1
|
Fujii Y, Asadi Z, Mehla K. Cathepsins: Emerging targets in the tumor ecosystem to overcome cancers. Semin Cancer Biol 2025; 112:150-166. [PMID: 40228591 DOI: 10.1016/j.semcancer.2025.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 03/13/2025] [Accepted: 04/07/2025] [Indexed: 04/16/2025]
Abstract
Cathepsins, a group of lysosomal peptidases, have traditionally been recognized as tumor facilitators. Recent research, however, highlights their critical role in orchestrating cancer and the tumor microenvironment (TME). Primality, cathepsins degrade extracellular matrix, enabling cancer cells to invade and metastasize, while also promoting vascular endothelial infiltration and subsequent angiogenesis. Additionally, cathepsins boost fibroblast growth, thereby supporting tumor progression. More importantly, cathepsins are pivotal in modulating immune cells within the TME by regulating their recruitment, antigen processing and presentation, differentiation, and cell death, primarily contributing to immune suppression. Given their overexpression in tumors and elevated levels in the circulation of cancer patients, it is crucial to consider the systemic effects of cathepsins. Although the comprehensive role of cathepsins in cancer patients' bodies remains underexplored, they likely influence systemic immunity and inflammation, cellular metabolism, muscle wasting, and distant metastasis through their unique proteolytic functions. Notably, cathepsins also confer resistance to chemoradiotherapy by rewriting the cellular profile within the TME. In this context, promising results are emerging from studies combining cathepsin inhibitors with conventional therapies to suppress tumor development effectively. This review aims to decipher the cathepsin-driven networks within cancer cells and the TME, detailing their contribution to chemoradioresistance by reshaping both micro- and macroenvironments. Furthermore, we explore current and future perspectives on therapies targeting cathepsins' interactions, offering insights into innovative treatment strategies.
Collapse
Affiliation(s)
- Yuki Fujii
- Department of Oncology Science, University of Oklahoma Health Sciences, Oklahoma City, OK 73014, USA
| | - Zahra Asadi
- Department of Oncology Science, University of Oklahoma Health Sciences, Oklahoma City, OK 73014, USA; Department of Pathology, University of Oklahoma Health Sciences, Oklahoma City, OK 73104, USA
| | - Kamiya Mehla
- Department of Oncology Science, University of Oklahoma Health Sciences, Oklahoma City, OK 73014, USA; Department of Microbiology and Immunology, University of Oklahoma Health Sciences, Oklahoma City, OK 73104, USA; Department of Pathology, University of Oklahoma Health Sciences, Oklahoma City, OK 73104, USA.
| |
Collapse
|
2
|
Dey G, Yakobovich E, Loboda J, Sinai-Turyansky R, Abramovitch-Dahan C, Merquiol E, Sridharan N, Itzhak G, Turk B, Wald O, Turk D, Yona S, Levaot N, Blum G. Development and Application of Small Molecule-Peptide Conjugates as Cathepsin K-Specific Covalent Irreversible Inhibitors in Human Osteoclast and Lung Cancer. JACS AU 2025; 5:1104-1120. [PMID: 40151260 PMCID: PMC11938014 DOI: 10.1021/jacsau.4c00840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 02/06/2025] [Accepted: 02/07/2025] [Indexed: 03/29/2025]
Abstract
Cathepsin K (CTSK), a proteolytic enzyme that degrades the extracellular matrix, is recognized as a significant therapeutic target for osteoporosis, osteoarthritis, and rheumatoid arthritis. Due to adverse effects, no clinically approved drugs exist for CTSK. In order to develop safer therapeutics, highly selective CTSK inhibitors are required to elucidate the origins of side effects. Here, we developed various hybrid inhibitors by combining peptide sequences with small organic molecules. An acyloxymethyl ketone electrophile was incorporated as a bioisostere of the glycine-glycine cleavage site and inverse peptide sequences to enhance prime site interactions, as seen in the crystal structure. Additionally, a diphenyl group was incorporated to improve nonprime site interactions, culminating in highly selective and potent irreversible CTSK inhibitors with negligible off-target binding by closely related cathepsins. These novel inhibitors were also designed to attach to targeting moieties, further reducing off-target effects in vivo. Our findings demonstrate that these highly selective inhibitors are nontoxic, effectively inhibit bone resorption by human osteoclasts, block CTSK activity in cells and their nuclei, and inhibit activity in human lung cancer tissue. This study highlights significant advancements in designing CTSK inhibitors with potential clinical applications for lung cancer and osteoclast-related conditions.
Collapse
Affiliation(s)
- Gourab Dey
- The
Institute for Drug Research, The School of Pharmacy, The Faculty of
Medicine, The Hebrew University, Jerusalem 9112001, Israel
| | - Evalyn Yakobovich
- The
Institute for Drug Research, The School of Pharmacy, The Faculty of
Medicine, The Hebrew University, Jerusalem 9112001, Israel
| | - Jure Loboda
- Department
of Biochemistry and Molecular Biology, J.
Stefan Institute, Jamova 39, SI-1000 Ljubljana, Sloveni
| | - Reut Sinai-Turyansky
- The
Institute for Drug Research, The School of Pharmacy, The Faculty of
Medicine, The Hebrew University, Jerusalem 9112001, Israel
| | - Chen Abramovitch-Dahan
- Department
of Physiology and Cell Biology Faculty of Health Sciences, Ben-Gurion University of the Negev, Shderot Ben Gurion 1, Beer-Sheva 844394, Israel
| | - Emmanuelle Merquiol
- The
Institute for Drug Research, The School of Pharmacy, The Faculty of
Medicine, The Hebrew University, Jerusalem 9112001, Israel
| | - Nikhila Sridharan
- The
Institute of Biomedical and Oral Research, The Faculty of Dental Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel
| | - Gal Itzhak
- The
Institute for Drug Research, The School of Pharmacy, The Faculty of
Medicine, The Hebrew University, Jerusalem 9112001, Israel
| | - Boris Turk
- Department
of Biochemistry and Molecular Biology, J.
Stefan Institute, Jamova 39, SI-1000 Ljubljana, Sloveni
| | - Ori Wald
- Department
of Cardiothoracic Surgery, Hadassah Hebrew University Medical Center,
The Faculty of Medicine, The Hebrew University
of Jerusalem, Jerusalem 9112001, Israel
| | - Dusan Turk
- Department
of Biochemistry and Molecular Biology, J.
Stefan Institute, Jamova 39, SI-1000 Ljubljana, Sloveni
| | - Simon Yona
- The
Institute of Biomedical and Oral Research, The Faculty of Dental Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel
| | - Noam Levaot
- Department
of Physiology and Cell Biology Faculty of Health Sciences, Ben-Gurion University of the Negev, Shderot Ben Gurion 1, Beer-Sheva 844394, Israel
| | - Galia Blum
- The
Institute for Drug Research, The School of Pharmacy, The Faculty of
Medicine, The Hebrew University, Jerusalem 9112001, Israel
| |
Collapse
|
3
|
Yang S, Chen Q, Yang B. Associations of cathepsins with pulmonary arterial hypertension mediated by circulating metabolites: A Mendelian randomization study. Medicine (Baltimore) 2025; 104:e41405. [PMID: 39854747 PMCID: PMC11771745 DOI: 10.1097/md.0000000000041405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 01/10/2025] [Accepted: 01/13/2025] [Indexed: 01/26/2025] Open
Abstract
The correlation between cathepsins and pulmonary arterial hypertension (PAH) is well-established, but the causative link between them remains uncertain. This study aimed to explore the causal role of circulating metabolites mediating cathepsins in PAH using Mendelian randomization (MR). A 2-sample 2-step MR method was used to identify causal relationship between cathepsins and PAH; causal relationship between circulating metabolites and PAH; and mediated effects of these circulating metabolites. GWAS summary statistics on circulating metabolites were from the Canadian longitudinal study on aging cohort, human plasma cathepsins from The INTERVAL study, and PAH from FinnGen version R10. Two-sample MR analyses involving 9 cathepsins (cathepsin B, E, F, G, H, L2, O, S, and Z). Cathepsin S was associated with high risk of PAH (OR: 1.346, 95% CI: 1.039-1.742, P = .024), and positively with circulating metabolite 1-oleoylglycerol (18:1) levels (OR: 1.062, 95% CI: 1.018-1.108, P = .005). Finally, mediation analysis showed evidence of mediated effect of cathepsin S on PAH through 1-oleoylglycerol (18:1) levels (OR: 0.062, CI: 0.0183-0.106) with a mediated proportion of 20.9% of the total effect. This study reveals cathepsin S increases the risk of PAH mediating by circulating metabolite 1-oleoylglycerol (18:1) levels.
Collapse
Affiliation(s)
- Shasha Yang
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Qiong Chen
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Baishuang Yang
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
4
|
Wadhonkar K, Das S, Subramanian R, Sk MH, Singh Y, Baig MS. The effect of cancer cell-derived exosomal proteins on macrophage polarization: An in-depth review. Exp Cell Res 2025; 444:114393. [PMID: 39710293 DOI: 10.1016/j.yexcr.2024.114393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/13/2024] [Accepted: 12/20/2024] [Indexed: 12/24/2024]
Abstract
Cancer is characterized by unregulated cell proliferation, enabling it to invade and spread to different organs and tissues in the body. Cancer progression is intricately influenced by the complex dynamics within the tumor microenvironment (TME). The TME is a composite and dynamic network comprising cancer cells and various immune cells, including tumor-associated macrophages. Exosomes facilitate the communication between different cancer cells as well as other types of cells. This review particularly focuses on exosomal proteins derived from different cancer cells in mounting the complex crosstalk between cells of cancer and macrophages within the TME. Most cancer-derived exosomal proteins polarize macrophages towards M2 phenotype, promoting cancer aggressiveness, while a few have role switching towards the M1 phenotype, inhibiting cancer proliferation, respectively. In this review, we summarize, for the first time, the dual impact of cancer cell-derived exosomal proteins on macrophage polarization and the associated signaling pathways, offering valuable insights for developing innovative therapeutic strategies against diverse cancer types.
Collapse
Affiliation(s)
- Khandu Wadhonkar
- Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Indore, India
| | - Soumalya Das
- Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Indore, India
| | | | - Mobbassar Hassan Sk
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK; Institute for Energy and Environmental Flows, University of Cambridge, Cambridge, UK
| | - Yashi Singh
- Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Indore, India
| | - Mirza S Baig
- Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Indore, India.
| |
Collapse
|
5
|
Nasti A, Inagaki S, Ho TTB, Seki A, Yoshida K, Satomura K, Sakai Y, Kaneko S, Yamashita T. Cystatin A promotes the antitumor activity of T helper type 1 cells and dendritic cells in murine models of pancreatic cancer. Mol Oncol 2025. [PMID: 39792573 DOI: 10.1002/1878-0261.13796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 11/21/2024] [Accepted: 12/12/2024] [Indexed: 01/12/2025] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a disease with poor prognosis due to diagnostic and therapeutic limitations. We previously identified cystatin A (CSTA) as a PDAC biomarker and have conducted the present study to investigate the antitumor effects of CSTA. PDAC murine models were established with genetically modified PAN02 tumor cell lines to evaluate the antitumor immune response. PDAC mouse survival was significantly longer with CSTA, and its antitumor effect was mediated mainly by CD4+ cells and partly by CD8+ cells. We also observed an increased infiltration of CD4+ and CD8+ cells in tumors of mice overexpressing CSTA. Phenotypically, we confirmed higher T helper type 1 (Th1) cell activity and increased frequency and activity of M1 macrophages and dendritic cells (DCs) in CSTA-overexpressing mice. Gene expression analysis highlighted pathways related to interferon gamma (IFN-γ) induction and Th1 lymphocyte activation that were induced by CSTA. Macrophages and DCs shifted toward proinflammatory antitumor phenotypes. Furthermore, activated splenocytes of PDAC model mice expressing CSTA had increased proapoptotic activity. CSTA also promoted the selective migration of CD4+ and CD11c+ immune cells in an in vitro migration assay. In conclusion, CSTA exerts antitumor effects by enhancing Th1-mediated antitumor effects through promotion of DC and M1 macrophage activity, thereby increasing immune cell chemotaxis. CSTA could be a novel therapeutic candidate for PDAC.
Collapse
Affiliation(s)
- Alessandro Nasti
- Information-Based Medicine Development, Graduate School of Medical Sciences, Kanazawa University, Japan
| | - Shingo Inagaki
- System Biology, Graduate School of Advanced Preventive Medical Sciences, Kanazawa University, Japan
| | - Tuyen Thuy Bich Ho
- Information-Based Medicine Development, Graduate School of Medical Sciences, Kanazawa University, Japan
| | - Akihiro Seki
- Department of Gastroenterology, Kanazawa University Hospital, Japan
| | - Keiko Yoshida
- System Biology, Graduate School of Advanced Preventive Medical Sciences, Kanazawa University, Japan
| | - Kosuke Satomura
- System Biology, Graduate School of Advanced Preventive Medical Sciences, Kanazawa University, Japan
| | - Yoshio Sakai
- System Biology, Graduate School of Advanced Preventive Medical Sciences, Kanazawa University, Japan
| | - Shuichi Kaneko
- Information-Based Medicine Development, Graduate School of Medical Sciences, Kanazawa University, Japan
- System Biology, Graduate School of Advanced Preventive Medical Sciences, Kanazawa University, Japan
- Department of Gastroenterology, Kanazawa University Hospital, Japan
| | - Taro Yamashita
- System Biology, Graduate School of Advanced Preventive Medical Sciences, Kanazawa University, Japan
- Department of Gastroenterology, Kanazawa University Hospital, Japan
| |
Collapse
|
6
|
Zhao K, Sun Y, Zhong S, Luo JL. The multifaceted roles of cathepsins in immune and inflammatory responses: implications for cancer therapy, autoimmune diseases, and infectious diseases. Biomark Res 2024; 12:165. [PMID: 39736788 DOI: 10.1186/s40364-024-00711-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 12/19/2024] [Indexed: 01/01/2025] Open
Abstract
The cathepsin family comprises lysosomal proteases that play essential roles in various physiological processes, including protein degradation, antigen presentation, apoptosis, and tissue remodeling. Dysregulation of cathepsin activity has been linked to a variety of pathological conditions, such as cancer, autoimmune diseases, and neurodegenerative disorders. Understanding the functions of cathepsins is crucial for gaining insights into their roles in both health and disease, as well as for developing targeted therapeutic approaches. Emerging research underscores the significant involvement of cathepsins in immune cells, particularly T cells, macrophages, dendritic cells, and neutrophils, as well as their contribution to immune-related diseases. In this review, we systematically examine the impact of cathepsins on the immune system and their mechanistic roles in cancer, infectious diseases, autoimmune and neurodegenerative disorders, with the goal of identifying novel therapeutic strategies for these conditions.
Collapse
Affiliation(s)
- Kexin Zhao
- The Cancer Research Institute and the Second Affiliated Hospital, Hengyang Medical School, University of South China (USC), Hengyang, Hunan, 421001, China
- MOE Key Lab of Rare Pediatric Diseases, Hengyang Medical School, USC, Hengyang, Hunan, 421001, China
| | - Yangqing Sun
- Department of Oncology, Hunan Provincial People's Hospital, Changsha, Hunan, 410005, China
| | - Shangwei Zhong
- The Cancer Research Institute and the Second Affiliated Hospital, Hengyang Medical School, University of South China (USC), Hengyang, Hunan, 421001, China
- MOE Key Lab of Rare Pediatric Diseases, Hengyang Medical School, USC, Hengyang, Hunan, 421001, China
| | - Jun-Li Luo
- The Cancer Research Institute and the Second Affiliated Hospital, Hengyang Medical School, University of South China (USC), Hengyang, Hunan, 421001, China.
- MOE Key Lab of Rare Pediatric Diseases, Hengyang Medical School, USC, Hengyang, Hunan, 421001, China.
- National Health Commission Key Laboratory of Birth Defect Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, USC, Hengyang, Hunan, 410008, China.
- Hunan Provincial Key Laboratory of Basic and Clinical Pharmacological Research of Gastrointestinal Cancer, USC, Hengyang, Hunan, 421001, China.
| |
Collapse
|
7
|
Shi Z, Zhang J, Wang Y, Hao S, Tian L, Ke C, Yang X, Lu Q, Zhao Q, Li H, Liang C. Antibacterial effect and mechanisms of action of forsythoside B, alone and in combination with antibiotics, against Acinetobacter baumannii and Pseudomonas aeruginosa. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156038. [PMID: 39299093 DOI: 10.1016/j.phymed.2024.156038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 09/02/2024] [Accepted: 09/10/2024] [Indexed: 09/22/2024]
Abstract
BACKGROUND Antibiotic resistance complicates infection treatments. Natural products, such as phenylethanoid glycosides, including forsythoside B (FB), are gaining attention in clinical use as alternative treatments, either alone or in combination with antibiotics. PURPOSE To investigate the antibacterial effects and mechanisms of FB alone and in combination with antibiotics against Acinetobacter baumannii and Pseudomonas aeruginosa. METHODS To elucidate the underlying antibacterial mechanism of FB, we assessed intracellular ATP concentration, pH levels, membrane potential, and cell membrane integrity. We also observed bacterial morphology and conducted biofilms eradication assay. FB toxicity was evaluated using the cell counting kit-8 assay. The in vivo pharmacodynamics of FB was explored using a P. aeruginosa systemic infection mouse model. The study also examined the potential synergistic effects of FB with commonly used antibiotics by the checkerboard dilution method and time-kill assay. RESULTS The findings indicate that the mechanism of antibacterial activity of FB is through the disruption of bacterial cell membranes, thereby increasing cell membrane permeability, particularly in gram-negative bacteria. Synergistic effects of FB combined with meropenem were demonstrated against resistant strains. FB demonstrated low toxicity in both in vitro and in vivo models, supporting its safety and efficacy for use alone or as an antibiotic adjuvant. CONCLUSIONS FB expands the antibacterial spectrum and enhances the effectiveness of existing antibiotics against resistant bacterial strains, making it a promising adjuvant for treating gram-negative bacterial infections. This study highlights the potential of FB in combating antibiotic resistance and suggests further research into its mechanisms and drug development applications. It provides a framework for studying the interaction between natural products and microorganisms, revealing new biological mechanisms.
Collapse
Affiliation(s)
- Zhenfeng Shi
- Department of Urology Surgery Center, The People's Hospital of Xinjiang Uyghur Autonomous Region, Urumqi 830002, PR China
| | - Jie Zhang
- Department of Urology Surgery Center, The People's Hospital of Xinjiang Uyghur Autonomous Region, Urumqi 830002, PR China; School of Biological and Pharmaceutical Sciences, Shaanxi University of Science & Technology, Xi'an 710021, PR China; Key Laboratory for Antiviral and Antimicrobial-Resistant Bacteria Research of Xi'an, Xi'an 710021, PR China
| | - Yanzi Wang
- School of Biological and Pharmaceutical Sciences, Shaanxi University of Science & Technology, Xi'an 710021, PR China; Key Laboratory for Antiviral and Antimicrobial-Resistant Bacteria Research of Xi'an, Xi'an 710021, PR China
| | - Sichang Hao
- School of Biological and Pharmaceutical Sciences, Shaanxi University of Science & Technology, Xi'an 710021, PR China; Key Laboratory for Antiviral and Antimicrobial-Resistant Bacteria Research of Xi'an, Xi'an 710021, PR China
| | - Lei Tian
- Key Laboratory for Antiviral and Antimicrobial-Resistant Bacteria Research of Xi'an, Xi'an 710021, PR China; College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Changhua Ke
- School of Biological and Pharmaceutical Sciences, Shaanxi University of Science & Technology, Xi'an 710021, PR China; Key Laboratory for Antiviral and Antimicrobial-Resistant Bacteria Research of Xi'an, Xi'an 710021, PR China
| | - Xiuding Yang
- School of Biological and Pharmaceutical Sciences, Shaanxi University of Science & Technology, Xi'an 710021, PR China; Key Laboratory for Antiviral and Antimicrobial-Resistant Bacteria Research of Xi'an, Xi'an 710021, PR China
| | - Qi Lu
- School of Biological and Pharmaceutical Sciences, Shaanxi University of Science & Technology, Xi'an 710021, PR China; Key Laboratory for Antiviral and Antimicrobial-Resistant Bacteria Research of Xi'an, Xi'an 710021, PR China
| | - Qianqian Zhao
- School of Biological and Pharmaceutical Sciences, Shaanxi University of Science & Technology, Xi'an 710021, PR China; Key Laboratory for Antiviral and Antimicrobial-Resistant Bacteria Research of Xi'an, Xi'an 710021, PR China
| | - Han Li
- School of Biological and Pharmaceutical Sciences, Shaanxi University of Science & Technology, Xi'an 710021, PR China; Key Laboratory for Antiviral and Antimicrobial-Resistant Bacteria Research of Xi'an, Xi'an 710021, PR China
| | - Chengyuan Liang
- School of Biological and Pharmaceutical Sciences, Shaanxi University of Science & Technology, Xi'an 710021, PR China; Key Laboratory for Antiviral and Antimicrobial-Resistant Bacteria Research of Xi'an, Xi'an 710021, PR China.
| |
Collapse
|
8
|
Lukomska A, Rheaume BA, Frost MP, Theune WC, Xing J, Damania A, Trakhtenberg EF. Augmenting fibronectin levels in injured adult CNS promotes axon regeneration in vivo. Exp Neurol 2024; 379:114877. [PMID: 38944331 PMCID: PMC11283980 DOI: 10.1016/j.expneurol.2024.114877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/06/2024] [Accepted: 06/25/2024] [Indexed: 07/01/2024]
Abstract
In an attempt to repair injured central nervous system (CNS) nerves/tracts, immune cells are recruited into the injury site, but endogenous response in adult mammals is insufficient for promoting regeneration of severed axons. Here, we found that a portion of retinal ganglion cell (RGC) CNS projection neurons that survive after optic nerve crush (ONC) injury are enriched for and upregulate fibronectin (Fn)-interacting integrins Itga5 and ItgaV, and that Fn promotes long-term survival and long-distance axon regeneration of a portion of axotomized adult RGCs in culture. We then show that, Fn is developmentally downregulated in the axonal tracts of optic nerve and spinal cord, but injury-activated macrophages/microglia upregulate Fn while axon regeneration-promoting zymosan augments their recruitment (and thereby increases Fn levels) in the injured optic nerve. Finally, we found that Fn's RGD motif, established to interact with Itga5 and ItgaV, promotes long-term survival and long-distance axon regeneration of adult RGCs after ONC in vivo, with some axons reaching the optic chiasm when co-treated with Rpl7a gene therapy. Thus, experimentally augmenting Fn levels in the injured CNS is a promising approach for therapeutic neuroprotection and axon regeneration of at least a portion of neurons.
Collapse
Affiliation(s)
- Agnieszka Lukomska
- Department of Neuroscience, University of Connecticut School of Medicine, 263 Farmington Ave., Farmington, CT 06030, USA
| | - Bruce A Rheaume
- Department of Neuroscience, University of Connecticut School of Medicine, 263 Farmington Ave., Farmington, CT 06030, USA
| | - Matthew P Frost
- Department of Neuroscience, University of Connecticut School of Medicine, 263 Farmington Ave., Farmington, CT 06030, USA
| | - William C Theune
- Department of Neuroscience, University of Connecticut School of Medicine, 263 Farmington Ave., Farmington, CT 06030, USA
| | - Jian Xing
- Department of Neuroscience, University of Connecticut School of Medicine, 263 Farmington Ave., Farmington, CT 06030, USA
| | - Ashiti Damania
- Department of Neuroscience, University of Connecticut School of Medicine, 263 Farmington Ave., Farmington, CT 06030, USA
| | - Ephraim F Trakhtenberg
- Department of Neuroscience, University of Connecticut School of Medicine, 263 Farmington Ave., Farmington, CT 06030, USA..
| |
Collapse
|
9
|
Ruiz-Blázquez P, Fernández-Fernández M, Pistorio V, Martinez-Sanchez C, Costanzo M, Iruzubieta P, Zhuravleva E, Cacho-Pujol J, Ariño S, Del Castillo-Cruz A, Núñez S, Andersen JB, Ruoppolo M, Crespo J, García-Ruiz C, Pavone LM, Reinheckel T, Sancho-Bru P, Coll M, Fernández-Checa JC, Moles A. Cathepsin D is essential for the degradomic shift of macrophages required to resolve liver fibrosis. Mol Metab 2024; 87:101989. [PMID: 39019115 PMCID: PMC11327474 DOI: 10.1016/j.molmet.2024.101989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/03/2024] [Accepted: 07/08/2024] [Indexed: 07/19/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Fibrosis contributes to 45% of deaths in industrialized nations and is characterized by an abnormal accumulation of extracellular matrix (ECM). There are no specific anti-fibrotic treatments for liver fibrosis, and previous unsuccessful attempts at drug development have focused on preventing ECM deposition. Because liver fibrosis is largely acknowledged to be reversible, regulating fibrosis resolution could offer novel therapeutical options. However, little is known about the mechanisms controlling ECM remodeling during resolution. Changes in proteolytic activity are essential for ECM homeostasis and macrophages are an important source of proteases. Herein, in this study we evaluate the role of macrophage-derived cathepsin D (CtsD) during liver fibrosis. METHODS CtsD expression and associated pathways were characterized in single-cell RNA sequencing and transcriptomic datasets in human cirrhosis. Liver fibrosis progression, reversion and functional characterization were assessed in novel myeloid-CtsD and hepatocyte-CtsD knock-out mice. RESULTS Analysis of single-cell RNA sequencing datasets demonstrated CtsD was expressed in macrophages and hepatocytes in human cirrhosis. Liver fibrosis progression, reversion and functional characterization were assessed in novel myeloid-CtsD (CtsDΔMyel) and hepatocyte-CtsD knock-out mice. CtsD deletion in macrophages, but not in hepatocytes, resulted in enhanced liver fibrosis. Both inflammatory and matrisome proteomic signatures were enriched in fibrotic CtsDΔMyel livers. Besides, CtsDΔMyel liver macrophages displayed functional, phenotypical and secretomic changes, which resulted in a degradomic phenotypical shift, responsible for the defective proteolytic processing of collagen I in vitro and impaired collagen remodeling during fibrosis resolution in vivo. Finally, CtsD-expressing mononuclear phagocytes of cirrhotic human livers were enriched in lysosomal and ECM degradative signaling pathways. CONCLUSIONS Our work describes for the first-time CtsD-driven lysosomal activity as a central hub for restorative macrophage function during fibrosis resolution and opens new avenues to explore their degradome landscape to inform drug development.
Collapse
Affiliation(s)
- Paloma Ruiz-Blázquez
- Institute of Biomedical Research of Barcelona, Spanish National Research Council, Barcelona, Spain; CiberEHD, Spain; University of Barcelona, Barcelona, Spain; IDIBAPS, Barcelona, Spain
| | - María Fernández-Fernández
- Institute of Biomedical Research of Barcelona, Spanish National Research Council, Barcelona, Spain; CiberEHD, Spain; University of Barcelona, Barcelona, Spain; IDIBAPS, Barcelona, Spain
| | - Valeria Pistorio
- Institute of Biomedical Research of Barcelona, Spanish National Research Council, Barcelona, Spain; Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy; Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine (CRSA), Paris, France
| | | | - Michele Costanzo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy; CEINGE-Biotecnologie Avanzate Franco Salvatore s.c.ar.l., Naples, Italy
| | - Paula Iruzubieta
- Department of Gastroenterology and Hepatology, Marqués de Valdecilla University Hospital, Research Institute Marqués de Valdecilla (IDIVAL), Santander, Spain
| | - Ekaterina Zhuravleva
- Biotech Research and Innovation Centre (BRIC), Department of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; LEO Foundation Skin Immunology Research Center (SIC), Department of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Júlia Cacho-Pujol
- Institute of Biomedical Research of Barcelona, Spanish National Research Council, Barcelona, Spain; University of Barcelona, Barcelona, Spain; IDIBAPS, Barcelona, Spain
| | - Silvia Ariño
- CiberEHD, Spain; University of Barcelona, Barcelona, Spain; IDIBAPS, Barcelona, Spain
| | | | | | - Jesper B Andersen
- Biotech Research and Innovation Centre (BRIC), Department of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Margherita Ruoppolo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy; CEINGE-Biotecnologie Avanzate Franco Salvatore s.c.ar.l., Naples, Italy
| | - Javier Crespo
- Department of Gastroenterology and Hepatology, Marqués de Valdecilla University Hospital, Research Institute Marqués de Valdecilla (IDIVAL), Santander, Spain
| | - Carmen García-Ruiz
- Institute of Biomedical Research of Barcelona, Spanish National Research Council, Barcelona, Spain; CiberEHD, Spain; IDIBAPS, Barcelona, Spain; USC Research Center for ALPD, Los Angeles, United States; Associated Unit IIBB-IMIM, Barcelona, Spain
| | - Luigi Michele Pavone
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Thomas Reinheckel
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, Albert-Ludwigs-University, Freiburg, Germany; German Cancer Consortium (DKTK), DKFZ Partner Site Freiburg, Germany; Center for Biological Signaling Studies BIOSS, University of Freiburg, Germany
| | - Pau Sancho-Bru
- CiberEHD, Spain; University of Barcelona, Barcelona, Spain; IDIBAPS, Barcelona, Spain
| | - Mar Coll
- CiberEHD, Spain; University of Barcelona, Barcelona, Spain; IDIBAPS, Barcelona, Spain; Medicine Department, Faculty of Medicine, University of Barcelona, Spain
| | - José C Fernández-Checa
- Institute of Biomedical Research of Barcelona, Spanish National Research Council, Barcelona, Spain; CiberEHD, Spain; IDIBAPS, Barcelona, Spain; USC Research Center for ALPD, Los Angeles, United States; Associated Unit IIBB-IMIM, Barcelona, Spain
| | - Anna Moles
- Institute of Biomedical Research of Barcelona, Spanish National Research Council, Barcelona, Spain; CiberEHD, Spain; IDIBAPS, Barcelona, Spain; Associated Unit IIBB-IMIM, Barcelona, Spain.
| |
Collapse
|
10
|
Meta M, Zimmer C, Fuchs N, Zecher MJ, Lahu A, Schirmeister T. Structural Modifications of Covalent Cathepsin S Inhibitors: Impact on Affinity, Selectivity, and Permeability. ACS Med Chem Lett 2024; 15:837-844. [PMID: 38894911 PMCID: PMC11181490 DOI: 10.1021/acsmedchemlett.4c00050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/24/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024] Open
Abstract
Cathepsin S (catS) is a member of the cysteine protease family with limited tissue distribution, which is predominantly found in antigen-presenting cells. Due to overexpression and overactivity of catS in numerous cancers, inhibition of catS is supposed to improve the antitumor response. Here, we explore the potential of small-molecule catS inhibitors emphasizing their in vitro pharmacodynamics and pharmacokinetics. Membrane permeability of selected inhibitors was measured with a Parallel Artificial Membrane Permeation Assay and correlated to calculated physicochemical parameters and inhibition data. The binding kinetics and inhibition types of potent and selective new inhibitors with unexplored warheads were investigated. Our unique approach involves reversible masking of these potent warheads, allowing for further customization without compromising affinity or selectivity. The most promising inhibitors in this study include covalent aldehyde and ketone derivatives reversibly masked as hydrazones as potential candidates for therapeutic interventions targeting catalytic enzymes and modulating the immune response in cancer.
Collapse
Affiliation(s)
| | | | - Natalie Fuchs
- Institute
of Pharmaceutical and Biomedical
Sciences, Johannes Gutenberg University
Mainz, Staudingerweg 5, 55128 Mainz Germany
| | - Maximilian Johannes Zecher
- Institute
of Pharmaceutical and Biomedical
Sciences, Johannes Gutenberg University
Mainz, Staudingerweg 5, 55128 Mainz Germany
| | - Albin Lahu
- Institute
of Pharmaceutical and Biomedical
Sciences, Johannes Gutenberg University
Mainz, Staudingerweg 5, 55128 Mainz Germany
| | - Tanja Schirmeister
- Institute
of Pharmaceutical and Biomedical
Sciences, Johannes Gutenberg University
Mainz, Staudingerweg 5, 55128 Mainz Germany
| |
Collapse
|
11
|
Wu Y, Zhang J, Lin A, Zhang T, Liu Y, Zhang C, Yin Y, Guo R, Gao J, Li Y, Chu Y. Immunomodulatory poly(L-lactic acid) nanofibrous membranes promote diabetic wound healing by inhibiting inflammation, oxidation and bacterial infection. BURNS & TRAUMA 2024; 12:tkae009. [PMID: 38841099 PMCID: PMC11151119 DOI: 10.1093/burnst/tkae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 06/07/2024]
Abstract
Background Given the significant impact on human health, it is imperative to develop novel treatment approaches for diabetic wounds, which are prevalent and serious complications of diabetes. The diabetic wound microenvironment has a high level of reactive oxygen species (ROS) and an imbalance between proinflammatory and anti-inflammatory cells/factors, which hamper the healing of chronic wounds. This study aimed to develop poly(L-lactic acid) (PLLA) nanofibrous membranes incorporating curcumin and silver nanoparticles (AgNPs), defined as PLLA/C/Ag, for diabetic wound healing. Methods PLLA/C/Ag were fabricated via an air-jet spinning approach. The membranes underwent preparation and characterization through various techniques including Fourier-transform infrared spectroscopy, measurement of water contact angle, X-ray photoelectron spectroscopy, X-ray diffraction, scanning electron microscopy, assessment of in vitro release of curcumin and Ag+, testing of mechanical strength, flexibility, water absorption and biodegradability. In addition, the antioxidant, antibacterial and anti-inflammatory properties of the membranes were evaluated in vitro, and the ability of the membranes to heal wounds was tested in vivo using diabetic mice. Results Loose hydrophilic nanofibrous membranes with uniform fibre sizes were prepared through air-jet spinning. The membranes enabled the efficient and sustained release of curcumin. More importantly, antibacterial AgNPs were successfully reduced in situ from AgNO3. The incorporation of AgNPs endowed the membrane with superior antibacterial activity, and the bioactivities of curcumin and the AgNPs gave the membrane efficient ROS scavenging and immunomodulatory effects, which protected cells from oxidative damage and reduced inflammation. Further results from animal studies indicated that the PLLA/C/Ag membranes had the most efficient wound healing properties, which were achieved by stimulating angiogenesis and collagen deposition and inhibiting inflammation. Conclusions In this research, we successfully fabricated PLLA/C/Ag membranes that possess properties of antioxidants, antibacterial agents and anti-inflammatory agents, which can aid in the process of wound healing. Modulating wound inflammation, these new PLLA/C/Ag membranes serve as a novel dressing to enhance the healing of diabetic wounds.
Collapse
Affiliation(s)
- Yan Wu
- Heilongjiang Key Laboratory of Tissue Damage and Repair, Mudanjiang Medical University, 3 Tongxiang Street, Aimin District, Mudanjiang 157011, China
| | - Jin Zhang
- Heilongjiang Key Laboratory of Tissue Damage and Repair, Mudanjiang Medical University, 3 Tongxiang Street, Aimin District, Mudanjiang 157011, China
- Clinical Laboratory, Zhejiang Medical & Health Group Quzhou Hospital, 62 Wenchang Road, Kecheng District, Quzhou 324004, China
| | - Anqi Lin
- The Key Laboratory for Ultrafine Materials of Ministry of Education, State Key Laboratory of Bioreactor Engineering, Engineering Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Lingyun Street, Xuhui District, Shanghai 200237, China
| | - Tinglin Zhang
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, 168 Changhai Road, Yangpu District, Shanghai 200433, China
| | - Yong Liu
- Scientific Research Sharing Platform, Mudanjiang Medical University, 3 Tongxiang Street, Aimin District, Mudanjiang 157011, China
| | - Chunlei Zhang
- Scientific Research Sharing Platform, Mudanjiang Medical University, 3 Tongxiang Street, Aimin District, Mudanjiang 157011, China
| | - Yongkui Yin
- Heilongjiang Key Laboratory of Tissue Damage and Repair, Mudanjiang Medical University, 3 Tongxiang Street, Aimin District, Mudanjiang 157011, China
| | - Ran Guo
- Department of Physiology, Mudanjiang Medical University, 3 Tongxiang Street, Aimin District, Mudanjiang 157011, China
| | - Jie Gao
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, 168 Changhai Road, Yangpu District, Shanghai 200433, China
| | - Yulin Li
- The Key Laboratory for Ultrafine Materials of Ministry of Education, State Key Laboratory of Bioreactor Engineering, Engineering Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Lingyun Street, Xuhui District, Shanghai 200237, China
| | - Yanhui Chu
- Heilongjiang Key Laboratory of Tissue Damage and Repair, Mudanjiang Medical University, 3 Tongxiang Street, Aimin District, Mudanjiang 157011, China
| |
Collapse
|
12
|
Ren Y, Wang M, Yuan H, Wang Z, Yu L. A novel insight into cancer therapy: Lipid metabolism in tumor-associated macrophages. Int Immunopharmacol 2024; 135:112319. [PMID: 38801810 DOI: 10.1016/j.intimp.2024.112319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/07/2024] [Accepted: 05/19/2024] [Indexed: 05/29/2024]
Abstract
The tumor immune microenvironment (TIME) can limit the effectiveness and often leads to significant side effects of conventional cancer therapies. Consequently, there is a growing interest in identifying novel targets to enhance the efficacy of targeted cancer therapy. More research indicates that tumor-associated macrophages (TAMs), originating from peripheral blood monocytes generated from bone marrow myeloid progenitor cells, play a crucial role in the tumor microenvironment (TME) and are closely associated with resistance to traditional cancer therapies. Lipid metabolism alterations have been widely recognized as having a significant impact on tumors and their immune microenvironment. Lipids, lipid derivatives, and key substances in their metabolic pathways can influence the carcinogenesis and progression of cancer cells by modulating the phenotype, function, and activity of TAMs. Therefore, this review focuses on the reprogramming of lipid metabolism in cancer cells and their immune microenvironment, in which the TAMs are especially concentrated. Such changes impact TAMs activation and polarization, thereby affecting the tumor cell response to treatment. Furthermore, the article explores the potential of targeting the lipid metabolism of TAMs as a supplementary approach to conventional cancer therapies. It reviews and evaluates current strategies for enhancing efficacy through TAMs' lipid metabolism and proposes new lipid metabolism targets as potential synergistic options for chemo-radiotherapy and immunotherapy. These efforts aim to stimulate further research in this area.
Collapse
Affiliation(s)
- Yvxiao Ren
- Department of Radiotherapy, Second Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Mingjie Wang
- Department of Radiotherapy, Second Hospital of Jilin University, Changchun, Jilin, People's Republic of China; NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, Jilin, People's Republic of China
| | - Hanghang Yuan
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, Jilin, People's Republic of China
| | - Zhicheng Wang
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, Jilin, People's Republic of China
| | - Lei Yu
- Department of Radiotherapy, Second Hospital of Jilin University, Changchun, Jilin, People's Republic of China.
| |
Collapse
|
13
|
Denison M, Garcia SP, Ullrich A, Podgorski I, Gibson H, Turro C, Kodanko JJ. Ruthenium-Cathepsin Inhibitor Conjugates for Green Light-Activated Photodynamic Therapy and Photochemotherapy. Inorg Chem 2024; 63:7973-7983. [PMID: 38616353 PMCID: PMC11066580 DOI: 10.1021/acs.inorgchem.4c01008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Dysregulated cathepsin activity is linked to various human diseases including metabolic disorders, autoimmune conditions, and cancer. Given the overexpression of cathepsin in the tumor microenvironment, cathepsin inhibitors are promising pharmacological agents and drug delivery vehicles for cancer treatment. In this study, we describe the synthesis and photochemical and biological assessment of a dual-action agent based on ruthenium that is conjugated with a cathepsin inhibitor, designed for both photodynamic therapy (PDT) and photochemotherapy (PCT). The ruthenium-cathepsin inhibitor conjugate was synthesized through an oxime click reaction, combining a pan-cathepsin inhibitor based on E64d with the Ru(II) PCT/PDT fragment [Ru(dqpy)(dppn)], where dqpy = 2,6-di(quinoline-2-yl)pyridine and dppn = benzo[i]dipyrido[3,2-a:2',3'-c]phenazine. Photochemical investigations validated the conjugate's ability to release a triazole-containing cathepsin inhibitor for PCT and to generate singlet oxygen for PDT upon exposure to green light. Inhibition studies demonstrated the conjugate's potent and irreversible inactivation of purified and intracellular cysteine cathepsins. Two Ru(II) PCT/PDT agents based on the [Ru(dqpy)(dppn)] moiety were evaluated for photoinduced cytotoxicity in 4T1 murine triple-negative breast cancer cells, L929 fibroblasts, and M0, M1, and M2 macrophages. The cathepsin inhibitor conjugate displayed notable selectivity for inducing cell death under irradiation compared to dark conditions, mitigating toxicity in the dark observed with the triazole control complex [Ru(dqpy)(dppn)(MeTz)]2+ (MeTz = 1-methyl-1H-1,2,4-triazole). Notably, our lead complex is among a limited number of dual PCT/PDT agents activated with green light.
Collapse
Affiliation(s)
- Madeline Denison
- Department of Chemistry, Wayne State University, 5101 Cass Ave, Detroit, Michigan 48202, United States
| | - Santana P Garcia
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Alexander Ullrich
- Department of Oncology, Wayne State University, Detroit, Michigan 48201, United States
| | - Izabela Podgorski
- Department of Pharmacology, School of Medicine, Wayne State University, Detroit, Michigan 48201, United States
- Karmanos Cancer Institute, Detroit, Michigan 48201, United States
| | - Heather Gibson
- Department of Oncology, Wayne State University, Detroit, Michigan 48201, United States
- Karmanos Cancer Institute, Detroit, Michigan 48201, United States
| | - Claudia Turro
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Jeremy J Kodanko
- Department of Chemistry, Wayne State University, 5101 Cass Ave, Detroit, Michigan 48202, United States
- Karmanos Cancer Institute, Detroit, Michigan 48201, United States
| |
Collapse
|
14
|
Liang J, Liang R, Lei K, Huang J, Lin H, Wang M. Comparative analysis of single-cell transcriptome reveals heterogeneity in the tumor microenvironment of lung adenocarcinoma and brain metastases. Discov Oncol 2023; 14:174. [PMID: 37715019 PMCID: PMC10504228 DOI: 10.1007/s12672-023-00784-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 09/04/2023] [Indexed: 09/17/2023] Open
Abstract
PURPOSE Solid tumors such as lung adenocarcinoma include not only the tumor cells but also the microenvironment in which the tumor cells continuously interact with each other. An in-depth understanding of the oncological features and tumor microenvironment (TME) of lung adenocarcinoma and brain metastases at the single-cell level could provide new therapeutic strategies for brain metastases from lung adenocarcinoma. METHODS To solve this problem, we performed single-cell RNA sequencing (scRNA-seq) analysis on 15 lung adenocarcinoma samples and 10 brain metastasis samples. RESULTS A total of 86,282 single cells were obtained and divided into 8 cell types, including epithelial cells, endothelial cells, fibroblasts, oligodendrocytes, T/NK cells, B cells, mast cells, and macrophages. In brain metastases, we found a significantly lower proportion of T/NK cells and mast cells, and more severe immune dysregulation. In addition, we found a subpopulation of macrophages with high expression of metastasis-promoting-related genes enriched in brain metastatic tissues. Moreover, in brain metastases, we found a significantly increased proportion of myofibroblastic cancer-associated fibroblasts (myCAFs) and a higher angiogenic capacity of endothelial cells. Epithelial cells in brain metastases were more malignant and underwent genomic reprogramming. Next, we found that DNA damage-inducible transcript 4 (DDIT4) expression was upregulated in epithelial cells in brain metastases and was associated with poor prognosis. Finally, we experimentally validated that the downregulation of DDIT4 inhibited the proliferation, migration, and invasion of lung cancer cells. CONCLUSIONS This study depicts a single-cell atlas of lung adenocarcinoma and brain metastases by scRNA-seq and paves the way for the development of future therapeutic targets for brain metastases from lung cancer.
Collapse
Affiliation(s)
- Jialu Liang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Thoracic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ruihao Liang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Thoracic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Kai Lei
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Thoracic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jing Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Thoracic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Huayue Lin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Minghui Wang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.
- Department of Thoracic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
15
|
Parreau S, Molina E, Dumonteil S, Goulabchand R, Naves T, Bois MC, Akil H, Terro F, Fauchais AL, Liozon E, Jauberteau MO, Weyand CM, Ly KH. Use of high-plex data provides novel insights into the temporal artery processes of giant cell arteritis. Front Immunol 2023; 14:1237986. [PMID: 37744332 PMCID: PMC10512077 DOI: 10.3389/fimmu.2023.1237986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 08/21/2023] [Indexed: 09/26/2023] Open
Abstract
Objective To identify the key coding genes underlying the biomarkers and pathways associated with giant cell arteritis (GCA), we performed an in situ spatial profiling of molecules involved in the temporal arteries of GCA patients and controls. Furthermore, we performed pharmacogenomic network analysis to identify potential treatment targets. Methods Using human formalin-fixed paraffin-embedded temporal artery biopsy samples (GCA, n = 9; controls, n = 7), we performed a whole transcriptome analysis using the NanoString GeoMx Digital Spatial Profiler. In total, 59 regions of interest were selected in the intima, media, adventitia, and perivascular adipose tissue (PVAT). Differentially expressed genes (DEGs) (fold-change > 2 or < -2, p-adjusted < 0.01) were compared across each layer to build a spatial and pharmacogenomic network and to explore the pathophysiological mechanisms of GCA. Results Most of the transcriptome (12,076 genes) was upregulated in GCA arteries, compared to control arteries. Among the screened genes, 282, 227, 40, and 5 DEGs were identified in the intima, media, adventitia, and PVAT, respectively. Genes involved in the immune process and vascular remodeling were upregulated within GCA temporal arteries but differed across the arterial layers. The immune-related functions and vascular remodeling were limited to the intima and media. Conclusion This study is the first to perform an in situ spatial profiling characterization of the molecules involved in GCA. The pharmacogenomic network analysis identified potential target genes for approved and novel immunotherapies.
Collapse
Affiliation(s)
- Simon Parreau
- Division of Rheumatology, Mayo Clinic, Rochester, MN, United States
- Division of Internal Medicine, Dupuytren University Hospital, Limoges, France
- INSERM U1308, Faculty of Medicine, University of Limoges, Limoges, France
| | - Elsa Molina
- Stem Cell Genomics Core, Stem Cell Program, University of California, San Diego, La Jolla, CA, United States
- Next Generation Sequencing Core, Salk Institute for Biological Studies, La Jolla, CA, United States
| | - Stéphanie Dumonteil
- Division of Internal Medicine, Dupuytren University Hospital, Limoges, France
| | - Radjiv Goulabchand
- Division of Internal Medicine, Nîmes University Hospital, University of Montpellier, Nîmes, France
- Division of Gastroenterology, Department of Medicine, University of California, San Diego, San Diego, CA, United States
| | - Thomas Naves
- INSERM U1308, Faculty of Medicine, University of Limoges, Limoges, France
| | - Melanie C. Bois
- Division of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States
| | - Hussein Akil
- INSERM U1308, Faculty of Medicine, University of Limoges, Limoges, France
| | - Faraj Terro
- Cell Biology, Dupuytren University Hospital, Limoges, France
| | - Anne-Laure Fauchais
- Division of Internal Medicine, Dupuytren University Hospital, Limoges, France
- INSERM U1308, Faculty of Medicine, University of Limoges, Limoges, France
| | - Eric Liozon
- Division of Internal Medicine, Dupuytren University Hospital, Limoges, France
| | | | | | - Kim-Heang Ly
- Division of Internal Medicine, Dupuytren University Hospital, Limoges, France
- INSERM U1308, Faculty of Medicine, University of Limoges, Limoges, France
| |
Collapse
|
16
|
Liu H, Peng J, Huang L, Ruan D, Li Y, Yuan F, Tu Z, Huang K, Zhu X. The role of lysosomal peptidases in glioma immune escape: underlying mechanisms and therapeutic strategies. Front Immunol 2023; 14:1154146. [PMID: 37398678 PMCID: PMC10311646 DOI: 10.3389/fimmu.2023.1154146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 06/02/2023] [Indexed: 07/04/2023] Open
Abstract
Glioblastoma is the most common primary malignant tumor of the central nervous system, which has the characteristics of strong invasion, frequent recurrence, and rapid progression. These characteristics are inseparable from the evasion of glioma cells from immune killing, which makes immune escape a great obstacle to the treatment of glioma, and studies have confirmed that glioma patients with immune escape tend to have poor prognosis. The lysosomal peptidase lysosome family plays an important role in the immune escape process of glioma, which mainly includes aspartic acid cathepsin, serine cathepsin, asparagine endopeptidases, and cysteine cathepsins. Among them, the cysteine cathepsin family plays a prominent role in the immune escape of glioma. Numerous studies have confirmed that glioma immune escape mediated by lysosomal peptidases has something to do with autophagy, cell signaling pathways, immune cells, cytokines, and other mechanisms, especially lysosome organization. The relationship between protease and autophagy is more complicated, and the current research is neither complete nor in-depth. Therefore, this article reviews how lysosomal peptidases mediate the immune escape of glioma through the above mechanisms and explores the possibility of lysosomal peptidases as a target of glioma immunotherapy.
Collapse
Affiliation(s)
- Hao Liu
- Department of Neurosurgery, The Second Affifiliated Hospital of Nanchang University, Nanchang, China
- The Second Clinical Medical College of Nanchang University, Nanchang, China
| | - Jie Peng
- Department of Neurosurgery, The Second Affifiliated Hospital of Nanchang University, Nanchang, China
- The Second Clinical Medical College of Nanchang University, Nanchang, China
| | - Linzhen Huang
- The Second Clinical Medical College of Nanchang University, Nanchang, China
| | - Dong Ruan
- The Second Clinical Medical College of Nanchang University, Nanchang, China
| | - Yuguang Li
- The Second Clinical Medical College of Nanchang University, Nanchang, China
| | - Fan Yuan
- The Second Clinical Medical College of Nanchang University, Nanchang, China
| | - Zewei Tu
- Department of Neurosurgery, The Second Affifiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang, China
- Institute of Neuroscience, Nanchang University, Nanchang, China
- Jiangxi Health Commission (JXHC) Key Laboratory of Neurological Medicine, Nanchang, China
| | - Kai Huang
- Department of Neurosurgery, The Second Affifiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang, China
- Institute of Neuroscience, Nanchang University, Nanchang, China
- Jiangxi Health Commission (JXHC) Key Laboratory of Neurological Medicine, Nanchang, China
| | - Xingen Zhu
- Department of Neurosurgery, The Second Affifiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang, China
- Institute of Neuroscience, Nanchang University, Nanchang, China
- Jiangxi Health Commission (JXHC) Key Laboratory of Neurological Medicine, Nanchang, China
| |
Collapse
|
17
|
Huang YC, Hou MF, Tsai YM, Pan YC, Tsai PH, Lin YS, Chang CY, Tsai EM, Hsu YL. Involvement of ACACA (acetyl-CoA carboxylase α) in the lung pre-metastatic niche formation in breast cancer by senescence phenotypic conversion in fibroblasts. Cell Oncol (Dordr) 2023; 46:643-660. [PMID: 36607556 PMCID: PMC10205862 DOI: 10.1007/s13402-022-00767-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/22/2022] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Reprogramming of metabolism is strongly associated with the development of cancer. However, the role of metabolic reprogramming in the remodeling of pre-metastatic niche (PMN), a key step in metastasis, is still unknown. We aimed to investigate the metabolic alternation during lung PMN formation in breast cancer. METHODS We assessed the transcriptomes and lipidomics of lung of MMTV-PyVT mice by microarray and liquid chromatography-tandem mass mass spectrometry before lung metastasis. The validation of gene or protein expressions was performed by quantitative real-time polymerase chain reaction or immunoblot and immunohistochemistry respectively. The lung fibroblasts were isolated from mice and then co-cultured with breast cancer to identify the influence of cancer on the change of lung fibroblasts in PMN. RESULTS We demonstrated changes in the lipid profile and several lipid metabolism genes in the lungs of breast cancer-bearing MMTV-PyVT mice before cancer spreading. The expression of ACACA (acetyl-CoA carboxylase α) was downregulated in the lung fibroblasts, which contributed to changes in acetylation of protein's lysine residues and the synthesis of fatty acid. The downregulation of ACACA in lung fibroblasts triggered a senescent and inflammatory phenotypic shift of lung fibroblasts in both in vivo and in vitro models. The senescence-associated secretory phenotype of lung fibroblasts enabled the recruitment of immunosuppressive granulocytic myeloid-derived suppressor cells into the lungs through the production of CXCL1 in the lungs. Knock-in of ACACA prevented lung metastasis in the MMTV-PyVT mouse model, further supporting that ACACA was involved in the remodeling of the lung PMN. CONCLUSIONS Taken together, these data revealed a mechanism by which ACACA downregulation directed the formation of an immunosuppressive lung PMN in breast cancer.
Collapse
Affiliation(s)
- Yung-Chi Huang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, No. 100, Shih-Chuan 1st Road, Kaohsiung, 807, Taiwan
| | - Ming-Feng Hou
- Department of Biomedical Science and Environment Biology, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Ying-Ming Tsai
- Division of Pulmonary and Critical Care Medicine, Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Yi-Chung Pan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, No. 100, Shih-Chuan 1st Road, Kaohsiung, 807, Taiwan
| | - Pei-Hsun Tsai
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Yi-Shiuan Lin
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, No. 100, Shih-Chuan 1st Road, Kaohsiung, 807, Taiwan
| | - Chao-Yuan Chang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, No. 100, Shih-Chuan 1st Road, Kaohsiung, 807, Taiwan
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
- Department of Anatomy, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Eing-Mei Tsai
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, No. 100, Shih-Chuan 1st Road, Kaohsiung, 807, Taiwan
| | - Ya-Ling Hsu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, No. 100, Shih-Chuan 1st Road, Kaohsiung, 807, Taiwan.
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, Pingtung, 912, Taiwan.
| |
Collapse
|
18
|
Qiao X, Hu Z, Xiong F, Yang Y, Peng C, Wang D, Li X. Lipid metabolism reprogramming in tumor-associated macrophages and implications for therapy. Lipids Health Dis 2023; 22:45. [PMID: 37004014 PMCID: PMC10064535 DOI: 10.1186/s12944-023-01807-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 03/22/2023] [Indexed: 04/03/2023] Open
Abstract
The tumormicroenvironment (TME) plays a key role in tumor progression. Tumor-associated macrophages (TAMs), which are natural immune cells abundantin the TME, are mainly divided into the anti-tumor M1 subtype and pro-tumor M2 subtype. Due to the high plasticity of TAMs, the conversion of the M1 to M2 phenotype in hypoxic and hypoglycemic TME promotes cancer progression, which is closely related to lipid metabolism. Key factors of lipid metabolism in TAMs, including peroxisome proliferator-activated receptor and lipoxygenase, promote the formation of a tumor immunosuppressive microenvironment and facilitate immune escape. In addition, tumor cells promote lipid accumulation in TAMs, causing TAMs to polarize to the M2 phenotype. Moreover, other factors of lipid metabolism, such as abhydrolase domain containing 5 and fatty acid binding protein, have both promoting and inhibiting effects on tumor cells. Therefore, further research on lipid metabolism in tumors is still required. In addition, statins, as core drugs regulating cholesterol metabolism, can inhibit lipid rafts and adhesion of tumor cells, which can sensitize them to chemotherapeutic drugs. Clinical studies on simvastatin and lovastatin in a variety of tumors are underway. This article provides a comprehensive review of the role of lipid metabolism in TAMs in tumor progression, and provides new ideas for targeting lipid metabolism in tumor therapy.
Collapse
Affiliation(s)
- Xuehan Qiao
- Department of Medical Oncology, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Zhangmin Hu
- Department of Medical Oncology, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Fen Xiong
- Department of Medical Oncology, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Yufei Yang
- Department of Medical Oncology, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Chen Peng
- Department of Medical Oncology, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Deqiang Wang
- Department of Medical Oncology, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
- Institute of Digestive Diseases, Jiangsu University, Zhenjiang, China
| | - Xiaoqin Li
- Department of Medical Oncology, The Affiliated Hospital of Jiangsu University, Zhenjiang, China.
| |
Collapse
|
19
|
Liu X, Ni G, Zhang P, Li H, Li J, Cavallazzi Sebold B, Wu X, Chen G, Yuan S, Wang T. Single-nucleus RNA sequencing and deep tissue proteomics reveal distinct tumour microenvironment in stage-I and II cervical cancer. J Exp Clin Cancer Res 2023; 42:28. [PMID: 36683048 PMCID: PMC9869594 DOI: 10.1186/s13046-023-02598-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 01/10/2023] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Cervical cancer (CC) is the 3rd most common cancer in women and the 4th leading cause of deaths in gynaecological malignancies, yet the exact progression of CC is inconclusive, mainly due to the high complexity of the changing tumour microenvironment (TME) at different stages of tumorigenesis. Importantly, a detailed comparative single-nucleus transcriptomic analysis of tumour microenvironment (TME) of CC patients at different stages is lacking. METHODS In this study, a total of 42,928 and 29,200 nuclei isolated from the tumour tissues of stage-I and II CC patients and subjected to single-nucleus RNA sequencing (snRNA-seq) analysis. The cell heterogeneity and functions were comparatively investigated using bioinformatic tools. In addition, label-free quantitative mass spectrometry based proteomic analysis was carried out. The proteome profiles of stage-I and II CC patients were compared, and an integrative analysis with the snRNA-seq was performed. RESULTS Compared with the stage-I CC (CCI) patients, the immune response relevant signalling pathways were largely suppressed in various immune cells of the stage-II CC (CCII) patients, yet the signalling associated with cell and tissue development was enriched, as well as metabolism for energy production suggested by the upregulation of genes associated with mitochondria. This was consistent with the quantitative proteomic analysis that showed the dominance of proteins promoting cell growth and intercellular matrix development in the TME of CCII group. The interferon-α and γ responses appeared the most activated pathways in many cell populations of the CCI patients. Several collagens, such as COL12A1, COL5A1, COL4A1 and COL4A2, were found significantly upregulated in the CCII group, suggesting their roles in diagnosing CC progression. A novel transcript AC244205.1 was detected as the most upregulated gene in CCII patients, and its possible mechanistic role in CC may be investigated further. CONCLUSIONS Our study provides important resources for decoding the progression of CC and set the foundation for developing novel approaches for diagnosing CC and tackling the immunosuppressive TME.
Collapse
Affiliation(s)
- Xiaosong Liu
- Cancer Research Institute, First People's Hospital of Foshan, Foshan, 528000, Guangdong, China
- The First Affiliated Hospital/School of Clinical Medicineof, Guangdong Pharmaceutical University, Guangzhou, 510080, Guangdong, China
| | - Guoying Ni
- Cancer Research Institute, First People's Hospital of Foshan, Foshan, 528000, Guangdong, China
- The First Affiliated Hospital/School of Clinical Medicineof, Guangdong Pharmaceutical University, Guangzhou, 510080, Guangdong, China
- Centre for Bioinnovation, University of the Sunshine Coast, Maroochydore BC, QLD, 4558, Australia
| | - Pingping Zhang
- Cancer Research Institute, First People's Hospital of Foshan, Foshan, 528000, Guangdong, China
| | - Hejie Li
- Centre for Bioinnovation, University of the Sunshine Coast, Maroochydore BC, QLD, 4558, Australia
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore BC, QLD, 4558, Australia
| | - Junjie Li
- The First Affiliated Hospital/School of Clinical Medicineof, Guangdong Pharmaceutical University, Guangzhou, 510080, Guangdong, China
| | | | - Xiaolian Wu
- Cancer Research Institute, First People's Hospital of Foshan, Foshan, 528000, Guangdong, China
| | - Guoqiang Chen
- Cancer Research Institute, First People's Hospital of Foshan, Foshan, 528000, Guangdong, China.
| | - Songhua Yuan
- Department of Gynaecology, First People's Hospital of Foshan, Foshan, 528000, Guangdong, China.
| | - Tianfang Wang
- Centre for Bioinnovation, University of the Sunshine Coast, Maroochydore BC, QLD, 4558, Australia.
| |
Collapse
|
20
|
Collery P, Desmaële D, Harikrishnan A, Veena V. Remarkable Effects of a Rhenium(I)-diselenoether Drug on the Production of Cathepsins B and S by Macrophages and their Polarizations. Curr Pharm Des 2023; 29:2396-2407. [PMID: 37859327 DOI: 10.2174/0113816128268963231013074433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 09/21/2023] [Indexed: 10/21/2023]
Abstract
BACKGROUND/OBJECTIVE Tumor-associated macrophages (TAMs) produce an excessive amount of cysteine proteases, and we aimed to study the effects of anticancer rhenium(I)-diselenoether (Re-diSe) on the production of cathepsins B and S by macrophages. We investigated the effect of Re-diSe on lipopolysaccharides (LPS) induced M1 macrophages, or by interleukin 6 (IL-6) induced M2 macrophages. METHODS Non-stimulated or prestimulated murine Raw 264 or human THP-1 macrophages were exposed to increasing concentrations of the drug (5, 10, 20, 50 and 100 μM) and viability was assayed by the MTT assay. The amount of cysteine proteases was evaluated by ELISA tests, the number of M1 and M2 macrophages by the expression of CD80 or CD206 biomarkers. The binding of Re-diSe with GSH as a model thiol-containing protein was studied by mass spectrometry. RESULTS A dose-dependent decrease in cathepsins B and S was observed in M1 macrophages. There was no effect in non-stimulated cells. The drug induced a dramatic dose-dependent increase in M1 expression in both cells, significantly decreased the M2 expression in Raw 264 and had no effect in non-stimulated macrophages. The binding of the Re atom with the thiols was clearly demonstrated. CONCLUSION The increase in the number of M1 and a decrease in M2 macrophages treated by Re-diSe could be related to the decrease in cysteine proteases upon binding of their thiol residues with the Re atom.
Collapse
Affiliation(s)
- Philippe Collery
- Society for the Coordination of Therapeutic Researches, 20220 Algajola, France
| | - Didier Desmaële
- Department of Chemistry, Institut Galien, Université Paris-Saclay, 91400 Orsay, France
| | - Adhikesavan Harikrishnan
- Department of Chemistry, School of Arts and Science, Vinayaka Mission Research Foundation- AV Campus, Chennai 560064, India
| | - Vijay Veena
- School of Allied Healthcare and Sciences, Jain University, Bangalore 560066, India
| |
Collapse
|
21
|
All Roads Lead to Cathepsins: The Role of Cathepsins in Non-Alcoholic Steatohepatitis-Induced Hepatocellular Carcinoma. Biomedicines 2022; 10:biomedicines10102351. [PMID: 36289617 PMCID: PMC9598942 DOI: 10.3390/biomedicines10102351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/16/2022] [Accepted: 09/16/2022] [Indexed: 11/17/2022] Open
Abstract
Cathepsins are lysosomal proteases that are essential to maintain cellular physiological homeostasis and are involved in multiple processes, such as immune and energy regulation. Predominantly, cathepsins reside in the lysosomal compartment; however, they can also be secreted by cells and enter the extracellular space. Extracellular cathepsins have been linked to several pathologies, including non-alcoholic steatohepatitis (NASH) and hepatocellular carcinoma (HCC). NASH is an increasingly important risk factor for the development of HCC, which is the third leading cause of cancer-related deaths and poses a great medical and economic burden. While information regarding the involvement of cathepsins in NASH-induced HCC (NASH-HCC) is limited, data to support the role of cathepsins in either NASH or HCC is accumulating. Since cathepsins play a role in both NASH and HCC, it is likely that the role of cathepsins is more significant in NASH-HCC compared to HCC derived from other etiologies. In the current review, we provide an overview on the available data regarding cathepsins in NASH and HCC, argue that cathepsins play a key role in the transition from NASH to HCC, and shed light on therapeutic options in this context.
Collapse
|
22
|
Sebastian A, Hum NR, McCool JL, Wilson SP, Murugesh DK, Martin KA, Rios-Arce ND, Amiri B, Christiansen BA, Loots GG. Single-cell RNA-Seq reveals changes in immune landscape in post-traumatic osteoarthritis. Front Immunol 2022; 13:938075. [PMID: 35967299 PMCID: PMC9373730 DOI: 10.3389/fimmu.2022.938075] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/06/2022] [Indexed: 12/13/2022] Open
Abstract
Osteoarthritis (OA) is the most common joint disease, affecting over 300 million people world-wide. Accumulating evidence attests to the important roles of the immune system in OA pathogenesis. Understanding the role of various immune cells in joint degeneration or joint repair after injury is vital for improving therapeutic strategies for treating OA. Post-traumatic osteoarthritis (PTOA) develops in ~50% of individuals who have experienced an articular trauma like an anterior cruciate ligament (ACL) rupture. Here, using the high resolution of single-cell RNA sequencing, we delineated the temporal dynamics of immune cell accumulation in the mouse knee joint after ACL rupture. Our study identified multiple immune cell types in the joint including neutrophils, monocytes, macrophages, B cells, T cells, NK cells and dendritic cells. Monocytes and macrophage populations showed the most dramatic changes after injury. Further characterization of monocytes and macrophages reveled 9 major subtypes with unique transcriptomics signatures, including a tissue resident Lyve1hiFolr2hi macrophage population and Trem2hiFcrls+ recruited macrophages, both showing enrichment for phagocytic genes and growth factors such as Igf1, Pdgfa and Pdgfc. We also identified several genes induced or repressed after ACL injury in a cell type-specific manner. This study provides new insight into PTOA-associated changes in the immune microenvironment and highlights macrophage subtypes that may play a role in joint repair after injury.
Collapse
Affiliation(s)
- Aimy Sebastian
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, United States
- *Correspondence: Aimy Sebastian, ; Gabriela G. Loots,
| | - Nicholas R. Hum
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - Jillian L. McCool
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, United States
- School of Natural Sciences, University of California Merced, Merced, CA, United States
| | - Stephen P. Wilson
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - Deepa K. Murugesh
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - Kelly A. Martin
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - Naiomy Deliz Rios-Arce
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - Beheshta Amiri
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - Blaine A. Christiansen
- Department of Orthopaedic Surgery, University of California Davis Health, Sacramento, CA, United States
| | - Gabriela G. Loots
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, United States
- School of Natural Sciences, University of California Merced, Merced, CA, United States
- *Correspondence: Aimy Sebastian, ; Gabriela G. Loots,
| |
Collapse
|
23
|
Tlili M, Acevedo H, Descoteaux A, Germain M, Heinonen KM. Cell-intrinsic Wnt4 ligand regulates mitochondrial oxidative phosphorylation in macrophages. J Biol Chem 2022; 298:102193. [PMID: 35764169 PMCID: PMC9352913 DOI: 10.1016/j.jbc.2022.102193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/09/2022] [Accepted: 06/13/2022] [Indexed: 11/26/2022] Open
Abstract
Macrophages respond to their environment by adopting a predominantly inflammatory or anti-inflammatory profile, depending on the context. The polarization of the subsequent response is regulated by a combination of intrinsic and extrinsic signals and is associated with alterations in macrophage metabolism. Although macrophages are important producers of Wnt ligands, the role of Wnt signaling in regulating metabolic changes associated with macrophage polarization remains unclear. Wnt4 upregulation has been shown to be associated with tissue repair and suppression of age-associated inflammation, which led us to generate Wnt4-deficient bone marrow–derived macrophages to investigate its role in metabolism. We show that loss of Wnt4 led to modified mitochondrial structure, enhanced oxidative phosphorylation, and depleted intracellular lipid reserves, as the cells depended on fatty acid oxidation to fuel their mitochondria. Further we found that enhanced lipolysis was dependent on protein kinase C–mediated activation of lysosomal acid lipase in Wnt4-deficient bone marrow–derived macrophages. Although not irreversible, these metabolic changes promoted parasite survival during infection with Leishmania donovani. In conclusion, our results indicate that enhanced macrophage fatty acid oxidation impairs the control of intracellular pathogens, such as Leishmania. We further suggest that Wnt4 may represent a potential target in atherosclerosis, which is characterized by lipid storage in macrophages leading to them becoming foam cells.
Collapse
Affiliation(s)
- Mouna Tlili
- Institut national de recherche scientifique, Centre Armand Frappier Santé Biotechnologie, Laval H7V 1B7, CANADA
| | - Hamlet Acevedo
- Institut national de recherche scientifique, Centre Armand Frappier Santé Biotechnologie, Laval H7V 1B7, CANADA
| | - Albert Descoteaux
- Institut national de recherche scientifique, Centre Armand Frappier Santé Biotechnologie, Laval H7V 1B7, CANADA
| | - Marc Germain
- Groupe de Recherche en Signalisation Cellulaire and Département de Biologie Médicale, Université du Québec à Trois-Rivières, Trois-Rivières, CANADA; Centre d'Excellence de Recherche sur les Maladies Orphelines - Fondation Courtois (CERMO-FC), Montreal, CANADA; Réseau Intersectoriel de Recherche en Santé de l'Université du Québec, Université du Québec, Quebec, CANADA
| | - Krista M Heinonen
- Institut national de recherche scientifique, Centre Armand Frappier Santé Biotechnologie, Laval H7V 1B7, CANADA; Centre d'Excellence de Recherche sur les Maladies Orphelines - Fondation Courtois (CERMO-FC), Montreal, CANADA.
| |
Collapse
|
24
|
Li C, Hua K. Dissecting the Single-Cell Transcriptome Network of Immune Environment Underlying Cervical Premalignant Lesion, Cervical Cancer and Metastatic Lymph Nodes. Front Immunol 2022; 13:897366. [PMID: 35812401 PMCID: PMC9263187 DOI: 10.3389/fimmu.2022.897366] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 05/20/2022] [Indexed: 01/09/2023] Open
Abstract
Cervical cancer (CC) is one of the most common malignancy in women worldwide. It is characterized by a natural continuous phenomenon, that is, it is in the initial stage of HPV infection, progresses to intraepithelial neoplasia, and then develops into invasion and metastasis. Determining the complexity of tumor microenvironment (TME) can deepen our understanding of lesion progression and provide novel therapeutic strategies for CC. We performed the single-cell RNA sequencing on the normal cervix, intraepithelial neoplasia, primary tumor and metastatic lymph node tissues to describe the composition, lineage, and functional status of immune cells and mesenchymal cells at different stages of CC progression. A total of 59913 single cells were obtained and divided into 9 cellular clusters, including immune cells (T/NK cells, macrophages, B cells, plasma cells, mast cells and neutrophils) and mesenchymal cells (endothelial cells, smooth muscle cells and fibroblasts). Our results showed that there were distinct cell subpopulations in different stages of CC. High-stage intraepithelial neoplasia (HSIL) tissue exhibited a low, recently activated TME, and it was characterized by high infiltration of tissue-resident CD8 T cell, effector NK cells, Treg, DC1, pDC, and M1-like macrophages. Tumor tissue displayed high enrichment of exhausted CD8 T cells, resident NK cells and M2-like macrophages, suggesting immunosuppressive TME. Metastatic lymph node consisted of naive T cell, central memory T cell, circling NK cells, cytotoxic CD8+ T cells and effector memory CD8 T cells, suggesting an early activated phase of immune response. This study is the first to delineate the transcriptome profile of immune cells during CC progression using single-cell RNA sequencing. Our results indicated that HSIL exhibited a low, recently activated TME, tumor displayed immunosuppressive statue, and metastatic lymph node showed early activated phase of immune response. Our study enhanced the understanding of dynamic change of TME during CC progression and has implications for the development of novel treatments to inhibit the initiation and progression of CC.
Collapse
Affiliation(s)
- Chunbo Li
- Department of Obstetrics and Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Keqin Hua
- Department of Obstetrics and Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| |
Collapse
|
25
|
Rudzinska-Radecka M, Frolova AS, Balakireva AV, Gorokhovets NV, Pokrovsky VS, Sokolova DV, Korolev DO, Potoldykova NV, Vinarov AZ, Parodi A, Zamyatnin AA. In Silico, In Vitro, and Clinical Investigations of Cathepsin B and Stefin A mRNA Expression and a Correlation Analysis in Kidney Cancer. Cells 2022; 11:1455. [PMID: 35563761 PMCID: PMC9101197 DOI: 10.3390/cells11091455] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 04/18/2022] [Accepted: 04/21/2022] [Indexed: 02/06/2023] Open
Abstract
The cysteine protease Cathepsin B (CtsB) plays a critical role in multiple signaling pathways, intracellular protein degradation, and processing. Endogenous inhibitors regulate its enzymatic activity, including stefins and other cystatins. Recent data proved that CtsB is implicated in tumor extracellular matrix remodeling, cell invasion, and metastasis: a misbalance between cathepsins and their natural inhibitors is often considered a sign of disease progression. In the present study, we investigated CtsB and stefin A (StfA) expression in renal cell carcinoma (RCC). mRNA analysis unveiled a significant CTSB and STFA increase in RCC tissues compared to adjacent non-cancerogenic tissues and a higher CtsB expression in malignant tumors than in benign renal neoplasms. Further analysis highlighted a positive correlation between CtsB and StfA expression as a function of patient sex, age, tumor size, grade, lymph node invasion, metastasis occurrence, and survival. Alternative overexpression and silencing of CtsB and StfA confirmed the correlation expression between these proteins in human RCC-derived cells through protein analysis and fluorescent microscopy. Finally, the ectopic expression of CtsB and StfA increased RCC cell proliferation. Our data strongly indicated that CtsB and StfA expression play an important role in RCC development by mutually stimulating their expression in RCC progression.
Collapse
Affiliation(s)
- Magdalena Rudzinska-Radecka
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (M.R.-R.); (A.S.F.); (A.V.B.); (N.V.G.); (A.P.)
- Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland
| | - Anastasia S. Frolova
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (M.R.-R.); (A.S.F.); (A.V.B.); (N.V.G.); (A.P.)
- Department of Biotechnology, Sirius University of Science and Technology, 1 Olympic Ave., 354340 Sochi, Russia; (V.S.P.); (D.V.S.)
| | - Anastasia V. Balakireva
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (M.R.-R.); (A.S.F.); (A.V.B.); (N.V.G.); (A.P.)
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia
| | - Neonila V. Gorokhovets
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (M.R.-R.); (A.S.F.); (A.V.B.); (N.V.G.); (A.P.)
| | - Vadim S. Pokrovsky
- Department of Biotechnology, Sirius University of Science and Technology, 1 Olympic Ave., 354340 Sochi, Russia; (V.S.P.); (D.V.S.)
- Laboratory of Combined Treatment, N.N. Blokhin Cancer Research Center, 115478 Moscow, Russia
- Department of Biochemistry, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| | - Darina V. Sokolova
- Department of Biotechnology, Sirius University of Science and Technology, 1 Olympic Ave., 354340 Sochi, Russia; (V.S.P.); (D.V.S.)
- Laboratory of Combined Treatment, N.N. Blokhin Cancer Research Center, 115478 Moscow, Russia
- Department of Biochemistry, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| | - Dmitry O. Korolev
- Institute for Urology and Reproductive Health, Sechenov University, 119992 Moscow, Russia; (D.O.K.); (N.V.P.); (A.Z.V.)
| | - Natalia V. Potoldykova
- Institute for Urology and Reproductive Health, Sechenov University, 119992 Moscow, Russia; (D.O.K.); (N.V.P.); (A.Z.V.)
| | - Andrey Z. Vinarov
- Institute for Urology and Reproductive Health, Sechenov University, 119992 Moscow, Russia; (D.O.K.); (N.V.P.); (A.Z.V.)
| | - Alessandro Parodi
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (M.R.-R.); (A.S.F.); (A.V.B.); (N.V.G.); (A.P.)
- Department of Biotechnology, Sirius University of Science and Technology, 1 Olympic Ave., 354340 Sochi, Russia; (V.S.P.); (D.V.S.)
| | - Andrey A. Zamyatnin
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (M.R.-R.); (A.S.F.); (A.V.B.); (N.V.G.); (A.P.)
- Department of Biotechnology, Sirius University of Science and Technology, 1 Olympic Ave., 354340 Sochi, Russia; (V.S.P.); (D.V.S.)
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
- Department of Immunology, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK
| |
Collapse
|
26
|
Holthaus M, Santhakumar N, Wahlers T, Paunel-Görgülü A. The Secretome of Preconditioned Mesenchymal Stem Cells Drives Polarization and Reprogramming of M2a Macrophages toward an IL-10-Producing Phenotype. Int J Mol Sci 2022; 23:ijms23084104. [PMID: 35456922 PMCID: PMC9024470 DOI: 10.3390/ijms23084104] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/29/2022] [Accepted: 04/04/2022] [Indexed: 12/13/2022] Open
Abstract
The preconditioning of mesenchymal stem cells (MSCs) has been recognized as an attractive tool to improve their regenerative and immunomodulatory capacities based on their paracrine effects. In this study, we examined the potential of an MSC-conditioned medium (MSC-CM) to alter the phenotype of murine macrophages and to drive reprogramming toward an anti-inflammatory, M2-like state in vitro. We further explored the impact of MSC cytokine preconditioning on the immunosuppressive properties of the MSC secretome. The MSC-CM suppressed the expression of proinflammatory genes in murine M1 macrophages, but only the CM from preconditioned MSCs (preMSC-CM) downregulated their expression during M1 polarization. Remarkably, only the preMSC-CM significantly increased the expression of M2a-, M2b- and M2c-specific genes and proteins during M2a polarization. Further, macrophages were found to secrete high levels of anti-inflammatory IL-10. Similarly, M2a macrophages cultured in the presence of the preMSC-CM displayed an enhanced expression of M2b/M2c-specific markers, suggesting that the secretome of preMSC promotes the repolarization of M2a-like macrophages to M2b/M2c subtypes. The preMSC-CM was found to be enriched in molecules involved in M2 polarization. Additionally, a unique downregulation of extracellular matrix components was observed. Altogether, the preMSC-CM may provide an attractive strategy to dampen inflammation by suppressing the expression of proinflammatory mediators and promoting the polarization and phenotype switch of M2a cells to IL-10-secreting M2b/M2c-like macrophages.
Collapse
Affiliation(s)
- Michelle Holthaus
- Department of Cardiothoracic Surgery, Heart Center, University of Cologne, 50937 Cologne, Germany
| | - Nivethiha Santhakumar
- Department of Cardiothoracic Surgery, Heart Center, University of Cologne, 50937 Cologne, Germany
| | - Thorsten Wahlers
- Department of Cardiothoracic Surgery, Heart Center, University of Cologne, 50937 Cologne, Germany
| | - Adnana Paunel-Görgülü
- Department of Cardiothoracic Surgery, Heart Center, University of Cologne, 50937 Cologne, Germany
| |
Collapse
|
27
|
Sung JY, Cheong JH. New Immunometabolic Strategy Based on Cell Type-Specific Metabolic Reprogramming in the Tumor Immune Microenvironment. Cells 2022; 11:768. [PMID: 35269390 PMCID: PMC8909366 DOI: 10.3390/cells11050768] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/17/2022] [Accepted: 02/21/2022] [Indexed: 02/07/2023] Open
Abstract
Immunometabolism is an emerging discipline in cancer immunotherapy. Tumor tissues are heterogeneous and influenced by metabolic reprogramming of the tumor immune microenvironment (TIME). In the TIME, multiple cell types interact, and the tumor and immune cells compete for limited nutrients, resulting in altered anticancer immunity. Therefore, metabolic reprogramming of individual cell types may influence the outcomes of immunotherapy. Understanding the metabolic competition for access to limited nutrients between tumor cells and immune cells could reveal the breadth and complexity of the TIME and aid in developing novel therapeutic approaches for cancer. In this review, we highlight that, when cells compete for nutrients, the prevailing cell type gains certain advantages over other cell types; for instance, if tumor cells prevail against immune cells for nutrients, the former gains immune resistance. Thus, a strategy is needed to selectively suppress such resistant tumor cells. Although challenging, the concept of cell type-specific metabolic pathway inhibition is a potent new strategy in anticancer immunotherapy.
Collapse
Affiliation(s)
- Ji-Yong Sung
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Jae-Ho Cheong
- Department of Surgery, Yonsei University College of Medicine, Seoul 03722, Korea
- Yonsei Biomedical Research Institute, Yonsei University College of Medicine, Seoul 03722, Korea
- Department of Biochemistry & Molecular Biology, Yonsei University College of Medicine, Seoul 03722, Korea
| |
Collapse
|
28
|
Zhang S, Xie F, Li K, Zhang H, Yin Y, Yu Y, Lu G, Zhang S, Wei Y, Xu K, Wu Y, Jin H, Xiao L, Bao L, Xu C, Li Y, Lu Y, Gao J. Gold nanoparticle-directed autophagy intervention for antitumor immunotherapy via inhibiting tumor-associated macrophage M2 polarization. Acta Pharm Sin B 2022; 12:3124-3138. [PMID: 35865102 PMCID: PMC9293675 DOI: 10.1016/j.apsb.2022.02.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 01/05/2022] [Accepted: 01/20/2022] [Indexed: 11/01/2022] Open
|
29
|
Zhou Q, Zhu Y, Li C, Li Z, Tang Z, Yuan B, Wang X, Zhang S, Wu X. Elevated CTSL Gene Expression Correlated with Proinflammatory Cytokines in Omental Adipose Tissue of Patients with Obesity. Diabetes Metab Syndr Obes 2022; 15:2277-2285. [PMID: 35936052 PMCID: PMC9348135 DOI: 10.2147/dmso.s373203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 07/18/2022] [Indexed: 11/23/2022] Open
Abstract
PURPOSE Cathepsin L (CTSL) and B (CTSB) were lysosomal proteases, and their expression and activity contribute to the progression of inflammation in obese rodents. Our aim was to investigate CTSB and CTSL expression in omental adipose tissue (AT) of patients with obesity and to correlate CTSB and CTSL expression with proinflammatory cytokines (CCL-2, IL-6 and IL-1β). PATIENTS AND METHODS A total of 12 patients without obesity (NOB) and 51 patients with obesity (OB) were involved in this study. Omental AT was collected from all the participants for RNA extraction. Expressions of CTSB, CTSL and proinflammatory cytokines (CCL-2, IL-6 and IL-1β) were qualified with qRT-PCR. BMI (body mass index) and metabolic parameters were measured. RESULTS The mRNA expression levels of both CTSB and CTSL were upregulated in the OB group (t = 2.693, P < 0.05; t = 2.849, P<0.01) and were related to TC levels (Std.β=0.443, P<0.05; Std.β=0.439, P<0.05). However, only the CTSB level was related to BMI (Std.β=0.261, P<0.05). In multiple regression analysis, CTSL was independently associated with CCL-2, IL-6 and IL-1β levels (Std.β=0.352-0.462, P<0.05). CONCLUSION CTSB and CTSL gene expressions were elevated in the omental AT of OB group. CTSL, but not CTSB, was positively correlated with proinflammatory cytokines independently, suggesting that the dysregulation of CTSL may play a significant role in the inflammatory process.
Collapse
Affiliation(s)
- Qiong Zhou
- School of Public Health, Kunming Medical University, Kunming, People’s Republic of China
- Department of Endocrinology, Yan’an Hospital Affiliated to Kunming Medical University, Kunming, People’s Republic of China
| | - Yankun Zhu
- Department of General Surgery, Yan’an Hospital Affiliated to Kunming Medical University, Kunming, People’s Republic of China
| | - Chun Li
- Department of Endocrinology, Yan’an Hospital Affiliated to Kunming Medical University, Kunming, People’s Republic of China
| | - Zhiqiang Li
- School of Public Health, Kunming Medical University, Kunming, People’s Republic of China
| | - Zhe Tang
- Department of Endocrinology, Yan’an Hospital Affiliated to Kunming Medical University, Kunming, People’s Republic of China
| | - Baohong Yuan
- Department of General Surgery, Yan’an Hospital Affiliated to Kunming Medical University, Kunming, People’s Republic of China
| | - Xiaodan Wang
- Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Yan’an Hospital Affiliated to Kunming Medical University, Kunming, People’s Republic of China
| | - Shengqingyu Zhang
- School of Public Health, Kunming Medical University, Kunming, People’s Republic of China
| | - Xinan Wu
- School of Public Health, Kunming Medical University, Kunming, People’s Republic of China
- Correspondence: Xinan Wu, School of Public Health, Kunming Medical University, Kunming, 650500, People’s Republic of China, Tel +85-13888984762, Fax +86-871-65933614, Email
| |
Collapse
|
30
|
Jiang Q, Zhang W. Gradual effects of gradient concentrations of polystyrene nanoplastics on metabolic processes of the razor clams. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 287:117631. [PMID: 34182384 DOI: 10.1016/j.envpol.2021.117631] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 06/17/2021] [Accepted: 06/19/2021] [Indexed: 06/13/2023]
Abstract
With the widespread occurrence and accumulation of plastic waste in the world, plastic pollution has become a serious threat to ecosystem and ecological security, especially to estuarine and coastal areas. Understanding the impacts of changing nanoplastics concentrations on aquatic organisms living in these areas is essential for revealing the ecological effects caused by plastic pollution. In the present study, we revealed the effects of exposure to gradient concentrations (0.005, 0.05, 0.5 and 50 mg/L) of 75 nm polystyrene nanoplastics (PS-NPs) for 48 h on metabolic processes in muscle tissue of a bivalve, the razor clam Sinonovacula constricta, via metabolomic and transcriptomic analysis. Our results showed that PS-NPs caused dose-dependent adverse effects on energy reserves, membrane lipid metabolism, purine metabolism and lysosomal hydrolases. Exposure to PS-NPs reduced energy reserves, especially lipids. Membrane lipid metabolism was sensitive to PS-NPs with contents of phosphocholines (PC), phosphatidylethanolamines (PE) and phosphatidylserines (PS) increasing and degradation being inhibited in all concentrations. High concentrations of PS-NPs altered the purine metabolism via increasing contents of guanosine triphosphate (GTP) and adenine, which may be needed for DNA repair, and consuming inosine and hypoxanthine. During exposure to low concentrations of PS-NPs, lysosomal hydrolases in S. constricta, especially cathepsins, were inhibited while this influence was improved transitorily in 5 mg/L of PS-NPs. These adverse effects together impacted energy metabolism in S. constricta and disturbed energy homeostasis, which was manifested by the low levels of acetyl-CoA in high concentrations of PS-NPs. Overall, our results revealed the effects of acute exposure to gradient concentrations of PS-NPs on S. constricta, especially its metabolic process, and provide perspectives for understanding the toxicity of dynamic plastic pollution to coastal organisms and ecosystem.
Collapse
Affiliation(s)
- Qichen Jiang
- Freshwater Fishers Research Institute of Jiangsu Province, 79 Chatting East Street, Nanjing, 210017, China
| | - Wenyi Zhang
- Institute of Animal Genetic Resource, Nanjing Normal University, 1 Wenyuan Street, Nanjing, 210046, China; State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China.
| |
Collapse
|
31
|
Basheer AS, Abas F, Othman I, Naidu R. Role of Inflammatory Mediators, Macrophages, and Neutrophils in Glioma Maintenance and Progression: Mechanistic Understanding and Potential Therapeutic Applications. Cancers (Basel) 2021; 13:4226. [PMID: 34439380 PMCID: PMC8393628 DOI: 10.3390/cancers13164226] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 02/07/2023] Open
Abstract
Gliomas are the most common, highly malignant, and deadliest forms of brain tumors. These intra-cranial solid tumors are comprised of both cancerous and non-cancerous cells, which contribute to tumor development, progression, and resistance to the therapeutic regimen. A variety of soluble inflammatory mediators (e.g., cytokines, chemokines, and chemotactic factors) are secreted by these cells, which help in creating an inflammatory microenvironment and contribute to the various stages of cancer development, maintenance, and progression. The major tumor infiltrating immune cells of the tumor microenvironment include TAMs and TANs, which are either recruited peripherally or present as brain-resident macrophages (microglia) and support stroma for cancer cell expansion and invasion. These cells are highly plastic in nature and can be polarized into different phenotypes depending upon different types of stimuli. During neuroinflammation, glioma cells interact with TAMs and TANs, facilitating tumor cell proliferation, survival, and migration. Targeting inflammatory mediators along with the reprogramming of TAMs and TANs could be of great importance in glioma treatment and may delay disease progression. In addition, an inhibition of the key signaling pathways such as NF-κB, JAK/STAT, MAPK, PI3K/Akt/mTOR, and TLRs, which are activated during neuroinflammation and have an oncogenic role in glioblastoma (GBM), can exert more pronounced anti-glioma effects.
Collapse
Affiliation(s)
- Abdul Samad Basheer
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Malaysia; (A.S.B.); (I.O.)
| | - Faridah Abas
- Laboratory of Natural Products, Faculty of Science, University Putra Malaysia (UPM), Serdang 43400, Malaysia;
- Department of Food Science, Faculty of Food Science and Technology, University Putra Malaysia (UPM), Serdang 434000, Malaysia
| | - Iekhsan Othman
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Malaysia; (A.S.B.); (I.O.)
| | - Rakesh Naidu
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Malaysia; (A.S.B.); (I.O.)
| |
Collapse
|
32
|
Perišić Nanut M, Pečar Fonović U, Jakoš T, Kos J. The Role of Cysteine Peptidases in Hematopoietic Stem Cell Differentiation and Modulation of Immune System Function. Front Immunol 2021; 12:680279. [PMID: 34335582 PMCID: PMC8322073 DOI: 10.3389/fimmu.2021.680279] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 07/01/2021] [Indexed: 01/21/2023] Open
Abstract
Cysteine cathepsins are primarily involved in the degradation and recycling of proteins in endo-lysosomal compartments but are also gaining recognition as pivotal proteolytic contributors to various immune functions. Through their extracellular proteolytic activities within the hematopoietic stem cell niche, they are involved in progenitor cell mobilization and differentiation. Cysteine cathepsins, such as cathepsins L and S contribute to antigen-induced adaptive immunity through major histocompatibility complex class II antigen presentation whereas cathepsin X regulates T-cell migration. By regulating toll-like receptor signaling and cytokine secretion cysteine cathepsins activate innate immune cells and affect their functional differentiation. Cathepsins C and H are expressed in cytotoxic T lymphocytes and natural killer cells and are involved in processing of pro-granzymes into proteolytically active forms. Cytoplasmic activities of cathepsins B and L contribute to the maintenance of homeostasis of the adaptive immune response by regulating cell death of T and B lymphocytes. The expression pattern, localization, and activity of cysteine cathepsins is tightly connected to their function in immune cells. Furthermore, cysteine cathepsins together with their endogenous inhibitors, serve as mediators in the interplay between cancer and immune cells that results in immune cell anergy. The aim of the present article is to review the mechanisms of dysregulation of cysteine cathepsins and their inhibitors in relation to immune dysfunction to address new possibilities for regulation of their function.
Collapse
Affiliation(s)
| | | | - Tanja Jakoš
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Janko Kos
- Department of Biotechnology, Jožef Stefan Institute, Ljubljana, Slovenia.,Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
33
|
Moeini P, Niedźwiedzka-Rystwej P. Tumor-Associated Macrophages: Combination of Therapies, the Approach to Improve Cancer Treatment. Int J Mol Sci 2021; 22:ijms22137239. [PMID: 34281293 PMCID: PMC8269174 DOI: 10.3390/ijms22137239] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/25/2021] [Accepted: 06/30/2021] [Indexed: 02/07/2023] Open
Abstract
Macrophages are one of the most important cells of the innate immune system and are known for their ability to engulf and digest foreign substances, including cellular debris and tumor cells. They can convert into tumor-associated macrophages (TAMs) when mature macrophages are recruited into the tumor microenvironment. Their role in cancer progression, metastasis, and therapy failure is of special note. The aim of this review is to understand how the presence of TAMs are both advantageous and disadvantageous in the immune system.
Collapse
Affiliation(s)
- Pedram Moeini
- Plant Virology Research Center, Shiraz University, Shiraz 71441-65186, Iran;
| | | |
Collapse
|