breast malignancy characterized by a high proliferative rate and metastatic potential leading to treatment failure, relapse, and poor prognosis. Therefore, efforts are continuously being devoted to understanding its biology and identifying new potential targets. Programmed death-ligand 1 (PD-L1) is an immunosuppressive protein that inactivates T cells by binding to the inhibitory receptor programmed death-1 (PD-1). PD-L1 overexpression in cancer cells contributes to immune evasion and, subsequently, poor survival and prognosis in several cancers, including breast cancer. Apart from its inhibitory impact on T cells, this ligand is believed to have an intrinsic role in cancer cells. This study was performed to clarify the PD-1 independent role of PD-L1 in TNBC MDA-MB-231 cells by knocking out the PD-L1 using three designs of CRISPR-Cas9 lentiviral particles. Our study revealed that PD-L1 knockout significantly inhibited MDA-MB-231 cell proliferation and colony formation in vitro and tumor growth in the chick embryo chorioallantoic membrane (CAM) model in vivo. PD-L1 knockout also decreased the migration and invasion of MDA-MB-231 cells in vitro. We have shown that PD-L1 knockout MDA-MB-231 cells have low levels of p-Akt and p-ERK in addition to some of their downstream proteins, c-Fos, c-Myc, p21, survivin, and COX-2. Furthermore, PD-L1 knockout significantly decreased the expression of Snail and RhoA. This study shows the intrinsic role of PD-L1 in TNBC independently of its binding to PD-1 receptors on T cells. It may pave the way for developing novel therapeutic strategies using PD-L1 inhibitors alone and in combination to treat TNBC more effectively.
Collapse
Affiliation(s)
- Duaa Alkaabi
- Department of Pharmacology & Therapeutics, College of Medicine & Health Sciences, United Arab Emirates University, Al-Ain 15551, United Arab Emirates
| | - Kholoud Arafat
- Department of Pharmacology & Therapeutics, College of Medicine & Health Sciences, United Arab Emirates University, Al-Ain 15551, United Arab Emirates
| | - Shahrazad Sulaiman
- Department of Pharmacology & Therapeutics, College of Medicine & Health Sciences, United Arab Emirates University, Al-Ain 15551, United Arab Emirates
| | - Aya Mudhafar Al-Azawi
- Department of Pharmacology & Therapeutics, College of Medicine & Health Sciences, United Arab Emirates University, Al-Ain 15551, United Arab Emirates
| | - Samir Attoub
- Department of Pharmacology & Therapeutics, College of Medicine & Health Sciences, United Arab Emirates University, Al-Ain 15551, United Arab Emirates
- Institut National de la Santé et de la Recherche Médicale (INSERM), 75013 Paris, France
- Correspondence:
| |
Collapse
|
11
|
Darwish WM, Bayoumi NA, El-Shershaby HM, Moustafa KA. A novel gold-polymer-antibody conjugate for targeted (radio-photothermal) treatment of HepG2 cells. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2023; 34:53-71. [PMID: 35929853 DOI: 10.1080/09205063.2022.2110479] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Localization of the near-infrared (NIR) plasmonic nanoparticles at the tumor sites is essential for safe and efficient photothermal therapy of cancer. In this work, two biocompatible polymers: modified poly(ethylene glycol) (PEG) and branched polyethyleneimine (bPEI) were used to bind plasmonic hollow gold nanospheres (HAuNS) to the tumor-specific antibody, atezolizumab (ATZ). The photo-immunoconjugate (HAuNS-PEI-PEG-ATZ) was prepared via a simple and cost-effective procedure. The conjugate was also prepared with the radioiodinated antibody (ATZ-131I) to combine the targeted radio- and photothermal cytotoxic actions against human hepatoma (HepG2) cells. In vitro study revealed that attachment to the antibody and the use of cellular internalizing polymers enhanced the cellular localization of both gold and the radiotherapeutic Iodine-131. Compared to bare gold nanoparticles, (HAuNS-PEI-PEG-ATZ) conjugate exhibited a significantly enhanced photothermal ablation of HepG2 cells after laser irradiation (0.4 W cm-2, 5 min). Laser irradiation of the cells treated with the radiolabeled conjugate (HAuNS-PEI-PEG-ATZ-131I) exhibited the highest cytotoxicity against HepG2 cells due to the combinatorial cytotoxic effects.
Collapse
Affiliation(s)
- Wael M Darwish
- Department of Polymers and Pigments, National Research Centre, Dokki, Egypt
| | - Noha A Bayoumi
- Department of Radiolabelled Compounds, Hot Lab Centre, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Hanan M El-Shershaby
- Department of Radiolabelled Compounds, Hot Lab Centre, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Kamel A Moustafa
- Department of Radiolabelled Compounds, Hot Lab Centre, Egyptian Atomic Energy Authority, Cairo, Egypt
| |
Collapse
|
12
|
Huang S, Hu P, Lakowski TM. Bioinformatics driven discovery of small molecule compounds that modulate the FOXM1 and PPARA pathway activities in breast cancer. THE PHARMACOGENOMICS JOURNAL 2022:10.1038/s41397-022-00297-1. [PMID: 36424525 PMCID: PMC10382320 DOI: 10.1038/s41397-022-00297-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 10/27/2022] [Accepted: 11/04/2022] [Indexed: 11/27/2022]
Abstract
AbstractOur previous studies demonstrated that the FOXM1 pathway is upregulated and the PPARA pathway downregulated in breast cancer (BC), and especially in the triple negative breast cancer (TNBC) subtype. Targeting the two pathways may offer potential therapeutic strategies to treat BC, especially TNBC which has the fewest effective therapies available among all BC subtypes. In this study we identified small molecule compounds that could modulate the PPARA and FOXM1 pathways in BC using two methods. In the first method, data were initially curated from the Connectivity Map (CMAP) database, which provides the gene expression profiles of MCF7 cells treated with different compounds as well as paired controls. We then calculated the changes in the FOXM1 and PPARA pathway activities from the compound-induced gene expression profiles under each treatment to identify compounds that produced a decreased activity in the FOXM1 pathway or an increased activity in the PPARA pathway. In the second method, the CMAP database tool was used to identify compounds that could reverse the expression pattern of the two pathways in MCF7 cells. Compounds identified as repressing the FOXM1 pathway or activating the PPARA pathway by the two methods were compared. We identified 19 common compounds that could decrease the FOXM1 pathway activity scores and reverse the FOXM1 pathway expression pattern, and 13 common compounds that could increase the PPARA pathway activity scores and reverse the PPARA pathway expression pattern. It may be of interest to validate these compounds experimentally to further investigate their effects on TNBCs.
Collapse
|
13
|
Quan Z, Yang Y, Zheng H, Zhan Y, Luo J, Ning Y, Fan S. Clinical implications of the interaction between PD-1/PD-L1 and PI3K/AKT/mTOR pathway in progression and treatment of non-small cell lung cancer. J Cancer 2022; 13:3434-3443. [PMID: 36313041 PMCID: PMC9608206 DOI: 10.7150/jca.77619] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 09/17/2022] [Indexed: 11/23/2022] Open
Abstract
The discovery of immune checkpoints has been well known to provide novel clues for cancer treatments. Immunotherapy against the programmed cell death protein-1 (PD-1) /programmed death-ligand-1 (PD-L1), one of the most popular auxiliary treatments in recent years, has been applied in various tumor treatments, including non-small cell lung cancer (NSCLC). However, inevitable issues such as side effects and drug resistance emerge following the use of immune checkpoint inhibitors. The PI3K/AKT/mTOR pathway may participate in the regulation of PD-L1 expression. Abnormal PI3K/AKT/mTOR pathway activation results in increased PD-L1 protein translation, whereas PD-L1 overexpression can activate the PI3K/AKT/mTOR pathway inversely. Via downstream proteins, including 4E-BP1, STAT3, NF-κB, c-MYC, and AMPK in aberrant energy status, the PI3K/AKT/mTOR pathway can regulate PD-L1 post-transcription and translation. Besides, the regulation of the PI3K pathway by the PD-1/PD-L1 axis involves both tumor cells and the tumor immune microenvironment. Inhibitors targeting the PD-1/PD-L1 have been successfully applied in the treatment of gastrointestinal cancer and breast cancer. Meanwhile, drug resistance from alternative pathway activation also evidently affects clinical progress. To achieve a better therapeutic effect and quality of survival, the combination of multiple treatment modalities presents great research value. Here we reviewed the interaction between PD-1/PD-L1 and PI3K/AKT/mTOR pathway in the progression and treatment of NSCLC and summarized its clinical implications. The intracellular interactions between PD-1/PD-L1 and the PI3K/AKT/mTOR pathway indicate that PD-1/PD-L1 inhibitors have a wide range of potential applications. And we presented the mechanism for combining therapy with monoclonal antibody PD-1/PD-L1 and PI3K/AKT/mTOR inhibitors in this review, to broaden the therapies for NSCLC.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Songqing Fan
- ✉ Corresponding author: Songqing Fan, Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China. E-mail address:
| |
Collapse
|
14
|
Kumar S, Chatterjee M, Ghosh P, Ganguly KK, Basu M, Ghosh MK. Targeting PD-1/PD-L1 in cancer immunotherapy: an effective strategy for treatment of triple-negative breast cancer (TNBC) patients. Genes Dis 2022. [DOI: 10.1016/j.gendis.2022.07.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022] Open
|
15
|
Expression and Clinical Significance of CMTM6 and PD-L1 in Triple-Negative Breast Cancer. BIOMED RESEARCH INTERNATIONAL 2022; 2022:8118909. [PMID: 35845949 PMCID: PMC9283057 DOI: 10.1155/2022/8118909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/15/2022] [Accepted: 06/21/2022] [Indexed: 01/02/2023]
Abstract
The CKLF-like MARVEL transmembrane domain containing 6 (CMTM6) plays an extremely important role of the programed death receptor ligand-1 (PD-L1) protein. Our study is aimed at investigating the expression of CMTM6 and PD-L1 proteins in triple-negative breast cancer and their correlation with the clinical pathological data of patients. We selected 89 cases of triple-negative breast cancer and 62 cases of normal breast tissue specimens. Immunohistochemical methods were used to detect the expression levels of CMTM6 and PD-L1 and to carefully study differences in their expression. The expression of CMTM6 and PD-L1 in TNBC was higher than that in normal breast tissue, and the expression of the two was positively correlated (p < 0.05). In TNBC, CMTM6 expression is positively correlated with tumor size, lymph node metastasis, Ki67 proliferation index, and TNM stage (p < 0.05). PD-L1 expression is positively correlated with tumor size, lymph node metastasis, Ki67 proliferation index, TNM stage, and vascular infiltration (p < 0.05). Kaplan-Meier analysis showed that the positive expression of CMTM6 and PD-L1 had no correlation with the survival rate of patients (p > 0.05). According to KM-plotter, we found that a higher CMTM6 expression was positively related with relapse-free survival rate of patients (p < 0.05). A higher PD-L1 expression was positively correlated with relapse-free, overall, and distant metastasis survival rate of patients (p < 0.05). In timer database, we found a positive correlation between the expression of CMTM6 and PD-L1 in triple-negative breast cancer. Both CMTM6 and PD-L1 are highly expressed in TNBC, and their expressions are positively related. In the future, the two gene might become targets for the treatment of TNBC, providing a basis of clinical treatment of TNBC.
Collapse
|
16
|
Mohan N, Agrawal A, Shen Y, Winarski KL, Endo Y, Dokmanovic M, Schmiel D, Zheng J, Rotstein DS, Pelosof LC, Wu WJ. Comparative Characterization of Different Molecular Formats of Bispecific Antibodies Targeting EGFR and PD-L1. Pharmaceutics 2022; 14:pharmaceutics14071381. [PMID: 35890277 PMCID: PMC9325241 DOI: 10.3390/pharmaceutics14071381] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/23/2022] [Accepted: 06/27/2022] [Indexed: 02/05/2023] Open
Abstract
We generated two IgG1-like bispecific antibodies (BsAbs) with different molecular formats, symmetrical DVD-Ig and asymmetrical knob-in-hole (KIH), targeting the same antigens, EGFR and PD-L1 (designated as anti-EGFR/PD-L1). We performed the physiochemical and biological characterization of these two formats of anti-EGFR/PD-L1 BsAbs and compared some key quality attributes and biological activities of these two formats of BsAbs. Physiochemical binding characterization data demonstrated that both formats bound EGFR and PD-L1. However, the binding affinity of the KIH format was weaker than the DVD-Ig format in Biacore binding assays. In contrast, both DVD-Ig and KIH BsAbs had similar ELISA and cell surface binding activities, comparable to mAbs. Triple-negative breast cancer (TNBC) cells and a xenograft model were used to test the potency of BsAbs and other biological activities. Results showed that anti-EGFR/PD-L1 BsAbs exhibited in vitro and in vivo antitumor proliferation activity, but there was a difference in the potencies of the respective BsAb formats (DVD-Ig and KIH) when different cells or assays were used. This study provides evidence that the potency of the BsAbs targeting the same antigens can be affected by the respective molecular features, and selection of appropriate cell lines and assays is critically important for the assay development and potency testing of BsAbs.
Collapse
Affiliation(s)
- Nishant Mohan
- Division of Biotechnology Review and Research 1, Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA; (N.M.); (A.A.); (Y.S.); (K.L.W.); (Y.E.); (M.D.); (D.S.)
| | - Atul Agrawal
- Division of Biotechnology Review and Research 1, Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA; (N.M.); (A.A.); (Y.S.); (K.L.W.); (Y.E.); (M.D.); (D.S.)
| | - Yi Shen
- Division of Biotechnology Review and Research 1, Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA; (N.M.); (A.A.); (Y.S.); (K.L.W.); (Y.E.); (M.D.); (D.S.)
| | - Katie L. Winarski
- Division of Biotechnology Review and Research 1, Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA; (N.M.); (A.A.); (Y.S.); (K.L.W.); (Y.E.); (M.D.); (D.S.)
| | - Yukinori Endo
- Division of Biotechnology Review and Research 1, Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA; (N.M.); (A.A.); (Y.S.); (K.L.W.); (Y.E.); (M.D.); (D.S.)
| | - Milos Dokmanovic
- Division of Biotechnology Review and Research 1, Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA; (N.M.); (A.A.); (Y.S.); (K.L.W.); (Y.E.); (M.D.); (D.S.)
| | - Deborah Schmiel
- Division of Biotechnology Review and Research 1, Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA; (N.M.); (A.A.); (Y.S.); (K.L.W.); (Y.E.); (M.D.); (D.S.)
| | - Jiwen Zheng
- Division of Biology, Chemistry and Materials Science, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA;
| | - David S. Rotstein
- Division of Compliance, Office of Surveillance and Compliance, Center for Veterinary Medicine, U.S. Food and Drug Administration, Derwood, MD 20855, USA;
| | - Lorraine C. Pelosof
- Division of Oncology 3, Office of Oncologic Diseases, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA;
| | - Wen Jin Wu
- Division of Biotechnology Review and Research 1, Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA; (N.M.); (A.A.); (Y.S.); (K.L.W.); (Y.E.); (M.D.); (D.S.)
- Correspondence: ; Tel.: +1-240-402-6715
| |
Collapse
|
17
|
Uchimiak K, Badowska-Kozakiewicz AM, Sobiborowicz-Sadowska A, Deptała A. Current State of Knowledge on the Immune Checkpoint Inhibitors in Triple-Negative Breast Cancer Treatment: Approaches, Efficacy, and Challenges. Clin Med Insights Oncol 2022; 16:11795549221099869. [PMID: 35721387 PMCID: PMC9201309 DOI: 10.1177/11795549221099869] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 04/19/2022] [Indexed: 12/12/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive breast cancer subtype with limited treatment options. Recently, there has been a growing interest in immunotherapy with immune checkpoint inhibitors (ICIs) in TNBC, leading to extensive preclinical and clinical research. This review summarizes the current state of knowledge on ICIs efficacy and their predictive markers in TNBC and highlights the areas where the data are still limited. Currently, the only approved ICI-based regimen for TNBC is pembrolizumab with chemotherapy. Its advantage over chemotherapy alone was confirmed for non-metastatic TNBC regardless of programmed death-ligand 1 (PD-L1) expression (KEYNOTE-522) and for metastatic, PD-L1-positive TNBC (KEYNOTE-355). Pembrolizumab's efficacy was also evaluated in monotherapy, or in combination with niraparib and radiation therapy, showing potential efficacy and acceptable safety profile in phase 2 clinical trials. Atezolizumab + nab-paclitaxel increased the overall survival (OS) over placebo + nab-paclitaxel in early TNBC, regardless of PD-L1 status (IMpassion031). In IMpassion130 (untreated, advanced TNBC), the OS improvement was not statistically significant in the intention-to-treat population but clinically meaningful in the PD-L1 positive cohort. The durvalumab-anthracycline combination showed an increased response durability over placebo anthracycline in early TNBC (GeparNuevo). Several phase 1 clinical trials also showed a potential efficacy of atezolizumab and avelumab monotherapy in metastatic TNBC. ICIs appear to be applicable in both neoadjuvant and adjuvant settings, and are both pretreated and previously untreated patients. Further research is necessary to determine the most beneficial drug combinations and optimize patient selection. It is essential to identify the predictive markers for ICIs and factors affecting their expression.
Collapse
Affiliation(s)
- Katarzyna Uchimiak
- Students’ Scientific Organization of
Cancer Cell Biology, Department of Cancer Prevention, Medical University of Warsaw,
Warsaw, Poland
| | | | - Aleksandra Sobiborowicz-Sadowska
- Students’ Scientific Organization of
Cancer Cell Biology, Department of Cancer Prevention, Medical University of Warsaw,
Warsaw, Poland
| | - Andrzej Deptała
- Department of Cancer Prevention,
Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
18
|
Li Q, Chen C, Kong J, Li L, Li J, Huang Y. Stimuli-responsive nano vehicle enhances cancer immunotherapy by coordinating mitochondria-targeted immunogenic cell death and PD-L1 blockade. Acta Pharm Sin B 2022; 12:2533-2549. [PMID: 35646521 PMCID: PMC9136536 DOI: 10.1016/j.apsb.2021.11.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/03/2021] [Accepted: 10/20/2021] [Indexed: 12/26/2022] Open
Abstract
Induction of immunogenic cell death promotes antitumor immunity against cancer. However, majority of clinically-approved drugs are unable to elicit sufficient ICD. Here, our study revealed that mitochondria-targeted delivery of doxorubicin (DOX) massively amplified ICD via substantial generation of reactive oxygen species (ROS) after mitochondrial damage. The underlying mechanism behind increased ICD was further demonstrated to be ascribed to two pathways: (1) ROS elevated endoplasmic reticulum (ER) stress, leading to surface exposure of calreticulin; (2) ROS promoted release of various mitochondria-associated damage molecules including mitochondrial transcription factor A. Nevertheless, adaptive upregulation of PD-L1 was found after such ICD-inducing treatment. To overcome such immunosuppressive feedback, we developed a tumor stimuli-responsive nano vehicle to simultaneously exert mitochondrial targeted ICD induction and PD-L1 blockade. The nano vehicle was self-assembled from ICD-inducing copolymer and PD-L1 blocking copolymer, and possessed long-circulating property which contributed to better tumor accumulation and mitochondrial targeting. As a result, the nano vehicle remarkably activated antitumor immune responses and exhibited robust antitumor efficacy in both immunogenic and non-immunogenic tumor mouse models.
Collapse
|
19
|
Jabbarzadeh Kaboli P, Luo S, Chen Y, Jomhori M, Imani S, Xiang S, Wu Z, Li M, Shen J, Zhao Y, Wu X, Hin Cho C, Xiao Z. Pharmacotranscriptomic profiling of resistant triple-negative breast cancer cells treated with lapatinib and berberine shows upregulation of PI3K/Akt signaling under cytotoxic stress. Gene X 2022; 816:146171. [PMID: 35026293 DOI: 10.1016/j.gene.2021.146171] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 12/05/2021] [Accepted: 12/13/2021] [Indexed: 11/27/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is the most incurable type of breast cancer, accounting for 15-20% of breast cancer cases. Lapatinib is a dual tyrosine kinase inhibitor targeting EGFR and Her2, and berberine (BBR) is a plant-based alkaloid suggested to inhibit several cancer signaling pathways. We previously reported that lapatinib activates the Akt oncoprotein in MDA-MB231 TNBC cells. The present study determined the mechanism(s) of Akt activation in response to lapatinib, BBR, and capivasertib (Akt inhibitor) as well as the role of Akt signaling in chemoresistance in TNBC cells. Genetic profiles of 10 TNBC cell lines and patients were analyzed using datasets obtained from Gene Expression Omnibus and The Cancer Genome Atlas Database. Then, the effects of lapatinib, BBR, and capivasertib on treated MDA-MB231 and MCF-7 cell lines were studied using cytotoxicity, immunoblot, and RNA-sequencing analyses. For further confirmation, we also performed real-time PCR for genes associated with PI3K signaling. MDA-MB231 and MCF-7 cell lines were both strongly resistant to capivasertib largely due to significant Akt activation in both breast cancer cell lines, while lapatinib and BBR only enhanced Akt signaling in MDA-MB231 cells. Next-generation sequencing, functional enrichment analysis, and immunoblot revealed downregulation of CDK6 and DNMT1 in response to lapatinib and BBR lead to a decrease in cell proliferation. Expression of placental, fibroblast growth factor, and angiogenic biomarker genes, which are significantly associated with Akt activation and/or dormancy in breast cancer cells, was significantly upregulated in TNBC cells treated with lapatinib and BBR. Lapatinib and BBR activate Akt through upregulation of alternative signaling, which lead to chemoresistance in TNBC cell. In addition, lapatinib overexpresses genes related to PI3K signaling in resistant TNBC cell model.
Collapse
Affiliation(s)
- Parham Jabbarzadeh Kaboli
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, PR China; Graduate Institute of Biomedical Sciences, Research Center for Cancer Biology, and Center for Molecular Medicine, China Medical University, Taichung, Taiwan, ROC.
| | - Shuang Luo
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, PR China
| | - Yao Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, PR China; South Sichuan Institution for Translational Medicine, Luzhou 646000, Sichuan, PR China
| | - Masume Jomhori
- Department of Biotechnology Research, Razi Vaccine and Serum Research Institute, Mashhad, Iran
| | - Saber Imani
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, PR China
| | - Shixin Xiang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, PR China; South Sichuan Institution for Translational Medicine, Luzhou 646000, Sichuan, PR China
| | - Zhigui Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, PR China; South Sichuan Institution for Translational Medicine, Luzhou 646000, Sichuan, PR China; Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, PR China
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, PR China; South Sichuan Institution for Translational Medicine, Luzhou 646000, Sichuan, PR China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, PR China; South Sichuan Institution for Translational Medicine, Luzhou 646000, Sichuan, PR China
| | - Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, PR China; South Sichuan Institution for Translational Medicine, Luzhou 646000, Sichuan, PR China
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, PR China; South Sichuan Institution for Translational Medicine, Luzhou 646000, Sichuan, PR China
| | - Chi Hin Cho
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, PR China; South Sichuan Institution for Translational Medicine, Luzhou 646000, Sichuan, PR China
| | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, PR China; South Sichuan Institution for Translational Medicine, Luzhou 646000, Sichuan, PR China.
| |
Collapse
|
20
|
Abstract
The paradigm of surface-expressed programmed death ligand 1 (PDL1) signalling to immune cell programmed death 1 (PD1) to inhibit antitumour immunity has helped to develop effective and revolutionary immunotherapies using antibodies blocking these cell-extrinsic interactions. The recent discovery of cancer cell-intrinsic PDL1 signals has broadened understanding of pathologic tumour PDL1 signal consequences that now includes control of tumour growth and survival pathways, stemness, immune effects, DNA damage responses and gene expression regulation. Many such effects are PD1-independent. These insights demonstrate that the prevailing cell-extrinsic PDL1 signalling paradigm is useful, but incomplete in important respects. This Perspective discusses historical and recent advances in understanding cancer cell-intrinsic PDL1 signals, mechanisms for signal controls and important immunopathologic consequences including resistance to cytotoxic agents, targeted small molecules and immunotherapies. Cancer cell-intrinsic PDL1 signals present novel drug discovery targets and also have potential as reliable treatment response biomarkers. Cancer cell-intrinsic PD1 signals and cell-intrinsic PDL1 signals in non-cancer cells are discussed briefly, as are PDL1 signals from soluble and vesicle-bound PDL1 and PDL1 isoforms. We conclude with suggestions for addressing the most pressing challenges and opportunities in this rapidly developing field.
Collapse
Affiliation(s)
- Anand V R Kornepati
- Graduate School of Biomedical Sciences, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Ratna K Vadlamudi
- Graduate School of Biomedical Sciences, University of Texas Health San Antonio, San Antonio, TX, USA
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX, USA
- MD Anderson Cancer Center, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Tyler J Curiel
- Graduate School of Biomedical Sciences, University of Texas Health San Antonio, San Antonio, TX, USA.
- MD Anderson Cancer Center, University of Texas Health San Antonio, San Antonio, TX, USA.
- Department of Medicine, University of Texas Health San Antonio, San Antonio, TX, USA.
| |
Collapse
|
21
|
Chen Y, Wang L, Zheng M, Zhu C, Wang G, Xia Y, Blumenthal EJ, Mao W, Wan Y. Engineered extracellular vesicles for concurrent Anti-PDL1 immunotherapy and chemotherapy. Bioact Mater 2022; 9:251-265. [PMID: 34820569 PMCID: PMC8586263 DOI: 10.1016/j.bioactmat.2021.07.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/12/2021] [Accepted: 07/13/2021] [Indexed: 12/13/2022] Open
Abstract
Immune checkpoint inhibitors (ICI) targeting PD-1/PD-L1 have been approved for the treatment of a variety of cancers. However, the efficacy of antibody-based ICIs could be further improved by mitigating anti-drug antibodies, proteolytic cleavage, and on-target off-tumor toxicity. One strategy for accomplishing this is through the use of extracellular vesicles (EVs), cell derived submicron vesicles with many unique properties. We constructed an engineered MDA-MB-231 cell line for harvesting EVs. This was accomplished by overexpressing a high-affinity variant human PD-1 protein (havPD-1), while simultaneously knocking out intrinsic PD-L1 and beta-2 microglobulin. The engineered havPD-1 EVs reduced PD-L1 overexpressing cancer cell proliferation and induced cellular apoptosis. Moreover, the EVs were shown to efficiently block PD-L1 mediated T cell suppression. Meanwhile antibody-dependent cellular cytotoxicity and complement-dependent cytotoxicity were not observed. The havPD-1 EVs treatment resulted in robust anti-tumor activity in both preventative co-implantation and therapeutic xenograft tumor models reconstituted with human T cells. The efficacy of the havPD-1 EVs was shown to be comparable to clinical anti-PD1 monoclonal antibodies. Additionally, loading the havPD-1 EVs with a potent PARP inhibitor was shown to further augment treatment efficacy. In brief, the engineered universal EVs harboring havPD-1 proteins can be used for cancer concurrent immunotherapy and chemotherapy.
Collapse
Affiliation(s)
- Yundi Chen
- The Pq Laboratory of Micro/Nano BiomeDx, Department of Biomedical Engineering, Binghamton University-SUNY, Binghamton, NY, 13902, United States
| | - Lixue Wang
- The Pq Laboratory of Micro/Nano BiomeDx, Department of Biomedical Engineering, Binghamton University-SUNY, Binghamton, NY, 13902, United States
- Department of Radiotherapy, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210003, China
| | - Mingfeng Zheng
- Department of Cardiothoracic Surgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu, 214023, China
| | - Chuandong Zhu
- The Pq Laboratory of Micro/Nano BiomeDx, Department of Biomedical Engineering, Binghamton University-SUNY, Binghamton, NY, 13902, United States
- Department of Radiotherapy, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210003, China
| | - Guosheng Wang
- The Pq Laboratory of Micro/Nano BiomeDx, Department of Biomedical Engineering, Binghamton University-SUNY, Binghamton, NY, 13902, United States
| | - Yiqiu Xia
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, United States
| | - Ethan J. Blumenthal
- The Pq Laboratory of Micro/Nano BiomeDx, Department of Biomedical Engineering, Binghamton University-SUNY, Binghamton, NY, 13902, United States
| | - Wenjun Mao
- Department of Cardiothoracic Surgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu, 214023, China
| | - Yuan Wan
- The Pq Laboratory of Micro/Nano BiomeDx, Department of Biomedical Engineering, Binghamton University-SUNY, Binghamton, NY, 13902, United States
| |
Collapse
|
22
|
Tumor Cell-Autonomous Pro-Metastatic Activities of PD-L1 in Human Breast Cancer Are Mediated by PD-L1-S283 and Chemokine Axes. Cancers (Basel) 2022; 14:cancers14041042. [PMID: 35205789 PMCID: PMC8870053 DOI: 10.3390/cancers14041042] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/10/2022] [Accepted: 02/11/2022] [Indexed: 12/21/2022] Open
Abstract
Simple Summary Triple-negative breast cancer (TNBC) is an aggressive disease that responds in a limited manner to immune checkpoint blockades targeting the PD-L1/PD-1 axis, suggesting that PD-L1 potentiates TNBC progression via pathways not related to immune suppression. We demonstrated that, in human breast cancer cells, PD-L1 expression increased in a cell-autonomous manner tumor cell growth, invasion and release of pro-metastatic factors; these activities were elevated by exposure to PD-1 and were markedly impaired in S283-mutated PD-L1-expressing cells. Invasion of WT-PD-L1-expressing TNBC cells depended on autocrine chemokine circuits, involving CXCR1/2, CCR2, CCR5 and their ligands. In T cell-deficient mice, WT-PD-L1 exhibited increased tumor growth and metastasis by TNBC cells, whereas S283A-PD-L1-expressing cells showed a very poor tumorigenic and metastatic profile. These findings on cell-autonomous and PD-1-induced pro-metastatic activities of PD-L1 in cancer cells suggest that treatments targeting PD-L1 could improve the efficacy of immune-targeting checkpoint inhibitors, e.g., anti-PD-1 or anti-CTLA-4 in TNBC. Abstract Therapies targeting the PD-L1/PD-1 axis have recently been introduced to triple-negative breast cancer (TNBC) with limited efficacy, suggesting that this axis promotes tumor progression through mechanisms other than immune suppression. Here, we over-expressed WT-PD-L1 in human TNBC cells (express endogenous PD-L1) and in luminal-A breast cancer cells (no endogenous PD-L1 expression) and demonstrated that cell-autonomous PD-L1 activities lead to increased tumor cell growth, invasion and release of pro-metastatic factors (CXCL8, sICAM-1, GM-CSF). These activities were promoted by PD-1 and were inhibited by mutating S283 in PD-L1. Invasion of WT-PD-L1-cells required signaling by chemokine receptors CXCR1/2, CCR2 and CCR5 through autocrine circuits involving CXCL8, CCL2 and CCL5. Studies with T cell-deficient mice demonstrated that cell-autonomous WT-PD-L1 activities in TNBC cells increased tumor growth and metastasis compared to knock-out (KO)-PD-L1-cells, whereas S283A-PD-L1-expressing cells had minimal ability to form tumors and did not metastasize. Overall, our findings reveal autonomous and PD-1-induced tumor-promoting activities of PD-L1 that depend on S283 and on chemokine circuits. These results suggest that TNBC patients whose tumors express PD-L1 could benefit from therapies that prevent immune suppression by targeting PD-1/CTLA-4, alongside with antibodies to PD-L1, which would allow maximal impact by mainly targeting the cancer cells.
Collapse
|
23
|
The multi-specific V H-based Humabody CB213 co-targets PD1 and LAG3 on T cells to promote anti-tumour activity. Br J Cancer 2021; 126:1168-1177. [PMID: 34969998 PMCID: PMC9023588 DOI: 10.1038/s41416-021-01684-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 11/25/2021] [Accepted: 12/21/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Improving cancer immunotherapy long-term clinical benefit is a major priority. It has become apparent that multiple axes of immune suppression restrain the capacity of T cells to provide anti-tumour activity including signalling through PD1/PD-L1 and LAG3/MHC-II. METHODS CB213 has been developed as a fully human PD1/LAG3 co-targeting multi-specific Humabody composed of linked VH domains that avidly bind and block PD1 and LAG3 on dual-positive T cells. We present the preclinical primary pharmacology of CB213: biochemistry, cell-based function vs. immune-suppressive targets, induction of T cell proliferation ex vivo using blood obtained from NSCLC patients, and syngeneic mouse model anti-tumour activity. CB213 pharmacokinetics was assessed in cynomolgus macaques. RESULTS CB213 shows picomolar avidity when simultaneously engaging PD1 and LAG3. Assessing LAG3/MHC-II or PD1/PD-L1 suppression individually, CB213 preferentially counters the LAG3 axis. CB213 showed superior activity vs. αPD1 antibody to induce ex vivo NSCLC patient T cell proliferation and to suppress tumour growth in a syngeneic mouse tumour model, for which both experimental systems possess PD1 and LAG3 suppressive components. Non-human primate PK of CB213 suggests weekly clinical administration. CONCLUSIONS CB213 is poised to enter clinical development and, through intercepting both PD1 and LAG3 resistance mechanisms, may benefit patients with tumours escaping front-line immunological control.
Collapse
|
24
|
Pan J, Qiao Y, Chen C, Zang H, Zhang X, Qi F, Chang C, Yang F, Sun M, Lin S, Tang Q, Li L, Wang M, Wu M, Liu Y, Lai C, Chen J, Chen G. USP5 facilitates non-small cell lung cancer progression through stabilization of PD-L1. Cell Death Dis 2021; 12:1051. [PMID: 34741014 PMCID: PMC8571306 DOI: 10.1038/s41419-021-04356-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 09/15/2021] [Accepted: 10/05/2021] [Indexed: 02/05/2023]
Abstract
PD-L1(CD274) is a well-known immunosuppressive molecule, which confers immunoescape features to cancer cells and has become one of the major targets in cancer immunotherapies. Understanding the regulatory mechanisms that control PD-L1 protein expression is important for guiding immune checkpoint blockade therapy. Here, we showed that ubiquitin specific peptidase 5 (USP5) was a novel PD-L1 deubiquitinase in non-small cell lung cancer (NSCLC) cells. USP5 directly interacted with PD-L1 and deubiquitinated PD-L1, therefore enhances PD-L1 protein stability. Meanwhile, USP5 protein levels were highly elevated and positively correlated to PD-L1 levels in NSCLC tissues, and were closely correlated with poor prognosis of these patients. In addition, knockdown of USP5 retarded tumor growth in the Lewis lung carcinoma mouse model. Thus, we identified that USP5 was a new regulator of PD-L1 and targeting USP5 is a promising strategy for cancer therapy.
Collapse
Affiliation(s)
- Jinghua Pan
- Department of Gynecology, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, 511518, Guangdong, P.R. China
- Department of Medical Biochemistry, Urology and General Surgery, School of Medicine and The First Affiliated Hospital, Jinan University, 510632, Guangzhou, P. R. China
| | - Yiting Qiao
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, NHC Key Laboratory of Combined Multi-organ Transplantation, First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, P. R. China
| | - Congcong Chen
- Department of Medical Biochemistry, Urology and General Surgery, School of Medicine and The First Affiliated Hospital, Jinan University, 510632, Guangzhou, P. R. China
| | - Hongjing Zang
- Department of Pathology, The Second Xiangya Hospital, Central South University, 410011, Changsha, P.R. China
| | - Xiaojing Zhang
- Department of Gynecology, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, 511518, Guangdong, P.R. China
| | - Feng Qi
- Department of Medical Biochemistry, Urology and General Surgery, School of Medicine and The First Affiliated Hospital, Jinan University, 510632, Guangzhou, P. R. China
| | - Cunjie Chang
- College of Pharmacy, School of Medicine, Department of Hepatology, Institute of Hepatology and Metabolic Diseases, the Affiliated Hospital of Hangzhou Normal University, Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, 311121, Hangzhou, Zhejiang, P.R. China
| | - Fan Yang
- College of Pharmacy, School of Medicine, Department of Hepatology, Institute of Hepatology and Metabolic Diseases, the Affiliated Hospital of Hangzhou Normal University, Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, 311121, Hangzhou, Zhejiang, P.R. China
| | - Mengqing Sun
- College of Pharmacy, School of Medicine, Department of Hepatology, Institute of Hepatology and Metabolic Diseases, the Affiliated Hospital of Hangzhou Normal University, Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, 311121, Hangzhou, Zhejiang, P.R. China
| | - Shengbin Lin
- Department of Medical Biochemistry, Urology and General Surgery, School of Medicine and The First Affiliated Hospital, Jinan University, 510632, Guangzhou, P. R. China
| | - Quandong Tang
- Department of Pathophysiology, Shantou University Medical College, 515041, Shantou, Guangdong, P.R. China
| | - Lina Li
- College of Pharmacy, School of Medicine, Department of Hepatology, Institute of Hepatology and Metabolic Diseases, the Affiliated Hospital of Hangzhou Normal University, Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, 311121, Hangzhou, Zhejiang, P.R. China
| | - Menglan Wang
- College of Pharmacy, School of Medicine, Department of Hepatology, Institute of Hepatology and Metabolic Diseases, the Affiliated Hospital of Hangzhou Normal University, Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, 311121, Hangzhou, Zhejiang, P.R. China
| | - Minjie Wu
- College of Pharmacy, School of Medicine, Department of Hepatology, Institute of Hepatology and Metabolic Diseases, the Affiliated Hospital of Hangzhou Normal University, Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, 311121, Hangzhou, Zhejiang, P.R. China
| | - Yongzhu Liu
- Department of Gynecology, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, 511518, Guangdong, P.R. China.
| | - Caiyong Lai
- Department of Medical Biochemistry, Urology and General Surgery, School of Medicine and The First Affiliated Hospital, Jinan University, 510632, Guangzhou, P. R. China.
| | - Jianxiang Chen
- College of Pharmacy, School of Medicine, Department of Hepatology, Institute of Hepatology and Metabolic Diseases, the Affiliated Hospital of Hangzhou Normal University, Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, 311121, Hangzhou, Zhejiang, P.R. China.
| | - Guo Chen
- Department of Medical Biochemistry, Urology and General Surgery, School of Medicine and The First Affiliated Hospital, Jinan University, 510632, Guangzhou, P. R. China.
- School of Biopharmacy, China Pharmaceutical University, 211198, Nanjing, P.R. China.
| |
Collapse
|
25
|
Kaboli PJ, Imani S, Jomhori M, Ling KH. Chemoresistance in breast cancer: PI3K/Akt pathway inhibitors vs the current chemotherapy. Am J Cancer Res 2021; 11:5155-5183. [PMID: 34765318 PMCID: PMC8569340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 06/12/2021] [Indexed: 06/13/2023] Open
Abstract
Breast cancer is the most prevalent type of cancer among women. Several types of drugs, targeting the specific proteins expressed on the breast cancer cell surface (such as receptor tyrosine kinases and immune checkpoint regulators) and proteins involved in cell cycle and motility (including cyclin-dependent kinases, DNA stabilisers, and cytoskeleton modulators) are approved for different subtypes of breast cancer. However, breast cancer also has a poor response to conventional chemotherapy due to intrinsic and acquired resistance, and an Akt fingerprint is detectable in most drug-resistant cases. Overactivation of Akt and its upstream and downstream regulators in resistant breast cancer cells is considered a major potential target for novel anti-cancer therapies, suggesting that Akt signalling acts as a cellular mechanism against chemotherapy. The present review has shown that sustained activation of Akt results in resistance to different types of chemotherapy. Akt signalling plays a cellular defence role against chemotherapy and (1) enhances multi-drug resistance, (2) increases reactive oxygen species at breast tumor microenvironment, (3) enhances anaerobic metabolism, (4) inhibits the tricarboxylic cycle, (5) promotes PD-L1 upregulation, (6) inhibits apoptosis, (7) increases glucose uptake, and more importantly (8) recruits and interconnects the plasma membrane, nucleus, endoplasmic reticulum, and mitochondria to hijack breast cancer cells and rescue these cells from chemotherapy. Therefore, Akt signalling is considered a cellular defence mechanism employed against chemotherapeutic effects. In addition, interfering roles of PI3K/Akt signalling on the current cytotoxic and molecularly targeted therapy as well as immunotherapy of breast cancer are discussed with a clinical approach. Although, alpelisib, a PIK3CA inhibitor, is the only PI3K/Akt pathway inhibitor approved for breast cancer, we also highlight well-evaluated inhibitors of PI3K/Akt signalling based on different subtypes of breast cancer, which are under clinical trials whether as monotherapy or in combination with other types of chemotherapy.
Collapse
Affiliation(s)
- Parham Jabbarzadeh Kaboli
- Graduate Institute of Biomedical Sciences, Research Center for Cancer Biology, and Center for Molecular Medicine, China Medical UniversityTaichung 404, Taiwan
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra MalaysiaSerdang, Selangor 43400, Malaysia
| | - Saber Imani
- Department of Oncology, The Affiliated Hospital of Southwest Medical UniversityLuzhou, Sichuan 646000, P. R. China
| | - Masume Jomhori
- Department of Biotechnology Research, Razi Vaccine and Serum Research InstituteMashhad, Iran
| | - King-Hwa Ling
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra MalaysiaSerdang, Selangor 43400, Malaysia
- Department of Genetics, Harvard Medical SchoolBoston, MA 02115, USA
| |
Collapse
|
26
|
Merikhian P, Eisavand MR, Farahmand L. Triple-negative breast cancer: understanding Wnt signaling in drug resistance. Cancer Cell Int 2021; 21:419. [PMID: 34376211 PMCID: PMC8353874 DOI: 10.1186/s12935-021-02107-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/21/2021] [Indexed: 02/06/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is not as prevalent as hormone receptor or HER2-positive breast cancers and all receptor tests come back negative. More importantly, the heterogeneity and complexity of the TNBC on the molecular and clinical levels have limited the successful development of novel therapeutic strategies and led to intrinsic or developed resistance to chemotherapies and new therapeutic agents. Studies have demonstrated deregulation of Wnt/β-catenin signaling in tumorigenesis which plays decisive roles at the low survival rate of patients and facilitates resistance to currently existing therapies. This review summarizes mechanisms of Wnt/β-catenin signaling for resistance development in TNBC, the complex interaction between Wnt/β-catenin signaling, and the transactivated receptor tyrosine kinase (RTK) signaling pathways, lymphocytic infiltration, epithelial-mesenchymal transition (EMT), and induction of metastasis. Such associations and how these pathways interact in the development and progression of cancer have led to the careful analysis and development of new and effective combination therapies without generating significant toxicity and resistance.
Collapse
Affiliation(s)
- Parnaz Merikhian
- Recombinant protein department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, 146, South Gandhi Ave., Vanak Circus, Tehran, Iran
| | - Mohammad Reza Eisavand
- Recombinant protein department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, 146, South Gandhi Ave., Vanak Circus, Tehran, Iran
| | - Leila Farahmand
- Recombinant protein department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, 146, South Gandhi Ave., Vanak Circus, Tehran, Iran.
| |
Collapse
|
27
|
Abstract
Hypoxia is an important feature of the tumor microenvironment, and is closely associated with cell proliferation, angiogenesis, metabolism and the tumor immune response. All these factors can further promote tumor progression, increase tumor aggressiveness, enhance tumor metastatic potential and lead to poor prognosis. In this review, these effects of hypoxia on tumor biology will be discussed, along with their significance for tumor detection and treatment.
Collapse
Affiliation(s)
- Yue Li
- Department of Nuclear Medicine, The Second Clinical Medical College, Jinan University (12387Shenzhen People's Hospital), Shenzhen, Guangdong, China.,The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, China.,Clinical Medicine Postdoctoral Research Station, Jinan University, Guangzhou, Guangdong, China.,Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Long Zhao
- Department of Nuclear Medicine, The Second Clinical Medical College, Jinan University (12387Shenzhen People's Hospital), Shenzhen, Guangdong, China.,Clinical Medicine Postdoctoral Research Station, Jinan University, Guangzhou, Guangdong, China.,Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Xiao-Feng Li
- Department of Nuclear Medicine, The Second Clinical Medical College, Jinan University (12387Shenzhen People's Hospital), Shenzhen, Guangdong, China.,Clinical Medicine Postdoctoral Research Station, Jinan University, Guangzhou, Guangdong, China.,Southern University of Science and Technology, Shenzhen, Guangdong, China
| |
Collapse
|
28
|
Tooyserkani R, Rasaee MJ, Bandehpour M, W P M Löwik D. Novel anti-PD-L1 peptide selected from combinatorial phage library inhibits tumor cell growth and restores T-cell activity. J Drug Target 2021; 29:771-782. [PMID: 33478285 DOI: 10.1080/1061186x.2021.1879087] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
PD-L1 overexpression on tumour cells forms a protective shield against cytotoxic T-cell killing, which consequently leads to immune evasion. Engagement of PD-1 in tumour infiltrating T cells with PD-L1 results in an exhausted T-cell phenotype, thus preventing an effective immune response against tumour cells. In the present study, we employed phage display combinatorial peptide library to discover anti-PD-L1 peptides. The peptides discovered here, could computationally exhibit specific interactions with PD-L1 at residues with which PD-1 also interacts. Binding affinity and specificity of the peptides were examined by flow cytometry. Anti- tumour activity of peptides was also investigated using several cell-based assays. Surprisingly, we demonstrated that Pep-39 can inhibit PDL-1, and reduce MDA-MB-231, CT-26, and DU-145 cells survival. In co-culture experiments, Pep-39 restored proliferation of Jurkat cells cultured in the presence of MDA-MB-231 cells. In addition, Jurkat cells apoptosis was impeded, indicating blocking potential of Pep-39 against PD-1/PD-L1 interaction.
Collapse
Affiliation(s)
- Raheleh Tooyserkani
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Javad Rasaee
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mojgan Bandehpour
- Cellular & Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Dennis W P M Löwik
- Institute for Molecules and Materials, Radboud University Nijmegen, AJ Nijmegen, The Netherlands
| |
Collapse
|
29
|
Meleddu R, Deplano S, Maccioni E, Ortuso F, Cottiglia F, Secci D, Onali A, Sanna E, Angeli A, Angius R, Alcaro S, Supuran CT, Distinto S. Selective inhibition of carbonic anhydrase IX and XII by coumarin and psoralen derivatives. J Enzyme Inhib Med Chem 2021; 36:685-692. [PMID: 33602041 PMCID: PMC7899656 DOI: 10.1080/14756366.2021.1887171] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
A small library of coumarin and their psoralen analogues EMAC10157a-b-d-g and EMAC10160a-b-d-g has been designed and synthesised to investigate the effect of structural modifications on their inhibition ability and selectivity profile towards carbonic anhydrase isoforms I, II, IX, and XII. None of the new compounds exhibited activity towards hCA I and II isozymes. Conversely, both coumarin and psoralen derivatives were active against tumour associated isoforms IX and XII in the low micromolar or nanomolar range of concentration. These data further corroborate our previous findings on analogous derivatives, confirming that both coumarins and psoralens are interesting scaffolds for the design of isozyme selective hCA inhibitors.
Collapse
Affiliation(s)
- Rita Meleddu
- Department of Life and Environmental Sciences, University of Cagliari, Monserrato, Italy
| | - Serenella Deplano
- Department of Life and Environmental Sciences, University of Cagliari, Monserrato, Italy
| | - Elias Maccioni
- Department of Life and Environmental Sciences, University of Cagliari, Monserrato, Italy
| | - Francesco Ortuso
- Dipartimento di Scienze della Salute, Università Magna Graecia di Catanzaro, Catanzaro, Italy
| | - Filippo Cottiglia
- Department of Life and Environmental Sciences, University of Cagliari, Monserrato, Italy
| | - Daniela Secci
- Department of Life and Environmental Sciences, University of Cagliari, Monserrato, Italy
| | - Alessia Onali
- Department of Life and Environmental Sciences, University of Cagliari, Monserrato, Italy
| | - Erica Sanna
- Department of Life and Environmental Sciences, University of Cagliari, Monserrato, Italy
| | - Andrea Angeli
- Dipartimento NEUROFARBA, Sezione di Scienze Farmaceutiche, Università degli Studi di Firenze, Sesto Fiorentino, Italy
| | - Rossella Angius
- Laboratorio NMR e Tecnologie Bioanalitiche, Sardegna Ricerche, Pula, Italy
| | - Stefano Alcaro
- Dipartimento di Scienze della Salute, Università Magna Graecia di Catanzaro, Catanzaro, Italy
| | - Claudiu T Supuran
- Dipartimento NEUROFARBA, Sezione di Scienze Farmaceutiche, Università degli Studi di Firenze, Sesto Fiorentino, Italy
| | - Simona Distinto
- Department of Life and Environmental Sciences, University of Cagliari, Monserrato, Italy
| |
Collapse
|
30
|
Kalita B, Coumar MS. Deciphering molecular mechanisms of metastasis: novel insights into targets and therapeutics. Cell Oncol (Dordr) 2021; 44:751-775. [PMID: 33914273 DOI: 10.1007/s13402-021-00611-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 04/19/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The transition of a primary tumour to metastatic progression is driven by dynamic molecular changes, including genetic and epigenetic alterations. The metastatic cascade involves bidirectional interactions among extracellular and intracellular components leading to disintegration of cellular junctions, cytoskeleton reorganization and epithelial to mesenchymal transition. These events promote metastasis by reprogramming the primary cancer cell's molecular framework, enabling them to cause local invasion, anchorage-independent survival, cell death and immune resistance, extravasation and colonization of distant organs. Metastasis follows a site-specific pattern that is still poorly understood at the molecular level. Although various drugs have been tested clinically across different metastatic cancer types, it has remained difficult to develop efficacious therapeutics due to complex molecular layers involved in metastasis as well as experimental limitations. CONCLUSIONS In this review, a systemic evaluation of the molecular mechanisms of metastasis is outlined and the potential molecular components and their status as therapeutic targets and the associated pre-clinical and clinical agents available or under investigations are discussed. Integrative methods like pan-cancer data analysis, which can provide clinical insights into both targets and treatment decisions and help in the identification of crucial components driving metastasis such as mutational profiles, gene signatures, associated pathways, site specificities and disease-gene phenotypes, are discussed. A multi-level data integration of the metastasis signatures across multiple primary and metastatic cancer types may facilitate the development of precision medicine and open up new opportunities for future therapies.
Collapse
Affiliation(s)
- Bikashita Kalita
- Centre for Bioinformatics, School of Life Sciences, Pondicherry University, Kalapet, Pondicherry, 605014, India
| | - Mohane Selvaraj Coumar
- Centre for Bioinformatics, School of Life Sciences, Pondicherry University, Kalapet, Pondicherry, 605014, India.
| |
Collapse
|
31
|
Combined vaccine-immune-checkpoint inhibition constitutes a promising strategy for treatment of dMMR tumors. Cancer Immunol Immunother 2021; 70:3405-3419. [PMID: 33870463 PMCID: PMC8571220 DOI: 10.1007/s00262-021-02933-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 03/29/2021] [Indexed: 12/29/2022]
Abstract
Background Mlh1-knock-out-driven mismatch-repair-deficient (dMMR) tumors can be targeted immunologically. By applying therapeutic tumor vaccination, tumor growth is delayed but escape mechanisms evolve, including upregulation of immune-checkpoint molecules (LAG-3, PD-L1). To counteract immune escape, we investigated the therapeutic activity of a combined tumor vaccine-immune-checkpoint inhibitor therapy using α-PD-L1. Design In this trial, Mlh1-knock-out mice with established gastrointestinal tumors received single or thrice injections of α-PD-L1 monoclonal antibody clone 6E11 (2.5 mg/kg bw, q2w, i.v.) either alone or in combination with the vaccine. Longitudinal flow cytometry and PET/CT imaging studies were followed by ex vivo functional immunological and gene expression assays. Results 6E11 monotherapy slightly increased median overall survival (mOS: 6.0 weeks vs. control 4.0 weeks). Increasing the number of injections (n = 3) improved therapy outcome (mOS: 9.2 weeks) and was significantly boosted by combining 6E11 with the vaccine (mOS: 19.4 weeks vs. 10.2 weeks vaccine monotherapy). Accompanying PET/CT imaging confirmed treatment-induced tumor growth control, with the strongest inhibition in the combination group. Three mice (30%) achieved a complete remission and showed long-term survival. Decreased levels of circulating splenic and intratumoral myeloid-derived suppressor cells (MDSC) and decreased numbers of immune-checkpoint-expressing splenic T cells (LAG-3, CTLA-4) accompanied therapeutic effects. Gene expression and protein analysis of residual tumors revealed downregulation of PI3K/Akt/Wnt-and TGF-signaling, leading to T cell infiltration, reduced numbers of macrophages, neutrophils and MDSC. Conclusions By successful uncoupling of the PD-1/PD-L1 axis, we provide further evidence for the safe and successful application of immunotherapies to combat dMMR-driven malignancies that warrants further investigation. Supplementary Information The online version contains supplementary material available at 10.1007/s00262-021-02933-4.
Collapse
|
32
|
GBP5 Repression Suppresses the Metastatic Potential and PD-L1 Expression in Triple-Negative Breast Cancer. Biomedicines 2021; 9:biomedicines9040371. [PMID: 33916322 PMCID: PMC8066311 DOI: 10.3390/biomedicines9040371] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/25/2021] [Accepted: 03/30/2021] [Indexed: 12/31/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive breast cancer subtype because of its high metastatic potential. Immune evasion due to aberrant expression of programmed cell death ligand 1 (PD-L1) has also been reported recently in metastatic TNBC. However, the mechanism underlying metastatic progression and PD-L1 upregulation in TNBC is still largely unknown. Here, we found that guanylate binding protein 5 (GBP5) is expressed in higher levels in TNBC tissues than in non-TNBC and normal mammary tissues and serves as a poorer prognostic marker in breast cancer patients. Transwell cultivation indicated that GBP5 expression is causally related to cellular migration ability in the detected TNBC cell lines. Moreover, the computational simulation of the gene set enrichment analysis (GSEA) program against the GBP5 signature generated from its coexpression with other somatic genes in TNBC revealed that GBP5 upregulation may be associated with the activation of interferon gamma (IFN-γ)-responsive and NF-κB-related signaling cascades. In addition, we found that the coexpression of GBP5 with PD-L1 was significantly positive correlation in TNBC tissues. Robustly, our data showed that GBP5 knockdown in TNBC cells harboring a higher GBP5 level dramatically suppresses the number of migrated cells, the activity of IFN-γ/STAT1 and TNF-α/NF-κB signaling axes, and the expression of PD-L1. Importantly, the signature combining a higher GBP5 and PD-L1 level predicted the shortest time interval of brain metastasis in breast cancer patients. These findings not only uncover the oncogenic function of GBP5 but also provide a new strategy to combat metastatic/immunosuppressive TNBC by targeting GBP5 activity.
Collapse
|
33
|
Weiner-Gorzel K, Murphy M. Mitochondrial dynamics, a new therapeutic target for Triple Negative Breast Cancer. Biochim Biophys Acta Rev Cancer 2021; 1875:188518. [PMID: 33545296 DOI: 10.1016/j.bbcan.2021.188518] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 01/14/2021] [Accepted: 01/29/2021] [Indexed: 12/11/2022]
Abstract
Triple Negative Breast Cancer (TNBC) is an aggressive tumour with patients survival rarely exceeding five years. TNBC tumours are larger in size, more chemoresistant, highly proliferative and usually more enriched in stem and immune cells comparing to other breast cancer subtypes. Functionally, these changes are dependent on a high-quality mitochondrial pool. Mitochondrial health is constantly assessed and appropriately improved by mitochondrial dynamics (cycles of mitochondrial fusion and division). Recent advances in understanding of mitochondrial dynamics in TNBC has demonstrated its critical importance in tumour growth and metastasis. This review explores current knowledge of mitochondrial dynamics in TNBC and discusses targeting this pathway clinically to improve outcomes for patients.
Collapse
Affiliation(s)
- K Weiner-Gorzel
- Conway Institute, UCD School of Medicine, University College Dublin, Belfield, Dublin, Ireland; Department of General Medicine, St. Vincent University Hospital, Elm Park, Dublin, Ireland.
| | - M Murphy
- Conway Institute, UCD School of Medicine, University College Dublin, Belfield, Dublin, Ireland
| |
Collapse
|
34
|
Lv Y, Ma X, Du Y, Feng J. Understanding Patterns of Brain Metastasis in Triple-Negative Breast Cancer and Exploring Potential Therapeutic Targets. Onco Targets Ther 2021; 14:589-607. [PMID: 33519208 PMCID: PMC7837592 DOI: 10.2147/ott.s293685] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 01/06/2021] [Indexed: 12/13/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is a highly malignant subtype of breast cancer. High invasiveness and heterogeneity, as well as a lack of drug targets, are the main factors leading to poor prognosis. Brain metastasis (BM) is a serious event threatening the life of breast cancer patients, especially those with TNBC. Compared with that for hormone receptor-positive and HER2-positive breast cancers, TNBC-derived BM (TNBCBM) occurs earlier and more frequently, and has a worse prognosis. There is no standard treatment for BM to date, and one is urgently required. In this review, we discuss the current knowledge regarding the developmental patterns of TNBCBM, focusing on the key events in BM formation. Specifically, we consider (i) the nature and function of TNBC cells; (ii) how TNBC cells cross the blood–brain barrier and form a fenestrated, more permeable blood–tumor barrier; (iii) the biological characteristics of TNBCBM; and (iv) the infiltration and colonization of the central nervous system (CNS) by TNBC cells, including the establishment of premetastatic niches, immunosurveillance escape, and metabolic adaptations. We also discuss putative therapeutic targets and precision therapy with the greatest potential to treat TNBCBM, and summarize the relevant completed and ongoing clinical trials. These findings may provide new insights into the prevention and treatment of BM in TNBC patients.
Collapse
Affiliation(s)
- Yan Lv
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing 210009, People's Republic of China
| | - Xiao Ma
- Department of General Surgery, The Affiliated Zhongda Hospital of Southeast University, Nanjing 210009, People's Republic of China
| | - Yuxin Du
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing 210009, People's Republic of China
| | - Jifeng Feng
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing 210009, People's Republic of China
| |
Collapse
|
35
|
Liao Q, Zhou Y, Xia L, Cao D. Lipid Metabolism and Immune Checkpoints. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1316:191-211. [PMID: 33740251 DOI: 10.1007/978-981-33-6785-2_12] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Immune checkpoints are essential for the regulation of immune cell functions. Although the abrogation of immunosurveillance of tumor cells is known, the regulators of immune checkpoints are not clear. Lipid metabolism is one of the important metabolic activities in organisms. In lipid metabolism, a large number of metabolites produced can regulate the gene expression and activation of immune checkpoints through various pathways. In addition, increasing evidence has shown that lipid metabolism leads to transient generation or accumulation of toxic lipids that result in endoplasmic reticulum (ER) stress and then regulate the transcriptional and posttranscriptional modifications of immune checkpoints, including transcription, protein folding, phosphorylation, palmitoylation, etc. More importantly, the lipid metabolism can also affect exosome transportation of checkpoints and the degradation of checkpoints by affecting ubiquitination and lysosomal trafficking. In this chapter, we mainly empathize on the roles of lipid metabolism in the regulation of immune checkpoints, such as gene expression, activation, and degradation.
Collapse
Affiliation(s)
- Qianjin Liao
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.
| | - Yujuan Zhou
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Longzheng Xia
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Deliang Cao
- Department of Medical Microbiology, Immunology and Cell Biology, Simmons Cancer Institute, Southern Illinois University School of Medicine, Springfield, IL, USA
| |
Collapse
|
36
|
Chang H, Shin YW, Keam B, Kim M, Im SA, Lee ST. HLA-B27 association of autoimmune encephalitis induced by PD-L1 inhibitor. Ann Clin Transl Neurol 2020; 7:2243-2250. [PMID: 33031633 PMCID: PMC7664281 DOI: 10.1002/acn3.51213] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 08/26/2020] [Accepted: 09/12/2020] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVE While immune checkpoint inhibitors are increasingly used for various cancers, unpredictable immune-related adverse events (irAEs) such as autoimmune encephalitis is life-threatening. Here, we report an association between human leukocyte antigen (HLA) and atezolizumab-induced encephalitis. METHODS From an institutional prospective cohort for encephalitis, we identified patients with autoimmune encephalitis after the use of atezolizumab, a PD-L1 (programmed death-ligand 1) inhibitor, from August 2016 to September 2019 and analyzed their HLA genotypes. RESULTS A total of 290 patients received atezolizumab, and seven patients developed autoimmune encephalitis, and five of whom were enrolled for the analysis. The patients presented altered mentality, seizures, or myelitis. Three patients had the HLA-B*27:05 genotype in common (60%), which is significantly frequent given its low frequency in the general population (2.5%). After Bonferroni correction, HLA-B*27:05 was significantly associated with autoimmune encephalitis by atezolizumab (corrected P < 0.001, odds ratio 59, 95% CI = 9.0 ~ 386.9). INTERPRETATION Here we found that three in five patients with autoimmune encephalitis associated with atezolizumab had the rare HLA-B*27:05 genotype. Further systematic analyses in larger cohorts are necessary to investigate the value of HLA screening to prevent the life-threatening adverse events.
Collapse
Affiliation(s)
- Hyeyeon Chang
- Department of Neurology, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Neurology, Konyang University Hospital, Deajeon, Republic of Korea
| | - Yong-Won Shin
- Department of Neurology, Seoul National University Hospital, Seoul, Republic of Korea
- Center for Hospital Medicine, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Neurosurgery, Seoul National University Hospital, Seoul, Republic of Korea
| | - Bhumsuk Keam
- Department of Internal Medicine, Seoul National University Hospital, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Miso Kim
- Department of Internal Medicine, Seoul National University Hospital, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Seock-Ah Im
- Department of Internal Medicine, Seoul National University Hospital, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Soon-Tae Lee
- Department of Neurology, Seoul National University Hospital, Seoul, Republic of Korea
| |
Collapse
|
37
|
Hudson K, Cross N, Jordan-Mahy N, Leyland R. The Extrinsic and Intrinsic Roles of PD-L1 and Its Receptor PD-1: Implications for Immunotherapy Treatment. Front Immunol 2020; 11:568931. [PMID: 33193345 PMCID: PMC7609400 DOI: 10.3389/fimmu.2020.568931] [Citation(s) in RCA: 137] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 08/27/2020] [Indexed: 12/12/2022] Open
Abstract
Programmed death-ligand 1 (PD-L1) is an immune checkpoint inhibitor that binds to its receptor PD-1 expressed by T cells and other immune cells to regulate immune responses; ultimately preventing exacerbated activation and autoimmunity. Many tumors exploit this mechanism by overexpressing PD-L1 which often correlates with poor prognosis. Some tumors have also recently been shown to express PD-1. On tumors, PD-L1 binding to PD-1 on immune cells promotes immune evasion and tumor progression, primarily by inhibition of cytotoxic T lymphocyte effector function. PD-1/PD-L1-targeted therapy has revolutionized the cancer therapy landscape and has become the first-line treatment for some cancers, due to their ability to promote durable anti-tumor immune responses in select patients with advanced cancers. Despite this clinical success, some patients have shown to be unresponsive, hyperprogressive or develop resistance to PD-1/PD-L1-targeted therapy. The exact mechanisms for this are still unclear. This review will discuss the current status of PD-1/PD-L1-targeted therapy, oncogenic expression of PD-L1, the new and emerging tumor-intrinisic roles of PD-L1 and its receptor PD-1 and how they may contribute to tumor progression and immunotherapy responses as shown in different oncology models.
Collapse
Affiliation(s)
| | | | | | - Rebecca Leyland
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, United Kingdom
| |
Collapse
|
38
|
Zhang D, Xu X, Ye Q. Metabolism and immunity in breast cancer. Front Med 2020; 15:178-207. [PMID: 33074528 DOI: 10.1007/s11684-020-0793-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 04/17/2020] [Indexed: 12/12/2022]
Abstract
Breast cancer is one of the most common malignancies that seriously threaten women's health. In the process of the malignant transformation of breast cancer, metabolic reprogramming and immune evasion represent the two main fascinating characteristics of cancer and facilitate cancer cell proliferation. Breast cancer cells generate energy through increased glucose metabolism. Lipid metabolism contributes to biological signal pathways and forms cell membranes except energy generation. Amino acids act as basic protein units and metabolic regulators in supporting cell growth. For tumor-associated immunity, poor immunogenicity and heightened immunosuppression cause breast cancer cells to evade the host's immune system. For the past few years, the complex mechanisms of metabolic reprogramming and immune evasion are deeply investigated, and the genes involved in these processes are used as clinical therapeutic targets for breast cancer. Here, we review the recent findings related to abnormal metabolism and immune characteristics, regulatory mechanisms, their links, and relevant therapeutic strategies.
Collapse
Affiliation(s)
- Deyu Zhang
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Beijing, 100850, China
| | - Xiaojie Xu
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Beijing, 100850, China.
| | - Qinong Ye
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Beijing, 100850, China.
| |
Collapse
|
39
|
KRAS expression is a prognostic indicator and associated with immune infiltration in breast cancer. Breast Cancer 2020; 28:379-386. [PMID: 33067762 DOI: 10.1007/s12282-020-01170-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 10/01/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Breast cancer is the most common cancer and the leading cause of death among women. KRAS is known as an oncogene, its expression also associates with cancer prognosis. The purpose of this study was to investigate the prognostic value of KRAS expression in breast cancer and its relationship with immune infiltration. METHODS Firstly, the expression level and methylation of KRAS were analyzed. Then survival analysis was used to verify the prognostic capability of KRAS expression. After that, gene functional enrichment analysis was performed. The relationship between KRAS gene expression and immune infiltration was researched later. RESULTS The expression level of KRAS in breast cancer was increased (P = 2.2e-16). Tumor KRAS expression in the subtypes of basal-like, HER2-enriched, Luminal A and Luminal B were 1.64, 1.67, 1.51 and 1.42 times of normal, respectively. 13 methylation sites were different between tumor and normal tissues and associated with KRAS expression. Subsequently, Kaplan-Meier analysis suggested that the high KRAS expression group had a poor prognosis (P = 0.0028). In multivariate Cox regression analysis, KRAS expression was an independent prognostic indicator (HR = 1.353, 95% CI 1.009-1.814, P = 0.044). Gene Ontology (GO) analysis showed enrichment of epidermal growth associated pathways. Additionally, different KRAS expression levels represented different tumor immune infiltration status, which may be caused by the influence of the RAS/MAPK and RAS/PI3K pathways on the level of PD-L1. CONCLUSION This study suggests that KRAS expression can be used as a prognostic indicator of breast cancer, and it is closely related to tumor immune infiltration.
Collapse
|
40
|
Aghajani MJ, Yang T, Schmitz U, James A, McCafferty CE, de Souza P, Niles N, Roberts TL. Epithelial-to-mesenchymal transition and its association with PD-L1 and CD8 in thyroid cancer. Endocr Connect 2020; 9:1028-1041. [PMID: 33112841 PMCID: PMC7707834 DOI: 10.1530/ec-20-0268] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 09/28/2020] [Indexed: 12/12/2022]
Abstract
Programmed cell death-ligand 1 (PD-L1) has recently been shown to play a role in the regulation of epithelial-to-mesenchymal transition (EMT); however, the relationship between PD-L1 expression, EMT and the inflammatory tumour microenvironment has yet to be investigated in thyroid cancer. To address this issue, we examined the expression of CD8, PD-L1 and the EMT markers E-cadherin and vimentin in a cohort of 74 papillary thyroid cancer (PTC) patients and investigated the association of these with clinicopathologic characteristics and disease-free survival (DFS). The relationship between PD-L1 and EMT was further examined in three thyroid cancer cell lines via Western blot and live cell imaging. In order to expand our in vitro findings, the normalised gene expression profiles of 516 thyroid cancer patients were retrieved and analysed from The Cancer Genome Atlas (TCGA). PD-L1 positivity was significantly higher in PTC patients exhibiting a mesenchymal phenotype (P = 0.012). Kaplan-Meier analysis revealed that PD-L1 (P = 0.045), CD8 (P = 0.038) and EMT status (P = 0.038) were all significant predictors for DFS. Sub-analysis confirmed that the poorest DFS was evident in PD-L1 positive patients with EMT features and negative CD8 expression (P < 0.0001). IFN-γ treatment induced upregulation of PD-L1 and significantly promoted an EMT phenotype in two thyroid cancer cell lines. Our findings suggest that PD-L1 signalling may play a role in stimulating EMT in thyroid cancer. EMT, CD8 and PD-L1 expression may serve as valuable predictive biomarkers in patients with PTC.
Collapse
Affiliation(s)
- Marra Jai Aghajani
- Ingham Institute for Applied Medical Research, Liverpool, New South Wales, Australia
- School of Medicine, Western Sydney University, Campbelltown, New South Wales, Australia
- Correspondence should be addressed to M J Aghajani:
| | - Tao Yang
- School of Medicine, Western Sydney University, Campbelltown, New South Wales, Australia
- Saint Vincent’s Clinical School, UNSW Sydney, Sydney, Australia
- SydPath, Saint Vincent’s Hospital, Sydney, Australia
| | - Ulf Schmitz
- Computational BioMedicine Laboratory Centenary Institute, The University of Sydney, Camperdown, New South Wales, Australia
- Gene & Stem Cell Therapy Program Centenary Institute, The University of Sydney, Camperdown, New South Wales, Australia
- Faculty of Medicine & Health, The University of Sydney, Camperdown, New South Wales, Australia
| | - Alexander James
- Ingham Institute for Applied Medical Research, Liverpool, New South Wales, Australia
| | - Charles Eugenio McCafferty
- Ingham Institute for Applied Medical Research, Liverpool, New South Wales, Australia
- School of Medicine, Western Sydney University, Campbelltown, New South Wales, Australia
| | - Paul de Souza
- Ingham Institute for Applied Medical Research, Liverpool, New South Wales, Australia
- School of Medicine, Western Sydney University, Campbelltown, New South Wales, Australia
- School of Medicine, University of Wollongong, New South Wales, Australia
| | - Navin Niles
- Ingham Institute for Applied Medical Research, Liverpool, New South Wales, Australia
- School of Medicine, Western Sydney University, Campbelltown, New South Wales, Australia
- Department of Head & Neck Surgery, Liverpool Hospital, Liverpool, New South Wales, Australia
- Department of Clinical Medicine, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia
| | - Tara L Roberts
- Ingham Institute for Applied Medical Research, Liverpool, New South Wales, Australia
- School of Medicine, Western Sydney University, Campbelltown, New South Wales, Australia
- South West Sydney Clinical School, UNSW Sydney, Sydney, Australia
| |
Collapse
|
41
|
Wang LL, Huang WW, Huang J, Huang RF, Li NN, Hong Y, Chen ML, Wu F, Liu J. Protective effect of hsa-miR-570-3p targeting CD274 on triple negative breast cancer by blocking PI3K/AKT/mTOR signaling pathway. Kaohsiung J Med Sci 2020; 36:581-591. [PMID: 32311203 DOI: 10.1002/kjm2.12212] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 03/08/2020] [Indexed: 12/20/2022] Open
Abstract
To find out the role of hsa-miR-570-3p targeting CD274 in triple negative breast cancer (TNBC) via PI3K/AKT/mTOR signaling pathway. Hsa-miR-570-3p and CD274 expressions in 175 TNBC patients were detected by qRT-PCR and immunohistochemistry respectively. The human TNBC cell lines (MDA-MB-468 and MDA-MB-231) were used to verify the targeting relationship between hsa-miR-570-3p and CD274 via dual-luciferase reporter gene assay. Then, MDA-MB-468 and MDA-MB-231 cells were divided into Blank, miR-NC, miR-570-3p mimics, NC siRNA, CD274 siRNA, and miR-570-3p inhibitors + CD274 siRNA groups. Next, the biological activities of cells were detected by MTT, Cell-Light EdU, Annexin-V-FITC/PI, wound healing and Transwell invasion assays. Western blotting was conducted to detect protein expressions.MiR-570-3p expression was lower in tumor tissues than that in adjacent normal tissues, which was more obvious in CD274-positive TNBC patients, which targeted CD274 in TNBC cell lines. MiR-570-3p inhibited cell proliferation, invasion and migration, but induced cell apoptosis accompanying the upregulation of apoptotic proteins and downregulation of anti-apoptotic protein. CD274 siRNA had the similar results of miR-570-3p mimics, which could be reversed by miR-570-3p inhibitors. Besides, both miR-570-3p mimics and CD274 siRNA blocked PI3K/AKT/mTOR signaling pathway in TNBC cell lines. Hsa-miR-570-3p was downregulated and CD274 was upregulated in TNBC patients. Besides, hsa-miR-570-3p targeted CD274 to inhibit cell proliferation, invasion, migration, and induce cell apoptosis, which may be related to the suppression of PI3K/AKT/mTOR pathway.
Collapse
Affiliation(s)
- Li-Li Wang
- Department of Medical Oncology, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuzhou, Fujian Province, China
| | - Wei-Wei Huang
- Department of Medical Oncology, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuzhou, Fujian Province, China
| | - Jing Huang
- Department of Pharmacy, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuzhou, Fujian Province, China
| | - Rong-Fang Huang
- Department of Pathology, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuzhou, Fujian Province, China
| | - Na-Ni Li
- Department of Medical Oncology, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuzhou, Fujian Province, China
| | - Yi Hong
- Department of Medical Oncology, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuzhou, Fujian Province, China
| | - Mu-Lan Chen
- Department of Medical Oncology, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuzhou, Fujian Province, China
| | - Fan Wu
- Department of Medical Oncology, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuzhou, Fujian Province, China
| | - Jian Liu
- Department of Medical Oncology, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuzhou, Fujian Province, China
| |
Collapse
|
42
|
Chen C, Gu C, Ren Q, Ding F, Pan Q, Niu Y, Ma D, Wu L. lncRNA HEIH, an indicator of high malignancy and poor prognosis, functions as an oncogene in breast cancer. Mol Med Rep 2020; 22:2869-2877. [PMID: 32945377 PMCID: PMC7453601 DOI: 10.3892/mmr.2020.11355] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 06/12/2020] [Indexed: 01/16/2023] Open
Abstract
Long non‑coding RNA high expression in hepatocellular carcinoma (lncRNA HEIH) acts as an oncogene in multiple tumors, including hepatocellular carcinoma, colorectal cancer, melanoma and non‑small cell lung cancer. However, the role of HEIH in breast cancer remains unknown. The present study focused on the clinical significance and biological function of HEIH in breast cancer. Specifically, the expression levels of HEIH in breast cancer tissues and breast cancer cell lines were investigated. The results indicated high expression levels of HEIH in human breast cancer tissues, and its expression was positively associated with malignancy status and poor disease prognosis. High expression levels of HEIH were detected in the breast cancer cell lines, including MCF‑7, SK‑BR‑3, MDA‑MB‑231 and MDA‑MB‑468. These data were consistent with those derived from the in vivo study. Therefore, small interfering RNA was used to knockdown HEIH expression in order to explore whether HEIH exhibits an oncogenic function in breast cancer. Following HEIH knockdown, the proliferative and metastatic activity of MDA‑MB‑231 cells was decreased, whereas the induction of cell apoptosis was increased. These results suggested the oncogenic role of HEIH in breast cancer and the potential application of HEIH as an index of malignancy and poor prognosis in breast cancer.
Collapse
Affiliation(s)
- Cheng Chen
- Department of Galactophore, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Cheng Gu
- Department of Neurology, Gansu Provincial Hospital, Lanzhou, Gansu 730000, P.R. China
| | - Qian Ren
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Fanghui Ding
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Qing Pan
- Department of Galactophore, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Yicong Niu
- Department of Galactophore, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Dachang Ma
- Department of Galactophore, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Li Wu
- Department of Galactophore, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| |
Collapse
|
43
|
Blockade of PD-1, PD-L1, and TIM-3 Altered Distinct Immune- and Cancer-Related Signaling Pathways in the Transcriptome of Human Breast Cancer Explants. Genes (Basel) 2020; 11:genes11060703. [PMID: 32616706 PMCID: PMC7349021 DOI: 10.3390/genes11060703] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/15/2020] [Accepted: 06/21/2020] [Indexed: 12/24/2022] Open
Abstract
Immune checkpoint inhibitors (ICIs) are yet to have a major advantage over conventional therapies, as only a fraction of patients benefit from the currently approved ICIs and their response rates remain low. We investigated the effects of different ICIs—anti-programmed cell death protein 1 (PD-1), anti-programmed death ligand-1 (PD-L1), and anti-T cell immunoglobulin and mucin-domain containing-3 (TIM-3)—on human primary breast cancer explant cultures using RNA-Seq. Transcriptomic data revealed that PD-1, PD-L1, and TIM-3 blockade follow unique mechanisms by upregulating or downregulating distinct pathways, but they collectively enhance immune responses and suppress cancer-related pathways to exert anti-tumorigenic effects. We also found that these ICIs upregulated the expression of other IC genes, suggesting that blocking one IC can upregulate alternative ICs, potentially giving rise to compensatory mechanisms by which tumor cells evade anti-tumor immunity. Overall, the transcriptomic data revealed some unique mechanisms of the action of monoclonal antibodies (mAbs) targeting PD-1, PD-L1, and TIM-3 in human breast cancer explants. However, further investigations and functional studies are warranted to validate these findings.
Collapse
|
44
|
Yuan C, Luo X, Zhan X, Zeng H, Duan S. EMT related circular RNA expression profiles identify circSCYL2 as a novel molecule in breast tumor metastasis. Int J Mol Med 2020; 45:1697-1710. [PMID: 32236616 PMCID: PMC7169655 DOI: 10.3892/ijmm.2020.4550] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 02/14/2020] [Indexed: 12/11/2022] Open
Abstract
Substantial evidence indicates that circular RNAs (circRNAs) play vital roles in several diseases, especially in cancer development. However, the functions of circRNAs in breast cancer metastasis remain to be investigated. This study aimed to identify the key circRNAs involved in epithelial mesenchymal transition (EMT) of breast cancer and evaluated their molecular function and roles in pathways that may be associated with tumor metastasis. An EMT model was constructed by treating breast cancer cells MCF‑7 and MDA‑MB‑231 with transforming growth factor‑β1. High‑throughput RNA sequencing was used to identify the differentially expressed circRNAs in EMT and blank groups of two cells, and reverse transcription‑quantitative PCR was used to validate the expression of circSCYL2 in human breast cancer tissues and cells. The effects of circSCYL2 on breast cancer cells were explored by transfecting with plasmids and the biological roles were assessed using transwell assays. EMT groups of breast cancer cells exhibited the characteristics of mesenchymal cells. Furthermore, the present study found that 7 circRNAs were significantly upregulated in both the MCF‑7 EMT and MDA‑MB‑231 EMT groups, while 16 circRNAs were significantly downregulated. The current study identified that circSCYL2 was downregulated in breast cancer tissues and cell lines, and that circSCYL2 overexpression inhibited cell migration and invasion. This study provides expression profiles of circRNAs in EMT groups of breast cancer cells. circSCYL2, which is downregulated in breast cancer tissues and cells, may play an important role in breast cancer EMT progression.
Collapse
Affiliation(s)
- Chunlei Yuan
- Department of Breast Surgery, The Second Affiliated Hospital of Nanchang University
| | - Xuliang Luo
- Medical College of Nanchang University, Nanchang, Jiangxi 330000
| | - Xiang Zhan
- Department of General Surgery, The People's Hospital of Le 'An County, Fuzhou, Jiangxi 344000, P.R. China
| | - Huihui Zeng
- Department of General Surgery, The People's Hospital of Le 'An County, Fuzhou, Jiangxi 344000, P.R. China
| | - Sijia Duan
- Department of Breast Surgery, The Second Affiliated Hospital of Nanchang University
| |
Collapse
|
45
|
Ventura C, Leon IE, Asuaje A, Martín P, Enrique N, Núñez M, Cocca C, Milesi V. Differential expression of the long and truncated Hv1 isoforms in breast-cancer cells. J Cell Physiol 2020; 235:8757-8767. [PMID: 32324259 DOI: 10.1002/jcp.29719] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 03/31/2020] [Accepted: 04/01/2020] [Indexed: 01/08/2023]
Abstract
Metabolic reprogramming of cancer cells results in a high production of acidic substances that must be extruded to maintain tumor-cell viability. The voltage-gated proton channel (Hv1) mediates highly selective effluxes of hydronium-ion (H+ ) that prevent deleterious cytoplasmic acidification. In the work described here, we demonstrated for the first time that the amino-terminal-truncated isoform of Hv1 is more highly expressed in tumorigenic breast-cancer-cell lines than in nontumorigenic breast cells. With respect to Hv1 function, we observed that pharmacologic inhibition of that channel, mediated by the specific blocker 5-chloro-2-guanidinobenzimidazole, produced a drop in intracellular pH and a decrease in cell viability, both in monolayer and in three-dimensional cultures, and adversely affected the cell-cycle in tumorigenic breast cells without altering the cycling of nontumorigenic cells. In conclusion, our results demonstrated that the Hv1 channel could be a potential tool both as a biomarker and as a therapeutic target in breast-cancer disease.
Collapse
Affiliation(s)
- Clara Ventura
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), CONICET-UNLP, La Plata, Buenos Aires, Argentina.,Laboratorio de Radioisótopos, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Ignacio Esteban Leon
- Centro de Química Inorgánica (CEQUINOR), CONICET-UNLP, La Plata, Buenos Aires, Argentina
| | - Agustin Asuaje
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), CONICET-UNLP, La Plata, Buenos Aires, Argentina
| | - Pedro Martín
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), CONICET-UNLP, La Plata, Buenos Aires, Argentina
| | - Nicolas Enrique
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), CONICET-UNLP, La Plata, Buenos Aires, Argentina
| | - Mariel Núñez
- Laboratorio de Radioisótopos, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Claudia Cocca
- Laboratorio de Radioisótopos, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Química y Fisicoquímica Biológica (IQUIFIB), CONICET-UBA, Buenos Aires, Argentina
| | - Verónica Milesi
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), CONICET-UNLP, La Plata, Buenos Aires, Argentina
| |
Collapse
|
46
|
Akt-targeted therapy as a promising strategy to overcome drug resistance in breast cancer - A comprehensive review from chemotherapy to immunotherapy. Pharmacol Res 2020; 156:104806. [PMID: 32294525 DOI: 10.1016/j.phrs.2020.104806] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/04/2020] [Accepted: 04/05/2020] [Indexed: 12/12/2022]
Abstract
Breast cancer is the most frequently occurring cancer in women. Chemotherapy in combination with immunotherapy has been used to treat breast cancer. Atezolizumab targeting the protein programmed cell death-ligand (PD-L1) in combination with paclitaxel was recently approved by the Food and Drug Administration (FDA) for Triple-Negative Breast Cancer (TNBC), the most incurable type of breast cancer. However, the use of such drugs is restricted by genotype and is effective only for those TNBC patients expressing PD-L1. In addition, resistance to chemotherapy with drugs such as lapatinib, geftinib, and tamoxifen can develop. In this review, we address chemoresistance in breast cancer and discuss Akt as the master regulator of drug resistance and several oncogenic mechanisms in breast cancer. Akt not only directly interacts with the mitogen-activated protein (MAP) kinase signaling pathway to affect PD-L1 expression, but also has crosstalk with Notch and Wnt/β-catenin signaling pathways involved in cell migration and breast cancer stem cell integrity. In this review, we discuss the effects of tyrosine kinase inhibitors on Akt activation as well as the mechanism of Akt signaling in drug resistance. Akt also has a crucial role in mitochondrial metabolism and migrates into mitochondria to remodel breast cancer cell metabolism while also functioning in responses to hypoxic conditions. The Akt inhibitors ipatasertib, capivasertib, uprosertib, and MK-2206 not only suppress cancer cell proliferation and metastasis, but may also inhibit cytokine regulation and PD-L1 expression. Ipatasertib and uprosertib are undergoing clinical investigation to treat TNBC. Inhibition of Akt and its regulators can be used to control breast cancer progression and also immunosuppression, while discovery of additional compounds that target Akt and its modulators could provide solutions to resistance to chemotherapy and immunotherapy.
Collapse
|
47
|
Sadeghi S, Esmaeili S, Pourbagheri-Sigaroodi A, Safaroghli-Azar A, Bashash D. PI3K Abrogation Using Pan-PI3K Inhibitor BKM120 Gives Rise to a Significant Anticancer Effect on AML-Derived KG-1 Cells by Inducing Apoptosis and G2/M Arrest. Turk J Haematol 2020; 37:167-176. [PMID: 32160736 PMCID: PMC7463220 DOI: 10.4274/tjh.galenos.2020.2019.0440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Objective: The association between PI3K overexpression and the acquisition of chemoresistance has attracted tremendous attention to this axis as an appealing target to revolutionize the conventional treatment strategies of human cancers. In the present study, we aimed to survey the inhibitory impact of the pan-PI3K inhibitor BKM120 on both cellular and molecular aspects of acute myeloid leukemia (AML)-derived KG-1 and U937 cells. Materials and Methods: We designed various assays to survey the antitumor impacts and molecular mechanisms underlying the action of BKM120 for the treatment of AML, and we performed experiments to check the effect of BKM120 in combination with idarubicin. Results: We found that PI3K inhibition diminished cell viability and metabolic activity and exerted a concentration-dependent growth-suppressive effect on the cells. Moreover, we suggested that the ability of BKM120 to induce its antiproliferative properties was mediated through the induction of p21-mediated G2/M cell-cycle arrest. Investigating the effect of inhibitor on the molecular features revealed not only that BKM120 reduced the expression of NF-κB antiapoptotic targets, but also that NF-κB suppression using bortezomib profoundly enhanced the cytotoxicity of the inhibitor, highlighting that the antileukemic effects of BKM120 are mediated, at least partly, through the modulation of the NF-κB pathway. Interestingly, we found that the single agent of BKM120 was unable to significantly alter the expression level of c-Myc; however, the capability of BKM120 to reduce the survival rate of AML cells was potentiated upon c-Myc inhibition using 10058-F4, suggestive of the plausible contribution of c-Myc in leukemic cell response to the PI3K inhibitor. Conclusion: Taken together, the results of this study reveal the efficacy of BKM120 as a therapeutic approach for AML; however, further investigations should be undertaken to determine the expediency of this inhibitor.
Collapse
Affiliation(s)
- Soroush Sadeghi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shadi Esmaeili
- Student Research Committee, Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atieh Pourbagheri-Sigaroodi
- Student Research Committee, Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ava Safaroghli-Azar
- Student Research Committee, Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
48
|
Zhang J, Dai J, Zheng Q, Guo S, Yu Y, Hu W, Gao Y, Shi D. The Fluoro-Thiazolylhydrazone Compound TSC-3C Inhibits Triple Negative Breast Cancer (TNBC) Cell Line Activity by Promoting Apoptosis, Regulating the MAPK Pathway and Inducing Mitochondrial Dysfunction. Int J Mol Sci 2020; 21:ijms21031038. [PMID: 32033205 PMCID: PMC7038075 DOI: 10.3390/ijms21031038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 01/25/2020] [Accepted: 02/02/2020] [Indexed: 11/29/2022] Open
Abstract
Triple negative breast cancer (TNBC) is the most aggressive cancer in women, and despite improved treatments, it remains a major cause of morbidity and mortality. We and others have demonstrated that different hybrid compounds targeting PARP/MAPK or other pathways to inhibit cancer progression may lead to promising therapeutic results. We introduced fluorine to alter the physical properties of the compounds. TSC-3C was one of the generated compounds. Upon treatment with TSC-3C, MDA-MB-231 cell proliferation, invasion, and migration were inhibited. TSC-3C induced MDA-MB-231 cell mitochondrial dysfunction and apoptosis, which may be caused by reducing the level of phosphorylated p44/42 MAPK (ERK1/2) and increasing the level of p-JNK. The present study may help to elucidate the role of the MAPK pathway in the development of breast cancer and may promote further research on halogenated heterocyclic compounds for the treatment of breast cancer.
Collapse
Affiliation(s)
- Jiajia Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (J.Z.); (S.G.)
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 10049, China
| | - Jiajia Dai
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Jinan 250014, China; (J.D.); (Q.Z.); (Y.Y.); (W.H.); (Y.G.)
| | - Qingxuan Zheng
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Jinan 250014, China; (J.D.); (Q.Z.); (Y.Y.); (W.H.); (Y.G.)
| | - Shuju Guo
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (J.Z.); (S.G.)
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 10049, China
| | - Yanyan Yu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Jinan 250014, China; (J.D.); (Q.Z.); (Y.Y.); (W.H.); (Y.G.)
| | - Wenpeng Hu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Jinan 250014, China; (J.D.); (Q.Z.); (Y.Y.); (W.H.); (Y.G.)
| | - Yanan Gao
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Jinan 250014, China; (J.D.); (Q.Z.); (Y.Y.); (W.H.); (Y.G.)
| | - Dayong Shi
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (J.Z.); (S.G.)
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 10049, China
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Jinan 250014, China; (J.D.); (Q.Z.); (Y.Y.); (W.H.); (Y.G.)
- Correspondence: ; Tel.: +86-1369-868-2786
| |
Collapse
|
49
|
Salmonella Breaks Tumor Immune Tolerance by Downregulating Tumor Programmed Death-Ligand 1 Expression. Cancers (Basel) 2019; 12:cancers12010057. [PMID: 31878272 PMCID: PMC7017279 DOI: 10.3390/cancers12010057] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/16/2019] [Accepted: 12/18/2019] [Indexed: 12/13/2022] Open
Abstract
Immunotherapy is becoming a popular treatment modality in combat against cancer, one of the world’s leading health problems. While tumor cells influence host immunity via expressing immune inhibitory signaling proteins, some bacteria possess immunomodulatory activities that counter the symptoms of tumors. The accumulation of Salmonella in tumor sites influences tumor protein expression, resulting in T cell infiltration. However, the molecular mechanism by which Salmonella activates T cells remains elusive. Many tumors have been reported to have high expressions of programmed death-ligand 1 (PD-L1), which is an important immune checkpoint molecule involved in tumor immune escape. In this study, Salmonella reduced the expression of PD-L1 in tumor cells. The expression levels of phospho-protein kinase B (P-AKT), phospho-mammalian targets of rapamycin (P-mTOR), and the phospho-p70 ribosomal s6 kinase (P-p70s6K) pathway were revealed to be involved in the Salmonella-mediated downregulation of PD-L1. In a tumor-T cell coculture system, Salmonella increased T cell number and reduced T cell apoptosis. Systemic administration of Salmonella reduced the expressions of PD-L-1 in tumor-bearing mice. In addition, tumor growth was significantly inhibited along with an enhanced T cell infiltration following Salmonella treatment. These findings suggest that Salmonella acts upon the immune checkpoint, primarily PD-L1, to incapacitate protumor effects and thereby inhibit tumor growth.
Collapse
|
50
|
Mangia A, Saponaro C, Vagheggini A, Opinto G, Centonze M, Vicenti C, Popescu O, Pastena M, Giotta F, Silvestris N. Should Tumor Infiltrating Lymphocytes, Androgen Receptor, and FOXA1 Expression Predict the Clinical Outcome in Triple Negative Breast Cancer Patients? Cancers (Basel) 2019; 11:cancers11091393. [PMID: 31540486 PMCID: PMC6769726 DOI: 10.3390/cancers11091393] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 08/28/2019] [Accepted: 09/09/2019] [Indexed: 12/18/2022] Open
Abstract
Tumor-infiltrating lymphocytes (TILs) are a valuable indicator of the immune microenvironment that plays the central role in new anticancer drugs. TILs have a strong prognostic role in triple negative breast cancer (TNBC). Little is known about the interaction with the androgen receptor (AR) and forkhead box A1 (FOXA1). We analyzed the relationships between TIL levels, AR, and FOXA1 expression and their clinical significance in TNBC patients. Further, we investigated their interaction with other biomarkers like programmed cell death ligand-1 (PD-L1), breast cancer type 1 susceptibility protein (BRCA1), poly (ADP-Ribose) polymerase 1 (PARP1), and Na+/H+ exchanger regulatory factor 1 (NHERF1). The expression of the proteins was evaluated by immunohistochemistry in 124 TNBC samples. TILs were performed adhering to International TILs Working Group 2014 criteria. Cox proportional hazards models were also used to identify risk factors associated with poor prognosis. Multivariate analysis identified TILs as independent prognostic factor of disease free survival (DFS; p = 0.045). A Kaplan-Meyer analysis revealed that the patients with high TILs had a better DFS compared to patients with low TILs (p = 0.037), and the phenotypes TILs-/AR+ and TILs-/FOXA1- had a worse DFS (p = 0.032, p = 0.001 respectively). AR was associated with FOXA1 expression (p = 0.007), and the tumors FOXA1+ presented low levels of TILs (p = 0.028). A poor DFS was observed for AR+/FOXA1+ tumors compared to other TNBCs (p = 0.0117). Low TILs score was associated with poor patients' survival, and TILs level in combination with AR or FOXA1 expression affected patient's clinical outcome. In addition, AR+/FOXA1+ phenotype identified a specific subgroup of TNBC patients with poor prognosis. These data may suggest new ways of therapeutic intervention to support current treatments.
Collapse
Affiliation(s)
- Anita Mangia
- Functional Biomorphology Laboratory, IRCCS Istituto Tumori "Giovanni Paolo II" of Bari, 70124 Bari, Italy.
| | - Concetta Saponaro
- Functional Biomorphology Laboratory, IRCCS Istituto Tumori "Giovanni Paolo II" of Bari, 70124 Bari, Italy.
| | - Alessandro Vagheggini
- Unit of Biostatistics and Clinical Trials, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola (FC), Italy.
| | - Giuseppina Opinto
- Functional Biomorphology Laboratory, IRCCS Istituto Tumori "Giovanni Paolo II" of Bari, 70124 Bari, Italy.
| | - Matteo Centonze
- Functional Biomorphology Laboratory, IRCCS Istituto Tumori "Giovanni Paolo II" of Bari, 70124 Bari, Italy.
| | - Chiara Vicenti
- Functional Biomorphology Laboratory, IRCCS Istituto Tumori "Giovanni Paolo II" of Bari, 70124 Bari, Italy.
| | - Ondina Popescu
- Pathology Department, IRCCS Istituto Tumori "Giovanni Paolo II" of Bari, 70124 Bari, Italy.
| | - Maria Pastena
- Pathology Department, IRCCS Istituto Tumori "Giovanni Paolo II" of Bari, 70124 Bari, Italy.
| | - Francesco Giotta
- Medical Oncology Unit, IRCCS-Istituto Tumori "Giovanni Paolo II" of Bari, 70124 Bari, Italy.
| | - Nicola Silvestris
- Medical Oncology Unit, IRCCS-Istituto Tumori "Giovanni Paolo II" of Bari, 70124 Bari, Italy.
- Department of Biomedical Sciences and Human Oncology, University of Bari 'Aldo Moro' of Bari, 70124 Bari, Italy.
| |
Collapse
|