1
|
Sardeshmukh S, Deshmukh V, Patil T, Gujar S, Godse V, Kulkarni S, Datar S, Deshpande D, Sardeshmukh N, Bhuvad S, Sardeshmukh B, Chavan S, Gupta V. Role of a Chemo-Recovery Kit with Ayurvedic formulations - containing coral in managing chemotherapy adverse effects and maintaining quality of life in breast cancer patients. J Ayurveda Integr Med 2025; 16:101012. [PMID: 40198955 PMCID: PMC12008519 DOI: 10.1016/j.jaim.2024.101012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 04/24/2024] [Accepted: 06/02/2024] [Indexed: 04/10/2025] Open
Abstract
BACKGROUND Breast cancer is one of the major concerns in women globally. Treatment for breast cancer comprises surgery, chemotherapy, hormonal therapy, targeted therapy, and palliative care. Though chemotherapy is an important component of treatment, it induces adverse effects, which are mainly caused by the inability of chemotherapeutic drugs to distinguish between dividing cancer cells and normal cells leading to increase in oxidative stress and hampered immune status. OBJECTIVE To investigate the benefits of Ayurvedic medicines in breast cancer patients for managing chemotherapy adverse effects. MATERIAL AND METHODS In this retrospective study, 27 female breast cancer patients who underwent surgery, posted for chemotherapy, and complying inclusion were included. These patients were divided into two groups. Study group of 13 patients were treated with Ayurvedic formulation - Chemo-Recovery Kit with coral [filed as a herbo-mineral kit for Indian patent (201921018273- published) and US Patent (17/609,601- published)] along with chemotherapy, while 14 patients were not provided with any additional Ayurvedic medicines and were treated with chemotherapy alone (control group). RESULTS Out of commonly observed adverse effects, statistically significant improvement is noted in symptoms such as fatigue (p < 0.0001), vomiting (p = 0.001), nausea (p = 0.003) and skin discoloration (p = 0.005) in patients treated with adjunct Ayurvedic medicines. The remaining symptoms such as constipation, stomatitis and fever were also less prominent in this group. Karnofsky score (p < 0.0001) and quality of life assessed were well maintained in patients treated with Ayurvedic medicines. CONCLUSION Chemo-Recovery Kit with coral is highly effective in management of chemotherapy induced nausea, vomiting, fatigue and skin discoloration and thus to improve Quality of Life.
Collapse
Affiliation(s)
- Sadanand Sardeshmukh
- Bharatiya Sanskriti Darshan Trust's Integrated Cancer Treatment and Research Centre, Wagholi, Pune, Maharashtra, India
| | - Vineeta Deshmukh
- Bharatiya Sanskriti Darshan Trust's Integrated Cancer Treatment and Research Centre, Wagholi, Pune, Maharashtra, India.
| | - Tushar Patil
- Bharatiya Sanskriti Darshan Trust's Integrated Cancer Treatment and Research Centre, Wagholi, Pune, Maharashtra, India
| | - Shweta Gujar
- Bharatiya Sanskriti Darshan Trust's Integrated Cancer Treatment and Research Centre, Wagholi, Pune, Maharashtra, India
| | - Vasanti Godse
- Bharatiya Sanskriti Darshan Trust's Integrated Cancer Treatment and Research Centre, Wagholi, Pune, Maharashtra, India
| | - Swapna Kulkarni
- Bharatiya Sanskriti Darshan Trust's Integrated Cancer Treatment and Research Centre, Wagholi, Pune, Maharashtra, India
| | - Shrinivas Datar
- Bharatiya Sanskriti Darshan Trust's Integrated Cancer Treatment and Research Centre, Wagholi, Pune, Maharashtra, India
| | - Dhananjay Deshpande
- Bharatiya Sanskriti Darshan Trust's Integrated Cancer Treatment and Research Centre, Wagholi, Pune, Maharashtra, India
| | - Nilambari Sardeshmukh
- Bharatiya Sanskriti Darshan Trust's Integrated Cancer Treatment and Research Centre, Wagholi, Pune, Maharashtra, India
| | - Sushma Bhuvad
- Bharatiya Sanskriti Darshan Trust's Integrated Cancer Treatment and Research Centre, Wagholi, Pune, Maharashtra, India
| | - Bhagyashree Sardeshmukh
- Bharatiya Sanskriti Darshan Trust's Integrated Cancer Treatment and Research Centre, Wagholi, Pune, Maharashtra, India
| | - Sandeep Chavan
- Bharatiya Sanskriti Darshan Trust's Integrated Cancer Treatment and Research Centre, Wagholi, Pune, Maharashtra, India
| | - Vidya Gupta
- Bharatiya Sanskriti Darshan Trust's Integrated Cancer Treatment and Research Centre, Wagholi, Pune, Maharashtra, India
| |
Collapse
|
2
|
Yao Q, Yin J, Ji X, Li X, Gao Y, Lu D, Chen Y, Li Q, Zhi D. Evaluation of binding interaction between compounds targeting peroxisome proliferator-activated receptor γ in Nelumbinis folium using receptor chromatography and molecular dynamic simulation. J Chromatogr B Analyt Technol Biomed Life Sci 2025; 1255:124528. [PMID: 39987855 DOI: 10.1016/j.jchromb.2025.124528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 02/15/2025] [Accepted: 02/17/2025] [Indexed: 02/25/2025]
Abstract
Despite considerable efforts invested in clinical trials aimed at treating obesity and enhancing the metabolic profiles of Nelumbinis Folium, the precise phytochemicals involved and their mechanisms of action remain unclear due to the absence of an efficient screening technique. Herein, Nelumbinis Folium serves as the focal point to elucidate the bioactive compounds that specifically bind to peroxisome proliferator-activated receptor γ using immobilized receptor chromatography. Following identification through liquid chromatography-mass spectrometry, the compounds were further evaluated using chromatographic techniques and molecular dynamics simulations. The results unveiled catechin and hypericin as the receptor-binding compounds present in Nelumbinis Folium, with hypericin exhibiting a stronger affinity and a faster dissociation rate constant compared to catechin. Molecular dynamics studies highlighted the crucial role of cysteine located at position of 285 in the receptor ligand binding domain during the initial ligand capture phase. Subsequently, Van Der Waals forces and electrostatic interactions facilitated the binding process. The calculated standard binding free energies were - 61.75 ± 2.61 kcal/mol for hypericin and - 43.19 ± 0.63 kcal/mol for catechin. Collectively, these findings provide valuable insights into receptor-drug interactions and confirm the effectiveness of immobilized receptor chromatography in screening potential lead compounds from complex systems.
Collapse
Affiliation(s)
- Qingqing Yao
- Department of Clinical Pharmaceutics, Chang An District Hospital, Xi'an, Shaanxi 710118, China; Northwest University Chang An Hospital, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, Shaanxi 710069, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, China
| | - Jiatai Yin
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, China
| | - Xiuli Ji
- Department of Clinical Pharmaceutics, Chang An District Hospital, Xi'an, Shaanxi 710118, China; Northwest University Chang An Hospital, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, Shaanxi 710069, China.
| | - Xue Li
- Department of Clinical Pharmaceutics, Chang An District Hospital, Xi'an, Shaanxi 710118, China; Northwest University Chang An Hospital, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, Shaanxi 710069, China
| | - Yifan Gao
- Department of Clinical Pharmaceutics, Chang An District Hospital, Xi'an, Shaanxi 710118, China; Northwest University Chang An Hospital, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, Shaanxi 710069, China
| | - Dan Lu
- Department of Clinical Pharmaceutics, Chang An District Hospital, Xi'an, Shaanxi 710118, China; Northwest University Chang An Hospital, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, Shaanxi 710069, China
| | - Ying Chen
- Department of Clinical Pharmaceutics, Chang An District Hospital, Xi'an, Shaanxi 710118, China; Northwest University Chang An Hospital, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, Shaanxi 710069, China
| | - Qian Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, China.
| | - Dalong Zhi
- Department of Clinical Pharmaceutics, Chang An District Hospital, Xi'an, Shaanxi 710118, China; Northwest University Chang An Hospital, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, Shaanxi 710069, China.
| |
Collapse
|
3
|
Verma R, Sahu A, Gupta RK, Sanyal I. Sonication-assisted Rhizobium radiobacter-mediated genetic transformation of Indian Lotus (Nelumbo nucifera Gaertn.). Transgenic Res 2025; 34:4. [PMID: 39775301 DOI: 10.1007/s11248-024-00427-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 10/28/2024] [Indexed: 01/11/2025]
Abstract
This study aimed to develop a reliable and efficient genetic transformation method for the ornamental Indian Lotus (Nelumbo nucifera Gaertn.) using the sonication-assisted Rhizobium radiobacter-mediated transformation technique. To conduct the transformation, shoot apical meristem explants were infected with Rhizobium radiobacter (synonym Agrobacterium tumefaciens) strain LBA 4404 containing a binary vector pBI121 that harbours the GUS reporter gene (uidA) and kanamycin resistance gene nptII for plant selection. To improve the transformation efficiency, we optimized parameters such as bacterial cell density, sonication duration, infection time, co-cultivation duration, acetosyringone concentration, cefotaxime, and kanamycin concentrations. Sonication treatment at 42 kHz for 90 s recorded the highest transformation efficiency. The selection of regenerated plantlets was performed on a kanamycin-supplemented selection medium. The putative transformants showed GUS expression in the leaves and petioles. The presence of the GUS gene was also confirmed in the putative transformants through PCR, with the appearance of the expected amplicon size of 520 bp. The presence of nptII was confirmed by PCR in the putatively transformed plants with an amplicon size of 530 bp. The maximum regeneration frequency obtained was 72.66%, and the highest transformation efficiency achieved was 9.0% in the Indian Lotus.
Collapse
Affiliation(s)
- Rita Verma
- Plant Transgenic Laboratory, CSIR-National Botanical Research Institute, Rana Pratap Marg, Uttar Pradesh, Lucknow, 226001, India
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Anshu Sahu
- Plant Transgenic Laboratory, CSIR-National Botanical Research Institute, Rana Pratap Marg, Uttar Pradesh, Lucknow, 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Rajan Kumar Gupta
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Indraneel Sanyal
- Plant Transgenic Laboratory, CSIR-National Botanical Research Institute, Rana Pratap Marg, Uttar Pradesh, Lucknow, 226001, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
4
|
Chen X, Liu Z, He Y, Liu Y, Haran Y, Li J, Yan S. Mechanism of red pigment formation in lotus rhizome soup during cooking: The role of polyphenols, iron and organic acids. Food Res Int 2024; 197:115266. [PMID: 39593345 DOI: 10.1016/j.foodres.2024.115266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/13/2024] [Accepted: 10/22/2024] [Indexed: 11/28/2024]
Abstract
Lotus rhizome soup, renowned as a unique delicacy made from lotus rhizome, is cherished by many consumers. However, the varying colors of soup are sure to influence individuals' appetites. This research focused on the Miancheng lotus Rhizome (MLR) and Elian No. 6 lotus rhizome (ELR) to investigate the relationship between the variations in polyphenols, organic acids and iron levels in MLR and ELR soups during the cooking process. The findings indicated that cooking MLR for 12 min resulted in a red soup with a* value of 8.65 ± 0.12, whereas the soup made from ELR remained white with a* value of 3.43 ± 0.08. The correlation analysis results indicated that polyphenols, specifically epigallocatechin (0.0169 ± 0.00029 μg/100 mL FW after cooking for 12 min) and epicatechin (0.0211 ± 0.00047 μg/100 mL FW after cooking for 12 min), exhibited a significant positive relationship with a* (p < 0.05). Moreover, lowering the pH, removing polyphenols and incorporating metal-chelating agents can also prevent the development of red pigment. The analysis from HPLC-MS, UV-Vis, FT-IR spectra and ESI-Q-TOF-MS indicated that the development of the red soup color involved i) the generation of epicatechin gallate through the enantiomeric reaction of epigallocatechin, ii) the co-chromic red interaction between anthocyanin cations and catechol structures, and iii) the formation of polyphenol oligomers (i.e., procyanidin A2, (+)-procyanidin B2, procyanidin C1 and prodelphinidin B4) due to heating, while the creation of phenol-iron chelates could inhibit the development of red coloration. In sum, this research introduces a new idea for managing the color of lotus rhizome soup and similar soup products.
Collapse
Affiliation(s)
- Xianqiang Chen
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Aquatic Vegetable Preservation and Processing Technology Engineering Center of Hubei Province, Wuhan 430070, China
| | - Zhuo Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Aquatic Vegetable Preservation and Processing Technology Engineering Center of Hubei Province, Wuhan 430070, China
| | - Yan He
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Aquatic Vegetable Preservation and Processing Technology Engineering Center of Hubei Province, Wuhan 430070, China
| | - Yanzhao Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Aquatic Vegetable Preservation and Processing Technology Engineering Center of Hubei Province, Wuhan 430070, China
| | - Yassin Haran
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Aquatic Vegetable Preservation and Processing Technology Engineering Center of Hubei Province, Wuhan 430070, China
| | - Jie Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Aquatic Vegetable Preservation and Processing Technology Engineering Center of Hubei Province, Wuhan 430070, China
| | - Shoulei Yan
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Aquatic Vegetable Preservation and Processing Technology Engineering Center of Hubei Province, Wuhan 430070, China; Hubei Honghu Lotus Rhizome Industry Research Institute, Jingzhou 433299, China; Yangtze River Economic Belt Engineering Research Center for Green Development of Bulk Aquatic Bioproducts Industry of Ministry of Education, Wuhan, Hubei, 430070, China.
| |
Collapse
|
5
|
Lv Y, Ge C, Wu L, Hu Z, Luo X, Huang W, Zhan S, Shen X, Yu D, Liu B. Hepatoprotective effects of magnolol in fatty liver hemorrhagic syndrome hens through shaping gut microbiota and tryptophan metabolic profile. J Anim Sci Biotechnol 2024; 15:120. [PMID: 39238062 PMCID: PMC11378483 DOI: 10.1186/s40104-024-01074-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 07/05/2024] [Indexed: 09/07/2024] Open
Abstract
BACKGROUND Magnolol (MAG) exhibits hepatoprotective activity, however, whether and how MAG regulates the gut microbiota to alleviate fatty liver hemorrhagic syndrome (FLHS) remains unclear. Therefore, we investigated the mechanism of MAG in FLHS laying hens with an emphasis on alterations in the gut-liver axis. We randomly divided 540 56-week-old Hy-line white laying hens with FLSH into 4 groups. The birds were fed a high-fat low-protein (HFLP) diet (CON) or HELP diets supplemented with 200, 400, and 600 mg/kg of MAG (M1, M2, and M3, respectively) for 9 weeks. RESULTS Magnolol supplementation increased the laying rate and ameliorated hepatic damage and dysfunction by regulating lipid metabolism, improving intestinal barrier function, and shaping the gut microbiota and tryptophan metabolic profiles. Dietary MAG supplementation downregulated the expression of lipid synthesis genes and upregulated the expression of lipid transport genes at varying degrees. The intestinal barrier function was improved by 200 and 400 mg/kg of MAG supplementation, as evidenced by the increased villus height and mRNA expression of tight junction related genes. Microbiological profile information revealed that MAG changed the gut microbiota, especially by elevating the abundances of Lactobacillus, Faecalibacterium, and Butyricicoccus. Moreover, non-targeted metabolomic analysis showed that MAG significantly promoted tryptophan metabolites, which was positively correlated with the MAG-enriched gut microbiota. The increased tryptophan metabolites could activate aryl hydrocarbon receptor (AhR) and relieved hepatic inflammation and immune response evidenced by the downregulated the gene expression levels of pro-inflammatory cytokines such as interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6) in the liver. The fecal microbiota transplantation (FMT) experiments further confirmed that the hepatoprotective effect is likely mediated by MAG-altered gut microbiota and their metabolites. CONCLUSIONS Magnolol can be an outstanding supplement for the prevention and mitigation of FLHS in laying hens by positively regulating lipid synthesis and transport metabolism, improving the intestinal barrier function, and relieving hepatic inflammation by reshaping the gut microbiota and metabolite profiles through gut microbiota-indole metabolite-hepatic AhR crosstalk. These findings elucidate the mechanisms by which MAG alleviates FLHS and provide a promising method for preventing liver diseases by modulating gut microbiota and their metabolites.
Collapse
Affiliation(s)
- Yujie Lv
- Hainan Institute, Zhejiang University, 572000, Sanya, China
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Chaoyue Ge
- Hainan Institute, Zhejiang University, 572000, Sanya, China
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Lianchi Wu
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Zhaoying Hu
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xinyu Luo
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Weichen Huang
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Shenao Zhan
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xinyu Shen
- Hainan Institute, Zhejiang University, 572000, Sanya, China
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Dongyou Yu
- Hainan Institute, Zhejiang University, 572000, Sanya, China.
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Bing Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
6
|
Naseem S, Bhat SU, Gani A, Bhat FA. Starch exploration in Nelumbo nucifera and Trapa natans: Understanding physicochemical and functional variations for future perspectives. Int J Biol Macromol 2024; 274:133077. [PMID: 38914388 DOI: 10.1016/j.ijbiomac.2024.133077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 06/03/2024] [Accepted: 06/09/2024] [Indexed: 06/26/2024]
Abstract
The current research emphasis on identifying unconventional starch sources with varied properties to broaden industrial applications. The focus of this research is on the search for alternative sources of starch with different properties in order to expand their potential use in the industrial sector. Starch was extracted from Trapa natans and Nelumbo nucifera and analyzed for their physicochemical and functional properties. They had similar protein (0.35 %) and ash contents, but the nitrogen-free extract was slightly higher in Nelumbo starch (87.58 %) than in Trapa starch (85.09 %). The amylose and amylopectin contents were 23.89 % and 76.11 % in Trapa starch and 15.70 % and 84.30 % in Nelumbo starch, respectively. Fourier-transform infrared spectroscopy identified both as polysaccharides. The characteristic absorption bands assigned to the stretching of OH groups (3324 cm-1; 3280 cm-1), the asymmetric and symmetric stretching of aliphatic chain groups (2925 cm-1; 2854 cm-1), the bending vibration of CHO groups (1149 cm-1; 1144 cm-1) were present in both the starch samples, with the exception of CH3 which could not be detected in Trapa natans starch. X-ray diffraction confirmed hexagonal and orthorhombic crystal structures in Nelumbo nucifera and Trapa natans starch. Scanning electron microscopy revealed a smooth oval and a rough cuboidal shape for lotus and chestnut starch, respectively. Rheological analysis showed that both starch solutions exhibited gel behavior, with Trapa showing stronger gel behavior after the crossover point. These results suggest potential applications in various industries, including the food industry and beyond.
Collapse
Affiliation(s)
- Shahida Naseem
- Department of Environmental Science, School of Earth and Environmental Sciences, University of Kashmir, Srinagar, India
| | - Sami Ullah Bhat
- Department of Environmental Science, School of Earth and Environmental Sciences, University of Kashmir, Srinagar, India.
| | - Adil Gani
- Department of Food Science and Technology, University of Kashmir, Srinagar, India
| | | |
Collapse
|
7
|
Radoor S, Jayakumar A, Karayil J, Kim JT, Siengchin S. Nelumbo nucifera flower extract incorporated alginate/polyvinyl alcohol films as a sustainable pH indicator for active food packaging applications. Int J Biol Macromol 2024; 273:133170. [PMID: 38880445 DOI: 10.1016/j.ijbiomac.2024.133170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 06/02/2024] [Accepted: 06/13/2024] [Indexed: 06/18/2024]
Abstract
In recent years, there has been a growing demand for environmentally friendly smart packaging materials. Therefore, in this study, we developed an eco-friendly pH-sensitive indicator film through the solvent casting process, incorporating alginate, polyvinyl alcohol, garlic, and Nelumbo nucifera flower extract. The effect of extract on the chemical and physical properties of the film were extensively studied using various characterization techniques. XRD and FTIR reveal the strong interaction between the polymers and the extract. The incorporation of the extract influenced various parameters such as swelling behavior, water solubility, and moisture content, while also improving the film's thermal stability, biodegradability, as well as its antioxidant and antimicrobial properties. Interestingly, the film exhibited a color change in response to pH change. During shrimp storage, the film showed a visible transition from purple to green, indicating shrimp spoilage. Additionally, the film's ability to detect freshness was confirmed by measuring total volatile basic nitrogen (TVBN). These findings suggest that the PVA/alginate/garlic/Nelumbo nucifera film shows promise as an intelligent packaging material for real-time food monitoring applications.
Collapse
Affiliation(s)
- Sabarish Radoor
- Materials and Production Engineering, The Sirindhorn International Thai-German Graduate School of Engineering (TGGS), King Mongkut's University of Technology North Bangkok, Bangkok 10800, Thailand.
| | - Aswathy Jayakumar
- Department of Food and Nutrition, BioNanocomposite Research Center, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jasila Karayil
- Department of Applied Science, Government Engineering College, West Hill, Kozhikode, India
| | - Jun Tae Kim
- Department of Food and Nutrition, BioNanocomposite Research Center, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Suchart Siengchin
- Materials and Production Engineering, The Sirindhorn International Thai-German Graduate School of Engineering (TGGS), King Mongkut's University of Technology North Bangkok, Bangkok 10800, Thailand
| |
Collapse
|
8
|
Li S, Lin X, Duan L. Harnessing the power of natural alkaloids: the emergent role in epilepsy therapy. Front Pharmacol 2024; 15:1418555. [PMID: 38962319 PMCID: PMC11220463 DOI: 10.3389/fphar.2024.1418555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 05/31/2024] [Indexed: 07/05/2024] Open
Abstract
The quest for effective epilepsy treatments has spotlighted natural alkaloids due to their broad neuropharmacological effects. This review provides a comprehensive analysis of the antiseizure properties of various natural compounds, with an emphasis on their mechanisms of action and potential therapeutic benefits. Our findings reveal that bioactive substances such as indole, quinoline, terpenoid, and pyridine alkaloids confer medicinal benefits by modulating synaptic interactions, restoring neuronal balance, and mitigating neuroinflammation-key factors in managing epileptic seizures. Notably, these compounds enhance GABAergic neurotransmission, diminish excitatory glutamatergic activities, particularly at NMDA receptors, and suppress proinflammatory pathways. A significant focus is placed on the strategic use of nanoparticle delivery systems to improve the solubility, stability, and bioavailability of these alkaloids, which helps overcome the challenges associated with crossing the blood-brain barrier (BBB). The review concludes with a prospective outlook on integrating these bioactive substances into epilepsy treatment regimes, advocating for extensive research to confirm their efficacy and safety. Advancing the bioavailability of alkaloids and rigorously assessing their toxicological profiles are essential to fully leverage the therapeutic potential of these compounds in clinical settings.
Collapse
Affiliation(s)
- Siyu Li
- Department of Neurosurgery, Clinical Trial Center, West China School of Nursing, West China Hospital, Sichuan University, Chengdu, China
| | - Xinyu Lin
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lijuan Duan
- Department of Neurosurgery, Clinical Trial Center, West China School of Nursing, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
9
|
Hwang ES, Lee S. Quality characteristics, antioxidant activity, and acrylamide content of lotus root chips prepared using different processing methods. Food Sci Biotechnol 2024; 33:1371-1379. [PMID: 39323653 PMCID: PMC11420426 DOI: 10.1007/s10068-023-01448-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 09/03/2023] [Accepted: 09/30/2023] [Indexed: 09/27/2024] Open
Abstract
Lotus root chips were prepared using five different methods (freeze-drying, microwaving, air-frying, oil-frying, and oven-baking), and their quality characteristics, bioactive substance content, and antioxidant activity were determined. The amount of acrylamide generated during manufacturing was determined. The proximate content of the chips varied depending on the manufacturing method. Based on color determination, lightness was highest in freeze-dried chips and lowest in oven-baked chips. Oil-fried chips had the highest redness, yellowness, and browning index. The total polyphenol, flavonoid content, and antioxidant activities were the highest in freeze-dried chips and the lowest in oven-baked chips. Air-fried chips had the highest (746.92 µg/g) acrylamide content, while freeze-dried chips had the lowest (1.82 µg/g). Compared to other methods, freeze-drying retained the maximum bioactive compound content and antioxidant activity, leading to the lowest acrylamide formation. These findings highlight a suitable method and provide basic data for future lotus root chip manufacturing.
Collapse
Affiliation(s)
- Eun-Sun Hwang
- School of Wellness Industry Convergence, Major in Food & Nutrition, Hankyong National University, 327 Chungang-Ro, Anseong-Si, Gyeonggi-Do 17579 Republic of Korea
| | - SiA Lee
- School of Wellness Industry Convergence, Major in Food & Nutrition, Hankyong National University, 327 Chungang-Ro, Anseong-Si, Gyeonggi-Do 17579 Republic of Korea
| |
Collapse
|
10
|
Miao S, Mu T, Li R, Li Y, Zhao W, Li J, Dong X, Zou X. Coated sodium butyrate ameliorates high-energy and low-protein diet induced hepatic dysfunction via modulating mitochondrial dynamics, autophagy and apoptosis in laying hens. J Anim Sci Biotechnol 2024; 15:15. [PMID: 38302976 PMCID: PMC10835823 DOI: 10.1186/s40104-023-00980-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 12/17/2023] [Indexed: 02/03/2024] Open
Abstract
BACKGROUND Fatty liver hemorrhagic syndrome (FLHS), a fatty liver disease in laying hens, poses a grave threat to the layer industry, stemming from its ability to trigger an alarming plummet in egg production and usher in acute mortality among laying hens. Increasing evidence suggests that the onset and progression of fatty liver was closely related to mitochondria dysfunction. Sodium butyrate was demonstrated to modulate hepatic lipid metabolism, alleviate oxidative stress and improve mitochondrial dysfunction in vitro and mice models. Nevertheless, there is limited existing research on coated sodium butyrate (CSB) to prevent FLHS in laying hens, and whether and how CSB exerts the anti-FLHS effect still needs to be explored. In this experiment, the FLHS model was induced by administering a high-energy low-protein (HELP) diet in laying hens. The objective was to investigate the effects of CSB on alleviating FLHS with a focus on the role of CSB in modulating mitochondrial function. METHODS A total of 288 healthy 28-week-old Huafeng laying hens were arbitrarily allocated into 4 groups with 6 replicates each, namely, the CON group (normal diet), HELP group (HELP diet), CH500 group (500 mg/kg CSB added to HELP diet) and CH750 group (750 mg/kg CSB added to HELP diet). The duration of the trial encompassed a period of 10 weeks. RESULTS The result revealed that CSB ameliorated the HELP-induced FLHS by improving hepatic steatosis and pathological damage, reducing the gene levels of fatty acid synthesis, and promoting the mRNA levels of key enzymes of fatty acid catabolism. CSB reduced oxidative stress induced by the HELP diet, upregulated the activity of GSH-Px and SOD, and decreased the content of MDA and ROS. CSB also mitigated the HELP diet-induced inflammatory response by blocking TNF-α, IL-1β, and F4/80. In addition, dietary CSB supplementation attenuated HELP-induced activation of the mitochondrial unfolded protein response (UPRmt), mitochondrial damage, and decline of ATPase activity. HELP diet decreased the autophagosome formation, and downregulated LC3B but upregulated p62 protein expression, which CSB administration reversed. CSB reduced HELP-induced apoptosis, as indicated by decreases in the Bax/Bcl-2, Caspase-9, Caspase-3, and Cyt C expression levels. CONCLUSIONS Dietary CSB could ameliorate HELP diet-induced hepatic dysfunction via modulating mitochondrial dynamics, autophagy, and apoptosis in laying hens. Consequently, CSB, as a feed additive, exhibited the capacity to prevent FLHS by modulating autophagy and lipid metabolism.
Collapse
Affiliation(s)
- Sasa Miao
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Tianming Mu
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Ru Li
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yan Li
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Wenyan Zhao
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jiankui Li
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xinyang Dong
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiaoting Zou
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
11
|
Veerichetty V, Saravanabavan I, Pradeep A, Abiraamasundari R. Development of gummy bear supplements and in vitro exploration of antioxidant and antiproliferative potential of Nuciferine. J Ayurveda Integr Med 2024; 15:100868. [PMID: 38183956 PMCID: PMC10789615 DOI: 10.1016/j.jaim.2023.100868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 10/01/2023] [Accepted: 11/22/2023] [Indexed: 01/08/2024] Open
Abstract
BACKGROUND Nuciferine's extensive therapeutic potential, including its robust antioxidant properties, is explored in response to the growing consumer preference for value-added organic foods. OBJECTIVE This study focuses on the formulation of gummy bear supplements fortified with nuciferine from Nelumbonucifera. The research highlights nuciferine's ability to combat oxidative stress induced by reactive oxygen species (ROS) and examines its application in maintaining basal ROS levels during oxidative stress conditions in skin melanoma cells. METHODS Characterization of extracted nuciferine through FTIR and UV-vis spectroscopy ensures product quality, while sensory evaluation compares honey and sugar as natural sweeteners for optimal flavor and consumer preference. SK-Mel-28 cellular ROS levels were measured using 2',7' -dichlorofluorescin diacetate dye before and after nuciferine treatment. SK-Mel-28 cell viability and dose response of nuciferine treatment was assessed using MTT assay. RESULTS Nuciferine shows potent inhibition of SK-Mel-28 cell proliferation with an IC50 of 39.31 ± 5.280 μg/ml and showed no cytotoxicity in normal L6 skeletal muscle cells. This study compares the sensory properties of honey and sugar based gummy bear formulations. CONCLUSION This project aims to create a high-quality, health-promoting dietary supplement that aligns with the evolving trends in organic nutrition and antioxidant supplementation.
Collapse
Affiliation(s)
| | | | - Aarushi Pradeep
- Department of Biotechnology, Kumaraguru College of Technology, India
| | | |
Collapse
|
12
|
Veerichetty V, Saravanabavan I. Molecular docking Study of Nuciferine as a Tyrosinase Inhibitor and Its Therapeutic Potential for Hyperpigmentation. Genomics Inform 2023; 21:e43. [PMID: 37813639 PMCID: PMC10584639 DOI: 10.5808/gi.23054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/28/2023] [Accepted: 09/02/2023] [Indexed: 10/11/2023] Open
Abstract
Melanin is synthesized by tyrosinase to protect the skin from ultraviolet light. However, overproduction and accumulation of melanin can result in hyperpigmentation and skin melanoma. Tyrosinase inhibitors are commonly used in the treatment of hyperpigmentation. Natural tyrosinase inhibitors are often favored over synthetic ones due to the potential side effects of the latter, which can include skin irritation, allergies, and other adverse reactions. Nuciferine, an alkaloid derived from Nelumbo nucifera, exhibits potent antioxidant and anti-proliferative properties. This study focused on the in silico screening of nuciferine for anti-tyrosinase activity, using kojic acid, ascorbic acid, and resorcinol as standards. The tyrosinase protein target was selected through homology modeling. The residues of the substrate binding pocket and active site pockets were identified for the purposes of grid box optimization and docking. Nuciferine demonstrated a binding energy of -7.0 kcal/mol and a Ki of 5 µM, both of which were comparatively higher than the corresponding values of kojic acid, which showed -5.3 kcal/mol and 122 µM respectively. Therefore, nuciferine is a potent natural tyrosinase inhibitor and shows promising potential for application in the treatment of hyperpigmentation and skin melanoma.
Collapse
Affiliation(s)
- Veerabhuvaneshwari Veerichetty
- Department of Biotechnology, Kumaraguru College of Technology affiliated with Anna University, Coimbatore, Tamil Nadu 641006, India
| | - Iswaryalakshmi Saravanabavan
- Department of Biotechnology, Kumaraguru College of Technology affiliated with Anna University, Coimbatore, Tamil Nadu 641006, India
| |
Collapse
|
13
|
Pasdaran A, Hassani B, Tavakoli A, Kozuharova E, Hamedi A. A Review of the Potential Benefits of Herbal Medicines, Small Molecules of Natural Sources, and Supplements for Health Promotion in Lupus Conditions. Life (Basel) 2023; 13:1589. [PMID: 37511964 PMCID: PMC10416186 DOI: 10.3390/life13071589] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/05/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
The Latin word lupus, meaning wolf, was in the medical literature prior to the 1200s to describe skin lesions that devour flesh, and the resources available to physicians to help people were limited. The present text reviews the ethnobotanical and pharmacological aspects of medicinal plants and purified molecules from natural sources with efficacy against lupus conditions. Among these molecules are artemisinin and its derivatives, antroquinonol, baicalin, curcumin, emodin, mangiferin, salvianolic acid A, triptolide, the total glycosides of paeony (TGP), and other supplements such as fatty acids and vitamins. In addition, medicinal plants, herbal remedies, mushrooms, and fungi that have been investigated for their effects on different lupus conditions through clinical trials, in vivo, in vitro, or in silico studies are reviewed. A special emphasis was placed on clinical trials, active phytochemicals, and their mechanisms of action. This review can be helpful for researchers in designing new goal-oriented studies. It can also help practitioners gain insight into recent updates on supplements that might help patients suffering from lupus conditions.
Collapse
Affiliation(s)
- Ardalan Pasdaran
- Department of Pharmacognosy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 7146864685, Iran;
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz 7146864685, Iran
| | - Bahareh Hassani
- Student Research Committee, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 7146864685, Iran;
| | - Ali Tavakoli
- Research Center for Traditional Medicine and History of Medicine, Department of Persian Medicine, School of Medicine, Shiraz University of Medical Sciences, Shiraz 7134845794, Iran;
| | - Ekaterina Kozuharova
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Sofia, 1431 Sofia, Bulgaria;
| | - Azadeh Hamedi
- Department of Pharmacognosy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 7146864685, Iran;
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz 7146864685, Iran
| |
Collapse
|
14
|
Bishayee A. Molecular Mechanisms Underlying Cancer Prevention and Intervention with Bioactive Food Components. Cancers (Basel) 2023; 15:3383. [PMID: 37444493 DOI: 10.3390/cancers15133383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 06/25/2023] [Indexed: 07/15/2023] Open
Abstract
Cancer is the second-leading cause of death in the world, and it represents a major health challenge [...].
Collapse
Affiliation(s)
- Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| |
Collapse
|
15
|
Croley CR, Pumarol J, Delgadillo BE, Cook AC, Day F, Kaceli T, Ward CC, Husain I, Husain A, Banerjee S, Bishayee A. Signaling pathways driving ocular malignancies and their targeting by bioactive phytochemicals. Pharmacol Ther 2023:108479. [PMID: 37330112 DOI: 10.1016/j.pharmthera.2023.108479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/05/2023] [Accepted: 06/12/2023] [Indexed: 06/19/2023]
Abstract
Ocular cancers represent a rare pathology. The American Cancer Society estimates that 3,360 cases of ocular cancer occur annually in the United States. The major types of cancers of the eye include ocular melanoma (also known as uveal melanoma), ocular lymphoma, retinoblastoma, and squamous cell carcinoma. While uveal melanoma is one of the primary intraocular cancers with the highest occurrence in adults, retinoblastoma remains the most common primary intraocular cancer in children, and squamous cell carcinoma presents as the most common conjunctival cancer. The pathophysiology of these diseases involves specific cell signaling pathways. Oncogene mutations, tumor suppressor mutations, chromosome deletions/translocations and altered proteins are all described as causal events in developing ocular cancer. Without proper identification and treatment of these cancers, vision loss, cancer spread, and even death can occur. The current treatments for these cancers involve enucleation, radiation, excision, laser treatment, cryotherapy, immunotherapy, and chemotherapy. These treatments present a significant burden to the patient that includes a possible loss of vision and a myriad of side effects. Therefore, alternatives to traditional therapy are urgently needed. Intercepting the signaling pathways for these cancers with the use of naturally occurring phytochemicals could be a way to relieve both cancer burden and perhaps even prevent cancer occurrence. This research aims to present a comprehensive review of the signaling pathways involved in various ocular cancers, discuss current therapeutic options, and examine the potential of bioactive phytocompounds in the prevention and targeted treatment of ocular neoplasms. The current limitations, challenges, pitfalls, and future research directions are also discussed.
Collapse
Affiliation(s)
- Courtney R Croley
- Healthcare Corporation of America, Department of Ophthalmology, Morsani College of Medicine, University of South Florida, Hudson, FL 34667, USA
| | - Joshua Pumarol
- Ross University School of Medicine, Miramar, FL 33027, USA
| | - Blake E Delgadillo
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| | - Andrew C Cook
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| | - Faith Day
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| | - Tea Kaceli
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| | - Caroline C Ward
- Morsani College of Medicine, University of South Florida, Tampa, FL 33602, USA
| | - Imran Husain
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Erie, PA 16509, USA
| | - Ali Husain
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Erie, PA 16509, USA
| | - Sabyasachi Banerjee
- Department of Pharmaceutical Chemistry, Gupta College of Technological Sciences, Asansol 713 301, India
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA.
| |
Collapse
|
16
|
Park D, Yoon JE, Choi B, Lee YJ, Ha IH. Complex Extract of Polygonatum sibiricum and Nelumbinis semen Improves Menopause Symptoms via Regulation of Estrogen Receptor Beta in an Ovariectomized Rat Model. Nutrients 2023; 15:nu15112443. [PMID: 37299404 DOI: 10.3390/nu15112443] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/17/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
Menopause is a hormone-deficiency state that causes facial flushing, vaginal dryness, depression, anxiety, insomnia, obesity, osteoporosis, and cardiovascular disease as ovarian function decreases. Hormone-replacement therapy is mainly used to treat menopause; however, its long-term use is accompanied by side effects such as breast cancer and endometriosis. To identify the effect of a complex extract of Polygonatum sibiricum (PS) and Nelumbinis semen (NS) on improving menopause without side effects, an ovariectomized rat model was established to analyze several menopause symptoms. Compared to single extracts, the complex extract restored vaginal epithelial cell thickness and decreased serotonin concentration by increasing the estrogen receptors ERα (ESR1) and ERβ (ESR2), depending on the ratio. Although the complex extract exerted a lower weight-loss effect than the single extracts, improved blood-lipid metabolism was observed after increasing high-density lipoprotein cholesterol levels and decreasing low-density lipoprotein cholesterol and triglyceride levels, and ovariectomy-induced osteoporosis was alleviated by suppressing osteoclast production. Thus, by increasing only ERβ expression without regulating ERα expression in the uterus, the complex extract of PS and NS may be a natural treatment for improving menopause symptoms without side effects, such as endometriosis.
Collapse
Affiliation(s)
- Doori Park
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, 538, Gangnam-daero, Gangnam-gu, Seoul 06110, Republic of Korea
| | - Jee-Eun Yoon
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, 538, Gangnam-daero, Gangnam-gu, Seoul 06110, Republic of Korea
| | - Boram Choi
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, 538, Gangnam-daero, Gangnam-gu, Seoul 06110, Republic of Korea
| | - Yoon-Jae Lee
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, 538, Gangnam-daero, Gangnam-gu, Seoul 06110, Republic of Korea
| | - In-Hyuk Ha
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, 538, Gangnam-daero, Gangnam-gu, Seoul 06110, Republic of Korea
| |
Collapse
|
17
|
Pyne ME, Gold ND, Martin VJJ. Pathway elucidation and microbial synthesis of proaporphine and bis-benzylisoquinoline alkaloids from sacred lotus (Nelumbo nucifera). Metab Eng 2023; 77:162-173. [PMID: 37004909 DOI: 10.1016/j.ymben.2023.03.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 03/07/2023] [Accepted: 03/25/2023] [Indexed: 04/03/2023]
Abstract
Sacred lotus (Nelumbo nucifera) has been utilized as a food, medicine, and spiritual symbol for nearly 3000 years. The medicinal properties of lotus are largely attributed to its unique profile of benzylisoquinoline alkaloids (BIAs), which includes potential anti-cancer, anti-malarial and anti-arrhythmic compounds. BIA biosynthesis in sacred lotus differs markedly from that of opium poppy and other members of the Ranunculales, most notably in an abundance of BIAs possessing the (R)-stereochemical configuration and the absence of reticuline, a major branchpoint intermediate in most BIA producers. Owing to these unique metabolic features and the pharmacological potential of lotus, we set out to elucidate the BIA biosynthesis network in N. nucifera. Here we show that lotus CYP80G (NnCYP80G) and a superior ortholog from Peruvian nutmeg (Laurelia sempervirens; LsCYP80G) stereospecifically convert (R)-N-methylcoclaurine to the proaporphine alkaloid glaziovine, which is subsequently methylated to pronuciferine, the presumed precursor to nuciferine. While sacred lotus employs a dedicated (R)-route to aporphine alkaloids from (R)-norcoclaurine, we implemented an artificial stereochemical inversion approach to flip the stereochemistry of the core BIA pathway. Exploiting the unique substrate specificity of dehydroreticuline synthase from common poppy (Papaver rhoeas) and pairing it with dehydroreticuline reductase enabled de novo synthesis of (R)-N-methylcoclaurine from (S)-norcoclaurine and its subsequent conversion to pronuciferine. We leveraged our stereochemical inversion approach to also elucidate the role of NnCYP80A in sacred lotus metabolism, which we show catalyzes the stereospecific formation of the bis-BIA nelumboferine. Screening our collection of 66 plant O-methyltransferases enabled conversion of nelumboferine to liensinine, a potential anti-cancer bis-BIA from sacred lotus. Our work highlights the unique benzylisoquinoline metabolism of N. nucifera and enables the targeted overproduction of potential lotus pharmaceuticals using engineered microbial systems.
Collapse
Affiliation(s)
- Michael E Pyne
- Department of Biology, Concordia University, Montréal, Québec, Canada; Centre for Applied Synthetic Biology, Concordia University, Montréal, Québec, Canada.
| | - Nicholas D Gold
- Centre for Applied Synthetic Biology, Concordia University, Montréal, Québec, Canada; Concordia Genome Foundry, Concordia University, Montréal, Québec, Canada
| | - Vincent J J Martin
- Department of Biology, Concordia University, Montréal, Québec, Canada; Centre for Applied Synthetic Biology, Concordia University, Montréal, Québec, Canada.
| |
Collapse
|
18
|
Effect of Lactobacillus plantarum Fermentation on Metabolites in Lotus Leaf Based on Ultra-High-Performance Liquid Chromatography–High-Resolution Mass Spectrometry. FERMENTATION 2022. [DOI: 10.3390/fermentation8110599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The lotus leaf is a raw material commonly used in slimming herbal products, but the deep processing technology is insufficient. Lactic acid bacteria (LAB) fermentation is an effective method to improve the efficacy of plant materials. In this study, ultra-high-performance liquid chromatography–high-resolution mass spectrometry (UHPLC–HR-MS) was used to explore the differential metabolites of a lotus leaf aqueous extract before and after fermentation. Information about the metabolites in the water extract of lotus leaves before and after fermentation was collected in positive- and negative-ion modes, and the metabolites identified before and after fermentation were screened by multivariate statistical analysis. A total of 91 different metabolites were obtained. They included flavonoids, alkaloids, phenylpropanoids, organic acids and derivatives, terpenoids, fatty acids and fatty acyls, phenols, amino acid derivatives and others. Compared with the metabolites’ levels before fermentation, the relative contents of 68 metabolites were upregulated after fermentation, and the relative contents of 23 metabolites were downregulated. A Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis identified 25 metabolic pathways, of which flavone and flavonol biosynthesis, citrate cycle and flavonoid biosynthesis were the main metabolic pathways. The results of this study can provide a basis for further research and the development of products containing lotus leaves fermented by LAB.
Collapse
|
19
|
He Y, Tao Y, Qiu L, Xu W, Huang X, Wei H, Tao X. Lotus ( Nelumbo nucifera Gaertn.) Leaf-Fermentation Supernatant Inhibits Adipogenesis in 3T3-L1 Preadipocytes and Suppresses Obesity in High-Fat Diet-Induced Obese Rats. Nutrients 2022; 14:4348. [PMID: 36297031 PMCID: PMC9610561 DOI: 10.3390/nu14204348] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 10/01/2022] [Accepted: 10/12/2022] [Indexed: 11/29/2022] Open
Abstract
The lotus (Nelumbo nucifera Gaertn.) leaf is a typical homologous ingredient of medicine and food with lipid-lowering and weight-loss effects. In the present study, lotus leaves were fermented by two probiotics, Enterococcus faecium WEFA23 and Enterococcus hirae WEHI01, and the anti-adipogenic effect of Enterococcus fermented lotus leaf supernatant (FLLS) was evaluated in 3T3-L1 preadipocytes with the aim of exploring whether its anti-obesity ability will be enhanced after fermentation with Enterococcus and to dig out the potential corresponding mechanism. The FLLS fermented by E. hirae WEHI01 (FLLS-WEHI01) was selected and further investigated for its ability to inhibit obesity in vivo in high-fat diet (HFD)-induced obese rats (male, 110 ± 5 g, 4 weeks old) due to its superior inhibitory effect on adipogenesis and lipid accumulation (inhibition rate of up to 56.17%) in 3T3-L1 cells (p = 0.008 for WEHI01-L, p < 0.001 for WEHI01-H). We found that the oral administration of both the low and high doses of FLLS-WEHI01 could achieve some effects, namely decreasing body weight (p < 0.001), epididymal fat mass, adipocyte cell size, LDL-C levels (p = 0.89, 0.02, respectively), liver TC levels (p < 0.001, p = 0.01, respectively), and TG levels (p = 0.2137, p = 0.0464, respectively), fasting blood glucose (p = 0.1585, p = 0.0009), and improved insulin resistance (p = 0.33, 0.01, respectively) in rats of the model group. Moreover, the administration of both high and low doses of FLLS-WEHI01 decreased the transcription levels of adipogenic transcription factors and corresponding genes such as Pparγ (p < 0.001), Cebpα (p < 0.001), Acc (p < 0.001), and Fas (p < 0.001) by at least three times. These results indicate that FLLS-WEHI01 can potentially be developed as an healthy, anti-obesity foodstuff.
Collapse
Affiliation(s)
- Yao He
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Yue Tao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Liang Qiu
- Department of Medical Translational Center, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Wenfeng Xu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Xiaoli Huang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Hua Wei
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Xueying Tao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| |
Collapse
|
20
|
Morovati MR, Ghanbari-Movahed M, Barton EM, Farzaei MH, Bishayee A. A systematic review on potential anticancer activities of Ficus carica L. with focus on cellular and molecular mechanisms. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 105:154333. [PMID: 35952577 DOI: 10.1016/j.phymed.2022.154333] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 06/24/2022] [Accepted: 07/09/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Many substances derived from nutritional or medicinal plants have been studied for their chemopreventive and antineoplastic properties. Among those studied, Ficus carica has shown to have a significant ability to inhibit tumor formation and development of cancer cells through modulating various signaling mechanisms and interaction including a large number of cell signaling molecules. PURPOSE The goal of this study is to provide a critical and complete evaluation of F. carica's anticancer capacity in various malignancies, as well as related molecular targets. METHODS Research was conducted electronically on scholarly scientific databases, including Science Direct, PubMed, and Scopus. Published papers were analyzed and investigated using the keywords, Ficus carica, figs, cancer, malignancies and tumor based on established selection criteria. In this systematic review, 27 individual studies were considered. RESULTS Treatment with F. carica alone or in combination with other medications was linked to anticancer activity with significant evidence. Furthermore, F. carica has been shown to use multitargeted pathways to prevent cancer initiation and development by modulating numerous dysregulated signaling cascades involved in cell proliferation, cell cycle regulation, apoptosis, autophagy inflammatory processes, metastasis, invasion, and angiogenesis. CONCLUSION Our findings suggest that F. carica and its phytochemicals have the potential for cancer prevention and therapy. Nonetheless, additional mechanistic studies with pure compounds derived from F. carica and well-designed clinical trials are needed to advance our knowledge to clinical application.
Collapse
Affiliation(s)
- Mohammad Reza Morovati
- Persian Medicine Department, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah 6714869914, Iran
| | - Maryam Ghanbari-Movahed
- Medical Technology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 6718874414, Iran; Department of Biology, Faculty of Science, University of Guilan, Rasht 4193833697, Iran
| | - Emily M Barton
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| | - Mohammad Hosein Farzaei
- Medical Technology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 6718874414, Iran; Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran.
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA.
| |
Collapse
|
21
|
Wang L, Zhang J, Shen W, Zeng X, Lee HK, Tang S. Can Direct-Immersion Aqueous–Aqueous Microextraction Be Achieved When Using a Single-Drop System? Anal Chem 2022; 94:12538-12545. [DOI: 10.1021/acs.analchem.2c03017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Lina Wang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu Province, PR China
| | - Jinghui Zhang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu Province, PR China
| | - Wei Shen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu Province, PR China
| | - Xuemin Zeng
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu Province, PR China
| | - Hian Kee Lee
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu Province, PR China
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Sheng Tang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu Province, PR China
| |
Collapse
|
22
|
Lin ES, Huang CY. Cytotoxic Activities and the Allantoinase Inhibitory Effect of the Leaf Extract of the Carnivorous Pitcher Plant Nepenthes miranda. PLANTS (BASEL, SWITZERLAND) 2022; 11:2265. [PMID: 36079647 PMCID: PMC9460348 DOI: 10.3390/plants11172265] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/25/2022] [Accepted: 08/30/2022] [Indexed: 05/14/2023]
Abstract
Nepenthes are carnivorous pitcher plants that have several ethnobotanical uses, such as curing stomachache and fever. Here, we prepared different extracts from the stem, leaf, and pitcher of Nepenthes miranda to further investigate their pharmacological potential. The leaf extract of N. miranda obtained by 100% acetone (N. miranda-leaf-acetone) was used in this study to analyze the cytotoxic activities, antioxidation capacity, antibacterial activity, and allantoinase (ALLase) inhibitory effect of this plant. The cytotoxic effects of N. miranda-leaf-acetone on the survival, apoptosis, and migration of the cancer cell lines PC-9 pulmonary adenocarcinoma, B16F10 melanoma, and 4T1 mammary carcinoma cells were demonstrated. Based on collective data, the cytotoxic activities of N. miranda-leaf-acetone followed the order: B16F10 > 4T1 > PC-9 cells. In addition, the cytotoxic activities of N. miranda-leaf-acetone were synergistically enhanced when co-acting with the clinical anticancer drug 5-fluorouracil. N. miranda-leaf-acetone could also inhibit the activity of ALLase, a key enzyme in the catabolism pathway for purine degradation. Through gas chromatography−mass spectrometry, the 16 most abundant ingredients in N. miranda-leaf-acetone were identified. The top six compounds in N. miranda-leaf-acetone, namely, plumbagin, lupenone, palmitic acid, stigmast-5-en-3-ol, neophytadiene, and citraconic anhydride, were docked to ALLase, and their docking scores were compared. The docking results suggested plumbagin and stigmast-5-en-3-ol as potential inhibitors of ALLase. Overall, these results may indicate the pharmacological potential of N. miranda for further medical applications.
Collapse
Affiliation(s)
- En-Shyh Lin
- Department of Beauty Science, National Taichung University of Science and Technology, Taichung City 403, Taiwan
| | - Cheng-Yang Huang
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung City 402, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung City 402, Taiwan
| |
Collapse
|
23
|
Qin L, Du F, Yang N, Zhang C, Wang Z, Zheng X, Tang J, Yang L, Dong C. Transcriptome Analyses Revealed the Key Metabolic Genes and Transcription Factors Involved in Terpenoid Biosynthesis in Sacred Lotus. Molecules 2022; 27:4599. [PMID: 35889471 PMCID: PMC9320166 DOI: 10.3390/molecules27144599] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/18/2022] [Accepted: 07/18/2022] [Indexed: 12/04/2022] Open
Abstract
As the largest group of structurally diverse metabolites, terpenoids are versatile natural compounds that act as metabolism mediators, plant volatiles, and ecological communicators. However, few terpenoid compounds have been identified in plant parts of sacred lotus (Nelumbo nucifera Gaertn.). To elucidate the molecular genetic basis of the terpene biosynthetic pathway, terpenes from different parts of the plant, including seeds (S), young leaves (YL), mature leaves (ML), white flowers (WF), yellow flowers (YF), and red flowers (RF), were identified by LC-MS/MS and the relative contents of the same terpenes in different parts were compared. The results indicate that all plant parts primarily consist of triterpenes, with only minor quantities of sesquiterpenes and diterpenes, and there were differences in the terpene content detected in different plant parts. To illustrate the biosynthesis of various terpenoids, RNA sequencing was performed to profile the transcriptomes of various plant parts, which generated a total of 126.95 GB clean data and assembled into 29,630 unigenes. Among these unigenes, 105 candidate unigenes are involved in the mevalonate (MVA) pathway, methyl-erythritol phosphate (MEP) pathway, terpenoid backbone biosynthesis pathway, and terpenoid synthases pathway. Moreover, the co-expression network between terpene synthase (TPS) and WRKY transcription factors provides new information for the terpene biosynthesis pathway.
Collapse
Affiliation(s)
- Lili Qin
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China; (L.Q.); (F.D.); (N.Y.); (C.Z.); (Z.W.); (J.T.)
| | - Fei Du
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China; (L.Q.); (F.D.); (N.Y.); (C.Z.); (Z.W.); (J.T.)
| | - Ningning Yang
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China; (L.Q.); (F.D.); (N.Y.); (C.Z.); (Z.W.); (J.T.)
| | - Chen Zhang
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China; (L.Q.); (F.D.); (N.Y.); (C.Z.); (Z.W.); (J.T.)
| | - Zhiwen Wang
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China; (L.Q.); (F.D.); (N.Y.); (C.Z.); (Z.W.); (J.T.)
| | - Xingwen Zheng
- White Lotus Industrial Development Center of Guangchang County, Fuzhou 344900, China; (X.Z.); (L.Y.)
| | - Jiawei Tang
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China; (L.Q.); (F.D.); (N.Y.); (C.Z.); (Z.W.); (J.T.)
| | - Liangbo Yang
- White Lotus Industrial Development Center of Guangchang County, Fuzhou 344900, China; (X.Z.); (L.Y.)
| | - Chen Dong
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China; (L.Q.); (F.D.); (N.Y.); (C.Z.); (Z.W.); (J.T.)
| |
Collapse
|
24
|
Nguyen TTL, Minh TL, Do DQ, Nguyen NVT. Optimization of alcohol extraction and spray-drying conditions for efficient processing and quality evaluation of instant tea powder from lotus and green tea leaves. PHARMACIA 2022. [DOI: 10.3897/pharmacia.69.e84650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Lotus and Green Tea leaves are two frequently used medicinal plants in Vietnam, utilized as food, drink, or in traditional treatments to help with weight loss and cholesterol reduction. The study’s major goal is to determine the parameters of the process preparation in order to generate instant tea powder that satisfies quality criteria for customer demand. Twenty experiments are conducted using the D-optimal model to evaluate the cause-effect relationship and optimize the production process of instant tea powder. Four independent variables are selected for the survey namely alcohol concentration (40%; 50%; 60%), carrier mass (10 g; 20 g; 30 g), inlet air temperature (160 °C; 170 °C) and flow rate (4 rpm/min; 5 rpm/min). The instant tea powder is effectively created and met quality parameters, with a drying performance, moisture content, total phenol and flavonoid content of 29.15%, 4.83%, 45.29 mg GA/g, and 70.68 mg QE/g, respectively. In conclusion, the optimal parameters of the preparation process were identified, which included an alcohol content of 60%, a carrier mass of 10 g, an inlet air temperature of 165 °C, and a flow rate of 4 rpm/min.
Collapse
|
25
|
Bajalia EM, Azzouz FB, Chism DA, Giansiracusa DM, Wong CG, Plaskett KN, Bishayee A. Phytochemicals for the Prevention and Treatment of Renal Cell Carcinoma: Preclinical and Clinical Evidence and Molecular Mechanisms. Cancers (Basel) 2022; 14:3278. [PMID: 35805049 PMCID: PMC9265746 DOI: 10.3390/cancers14133278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/26/2022] [Accepted: 06/30/2022] [Indexed: 11/18/2022] Open
Abstract
Renal cell carcinoma (RCC) is associated with about 90% of renal malignancies, and its incidence is increasing globally. Plant-derived compounds have gained significant attention in the scientific community for their preventative and therapeutic effects on cancer. To evaluate the anticancer potential of phytocompounds for RCC, we compiled a comprehensive and systematic review of the available literature. Our work was conducted following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses criteria. The literature search was performed using scholarly databases such as PubMed, Scopus, and ScienceDirect and keywords such as renal cell carcinoma, phytochemicals, cancer, tumor, proliferation, apoptosis, prevention, treatment, in vitro, in vivo, and clinical studies. Based on in vitro results, various phytochemicals, such as phenolics, terpenoids, alkaloids, and sulfur-containing compounds, suppressed cell viability, proliferation and growth, showed cytotoxic activity, inhibited invasion and migration, and enhanced the efficacy of chemotherapeutic drugs in RCC. In various animal tumor models, phytochemicals suppressed renal tumor growth, reduced tumor size, and hindered angiogenesis and metastasis. The relevant antineoplastic mechanisms involved upregulation of caspases, reduction in cyclin activity, induction of cell cycle arrest and apoptosis via modulation of a plethora of cell signaling pathways. Clinical studies demonstrated a reduced risk for the development of kidney cancer and enhancement of the efficacy of chemotherapeutic drugs. Both preclinical and clinical studies displayed significant promise of utilizing phytochemicals for the prevention and treatment of RCC. Further research, confirming the mechanisms and regulatory pathways, along with randomized controlled trials, are needed to establish the use of phytochemicals in clinical practice.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA; (E.M.B.); (F.B.A.); (D.A.C.); (D.M.G.); (C.G.W.); (K.N.P.)
| |
Collapse
|
26
|
Huang YH, Chiang WY, Chen PJ, Lin ES, Huang CY. Anticancer and Antioxidant Activities of the Root Extract of the Carnivorous Pitcher Plant Sarracenia purpurea. PLANTS (BASEL, SWITZERLAND) 2022; 11:1668. [PMID: 35807620 PMCID: PMC9269354 DOI: 10.3390/plants11131668] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/15/2022] [Accepted: 06/20/2022] [Indexed: 05/27/2023]
Abstract
The carnivorous pitcher plant Sarracenia purpurea exhibits many ethnobotanical uses, including the treatments of type 2 diabetes and tuberculosis-like symptoms. In this study, we prepared different extracts from the leaves (pitchers), stems, and roots of S. purpurea and investigated their antioxidant and anticancer properties. To evaluate the extraction efficiency, we individually used different solvents, namely methanol, ethanol, acetone, and distilled water, for S. purpurea extract preparations. The root extract of S. purpurea, obtained by 100% acetone (S. purpurea-root-acetone), had the highest anticancer activities, antioxidation capacity (the DPPH activity with IC50 of 89.3 ± 2.2 μg/mL), antibacterial activities, total phenolic content (33.4 ± 0.7 mg GAE/g), and total flavonoid content (107.9 ± 2.2 mg QUE/g). The most abundant compounds in S. purpurea-root-acetone were identified using gas chromatography-mass spectrometry; 7,8-Dihydro-α-ionone was the major compound present in S. purpurea-root-acetone. In addition, the co-cytotoxicity of S. purpurea-root-acetone (combined with the clinical anticancer drug 5-fluorouracil (5-FU) on the survival, apoptosis, proliferation, and migration of the 4T1 mammary carcinoma) was examined. The combination of 5-FU with S. purpurea-root-acetone could be highly efficient for anti-4T1 cells. We also found that S. purpurea-root-acetone could inhibit the enzymatic activity of human dihydroorotase (huDHOase), an attractive target for potential anticancer chemotherapy. The sic most abundant compounds in S. purpurea-root-acetone were tested using an in silico analysis via MOE-Dock software for their binding affinities. The top-ranked docking conformations were observed for 7,8-dihydro-α-ionone and stigmast-5-en-3-ol, suggesting the inhibition potential against huDHOase. Overall, the collective data in this study may indicate the pharmacological potentials of S. purpurea-root-acetone for possible medical applications.
Collapse
Affiliation(s)
- Yen-Hua Huang
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung City 402, Taiwan; (Y.-H.H.); (W.-Y.C.); (P.-J.C.)
| | - Wei-Yu Chiang
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung City 402, Taiwan; (Y.-H.H.); (W.-Y.C.); (P.-J.C.)
| | - Pin-Jui Chen
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung City 402, Taiwan; (Y.-H.H.); (W.-Y.C.); (P.-J.C.)
| | - En-Shyh Lin
- Department of Beauty Science, National Taichung University of Science and Technology, Taichung City 403, Taiwan;
| | - Cheng-Yang Huang
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung City 402, Taiwan; (Y.-H.H.); (W.-Y.C.); (P.-J.C.)
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung City 402, Taiwan
| |
Collapse
|
27
|
Haber RA, Garcia RD, Hernandez JN, Jamieson S, Mondal A, Bishayee A. Papaya ( Carica papaya L.) for cancer prevention: Progress and promise. Crit Rev Food Sci Nutr 2022; 63:10499-10519. [PMID: 35638309 DOI: 10.1080/10408398.2022.2079607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
Cancer is a leading cause of morbidity and mortality across the globe. Emerging evidence suggests that consumption of a well-balanced diet containing a wide variety of vegetables, fruits, and whole grains can prevent the development of, halt, or reverse cancer progression. Carica papaya L. (papaya) has a wide distribution throughout many countries. Although the fruits of C. papaya are primarily consumed as food, various parts of this tree, including the bark, fruits, latex, seeds, and roots, have been used in traditional medicine for health promotion and disease mitigation. While numerous individual studies have investigated anticancer efficacies of various products and constituents of C. papaya, an up-to-date, comprehensive, and critical evaluation of available research data covering its role in the prevention and intervention of various human malignancies has not been conducted according to our knowledge. The purpose of this review is to present a systematic, comprehensive, and critical analysis of the cancer-preventive potential of C. papaya extracts, fractions, and isolated phytochemicals with a special emphasis on the cellular and molecular mechanisms of action. Moreover, the bioavailability, pharmacokinetics, and safety profiles of individual phytochemicals of C. papaya, as well as current limitations, challenges, and future directions of research, have also been discussed.
Collapse
Affiliation(s)
- Rebecca A Haber
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, Florida, USA
| | - Reicelle D Garcia
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, Florida, USA
| | - Jamie N Hernandez
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, Florida, USA
| | - Sarah Jamieson
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, Florida, USA
| | - Arijit Mondal
- Department of Pharmaceutical Chemistry, M.R. College of Pharmaceutical Sciences and Research, Balisha, India
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, Florida, USA
| |
Collapse
|
28
|
Park YM, Lee HY, Shin DY, Kim DS, Yoo JJ, Yang HJ, Kim MJ, Bae JS. Immune-Enhancing Effects of Co-treatment With Kalopanax pictus Nakai Bark and Nelumbo nucifera Gaertner Leaf Extract in a Cyclophosphamide-Induced Immunosuppressed Rat Model. Front Nutr 2022; 9:898417. [PMID: 35662944 PMCID: PMC9161550 DOI: 10.3389/fnut.2022.898417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 04/29/2022] [Indexed: 11/29/2022] Open
Abstract
Objective Immune system disorders can result in various pathological conditions, such as infections and cancer. Identifying therapies that enhance the immune response might be crucial for immunocompromised individuals. Therefore, we assessed the immune-enhancing effect of co-treatment with Kalopanax pictus Nakai Bark and Nelumbo nucifera Gaertner leaf extract (KPNN) in a cyclophosphamide (Cy)-induced immunosuppressed rat model. Materials and Methods For in vitro studies, macrophages and splenocytes were treated with various KPNN doses in the presence or absence of Cy. Macrophage viability, nitric oxide production, splenocyte viability, cytokine production and natural killer (NK) cell activity were analyzed. For in vivo studies, analysis of weekly body weight, dietary intake, tissue weight, immune-related blood cell count, cytokine levels, and spleen biopsy was performed in a Cy-induced immunocompromised animal model. Results KPNN significantly increased phospho-NF-κB and phospho-ERK protein levels and cell viability in macrophages. KPNN significantly increased the NK cell activity in splenocytes compared to that in the control. Cy treatment decreased tumor necrosis factor (TNF)-α, interleukin (IL)-6, and interferon-γ production. In the Cy-induced immunosuppression rat model, KPNN-treated rats had significantly higher body weights and tissue weights than the Cy-treated rats. Additionally, KPNN treatment restored the immune-related factors, such as total leukocyte, lymphocyte, and intermediate cell contents, to their normal levels in the blood. The blood cytokines (TNF-α and IL-6) were increased, and spleen tissue damage was significantly alleviated. Conclusions Collectively, KPNN exerts an immune-enhancing effect suggesting their potential as an immunostimulatory agent or functional food.
Collapse
Affiliation(s)
| | | | | | - Dae Sung Kim
- Central Research and Development, Hanpoong Pharm & Foods Co., Ltd., Wanju-gun, South Korea
| | - Jin Joo Yoo
- Central Research and Development, Hanpoong Pharm & Foods Co., Ltd., Wanju-gun, South Korea
| | | | - Min Jung Kim
- Korea Food Research Institute, Wanju-gun, South Korea
| | - Jun Sang Bae
- Department of Pathology, College of Korean Medicine, Wonkwang University, Iksan, South Korea
| |
Collapse
|
29
|
Bishayee A, Patel PA, Sharma P, Thoutireddy S, Das N. Correction: Bishayee et al. Lotus ( Nelumbo nucifera Gaertn.) and Its Bioactive Phytocompounds: A Tribute to Cancer Prevention and Intervention. Cancers 2022, 14, 529. Cancers (Basel) 2022; 14:2116. [PMID: 35565476 PMCID: PMC9099563 DOI: 10.3390/cancers14092116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 04/06/2022] [Indexed: 11/16/2022] Open
Abstract
In the original article, there was a mistake in the legend for Table 2 [...].
Collapse
Affiliation(s)
- Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA; (P.A.P.); (P.S.); (S.T.)
| | - Palak A. Patel
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA; (P.A.P.); (P.S.); (S.T.)
| | - Priya Sharma
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA; (P.A.P.); (P.S.); (S.T.)
| | - Shivani Thoutireddy
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA; (P.A.P.); (P.S.); (S.T.)
| | - Niranjan Das
- Department of Chemistry, Iswar Chandra Vidyasagar College, Belonia 799155, Tripura, India;
| |
Collapse
|
30
|
GC-MS Analysis of Bioactive Compounds in Methanolic Extracts of Papaver decaisnei and Determination of Its Antioxidants and Anticancer Activities. J FOOD QUALITY 2022. [DOI: 10.1155/2022/1405157] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The Papaver L. plant (Papaver decaisnei) has ethnobotanical records in many countries including Iraqi Kurdistan. The current study investigates the methanol (99.9%) extracts (10 μg/mL) of roots, leaves, and flowers of Papaver decaisnei in terms of phytochemistry by gas chromatography-mass spectrophotometry GC-MS, in vitro antioxidant activity by radical scavenging and reducing power assays, and finally, the anticancer actions as IC50 (inhibitory concentration at 50%) against human colorectal adenocarcinoma (Caco-2), mammary cancer cells (MCF-7), and human cervical carcinoma (HeLa) cells. The results showed 22, 19, and 17 chemicals for roots, leaves, and flowers of P. decaisnei, respectively. The prevalent organic compounds of P. decaisnei were alkaloids (62.03%), phenolics (55.43%), fatty acids (42.51%), esters (32.08%), terpenoids (25.59%), and phytosterols (15.68%), namely, roemerine (70.44%), 9,12,15-octadecatrien-1-ol (37.45%), hexadecanoic acid (33.72%), decarbomethoxytabersonine (24.49%), and γ-sitosterol (11.22%). The antioxidant activity of plant organs was within 39.1–143.5 μg/mL for DPPH, 135.4–276.4 μg/mL for ABTS, 12.4–34.3 μg/mL for FRAP, and 42.6–75.8 μg/mL for CUPRAC assays. The anticancer of P. decaisnei was found as 125.3–388.4 μg/mL against all tested cell lines (Caco-2, MCF-7, and HeLa). The detected alkaloids and bioactivity of P. decaisnei encourage future isolation of those remarkable alkaloids (reomerine) for potential usage in the pharmaceutical industry.
Collapse
|