1
|
Barber AG, Quintero CM, Hamilton M, Rajbhandari N, Sasik R, Zhang Y, Kim C, Husain H, Sun X, Reya T. Regulation of lung cancer initiation and progression by the stem cell determinant Musashi. eLife 2025; 13:RP97021. [PMID: 40047406 PMCID: PMC11884785 DOI: 10.7554/elife.97021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2025] Open
Abstract
Despite advances in therapeutic approaches, lung cancer remains the leading cause of cancer-related deaths. To understand the molecular programs underlying lung cancer initiation and maintenance, we focused on stem cell programs that are normally extinguished with differentiation but can be reactivated during oncogenesis. Here, we have used extensive genetic modeling and patient-derived xenografts (PDXs) to identify a dual role for Msi2: as a signal that acts initially to sensitize cells to transformation, and subsequently to drive tumor propagation. Using Msi reporter mice, we found that Msi2-expressing cells were marked by a pro-oncogenic landscape and a preferential ability to respond to Ras and p53 mutations. Consistent with this, genetic deletion of Msi2 in an autochthonous Ras/p53-driven lung cancer model resulted in a marked reduction of tumor burden, delayed progression, and a doubling of median survival. Additionally, this dependency was conserved in human disease as inhibition of Msi2 impaired tumor growth in PDXs. Mechanistically, Msi2 triggered a broad range of pathways critical for tumor growth, including several novel effectors of lung adenocarcinoma. Collectively, these findings reveal a critical role for Msi2 in aggressive lung adenocarcinoma, lend new insight into the biology of this disease, and identify potential new therapeutic targets.
Collapse
Affiliation(s)
- Alison G Barber
- Department of Pharmacology and Medicine, University of California San Diego School of MedicineLa JollaUnited States
- Moores Cancer Center, University of California San Diego School of MedicineLa JollaUnited States
| | - Cynthia M Quintero
- Department of Pharmacology and Medicine, University of California San Diego School of MedicineLa JollaUnited States
- Moores Cancer Center, University of California San Diego School of MedicineLa JollaUnited States
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical CenterNew YorkUnited States
- Department of Physiology and Cellular Biophysics, Columbia University Medical CenterNew YorkUnited States
| | - Michael Hamilton
- Department of Pharmacology and Medicine, University of California San Diego School of MedicineLa JollaUnited States
- Moores Cancer Center, University of California San Diego School of MedicineLa JollaUnited States
| | - Nirakar Rajbhandari
- Department of Pharmacology and Medicine, University of California San Diego School of MedicineLa JollaUnited States
- Moores Cancer Center, University of California San Diego School of MedicineLa JollaUnited States
| | - Roman Sasik
- Center for Computational Biology and Bioinformatics, University of California San Diego School of MedicineLa JollaUnited States
| | - Yan Zhang
- Department of Pediatrics, University of California, San DiegoLa JollaUnited States
| | - Carla Kim
- Stem Cell Program, Division of Hematology/Oncology and Division of Respiratory Disease, Boston Children’s HospitalBostonUnited States
- Department of Genetics, Harvard Medical SchoolBostonUnited States
- Harvard Stem Cell InstituteCambridgeUnited States
| | - Hatim Husain
- Moores Cancer Center, University of California San Diego School of MedicineLa JollaUnited States
| | - Xin Sun
- Department of Pediatrics, University of California, San DiegoLa JollaUnited States
| | - Tannishtha Reya
- Department of Pharmacology and Medicine, University of California San Diego School of MedicineLa JollaUnited States
- Moores Cancer Center, University of California San Diego School of MedicineLa JollaUnited States
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical CenterNew YorkUnited States
- Department of Physiology and Cellular Biophysics, Columbia University Medical CenterNew YorkUnited States
| |
Collapse
|
2
|
Toma C, Popa R, Ciobanu L, Baldea I, Amorim I, Bochynska D, Wolfe A, Negoescu A, Gal C, Taulescu M. Overexpression of IL-6 and STAT3 may provide new insights into ovine pulmonary adenocarcinoma development. BMC Vet Res 2025; 21:29. [PMID: 39833798 PMCID: PMC11744984 DOI: 10.1186/s12917-024-04429-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 12/04/2024] [Indexed: 01/22/2025] Open
Abstract
BACKGROUND Ovine pulmonary adenocarcinoma (OPA) is caused by Jaagsiekte sheep retrovirus (JSRV) and is considered an important potential animal model for human lung cancer. The precise mechanisms of OPA oncogenesis are still uncertain. The transcription factor signal transducer and activator of transcription 3 (STAT3) is activated by interleukin-6 (IL-6) in many cancers, but this aspect is unknown in OPA. We therefore aimed to evaluate the expression of IL-6 and STAT3 in OPA for its potential role in pulmonary carcinogenesis. RESULTS Lung tissues from 9 grossly normal and JRSV-negative sheep and 20 cases of JSRV-positive OPA sheep were included in the study. Tissue samples were stained with antibodies against IL-6, STAT3, and JSRV-MA. IL-6 and STAT3 were further quantified in both groups using Western Blot (WB). Immunohistochemically, IL‑6 was expressed in stromal, inflammatory, and epithelial cells in all cases of OPA, while STAT3 immunoexpression was restricted to epithelial cells. In the OPA group, the percentage of immunolabelled cells for STAT3 accounted for a mean value of 96%. Using the H-SCORE method, 95% of cases were considered positive for STAT3 expression. Control tissues showed multifocal and weak immunoexpression for both markers. Using WB analyses, a highly significant amount of both IL-6 (p = 0.0078) and STAT3 (p < 0.0001) proteins were present in lung neoplasms, by comparison to the control lungs. CONCLUSIONS Our data showed overexpression of IL-6 and STAT3 in lung tissues from OPA compared to lungs from JSRV-negative sheep. These results suggest a potential role of IL6-STAT3 in OPA carcinogenesis.
Collapse
Affiliation(s)
- Corina Toma
- Department of Veterinary Pathology, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania.
| | - Roxana Popa
- Department of Veterinary Pathology, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| | - Lidia Ciobanu
- Regional Institute of Gastroenterology and Hepatology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Cluj-Napoca, Romania
| | - Ioana Baldea
- Department of Physiology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj- Napoca, Romania
| | - Irina Amorim
- Department of Pathology and Molecular Immunology of the Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
- Institute of Molecular Pathology and Immunology, University of Porto (IPATIMUP), Porto, Portugal
| | - Diana Bochynska
- Ross University School of Veterinary Medicine, Basseterre, St. Kitts and Nevis
| | - Alan Wolfe
- Pathobiology Section, School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - Andrada Negoescu
- Department of Veterinary Pathology, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| | - Claudiu Gal
- Department of Veterinary Pathology, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
- Synevovet laboratory, Bucharest, Romania
| | - Marian Taulescu
- Department of Veterinary Pathology, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| |
Collapse
|
3
|
Hadisaputri YE, Nurhaniefah AA, Mutakin M, Hendriani R, Rezano A, Sopyan I, Yusnaini Y, Asikin Y, Abdulah R. The Suppression of Signal Transducer and Activator of Transcription-3 in A549 human Lung Carcinoma Cells Induced by Marine Sponge Callyspongia aerizusa. J Exp Pharmacol 2025; 17:15-25. [PMID: 39816162 PMCID: PMC11734514 DOI: 10.2147/jep.s494158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 12/07/2024] [Indexed: 01/18/2025] Open
Abstract
Introduction Lung cancer is recognized as a highly lethal disease, demanding swift and accurate solutions. Previous analysis showed the cytotoxic impact of Callyspongia aerizusa (C. aerizusa) extract containing ergost-22-en-3-one and ergost-7-en3-ol against A549 lung cancer cells, with an IC50 value of 9.38 μg/mL. However, the extract did not have cytotoxicity towards Het-1A esophagus epithelial cells. Several reviews also validated the upregulation of pro-apoptotic molecules and the inhibition of anti-apoptotic molecules linked to the caspase-dependent signaling pathway. Purpose The objective of this research was to extend the understanding of the effects of C. aerizusa extract on A549 lung carcinoma, examining its influence on various signaling pathways, malignancy, migration, and invasion. Materials and Methods PCR was used to measure mRNA expression, targeting PTEN, Akt, mTOR, STAT-3, IL-6, VEGF, and HIF1α. Additionally, Western Blot analysis was adopted to assess PTEN, p-Akt, Akt, p-mTOR, and p-STAT-3 protein expressions. Wound healing and invasion assays were performed to measure the migration and invasion capabilities of A549 cells post-treatment with C. aerizusa extract. Results The mRNA expression analysis showed an increase in Akt and m-TOR but a decrease in PTEN and STAT-3 after 24 hours of treatment with C. aerizusa extract. At the protein level, there was a downregulation of p-Akt, Akt, p-mTOR, and p-STAT-3, while PTEN increased during 24-hour treatment. Wound healing and invasion assay results showed a weakened ability of A549 cells after a 24-hour treatment with C. aerizusa extract. Moreover, IL-6 and HIF-1α mRNA expression levels decreased during 24 hours, while VEGF mRNA had a slight decrease compared to untreated cells. Conclusion In conclusion, the ergosteroids present in marine sponge C. aerizusa extract signified a remarkable reduction in malignancy, migration, and invasion capabilities in A549 lung carcinoma cells. These results suggested their promising candidacy for future anti-angiogenesis in anticancer therapy.
Collapse
Affiliation(s)
- Yuni Elsa Hadisaputri
- Department of Pharmaceutical Biology, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor, Indonesia
| | - Annida Adha Nurhaniefah
- Department of Pharmaceutical Biology, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor, Indonesia
| | - Mutakin Mutakin
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor, Indonesia
| | - Rini Hendriani
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor, Indonesia
| | - Andri Rezano
- Department of Biomedical Sciences, Cell Biology Division, Faculty of Medicine, Universitas Padjadjaran, Jatinangor, Indonesia
| | - Iyan Sopyan
- Department of Pharmaceutical and Pharmacy Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor, Indonesia
| | - Yusnaini Yusnaini
- Faculty of Fisheries and Marine Sciences, Universitas Halu Oleo, Kendari, Indonesia
| | - Yonathan Asikin
- Department of Bioscience and Biotechnology, Faculty of Agriculture, University of the Ryukyus, Okinawa, Japan
| | - Rizky Abdulah
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor, Indonesia
| |
Collapse
|
4
|
Rawat S, Moglad E, Afzal M, Goyal A, Roopashree R, Bansal P, Mishra S, Prasad GVS, Pramanik A, Alzarea SI, Ali H, Imran M, Abida. Reprogramming tumor-associated macrophages: The role of MEK-STAT3 inhibition in lung cancer. Pathol Res Pract 2025; 265:155748. [PMID: 39616977 DOI: 10.1016/j.prp.2024.155748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 11/10/2024] [Accepted: 11/27/2024] [Indexed: 12/11/2024]
Abstract
Tumor-associated macrophages (TAMs) crucially contribute to lung cancer's advancement and escape from the immune system. TAMs, particularly the M2 phenotype, promote an immunosuppressive microenvironment, facilitating tumor growth and metastasis. The MEK-STAT3 signalling pathway is a critical mediator in this process, driving TAM reprogramming and contributing to lung cancer's resistance to treatment. Inhibiting the MEK and STAT3 pathways disrupts key cancer-promoting mechanisms, including immune evasion, angiogenesis, and metastasis. Preclinical studies have demonstrated the effectiveness of MEK inhibitors, such as trametinib and selumetinib, in synergistic therapies for NSCLC, particularly in modulating the tumor microenvironment. We analyse the present understanding of approaches that can transform TAMs via the inhibition of MEK-STAT3 with either solo or combined treatments in lung cancer therapy.
Collapse
Affiliation(s)
- Sushama Rawat
- Department of Biotechnology, Graphic Era (Deemed to be University), Clement Town, Dehradun 248002, India.
| | - Ehssan Moglad
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, PO Box 6231, Jeddah 21442, Saudi Arabia
| | - Ahsas Goyal
- Institute of Pharmaceutical Research, GLA University, Mathura, UP, India
| | - R Roopashree
- Department of Biotechnology and Genetics, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Pooja Bansal
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan 303012, India
| | - Shivang Mishra
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, India
| | - G V Siva Prasad
- Department of Chemistry, Raghu Engineering College, Visakhapatnam, Andhra Pradesh 531162, India
| | - Atreyi Pramanik
- School of Applied and Life Sciences, Division of Research and Innovation, Uttaranchal University, Dehradun, India
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Al-Jouf 72341, Saudi Arabia
| | - Haider Ali
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Mohd Imran
- Department of Pharmaceutical Chemistry, College of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia; Center for Health Research, Northern Border University, Arar, Saudi Arabia
| | - Abida
- Department of Pharmaceutical Chemistry, College of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia; Center for Health Research, Northern Border University, Arar, Saudi Arabia
| |
Collapse
|
5
|
Lv Z, Du Y, Zhang H, Fang H, Guo Y, Zeng L, Chen Y, Li D, Li R. Inhibition of JNK/STAT3/NF-KB pathway-mediated migration and clonal formation of lung adenocarcinoma A549 cells by daphnetin. Cell Adh Migr 2024; 18:27-37. [PMID: 39469948 PMCID: PMC11540088 DOI: 10.1080/19336918.2024.2418049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/28/2024] [Accepted: 10/11/2024] [Indexed: 10/30/2024] Open
Abstract
Daphnetin, a coumarin derivative isolated from Daphne odorifera, has anti-tumor effects. The MAPK, STAT3, and NF-κB signaling pathways are closely related to the pathogenesis of lung cancer. To investigate the effect of daphnetin on anti-lung adenocarcinoma A549 cells and its mechanism. The anti-tumor effects of daphnetin on the proliferation, clone formation, migration, and invasion of A549 lung adenocarcinoma cells were investigated. The results showed that daphnetin inhibited the proliferation, colony formation, migration, and invasion of A549 cells through the MAPK/STAT3/NF-KB pathway, and mainly inhibited the clonal formation and migration of A549 cells through the JNK pathway. These results provide a new research direction and theoretical basis for the use of daphnetin in the inhibition of lung adenocarcinoma.
Collapse
Affiliation(s)
- Zhe Lv
- Department of Clinical Laboratory, Jiangxi Provincial People’s Hospital & The first Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Yuna Du
- Department of Clinical Laboratory, Jiangxi Provincial People’s Hospital & The first Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Huiqing Zhang
- Department of Clinical Laboratory, Jiangxi Provincial People’s Hospital & The first Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Hui Fang
- Department of Clinical Laboratory, Jiangxi Provincial People’s Hospital & The first Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Yujie Guo
- Department of Clinical Laboratory, Jiangxi Provincial People’s Hospital & The first Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Lifeng Zeng
- Department of Clinical Laboratory, Jiangxi Provincial People’s Hospital & The first Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Yiguo Chen
- Department of Clinical Laboratory, Jiangxi Provincial People’s Hospital & The first Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Dan Li
- Department of Clinical Laboratory, Jiangxi Provincial People’s Hospital & The first Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Rong Li
- Department of Clinical Laboratory, Jiangxi Provincial People’s Hospital & The first Affiliated Hospital of Nanchang Medical College, Nanchang, China
| |
Collapse
|
6
|
Wan P, Li X, Guo S, Zhao X. Combination effect of flavonoids attenuates lung cancer cell proliferation by inhibiting the STAT3 and FAK signaling pathway. Open Life Sci 2024; 19:20220977. [PMID: 39588118 PMCID: PMC11588013 DOI: 10.1515/biol-2022-0977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/29/2024] [Accepted: 09/13/2024] [Indexed: 11/27/2024] Open
Abstract
Lung cancer is considered the most ubiquitous malignant form of cancer, and the current treatment strategies do not offer effective outcomes to the patients. The present study examined the effectiveness of natural drugs delphinidin (DN) and oroxylin A (OA) in inhibiting the development of lung cancer cells (A549) through the blocking of the Signal transducer and activator of transcription 3 (STAT3) and focal adhesion kinase (FAK) intervene signaling pathways. These included cytotoxicity assessments, reactive oxygen species (ROS) levels, apoptotic morphological features, mitochondrial membrane potential (ΔΨm), nuclear fragmentation, and cell cycle analysis. Furthermore, the combination of DN and OA treatments on the expression of STAT-3, FAK, and various proliferation and apoptotic proteins was studied using western blotting. The results we have obtained are that the combination of DN and OA causes significant cytotoxicity, ROS, alteration of ΔΨm, and nuclear fragmentation, resulting in apoptosis of A549 cells. Furthermore, A549 cells treated with DN and OA concurrently displayed increased cell cycle arrest at the G2/M phase. Additionally, the combined DN and OA treatment inhibited the expression of STAT3 and FAK, suppressing proliferation and the induction of pro-apoptotic protein expressions in A549 cells. Thus, a combination of DN and OA could be used as a therapeutical approach to malignant forms of lung cancer.
Collapse
Affiliation(s)
- Pei Wan
- Department of Thoracic and Cardiovascular Surgery, The First College of Clinical Medical Science, China Three Gorges University, Yichang Central People’s Hospital, Yichang, Hubei, 443000, China
| | - Xingru Li
- Department of Respiratory and Critical Care Medicine, Lu’an People’s Hospital of Anhui Province, Lu’an, Anhui, 237005, China
| | - Shiqi Guo
- Department of Thoracic and Cardiovascular Surgery, The First College of Clinical Medical Science, China Three Gorges University, Yichang Central People’s Hospital, Yichang, Hubei, 443000, China
| | - Xiangling Zhao
- Department of Respiratory and Critical Care Medicine, Lu’an People’s Hospital of Anhui Province, Lu’an, Anhui, 237005, China
| |
Collapse
|
7
|
Xu L, Cao P, Wang J, Zhang P, Hu S, Cheng C, Wang H. IL-22: A key inflammatory mediator as a biomarker and potential therapeutic target for lung cancer. Heliyon 2024; 10:e35901. [PMID: 39263114 PMCID: PMC11387261 DOI: 10.1016/j.heliyon.2024.e35901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 09/13/2024] Open
Abstract
Lung cancer, one of the most prevalent cancers worldwide, stands as the primary cause of cancer-related deaths. As is well-known, the utmost crucial risk factor contributing to lung cancer is smoking. In recent years, remarkable progress has been made in treating lung cancer, particularly non-small cell lung cancer (NSCLC). Nevertheless, the absence of effective and accurate biomarkers for diagnosing and treating lung cancer remains a pressing issue. Interleukin 22 (IL-22) is a member of the IL-10 cytokine family. It exerts biological functions (including induction of proliferation and anti-apoptotic signaling pathways, enhancement of tissue regeneration and immunity defense) by binding to heterodimeric receptors containing type 1 receptor chain (R1) and type 2 receptor chain (R2). IL-22 has been identified as a pro-cancer factor since dysregulation of the IL-22-IL-22R system has been implicated in the development of different cancers, including lung, breast, gastric, pancreatic, and colon cancers. In this review, we discuss the differential expression, regulatory role, and potential clinical significance of IL-22 in lung cancer, while shedding light on innovative approaches for the future.
Collapse
Affiliation(s)
- Ling Xu
- Department of Interventional Pulmonary Diseases, The Anhui Chest Hospital, Hefei, China
| | - Peng Cao
- Department of Interventional Pulmonary Diseases, The Anhui Chest Hospital, Hefei, China
| | - Jianpeng Wang
- First Clinical Medical College, Anhui Medical University, Hefei, Anhui, China
| | - Peng Zhang
- Department of Interventional Pulmonary Diseases, The Anhui Chest Hospital, Hefei, China
| | - Shuhui Hu
- Department of Interventional Pulmonary Diseases, The Anhui Chest Hospital, Hefei, China
| | - Chao Cheng
- Department of Interventional Pulmonary Diseases, The Anhui Chest Hospital, Hefei, China
| | - Hua Wang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China
| |
Collapse
|
8
|
Li M, Chen L, Yu F, Mei H, Ma X, Ding K, Yang Y, Rong Z. CTDSPL2 promotes the progression of non-small lung cancer through PI3K/AKT signaling via JAK1. Cell Death Discov 2024; 10:389. [PMID: 39209829 PMCID: PMC11362329 DOI: 10.1038/s41420-024-02162-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024] Open
Abstract
Carboxy-terminal domain small phosphatase like 2 (CTDSPL2), one of the haloacid dehalogenase phosphatases, is associated with several diseases including cancer. However, the role of CTDSPL2 and its regulatory mechanism in lung cancer remain unclear. Here, we aimed to explore the clinical implications, biological functions, and molecular mechanisms of CTDSPL2 in non-small cell lung cancer (NSCLC). CTDSPL2 was identified as a novel target of the tumor suppressor miR-193a-3p. CTDSPL2 expression was significantly elevated in NSCLC tissues. Database analysis showed that CTDSPL2 expression was negatively correlated with patient survival. Depletion of CTDSPL2 inhibited the proliferation, migration, and invasion of NSCLC cells, as well as tumor growth and metastasis in mouse models. Additionally, silencing of CTDSPL2 enhanced CD4+ T cell infiltration into tumors. Moreover, CTDSPL2 interacted with JAK1 and positively regulated JAK1 expression. Subsequent experiments indicated that CTDSPL2 activated the PI3K/AKT signaling pathway through the upregulation of JAK1, thereby promoting the progression of NSCLC. In conclusion, CTDSPL2 may play an oncogenic role in NSCLC progression by activating PI3K/AKT signaling via JAK1. These findings may provide a potential target for the diagnosis and treatment of NSCLC.
Collapse
Affiliation(s)
- Muzi Li
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - La Chen
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Fangfang Yu
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Huijuan Mei
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Xingxing Ma
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Keshuo Ding
- Department of Pathology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
- Department of Pathology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yanan Yang
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China.
| | - Ziye Rong
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China.
| |
Collapse
|
9
|
Jiang Y, Liu L, Geng Y, Li Q, Luo D, Liang L, Liu W, Ouyang W, Hu J. Feasibility of the inhibitor development for cancer: A systematic approach for drug design. PLoS One 2024; 19:e0306632. [PMID: 39173044 PMCID: PMC11341021 DOI: 10.1371/journal.pone.0306632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 06/20/2024] [Indexed: 08/24/2024] Open
Abstract
The traditional Chinese medicine (TCM) bupleurum-ginger-licorice formula presents significant anti-cancer effects, but its active ingredients and inhibitory mechanism remain unclear. In this work, the core effective ingredient quercetin and its signal transducer and activator of transcription 3 (Stat3) receptor both were identified by network pharmacology. Quercetin is a low-toxicity, non-carcinogenic flavonoid with antioxidant, anti-inflammatory and anticancer activities, which is widely distributed in edible plants. Stat3 can bind to specific DNA response elements and serves as a transcription factor to promote the translation of some invasion/migration-related target genes, considered as a potential anticancer target. Here, molecular docking and molecular dynamics (MD) simulation both were used to explore molecular recognition of quercetin with Stat3. The results show that quercetin impairs DNA transcription efficiency by hindering Stat3 dimerization, partially destroying DNA conformation. Specifically, when the ligand occupies the SH2 cavity of the enzyme, spatial rejection is not conductive to phosphokinase binding. It indirectly prevents the phosphorylation of Y705 and the formation of Stat3 dimer. When the inhibitor binds to the DT1005 position, it obviously shortens the distance between DNA and DBD, enhances their binding capacity, and thereby reduces the degree of freedom required for transcription. This work not only provides the binding modes between Stat3 and quercetin, but also contributes to the optimization and design of such anti-cancer inhibitors.
Collapse
Affiliation(s)
- Yu Jiang
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, School of Pharmacy, Chengdu University, Chengdu, China
| | - Ling Liu
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, School of Pharmacy, Chengdu University, Chengdu, China
- Department of Thoracic Oncology, Affiliated Cancer Hospital, Guizhou Medical University, Guiyang, China
| | - Yichao Geng
- Department of Thoracic Oncology, Affiliated Cancer Hospital, Guizhou Medical University, Guiyang, China
| | - Qingsong Li
- Department of Thoracic Oncology, Affiliated Cancer Hospital, Guizhou Medical University, Guiyang, China
| | - Daxian Luo
- Department of Thoracic Oncology, Affiliated Cancer Hospital, Guizhou Medical University, Guiyang, China
| | - Li Liang
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, School of Pharmacy, Chengdu University, Chengdu, China
| | - Wei Liu
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, School of Pharmacy, Chengdu University, Chengdu, China
| | - Weiwei Ouyang
- Department of Thoracic Oncology, Affiliated Cancer Hospital, Guizhou Medical University, Guiyang, China
| | - Jianping Hu
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, School of Pharmacy, Chengdu University, Chengdu, China
| |
Collapse
|
10
|
Varadharajan V, Balu AK, Shiju A, Muthuramalingam P, Shin H, Venkidasamy B, Alharbi NS, Kadaikunnan S, Thiruvengadam M. Deciphering the Anticancer Arsenal of Piper longum: Network Pharmacology and Molecular Docking Unveil Phytochemical Targets Against Lung Cancer. Int J Med Sci 2024; 21:1915-1928. [PMID: 39113883 PMCID: PMC11302554 DOI: 10.7150/ijms.98393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 07/11/2024] [Indexed: 08/10/2024] Open
Abstract
Introduction: Lung cancer, characterized by uncontrolled cellular proliferation within the lung tissues, is the predominant cause of cancer-related fatalities worldwide. The traditional medicinal herb Piper longum has emerged as a significant contender in oncological research because of its documented anticancer attributes, suggesting its potential for novel therapeutic development. Methods: This study adopted network pharmacology and omics methodology to elucidate the anti-lung cancer potential of P. longum by identifying its bioactive constituents and their corresponding molecular targets. Results: Through a comprehensive literature review and the Integrated Medicinal Plant Phytochemistry and Therapeutics database (IMPPAT), we identified 33 bioactive molecules from P. longum. Subsequent analyses employing tools such as SwissTargetPrediction, SuperPred, and DIGEP-Pred facilitated the isolation of 676 potential targets, among which 72 intersected with 666 lung cancer-associated genetic markers identified through databases including the Therapeutic Target Database (TTD), Online Mendelian Inheritance in Man (OMIM), and GeneCards. Further validation through protein-protein interaction (PPI) networks, gene ontology, pathway analyses, boxplots, and overall survival metrics underscored the therapeutic potential of compounds such as 7-epi-eudesm-4(15)-ene-1β, demethoxypiplartine, methyl 3,4,5-trimethoxycinnamate, 6-alpha-diol, and aristolodione. Notably, our findings reaffirm the relevance of lung cancer genes, such as CTNNB1, STAT3, HIF1A, HSP90AA1, and ERBB2, integral to various cellular processes and pivotal in cancer genesis and advancement. Molecular docking assessments revealed pronounced affinity between 6-alpha-diol and HIF1A, underscoring their potential as therapeutic agents for lung cancer. Conclusion: This study not only highlights the bioactive compounds of P. longum but also reinforces the molecular underpinnings of its anticancer mechanism, paving the way for future lung cancer therapeutics.
Collapse
Affiliation(s)
| | - Ashwath Kumar Balu
- Department of Biotechnology, PSG College of Technology, Peelamedu, Coimbatore, India
| | - Atul Shiju
- Department of Biotechnology, PSG College of Technology, Peelamedu, Coimbatore, India
| | - Pandiyan Muthuramalingam
- Division of Horticultural Science, College of Agriculture and Life Sciences, Gyeongsang National University, Jinju 52725, Korea
| | - Hyunsuk Shin
- Division of Horticultural Science, College of Agriculture and Life Sciences, Gyeongsang National University, Jinju 52725, Korea
| | - Baskar Venkidasamy
- Department of Oral and Maxillofacial Surgery, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai 600077, India
| | - Naiyf S. Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, P. O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Shine Kadaikunnan
- Department of Botany and Microbiology, College of Science, King Saud University, P. O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Muthu Thiruvengadam
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
11
|
Xu C, Amna N, Shi Y, Sun R, Weng C, Chen J, Dai H, Wang C. Drug-Loaded Mesoporous Silica Nanoparticles Enhance Antitumor Immunotherapy by Regulating MDSCs. Molecules 2024; 29:2436. [PMID: 38893313 PMCID: PMC11173511 DOI: 10.3390/molecules29112436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/16/2024] [Accepted: 05/18/2024] [Indexed: 06/21/2024] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are recognized as major immune suppressor cells in the tumor microenvironment that may inhibit immune checkpoint blockade (ICB) therapy. Here, we developed a Stattic-loaded mesoporous silica nanoparticle (PEG-MSN-Stattic) delivery system to tumor sites to reduce the number of MDSCs in tumors. This approach is able to significantly deplete intratumoral MSDCs and thereby increase the infiltration of T lymphocytes in tumors to enhance ICB therapy. Our approach may provide a drug delivery strategy for regulating the tumor microenvironment and enhancing cancer immunotherapy efficacy.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Huaxing Dai
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Function Materials and Devices, Soochow University, Suzhou 215123, China; (C.X.); (N.A.); (Y.S.); (R.S.); (C.W.); (J.C.)
| | - Chao Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Function Materials and Devices, Soochow University, Suzhou 215123, China; (C.X.); (N.A.); (Y.S.); (R.S.); (C.W.); (J.C.)
| |
Collapse
|
12
|
Shi X, Lai Y, Liu W, Zhang X, Cang Y. Natural compound Byakangelicin suppresses breast tumor growth and motility by regulating SHP-1/JAK2/STAT3 signal pathway. Biochem Biophys Res Commun 2024; 706:149758. [PMID: 38484571 DOI: 10.1016/j.bbrc.2024.149758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 03/04/2024] [Indexed: 03/24/2024]
Abstract
Byakangelicin mostly obtained from the root of Angelica dahurica and has protective effect on liver injury and fibrosis. In addition, Byakangelicin, as a traditional medicine, is also used to treat colds, headache and toothache. Recent studies have shown that Byakangelicin exhibits anti-tumor function; however, the role of Byakangelicin in breast tumor progression and related mechanism has not yet been elucidated. Our study aims to investigate the role of Byakangelicin in breast tumor progression and the underlying mechanism. To measure the effect of Byakangelicin on JAK2/STAT3 signaling, a dual luciferase reporter assay and a Western blot assay were performed. CCK8, colony formation, apoptosis and cell invasion assays were used to examine the inhibitory potential of Byakangelicin on breast cancer cells. Additionally, SHP-1 was silenced by specific siRNA duplex and the function of SHP-1 on Byakangelicin-mediated inhibition of JAK2/STAT3 signaling was evaluated. Byakangelicin treatment significantly inhibited STAT3 transcriptional activity. In addition, Byakangelicin treatment blocked JAK2/STAT3 signaling in a dose-dependent manner. Byakangelicin-treated tumor cells showed a dramatically reduced proliferation, colony formation and invasion ability. Moreover, Byakangelicin remarkedly induced breast cancer cell apoptosis. Furthermore, Byakangelicin regulated the expression of SHP1.In conclusion, our current study indicated that Byakangelicin, a natural compound, inhibits SHP-1/JAK2/STAT3 signaling and thus blocks tumor growth and motility.
Collapse
Affiliation(s)
- Xiuzhen Shi
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China; Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, 200030, China
| | - Yuexing Lai
- Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 201600, China
| | - Wenjing Liu
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China; Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, 200030, China
| | - Xi Zhang
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China; Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, 200030, China
| | - Yanqin Cang
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China; Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, 200030, China.
| |
Collapse
|
13
|
Davoodvandi A, Sadeghi S, Alavi SMA, Alavi SS, Jafari A, Khan H, Aschner M, Mirzaei H, Sharifi M, Asemi Z. The therapeutic effects of berberine for gastrointestinal cancers. Asia Pac J Clin Oncol 2024; 20:152-167. [PMID: 36915942 DOI: 10.1111/ajco.13941] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 11/17/2022] [Accepted: 01/10/2023] [Indexed: 03/15/2023]
Abstract
Cancer is one of the most serious human health issues. Drug therapy is the major common way to treat cancer. There is a growing interest in using natural compounds to overcome drug resistance, adverse reactions, and target specificity of certain types of drugs that may affect several targets with fewer side effects and be beneficial against various types of cancer. In this regard, the use of herbal medicines alone or in combination with the main anticancer drugs is commonly available. Berberine (BBR), a nature-driven phytochemical component, is a well-known nutraceutical due to its wide variety of pharmacological activities, including antioxidant, anti-inflammatory, antibacterial, antifungal, antiparasitic, antidiabetic, antihypertensive, and hypolipidemic. In addition, BBR exerts anticancer activities. In present article, we summarized the information available on the therapeutic effects of BBR and its mechanisms on five types of the most prevalent gastrointestinal cancers, including esophageal, gastric, colorectal, hepatocarcinoma, and pancreatic cancers.
Collapse
Affiliation(s)
- Amirhossein Davoodvandi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Sahand Sadeghi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | | | - Seyedeh Shaghayegh Alavi
- Departmemt of Food Science, Engineering and Technology, Faculty of Agricultural Engineering and Technology, University of Tehran, Karaj, Iran
| | - Ameneh Jafari
- ATMP Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan, Pakistan
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Mehran Sharifi
- Department of Internal Medicine, School of Medicine, Cancer Prevention Research Center, Seyyed Al-Shohada Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
14
|
Yu M, Fan Y, Zhao Y, Tang Y. MicroRNA-140-3p inhibits proliferation and promotes apoptosis in non-small cell lung cancer by targeting MDIG. ENVIRONMENTAL TOXICOLOGY 2024; 39:1521-1530. [PMID: 38009637 DOI: 10.1002/tox.24026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 08/29/2023] [Accepted: 10/31/2023] [Indexed: 11/29/2023]
Abstract
BACKGROUND MicroRNAs (miRNAs) are associated with cancer progression. MiR-140-3p is a tumor suppressor. Nevertheless, its function in non-small cell lung cancer (NSCLC) is unclear. METHODS MiR-140-3p expression in NSCLC clinical specimens was examined using the TCGA database and real-time PCR. NSCLC cell proliferation and apoptosis were investigated after the miRNA overexpression. Then, mineral dust-induced gene (MDIG) levels in NSCLC clinical specimens were monitored by real-time PCR and western blotting. Bioinformatics predicated the binding of miR-140-3p to MDIG, and their relationship was validated by luciferase reporter assay. The miR-140-3p/MDIG axis was further validated through rescue experiments. The involvement of STAT3 signaling in the actions of miR-140-3p/MDIG axis was investigated. RESULTS MiR-140-3p was decreased in NSCLC tissues and negatively correlated with MDIG expression. Additionally, it was also lower in high-grade specimens than in low-grade ones. MiR-140-3p restrained cell proliferation, facilitated apoptosis, and inhibited STAT3 signaling in NSCLC. Interestingly, MDIG was a target of this miRNA. Furthermore, MDIG upregulation abolished miR-140-3p's effect on cell proliferation, apoptosis, and STAT3 pathway in NSCLC cells. CONCLUSION MiR-140-3p restrained NSCLC development through the regulation of the STAT3 pathway by targeting MDIG. This axis may be a promising target for NSCLC treatment.
Collapse
Affiliation(s)
- Miaomiao Yu
- Department of Medical Oncology, Liaoning Cancer Hospital & Institute, Cancer Hospital of China Medical University, Shenyang, China
| | - Yueren Fan
- Department of Medical Oncology, Liaoning Cancer Hospital & Institute, Cancer Hospital of China Medical University, Shenyang, China
| | - Yihang Zhao
- Department of Medical Oncology, Liaoning Cancer Hospital & Institute, Cancer Hospital of China Medical University, Shenyang, China
| | - Yu Tang
- Department of Medical Oncology, Liaoning Cancer Hospital & Institute, Cancer Hospital of China Medical University, Shenyang, China
| |
Collapse
|
15
|
Li W, Zhuang Y, Shao SJ, Trivedi P, Zheng B, Huang GL, He Z, Zhang X. Essential contribution of the JAK/STAT pathway to carcinogenesis, lytic infection of herpesviruses and pathogenesis of COVID‑19 (Review). Mol Med Rep 2024; 29:39. [PMID: 38240082 PMCID: PMC10828999 DOI: 10.3892/mmr.2024.13163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 12/15/2023] [Indexed: 01/23/2024] Open
Abstract
The intracellular pathway of Janus kinase/signal transducer and activator of transcription (JAK/STAT) and modification of nucleosome histone marks regulate the expression of proinflammatory mediators, playing an essential role in carcinogenesis, antiviral immunity and the interaction of host proteins with Herpesviral particles. The pathway has also been suggested to play a vital role in the clinical course of the acute infection caused by severe acute respiratory syndrome coronavirus type 2 (SARS‑CoV‑2; known as coronavirus infection‑2019), a novel human coronavirus initially identified in the central Chinese city Wuhan towards the end of 2019, which evolved into a pandemic affecting nearly two million people worldwide. The infection mainly manifests as fever, cough, myalgia and pulmonary involvement, while it also attacks multiple viscera, such as the liver. The pathogenesis is characterized by a cytokine storm, with an overproduction of proinflammatory mediators. Innate and adaptive host immunity against the viral pathogen is exerted by various effectors and is regulated by different signaling pathways notably the JAK/STAT. The elucidation of the underlying mechanism of the regulation of mediating factors expressed in the viral infection would assist diagnosis and antiviral targeting therapy, which will help overcome the infection caused by SARS‑CoV‑2.
Collapse
Affiliation(s)
- Wenkai Li
- Department of Pathophysiology, School of Basic Medical Science, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
- Chinese-American Tumor Institute, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| | - Yunjing Zhuang
- Department of Clinical Microbiology, School of Medical Technology, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| | - Song-Jun Shao
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Pankaj Trivedi
- Department of Experimental Medicine, La Sapienza University of Rome, Rome I-00158, Italy
| | - Biying Zheng
- Department of Clinical Microbiology, School of Medical Technology, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| | - Guo-Liang Huang
- Chinese-American Tumor Institute, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| | - Zhiwei He
- Department of Pathophysiology, School of Basic Medical Science, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
- Chinese-American Tumor Institute, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| | - Xiangning Zhang
- Department of Pathophysiology, School of Basic Medical Science, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| |
Collapse
|
16
|
Park HJ, Park SH. The Ethanolic Extract of Dictyopteris Divaricata Induces Apoptosis in Non-Small Cell Lung Cancer Cells by Inhibiting STAT3 Activity. Nutr Cancer 2024; 76:305-315. [PMID: 38185896 DOI: 10.1080/01635581.2024.2301795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/27/2023] [Accepted: 12/28/2023] [Indexed: 01/09/2024]
Abstract
Dictyopteris divaricata (DD) has been reported to exert diverse pharmacological activities, including anti-inflammatory, antioxidant, and anticancer effects. In this study, we aimed to investigate the anticancer potential of the ethanolic extract of DD (EDD) in non-small cell lung cancer (NSCLC) cells and to explore the underlying mechanism. EDD significantly suppressed cell proliferation in H1299, PC9, and H1975 NSCLC cells. EDD treatment increased the proportion of Annexin V-positive cells and cells in sub-G1 phase, indicating the induction of apoptosis. This observation was further supported by the presence of fragmented nuclei and increased expression of cleaved PARP and cleaved caspase-3 in NSCLC cells following EDD treatment. Mechanistically, EDD decreased the phosphorylation levels of signal transducer and activator of transcription 3 (STAT3) and Src. Transfection of constitutively activated STAT3 into H1975 cells partially attenuated EDD-induced apoptosis, highlighting the contribution of STAT3 inhibition to the anticancer activity of EDD. In addition, we identified fucosterol as a major constituent of EDD that exhibited similar anticancer potential in NSCLC cells. Taken together, our results demonstrate that EDD induces apoptosis in NSCLC cells by inhibiting STAT3 activity. We propose EDD as a potential candidate for the development of therapies targeting NSCLC.
Collapse
Affiliation(s)
- Hyun-Ji Park
- Department of Pathology, College of Korean Medicine, Dong-eui University, Busan, Republic of Korea
| | - Shin-Hyung Park
- Department of Pathology, College of Korean Medicine, Dong-eui University, Busan, Republic of Korea
| |
Collapse
|
17
|
Marquet F, Hagen H, Stanchieri M, Beinier VS, Grasso G, Danani A, Patrulea V, Borchard G. Clickable polyethyleneimine incorporated into triblock copolymeric micelles as an efficient platform in the delivery of siRNA to NSCLC cells. Int J Pharm 2024; 649:123632. [PMID: 38000648 DOI: 10.1016/j.ijpharm.2023.123632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 11/19/2023] [Accepted: 11/20/2023] [Indexed: 11/26/2023]
Abstract
The efficacy of transfection vectors to cross the endosomal membrane into the cytosol is a central aspect in the development of nucleic acid-based therapeutics. The challenge remains the same: Delivery, Delivery, Delivery. Despite a rational and appropriate construct of triblock polymeric micelles, which could serve as an ideal platform for the co-delivery of siRNAs and hydrophobic anticancer drugs, we show here its inability to properly convey oligonucleotides to their final destination. In order to overcome biological barriers, a linear PEI comprising two orthogonal groups was synthesized, holding an appropriate balance between safety and efficacy. Micellar carriers were then formulated with this polymer to enhance endosomal siRNA release. This chemical technology also addresses the two major challenges to consider when developing novel micellar products for siRNA delivery, namely cytotoxicity of polycations and endosomal escape. Herein, we demonstrate successful release of siRNA using a polymer tailoring strategy combined with a relevant in vitro approach, considering STAT3 as a promising target in the treatment of non-small cell lung cancer (NSCLC).
Collapse
Affiliation(s)
- Franck Marquet
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1 Rue Michel Servet, 1211 Geneva, Switzerland; Section of Pharmaceutical Sciences, University of Geneva, 1 Rue Michel Servet, 1211 Geneva, Switzerland
| | - Harry Hagen
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1 Rue Michel Servet, 1211 Geneva, Switzerland; Section of Pharmaceutical Sciences, University of Geneva, 1 Rue Michel Servet, 1211 Geneva, Switzerland
| | - Mattia Stanchieri
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1 Rue Michel Servet, 1211 Geneva, Switzerland; Section of Pharmaceutical Sciences, University of Geneva, 1 Rue Michel Servet, 1211 Geneva, Switzerland
| | - Véronique Serre Beinier
- Division of Thoracic and Endocrine Surgery, University Hospitals and University of Geneva, Switzerland
| | - Gianvito Grasso
- Dalle Molle Institute for Artificial Intelligence (IDSIA), University of Italian Switzerland (USI), University of Applied Science and Art of Southern Switzerland (SUPSI), Polo Universitario Lugano - Campus Est, Via la Santa 1 CH-6962, Lugano-Viganello, Switzerland
| | - Andrea Danani
- Dalle Molle Institute for Artificial Intelligence (IDSIA), University of Italian Switzerland (USI), University of Applied Science and Art of Southern Switzerland (SUPSI), Polo Universitario Lugano - Campus Est, Via la Santa 1 CH-6962, Lugano-Viganello, Switzerland
| | - Viorica Patrulea
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1 Rue Michel Servet, 1211 Geneva, Switzerland; Section of Pharmaceutical Sciences, University of Geneva, 1 Rue Michel Servet, 1211 Geneva, Switzerland
| | - Gerrit Borchard
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1 Rue Michel Servet, 1211 Geneva, Switzerland; Section of Pharmaceutical Sciences, University of Geneva, 1 Rue Michel Servet, 1211 Geneva, Switzerland.
| |
Collapse
|
18
|
Guo YQ, Gan MF, Bao JQ, Zhou HX, Yang J, Dai CJ, Zheng JM. KDF1 Promoted Proliferation, Migration and Invasion of Lung Adenocarcinoma Cells through Activating STAT3 and AKT Pathway. Biomedicines 2023; 11:3194. [PMID: 38137415 PMCID: PMC10740774 DOI: 10.3390/biomedicines11123194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/23/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
KDF1 has been reported to be correlated with carcinogenesis. However, its role and mechanism are far from clear. To explore the possible role and underlying mechanism of KDF1 in lung adenocarcinoma (LUAD), we investigated KDF1 expression in LUAD tissues and the influence of KDF1 in the phenotype of LUAD cells (A549 and PC-9) as well as the underlying mechanism. Compared to non-tumor lung epithelial cells, KDF1 was upregulated in the cancer cells of the majority of LUAD patients, and its expression was correlated with tumor size. Patients with enhanced KDF1 in cancer cells (compared with paired adjacent non-neoplastic lung epithelial cells) had shorter overall survival than patients with no increased KDF1 in cancer cells. Knockdown of KDF1 inhibited the migration, proliferation and invasion of LUAD cells in vitro. And overexpression of KDF1 increased the growth of the subcutaneous tumors in mice. In terms of molecular mechanisms, overexpression of KDF1 induced the expression of AKT, p-AKT and p-STAT3. In KDF1-overexpressing A549 cells, inhibition of the STAT3 pathway decreased the level of AKT and p-AKT, whereas inhibition of the AKT pathway had no effect on the activation of STAT3. Inhibition of STAT3 or AKT pathways reversed the promoting effects of KDF1 overexpression on the LUAD cell phenotype and STAT3 inhibition appeared to have a better effect. Finally, in the cancer cells of LUAD tumor samples, the KDF1 level was observed to correlate positively with the level of p-STAT3. All these findings suggest that KDF1, which activates STAT3 and the downstream AKT pathway in LUAD, acts as a tumor-promoting factor and may represent a therapeutic target.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jing-Min Zheng
- Department of Pathology, Taizhou Hospital, Wenzhou Medical University, Linhai 317000, China
| |
Collapse
|
19
|
Wang KD, Zhu ML, Qin CJ, Dong RF, Xiao CM, Lin Q, Wei RY, He XY, Zang X, Kong LY, Xia YZ. Sanguinarine induces apoptosis in osteosarcoma by attenuating the binding of STAT3 to the single-stranded DNA-binding protein 1 (SSBP1) promoter region. Br J Pharmacol 2023; 180:3175-3193. [PMID: 37501645 DOI: 10.1111/bph.16202] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 06/19/2023] [Accepted: 07/20/2023] [Indexed: 07/29/2023] Open
Abstract
BACKGROUND AND PURPOSE Osteosarcoma, a primary malignant bone tumour prevalent among adolescents and young adults, remains a considerable challenge despite protracted progress made in enhancing patient survival rates over the last 40 years. Consequently, the development of novel therapeutic approaches for osteosarcoma is imperative. Sanguinarine (SNG), a compound with demonstrated potent anticancer properties against various malignancies, presents a promising avenue for exploration. Nevertheless, the intricate molecular mechanisms underpinning SNG's actions in osteosarcoma remain elusive, necessitating further elucidation. EXPERIMENTAL APPROACH Single-stranded DNA-binding protein 1 (SSBP1) was screened out by differential proteomic analysis. Apoptosis, cell cycle, reactive oxygen species (ROS) and mitochondrial changes were assessed via flow cytometry. Western blotting and quantitative real-time reverse transcription PCR (qRT-PCR) were used to determine protein and gene levels. The antitumour mechanism of SNG was explored at a molecular level using chromatin immunoprecipitation (ChIP) and dual luciferase reporter plasmids. KEY RESULTS Our investigation revealed that SNG exerted an up-regulated effect on SSBP1, disrupting mitochondrial function and inducing apoptosis. In-depth analysis uncovered a mechanism whereby SNG hindered the JAK/signal transducer and activator of transcription 3 (STAT3) signalling pathway, relieved the inhibitory effect of STAT3 on SSBP1 transcription, and inhibited the downstream PI3K/Akt/mTOR signalling axis, ultimately activating apoptosis. CONCLUSIONS AND IMPLICATIONS The study delved further into elucidating the anticancer mechanism of SNG in osteosarcoma. Notably, we unravelled the previously undisclosed apoptotic potential of SSBP1 in osteosarcoma cells. This finding holds substantial promise in advancing the development of novel anticancer drugs and identification of therapeutic targets.
Collapse
Affiliation(s)
- Kai-Di Wang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Miao-Lin Zhu
- Department of Oncology, The Affiliated Cancer Hospital of Nanjing Medical University and Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, Nanjing, China
| | - Cheng-Jiao Qin
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Rui-Fang Dong
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Cheng-Mei Xiao
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Qing Lin
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Rong-Yuan Wei
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xiao-Yu He
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xin Zang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Ling-Yi Kong
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yuan-Zheng Xia
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
20
|
Xu Y, Li J, Zhu K, Zeng Y, Chen J, Dong X, Zhang S, Xu S, Wu G. FIBP interacts with transcription factor STAT3 to induce EME1 expression and drive radioresistance in lung adenocarcinoma. Int J Biol Sci 2023; 19:3816-3829. [PMID: 37564211 PMCID: PMC10411469 DOI: 10.7150/ijbs.83134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 07/08/2023] [Indexed: 08/12/2023] Open
Abstract
Cancer cells inevitably develop radioresistance during lung adenocarcinoma radiotherapy. However, the mechanisms are incompletely clarified. In this study, we show that FIBP protein expression in lung adenocarcinoma tissues is upregulated and associated with worse overall survival. Functionally, we find that depletion of FIBP inhibits lung adenocarcinoma progression and radioresistance in vitro and in vivo. Moreover, we uncover that FIBP interacts with STAT3 to enhance its transcriptional activity, thereby inducing the expression of the downstream target gene EME1. Importantly, we demonstrate that the biological effects of FIBP are partially dependent on EME1 in lung adenocarcinoma. Our work reveals that FIBP modulates the STAT3/EME1 axis to drive lung cancer progression and radioresistance, indicating that targeting FIBP may be a novel intervention strategy for lung adenocarcinoma radiotherapy.
Collapse
Affiliation(s)
- Yunhong Xu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jun Li
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Kuikui Zhu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yulan Zeng
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jing Chen
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiaorong Dong
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Sheng Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shuangbing Xu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Gang Wu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
21
|
Reischmann N, Schmelas C, Molina-Vila MÁ, Jordana-Ariza N, Kuntze D, García-Roman S, Simard MA, Musch D, Esdar C, Albers J, Karachaliou N. Overcoming MET-mediated resistance in oncogene-driven NSCLC. iScience 2023; 26:107006. [PMID: 37534190 PMCID: PMC10391663 DOI: 10.1016/j.isci.2023.107006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/20/2023] [Accepted: 05/26/2023] [Indexed: 08/04/2023] Open
Abstract
This study evaluates the efficacy of combining targeted therapies with MET or SHP2 inhibitors to overcome MET-mediated resistance in different NSCLC subtypes. A prevalence study was conducted for MET amplification and overexpression in samples from patients with NSCLC who relapsed on ALK, ROS1, or RET tyrosine kinase inhibitors. MET-mediated resistance was detected in 37.5% of tissue biopsies, which allow the detection of MET overexpression, compared to 7.4% of liquid biopsies. The development of drug resistance by MET overexpression was confirmed in EGFRex19del-, KRASG12C-, HER2ex20ins-, and TPM3-NTRK1-mutant cell lines. The combination of targeted therapy with MET or SHP2 inhibitors was found to overcome MET-mediated resistance in both in vitro and in vivo assays. This study highlights the importance of considering MET overexpression as a resistance driver to NSCLC targeted therapies to better identify patients who could potentially benefit from combination approaches with MET or SHP2 inhibitors.
Collapse
Affiliation(s)
| | | | | | | | - Daniel Kuntze
- The Healthcare Business of Merck KGaA, Darmstadt, Germany
| | | | | | - Doreen Musch
- The Healthcare Business of Merck KGaA, Darmstadt, Germany
| | | | - Joachim Albers
- The Healthcare Business of Merck KGaA, Darmstadt, Germany
| | | |
Collapse
|
22
|
Faida P, Attiogbe MKI, Majeed U, Zhao J, Qu L, Fan D. Lung cancer treatment potential and limits associated with the STAT family of transcription factors. Cell Signal 2023:110797. [PMID: 37423343 DOI: 10.1016/j.cellsig.2023.110797] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/19/2023] [Accepted: 07/04/2023] [Indexed: 07/11/2023]
Abstract
Lung cancer is one of the mortal cancers and the leading cause of cancer-related mortality, with a cancer survival rate of fewer than 5% in developing nations. This low survival rate can be linked to things like late-stage detection, quick postoperative recurrences in patients receiving therapy, and chemoresistance developing against various lung cancer treatments. Signal transducer and activator of transcription (STAT) family of transcription factors are involved in lung cancer cell proliferation, metastasis, immunological control, and treatment resistance. By interacting with specific DNA sequences, STAT proteins trigger the production of particular genes, which in turn result in adaptive and incredibly specific biological responses. In the human genome, seven STAT proteins have been discovered (STAT1 to STAT6, including STAT5a and STAT5b). Many external signaling proteins can activate unphosphorylated STATs (uSTATs), which are found inactively in the cytoplasm. When STAT proteins are activated, they can increase the transcription of several target genes, which leads to unchecked cellular proliferation, anti-apoptotic reactions, and angiogenesis. The effects of STAT transcription factors on lung cancer are variable; some are either pro- or anti-tumorigenic, while others maintain dual, context-dependent activities. Here, we give a succinct summary of the various functions that each member of the STAT family plays in lung cancer and go into more detail about the advantages and disadvantages of pharmacologically targeting STAT proteins and their upstream activators in the context of lung cancer treatment.
Collapse
Affiliation(s)
- Paison Faida
- Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China; Biotech. & Biomed. Research Institute, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China
| | - Mawusse K I Attiogbe
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Usman Majeed
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi 710069, China
| | - Jing Zhao
- Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China; Biotech. & Biomed. Research Institute, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China
| | - Linlin Qu
- Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China; Biotech. & Biomed. Research Institute, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China
| | - Daidi Fan
- Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China; Biotech. & Biomed. Research Institute, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China.
| |
Collapse
|
23
|
Li J, Dang SM, Schurmann P, Dost AF, Moye AL, Paschini M, Bhetariya PJ, Bronson R, Sui SJH, Kim CF. Organoid modeling reveals the tumorigenic potential of the alveolar progenitor cell state. RESEARCH SQUARE 2023:rs.3.rs-2663901. [PMID: 36993454 PMCID: PMC10055547 DOI: 10.21203/rs.3.rs-2663901/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Alveolar type 2 (AT2) cells, the epithelial progenitor cells of the distal lung, are known to be the prominent cell of origin for lung adenocarcinoma. The regulatory programs that control chromatin and gene expression in AT2 cells during the early stages of tumor initiation are not well understood. Here, we dissected the response of AT2 cells to Kras activation and p53 loss (KP) using combined single cell RNA and ATAC sequencing in an established tumor organoid system. Multi-omic analysis showed that KP tumor organoid cells exhibit two major cellular states: one more closely resembling AT2 cells (SPC-high) and another with loss of AT2 identity (hereafter, Hmga2-high). These cell states are characterized by unique transcription factor (TF) networks, with SPC-high states associated with TFs known to regulate AT2 cell fate during development and homeostasis, and distinct TFs associated with the Hmga2-high state. CD44 was identified as a marker of the Hmga2-high state, and was used to separate organoid cultures for functional comparison of these two cell states. Organoid assays and orthotopic transplantation studies indicated that SPC-high cells have higher tumorigenic capacity in the lung microenvironment compared to Hmga2-high cells. These findings highlight the utility of understanding chromatin regulation in the early oncogenic versions of epithelial cells, which may reveal more effective means to intervene the progression of Kras-driven lung cancer.
Collapse
Affiliation(s)
- Jingyun Li
- Stem Cell Program, Division of Hematology/Oncology and Pulmonary & Respiratory Diseases, Children’s Hospital Boston, Boston MA 02115 USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Susanna M. Dang
- Stem Cell Program, Division of Hematology/Oncology and Pulmonary & Respiratory Diseases, Children’s Hospital Boston, Boston MA 02115 USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Paul Schurmann
- Stem Cell Program, Division of Hematology/Oncology and Pulmonary & Respiratory Diseases, Children’s Hospital Boston, Boston MA 02115 USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Department of Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, the Netherlands
| | - Antonella F.M. Dost
- Stem Cell Program, Division of Hematology/Oncology and Pulmonary & Respiratory Diseases, Children’s Hospital Boston, Boston MA 02115 USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Aaron L. Moye
- Stem Cell Program, Division of Hematology/Oncology and Pulmonary & Respiratory Diseases, Children’s Hospital Boston, Boston MA 02115 USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Margherita Paschini
- Stem Cell Program, Division of Hematology/Oncology and Pulmonary & Respiratory Diseases, Children’s Hospital Boston, Boston MA 02115 USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Preetida J Bhetariya
- Harvard Chan Bioinformatics Core, Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115
| | - Roderick Bronson
- Rodent Histopathology Core, Harvard Medical School, Boston, MA 02115, USA
| | - Shannan J. Ho Sui
- Harvard Chan Bioinformatics Core, Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115
| | - Carla F. Kim
- Stem Cell Program, Division of Hematology/Oncology and Pulmonary & Respiratory Diseases, Children’s Hospital Boston, Boston MA 02115 USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| |
Collapse
|
24
|
Huang H, Yi X, Wei Q, Li M, Cai X, Lv Y, Weng L, Mao Y, Fan W, Zhao M, Weng Z, Zhao Q, Zhao K, Cao M, Chen J, Cao P. Edible and cation-free kiwi fruit derived vesicles mediated EGFR-targeted siRNA delivery to inhibit multidrug resistant lung cancer. J Nanobiotechnology 2023; 21:41. [PMID: 36740689 PMCID: PMC9901103 DOI: 10.1186/s12951-023-01766-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 01/03/2023] [Indexed: 02/07/2023] Open
Abstract
Clinically, activated EGFR mutation associated chemo-drugs resistance has severely threaten NSCLC patients. Nanoparticle based small interfering RNA (siRNA) therapy representing another promising alternative by silencing specific gene while still suffered from charge associated toxicity, strong immunogenicity and poor targetability. Herein, we reported a novel EGFR-mutant NSCLC therapy relying on edible and cation-free kiwi-derived extracellular vesicles (KEVs), which showed sevenfold enhancement of safe dosage compared with widely used cationic liposomes and could be further loaded with Signal Transducer and Activator of Transcription 3 interfering RNA (siSTAT3). siSTAT3 loaded KEVs (STAT3/KEVs) could be easily endowed with EGFR targeting ability (STAT3/EKEVs) and fluorescence by surface modification with tailor-making aptamer through hydrophobic interaction. STAT3/EKEVs with a controlled size of 186 nm displayed excellent stability, high specificity and good cytotoxicity towards EGFR over-expressing and mutant PC9-GR4-AZD1 cells. Intriguingly, the systemic administration of STAT3/EKEVs significantly suppressed subcutaneous PC9-GR4-AZD1 tumor xenografts in nude mice by STAT3 mediated apoptosis. This safe and robust KEVs has emerged as the next generation of gene delivery platform for NSCLC therapy after multiple drug-resistance.
Collapse
Affiliation(s)
- Haoying Huang
- grid.410745.30000 0004 1765 1045School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023 China ,grid.410745.30000 0004 1765 1045Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028 Jiangsu China
| | - Xiaohan Yi
- grid.410745.30000 0004 1765 1045School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023 China ,grid.410745.30000 0004 1765 1045Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028 Jiangsu China
| | - Qingyun Wei
- grid.410745.30000 0004 1765 1045School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023 China ,grid.410745.30000 0004 1765 1045Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028 Jiangsu China
| | - Mengyuan Li
- grid.410745.30000 0004 1765 1045School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023 China
| | - Xueting Cai
- grid.410745.30000 0004 1765 1045School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023 China ,grid.410745.30000 0004 1765 1045Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028 Jiangsu China
| | - Yan Lv
- grid.410745.30000 0004 1765 1045School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023 China
| | - Ling Weng
- grid.410745.30000 0004 1765 1045School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023 China
| | - Yujie Mao
- grid.410745.30000 0004 1765 1045School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023 China
| | - Weiwei Fan
- grid.410745.30000 0004 1765 1045Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028 Jiangsu China
| | - Mengmeng Zhao
- grid.410745.30000 0004 1765 1045School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023 China
| | - Zhongpei Weng
- Gaoyou Hospital of Traditional Chinese Medicine, Yangzhou, 225600 Jiangsu China
| | - Qing Zhao
- grid.411866.c0000 0000 8848 7685Guangzhou Key Laboratory of Chinese Medicine Research on Prevention and Treatment of Osteoporosis, The Third Affiliated Hospital of Guangzhou University of Chinese Medicine, No.261 and 263, Longxi Avenue, Guangzhou, 510378 China
| | - Kewei Zhao
- grid.411866.c0000 0000 8848 7685Guangzhou Key Laboratory of Chinese Medicine Research on Prevention and Treatment of Osteoporosis, The Third Affiliated Hospital of Guangzhou University of Chinese Medicine, No.261 and 263, Longxi Avenue, Guangzhou, 510378 China
| | - Meng Cao
- grid.410745.30000 0004 1765 1045School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023 China ,grid.410745.30000 0004 1765 1045Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028 Jiangsu China
| | - Jing Chen
- grid.410745.30000 0004 1765 1045School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023 China
| | - Peng Cao
- grid.410745.30000 0004 1765 1045School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023 China ,grid.410745.30000 0004 1765 1045Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028 Jiangsu China ,Zhenjiang Hospital of Chinese Traditional and Western Medicine, Zhenjiang, 212000 China ,Haihe Laboratory of Modern Chinese Medicine, Jinghai District, No.10 Poyanghu Road, 301617 Tianjin, China
| |
Collapse
|
25
|
Li S, Chen Z, Zhang W, Wang T, Wang X, Wang C, Chao J, Liu L. Elevated expression of the membrane-anchored serine protease TMPRSS11E in NSCLC progression. Carcinogenesis 2022; 43:1092-1102. [PMID: 35951670 DOI: 10.1093/carcin/bgac069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/14/2022] [Accepted: 08/09/2022] [Indexed: 02/04/2023] Open
Abstract
TMPRSS11E was found to be upregulated in human nonsmall cell lung cancer samples (NSCLC) and cell lines, and high expression was associated with poor survival of NSCLC patients. The results of in vitro and in vivo experiments showed that overexpressing TMPRSS11E resulted in A549 cell proliferation and migration promotion, while the TMPRSS11E S372A mutant with the mutated catalytic domain lost the promoting function. In addition, in mouse xenograft models, silencing TMPRSS11E expression inhibited the growth of 95D cell-derived tumors. To explore the mechanism of marked upregulation of TMPRSS11E in NSCLC cells, promoter analysis, EMSA, and ChIP assays were performed. STAT3 was identified as the transcription factor responsible for TMPRSS11E transcription. Moreover, the purified recombinant TMPRSS11E catalytic domain exhibited enzymatic activity for the proteolytic cleavage of PAR2. Recombinant TMPRSS11E catalytic domain incubation further activated the PAR2-EGFR-STAT3 pathway. These findings established a mechanism of TMPRSS11E-PAR2-EGFR-STAT3 positive feedback, and the oncogenic role of TMPRSS11E as a PAR2 modulator in NSCLC was revealed.
Collapse
Affiliation(s)
- Shufeng Li
- Key Laboratory of Developmental Genes and Human Disease in Ministry of Education, Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Biochemistry and Molecular Biology, Medical School of Southeast University, Nanjing 210009, China
| | - Zhenfa Chen
- Key Laboratory of Developmental Genes and Human Disease in Ministry of Education, Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Biochemistry and Molecular Biology, Medical School of Southeast University, Nanjing 210009, China
| | - Wei Zhang
- Key Laboratory of Developmental Genes and Human Disease in Ministry of Education, Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Biochemistry and Molecular Biology, Medical School of Southeast University, Nanjing 210009, China
| | - Ting Wang
- Key Laboratory of Developmental Genes and Human Disease in Ministry of Education, Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Biochemistry and Molecular Biology, Medical School of Southeast University, Nanjing 210009, China
| | - Xihua Wang
- Department of Respiration, Zhongda Hospital, Nanjing 210009, China
| | - Chao Wang
- Key Laboratory of Developmental Genes and Human Disease in Ministry of Education, Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Biochemistry and Molecular Biology, Medical School of Southeast University, Nanjing 210009, China
| | - Jie Chao
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Physiology, Medical School of Southeast University, Nanjing 210009, China
| | - Ling Liu
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, Medicine School of Southeast University, Nanjing 210009, China
| |
Collapse
|
26
|
Nanoparticle-Mediated Delivery of STAT3 Inhibitors in the Treatment of Lung Cancer. Pharmaceutics 2022; 14:pharmaceutics14122787. [PMID: 36559280 PMCID: PMC9781630 DOI: 10.3390/pharmaceutics14122787] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/05/2022] [Accepted: 12/08/2022] [Indexed: 12/15/2022] Open
Abstract
Lung cancer is a common malignancy worldwide, with high morbidity and mortality. Signal transducer and activator of transcription 3 (STAT3) is an important transcription factor that not only regulates different hallmarks of cancer, such as tumorigenesis, cell proliferation, and metastasis but also regulates the occurrence and maintenance of cancer stem cells (CSCs). Abnormal STAT3 activity has been found in a variety of cancers, including lung cancer, and its phosphorylation level is associated with a poor prognosis of lung cancer. Therefore, the STAT3 pathway may represent a promising therapeutic target for the treatment of lung cancer. To date, various types of STAT3 inhibitors, including natural compounds, small molecules, and gene-based therapies, have been developed through direct and indirect strategies, although most of them are still in the preclinical or early clinical stages. One of the main obstacles to the development of STAT3 inhibitors is the lack of an effective targeted delivery system to improve their bioavailability and tumor targetability, failing to fully demonstrate their anti-tumor effects. In this review, we will summarize the recent advances in STAT3 targeting strategies, as well as the applications of nanoparticle-mediated targeted delivery of STAT3 inhibitors in the treatment of lung cancer.
Collapse
|
27
|
Wu Q, Yan Y, Shi S, Qi Q, Han J. DNMT3b-mediated SPAG6 promoter hypermethylation affects lung squamous cell carcinoma development through the JAK/STAT pathway. Am J Transl Res 2022; 14:6964-6977. [PMID: 36398260 PMCID: PMC9641444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 09/09/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND DNA methylation controls the transcription of genes and is involved in the development of lung cancer. Our preliminary bioinformatics prediction revealed that sperm associated antigen 6 (SPAG6) was considerably hypermethylated in lung squamous cell carcinoma (LUSC). Thus, this study aimed to probe the mechanism underlying its hypermethylation. METHODS The effect of DNA methylation of SPAG6 on its expression in LUSC was analyzed. The contributors to SPAG6 DNA hypermethylation were sought. CCK-8, EdU, and Transwell assays were carried out to assess the malignant phenotype of LUSC cells. KEGG pathway enrichment analysis was used to screen for pathways affected by SPAG6, which were confirmed by dual-luciferase assays. Bioinformatics analysis was conducted to dissect the impact of SPAG6 on the immune response and cancer cell stemness in LUSC. RESULTS DNA methyltransferase 3b (DNMT3b)-mediated hypermethylation of the SPAG6 promoter in LUSC led to SPAG6 downregulation. SPAG6 reverted the malignant phenotype of LUSC cells. SPAG6 regulated the JAK/STAT pathway by inhibiting the transcription of STAT1 and STAT3. The expression of SPAG6 was positively related to immune infiltration in LUSC and inversely related to the expressions of the immunosuppressive genes CTLA4 and PDCD1. SPAG6 expression was negatively correlated with cancer cell stemness in LUSC, and its expression inhibited the expressions of Nanog, ALDH1, and Sox2, markers of cancer cell stemness. CONCLUSIONS DNMT3b-mediated SPAG6 promoter hypermethylation activates the JAK/STAT pathway to promote LUSC progression.
Collapse
Affiliation(s)
- Qianbiao Wu
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Guangxi Medical UniversityNo. 6, Shuangyong Road, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Yibo Yan
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Guangxi Medical UniversityNo. 6, Shuangyong Road, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Shuo Shi
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Guangxi Medical UniversityNo. 6, Shuangyong Road, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Quan Qi
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Guangxi Medical UniversityNo. 6, Shuangyong Road, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Jiahui Han
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical UniversityNo. 6, Shuangyong Road, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
28
|
Zhang LJ, Chen F, Liang XR, Ponnusamy M, Qin H, Lin ZJ. Crosstalk among long non-coding RNA, tumor-associated macrophages and small extracellular vesicles in tumorigenesis and dissemination. Front Oncol 2022; 12:1008856. [PMID: 36263199 PMCID: PMC9574020 DOI: 10.3389/fonc.2022.1008856] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/13/2022] [Indexed: 12/02/2022] Open
Abstract
Long noncoding RNAs (lncRNAs), which lack protein-coding ability, can regulate cancer cell growth, proliferation, invasion, and metastasis. Tumor-associated macrophages (TAMs) are key components of the tumor microenvironment that have a significant impact on cancer progression. Small extracellular vesicles (sEV) are crucial mediators of intercellular communications. Cancer cell and macrophage-derived sEV can carry lncRNAs that influence the onset and progression of cancer. Dysregulation of lncRNAs, TAMs, and sEV is widely observed in tumors which makes them valuable targets for cancer immunotherapy. In this review, we summarize current updates on the interactions among sEV, lncRNAs, and TAMs in tumors and provide new perspectives on cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Li-jie Zhang
- Key Lab for Immunology in Universities of Shandong Province, School of Basic Medical Sciences, Weifang Medical University, Weifang, China
| | - Feng Chen
- Department of General Surgery, Weifang Traditional Chinese Hospital, Weifang, China
| | - Xiao-ru Liang
- Key Lab for Immunology in Universities of Shandong Province, School of Basic Medical Sciences, Weifang Medical University, Weifang, China
| | | | - Hao Qin
- Department of Public Health, Weifang Medical University, Weifang, China
| | - Zhi-juan Lin
- Key Lab for Immunology in Universities of Shandong Province, School of Basic Medical Sciences, Weifang Medical University, Weifang, China
- *Correspondence: Zhi-juan Lin,
| |
Collapse
|
29
|
Senescent Fibroblasts Generate a CAF Phenotype through the Stat3 Pathway. Genes (Basel) 2022; 13:genes13091579. [PMID: 36140747 PMCID: PMC9498467 DOI: 10.3390/genes13091579] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/29/2022] [Accepted: 08/31/2022] [Indexed: 11/16/2022] Open
Abstract
Aging has been recently reported to promote lung cancer initiation and progression. Senescent fibroblasts gain a cancer-associated fibroblast (CAF) phenotype, and exert a powerful influence on cancer behavior, such as tumor cell growth and metastasis. However, mechanisms linking fibroblast senescence with CAF activation remain poorly understood. Our study shows that senescent fibroblasts displayed CAF properties, including the highly expressed CAF markers, α-SMA and Vimentin, and CAF-specific factors, CXCL12, FGF10, IL6 and COL1A1, which significantly increased collagen contractile activity and promoted the migration and invasion of lung cancer cells, H1299 and A549. We were further able to show that CAF characteristics in senescent fibroblasts could be regulated by the Stat3 pathway. Intracellular ROS accumulation activates the Stat3 pathway during senescence. Thus, our findings indicate that senescent fibroblasts mediate a CAF function with the Stat3 pathway. We further propose a novel Stat3 dependent targetable mechanism, which is instrumental in mediating the migration and invasion of lung cancer cells.
Collapse
|
30
|
Liu Z, Zhang Y, Xiang Y, Kang X. Small-Molecule PROTACs for Cancer Immunotherapy. Molecules 2022; 27:5439. [PMID: 36080223 PMCID: PMC9458232 DOI: 10.3390/molecules27175439] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 11/18/2022] Open
Abstract
Unsatisfactory physicochemical properties of macromolecular drugs seriously hinder their application in tumor immunotherapy. However, these problems can be effectively solved by small-molecule compounds. In the promising field of small-molecule drug development, proteolysis targeting chimera (PROTAC) offers a novel mode of action in the interactions between small molecules and therapeutic targets (mainly proteins). This revolutionary technology has shown considerable impact on several proteins related to tumor survival but is rarely exploited in proteins associated with immuno-oncology up until now. This review attempts to comprehensively summarize the well-studied and less-developed immunological targets available for PROTAC technology, as well as some targets to be explored, aiming to provide more options and opportunities for the development of small-molecule-based tumor immunotherapy. In addition, some novel directions that can magnify and broaden the protein degradation efficiency are mentioned to improve PROTAC design in the future.
Collapse
Affiliation(s)
| | | | | | - Xin Kang
- West China (Airport) Hospital, Sichuan University, Chengdu 610047, China
| |
Collapse
|
31
|
Zhao Y, Zhang X, Li Y, Li Y, Zhang H, Song Z, Xu J, Guo Y. A natural xanthone suppresses lung cancer growth and metastasis by targeting STAT3 and FAK signaling pathways. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 102:154118. [PMID: 35576741 DOI: 10.1016/j.phymed.2022.154118] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 04/06/2022] [Accepted: 04/17/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Nonsmall-cell lung cancer (NSCLC) is one of the most common malignant tumors, and the current drugs have not achieved ideal therapeutic effects. The abnormal activation of STAT3 and FAK signal transduction in tumor cells is highly correlated with their proliferation and migration ability. Therefore, bioactive compounds that can inhibit STAT3 and FAK activation have the potential to become agents to treat NSCLC. PURPOSE This study aims to discover new antitumor compounds from Garcinia xipshuanbannaensis and investigate the molecular mechanism by which they inhibit lung cancer proliferation and metastasis in vivo and in vitro, all of which may lead to obtainment of a potential antitumor agent. METHODS Xipsxanthone H was obtained by various chromatography methods (including silica gel, medium pressure liquid chromatography (MPLC), and preparative high-performance liquid chromatography (HPLC)). 1D and 2D nuclear magnetic resonance (NMR) spectra were used to analyze the structure. Cell viability and wound healing assays were employed to detect changes in the proliferation and migration of cancer cells. Cell cycle and apoptosis were analyzed by flow cytometry. The protein expression of STAT3 and FAK signaling pathways affected by xipsxanthone H was determined by Western blotting. The zebrafish model was used to evaluate the in vivo effects of xipshantone H on tumor proliferation and metastasis. Molecular docking was utilized to explore the interaction between xipsxanthone H and STAT3. Cellular thermal shift assays (CETSAs) were employed to explore the possible target of xipsxanthone H. RESULTS The novel compound xipsxanthone H was purified and characterized from G. xipshuanbannaensis. Xipsxanthone H exhibited strong anti-proliferation activity in a variety of tumor cell lines. In addition to inducing reactive oxygen species (ROS) production and arresting the cell cycle, mechanistic studies demonstrated that xipsxanthone H suppressed STAT3 and FAK phosphorylation and regulated the downstream protein expression of the STAT3 and FAK signaling pathways. The in vivo studies using the zebrafish model revealed that xipsxanthone H inhibited tumor proliferation, metastasis, and angiogenesis. CONCLUSIONS A new xanthone was obtained from G. xipshuanbannaensis, and this compound had the property of inhibiting tumor proliferation and metastasis by targeting STAT3 and FAK signaling pathways in NSCLC. These findings suggested that xipsxanthone H might be a potential candidate agent for NSCLC treatment.
Collapse
Affiliation(s)
- Yinan Zhao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Xuke Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Ying Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Yeling Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Han Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Ziteng Song
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Jing Xu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China.
| | - Yuanqiang Guo
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China.
| |
Collapse
|
32
|
Insights into the Mechanisms of Action of Proanthocyanidins and Anthocyanins in the Treatment of Nicotine-Induced Non-Small Cell Lung Cancer. Int J Mol Sci 2022; 23:ijms23147905. [PMID: 35887251 PMCID: PMC9316101 DOI: 10.3390/ijms23147905] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/15/2022] [Accepted: 07/16/2022] [Indexed: 02/04/2023] Open
Abstract
In traditional medicine, different parts of plants, including fruits, have been used for their anti-inflammatory and anti-oxidative properties. Plant-based foods, such as fruits, seeds and vegetables, are used for therapeutic purposes due to the presence of flavonoid compounds. Proanthocyanidins (PCs) and anthocyanins (ACNs) are the major distributed flavonoid pigments in plants, which have therapeutic potential against certain chronic diseases. PCs and ACNs derived from plant-based foods and/or medicinal plants at different nontoxic concentrations have shown anti-non-small cell lung cancer (NSCLC) activity in vitro/in vivo models through inhibiting proliferation, invasion/migration, metastasis and angiogenesis and by activating apoptosis/autophagy-related mechanisms. However, the potential mechanisms by which these compounds exert efficacy against nicotine-induced NSCLC are not fully understood. Thus, this review aims to gain insights into the mechanisms of action and therapeutic potential of PCs and ACNs in nicotine-induced NSCLC.
Collapse
|
33
|
Jantalika T, Manochantr S, Kheolamai P, Tantikanlayaporn D, Saijuntha W, Pinlaor S, Chairoungdua A, Paraoan L, Tantrawatpan C. Human chorion-derived mesenchymal stem cells suppress JAK2/STAT3 signaling and induce apoptosis of cholangiocarcinoma cell lines. Sci Rep 2022; 12:11341. [PMID: 35790790 PMCID: PMC9256624 DOI: 10.1038/s41598-022-15298-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 06/22/2022] [Indexed: 11/09/2022] Open
Abstract
Cholangiocarcinoma (CCA) is an aggressive malignancy arising from the damaged epithelial cells of the biliary tract. Previous studies have reported that the multi-potent mesenchymal stem cells (MSCs) activate a series of tumor signaling pathways by releasing several cytokines to influence tumor cell development. However, the roles and mechanisms of human chorion-derived MSCs (CH-MSCs) in cholangiocarcinoma progression have not been fully addressed. This present study aims to examine the effects of conditioned media derived from CH-MSCs (CH-CM) on CCA cell lines and investigate the respective underlying mechanism of action. For this purpose, MSCs were isolated from chorion tissue, and three cholangiocarcinoma cell lines, namely KKU100, KKU213A, and KKU213B, were used. MTT assay, annexin V/PI analysis, and JC-1 staining were used to assess the effects of CH-CM on proliferation and apoptosis of CCA cells, respectively. Moreover, the effect of CH-CM on caspase-dependent apoptotic pathways was also evaluated. The western blotting assay was also used for measuring the expression of JAK2/STAT3 signaling pathway-associated proteins. The results showed that CH-CM suppressed proliferation and promoted apoptosis of CCA cell lines. CH-CM treatment-induced loss of mitochondrial membrane potential (∆Ψm) in CCA cell lines. The factors presented in the CH-CM also inhibited JAK2/STAT3 signaling, reduced the expression of BCL-2, and increased BAX expression in CCA cells. In conclusion, our study suggests that the CH-CM has a potent anti-cancer effect on cholangiocarcinoma cells and thus provides opportunities for use in alternative cell therapy or in combination with a conventional chemotherapeutic drug to increase the efficiency of CCA treatment.
Collapse
Affiliation(s)
- Tanachapa Jantalika
- Division of Cell Biology, Department of Preclinical Sciences, Faculty of Medicine, Thammasat University, Pathumthani, 12120, Thailand.,Center of Excellence in Stem Cell Research, Thammasat University, Pathumthani, 12120, Thailand
| | - Sirikul Manochantr
- Division of Cell Biology, Department of Preclinical Sciences, Faculty of Medicine, Thammasat University, Pathumthani, 12120, Thailand.,Center of Excellence in Stem Cell Research, Thammasat University, Pathumthani, 12120, Thailand
| | - Pakpoom Kheolamai
- Division of Cell Biology, Department of Preclinical Sciences, Faculty of Medicine, Thammasat University, Pathumthani, 12120, Thailand.,Center of Excellence in Stem Cell Research, Thammasat University, Pathumthani, 12120, Thailand
| | - Duangrat Tantikanlayaporn
- Division of Cell Biology, Department of Preclinical Sciences, Faculty of Medicine, Thammasat University, Pathumthani, 12120, Thailand.,Center of Excellence in Stem Cell Research, Thammasat University, Pathumthani, 12120, Thailand
| | - Weerachai Saijuntha
- Biodiversity and Conservation Research Unit, Walai Rukhavej Botanical Research Institute (WRBRI), Mahasarakham University, Maha Sarakham, 44150, Thailand
| | - Somchai Pinlaor
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Arthit Chairoungdua
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Luminita Paraoan
- Department of Biology, Faculty of Arts and Sciences, Edge Hill University, BioSciences Building, St Helens Road, Ormskirk, L39 4QP, UK.
| | - Chairat Tantrawatpan
- Division of Cell Biology, Department of Preclinical Sciences, Faculty of Medicine, Thammasat University, Pathumthani, 12120, Thailand. .,Center of Excellence in Stem Cell Research, Thammasat University, Pathumthani, 12120, Thailand.
| |
Collapse
|
34
|
Seshadri VD, Oyouni AAA, Hawsawi YM, Aljohani SAS, Al-Amer O, AlZamzami W, Mufti AH. Chemopreventive role of Tin oxide-Chitosan-Polyethylene glycol-Crocin nanocomposites against Lung cancer: an in vitro and in vivo approach. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.05.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
35
|
Yang Q, Zhai X, Lv Y. A Bibliometric Analysis of Triptolide and the Recent Advances in Treating Non-Small Cell Lung Cancer. Front Pharmacol 2022; 13:878726. [PMID: 35721205 PMCID: PMC9198653 DOI: 10.3389/fphar.2022.878726] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/25/2022] [Indexed: 12/14/2022] Open
Abstract
In recent decades, natural products derived from plants and their derivatives have attracted great interest in the field of disease treatment. Triptolide is a tricyclic diterpene extracted from Tripterygium wilfordii, a traditional Chinese medicine, which has shown excellent therapeutic potential in the fields of immune inflammation and cancer treatment. In this study, 1,106 Web-of-Science-indexed manuscripts and 1,160 Chinese-National-Knowledge-Infrastructure-indexed manuscripts regarding triptolide published between 2011 and 2021 were analyzed, mapping the co-occurrence networks of keywords and clusters using CiteSpace software. The research frontier and development trend were determined by keyword frequency and cluster analysis, which can be used to predict the future research development of triptolide. Non-small cell lung cancer (NSCLC) is most common in lung cancer patients, accounting for about 80% of all lung cancer patients. New evidence suggests that triptolide effectively inhibits the development and metastasis of NSCLC by the induction of apoptosis, reversion of EMT, and regulation of gene expression. Specifically, it acts on NF-κB, MAPKs, P53, Wnt/β-catenin, and microRNAs (miRNAs), signaling pathways and molecular mechanisms. Consequently, this article reviews the research progress of the anti-NSCLC effect of triptolide. In addition, attenuated studies on triptolide and the potential of tumor immunotherapy are also discussed.
Collapse
Affiliation(s)
| | | | - Yi Lv
- *Correspondence: Xuejia Zhai, ; Yi Lv,
| |
Collapse
|
36
|
Darwish NM, Elshaer MMA, Almutairi SM, Chen TW, Mohamed MO, Ghaly WBA, Rasheed RA. Omega-3 Polyunsaturated Fatty Acids Provoke Apoptosis in Hepatocellular Carcinoma through Knocking Down the STAT3 Activated Signaling Pathway: In Vivo and In Vitro Study. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27093032. [PMID: 35566382 PMCID: PMC9103886 DOI: 10.3390/molecules27093032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/04/2022] [Accepted: 05/05/2022] [Indexed: 11/28/2022]
Abstract
Hepatocellular carcinoma (HCC) is a common type of liver cancer and is a leading cause of death worldwide. Signal transducer and activator of transcription 3 (STAT3) is involved in HCC progression, migration, and suppression of apoptosis. This study investigates the apoptotic effect of the dietary antioxidant (n-3 PUFAs) on HepG2 cells and analyzes the underlying molecular mechanisms of this effect both in vivo and in vitro. In vivo study: Seventy-five adult male albino rats were divided into three groups (n = 25): Group I (control): 0.9% normal saline, intraperitoneal. Group II: N-Nitrosodiethylamine (200 mg/kg b.wt) intraperitoneal, followed by phenobarbital 0.05% in drinking water. Group III: as group II followed by n-3 PUFAs intubation (400 mg/kg/day). In vivo study: liver specimens for biochemical, histopathological, and immunohistochemical examination. In vitro study: MTT assay, cell morphology, PCR, Western blot, and immunohistochemical analysis. n-3 PUFAs significantly improved the histopathologic features of HCC and decreased the expression of anti-apoptotic proteins. Further, HepG2 cells proliferation was suppressed through inhibition of the STAT3 signaling pathway, cyclin D1, and Bcl-2 activity. Here we report that n-3 PUFAs may be an ideal cancer chemo-preventive candidate by targeting STAT3 signaling, which is involved in cell proliferation and apoptosis.
Collapse
Affiliation(s)
- Noura M. Darwish
- Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo 11566, Egypt
- Ministry of Health Laboratories, Tanta 16335, Egypt
- Correspondence: (N.M.D.); (R.A.R.); Tel.: +20-1096264335 (N.M.D.); +20-1001022257 (R.A.R.)
| | - Mohamed M. A. Elshaer
- Department of Clinical Pharmacology, Faculty of Medicine, Ain Shams University, Cairo 11566, Egypt;
- Department of Clinical Pharmacology, Faculty of Medicine, King Salman International University, South Sinai 46511, Egypt
| | - Saeedah Musaed Almutairi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Tse-Wei Chen
- Department of Materials, Imperial College London, London SW7 2AZ, UK;
| | - Mohamed Othman Mohamed
- Anatomy Department, Faculty of Medicine, King Salman International University, South Sinai 46511, Egypt;
| | - Wael B. A. Ghaly
- Physiology Department, Faculty of Medicine, Fayoum University, Fayoum 63511, Egypt;
- Physiology Department, Faculty of Medicine, King Salman International University, South Sinai 46511, Egypt
| | - Rabab Ahmed Rasheed
- Histology & Cell Biology Department, Faculty of Medicine, King Salman International University, South Sinai 46511, Egypt
- Correspondence: (N.M.D.); (R.A.R.); Tel.: +20-1096264335 (N.M.D.); +20-1001022257 (R.A.R.)
| |
Collapse
|
37
|
Hu Y, Zhao Z, Jin G, Guo J, Nan F, Hu X, Hu Y, Han Q. Long noncoding RNA regulatory factor X3- antisense RNA 1 promotes non-small cell lung cancer via the microRNA-577/signal transducer and activator of transcription 3 axis. Bioengineered 2022; 13:10749-10764. [PMID: 35475457 PMCID: PMC9208461 DOI: 10.1080/21655979.2022.2054910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Lung cancer is the most frequent malignancy, and non-small cell lung cancer (NSCLC) is its most common pathological type. Molecular targeted therapy has been testified to be effective in intervening in the occurrence and development of malignancies. This study investigates the effect of lncRNA Regulatory Factor X3- antisense RNA 1 (RFX3-AS1) in NSCLC progression. The RFX3-AS1 profile in NSCLC tissues and cells was measured by quantitative reverse transcription PCR (qRT-PCR). The RFX3-AS1 overexpression model was constructed. The cell counting kit-8 (CCK-8) experiment and cell colony formation assay were adopted to test cell viability. The cell apoptosis was determined by flow cytometry (FCM). Cell migration and invasion were monitored by the Transwell assay, and Western blot was implemented to verify the protein profiles of signal transducer and activator of transcription 3 (STAT3), E-cadherin, Vimentin and N-cadherin. In vivo, we validated the impact of RFX3-AS1 overexpression on the NSCLC xenograft mouse model. The targeting relationships between RFX3-AS1 and miR-577, miR-577 and STAT3 were confirmed by the dual-luciferase reporter assay. The results manifested that overexpressing RFX3-AS1 markedly facilitated NSCLC cell proliferation, migration, invasion and epithelial-mesenchymal transition (EMT), and suppressed cell apoptosis. In contrast, miR-577, which was a downstream target of RFX3-AS1, dramatically impeded the malignant biological behaviors of NSCLC cells. STAT3 was a direct target of miR-577, and it was negatively regulated by the latter. STAT3 activation reversed miR-577-mediated anti-tumor roles. In brief, RFX3-AS1 aggravated NSCLC progression by regulating the miR-577/STAT3 axis.
Collapse
Affiliation(s)
- Yanjing Hu
- Department of Thoracic Surgery, The First People's Hospital of Jiangxia District, Wuhan, Hubei, China
| | - Zhi Zhao
- Department of Thoracic Surgery, The First People's Hospital of Jiangxia District, Wuhan, Hubei, China
| | - Gang Jin
- Department of Thoracic Surgery, The First People's Hospital of Jiangxia District, Wuhan, Hubei, China
| | - Junhao Guo
- Department of Thoracic Surgery, The First People's Hospital of Jiangxia District, Wuhan, Hubei, China
| | - Fangyuan Nan
- Department of Thoracic Surgery, The First People's Hospital of Jiangxia District, Wuhan, Hubei, China
| | - Xin Hu
- Department of Thoracic Surgery, The First People's Hospital of Jiangxia District, Wuhan, Hubei, China
| | - Yunsheng Hu
- Department of Thoracic Surgery, The First People's Hospital of Jiangxia District, Wuhan, Hubei, China
| | - Qun Han
- Department of Thoracic Surgery, The First People's Hospital of Jiangxia District, Wuhan, Hubei, China
| |
Collapse
|
38
|
Luo Y, Li J, Yu P, Sun J, Hu Y, Meng X, Xiang L. Targeting lncRNAs in programmed cell death as a therapeutic strategy for non-small cell lung cancer. Cell Death Dis 2022; 8:159. [PMID: 35379783 PMCID: PMC8980082 DOI: 10.1038/s41420-022-00982-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/14/2022] [Accepted: 03/23/2022] [Indexed: 11/09/2022]
Abstract
Lung cancer is a leading cause of cancer-related mortality worldwide, with non-small cell lung cancer (NSCLC) being the most common histological type. Owing to the limited therapeutic efficacy and side effects of currently available therapies for NSCLC, it is necessary to identify novel therapeutic targets for NSCLC. Long non-coding RNAs (lncRNAs) are non-protein-coding RNAs with a transcript length of more than 200 nucleotides, which play a vital role in the tumorigenesis and progression of multiple cancers, including NSCLC. Induction of programmed cell death (PCD) is the main mechanism leading to tumour cell death in most cancer treatments. Recent studies have demonstrated that lncRNAs are closely correlated with PCD including apoptosis, pyroptosis, autophagy and ferroptosis, which can regulate PCD and relevant death pathways to affect NSCLC progression and the efficacy of clinical therapy. Therefore, in this review, we focused on the function of lncRNAs in PCD of NSCLC and summarized the therapeutic role of targeting lncRNAs in PCD for NSCLC treatment, aiming to provide new sights into the underlying pathogenic mechanisms and propose a potential new strategy for NSCLC therapy so as to improve therapeutic outcomes with the ultimate goal to benefit the patients.
Collapse
Affiliation(s)
- Yanqin Luo
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Pharmacy, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, P. R. China
| | - Jingyang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Pharmacy, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, P. R. China
| | - Peng Yu
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Pharmacy, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, P. R. China
| | - Jiayi Sun
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Pharmacy, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, P. R. China
| | - Yingfan Hu
- School of Preclinical Medicine, Chengdu University, Chengdu, 610106, P. R. China
| | - Xianli Meng
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Pharmacy, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, P. R. China.
| | - Li Xiang
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Pharmacy, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, P. R. China.
| |
Collapse
|
39
|
Erdogan F, Radu TB, Orlova A, Qadree AK, de Araujo ED, Israelian J, Valent P, Mustjoki SM, Herling M, Moriggl R, Gunning PT. JAK-STAT core cancer pathway: An integrative cancer interactome analysis. J Cell Mol Med 2022; 26:2049-2062. [PMID: 35229974 PMCID: PMC8980946 DOI: 10.1111/jcmm.17228] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/14/2021] [Accepted: 12/22/2021] [Indexed: 12/25/2022] Open
Abstract
Through a comprehensive review and in silico analysis of reported data on STAT-linked diseases, we analysed the communication pathways and interactome of the seven STATs in major cancer categories and proposed rational targeting approaches for therapeutic intervention to disrupt critical pathways and addictions to hyperactive JAK/STAT in neoplastic states. Although all STATs follow a similar molecular activation pathway, STAT1, STAT2, STAT4 and STAT6 exert specific biological profiles associated with a more restricted pattern of activation by cytokines. STAT3 and STAT5A as well as STAT5B have pleiotropic roles in the body and can act as critical oncogenes that promote many processes involved in cancer development. STAT1, STAT3 and STAT5 also possess tumour suppressive action in certain mutational and cancer type context. Here, we demonstrated member-specific STAT activity in major cancer types. Through systems biology approaches, we found surprising roles for EGFR family members, sex steroid hormone receptor ESR1 interplay with oncogenic STAT function and proposed new drug targeting approaches of oncogenic STAT pathway addiction.
Collapse
Affiliation(s)
- Fettah Erdogan
- Department of Chemical and Physical SciencesUniversity of Toronto MississaugaMississaugaOntarioCanada
- Department of ChemistryUniversity of TorontoTorontoOntarioCanada
| | - Tudor Bogdan Radu
- Department of Chemical and Physical SciencesUniversity of Toronto MississaugaMississaugaOntarioCanada
- Department of ChemistryUniversity of TorontoTorontoOntarioCanada
| | - Anna Orlova
- Institute of Animal Breeding and GeneticsUniversity of Veterinary MedicineViennaAustria
| | - Abdul Khawazak Qadree
- Department of Chemical and Physical SciencesUniversity of Toronto MississaugaMississaugaOntarioCanada
- Department of ChemistryUniversity of TorontoTorontoOntarioCanada
| | - Elvin Dominic de Araujo
- Department of Chemical and Physical SciencesUniversity of Toronto MississaugaMississaugaOntarioCanada
| | - Johan Israelian
- Department of Chemical and Physical SciencesUniversity of Toronto MississaugaMississaugaOntarioCanada
- Department of ChemistryUniversity of TorontoTorontoOntarioCanada
| | - Peter Valent
- Division of Hematology and HemostaseologyDepartment of Internal Medicine IMedical University of ViennaViennaAustria
- Ludwig Boltzmann Institute for Hematology and OncologyMedical University of ViennaViennaAustria
| | - Satu M. Mustjoki
- Translational Immunology Research Program and Department of Clinical Chemistry and HematologyUniversity of HelsinkiHelsinkiFinland
- Hematology Research UnitHelsinki University Hospital Comprehensive Cancer CenterHelsinkiFinland
- iCAN Digital Precision Cancer Medicine FlagshipHelsinkiFinland
| | - Marco Herling
- Department of Hematology, Cellular Therapy, and HemostaseologyUniversity of LeipzigLeipzigGermany
| | - Richard Moriggl
- Institute of Animal Breeding and GeneticsUniversity of Veterinary MedicineViennaAustria
| | - Patrick Thomas Gunning
- Department of Chemical and Physical SciencesUniversity of Toronto MississaugaMississaugaOntarioCanada
- Department of ChemistryUniversity of TorontoTorontoOntarioCanada
| |
Collapse
|
40
|
Grinshpun A, Cohen Y, Zick A, Kadouri L, Hamburger T, Nisman B, Allweis TM, Oprea G, Peretz T, Uziely B, Sonnenblick A. Potential Refinement of Recurrence Score by pSTAT3 Status. Genes (Basel) 2022; 13:genes13030438. [PMID: 35327992 PMCID: PMC8949499 DOI: 10.3390/genes13030438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 02/21/2022] [Accepted: 02/25/2022] [Indexed: 02/04/2023] Open
Abstract
The likelihood of recurrence in breast cancer patients with hormone receptor-positive (HR-positive) tumors is influenced by clinical, histopathological, and molecular features. Recent studies suggested that activated STAT3 (pSTAT3) might serve as a biomarker of outcome in breast cancer patients. In the present work, we have analyzed the added value of pSTAT3 to OncotypeDx Recurrence Score (RS) in patient prognostication. We have found that patients with low RS (<26) and low pSTAT3 might represent a population at a higher risk for cancer recurrence. Furthermore, we have observed that a positive pSTAT3 score alone can be a favorable marker for patients with HR-positive breast cancer under the age of 50. In an era of personalized medicine, these findings warrant further appraisal of chemotherapy benefit in this population.
Collapse
Affiliation(s)
- Albert Grinshpun
- Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel; (A.G.); (Y.C.); (A.Z.); (L.K.); (T.H.); (B.N.); (T.P.); (B.U.)
- Faculty of Medicine, The Hebrew University, Jerusalem 9112102, Israel;
| | - Yogev Cohen
- Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel; (A.G.); (Y.C.); (A.Z.); (L.K.); (T.H.); (B.N.); (T.P.); (B.U.)
- Faculty of Medicine, The Hebrew University, Jerusalem 9112102, Israel;
| | - Aviad Zick
- Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel; (A.G.); (Y.C.); (A.Z.); (L.K.); (T.H.); (B.N.); (T.P.); (B.U.)
- Faculty of Medicine, The Hebrew University, Jerusalem 9112102, Israel;
| | - Luna Kadouri
- Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel; (A.G.); (Y.C.); (A.Z.); (L.K.); (T.H.); (B.N.); (T.P.); (B.U.)
- Faculty of Medicine, The Hebrew University, Jerusalem 9112102, Israel;
| | - Tamar Hamburger
- Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel; (A.G.); (Y.C.); (A.Z.); (L.K.); (T.H.); (B.N.); (T.P.); (B.U.)
| | - Benjamin Nisman
- Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel; (A.G.); (Y.C.); (A.Z.); (L.K.); (T.H.); (B.N.); (T.P.); (B.U.)
| | - Tanir M. Allweis
- Faculty of Medicine, The Hebrew University, Jerusalem 9112102, Israel;
- Department of Surgery, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel
| | - Gabriela Oprea
- Department of pathology, Emory University, Atlanta, GA 30322, USA;
| | - Tamar Peretz
- Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel; (A.G.); (Y.C.); (A.Z.); (L.K.); (T.H.); (B.N.); (T.P.); (B.U.)
- Faculty of Medicine, The Hebrew University, Jerusalem 9112102, Israel;
| | - Beatrice Uziely
- Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel; (A.G.); (Y.C.); (A.Z.); (L.K.); (T.H.); (B.N.); (T.P.); (B.U.)
- Faculty of Medicine, The Hebrew University, Jerusalem 9112102, Israel;
| | - Amir Sonnenblick
- Institute of Oncology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6423906, Israel
- Correspondence: ; Tel.: +972-3-6972061; Fax: +972-3-6974789
| |
Collapse
|
41
|
He B, Wei C, Cai Q, Zhang P, Shi S, Peng X, Zhao Z, Yin W, Tu G, Peng W, Tao Y, Wang X. Switched alternative splicing events as attractive features in lung squamous cell carcinoma. Cancer Cell Int 2022; 22:5. [PMID: 34986865 PMCID: PMC8734344 DOI: 10.1186/s12935-021-02429-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 12/23/2021] [Indexed: 11/10/2022] Open
Abstract
Background Alternative splicing (AS) plays important roles in transcriptome and proteome diversity. Its dysregulation has a close affiliation with oncogenic processes. This study aimed to evaluate AS-based biomarkers by machine learning algorithms for lung squamous cell carcinoma (LUSC) patients. Method The Cancer Genome Atlas (TCGA) database and TCGA SpliceSeq database were utilized. After data composition balancing, Boruta feature selection and Spearman correlation analysis were used for differentially expressed AS events. Random forests and a nested fivefold cross-validation were applied for lymph node metastasis (LNM) classifier building. Random survival forest combined with Cox regression model was performed for a prognostic model, based on which a nomogram was developed. Functional enrichment analysis and Spearman correlation analysis were also conducted to explore underlying mechanisms. The expression of some switch-involved AS events along with parent genes was verified by qRT-PCR with 20 pairs of normal and LUSC tissues. Results We found 16 pairs of splicing events from same parent genes which were strongly related to the splicing switch (intrapair correlation coefficient = − 1). Next, we built a reliable LNM classifier based on 13 AS events as well as a nice prognostic model, in which switched AS events behaved prominently. The qRT-PCR presented consistent results with previous bioinformatics analysis, and some AS events like ITIH5-10715-AT and QKI-78404-AT showed remarkable detection efficiency for LUSC. Conclusion AS events, especially switched ones from the same parent genes, could provide new insights into the molecular diagnosis and therapeutic drug design of LUSC. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-02429-2.
Collapse
Affiliation(s)
- Boxue He
- Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha, 410011, China.,Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, Second Xiangya Hospital, Central South University, Changsha, 410011, China.,Xiangya School of Medicine, Central South University, Changsha, 410008, China
| | - Cong Wei
- Xiangya School of Medicine, Central South University, Changsha, 410008, China
| | - Qidong Cai
- Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha, 410011, China.,Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Pengfei Zhang
- Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha, 410011, China.,Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Shuai Shi
- Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha, 410011, China.,Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Xiong Peng
- Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha, 410011, China.,Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Zhenyu Zhao
- Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha, 410011, China.,Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Wei Yin
- Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha, 410011, China.,Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Guangxu Tu
- Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha, 410011, China.,Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Weilin Peng
- Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha, 410011, China.,Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Yongguang Tao
- Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha, 410011, China.,Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, Second Xiangya Hospital, Central South University, Changsha, 410011, China.,Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, Xiangya Hospital, Central South University, Hunan, 410078, China.,NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, 410078, Hunan, China
| | - Xiang Wang
- Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha, 410011, China. .,Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, Second Xiangya Hospital, Central South University, Changsha, 410011, China.
| |
Collapse
|
42
|
Zheng S, Li H, Feng J, Jiang C, Lin Y, Xie Y, Yu T, Qian X, Yin Z. Complete remission in leptomeningeal metastasis of NSCLC with rare EGFR-SEPT14 fusion treated with osimertinib combined with intrathecal chemotherapy with pemetrexed. Anticancer Drugs 2022; 33:e795-e798. [PMID: 34486539 DOI: 10.1097/cad.0000000000001222] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Leptomeningeal metastasis (LM) is one of the most serious complications of non-small cell lung cancer (NSCLC) without standard treatment guidelines and is always accompanied by poor prognosis. Identifying the types of gene mutations is essential to improve the outcome, and an increasing number of rare epidermal growth factor receptor (EGFR) mutations are revealed by next-generation sequencing (NGS). Here, we describe a case of a 56-year-old man who was diagnosed with lung adenocarcinoma and received thoracoscopic resection in May 2015. One year later, LM was confirmed by positive cerebrospinal fluid cytology. Given the existence of EGFR exon 19 deletions, erlotinib was implemented and achieved a short response for 10 months. Then the systemic therapy was changed to osimertinib and obtained clinical remission for 25 months. Owing to the resurgence of violent headache, retching and vomiting, NGS of cerebrospinal fluid was performed and two rare EGFR-SEPT14 fusions were found. Osimertinib combined bevacizumab, chemotherapy (carboplatin and abraxane) and dacomitinib were implemented in turn but ineffective. Thus, osimertinib combined intrathecal chemotherapy with pemetrexed were carried out and gained a complete remission of neurologic symptoms, stable lesions and long-term survival without notable side effects. This study presented the first case of NSCLC-LM harboring particular EGFR-SEPT14 fusions, who showed a durable response to osimertinib and intrathecal pemetrexed, providing a potential therapeutic option for NSCLC-LM patients with this particular mutation.
Collapse
Affiliation(s)
- Shengnan Zheng
- Nanjing Drum Tower Hospital Clinical College of Xuzhou Medical University, Xuzhou, Jiangsu
| | - Huiying Li
- Department of Geriatric Oncology, Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School
| | - Jie Feng
- Department of Geriatric Oncology, Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School
| | - Cheng Jiang
- Department of Geriatric Oncology, Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School
| | - Yongjuan Lin
- Department of Geriatric Oncology, Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School
| | - Yu Xie
- Department of Geriatric Oncology, Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School
| | - Tingting Yu
- Department of Geriatric Oncology, Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School
| | - Xiaoping Qian
- The Comprehensive Cancer Center of Drum Tower Hospital, Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Zhenyu Yin
- Department of Geriatric Oncology, Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School
| |
Collapse
|
43
|
Xiang XS, Li PC, Wang WQ, Liu L. Histone deacetylases: A novel class of therapeutic targets for pancreatic cancer. Biochim Biophys Acta Rev Cancer 2022; 1877:188676. [PMID: 35016922 DOI: 10.1016/j.bbcan.2022.188676] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/31/2021] [Accepted: 01/05/2022] [Indexed: 12/24/2022]
Abstract
Pancreatic cancer is the seventh leading cause of cancer death worldwide, with a low 5-year survival rate. Novel agents are urgently necessary to treat the main pathological type, known as pancreatic ductal carcinoma (PDAC). The dysregulation of histone deacetylases (HDACs) has been identified in association with PDAC, which can be more easily targeted by small molecular inhibitors than gene mutations and may represent a therapeutic breakthrough for PDAC. However, the contributions of HDACs to PDAC remain controversial, and pharmacokinetic challenges have limited the application of HDAC inhibitors (HDACis) in PDAC. This review summarizes the mechanisms associated with success and failure of HDACis in PDAC and discusses the recent progress made in HDACi development and application, such as combination therapies designed to enhance efficacy. More precise strategies involving HDACis might eventually improve the outcomes of PDAC treatment.
Collapse
Affiliation(s)
- Xue-Song Xiang
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Peng-Cheng Li
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wen-Quan Wang
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Liang Liu
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
44
|
Batbold U, Liu JJ. Artemisia santolinifolia-Mediated Chemosensitization via Activation of Distinct Cell Death Modes and Suppression of STAT3/Survivin-Signaling Pathways in NSCLC. Molecules 2021; 26:molecules26237200. [PMID: 34885780 PMCID: PMC8658962 DOI: 10.3390/molecules26237200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/22/2021] [Accepted: 11/24/2021] [Indexed: 01/27/2023] Open
Abstract
Conventional chemotherapy remains an integral part of lung cancer therapy, regardless of its toxicity and drug resistance. Consequently, the discovery of an alternative to conventional chemotherapy is critical. Artemisia santolinifolia ethanol extract (AS) was assessed for its chemosensitizer ability when combined with the conventional anticancer drug, docetaxel (DTX), against non-small cell lung cancer (NSCLC). SRB assay was used to determine cell viability for A549 and H23 cell lines. The potential for this combination was examined by the combination index (CI). Further cell death, analyses with Annexin V/7AAD double staining, and corresponding protein expressions were analyzed. Surprisingly, AS synergistically enhanced the cytotoxic effect of DTX by inducing apoptosis in H23 cells through the caspase-dependent pathway, whereas selectively increased necrotic cell population in A549 cells, following the decline in GPX4 level and reactive oxygen species (ROS) activation with the highest rate in the combination treatment group. Furthermore, our results highlight the chemosensitization ability of AS when combined with DTX. It was closely associated with synergistic inhibition of oncogenesis signaling molecule STAT3 in both cell lines and concurrently downregulating prosurvival protein Survivin. Conclusively, AS could enhance DTX-induced cancer cells apoptosis by abrogating substantial prosurvival proteins' expressions and triggering two distinct cell death pathways. Our data also highlight that AS might serve as an adjunctive therapeutic option along with a conventional chemotherapeutic agent in the management of NSCLC patients.
Collapse
Affiliation(s)
- Uyanga Batbold
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan;
| | - Jun-Jen Liu
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan;
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- Traditional Herbal Medicine Research Center, Taipei Medical University Hospital, Taipei 11031, Taiwan
- Correspondence:
| |
Collapse
|
45
|
5- epi-Sinuleptolide from Soft Corals of the Genus Sinularia Exerts Cytotoxic Effects on Pancreatic Cancer Cell Lines via the Inhibition of JAK2/STAT3, AKT, and ERK Activity. Molecules 2021; 26:molecules26226932. [PMID: 34834023 PMCID: PMC8623039 DOI: 10.3390/molecules26226932] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/10/2021] [Accepted: 11/15/2021] [Indexed: 12/25/2022] Open
Abstract
Pancreatic ductal adenocarcinoma is one of the most lethal malignancies: more than half of patients are diagnosed with a metastatic disease, which is associated with a five-year survival rate of only 3%. 5-epi-Sinuleptolide, a norditerpene isolated from Sinularia sp., has been demonstrated to possess cytotoxic activity against cancer cells. However, the cytotoxicity against pancreatic cancer cells and the related mechanisms are unknown. The aim of this study was to evaluate the anti-pancreatic cancer potential of 5-epi-sinuleptolide and to elucidate the underlying mechanisms. The inhibitory effects of 5-epi-sinuleptolide treatment on the proliferation of pancreatic cancer cells were determined and the results showed that 5-epi-sinuleptolide treatment inhibited cell proliferation, induced apoptosis and G2/M cell cycle arrest, and suppressed the invasion of pancreatic cancer cells. The results of western blotting further revealed that 5-epi-sinuleptolide could inhibit JAK2/STAT3, AKT, and ERK phosphorylation, which may account for the diverse cytotoxic effects of 5-epi-sinuleptolide. Taken together, our present investigation unveils a new therapeutic and anti-metastatic potential of 5-epi-sinuleptolide for pancreatic cancer treatment.
Collapse
|
46
|
Research progress on the occurrence and therapeutic mechanism of ferroptosis in NSCLC. Naunyn Schmiedebergs Arch Pharmacol 2021; 395:1-12. [PMID: 34779876 DOI: 10.1007/s00210-021-02178-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/06/2021] [Indexed: 10/19/2022]
Abstract
Ferroptosis refers to a novel way of cell death, inconsistent with the conventional concept of apoptosis and necrosis. It shows a close association with iron metabolism and oxidative damage, as marked by the significant increase of reactive oxygen species, the decreases of mitochondrial volume, and the thickening of membrane density. Recent studies confirmed that ferroptosis is closely associated with the occurrence, development, and therapy of the tumors. As impacted by the high levels of reactive oxygen species and lipid peroxides in lung cancer tissues, it is suggested that ferroptosis is more likely to occur in lung cancer tissues, which may act as a novel approach for non-small cell lung cancer (NSCLC) therapy. In the present study, the research achievements in recent years on the regulating mechanism of ferroptosis and its effect on the occurrence and the therapy of lung cancer are reviewed.
Collapse
|
47
|
Nikolskii AA, Shilovskiy IP, Barvinskaia ED, Korneev AV, Sundukova MS, Khaitov MR. Role of STAT3 Transcription Factor in Pathogenesis of Bronchial Asthma. BIOCHEMISTRY. BIOKHIMIIA 2021; 86:1489-1501. [PMID: 34906042 DOI: 10.1134/s0006297921110122] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 09/21/2021] [Accepted: 10/12/2021] [Indexed: 06/14/2023]
Abstract
Bronchial asthma is a heterogeneous chronic inflammatory disease of airways. The studies of molecular and cellular mechanisms of bronchial asthma have established that a wide range of immune (T and B cells, eosinophils, neutrophils, macrophages, etc.) and structural (epithelial and endothelial) cells are involved in its pathogenesis. These cells are activated in response to external stimuli (bacteria, viruses, allergens, and other pollutants) and produce pro-inflammatory factors (cytokines, chemokines, metalloproteinases, etc.), which ultimately leads to the initiation of pathological processes in the lungs. Genes encoding transcription factors of the STAT family (signal transducer and activator of transcription), that includes seven representatives, are involved in the cell activation. Recent studies have shown that the transcription factor STAT3 plays an important role in the activation of the abovementioned cells, thus contributing to the development of asthma. In animal studies, selective inhibition of STAT3 significantly reduces the severity of lung inflammation, which indicates its potential as a therapeutic target. In this review, we describe the mechanisms of STAT3 activation and its role in polarization of Th2/Th17 cells and M2 macrophages, as well as in the dysfunction of endothelial cells, which ultimately leads to development of bronchial asthma symptoms, such as infiltration of neutrophils and eosinophils into the lungs, bronchial hyperreactivity, and the respiratory tract remodeling.
Collapse
Affiliation(s)
- Aleksandr A Nikolskii
- National Research Center - Institute of Immunology Federal Medical-Biological Agency of Russia, Moscow, 115522, Russia
| | - Igor P Shilovskiy
- National Research Center - Institute of Immunology Federal Medical-Biological Agency of Russia, Moscow, 115522, Russia.
| | - Ekaterina D Barvinskaia
- National Research Center - Institute of Immunology Federal Medical-Biological Agency of Russia, Moscow, 115522, Russia
| | - Artem V Korneev
- National Research Center - Institute of Immunology Federal Medical-Biological Agency of Russia, Moscow, 115522, Russia
| | - Maria S Sundukova
- National Research Center - Institute of Immunology Federal Medical-Biological Agency of Russia, Moscow, 115522, Russia
| | - Musa R Khaitov
- National Research Center - Institute of Immunology Federal Medical-Biological Agency of Russia, Moscow, 115522, Russia
| |
Collapse
|
48
|
STAT3 Activation in Psoriasis and Cancers. Diagnostics (Basel) 2021; 11:diagnostics11101903. [PMID: 34679602 PMCID: PMC8534757 DOI: 10.3390/diagnostics11101903] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/03/2021] [Accepted: 10/13/2021] [Indexed: 12/25/2022] Open
Abstract
Activation of signal transducer and activator of transcription (STAT)3 has been reported in many cancers. It is also well known that STAT3 is activated in skin lesions of psoriasis, a chronic skin disease. In this study, to ascertain whether patients with psoriasis have a predisposition to STAT3 activation, we examined phosphorylated STAT3 in cancer cells of psoriasis patients via immunohistochemistry. We selected patients with psoriasis who visited the Department of Dermatology, Jichi Medical University Hospital, from January 2000 to May 2015, and had a history of cancer. We performed immunostaining for phosphorylated STAT3 in tumor cells of five, four, and six cases of gastric, lung, and head and neck cancer, respectively. The results showed that there was no significant difference in STAT3 activation in any of the three cancer types between the psoriasis and control groups. Although this study presents limitations in its sample size and inconsistency in the histology and differentiation of the cancers, results suggest that psoriasis patients do not have a predisposition to STAT3 activation. Instead, STAT3 activation is intricately regulated by each disorder or cellular microenvironment in both cancer and psoriasis.
Collapse
|
49
|
Xie C, Zhou X, Liang C, Li X, Ge M, Chen Y, Yin J, Zhu J, Zhong C. Apatinib triggers autophagic and apoptotic cell death via VEGFR2/STAT3/PD-L1 and ROS/Nrf2/p62 signaling in lung cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:266. [PMID: 34429133 PMCID: PMC8385858 DOI: 10.1186/s13046-021-02069-4] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 08/10/2021] [Indexed: 11/26/2022]
Abstract
Background Recently, a variety of clinical trials have shown that apatinib, a small-molecule anti-angiogenic drug, exerts promising inhibitory effects on multiple solid tumors, including non-small cell lung cancer (NSCLC). However, the underlying molecular mechanism of apatinib on NSCLC remains unclear. Methods MTT, EdU, AO/EB staining, TUNEL staining, flow cytometry, colony formation assays were performed to investigate the effects of apatinib on cell proliferation, cell cycle distribution, apoptosis and cancer stem like properties. Wound healing and transwell assays were conducted to explore the role of apatinib on migration and invasion. The regulation of apatinib on VEGFR2/STAT3/PD-L1 and ROS/Nrf2/p62 signaling were detected. Furthermore, we collected conditioned medium (CM) from A549 and H1299 cells to stimulate phorbol myristate acetate (PMA)-activated THP-1 cells, and examined the effect of apatinib on PD-L1 expression in macrophages. The Jurkat T cells and NSCLC cells co-culture model was used to assess the effect of apatinib on T cells activation. Subcutaneous tumor formation models were established to evaluate the effects of apatinib in vivo. Histochemical, immunohistochemical staining and ELISA assay were used to examine the levels of signaling molecules in tumors. Results We showed that apatinib inhibited cell proliferation and promoted apoptosis in NSCLC cells in vitro. Apatinib induced cell cycle arrest at G1 phase and suppressed the expression of Cyclin D1 and CDK4. Moreover, apatinib upregulated Cleaved Caspase 3, Cleaved Caspase 9 and Bax, and downregulated Bcl-2 in NSCLC cells. The colony formation ability and the number of CD133 positive cells were significantly decreased by apatinib, suggesting that apatinib inhibited the malignant and stem-like features of NSCLC cells. Mechanistically, apatinib inhibited PD-L1 and c-Myc expression by targeting VEGFR2/STAT3 signaling. Apatinib also inhibited PD-L1 expression in THP-1 derived macrophages stimulated by CM from NSCLC cells. Furthermore, apatinib pretreatment increased CD69 expression and IFN-γ secretion in stimulated Jurkat T cells co-cultured with NSCLC cells. Apatinib also promoted ROS production and inhibited Nrf2 and p62 expression, leading to the autophagic and apoptotic cell death in NSCLC. Moreover, apatinib significantly inhibited tumor growth in vivo. Conclusion Our data indicated that apatinib induced autophagy and apoptosis in NSCLC via regulating VEGFR2/STAT3/PD-L1 and ROS/Nrf2/p62 signaling. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-021-02069-4. Apatinib suppressed proliferation, induced cell cycle arrest and apoptosis, and inhibited malignancy in NSCLC in vitro and in vivo. Apatinib downregulated PD-L1 and c-Myc in NSCLC through VEGFR2/STAT3 pathway. Apatinib inhibited PD-L1 expression in THP-1 derived macrophages stimulated by the conditioned medium from NSCLC cells and partially restored the activation of Jurkat T cells co-cultured with NSCLC cells. Apatinib induced ROS generation and inhibited Nrf2 and p62 expression, leading to the autophagic and apoptotic cell death in NSCLC.
Collapse
Affiliation(s)
- Chunfeng Xie
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, 101 Longmian Ave, Jiangning, Nanjing, 211166, China
| | - Xu Zhou
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, 101 Longmian Ave, Jiangning, Nanjing, 211166, China
| | - Chunhua Liang
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, 101 Longmian Ave, Jiangning, Nanjing, 211166, China
| | - Xiaoting Li
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, 101 Longmian Ave, Jiangning, Nanjing, 211166, China
| | - Miaomiao Ge
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, 101 Longmian Ave, Jiangning, Nanjing, 211166, China
| | - Yue Chen
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, 101 Longmian Ave, Jiangning, Nanjing, 211166, China
| | - Juan Yin
- Department of Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, 242 Guangji Rd, Suzhou, 215008, China
| | - Jianyun Zhu
- Department of Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, 242 Guangji Rd, Suzhou, 215008, China.
| | - Caiyun Zhong
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, 101 Longmian Ave, Jiangning, Nanjing, 211166, China. .,Cancer Research Division, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, China.
| |
Collapse
|
50
|
Xia T, Li J, Ren X, Liu C, Sun C. Research progress of phenolic compounds regulating IL-6 to exert antitumor effects. Phytother Res 2021; 35:6720-6734. [PMID: 34427003 DOI: 10.1002/ptr.7258] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 08/08/2021] [Accepted: 08/08/2021] [Indexed: 02/06/2023]
Abstract
Cytokine therapy, which activates the host immune system, has become an important and novel therapeutic approach to treat various cancers. Recent studies have shown that IL-6 is an important cytokine that regulates the homeostasis in vivo. However, excessive IL-6 plays a pathological role in a variety of acute and chronic inflammatory diseases, especially in cancer. IL-6 can transmit signals through JAK/STAT, RAS /MAPK, PI3K/ Akt, NF-κB, and other pathways to promote cancer progression. Phenolic compounds can effectively regulate the level of IL-6 in tumor cells and improve the tumor microenvironment. This article focuses on the phenolic compounds through the regulation of IL-6, participate in the prevention of cancer, inhibit the proliferation of cancer cells, reduce angiogenesis, improve therapeutic efficacy, and reduce side effects and other aspects. This will help to further advance research on cytokine therapy to reduce the burden of cancer and improve patient prognosis. However, current studies are mostly limited to animal and cellular experiments, and high-quality clinical studies are needed to further determine their antitumor efficacy in humans.
Collapse
Affiliation(s)
- Tingting Xia
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jie Li
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xin Ren
- Clinical Medical Colleges, Weifang Medical University, Weifang, China
| | - Cun Liu
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Changgang Sun
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, China.,Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, China
| |
Collapse
|