1
|
宋 添, 王 一, 孙 童, 刘 绪, 黄 胜, 冉 云. [ Zheng Gan Decoction inhibits diethylnitrosamine-induced hepatocellular carcinoma in rats by activating the Hippo/YAP signaling pathway]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2025; 45:799-809. [PMID: 40294930 PMCID: PMC12037285 DOI: 10.12122/j.issn.1673-4254.2025.04.15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Indexed: 04/30/2025]
Abstract
OBJECTIVES To investigate the inhibitory effect of Zheng GanDecoction (ZGF) on tumor progression in a rat model of diethylnitrosamine (DEN)-induced hepatocellular carcinoma (HCC) and explore the possible mechanism. METHODS Seventy SD rats were subjected to regular intraperitoneal injections of DEN (50 mg/kg) for 12 weeks to induce HCC tumorigenesis, with another 10 rats receiving saline injections as the normal control. After successful modeling, the rats were randomized into 5 groups (n=10) for daily treatment with distilled water ( model group), Huaier Granules (4 g/kg; positive control group), or ZGF at low, medium, and high doses (2, 4, and 8 g/kg, respectively) via gavage for 17 weeks. Body weight changes of the rats were monitored, and after completion of the treatments, the rats were euthanized for measurement of liver, spleen and thymus indices and morphological and histopathological examinations of the liver tissues using HE staining. The expressions of YAP, p-YAP, MST1, LATS1 and p-LATS1 in the liver tissues were detected using immunohistochemistry and Western blotting. RESULTS Compared with the normal control rats, the rat models with DEN-induced HCC exhibited much poorer general condition with a significantly reduced survival rate, increased body weight and liver and spleen indices, and a lowered thymus index. ZGF treatment obviously reduced liver and spleen indices, increased the thymus index, and improved pathologies of the liver tissues of the rat models. Immunohistochemistry and Western blotting showed a dose-dependent reduction of YAP expression and an increment of p-YAP expression in ZGF-treated rats, which also exhibited significantly upregulated hepatic expressions of MST1, LATS1 and p-LATS1. CONCLUSIONS ZGF inhibits DEN-induced HCC in rats by activating the Hippo/YAP pathway via upregulating MST1 and LATS1 expression, which promotes YAP phosphorylation and degradation to suppress proliferation and induce apoptosis of the tumor cells.
Collapse
|
2
|
Hussein J, El-Bana MA, Mohamed RA, Omara E, Medhat D. Ceramide and DNA damage in liver fibrosis: Exploring the implications of eicosapentaenoic acid encapsulation in cellulose nanocrystals. Prostaglandins Other Lipid Mediat 2025; 178:106985. [PMID: 40118443 DOI: 10.1016/j.prostaglandins.2025.106985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 02/10/2025] [Accepted: 03/17/2025] [Indexed: 03/23/2025]
Abstract
Ceramide plays a crucial role in promoting liver fibrosis by inducing apoptosis and inflammation in hepatocytes. Oxidative stress accelerates fibrosis by elevating levels of urinary 8-hydroxy-2'-deoxyguanosine (8-OHdG), an indicator for the damage of DNA. We aimed to evaluate the efficacy of eicosapentaenoic acid encapsulated in cellulose nanocrystals (EPA-CNC) in inhibiting ceramide accumulation and reducing urinary 8-OHdG levels, thus providing protective effects against the progression of liver fibrosis. In this study, twenty-four adult male Wistar albino rats were allocated into a negative control group, a group with liver fibrosis induced by diethylnitrosamine (DEN), and a group with DEN-induced liver fibrosis treated simultaneously with EPA-CNC. Key parameters assessed included liver paraoxonase-1 (PON-1), plasma interleukin-6 (IL-6), plasma ceramide, liver hydroxyproline (Hyp) content, and urinary 8-OHdG. DEN-induced liver fibrosis led to a significant increase in inflammatory markers, including ceramide, IL-6, and notably urinary 8-OHdG. This was accompanied by a decrease in PON-1 activity and increased collagen deposition in liver tissues (Hyp content). Histopathological analysis revealed a substantial loss of liver architecture, with inflammation and fibrosis surrounding necrotic areas. In contrast, treatment with encapsulated EPA-CNC resulted in a significant decrease in plasma ceramide, IL-6, liver Hyp content, and urinary 8-OHdG levels, along with an improvement in liver PON-1 activity. Histopathological findings showed nearly normal liver architecture. In conclusion, increased levels of ceramide and urinary 8-OHdG could serve as indicators of ongoing hepatocellular damage due to their positive correlations with fibrotic markers. Encapsulated EPA-CNC may offer a promising approach for halting oxidative stress and inflammation in liver fibrosis.
Collapse
Affiliation(s)
- Jihan Hussein
- Medical Biochemistry Department, National Research Centre, Giza 12622, Egypt
| | - Mona A El-Bana
- Medical Biochemistry Department, National Research Centre, Giza 12622, Egypt
| | - Rehab A Mohamed
- Medical Biochemistry Department, National Research Centre, Giza 12622, Egypt
| | - Enayat Omara
- Pathology Department, National Research Centre, Giza 12622, Egypt
| | - Dalia Medhat
- Medical Biochemistry Department, National Research Centre, Giza 12622, Egypt.
| |
Collapse
|
3
|
Chi ZC. Progress in understanding of relationship of chronic hypoxia and hypoxia-inducing factors with liver cancer. Shijie Huaren Xiaohua Zazhi 2025; 33:11-20. [DOI: 10.11569/wcjd.v33.i1.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 12/24/2024] [Accepted: 01/15/2025] [Indexed: 01/22/2025] Open
Abstract
At present, progress has been made in the understanding of the correlation between hypoxia and liver cancer. In recent years, the combination of hypoxia-inducible factor inhibitors and anticancer drugs in the treatment of liver cancer has achieved gratifying effects, reducing the progression and metastasis of liver cancer, and extending the survival period of patients. Liver damage can destroy the liver's vascular system, disrupting normal blood flow and oxygen supply, and creating an anoxic microenvironment. During hypoxia, liver cells deposit collagen, leading to fibrosis and cirrhosis, which further aggravate hypoxia. Studies have shown that hypoxia, mitochondrial abnormalities, oxidative stress, and liver inflammation are closely related to liver cancer. This article reviews the progress in the understanding of relationship of chronic hypoxia and hypoxia-inducing factors with liver cancer.
Collapse
Affiliation(s)
- Zhao-Chun Chi
- Department of Gastroenterology, Qingdao Municipal Hospital, Qingdao 266011, Shandong Province, China
| |
Collapse
|
4
|
Wang X, Ishimatsu K, Li J, Wen X, Ou W, Anwar A, Chaudhary J, Takahashi M, Sherry AD, Corbin IR. APT imaging of hepatocellular carcinoma signals an effective therapeutic response in advance of tumor shrinkage. Hepat Oncol 2024; 11:2389031. [PMID: 39881558 PMCID: PMC11407511 DOI: 10.1080/20450923.2024.2389031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 07/23/2024] [Indexed: 01/31/2025] Open
Abstract
Aim: The aim of this study was to assess the utility of weighted amide proton transfer (APTw) MRI in three different rodent models of hepatocellular carcinoma (HCC).Methods: APTw MRI was evaluated in models of diethylnitrosamine (DEN) induced HCC, N1S1 syngeneic orthotopic xenograft and human HepG2 ectopic xenograft.Results: All models of HCC showed a higher APTw signal over the surrounding normal tissues. In the DEN model, the APTw signal could differentiate HCC lesions from benign nodules. Intra-arterial administration of low-density lipoprotein docosahexaenoic acid (LDL-DHA) nanoparticles to N1S1 xenografts rapidly lowered the tumor APTw signal within 72 h. Direct injections of LDL-DHA nanoparticles into HepG2 xenografts also showed similar therapeutic responses.Conclusion: We have demonstrated the utility of APTw imaging in the diagnostic/therapeutic management of HCC.
Collapse
Affiliation(s)
- Xiaojing Wang
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center at Dallas, Dallas, TX75390, USA
| | - Keisuke Ishimatsu
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center at Dallas, Dallas, TX75390, USA
| | - Junjie Li
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center at Dallas, Dallas, TX75390, USA
| | - Xiaodong Wen
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center at Dallas, Dallas, TX75390, USA
| | - Weijun Ou
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center at Dallas, Dallas, TX75390, USA
- Organ Transplantation Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, PR China
| | - Arnida Anwar
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center at Dallas, Dallas, TX75390, USA
| | - Jaideep Chaudhary
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center at Dallas, Dallas, TX75390, USA
| | - Masaya Takahashi
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center at Dallas, Dallas, TX75390, USA
| | - A Dean Sherry
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center at Dallas, Dallas, TX75390, USA
- Internal Medicine Division of Liver & Digestive Diseases, University of Texas Southwestern Medical Center at Dallas, Dallas, TX75390, USA
| | - Ian R Corbin
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center at Dallas, Dallas, TX75390, USA
- Internal Medicine Division of Liver & Digestive Diseases, University of Texas Southwestern Medical Center at Dallas, Dallas, TX75390, USA
- Department of Radiology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX75390, USA
| |
Collapse
|
5
|
Han YM, Ahn HR, Lee DY, Song MY, Lee SW, Jang YK, Jeon BY, Kim EH. Therapeutic Potential of Hongjam in A Diethylnitrosamine and Thioacetamide-induced Hepatocellular Carcinoma Mouse Model. J Cancer Prev 2024; 29:165-174. [PMID: 39790225 PMCID: PMC11706731 DOI: 10.15430/jcp.24.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 12/23/2024] [Accepted: 12/25/2024] [Indexed: 01/12/2025] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common and lethal type of primary liver cancer, frequently arising from chronic liver injury and inflammation. Despite treatment advancements, HCC prognosis remains poor, emphasizing the need for effective preventive and therapeutic strategies. This study investigates the hepatoprotective and anti-tumor effects of Hongjam, a steamed freeze-dried silkworm powder, in a diethylnitrosamine (DEN) and thioacetamide (TAA)-induced HCC mouse model. Mice were administered DEN intraperitoneally for 8 weeks, followed by TAA in drinking water for 9 weeks, with Hongjam supplementation (0.01, 0.1, and 1 g/kg) provided daily through food. Hongjam markedly reduced the tumor incidence, the size, and the histological lesions compared to the DEN/TAA group. Serum biochemical analysis revealed reduction in liver damage markers, including alkaline phosphatase, alanine aminotransferase, aspartate aminotransferase, and total bilirubin, with a notable decrease in total bilirubin surpassing. Immunohistochemical and Western blot analyses demonstrated that Hongjam downregulated expression of proliferation markers, including Ki67, phosphorylation of protein kinase B, and proliferating cell nuclear antigen, while upregulating the pro-apoptotic protein Bcl-2-associated X protein, indicating its dual role in suppressing proliferation and promoting apoptosis. Furthermore, Hongjam inhibited angiogenesis by suppressing the expression of key markers, including interleukin 6, VEGF, hypoxia-inducible factor-1 subunit alpha, platelet-derived growth factor subunit beta, matrix metalloproteinase-2, and cluster of differentiation 31, thereby disrupting the tumor microenvironment. These findings suggest that Hongjam exerts multifaceted protective effects against HCC by targeting proliferation, apoptosis, and angiogenesis pathways, while also mitigating liver damage. This study highlights the potential of Hongjam as a functional food or a complementary therapeutic agent for HCC prevention and management.
Collapse
Affiliation(s)
- Young-Min Han
- College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Seongnam, Korea
| | - Hye-Rin Ahn
- College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Seongnam, Korea
| | - Da-Young Lee
- College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Seongnam, Korea
| | - Moon-Young Song
- College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Seongnam, Korea
| | - Seung-Won Lee
- College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Seongnam, Korea
| | | | | | - Eun-Hee Kim
- College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Seongnam, Korea
| |
Collapse
|
6
|
Ezzat RS, Abdel-Moneim A, Zoheir KMA, Mohamed EE, Abou-Seif HS, Hefnawy M, Ahmed OM. Anti-carcinogenic effects and mechanisms of actions of Citrus limon fruit peel hydroethanolic extract and limonene in diethylnitrosmine/2-acetylaminofluorene-induced hepatocellular carcinoma in Wistar rats. Am J Cancer Res 2024; 14:5193-5215. [PMID: 39659918 PMCID: PMC11626260 DOI: 10.62347/foyi6658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 11/01/2024] [Indexed: 12/12/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is the third most common cause of cancer death and disability in the world. Citrus species and their constituents have many biological activities including antioxidant, anti-inflammatory and anti-carcinogenic properties. This study aimed to assess the anti-carcinogenic effects and postulate the possible mechanisms of action for Citrus limon fruit peel hydroethanolic extract (CLFPHE) and limonene in diethylnitrosamine (DEN)/2-acetylaminofluorene (2AAF)-induced HCC in male Wistar rats. For analysis and characterization of CLFPHE, gas chromatography-mass spectrum (GC-MS) and high performance liquid chromatography (HPLC) methods were applied. A HCC was elaborated by DEN intraperitoneal injection (150 mg/kg/week) for two weeks followed by oral delivery of 2AAF (20 mg/kg) four times a week for three weeks. The DEN/2AAF-administered rats were treated with CLFPHE (50 mg/kg) and limonene (20 mg/kg) by oral gavage every other day for 24 weeks. CLFPHE and limonene significantly attenuated the harmful effects of DEN on liver function. Histopathological analysis confirmed that both treatments inhibited DEN/2AAF-induced tumorigenesis in association with the suppression of serum tumor markers including AFP, CEA, and CA19.9 and liver proliferator indicator (Ki-67). Moreover, CLFPHE and limonene prevented the oxidative stress and enhanced the antioxidant defenses in DEN/2AAF-administered rats. These ameliorations were manifested by decreases in liver lipid peroxidation, increases in GSH, SOD and GPx levels and upregulation of Nrf2. The treatments also abated inflammation by suppressing TNF-α and IL-1β levels and IL-8 and NF-κB expression. CLFPHE and limonene substantially decreased hepatic BCL-2, IQGAP1, IQGAP3, HRAS, KRAS and Ki-67 while they elevated BAX, P53, PDCD5 and IQGAP2 expressions. Our findings suggest that CLFPHE and limonene may abate HCC development via enhancement of apoptotic, antioxidant, cell anti-proliferatory and anti-inflammatory effects.
Collapse
Affiliation(s)
- Rania S Ezzat
- Physiology Division, Faculty of Science, Beni-Suef UniversityP.O. Box 62521, Beni-Suef, Egypt
| | - Adel Abdel-Moneim
- Physiology Division, Faculty of Science, Beni-Suef UniversityP.O. Box 62521, Beni-Suef, Egypt
| | - Khairy MA Zoheir
- Department of Cell Biology, Biotechnology Research Institute, National Research CentreCairo 12622, Egypt
| | - Eman E Mohamed
- Physiology Division, Faculty of Science, Beni-Suef UniversityP.O. Box 62521, Beni-Suef, Egypt
| | - Howida S Abou-Seif
- Department of Medical Physiology, Medical Research and Clinical Studies Institute, National Research CentreCairo 12622, Egypt
| | - Mohamed Hefnawy
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud UniversityRiyadh 11451, Saudi Arabia
| | - Osama M Ahmed
- Physiology Division, Faculty of Science, Beni-Suef UniversityP.O. Box 62521, Beni-Suef, Egypt
| |
Collapse
|
7
|
Mohammed OA, Youssef ME, Hamad RS, Abdel-Reheim MA, Saleh LA, Alamri MMS, Alharthi MH, Alfaifi J, Adam MIE, Eleragi AMS, Senbel A, Farrag AA, Rezigalla AA, El-wakeel HS, Attia MA, El-Husseiny HM, AL-Noshokaty TM, Doghish AS, Gaafar AGA, Saber S. Unlocking vinpocetine's oncostatic potential in early-stage hepatocellular carcinoma: A new approach to oncogenic modulation by a nootropic drug. PLoS One 2024; 19:e0312572. [PMID: 39480853 PMCID: PMC11527275 DOI: 10.1371/journal.pone.0312572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 10/04/2024] [Indexed: 11/02/2024] Open
Abstract
The development of new drugs for the inhibition of hepatocellular carcinoma (HCC) development and progression is a critical and urgent need. The median survival rate for HCC patients remains disappointingly low. Vinpocetine is a safe nootropic agent that is often used to enhance cognitive function. The impact of vinpocetine on HCC development and progression has not been fully explored. Our main objective was to investigate the possible inhibitory role of vinpocetine in rats exposed to diethylnitrosamine. We observed that vinpocetine increased the survival rate of these rats and improved the ultrastructure of their livers. Additionally, vinpocetine reduced the liver weight index, mitigated liver oxidative stress, and improved liver function. In both in vitro and in vivo settings, vinpocetine demonstrated antiproliferative and apoptotic properties. It downregulated the expression of CCND1 and Ki-67 while exhibiting anti-BCL-2 effects and enhancing the levels of Bax and cleaved caspase-3. Vinpocetine also successfully deactivated NF-κB, STAT3, and HIF-1α, along with their associated transcription proteins, thereby exerting anti-inflammatory and anti-angiogenic role. Furthermore, vinpocetine showed promise in reducing the levels of ICAM-1 and TGF-β1 indicating its potential role in tissue remodeling. These findings strongly suggest that vinpocetine holds promise as a hepatoprotective agent by targeting a range of oncogenic proteins simultaneously. However, further approaches are needed to validate and establish causal links between our observed effects allowing for a more in-depth exploration of the mechanisms underlying vinpocetine's effects and identifying pivotal determinants of outcomes.
Collapse
Affiliation(s)
- Osama A. Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, Bisha, Saudi Arabia
| | - Mahmoud E. Youssef
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| | - Rabab S. Hamad
- Biological Sciences Department, College of Science, King Faisal University, Al Ahsa, Saudi Arabia
- Central Laboratory, Theodor Bilharz Research Institute, Giza, Egypt
| | - Mustafa Ahmed Abdel-Reheim
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra, Saudi Arabia
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni Suef, Egypt
| | - Lobna A. Saleh
- Department of Clinical Pharmacology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
- Department of Pharmacology and Toxicology, College of Pharmacy, Taif University, Taif, Saudi Arabia
| | | | - Muffarah Hamid Alharthi
- Department of Family and Community Medicine, College of Medicine, University of Bisha, Bisha, Saudi Arabia
| | - Jaber Alfaifi
- Department of Child Health, College of Medicine, University of Bisha, Bisha, Saudi Arabia
| | - Masoud I. E. Adam
- Department of Medical Education and Internal Medicine, College of Medicine, University of Bisha, Bisha, Saudi Arabia
| | - Ali M. S. Eleragi
- Department of Microorganisms and Clinical Parasitology, College of Medicine, University of Bisha, Bisha, Saudi Arabia
| | - Ahmed Senbel
- Department of Surgical Oncology, Oncology Center, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Alshaimaa A. Farrag
- Department of Histology and Cell Biology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Assad Ali Rezigalla
- Department of Anatomy, College of Medicine, University of Bisha, Bisha, Saudi Arabia
| | - Hend S. El-wakeel
- Physiology Department, Benha Faculty of Medicine, Benha University, Qalubyia, Egypt
- Physiology Department, Al-Baha Faculty of Medicine, Al-Baha University, Al-Baha, Saudi Arabia
| | - Mohammed A. Attia
- Department of Clinical Pharmacology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, Riyadh, Saudi Arabia
| | - Hussein M. El-Husseiny
- Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
- Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Benha University, Benha, Egypt
| | | | - Ahmed S. Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo, Cairo, Egypt
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Ahmed Gaafar Ahmed Gaafar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Port Said University, Port Said, Egypt
| | - Sameh Saber
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| |
Collapse
|
8
|
Zhao A, Liu X, Chen X, Na S, Wang H, Peng X, Kong P, Li L. Aqueous Extract of Rhubarb Promotes Hepatotoxicity via Facilitating PKM2-Mediated Aerobic Glycolysis in a Rat Model of Diethylnitrosamine-Induced Liver Cancer. Drug Des Devel Ther 2024; 18:4497-4510. [PMID: 39403095 PMCID: PMC11471889 DOI: 10.2147/dddt.s476273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 09/21/2024] [Indexed: 10/19/2024] Open
Abstract
Objective To identify the polar parts in Rhubarb that cause hepatotoxicity and explore the underlying mechanisms. Methods The rat model of liver cancer was established by gavage of diethylnitrosamine (DEN; 0.002 g/rat) for 14 weeks. Starting from the 11th week, Rhubarb granule (4 g/kg), aqueous, ethyl acetate and n-butanol extract of Rhubarb or Rhein equivalent to a dose of 4 g/kg Rhubarb granule were administered intragastrically for 4 consecutive weeks. Liver tissues from rats treated with DEN and Rhubarb granules were used for non-targeted metabolomics analysis. The correlation between pyruvate kinase isozyme type M2 (PKM2) expression level and the progress and prognosis of hepatocellular carcinoma (HCC) was evaluated through bioinformatics analysis based on TCGA database. Liver tissues and blood samples from rats treated with DEN and aqueous, ethyl acetate and n-butanol extract of Rhubarb were used for the screening of hepatotoxic polar parts of Rhubarb. The liver injuries were evaluated by the changes in pathology, liver function, and the expression levels of proliferating cell nuclear antigen (PCNA) and transforming growth factor beta1 (TGF-β1). The mechanism studies focus on PKM2 expression, and the metabolic reprogramming via detecting the activities of lactate dehydrogenase A (LDHA) and isocitrate dehydrogenase (ICDH). Furthermore, molecular docking analysis was performed to validate the target interaction between Rhein and PKM2, and the hepatotoxicity of Rhein was evaluated by testing liver function in the DEN-induced liver cancer model. Results The non-targeted metabolomics analysis revealed that Rhubarb promoted aerobic glycolysis in the rat model of DEN-induced liver cancer. And bioinformatics analysis revealed that high PKM2 expression was closely related to the progression and poor prognosis of HCC. In vivo studies indicated that the aqueous extract of Rhubarb, but not ethyl acetate and n-butanol extract, promoted the liver injuries induced by DEN. The mechanism study showed that the aqueous extract of Rhubarb increased the expression of PKM2 and promoted aerobic glycolysis. Moreover, Rhein had a strong binding affinity for PKM2 and aggravated liver injury in the DEN-induced liver cancer model. Conclusion Aqueous extract of Rhubarb promoted hepatotoxicity via facilitating PKM2-mediated aerobic glycolysis in the rat model of DEN-induced liver cancer.
Collapse
Affiliation(s)
- Anni Zhao
- Department of Biochemistry and Molecular Biology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, People’s Republic of China
| | - Xiaomei Liu
- Department of Biochemistry and Molecular Biology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, People’s Republic of China
| | - Xiping Chen
- Department of Biochemistry and Molecular Biology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, People’s Republic of China
| | - Sha Na
- Department of Biochemistry and Molecular Biology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, People’s Republic of China
| | - Hui Wang
- Department of Biochemistry and Molecular Biology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, People’s Republic of China
| | - Xuan Peng
- Department of Biochemistry and Molecular Biology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, People’s Republic of China
| | - Peizhong Kong
- Department of Biochemistry and Molecular Biology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, People’s Republic of China
| | - Lu Li
- Department of Biochemistry and Molecular Biology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, People’s Republic of China
- Institute of Integrated Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, 230012, People’s Republic of China
| |
Collapse
|
9
|
Luo T, Tan X, Qing G, Yu J, Liang XJ, Liang P. A natural killer T cell nanoagonist-initiated immune cascade for hepatocellular carcinoma synergistic immunotherapy. NANOSCALE 2024; 16:11126-11137. [PMID: 38787697 DOI: 10.1039/d4nr00847b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
Natural killer T (NKT) cell-mediated immunotherapy shows great promise in hepatocellular carcinoma featuring an inherent immunosuppressive microenvironment. However, targeted delivery of NKT cell agonists remains challenging. Here, we developed a hyaluronic acid (HA) modified metal organic framework (zeolitic imidazolate framework-8, ZIF-8) to encapsulate α-galactosylceramide (α-Galcer), a classic NKT cell agonist, and doxorubicin (DOX) for eliminating liver cancer, denoted as α-Galcer/DOX@ZIF-8@HA. In the tumor microenvironment (TME), these pH-responsive nano-frameworks can gradually collapse to release α-Galcer for activating NKT cells and further boosting other immune cells in order to initiate an antitumor immune cascade. Along with DOX, the released α-Galcer enabled efficient NKT cell activation in TME for synergistic immunotherapy and tumor elimination, leading to evident tumor suppression and prolonged animal survival in both subcutaneous and orthotopic liver tumor models. Manipulating NKT cell agonists into functional nano-frameworks in TME may be matched with other advanced managements applied in a wider range of cancer therapies.
Collapse
Affiliation(s)
- Ting Luo
- School of Medicine, Nankai University, Tianjin, 300071, China.
- Department of Interventional Ultrasound, Fifth Medical Center of Chinese People's Liberation Army General Hospital, Beijing, 100853, China.
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China.
| | - Xiaoqiong Tan
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China.
| | - Guangchao Qing
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China.
| | - Jie Yu
- Department of Interventional Ultrasound, Fifth Medical Center of Chinese People's Liberation Army General Hospital, Beijing, 100853, China.
| | - Xing-Jie Liang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ping Liang
- School of Medicine, Nankai University, Tianjin, 300071, China.
- Department of Interventional Ultrasound, Fifth Medical Center of Chinese People's Liberation Army General Hospital, Beijing, 100853, China.
| |
Collapse
|
10
|
Abdul-Azeez ZM, Mutlag SH. Possible protective anticancer effect of chloroform fraction of Iraqi Hibiscus tiliaceus L. leaves extract on diethylnitrosamine-induced hepatocarcinogenesis in male rats. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2024; 21:167-174. [PMID: 38236421 DOI: 10.1515/jcim-2023-0290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 12/18/2023] [Indexed: 01/19/2024]
Abstract
OBJECTIVES We aimed to examine the potential protective effects of Iraqi H. tiliaceus L. chloroform leaves extract on DEN-induced HCC in male Wistar Albino rats. METHODS Rats were assigned to four groups, six in each group. Group I: rats were administered a daily oral dose of 1 mL/kg/day of distilled water. Group II: rats were intraperitoneally injected with 70 mg/kg DEN once per week for 10 consecutive weeks. Group III: rats received 250 mg/kg of chloroform leaves extract. Groups IV: the rats were administered 500 mg/kg of chloroform leaves extract, along with their food, for five days per week over 20 weeks, with a subsequent dose of DEN once per week for 10 consecutive weeks. RESULTS The results indicate that the extract demonstrated a significant reduction (p<0.05) in oxidative stress, pro-inflammatory mediators, and HCC parameters, the extract also had a beneficial effect on liver function tests, and there was a significant elevation (p<0.05) of antioxidant parameters in a dose-dependent manner. CONCLUSIONS This study supports the protective properties of the chloroform extract of Iraqi H. tiliaceus L. leaves in HCC.
Collapse
Affiliation(s)
| | - Shihab Hattab Mutlag
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Baghdad, Baghdad, Iraq
| |
Collapse
|
11
|
Yang X, Liang C, Shao L, Cui W, Ning R, Ke F, Wang Y, Gao P, Yin Y, Li Q. Sophora flavescens- Astragalus mongholicus herb pair in the progression of hepatitis, cirrhosis, and hepatocellular carcinoma: a possible mechanisms and relevant therapeutic substances. Front Pharmacol 2024; 15:1284752. [PMID: 38860166 PMCID: PMC11163057 DOI: 10.3389/fphar.2024.1284752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 05/07/2024] [Indexed: 06/12/2024] Open
Abstract
Background Both Sophora flavescens (SF) and Astragalus mongholicus (AM) are known for their anti-inflammatory, antifibrotic, and anticancer activities. However, the efficacy, multi-target mechanisms, and therapeutic substances of SF-AM herb pair on the progression of hepatitis-cirrhosis-hepatocellular carcinoma hepatocellular carcinoma (HCC) remain unclear. Purpose To investigate the efficacy, mechanisms, and potential therapeutic substances of SF-AM herb pair in the progression of hepatitis-cirrhosis-HCC. Methods Firstly, diethylnitrosamine was used to establish the hepatitis-cirrhosis-HCC model. HE staining and non-targeted metabolomics were used to evaluate the efficacy of SF-AM herb pair. Subsequently, the absorbed components of SF-AM herb pair in the plasma of rats were determined through HPLC-Q-TOF-MS/MS analysis. Flow cytometry, Western blot, and qRT-PCR were then employed to assess CD4+ and CD8+ T lymphocytes, PI3K/Akt signaling pathway-related proteins, and their corresponding mRNAs. Simultaneously, the efficacy and mechanism of SF-AM herb pair on HCC were confirmed by in vitro experiments. Finally, Pearson correlation analysis was performed between pharmacodynamic indicators and in vivo components to identify the potential therapeutic substances of SF-AM herb pair. Results SF-AM herb pair can alleviate the pathological damage and reverse metabolic abnormalities in hepatitis, cirrhosis, and HCC rats, particularly during the hepatitis and cirrhosis stages. Pharmacological researches have demonstrated that SF-AM herb pair can increase the proportion of CD8+ T lymphocytes, inhibit the expression of PI3K, Akt, p-Akt, NF-κB p65, NF-κB pp65, and Bcl-2, as well as increase the expression of IκBα, Bax, and cleaved caspase-3. These findings suggest that SF-AM herb pair has the ability to enhance immunity, anti-inflammation and promote apoptosis. Cell experiments have shown that SF-AM herb pair can inhibit the proliferation of HepG2 cell and regulate the PI3K/Akt signaling pathway. Moreover, 23 absorbed prototypical components and 53 metabolites of SF-AM herb pair were identified at different stages of HCC rats. Pearson correlation analysis revealed that matrine, cytisine, wogonoside, and isoastragaloside are potential therapeutic substances in SF-AM herb pair for the prevention and treatment of hepatitis, cirrhosis, and HCC. Conclusion In summary, this study revealed the efficacy, mechanisms, and potential therapeutic substances of SF-AM herb pair in the hepatitis-cirrhosis-HCC axis and provided a reference for its clinical application.
Collapse
Affiliation(s)
- Xiao Yang
- National and Local Joint Engineering Laboratory for Key Technology of Chinese Material Medica Quality Control, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Chen Liang
- National and Local Joint Engineering Laboratory for Key Technology of Chinese Material Medica Quality Control, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Li Shao
- National and Local Joint Engineering Laboratory for Key Technology of Chinese Material Medica Quality Control, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Wenxuan Cui
- National and Local Joint Engineering Laboratory for Key Technology of Chinese Material Medica Quality Control, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Ruobing Ning
- National and Local Joint Engineering Laboratory for Key Technology of Chinese Material Medica Quality Control, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Fan Ke
- National and Local Joint Engineering Laboratory for Key Technology of Chinese Material Medica Quality Control, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Yue Wang
- National and Local Joint Engineering Laboratory for Key Technology of Chinese Material Medica Quality Control, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Peng Gao
- Metabolomics Core Facility of RHLCCC, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Yidi Yin
- National and Local Joint Engineering Laboratory for Key Technology of Chinese Material Medica Quality Control, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Qing Li
- National and Local Joint Engineering Laboratory for Key Technology of Chinese Material Medica Quality Control, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
12
|
Said YA, Hammad SF, Halim MI, El-Moneim AA, Osman A. Assessment of the therapeutic potential of a novel phosphoramidate acyclic nucleoside on induced hepatocellular carcinoma in rat model. Life Sci 2024:122669. [PMID: 38677390 DOI: 10.1016/j.lfs.2024.122669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/11/2024] [Accepted: 04/23/2024] [Indexed: 04/29/2024]
Abstract
AIMS Hepatocellular Carcinoma (HCC) is renowned as a deadly primary cancer of hepatic origin. Sorafenib is the drug-of-choice for targeted treatment of unresectable end-stage HCC. Unfortunately, great proportion of HCC patients showed intolerance or unresponsiveness to treatment. This study assesses potency of novel ProTide; SH-PAN-19 against N-Nitrosodiethylamine (DEN)-induced HCC in male Wistar rats, compared to Sorafenib. MAIN METHODS Structural entity of the synthesized compound was substantiated via FT-IR, UV-Vis, 1H NMR and 13C NMR spectroscopic analysis. In vitro, SH-PAN-19 cytotoxicity was tested against 3 human cell lines; hepatocellular carcinoma; HepG-2, colorectal carcinoma; HCT-116 and normal fibroblasts; MRC-5. In vivo, therapeutic efficacy of SH-PAN-19 (300 mg/kg b.w./day) against HCC could be revealed and compared to that of Sorafenib (15 mg/kg b.w./day) by evaluating the morphometric, biochemical, histopathological, immunohistochemical and molecular key markers. KEY FINDINGS SH-PAN-19 was relatively safe toward MRC-5 cells (IC50 = 307.6 μg/mL), highly cytotoxic to HepG-2 cells (IC50 = 24.9 μg/mL) and prominently hepato-selective (TSI = 12.35). Oral LD50 of SH-PAN-19 was >3000 mg/kg b.w. DEN-injected rats suffered hepatomegaly, oxidative stress, elevated liver enzymes, hypoalbuminemia, bilirubinemia and skyrocketed AFP plasma titre. SH-PAN-19 alleviated the DEN-induced alterations in apoptotic, angiogenic and inflammatory markers. SH-PAN-19 produced a 2.5-folds increase in Caspase-9 and downregulated VEGFR-2, IL-6, TNF-α, TGFβ-1, MMP-9 and CcnD-1 to levels comparable to that elicited by Sorafenib. SH-PAN-19 resulted in near-complete pathological response versus partial response achieved by Sorafenib. SIGNIFICANCE This research illustrated that SH-PAN-19 is a promising chemotherapeutic agent capable of restoring cellular plasticity and could stop HCC progression.
Collapse
Affiliation(s)
- Youssef A Said
- Biotechnology Program, Basic and Applied Sciences Institute, Egypt-Japan University of Science and Technology (E-JUST), 21934 New Borg El-Arab City, Alexandria, Egypt; Biochemistry Department, Faculty of Science, Ain Shams University, 11566 Cairo, Egypt.
| | - Sherif F Hammad
- Medicinal Chemistry Department, PharmD Program, Egypt-Japan University of Science and Technology (E-JUST), 21934 New Borg El-Arab City, Alexandria, Egypt; Pharmaceutical Chemistry Department, Faculty of Pharmacy, Helwan University, 11795 Cairo, Egypt
| | - Mariam I Halim
- Pathology Department, Faculty of Medicine, Ain Shams University, 11566 Cairo, Egypt
| | - Ahmed Abd El-Moneim
- Graphene Center of Excellence, Egypt-Japan University of Science and Technology (E-JUST), 21934 New Borg El-Arab City, Alexandria, Egypt; Physical Chemistry Department, National Research Centre (NRC), 12622 Cairo, Egypt
| | - Ahmed Osman
- Biotechnology Program, Basic and Applied Sciences Institute, Egypt-Japan University of Science and Technology (E-JUST), 21934 New Borg El-Arab City, Alexandria, Egypt; Biochemistry Department, Faculty of Science, Ain Shams University, 11566 Cairo, Egypt
| |
Collapse
|
13
|
Hu Z, Kurihara T, Sun Y, Cetin Z, Florentino RM, Faccioli LAP, Liu Z, Yang B, Ostrowska A, Soto-Gutierrez A, Delgado ER. A rat model of cirrhosis with well-differentiated hepatocellular carcinoma induced by thioacetamide. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.18.590120. [PMID: 38712079 PMCID: PMC11071316 DOI: 10.1101/2024.04.18.590120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Hepatocellular carcinoma (HCC) is a leading cause of cancer-related deaths, and commonly associated with hepatic fibrosis or cirrhosis. This study aims to establish a rat model mimicking the progression from liver fibrosis to cirrhosis and subsequently to HCC using thioacetamide (TAA). We utilized male Lewis rats, treating them with intra-peritoneal injections of TAA. These rats received bi-weekly injections of either 200 mg/kg TAA or saline (as a control) over a period of 34 weeks. The development of cirrhosis and hepatocarcinogenesis was monitored through histopathological examinations, biochemical markers, and immunohistochemical analyses. Our results demonstrated that chronic TAA administration induced cirrhosis and well-differentiated HCC, characterized by increased fibrosis, altered liver architecture, and enhanced hepatocyte proliferation. Biochemical analyses revealed significant alterations in liver function markers, including elevated alpha-fetoprotein (AFP) levels, without affecting kidney function or causing significant weight loss or mortality in rats. This TAA-induced cirrhosis and HCC rat model successfully replicates the clinical progression of human HCC, including liver function impairment and early-stage liver cancer characteristics. It presents a valuable tool for future research on the mechanisms of antitumor drugs in tumor initiation and development.
Collapse
|
14
|
Pal S, Kabeer SW, Sharma S, Tikoo K. l-Methionine potentiates anticancer activity of Sorafenib by epigenetically altering DUSP3/ERK pathway in hepatocellular carcinoma. J Biochem Mol Toxicol 2024; 38:e23663. [PMID: 38367245 DOI: 10.1002/jbt.23663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/29/2023] [Accepted: 02/01/2024] [Indexed: 02/19/2024]
Abstract
Hepatocellular carcinoma (HCC) is the third most common cancer-related cause of death worldwide. Although Sorafenib is the standard systemic therapy for treating HCC, but it develops resistance very quickly, leading to poor prognosis. The current study was planned to explore the effect of l-methionine on the anticancer activity of Sorafenib in HCC. Ten millimolar of l-methionine treatment significantly reduced the IC50 of Sorafenib from 5.513 ± 0.171 to 0.8095 ± 0.0465 µM in HepG2 cell line. It also resulted in concomitant increase in oxidative stress and deactivation of ERK/AMPK/AKT pathway. Additionally, it also resulted in the increased expression of dual specificity phosphatase 3 (DUSP3). In a rat model of sorafenib-resistant HCC induced by diethylnitrosamine (DEN) (100 mg/L/day) and Sorafenib (10 mg/kg), l-methionine (300 and 500 mg/kg/day) supplementation overcame the drug resistance, as indicated by the reduced formation of surface tumor nodules, prevention of cellular hypertrophy, hyperplasia and inflammation, and improved animal survival. Furthermore, l-methionine in combination with Sorafenib also inhibited AMPK/AKT and ERK pathway. At chromatin level, l-methionine supplementation prevented global methylation of H3K27me3, an inactivation mark, and demethylation of H3K36me2, an activation mark. Interestingly, our findings suggest that inhibition of the ERK pathway via increased activity of DUSP3 is epigenetically regulated. Besides, chromatin immunoprecipitation data exhibited augmented H3K36me2 (an activation mark) levels on the DUSP3 promoter region. To the best of our knowledge, we are the first to report that l-methionine supplementation improves the chemosensitivity in Sorafenib-resistant HCC via modulating the epigenetic landscape and can be a potential therapeutic strategy.
Collapse
Affiliation(s)
- Swagata Pal
- Laboratory of Epigenetics and Diseases, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar (Mohali), Punjab, India
| | - Shaheen Wasil Kabeer
- Laboratory of Epigenetics and Diseases, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar (Mohali), Punjab, India
| | - Shivam Sharma
- Laboratory of Epigenetics and Diseases, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar (Mohali), Punjab, India
| | - Kulbhushan Tikoo
- Laboratory of Epigenetics and Diseases, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar (Mohali), Punjab, India
| |
Collapse
|
15
|
Mou JY, Ma ZW, Zhang MY, Yuan Q, Wang ZY, Liu QH, Li F, Liu Z, Wang L. Structural abnormality of hepatic glycogen in rat liver with diethylnitrosamine-induced carcinogenic injury. Int J Biol Macromol 2024; 260:129432. [PMID: 38228208 DOI: 10.1016/j.ijbiomac.2024.129432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 01/01/2024] [Accepted: 01/09/2024] [Indexed: 01/18/2024]
Abstract
Growing evidence confirms associations between glycogen metabolic re-wiring and the development of liver cancer. Previous studies showed that glycogen structure changes abnormally in liver diseases such as cystic fibrosis, diabetes, etc. However, few studies focus on glycogen molecular structural characteristics during liver cancer development, which is worthy of further exploration. In this study, a rat model with carcinogenic liver injury induced by diethylnitrosamine (DEN) was successfully constructed, and hepatic glycogen structure was characterized. Compared with glycogen structure in the healthy rat liver, glycogen chain length distribution (CLD) shifts towards a short region. In contrast, glycogen particles were mainly present in small-sized β particles in DEN-damaged carcinogenic rat liver. Comparative transcriptomic analysis revealed significant expression changes of genes and pathways involved in carcinogenic liver injury. A combination of transcriptomic analysis, RT-qPCR, and western blot showed that the two genes, Gsy1 encoding glycogen synthase and Gbe1 encoding glycogen branching enzyme, were significantly altered and might be responsible for the structural abnormality of hepatic glycogen in carcinogenic liver injury. Taken together, this study confirmed that carcinogenic liver injury led to structural abnormality of hepatic glycogen, which provided clues to the future development of novel drug targets for potential therapeutics of carcinogenic liver injury.
Collapse
Affiliation(s)
- Jing-Yi Mou
- Department of Clinical Medicine, School of 1(st) Clinical Medicine, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Zhang-Wen Ma
- Department of Pharmaceutical Analysis, School of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Meng-Ying Zhang
- School of Medical Informatics and Engineering, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Quan Yuan
- School of Medical Informatics and Engineering, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Zi-Yi Wang
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Qing-Hua Liu
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macau SAR, China
| | - Fen Li
- Laboratory Medicine, The Fifth People's Hospital of Huai'an, Huai'an, Jiangsu Province, China
| | - Zhao Liu
- Department of Clinical Medicine, School of 1(st) Clinical Medicine, Xuzhou Medical University, Xuzhou, Jiangsu Province, China; Department of Thyroid and Breast Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.
| | - Liang Wang
- School of Medical Informatics and Engineering, Xuzhou Medical University, Xuzhou, Jiangsu Province, China; Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province, China; School of Agriculture and Food Sciences, The University of Queensland, Brisbane, Queensland, Australia.
| |
Collapse
|
16
|
Wang M, Gao Y, Liu X, Li Z, Xiao J, Gao X, Gibson MI, Guo Q. Cirrhotic hepatocellular carcinoma-based decellularized liver cancer model for local chemoembolization evaluation. Acta Biomater 2024; 176:144-155. [PMID: 38244660 DOI: 10.1016/j.actbio.2024.01.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/02/2024] [Accepted: 01/15/2024] [Indexed: 01/22/2024]
Abstract
Transarterial chemoembolization (TACE) is a common treatment for unresectable intermediate stage hepatocellular carcinoma (HCC) and involves the combination of chemotherapy agents and embolic materials to target and block the blood supply to the tumor, leading to localized treatment. However, the selection of clinical chemoembolization agents remains limited, and the effectiveness of various agents is still under investigation. Meanwhile, replicating the complex vasculature and extracellular matrix (ECM) circumstances of HCC in in vitro models for evaluating embolic agents proves to be challenging. Herein, we developed a decellularized cancerous liver model with translucent appearance, a complicated hepatic vascular system and tissue-specific ECM for the evaluation of embolic agents. Inkpad oil and microparticles were used to illustrate different systems of vascular structures between healthy and HCC rats' livers. Quantitative analysis with AngioTool revealed significant differences in vessel density and lacunarity between the two groups. Proteomics showed higher secretion of collagens in the HCC rat liver models than in healthy livers. Utilizing this in vitro model, we investigated the impact of tumor-specific vascular structure and ECM composition on chemoembolization performance, the two key factors inaccessible by currently available drug release testing platforms. Our findings revealed that the presence of an aberrant vascular system and the distorted ECM within the model led to drug retention. This preclinical model holds great promise as a valuable tool for evaluating embolic agents and studying their performance in the tumor microenvironment. STATEMENT OF SIGNIFICANCE: Transarterial chemoembolization (TACE), which employs drug-eluting embolic agents to obstruct the tumor-feeding vessels while locally releasing chemotherapeutic drugs into the tumor, has become the first-line treatment of unresectable liver cancer over past two decades. Nevertheless, the advancement of effective drug-eluting embolic agents has been retarded due to the lack of appropriate in vitro models for assessing the local embolization and chemotherapy performances in TACE. Here we developed a cirrhotic hepatocellular carcinoma-based decellularized liver cancer model, which preserves the aberrant vasculatures and tumor-specific extracellular matrix of liver cancer, for TACE evaluation. This model incorporates a blood flow simulation component to assess the dynamics of drug release behaviors of chemoembolic agents within tumor-mimicking conditions, more accurately replicating the in vivo environment for the locoregional assessments as compared to conventional in vitro models.
Collapse
Affiliation(s)
- Meijuan Wang
- Department of Biomedical Engineering, Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Yanan Gao
- Department of Biomedical Engineering, Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China; Department of Chemistry and Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
| | - Xiaoya Liu
- Department of Biomedical Engineering, Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Zhihua Li
- Department of Biomedical Engineering, Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Jingyu Xiao
- Department of Biomedical Engineering, Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Xu Gao
- Department of Biomedical Engineering, Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Matthew I Gibson
- Department of Chemistry and Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK; Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, UK; Manchester Institute of Biotechnology, University of Manchester, 131 Princess St, Manchester M1 7DN, UK
| | - Qiongyu Guo
- Department of Biomedical Engineering, Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China.
| |
Collapse
|
17
|
Chen C, Wu H, Fu X, Li R, Cheng H, Wang M, Zhou A, Zhang M, Li Q. A UPLC-QTOF/MS-based hepatic tissue metabolomics approach deciphers the mechanism of Huachansu tablets-based intervention against hepatocellular carcinoma. J Pharm Biomed Anal 2024; 239:115875. [PMID: 38061172 DOI: 10.1016/j.jpba.2023.115875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/13/2023] [Accepted: 11/23/2023] [Indexed: 01/05/2024]
Abstract
Huachansu (HCS) tablets, classified as well-known traditional Chinese medicine (TCM) preparation, have been proved to be effective in the treatment of hepatocellular carcinoma (HCC) in clinical studies. However, the underlying mechanism of HCS tablets against HCC has not been comprehensively elucidated. In this study, a rat model of HCC was established with diethylnitrosamine (DEN) inducer. The efficacy of HCS tablets against HCC was assessed through liver histopathological examination and evaluation of biochemical indicators. A metabolomics method based on UPLC-Q-TOF/MS combined with multivariate data analysis was established to identify differential metabolites related to the inhibition effect of HCS tablets on HCC, and then the relevant metabolic pathway analysis was performed to investigate the anti-HCC mechanisms of HCS tablets. The results showed that compared to the control group, the HCC model group showed a significant increase in the values of HCC-related biochemical indicators and the number of tumor nodules, indicating the successful establishment of the HCC rat model. Upon treatment with HCS tablets, the values of HCC-related biochemical indicators decreased, liver fibrosis and nuclear deformation were also significantly alleviated. A total of 15 differential metabolites associated with the anti-tumor effect of HCS tablets on HCC were screened and annotated through hepatic tissue metabolomics studies. Analysis of metabolic pathways revealed that the therapeutic effects of HCS tablets on HCC mainly involved the pentose and glucuronate interconversions and arachidonic acid metabolism. Further western blotting corroborated that the alteration in arachidonic acid (AA) level after the intervention of HCS tablets was related to the inhibition of cPLA2α expression in rat liver tissues. In conclusion, HCS tablets exhibit a certain anti-tumor effect on HCC, and the metabolomics method based on UPLC-Q-TOF/MS combined with further verification at the biochemical level is a promising way to reveal its underlying mechanism.
Collapse
Affiliation(s)
- Chang Chen
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei 230038, China
| | - Huan Wu
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei 230038, China; Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Hefei 230012, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei 230012, China.
| | - Xiaojie Fu
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei 230038, China
| | - Ruijuan Li
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei 230038, China
| | - Hui Cheng
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei 230038, China
| | - Meng Wang
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei 230038, China
| | - An Zhou
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei 230038, China
| | - Mei Zhang
- Oncology Department of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Qinglin Li
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei 230038, China.
| |
Collapse
|
18
|
Lin R, Xie S, Xu F, Chen Z, Liu J, Liu X. Improvement of rat hepatocellular carcinoma model induced by diethylnitrosamine. Tissue Cell 2024; 86:102261. [PMID: 37951061 DOI: 10.1016/j.tice.2023.102261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/18/2023] [Accepted: 11/02/2023] [Indexed: 11/13/2023]
Abstract
OBJECTIVE To construct a new diethylnitrosamine (DEN)-induced rat hepatocellular carcinoma (HCC) model with short induction time, high incidence, and survival rate. METHODS 60 male Sprague-Dawley rats were randomly divided into 4 groups: the control group, the model A (MA) group, the model B (MB) group, and the model C (MC) group. The control group was intraperitoneally injected with 0.9% saline for 6 weeks. The MA group was injected with the DEN solution at 30 mg/kg three times a week for 6 weeks. The MB group was injected with the DEN solution at 30 mg/kg three times a week for 6 weeks, and discontinued the induction for 2 weeks. The MC group was injected with the DEN solution at 30 mg/kg three times a week for 8 weeks. The levels of albumin (ALB), alanine transaminase (ALT), and aspartate aminotransferase (AST) in serum were assayed. Meanwhile, the pathological conditions, apoptosis of hepatocytes, expression of NF-κBp65, and the reactive oxygen species level were detected. RESULTS All rats in the control group and the MA group survived, and none of the rats occurred HCC. HCC occurred in rats of the MB group and the MC group. The serum ALB level in the MB group was higher than that in the MC group. The serum ALT and AST levels and the number of proliferating and apoptotic hepatocyte cells in the MB group were lower than those in the MC group. The expression of ROS- and NF-κBp6- positive cells in the MA group, MB group, and MC group were significantly higher than that of the control group. CONCLUSION This study developed a new DEN-induced rat HCC model with short induction time, high incidence, and survival rate. NF-κB pathway may be one of the main pathways involved in the development of this model.
Collapse
Affiliation(s)
- Runzhui Lin
- Hepatobiliary, pancreatic and splenic surgery,Second Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
| | - Sitian Xie
- Burn and plastic surgery,Second Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
| | - Fengjie Xu
- Shantou University Medical College, Shantou 515041, China
| | - Zeming Chen
- Hepatobiliary, pancreatic and splenic surgery,Second Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
| | - Jianrui Liu
- Shantou University Medical College, Shantou 515041, China
| | - Xingmu Liu
- Hepatobiliary, pancreatic and splenic surgery,Second Affiliated Hospital of Shantou University Medical College, Shantou 515041, China.
| |
Collapse
|
19
|
Hussain Y, Singh J, Meena A, Sinha RA, Luqman S. Escin-sorafenib synergy up-regulates LC3-II and p62 to induce apoptosis in hepatocellular carcinoma cells. ENVIRONMENTAL TOXICOLOGY 2024; 39:840-856. [PMID: 37853854 DOI: 10.1002/tox.23988] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/19/2023] [Accepted: 09/21/2023] [Indexed: 10/20/2023]
Abstract
INTRODUCTION Hepatocellular carcinoma (HCC) is a common solid cancer and the leading cause of cancer deaths worldwide. Sorafenib is the first drug used to treat HCC but its effectiveness needs to be improved, and it is important to find ways to treat cancer that combine sorafenib with other drugs. Synergistic therapies lower effective drug doses and side effects while enhancing the anticancer effect. PURPOSE In the present study, the therapeutic potential of sorafenib in combination with escin and its underlying mechanism in targeting liver cancer has been established. STUDY DESIGN/METHODS The IC50 of sorafenib and escin against HepG2, PLC/PRF5 and Huh7 cell lines were determined using MTT assay. The combination index, dose reduction index, isobologram and concentrations producing synergy were evaluated using the Chou-Talaly algorithm. The sub-effective concentration of sorafenib and escin was selected to analyze cytotoxic synergistic potential. Cellular ROS, mitochondrial membrane potential, annexin V and cell cycle were evaluated using a flow-cytometer, and autophagy biomarkers were determined using western blotting. Moreover, autophagy was knocked down using ATG5 siRNA to confirm its role. A DEN-induced liver cancer rat model was developed to check the synergy of sorafenib and escin. RESULTS Different concentrations of escin reduced the IC50 of sorafenib in HepG2, PLC/PRF5 and Huh7 cell lines. Chou-Talaly algorithm determined cytotoxic synergistic concentrations of sorafenib and escin in these cell lines. Mechanistically, this combination over-expressed p62 and LC-II, reflecting autophagy block and induced late apoptosis, further reconfirmed by ATG5 knockdown. Sorafenib and escin combination reduced HCC serum biomarker α-feto protein (α-FP) by 1.5 folds. This combination restricted liver weight, tumor number and size, also, conserved morphological features of liver cells. The combination selectively targeted the G0 /G1 phase of cancer cells. CONCLUSION Escin and sorafenib combination potentially up-regulates p62 to block autophagy to induce late apoptosis in liver cancer cells.
Collapse
Affiliation(s)
- Yusuf Hussain
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Jyoti Singh
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
- Jawaharlal Nehru University, New Delhi, India
| | - Abha Meena
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Rohit Anthony Sinha
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Suaib Luqman
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
20
|
Zhang C, Xiang H, Wang J, Shao G, Ding P, Gao Y, Xu H, Ji G, Wu T. Exploring the mechanism of Jianpi Huatan recipe in protecting hepatocellular carcinoma based on network pharmacology. JOURNAL OF ETHNOPHARMACOLOGY 2023; 317:116676. [PMID: 37279814 DOI: 10.1016/j.jep.2023.116676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/08/2023] [Accepted: 05/21/2023] [Indexed: 06/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Jianpi Huatan Recipe (JPHTR) is an effective prescription for delaying progression of hepatocellular carcinoma (HCC) provided by Longhua Hospital affiliated to Shanghai University of traditional Chinese Medicine, and it is consisted of nine traditional Chinese drugs, but the protective mechanism of JPHTR against HCC progression is unclear. AIM OF THE STUDY To study the mechanism of JPHTR preventing the progression of HCC based on the network pharmacology. MATERIALS AND METHODS The chemical component and potential gene targets of JPHTR and the important gene targets of HCC were obtained by retrieving traditional Chinese medicine network pharmacology analysis system (TCMNPAS) database. The data obtained from the database are used to construct the drugs-chemical component-targets network and protein-protein interaction network by using Cytoscape software and STRING database. The potential targets of JPHTR and HCC targets were imported into TCMNPAS-related modules in order to obtain the Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment pathways. Finally, we used HCC rat model to verify the vital signaling pathways predicted by network pharmacology. RESULTS A total of 197 potential compounds and 721 potential targets of JPHTR and 611 important gene targets of HCC were obtained. Through the experiment in vivo, it was found that JPHTR can reduce the serum levels of alanine aminotransferase, aspartate aminotransferase and alkaline phosphatase, reduce the lipid droplets and inflammatory injury of liver tissue, and reduce the mRNA expression of Interleukin-6 (Il-6), Janus tyrosine Kinase2 (Jak2) and Forkhead box O3 (Foxo3) in FOXO pathway in the liver, thus delaying the development of HCC. CONCLUSION Through network pharmacology and rat experiments, it is preliminarily confirmed that JPHTR may delay the progression of HCC by regulating the expression of Il-6/Jak2/Foxo3 in FOXO signal pathway, which is expected to be a new therapeutic target for the protection of HCC.
Collapse
Affiliation(s)
- Caiyun Zhang
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China; Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Hongjiao Xiang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Junmin Wang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Gaoxuan Shao
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Peilun Ding
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Ying Gao
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Hanchen Xu
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Guang Ji
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| | - Tao Wu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
21
|
Bahaa Eldeen NM, Kamel MM, Mohamed A, Kamar SS, Rashed L, ShamsEldeen AM. Melatonin Mitigates the Progression of Chemically Induced Hepatocellular Carcinoma in Rats via Targeting Wnt/Β-Catenin Pathway, and Small Noncoding miR-let-7b. Rep Biochem Mol Biol 2023; 12:403-414. [PMID: 38618269 PMCID: PMC11015929 DOI: 10.61186/rbmb.12.3.403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 01/02/2024] [Indexed: 04/16/2024]
Abstract
Background Melatonin, the controlling hormone of the sleep-wake cycle, has acquired attention due to its role in immunomodulation, anti-inflammation, as well as its proapoptotic effects. Wnt/β-catenin signaling can modulate cancer progression by promoting cell division and migration, while miR-let-7b may inhibit cell growth, migration, and invasion by affecting the function of adaptive immune cells. This work was designed to detect the effect of using melatonin as an immunomodulating therapeutic approach to control the progression of chemically induced hepatocellular carcinoma (HCC). Methods Thirty male rats were equally divided into control, HCC, and melatonin-HCC groups. Animals in the HCC and melatonin-HCC groups were injected with diethylnitrosamine (intraperitoneal single dose) followed by repeated carbon-tetrachloride subcutaneous injection once weekly for six weeks. Melatonin was given from the first week of the study and continued during the process of HCC induction. Results In the HCC group, the levels of tumor necrosis factor-α (TNF-α), vascular endothelial growth factor (VEGF), and Wnt/β-catenin expression significantly increased, while there was a downregulation of microRNA Let7b. Melatonin administration reversed these changes, along with an increase in hepatic content of interleukin-2 (IL-2) and caspase-3. Conclusions Melatonin exerted hepatic immunomodulating changes, in addition to proapoptotic and antiangiogenic effects, illustrated by increased IL-2, caspase-3, and decreased VEGF levels, respectively. Moreover, the use of melatonin during hepatocarcinogenesis positively modulated the disrupted expression of microRNA let7b and Wnt/β-catenin significantly.
Collapse
Affiliation(s)
| | - Moataz Maher Kamel
- Department of Biochemistry, Faculty of Medicine, Cairo University, Cairo, Egypt.
| | - Abbas Mohamed
- Department of Biochemistry, Faculty of Medicine, Cairo University, Cairo, Egypt.
| | - Samaa Samir Kamar
- Histology Department, Faculty of Medicine, Cairo University.
- Histology Department, Armed Forces College of Medicine, Cairo, Egypt.
| | - Laila Rashed
- Department of Biochemistry, Faculty of Medicine, Cairo University, Cairo, Egypt.
| | | |
Collapse
|
22
|
Kim H, Choi B, Mouli SK, Choi H, Harris KR, Kulik LM, Lewandowski RJ, Kim D. Preclinical Development and Validation of Translational Temperature Sensitive Iodized Oil Emulsion Mediated Transcatheter Arterial Chemo-Immuno-Embolization for the Treatment of Hepatocellular Carcinoma. Adv Healthc Mater 2023; 12:e2300906. [PMID: 37163283 PMCID: PMC10592544 DOI: 10.1002/adhm.202300906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/02/2023] [Indexed: 05/11/2023]
Abstract
Herein a practical strategy for augmenting immune activation in transcatheter arterial chemoembolization (TACE) of hepatocellular carcinoma (HCC) is presented. Pluronic F127 (PF127) is incorporated with Lipiodol (LPD) to achieve safe and effective delivery of therapeutic agents during transcatheter intra-arterial (IA) local delivery. Enhanced emulsion stability, IA infusion, embolic effect, safety, pharmacokinetics, and tumor response of Doxorubicin loaded PF127-LPD (Dox-PF127-LPD) for TACE in both in vitro and in vivo preclinical VX2 liver cancer rabbit model and N1S1 HCC rat model are demonstrated. Then, transcatheter arterial chemo-immuno-embolization (TACIE) combining TACE and local delivery of immune adjuvant (TLR9 agonist CpG oligodeoxynucleotide) is successfully performed using CpG-loaded Dox-PF127-LPD. Concurrent and safe local delivery of CpG and TACE during TACIE demonstrate leveraged TACE-induced immunogenic tumor microenvironment and augment systemic anti-tumor immunity in syngeneic N1S1 HCC rat model. Finally, the broad utility and enhanced therapeutic efficacy of TACIE are validated in the diethylnitrosamine-induced rat HCC model. TACIE using clinically established protocols and materials shall be a convenient and powerful therapeutic approach that can be translated to patients with HCC. The robust anti-cancer immunity and tumor regression of TACIE, along with its favorable safety profile, indicate its potential as a novel localized combination immunotherapy for HCC treatment.
Collapse
Affiliation(s)
- Heegon Kim
- Department of RadiologyFeinberg School of MedicineNorthwestern UniversityChicagoIL60611USA
| | - Bongseo Choi
- Department of RadiologyFeinberg School of MedicineNorthwestern UniversityChicagoIL60611USA
| | - Samdeep K. Mouli
- Department of RadiologyFeinberg School of MedicineNorthwestern UniversityChicagoIL60611USA
- Robert H. Lurie Comprehensive Cancer CenterChicagoIL60611USA
| | - Hyunjun Choi
- Department of RadiologyFeinberg School of MedicineNorthwestern UniversityChicagoIL60611USA
- Department of Biomedical EngineeringUniversity of Illinois at ChicagoChicagoIL60607USA
| | - Kathleen R. Harris
- Department of RadiologyFeinberg School of MedicineNorthwestern UniversityChicagoIL60611USA
| | - Laura M. Kulik
- Department of RadiologyFeinberg School of MedicineNorthwestern UniversityChicagoIL60611USA
| | - Robert J. Lewandowski
- Department of RadiologyFeinberg School of MedicineNorthwestern UniversityChicagoIL60611USA
- Robert H. Lurie Comprehensive Cancer CenterChicagoIL60611USA
| | - Dong‐Hyun Kim
- Department of RadiologyFeinberg School of MedicineNorthwestern UniversityChicagoIL60611USA
- Robert H. Lurie Comprehensive Cancer CenterChicagoIL60611USA
- Department of Biomedical EngineeringUniversity of Illinois at ChicagoChicagoIL60607USA
- Department of Biomedical EngineeringMcCormick School of EngineeringEvanstonIL60208USA
| |
Collapse
|
23
|
Hussain Y, Singh J, Meena A, Sinha RA, Luqman S. Escin enhanced the efficacy of sorafenib by autophagy-mediated apoptosis in lung cancer cells. Phytother Res 2023; 37:4819-4837. [PMID: 37468281 DOI: 10.1002/ptr.7948] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 06/25/2023] [Accepted: 06/27/2023] [Indexed: 07/21/2023]
Abstract
Combining anti-cancer drugs has been exploited as promising treatment strategy to target lung cancer. Synergistic chemotherapies increase anti-cancer effect and reduce effective drug doses and side effects. In this study, therapeutic potential of escin in combination with sorafenib has been explored. 3-(4,5-Dimethylthiazol-2-yl)-2 5-diphenyltetrazolium bromide assay was used to calculate IC50 values. The synergy was evaluated using Chou-Talaly algorithm. Cellular reactive oxygen species, mitochondrial membrane potential, annexin V, and cell-cycle studies were done by flow-cytometer, and autophagy biomarkers expression were determined using western blotting. Moreover, autophagy was knocked down using ATG5 siRNA to confirm its role, diethylnitrosamine-induced lung cancer model was used to check the synergy of sorafenib/escin. Escin significantly reduced the IC50 of sorafenib in A549 and NCIH460 cells. The combination of sorafenib/escin produced a 2.95 and 5.45 dose reduction index for sorafenib in A549 and NCI-H460 cells. The combination of over-expressed p62 and LC3-II reflects autophagy block-mediated late apoptosis. This phenomenon was reconfirmed by ATG5 knockdown. This combination also selectively targeted G0/G1 phase of cancer cells. In in vivo study, the combination reduced tumour load and lower elevated serum biochemical parameters. The combination of sorafenib/escin synergistically inhibits autophagy to induce late apoptosis in lung cancer cells' G0/G1 phase.
Collapse
Affiliation(s)
- Yusuf Hussain
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, India
| | - Jyoti Singh
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
- Jawaharlal Nehru University, New Delhi, India
| | - Abha Meena
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, India
| | - Rohit Anthony Sinha
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Suaib Luqman
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
24
|
Kakabadze Z, Paresishvili T. Intravital tumor decellularization as a new approach to cancer treatment. Am J Cancer Res 2023; 13:4192-4207. [PMID: 37818079 PMCID: PMC10560955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 08/08/2023] [Indexed: 10/12/2023] Open
Abstract
This study demonstrates the possibility of tumor decellularization in living animals. Subcutaneous Ehrlich tumor induced by isolated Ehrlich ascitic carcinoma cells in mice was used as a model. The study also presents methods for ex vivo decellularization of human gastric adenocarcinoma (HGA) and hepatocellular carcinoma (HCC) induced by diethylnitrosamine (DEN) in rat. Sodium dodecyl sulfate (SDS) and Triton X-100 were used as detergents for tumor decellularization. The detergents for HGA and HCC were administered through organ vessels. For intravital decellularization of Ehrlich's subcutaneous tumor, detergents were injected directly into the tumor parenchyma. The results of the study showed that the effectiveness of tumor decellularization using SDS and Triton X-100 depended on the size, structure, stiffness and density of the tumor, as well as on the concentration, route and speed of detergent administration. The study also showed that an hour after the initiation of decellularization, the central part of Ehrlich's tumor changed the color, and after three hours, it completely acquired a translucent white color. Chemical contamination of tissues surrounding the tumor with the detergents was not observed. Histological studies showed the complete absence of all cellular components of Ehrlich's tumor and a slightly deformed extracellular matrix (ECM). There were no loco-regional recurrences or metastases of Ehrlich's tumor within 150 days after decellularization. The developed intravital decellularization method allows the effective removal of the cellular components and the DNA content of Ehrlich's subcutaneous tumor without compromising animal health. Additionally, this method can destroy tumor ECM, which will significantly improve the delivery of anticancer drugs to the tumor cells. However, more detailed and extensive studies are needed to develop an in vivo technique for isolated decellularization of the tumor or a part of the organ with the tumor. It is also necessary to identify less toxic decellularization agents and to develop the most efficient route for their delivery to the tumor cells.
Collapse
Affiliation(s)
- Zurab Kakabadze
- Department of Clinical Anatomy, Tbilisi State Medical University 0186 Tbilisi, Georgia
| | - Teona Paresishvili
- Department of Clinical Anatomy, Tbilisi State Medical University 0186 Tbilisi, Georgia
| |
Collapse
|
25
|
Domènech Omella J, Cortesi EE, Verbinnen I, Remmerie M, Wu H, Cubero FJ, Roskams T, Janssens V. A Novel Mouse Model of Combined Hepatocellular-Cholangiocarcinoma Induced by Diethylnitrosamine and Loss of Ppp2r5d. Cancers (Basel) 2023; 15:4193. [PMID: 37627221 PMCID: PMC10453342 DOI: 10.3390/cancers15164193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/11/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
Primary liver cancer (PLC) can be classified in hepatocellular (HCC), cholangiocarcinoma (CCA), and combined hepatocellular-cholangiocarcinoma (cHCC-CCA). The molecular mechanisms involved in PLC development and phenotype decision are still not well understood. Complete deletion of Ppp2r5d, encoding the B56δ subunit of Protein Phosphatase 2A (PP2A), results in spontaneous HCC development in mice via a c-MYC-dependent mechanism. In the present study, we aimed to examine the role of Ppp2r5d in an independent mouse model of diethylnitrosamine (DEN)-induced hepatocarcinogenesis. Ppp2r5d deletion (heterozygous and homozygous) accelerated HCC development, corroborating its tumor-suppressive function in liver and suggesting Ppp2r5d may be haploinsufficient. Ppp2r5d-deficient HCCs stained positively for c-MYC, consistent with increased AKT activation in pre-malignant and tumor tissues of Ppp2r5d-deficient mice. We also found increased YAP activation in Ppp2r5d-deficient tumors. Remarkably, in older mice, Ppp2r5d deletion resulted in cHCC-CCA development in this model, with the CCA component showing increased expression of progenitor markers (SOX9 and EpCAM). Finally, we observed an upregulation of Ppp2r5d in tumors from wildtype and heterozygous mice, revealing a tumor-specific control mechanism of Ppp2r5d expression, and suggestive of the involvement of Ppp2r5d in a negative feedback regulation restricting tumor growth. Our study highlights the tumor-suppressive role of mouse PP2A-B56δ in both HCC and cHCC-CCA, which may have important implications for human PLC development and targeted treatment.
Collapse
Affiliation(s)
- Judit Domènech Omella
- Laboratory of Protein Phosphorylation & Proteomics, Department of Cellular & Molecular Medicine, University of Leuven (KU Leuven), 3000 Leuven, Belgium; (J.D.O.); (I.V.); (M.R.)
| | - Emanuela E. Cortesi
- Translational Cell & Tissue Research, University of Leuven (KU Leuven), 3000 Leuven, Belgium; (E.E.C.); (T.R.)
| | - Iris Verbinnen
- Laboratory of Protein Phosphorylation & Proteomics, Department of Cellular & Molecular Medicine, University of Leuven (KU Leuven), 3000 Leuven, Belgium; (J.D.O.); (I.V.); (M.R.)
| | - Michiel Remmerie
- Laboratory of Protein Phosphorylation & Proteomics, Department of Cellular & Molecular Medicine, University of Leuven (KU Leuven), 3000 Leuven, Belgium; (J.D.O.); (I.V.); (M.R.)
| | - Hanghang Wu
- Department of Immunology, Ophthalmology & ENT, Complutense University School of Medicine, 28040 Madrid, Spain; (H.W.); (F.J.C.)
| | - Francisco J. Cubero
- Department of Immunology, Ophthalmology & ENT, Complutense University School of Medicine, 28040 Madrid, Spain; (H.W.); (F.J.C.)
- Health Research Institute Gregorio Marañón (IiSGM), 28007 Madrid, Spain
- Centre for Biomedical Research, Network on Liver and Digestive Diseases (CIBEREHD), 28029 Madrid, Spain
| | - Tania Roskams
- Translational Cell & Tissue Research, University of Leuven (KU Leuven), 3000 Leuven, Belgium; (E.E.C.); (T.R.)
- Department of Pathology, University Hospitals Leuven (UZ Leuven), 3000 Leuven, Belgium
| | - Veerle Janssens
- Laboratory of Protein Phosphorylation & Proteomics, Department of Cellular & Molecular Medicine, University of Leuven (KU Leuven), 3000 Leuven, Belgium; (J.D.O.); (I.V.); (M.R.)
- KU Leuven Cancer Institute (LKI), 3000 Leuven, Belgium
| |
Collapse
|
26
|
Deepak P, Kumar P, Kumar Arya D, Pandey P, Kumar S, Prasad Parida B, Narayan G, Singh S, Siddalingam Rajinikanth P. c(RGDfK) anchored surface manipulated liposome for tumor-targeted Tyrosine Kinase Inhibitor (TKI) delivery to potentiate liver anticancer activity. Int J Pharm 2023:123160. [PMID: 37379892 DOI: 10.1016/j.ijpharm.2023.123160] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/06/2023] [Accepted: 06/17/2023] [Indexed: 06/30/2023]
Abstract
Current anticancer drug research includes tumor-targeted administration as a critical component because it is the best strategy to boost efficacy and decrease toxicity. Low drug concentration in cancer cells, nonspecific distribution, rapid clearance, multiple drug resistance, severe side effects, and other factors contribute to the disappointing results of traditional chemotherapy. As an innovative technique of treatments for hepatocellular carcinoma (HCC) in recent years, nanocarrier-mediated targeted drug delivery systems can overcome the aforesaid limitations via enhanced permeability and retention effect (EPR) and active targeting. Epidermal growth factor receptor (EGFR) inhibitor Gefitinib (Gefi) has dramatic effects on hepatocellular carcinoma. Herein, we developed and assessed an αvβ3 integrin receptor targeted c(RGDfk) surface modified liposomes for better targeting selectivity and therapeutic efficacy of Gefi on HCC cells. The conventional and modified Gefi loaded liposomes, i.e., denoted as Gefi-L and Gefi-c(RGDfK)-L, respectively, were prepared through the ethanol injection method and optimized via Box Behnken design (BBD). The FTIR and 1H-NMR spectroscopy verified that the c(RGDfK) pentapeptides had formed an amide bond with the liposome surface. In addition, the particle size, Polydispersity index, zeta potential, encapsulation efficiency, and in-vitro Gefi release of the Gefi-L and Gefi-c(RGDfK)-L were measured and analyzed. As indicated by the MTT assay on HepG2 cells, Gefi-c(RGDfK)-L displayed considerably higher cytotoxicity than Gefi-L or Gefi alone. Throughout the incubation period, HepG2 cells took up significantly more Gefi-c(RGDfK)-L than Gefi-L. According to the in vivo biodistribution analysis, Gefi-c(RGDfK)-L accumulated more strongly at the tumor site than Gefi-L and free Gefi. Furthermore, HCC-bearing rats treated with Gefi-c(RGDfK)-L showed a substantial drop in liver marker enzymes (alanine transaminase, alkaline phosphatase, aspartate transaminase, and total bilirubin levels) compared to the disease control group. Gefi-c(RGDfK)-L suppresses tumour growth more effectively than Gefi-L and free Gefi, according to an in vivo analysis of their anticancer activities. Thus, c(RGDfk)-surface modified liposomes, i.e., Gefi-c(RGDfK)-L may serve as an efficient carrier for the targeted delivery of anticancer drugs.
Collapse
Affiliation(s)
- Payal Deepak
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, India
| | - Praveen Kumar
- Department of Pharmacy, Indira Gandhi National Tribal University, Amarkantak, Madhya Pradesh, India; SD College of Pharmacy and Vocational Studies, Bhopal Road, Muzaffarnagar, Uttar Pradesh, India
| | - Dilip Kumar Arya
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, India
| | - Prashant Pandey
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, India
| | - Shiv Kumar
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, India
| | - Bishnu Prasad Parida
- Department of Molecular and Human Genetics, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Gopeshwar Narayan
- Interdisciplinary School of Life Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Sanjay Singh
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, India
| | - Paruvathanahalli Siddalingam Rajinikanth
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, India; School of Pharmacy, Taylors University, Lakeside Campus, Kualamlupur, Malaysia.
| |
Collapse
|
27
|
Xing L, Zhang Y, Li S, Tong M, Bi K, Zhang Q, Li Q. A Dual Coverage Monitoring of the Bile Acids Profile in the Liver-Gut Axis throughout the Whole Inflammation-Cancer Transformation Progressive: Reveal Hepatocellular Carcinoma Pathogenesis. Int J Mol Sci 2023; 24:ijms24054258. [PMID: 36901689 PMCID: PMC10001964 DOI: 10.3390/ijms24054258] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/04/2023] [Accepted: 02/06/2023] [Indexed: 02/23/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the terminal phase of multiple chronic liver diseases, and evidence supports chronic uncontrollable inflammation being one of the potential mechanisms leading to HCC formation. The dysregulation of bile acid homeostasis in the enterohepatic circulation has become a hot research issue concerning revealing the pathogenesis of the inflammatory-cancerous transformation process. We reproduced the development of HCC through an N-nitrosodiethylamine (DEN)-induced rat model in 20 weeks. We achieved the monitoring of the bile acid profile in the plasma, liver, and intestine during the evolution of "hepatitis-cirrhosis-HCC" by using an ultra-performance liquid chromatography-tandem mass spectrometer for absolute quantification of bile acids. We observed differences in the level of primary and secondary bile acids both in plasma, liver, and intestine when compared to controls, particularly a sustained reduction of intestine taurine-conjugated bile acid level. Moreover, we identified chenodeoxycholic acid, lithocholic acid, ursodeoxycholic acid, and glycolithocholic acid in plasma as biomarkers for early diagnosis of HCC. We also identified bile acid-CoA:amino acid N-acyltransferase (BAAT) by gene set enrichment analysis, which dominates the final step in the synthesis of conjugated bile acids associated with the inflammatory-cancer transformation process. In conclusion, our study provided comprehensive bile acid metabolic fingerprinting in the liver-gut axis during the inflammation-cancer transformation process, laying the foundation for providing a new perspective for the diagnosis, prevention, and treatment of HCC.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Qing Li
- Correspondence: (Q.Z.); (Q.L.)
| |
Collapse
|
28
|
Short-term in vivo testing to discriminate genotoxic carcinogens from non-genotoxic carcinogens and non-carcinogens using next-generation RNA sequencing, DNA microarray, and qPCR. Genes Environ 2023; 45:7. [PMID: 36755350 PMCID: PMC9909887 DOI: 10.1186/s41021-023-00262-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 01/05/2023] [Indexed: 02/10/2023] Open
Abstract
Next-generation RNA sequencing (RNA-Seq) has identified more differentially expressed protein-coding genes (DEGs) and provided a wider quantitative range of expression level changes than conventional DNA microarrays. JEMS·MMS·Toxicogenomics group studied DEGs with targeted RNA-Seq on freshly frozen rat liver tissues and on formalin-fixed paraffin-embedded (FFPE) rat liver tissues after 28 days of treatment with chemicals and quantitative real-time PCR (qPCR) on rat and mouse liver tissues after 4 to 48 h treatment with chemicals and analyzed by principal component analysis (PCA) as statics. Analysis of rat public DNA microarray data (Open TG-GATEs) was also performed. In total, 35 chemicals were analyzed [15 genotoxic hepatocarcinogens (GTHCs), 9 non-genotoxic hepatocarcinogens (NGTHCs), and 11 non-genotoxic non-hepatocarcinogens (NGTNHCs)]. As a result, 12 marker genes (Aen, Bax, Btg2, Ccnf, Ccng1, Cdkn1a, Gdf15, Lrp1, Mbd1, Phlda3, Plk2, and Tubb4b) were proposed to discriminate GTHCs from NGTHCs and NGTNHCs. U.S. Environmental Protection Agency studied DEGs induced by 4 known GTHCs in rat liver using DNA microarray and proposed 7 biomarker genes, Bax, Bcmp1, Btg2, Ccng1, Cdkn1a, Cgr19, and Mgmt for GTHCs. Studies involving the use of whole-transcriptome RNA-Seq upon exposure to chemical carcinogens in vivo have also been performed in rodent liver, kidney, lung, colon, and other organs, although discrimination of GTHCs from NGTHCs was not examined. Candidate genes published using RNA-Seq, qPCR, and DNA microarray will be useful for the future development of short-term in vivo studies of environmental carcinogens using RNA-Seq.
Collapse
|
29
|
Effect of gambogenic acid in attenuating diethylnitrosamine (DEN)-induced hepatocellular carcinoma in rat model. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
|
30
|
Wu X, Wang Z, Luo L, Shu D, Wang K. Metabolomics in hepatocellular carcinoma: From biomarker discovery to precision medicine. FRONTIERS IN MEDICAL TECHNOLOGY 2023; 4:1065506. [PMID: 36688143 PMCID: PMC9845953 DOI: 10.3389/fmedt.2022.1065506] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 12/06/2022] [Indexed: 01/05/2023] Open
Abstract
Hepatocellular carcinoma (HCC) remains a global health burden, and is mostly diagnosed at late and advanced stages. Currently, limited and insensitive diagnostic modalities continue to be the bottleneck of effective and tailored therapy for HCC patients. Moreover, the complex reprogramming of metabolic patterns during HCC initiation and progression has been obstructing the precision medicine in clinical practice. As a noninvasive and global screening approach, metabolomics serves as a powerful tool to dynamically monitor metabolic patterns and identify promising metabolite biomarkers, therefore holds a great potential for the development of tailored therapy for HCC patients. In this review, we summarize the recent advances in HCC metabolomics studies, including metabolic alterations associated with HCC progression, as well as novel metabolite biomarkers for HCC diagnosis, monitor, and prognostic evaluation. Moreover, we highlight the application of multi-omics strategies containing metabolomics in biomarker discovery for HCC. Notably, we also discuss the opportunities and challenges of metabolomics in nowadays HCC precision medicine. As technologies improving and metabolite biomarkers discovering, metabolomics has made a major step toward more timely and effective precision medicine for HCC patients.
Collapse
Affiliation(s)
- Xingyun Wu
- West China School of Basic Medical Science & Forensic Medicine, Sichuan University, Chengdu, China
| | - Zihao Wang
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Li Luo
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu, China,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Dan Shu
- School of Bioscience and Technology, Chengdu Medical College, Chengdu, China,Correspondence: Kui Wang Dan Shu
| | - Kui Wang
- West China School of Basic Medical Science & Forensic Medicine, Sichuan University, Chengdu, China,Correspondence: Kui Wang Dan Shu
| |
Collapse
|
31
|
Ghelfi J, Decaens T, Macek Jilkova Z. Rat Model of Hepatocellular Carcinoma for Better Understanding Immune Effects of Transarterial Chemoembolization. Radiology 2023; 306:E1. [PMID: 36066362 DOI: 10.1148/radiol.220179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Julien Ghelfi
- Université Grenoble Alpes, Saint-Martin-d'Hères, France.,Departments of Radiology, CHU Grenoble Alpes, Boulevard de la Chantourne, 38700 La Tronche, France.,Institute for Advanced Biosciences, INSERM U1209/CNRS UMR 5309, University of Grenoble-Alpes, La Tronche, France
| | - Thomas Decaens
- Université Grenoble Alpes, Saint-Martin-d'Hères, France.,Hepatology and Gastrointestinal Medical Oncology, CHU Grenoble Alpes, Boulevard de la Chantourne, 38700 La Tronche, France.,Institute for Advanced Biosciences, INSERM U1209/CNRS UMR 5309, University of Grenoble-Alpes, La Tronche, France
| | - Zuzana Macek Jilkova
- Hepatology and Gastrointestinal Medical Oncology, CHU Grenoble Alpes, Boulevard de la Chantourne, 38700 La Tronche, France.,Institute for Advanced Biosciences, INSERM U1209/CNRS UMR 5309, University of Grenoble-Alpes, La Tronche, France
| |
Collapse
|
32
|
Kurma K, Zeybek Kuyucu A, Roth GS, Sturm N, Mercey-Ressejac M, Abbadessa G, Yu Y, Lerat H, Marche PN, Decaens T, Macek Jilkova Z. Effect of Novel AKT Inhibitor Vevorisertib as Single Agent and in Combination with Sorafenib on Hepatocellular Carcinoma in a Cirrhotic Rat Model. Int J Mol Sci 2022; 23:ijms232416206. [PMID: 36555845 PMCID: PMC9784348 DOI: 10.3390/ijms232416206] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/08/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related mortality worldwide. The AKT pathway is often activated in HCC cases, and a longer exposure to tyrosine kinase inhibitors such as sorafenib may lead to over-activation of the AKT pathway, leading to HCC resistance. Here, we studied the efficacy of a new generation of allosteric AKT inhibitor, vevorisertib, alone or in combination with sorafenib. To identify specific adverse effects related to the background of cirrhosis, we used a diethylnitrosamine (DEN)-induced cirrhotic rat model. Vevorisertib was tested in vitro on Hep3B, HepG2, HuH7 and PLC/PRF cell lines. Rats were treated weekly with intra-peritoneal injections of DEN for 14 weeks to obtain cirrhosis with fully developed HCC. After that, rats were randomized into four groups (n = 7/group): control, sorafenib, vevorisertib and the combination of vevorisertib + sorafenib, and treated for 6 weeks. Tumor progression was followed by MRI. We demonstrated that the vevorisertib is a highly potent treatment, blocking the phosphorylation of AKT. The tumor progression in the rat liver was significantly reduced by treatment with vevorisertib + sorafenib (49.4%) compared to the control group (158.8%, p < 0.0001). Tumor size, tumor number and tumor cell proliferation were significantly reduced in both the vevorisertib group and vevorisertib + sorafenib groups compared to the control group. Sirius red staining showed an improvement in liver fibrosis by vevorisertib and the combination treatment. Moreover, vevorisertib + sorafenib treatment was associated with a normalization in the liver vasculature. Altogether, vevorisertib as a single agent and its combination with sorafenib exerted a strong suppression of tumor progression and improved liver fibrosis. Thus, results provide a rationale for testing vevorisertib in clinical settings and confirm the importance of targeting AKT in HCC.
Collapse
Affiliation(s)
- Keerthi Kurma
- Institute for Advanced Biosciences, University Grenoble Alpes, CNRS UMR5309, INSERM U1209, 38700 Grenoble, France
| | - Ayca Zeybek Kuyucu
- Institute for Advanced Biosciences, University Grenoble Alpes, CNRS UMR5309, INSERM U1209, 38700 Grenoble, France
| | - Gaël S. Roth
- Institute for Advanced Biosciences, University Grenoble Alpes, CNRS UMR5309, INSERM U1209, 38700 Grenoble, France
- Hepato-Gastroenterology and Digestive Oncology Department, CHU Grenoble Alpes, 38700 Grenoble, France
| | - Nathalie Sturm
- Pathology and Cytology Department, CHU Grenoble Alpes, 38700 Grenoble, France
- T-RAIG, TIMC, University Grenoble-Alpes/CNRS UMR5525, 38700 La Tronche, France
| | - Marion Mercey-Ressejac
- Institute for Advanced Biosciences, University Grenoble Alpes, CNRS UMR5309, INSERM U1209, 38700 Grenoble, France
- Hepato-Gastroenterology and Digestive Oncology Department, CHU Grenoble Alpes, 38700 Grenoble, France
| | | | - Yi Yu
- ArQule Inc., Burlington, MA 01803, USA
| | - Herve Lerat
- Unité Mixte de Service hTAG, Grenoble Alpes University, Inserm US046, CNRS UAR2019, 38700 La Tronche, France
| | - Patrice N. Marche
- Institute for Advanced Biosciences, University Grenoble Alpes, CNRS UMR5309, INSERM U1209, 38700 Grenoble, France
| | - Thomas Decaens
- Institute for Advanced Biosciences, University Grenoble Alpes, CNRS UMR5309, INSERM U1209, 38700 Grenoble, France
- Hepato-Gastroenterology and Digestive Oncology Department, CHU Grenoble Alpes, 38700 Grenoble, France
| | - Zuzana Macek Jilkova
- Institute for Advanced Biosciences, University Grenoble Alpes, CNRS UMR5309, INSERM U1209, 38700 Grenoble, France
- Hepato-Gastroenterology and Digestive Oncology Department, CHU Grenoble Alpes, 38700 Grenoble, France
- Correspondence:
| |
Collapse
|
33
|
Hussein AM, El-Beih NM, Swellam M, El-Hussieny EA. Pomegranate juice and punicalagin-mediated chemoprevention of hepatocellular carcinogenesis via regulating miR-21 and NF-κB-p65 in a rat model. Cancer Cell Int 2022; 22:333. [PMID: 36324170 PMCID: PMC9628031 DOI: 10.1186/s12935-022-02759-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022] Open
Abstract
Background Hepatocellular carcinoma (HCC) is the most common neoplasm among primary liver malignancies, accounting for 70%–85% of total liver cancer cases worldwide. It is also the second-leading cause of cancer-related death worldwide. Recent research has investigated naturally occurring products high in polyphenolic compounds in the regression and prevention of HCC. This study investigated the chemoprevention effects of pomegranate juice (PJ) and punicalagin (PCG) against diethylnitrosamine (DENA)-induced hepatocarcinogenesis in male albino rats. Methods Animals were randomized into six groups and treated for 11 weeks as follows: group 1 was a negative control group, group 2 was treated orally with 10 mL PJ per kilogram body weight (kg bw), group 3 was treated orally with 18.5 mg PCG/kg bw, and groups 4–6 were injected with an intraperitoneal dose of DENA (50 mg/kg bw) weekly beginning in the third week. Group 4 was a HCC control (DENA-treated group), group 5 was HCC + PJ, and group 6 was HCC + PCG. Results PJ antagonized DENA-induced elevations of ALAT, TNF-α, NF-κB-p65, GST, MDA, and NO and restored total protein, IL-10, SOD, and CAT levels. Moreover, PJ resulted in downregulation of miR-21, Bcl-2, and Bcl-XL and an upregulation of caspase-3 and Bax mRNA expressions. These chemoprevention effects of PJ also alleviated the hepatic preneoplastic lesions induced by DENA. Although PCG treatment induced some modulation in DENA-treated rats, it did not show potent chemoprevention activity and induced some side effects. Conclusion Both of PJ and PCG downregulated miR-21 expression and triggered apoptosis. However, PJ was more effective than pure PCG in alleviating the hepatic antioxidant defense state and the inflammatory status. So, PJ was superior in prevention of DENA-induced hepatocellular carcinogenesis in rats than pure PCG. Graphical Abstract ![]()
Collapse
Affiliation(s)
- Aya M. Hussein
- grid.7269.a0000 0004 0621 1570Zoology Department, Faculty of Science, Ain Shams University, Khalifa El‑Maamon St, Abbasiya Sq, Cairo, 11566 Egypt
| | - Nadia M. El-Beih
- grid.7269.a0000 0004 0621 1570Zoology Department, Faculty of Science, Ain Shams University, Khalifa El‑Maamon St, Abbasiya Sq, Cairo, 11566 Egypt
| | - Menha Swellam
- grid.419725.c0000 0001 2151 8157Biochemistry Department, National Research Centre, Dokki, Egypt
| | - Enas A. El-Hussieny
- grid.7269.a0000 0004 0621 1570Zoology Department, Faculty of Science, Ain Shams University, Khalifa El‑Maamon St, Abbasiya Sq, Cairo, 11566 Egypt
| |
Collapse
|
34
|
Zhang H, Sheng D, Han Z, Zhang L, Sun G, Yang X, Wang X, Wei L, Lu Y, Hou X, Zhang L. Doxorubicin-liposome combined with clodronate-liposome inhibits hepatocellular carcinoma through the depletion of macrophages and tumor cells. Int J Pharm 2022; 629:122346. [DOI: 10.1016/j.ijpharm.2022.122346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 10/17/2022] [Accepted: 10/22/2022] [Indexed: 11/06/2022]
|
35
|
Qin H, Yuan B, Huang W, Wang Y. Utilizing Gut Microbiota to Improve Hepatobiliary Tumor Treatments: Recent Advances. Front Oncol 2022; 12:924696. [PMID: 35924173 PMCID: PMC9339707 DOI: 10.3389/fonc.2022.924696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
Hepatobiliary tumors, which include cholangiocarcinoma, hepatocellular carcinoma (HCC), and gallbladder cancer, are common cancers that have high morbidity and mortality rates and poor survival outcomes. In humans, the microbiota is comprised of symbiotic microbial cells (10-100 trillion) that belong to the bacterial ecosystem mainly residing in the gut. The gut microbiota is a complicated group that can largely be found in the intestine and has a dual role in cancer occurrence and progression. Previous research has focused on the crucial functions of the intestinal microflora as the main pathophysiological mechanism in HCC development. Intestinal bacteria produce a broad range of metabolites that exhibit a variety of pro- and anticarcinogenic effects on HCC. Therefore, probiotic alteration of the gut microflora could promote gut flora balance and help prevent the occurrence of HCC. Recent evidence from clinical and translational studies suggests that fecal microbiota transplant is one of the most successful therapies to correct intestinal bacterial imbalance. We review the literature describing the effects and mechanisms of the microbiome in the gut in the context of HCC, including gut bacterial metabolites, probiotics, antibiotics, and the transplantation of fecal microbiota, and discuss the potential influence of the microbiome environment on cholangiocarcinoma and gallbladder cancer. Our findings are expected to reveal therapeutic targets for the prevention of hepatobiliary tumors, and the development of clinical treatment strategies, by emphasizing the function of the gut microbiota.
Collapse
Affiliation(s)
- Hao Qin
- Key Laboratory of Cancer and Microbiome, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Baowen Yuan
- Key Laboratory of Cancer and Microbiome, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wei Huang
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
- *Correspondence: Wei Huang, ; Yan Wang,
| | - Yan Wang
- Key Laboratory of Cancer and Microbiome, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
- *Correspondence: Wei Huang, ; Yan Wang,
| |
Collapse
|
36
|
TAŞKIN ŞENOL G, KAPLAN HM, BOYAN N, OĞUZ Ö, ŞİNGİRİK E. Geraniol ve vitamin C’nin dietilnitrozamin kaynaklı deneysel hepatoselüler karsinogenez üzerindeki etkisi. CUKUROVA MEDICAL JOURNAL 2022. [DOI: 10.17826/cumj.1091707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Purpose: This study aimed to investigate the protective effect of geraniol and vitamin C on the experimental hepatocellular carcinogenesis (HCC) model by inducing FL83B hepatocyte cell lines with diethylnitrosamine (DENA).
Materials and Methods: The cells prepared in the medium were incubated with DENA (5 μM), geraniol (5 μM), and vitamin C (50 μM) for 48 hours in an incubator at 37 °C and 5% CO2. Groups were designed as follows: Group 1 (Control), group 2 (DENA Control), group 3 (DENA+Geraniol), group 4 (DENA+Vitamin C), and group 5 (DENA+Geraniol+Vitamin C) on standard cell culture plates. Six plates from each experimental group were studied. After the homogenization was centrifuged, analyses of pathway mediators NF-ĸB, AIF, caspase-3, BCL-2, bax, gadd153, GRP78, and COX were performed by the Elisa method.
Results: The expression of Bax, caspase-3, COX-2, NFkB, GADD153, AIF, and GRP78 increased in cancer cells when compared to group 1 and decreased in other groups where antiproliferative agents were applied. Bcl-2 expression is decreased when compared to group 1, and expression is increased in other groups where antiproliferative agents are applied.
Conclusion: There was a significant hepatoprotective effect in the groups administered geraniol+vitamin C on pathway mediators in a DENA-induced HCC model.
Collapse
|
37
|
Chronic Intermittent Hypoxia Increases Cell Proliferation in Hepatocellular Carcinoma. Cells 2022; 11:cells11132051. [PMID: 35805134 PMCID: PMC9265377 DOI: 10.3390/cells11132051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/14/2022] [Accepted: 06/24/2022] [Indexed: 02/06/2023] Open
Abstract
Obstructive sleep apnea (OSA) syndrome is characterized by chronic intermittent hypoxia and is associated with an increased risk of all-cause mortality, including cancer mortality. Hepatocellular carcinoma (HCC) is the most common type of liver cancer, characterized by increasing incidence and high mortality. However, the link between HCC and OSA-related chronic intermittent hypoxia remains unclear. Herein, we used a diethylnitrosamine (DEN)-induced HCC model to investigate whether OSA-related chronic intermittent hypoxia has an impact on HCC progression. To elucidate the associated mechanisms, we first evaluated the hypoxia status in the DEN-induced HCC model. Next, to simulate OSA-related intermittent hypoxia, we exposed cirrhotic rats with HCC to intermittent hypoxia during six weeks. We performed histopathological, immunohistochemical, RT-qPCR, and RNA-seq analysis. Chronic DEN injections strongly promoted cell proliferation, fibrosis, disorganized vasculature, and hypoxia in liver tissue, which mimics the usual events observed during human HCC development. Intermittent hypoxia further increased cell proliferation in DEN-induced HCC, which may contribute to an increased risk of HCC progression. In conclusion, our observations suggest that chronic intermittent hypoxia may be a factor worsening the prognosis of HCC.
Collapse
|
38
|
Zhang Q, Yu X, Zhang S, Guo W, He Y. Molecular characteristics of novel immune subtypes of HCC based on lncRNAs related to immune disorders. Sci Rep 2022; 12:8905. [PMID: 35618810 PMCID: PMC9135727 DOI: 10.1038/s41598-022-13013-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 05/05/2022] [Indexed: 11/09/2022] Open
Abstract
As one of the most malignant cancers and despite various treatment breakthroughs, the prognosis of hepatocellular carcinoma (HCC) remains unsatisfactory. The immune status of the tumor microenvironment (TME) relates closely to HCC progression; however, the mechanism of immune cell infiltration in the TME remains unclear. In this study, we performed a new combination algorithm on lncRNA expression profile data from the TCGA-LIHC cohort to identify lncRNAs related to immune disorders. We identified 20 immune disorder-related lncRNAs and clustered HCC samples based on these lncRNAs. We identified four clusters with differences in immune cell infiltration and immune checkpoint gene expression. We further analyzed differences between groups 1 and 3 and found that the poor prognosis of group 3 may be due to specific and non-specific immunosuppression of the TME, upregulation of immune checkpoint pathways, and activation of tumor proliferation and migration pathways in group 3. We also developed a prognostic model and verified that it has good stability, effectiveness, and prognostic power. This study provides a basis for further exploration of the immune cell infiltration mechanism in HCC, differential HCC prognosis, and improvement of the efficacy of ICIs for the treatment of HCC.
Collapse
Affiliation(s)
- Qiyao Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.,Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.,Open and Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, 450052, China.,Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, 450052, China
| | - Xiao Yu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.,Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.,Open and Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, 450052, China.,Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, 450052, China
| | - Shuijun Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.,Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.,Open and Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, 450052, China.,Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, 450052, China
| | - Wenzhi Guo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China. .,Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China. .,Open and Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, 450052, China. .,Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, 450052, China.
| | - Yuting He
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China. .,Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China. .,Open and Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, 450052, China. .,Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, 450052, China.
| |
Collapse
|
39
|
Li C, Salmen SH, Awad Alahmadi T, Priya Veeraraghavan V, Krishna Mohan S, Natarajan N, Subramanian S. Anticancer effect of Selenium/Chitosan/Polyethylene glycol/Allyl isothiocyanate nanocomposites against diethylnitrosamine-induced liver cancer in rats. Saudi J Biol Sci 2022; 29:3354-3365. [PMID: 35844425 PMCID: PMC9280227 DOI: 10.1016/j.sjbs.2022.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 12/24/2022] Open
Abstract
Background Nano-based drug delivery systems have shown several advantages in cancer treatment like specific targeting of cancer cells, good pharmacokinetics, and lesser adverse effects. Liver cancer is a fifth most common cancer and third leading cause of cancer-related mortalities worldwide. Objective The present study focusses to formulate the selenium (S)/chitosan (C)/polyethylene glycol (Pg)/allyl isothiocyanate (AI) nanocomposites (SCPg-AI-NCs) and assess its therapeutic properties against the diethylnitrosamine (DEN)-induced liver cancer in rats via inhibition of oxidative stress and tumor markers. Methodology The SCPg-AI-NCs were synthesized by ionic gelation technique and characterized by various characterization techniques. The liver cancer was induced to the rats by injecting a DEN (200 mg/kg) on the 8th day of experiment. Then DEN-induced rats treated with 10 mg/kg of formulated SCPg-AI-NCs an hour before DEN administration for 16 weeks. The 8-hydroxy-2′ -deoxyguanosine (8-OHdG) content, albumin, globulin, and total protein were examined by standard methods. The level of glutathione (GSH), vitamin-C & -E, and superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and glutathione reductase (GR) activities were examined using assay kits. The liver marker enzymes i.e., alanine transaminase (ALT), aspartate tansaminase (AST), γ-glutamyl transaminase (GGT), lactate dehydrogenase (LDH), and alkaline phosphatase (ALP) activities, alpha fetoprotein (AFP) and carcinoembryonic antigen (CEA), Bax, and Bcl-2 levels, and caspase-3&9 activities was examined using assay kits and the liver histopathology was assessed microscopically by hematoxylin and eosin staining method. The effect of formulated SCPg-AI-NCs on the viability and apoptotic cell death on the HepG2 cells were examined using MTT and dual staining assays, respectively. Results The results of different characterization studies demonstrated the formation of SCPg-AI-NCs with tetragonal shape, narrowed distribution, and size ranging from 390 to 450 nm. The formulated SCPg-AI-NCs treated liver cancer rats indicated the reduced levels of 8-OHdG, albumin, globulin, and total protein. The SCPg-AI-NCs treatment appreciably improved the GSH, vitamin-C & -E contents, and SOD, CAT, GPx, and GR activities in the serum of liver cancer rats. The SCPg-AI-NCs treatment remarkably reduced the liver marker enzyme activities in the DEN-induced rats. The SCPg-AI-NCs treatment decreased the AFP and CEA contents and enhanced the Bax and caspase 3&9 activities in the DEN-induced rats. The SCPg-AI-NCs effectively decreased the cell viability and induced apoptosis in the HepG2 cells. Conclusion The present findings suggested that the formulated SCPg-AI-NCs remarkably inhibited the DEN-induced liver carcinogenesis in rats. These findings provide an evidence that SCPg-AI-NCs can be a promising anticancer nano-drug in the future to treat the liver carcinogenesis.
Collapse
|