1
|
Pawlicka M, Gumbarewicz E, Błaszczak E, Stepulak A. Transcription Factors and Markers Related to Epithelial-Mesenchymal Transition and Their Role in Resistance to Therapies in Head and Neck Cancers. Cancers (Basel) 2024; 16:1354. [PMID: 38611032 PMCID: PMC11010970 DOI: 10.3390/cancers16071354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/22/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
Head and neck cancers (HNCs) are heterogeneous and aggressive tumors of the upper aerodigestive tract. Although various histological types exist, the most common is squamous cell carcinoma (HNSCC). The incidence of HNSCC is increasing, making it an important public health concern. Tumor resistance to contemporary treatments, namely, chemo- and radiotherapy, and the recurrence of the primary tumor after its surgical removal cause huge problems for patients. Despite recent improvements in these treatments, the 5-year survival rate is still relatively low. HNSCCs may develop local lymph node metastases and, in the most advanced cases, also distant metastases. A key process associated with tumor progression and metastasis is epithelial-mesenchymal transition (EMT), when poorly motile epithelial tumor cells acquire motile mesenchymal characteristics. These transition cells can invade different adjacent tissues and finally form metastases. EMT is governed by various transcription factors, including the best-characterized TWIST1 and TWIST2, SNAIL, SLUG, ZEB1, and ZEB2. Here, we highlight the current knowledge of the process of EMT in HNSCC and present the main protein markers associated with it. This review focuses on the transcription factors related to EMT and emphasizes their role in the resistance of HNSCC to current chemo- and radiotherapies. Understanding the role of EMT and the precise molecular mechanisms involved in this process may help with the development of novel anti-cancer therapies for this type of tumor.
Collapse
Affiliation(s)
| | | | | | - Andrzej Stepulak
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 1 Chodzki Street, 20-093 Lublin, Poland; (M.P.); (E.G.); (E.B.)
| |
Collapse
|
2
|
Hyytiäinen A, Korelin K, Toriseva M, Wilkman T, Kainulainen S, Mesimäki K, Routila J, Ventelä S, Irjala H, Nees M, Al-Samadi A, Salo T. The effect of matrices on the gene expression profile of patient-derived head and neck carcinoma cells for in vitro therapy testing. Cancer Cell Int 2023; 23:147. [PMID: 37488620 PMCID: PMC10367262 DOI: 10.1186/s12935-023-02982-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 06/29/2023] [Indexed: 07/26/2023] Open
Abstract
OBJECTIVE Head and neck squamous cell carcinoma (HNSCC) is a highly aggressive tumor with a 5-year mortality rate of ~ 50%. New in vitro methods are needed for testing patients' cancer cell response to anti-cancer treatments. We aimed to investigate how the gene expression of fresh carcinoma tissue samples and freshly digested single cancer cells change after short-term cell culturing on plastic, Matrigel or Myogel. Additionally, we studied the effect of these changes on the cancer cells' response to anti-cancer treatments. MATERIALS/METHODS Fresh tissue samples from HNSCC patients were obtained perioperatively and single cells were enzymatically isolated and cultured on either plastic, Matrigel or Myogel. We treated the cultured cells with cisplatin, cetuximab, and irradiation; and performed cell viability measurement. RNA was isolated from fresh tissue samples, freshly isolated single cells and cultured cells, and RNA sequencing transcriptome profiling and gene set enrichment analysis were performed. RESULTS Cancer cells obtained from fresh tissue samples changed their gene expression regardless of the culturing conditions, which may be due to the enzymatic digestion of the tissue. Myogel was more effective than Matrigel at supporting the upregulation of pathways related to cancer cell proliferation and invasion. The impacts of anti-cancer treatments varied between culturing conditions. CONCLUSIONS Our study showed the challenge of in vitro cancer drug testing using enzymatic cell digestion. The upregulation of many targeted pathways in the cultured cells may partially explain the common clinical failure of the targeted cancer drugs that pass the in vitro testing.
Collapse
Affiliation(s)
- Aini Hyytiäinen
- Department of Oral and Maxillofacial Diseases, University of Helsinki, Helsinki, Finland
- Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Katja Korelin
- Department of Oral and Maxillofacial Diseases, University of Helsinki, Helsinki, Finland
- Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Mervi Toriseva
- Institute of Biomedicine, University of Turku, Turku, 20520, Finland
- FICAN West Cancer Centre, University of Turku and Turku University Hospital, Turku, Finland
| | - Tommy Wilkman
- Department of Oral and Maxillofacial Diseases, Helsinki University Hospital, Helsinki, Finland
| | - Satu Kainulainen
- Department of Oral and Maxillofacial Diseases, Helsinki University Hospital, Helsinki, Finland
| | - Karri Mesimäki
- Department of Oral and Maxillofacial Diseases, Helsinki University Hospital, Helsinki, Finland
| | - Johannes Routila
- FICAN West Cancer Centre, University of Turku and Turku University Hospital, Turku, Finland
- Department of Otorhinolaryngology - Head and Neck surgery, Turku University Hospital and University of Turku, Turku, Finland
| | - Sami Ventelä
- FICAN West Cancer Centre, University of Turku and Turku University Hospital, Turku, Finland
- Department of Otorhinolaryngology - Head and Neck surgery, Turku University Hospital and University of Turku, Turku, Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Heikki Irjala
- Department of Otorhinolaryngology - Head and Neck surgery, Turku University Hospital and University of Turku, Turku, Finland
| | - Matthias Nees
- Institute of Biomedicine, University of Turku, Turku, 20520, Finland
- FICAN West Cancer Centre, University of Turku and Turku University Hospital, Turku, Finland
| | - Ahmed Al-Samadi
- Department of Oral and Maxillofacial Diseases, University of Helsinki, Helsinki, Finland
- Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Institute of Dentistry, School of Medicine, University of Eastern Finland, Kuopio Campus, Kuopio, Finland
| | - Tuula Salo
- Department of Oral and Maxillofacial Diseases, University of Helsinki, Helsinki, Finland.
- Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
- Research Unit of Population Health, Faculty of Medicine, University of Oulu, Oulu, Finland.
- Medical Research Center, Oulu University Hospital, Oulu, Finland.
- Department of Pathology, Helsinki University Hospital (HUS), Helsinki, Finland.
| |
Collapse
|
3
|
Shen Z, Zhang P, Zhang W, Luo F, Xu H, Chen S, Kang M. IL-1RA inhibits esophageal carcinogenesis and lymphangiogenesis via downregulating VEGF-C and MMP9. Funct Integr Genomics 2023; 23:164. [PMID: 37198330 PMCID: PMC10191916 DOI: 10.1007/s10142-023-01049-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/31/2023] [Accepted: 04/03/2023] [Indexed: 05/19/2023]
Abstract
Interleukin-1 receptor antagonist (IL-1RA) has been shown to play an important role in cancer progression. However, its pathogenic effects and molecular mechanism in the malignant progression of esophageal squamous cell carcinoma (ESCC) remain largely unknown. This study was designed to explore the function of IL-1RA in ESCC and determine the relationship between IL-1RA and lymph node metastasis in ESCC patients. The clinical relevance of IL-1RA in relation to the clinicopathological features and prognosis of 100 ESCC patients was analyzed. The function and underlying mechanisms of IL-1RA in the growth, invasion, and lymphatic metastasis in ESCC were explored both in vitro and in vivo. The therapeutic effect of anakinra, an IL-1 receptor antagonist, on ESCC was also evaluated in animal experiments. Downregulation of IL-1RA was observed in ESCC tissues and cells and was found to be strongly correlated with pathological stage (P = 0.034) and lymphatic metastasis (P = 0.038). Functional assays demonstrated that upregulation of IL-1RA reduced cell proliferation, migration, and lymphangiogenesis both in vitro and in vivo. Mechanistic studies revealed that overexpression of IL-1RA activated the epithelial-to-mesenchymal transition (EMT) in the ESCC cells through activation of MMP9 and regulation of the expression and secretion of VEGF-C through the PI3K/NF-κB pathway. Anakinra treatment resulted in significant inhibition of tumor growth, lymphangiogenesis, and metastasis. IL-1RA inhibits lymph node metastasis of ESCC by regulating the EMT through activation of matrix metalloproteinase 9(MMP9) and lymphangiogenesis, driven by VEGF-C and the NF-κB signaling pathway. Anakinra may be an effective drug for the inhibition of ESCC tumor formation and lymph node metastasis.
Collapse
Affiliation(s)
- Zhimin Shen
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Peipei Zhang
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Weiguang Zhang
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Fei Luo
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Hui Xu
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Shuchen Chen
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, China.
| | - Mingqiang Kang
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, China.
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, 350122, China.
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, 350122, Fujian, China.
- Key Laboratory of Cardio-Thoracic Surgery (Fujian Medical University), Fujian Province University, Fuzhou, China.
| |
Collapse
|
4
|
The interplay of cytokine signaling and non-coding RNAs in head and neck squamous cell carcinoma pathobiology. Mol Biol Rep 2022; 49:10825-10847. [DOI: 10.1007/s11033-022-07770-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 07/05/2022] [Indexed: 10/16/2022]
|
5
|
Wiechec E, Matic N, Ali A, Roberg K. Hypoxia induces radioresistance, epithelial‑mesenchymal transition, cancer stem cell‑like phenotype and changes in genes possessing multiple biological functions in head and neck squamous cell carcinoma. Oncol Rep 2022; 47:58. [PMID: 35059742 PMCID: PMC8808704 DOI: 10.3892/or.2022.8269] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 12/16/2021] [Indexed: 12/16/2022] Open
Abstract
Hypoxia has been linked with increased resistance to treatment in various solid tumors, including head and neck squamous cell carcinoma (HNSCC). The aim of the present study was to identify genes involved in hypoxia‑mediated responses to radiotherapy in HNSCC. A total of three HNSCC cell lines with an epithelial phenotype were selected for this study and cultured under normoxic (21% O2) or hypoxic (1% O2) conditions. The sensitivity of the HNSCC cells to radiotherapy was assessed by a crystal violet assay. Western blotting (for protein expression), cDNA microarrays and reverse transcription‑quantitative PCR (for gene expression) were also applied. Small interfering RNA silencing was used to knock down target genes. The results revealed that hypoxia negatively affected the response of HNSCC cells to radiotherapy. Of note, increased levels of N‑cadherin, vimentin and fibronectin, as well as stem cell‑associated transcription factors, were observed under hypoxia. The microarray analysis revealed a number of hypoxia‑regulated genes that were involved in multiple biological functions. However, downregulation of hypoxia‑regulated genes did not affect sensitivity to radiotherapy of the investigated cell lines. Taken together, the present findings indicated several important pathways and genes that were involved in hypoxia and radiotherapy resistance. It is hypothesized that panels of reported hypoxia‑regulated genes may be useful for the prediction of radiotherapy responses in patients with HNSCC.
Collapse
Affiliation(s)
- Emilia Wiechec
- Department of Biomedical and Clinical Sciences, Division of Cell Biology, Linköping University, 58185 Linköping, Sweden
| | - Natasa Matic
- Department of Otorhinolaryngology in Linköping, Anaesthetics, Operations and Specialty Surgery Center, Region Östergötland, 58185 Linköping, Sweden
| | - Ashfaq Ali
- National Bioinformatics Infrastructure Sweden, Science for Life Laboratory; Department of Immune Technology, Lund University, 22100 Lund, Sweden
| | - Karin Roberg
- Department of Biomedical and Clinical Sciences, Division of Cell Biology, Linköping University, 58185 Linköping, Sweden
| |
Collapse
|
6
|
Karpińska K, Gielata M, Gwiazdowska A, Boryń Ł, Kobielak A. Catulin Based Reporter System to Track and Characterize the Population of Invasive Cancer Cells in the Head and Neck Squamous Cell Carcinoma. Int J Mol Sci 2021; 23:ijms23010140. [PMID: 35008571 PMCID: PMC8745103 DOI: 10.3390/ijms23010140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 12/13/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is an aggressive tumor with a poor prognosis due to late diagnosis and loco-regional metastasis. Partial or more complete epithelial-mesenchymal transition (EMT) plays a role in tumor progression; however, it remains a challenge to observe the EMT in vivo, due to its transient nature. Here, we developed a novel catulin promoter-based reporter system that allows us to isolate and characterize in vivo a small fraction of invasive cancer cells. The analyses of tumors revealed that Catulin-green fluorescent protein (GFP)-positive cells were enriched in clusters of cells at the tumor invasion front. A functional genomic study unveiled genes involved in cellular movement and invasion providing a molecular profile of HNSCC invasive cells. This profile overlapped partially with the expression of signature genes related to the partial EMT available from the single cell analysis of human HNSCC specimens, highlighting the relevance of our data to the clinical disease progression state. Interestingly, we also observed upregulations of genes involved in axonal guidance-L1 cell adhesion molecule (L1CAM), neuropilin-1, semaphorins, and ephrins, indicating potential interactions of cancer cells and neuronal components of the stroma. Taken together, our data indicated that the catulin reporter system marked a population of invasive HNSCC cells with a molecular profile associated with cancer invasion.
Collapse
Affiliation(s)
- Kamila Karpińska
- Laboratory of the Molecular Biology of Cancer, Centre of New Technologies, University of Warsaw, 00-927 Warsaw, Poland; (K.K.); (M.G.); (A.G.)
| | - Mateusz Gielata
- Laboratory of the Molecular Biology of Cancer, Centre of New Technologies, University of Warsaw, 00-927 Warsaw, Poland; (K.K.); (M.G.); (A.G.)
| | - Aleksandra Gwiazdowska
- Laboratory of the Molecular Biology of Cancer, Centre of New Technologies, University of Warsaw, 00-927 Warsaw, Poland; (K.K.); (M.G.); (A.G.)
| | - Łukasz Boryń
- Laboratory of Stem Cells, Tissue Development and Regeneration, Centre of New Technologies, University of Warsaw, 00-927 Warsaw, Poland;
| | - Agnieszka Kobielak
- Laboratory of the Molecular Biology of Cancer, Centre of New Technologies, University of Warsaw, 00-927 Warsaw, Poland; (K.K.); (M.G.); (A.G.)
- Correspondence: ; Tel.: +48-22-55-43-735
| |
Collapse
|
7
|
Ji H, Song H, Wang Z, Jiao P, Xu J, Li X, Du H, Wu H, Zhong Y. FAM83A promotes proliferation and metastasis via Wnt/β-catenin signaling in head neck squamous cell carcinoma. J Transl Med 2021; 19:423. [PMID: 34641907 PMCID: PMC8507380 DOI: 10.1186/s12967-021-03089-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 09/26/2021] [Indexed: 11/23/2022] Open
Abstract
This research aimed to investigate the expression and function of FAM83A in the proliferation and metastasis in head and neck squamous cell carcinoma (HNSCC). FAM83A mRNA and protein expressions in HNSCC were detected in primary HNSCC samples and cell lines. The associations between FAM83A expression and clinicopathologic variables were evaluated through tissue microarrays. Besides, FAM83A knockdown and overexpression cell lines were constructed to assess cell growth and metastasis in vitro and the relationship between FAM83A and epithelial-mesenchymal transition (EMT). Furthermore, two models of xenograft tumors in nude mice were used to assess the tumorigenicity and metastasis ability of FAM83A in vivo. In the present study, overexpression of FAM83A in HNSCC samples was significantly associated with tumor size, lymph node status and clinical tumor stages. Mechanically, FAM83A could promote HNSCC cell growth and metastasis by inducing EMT via activating Wnt/β-catenin signaling pathway. Rescue experiment demonstrated the inhibition of β-catenin could counteract the function of FAM83A. Also, the FAM83A knockdown could suppress tumor growth and distant metastasis in the xenograft animal models of HNSCC. In conclusion, this study identifies FAM83A as an oncogene of HNSCC. This study provides new insights into the molecular pathways that contribute to EMT in HNSCC. We revealed a previously unknown FAM83A-Wnt–β-catenin signaling axis involved in the EMT of HNSCC. There may be a potential bi-directional signaling loop between FAM83A and Wnt/β-catenin signaling pathway in HNSCC.
Collapse
Affiliation(s)
- Huan Ji
- Jiangsu Province Key Laboratory of Oral Diseases, School of Stomatology, Nanjing Medical University, Nanjing, China.,Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, School of Stomatology, Nanjing Medical University, Nanjing, China.,Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
| | - Haiyang Song
- Jiangsu Province Key Laboratory of Oral Diseases, School of Stomatology, Nanjing Medical University, Nanjing, China.,Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, School of Stomatology, Nanjing Medical University, Nanjing, China.,Department of General Dentistry, Department of Oral Medicine, The Affiliated Stomatological Hospital of Nanjing Medical University, #136 Hanzhong Road, Nanjing, 210029, Jiangsu, China
| | - Zeyu Wang
- Jiangsu Province Key Laboratory of Oral Diseases, School of Stomatology, Nanjing Medical University, Nanjing, China.,Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, School of Stomatology, Nanjing Medical University, Nanjing, China.,Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
| | - Pengfei Jiao
- Jiangsu Province Key Laboratory of Oral Diseases, School of Stomatology, Nanjing Medical University, Nanjing, China.,Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, School of Stomatology, Nanjing Medical University, Nanjing, China.,Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
| | - Jiani Xu
- Jiangsu Province Key Laboratory of Oral Diseases, School of Stomatology, Nanjing Medical University, Nanjing, China.,Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, School of Stomatology, Nanjing Medical University, Nanjing, China
| | - Xuan Li
- Jiangsu Province Key Laboratory of Oral Diseases, School of Stomatology, Nanjing Medical University, Nanjing, China.,Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, School of Stomatology, Nanjing Medical University, Nanjing, China
| | - Hongming Du
- Jiangsu Province Key Laboratory of Oral Diseases, School of Stomatology, Nanjing Medical University, Nanjing, China.,Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, School of Stomatology, Nanjing Medical University, Nanjing, China.,Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
| | - Heming Wu
- Jiangsu Province Key Laboratory of Oral Diseases, School of Stomatology, Nanjing Medical University, Nanjing, China. .,Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, School of Stomatology, Nanjing Medical University, Nanjing, China. .,Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China.
| | - Yi Zhong
- Jiangsu Province Key Laboratory of Oral Diseases, School of Stomatology, Nanjing Medical University, Nanjing, China. .,Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, School of Stomatology, Nanjing Medical University, Nanjing, China. .,Department of General Dentistry, Department of Oral Medicine, The Affiliated Stomatological Hospital of Nanjing Medical University, #136 Hanzhong Road, Nanjing, 210029, Jiangsu, China.
| |
Collapse
|
8
|
Jawa Y, Yadav P, Gupta S, Mathan SV, Pandey J, Saxena AK, Kateriya S, Tiku AB, Mondal N, Bhattacharya J, Ahmad S, Chaturvedi R, Tyagi RK, Tandon V, Singh RP. Current Insights and Advancements in Head and Neck Cancer: Emerging Biomarkers and Therapeutics with Cues from Single Cell and 3D Model Omics Profiling. Front Oncol 2021; 11:676948. [PMID: 34490084 PMCID: PMC8418074 DOI: 10.3389/fonc.2021.676948] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 07/19/2021] [Indexed: 12/24/2022] Open
Abstract
Head and neck cancer (HNC) is among the ten leading malignancies worldwide, with India solely contributing one-third of global oral cancer cases. The current focus of all cutting-edge strategies against this global malignancy are directed towards the heterogeneous tumor microenvironment that obstructs most treatment blueprints. Subsequent to the portrayal of established information, the review details the application of single cell technology, organoids and spheroid technology in relevance to head and neck cancer and the tumor microenvironment acknowledging the resistance pattern of the heterogeneous cell population in HNC. Bioinformatic tools are used for study of differentially expressed genes and further omics data analysis. However, these tools have several challenges and limitations when analyzing single-cell gene expression data that are discussed briefly. The review further examines the omics of HNC, through comprehensive analyses of genomics, transcriptomics, proteomics, metabolomics, and epigenomics profiles. Patterns of alterations vary between patients, thus heterogeneity and molecular alterations between patients have driven the clinical significance of molecular targeted therapies. The analyses of potential molecular targets in HNC are discussed with connotation to the alteration of key pathways in HNC followed by a comprehensive study of protein kinases as novel drug targets including its ATPase and additional binding pockets, non-catalytic domains and single residues. We herein review, the therapeutic agents targeting the potential biomarkers in light of new molecular targeted therapies. In the final analysis, this review suggests that the development of improved target-specific personalized therapies can combat HNC's global plight.
Collapse
Affiliation(s)
- Yashika Jawa
- Special Center for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Pooja Yadav
- Special Center for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Shruti Gupta
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Sivapar V. Mathan
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Jyoti Pandey
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Ajay K. Saxena
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Suneel Kateriya
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Ashu B. Tiku
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Neelima Mondal
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | | | - Shandar Ahmad
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Rupesh Chaturvedi
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Rakesh K. Tyagi
- Special Center for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Vibha Tandon
- Special Center for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Rana P. Singh
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
9
|
González-González R, Ortiz-Sarabia G, Molina-Frechero N, Salas-Pacheco JM, Salas-Pacheco SM, Lavalle-Carrasco J, López-Verdín S, Tremillo-Maldonado O, Bologna-Molina R. Epithelial-Mesenchymal Transition Associated with Head and Neck Squamous Cell Carcinomas: A Review. Cancers (Basel) 2021; 13:3027. [PMID: 34204259 PMCID: PMC8234594 DOI: 10.3390/cancers13123027] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/09/2021] [Accepted: 06/15/2021] [Indexed: 02/07/2023] Open
Abstract
Head and neck squamous cell carcinomas (HNSCCs) are aggressive, recurrent, and metastatic neoplasms with a high occurrence around the world and can lead to death when not treated appropriately. Several molecules and signaling pathways are involved in the malignant conversion process. Epithelial-mesenchymal transition (EMT) has been described in HNSCCs, a major type of aggressive carcinoma. EMT describes the development of epithelial cells into mesenchymal cells, which depends on several molecular interactions and signaling pathways that facilitate mesenchymal conversion. This is related to interactions with the microenvironment of the tumor, hypoxia, growth factors, matrix metalloproteinases, and the presence of viral infections. In this review, we focus on the main molecules related to EMT, their interactions with the tumor microenvironment, plasticity phenomena, epigenetic regulation, hypoxia, inflammation, their relationship with immune cells, and the inhibition of EMT in the context of HNSCCs.
Collapse
Affiliation(s)
- Rogelio González-González
- Department of Research, School of Dentistry, Universidad Juárez del Estado de Durango, Durango 34000, Mexico; (R.G.-G.); (G.O.-S.); (O.T.-M.)
| | - Gamaliel Ortiz-Sarabia
- Department of Research, School of Dentistry, Universidad Juárez del Estado de Durango, Durango 34000, Mexico; (R.G.-G.); (G.O.-S.); (O.T.-M.)
| | - Nelly Molina-Frechero
- Xochimilco Unit, Department of Health Care, Universidad Autónoma Metropolitana (UAM) Xochimilco, Mexico City 04960, Mexico; (N.M.-F.); (J.L.-C.)
| | - José Manuel Salas-Pacheco
- Scientific Research Institute, Universidad Juárez del Estado de Durango, Avenida Universidad S/N, Durango 34000, Mexico; (J.M.S.-P.); (S.M.S.-P.)
| | - Sergio Manuel Salas-Pacheco
- Scientific Research Institute, Universidad Juárez del Estado de Durango, Avenida Universidad S/N, Durango 34000, Mexico; (J.M.S.-P.); (S.M.S.-P.)
| | - Jesús Lavalle-Carrasco
- Xochimilco Unit, Department of Health Care, Universidad Autónoma Metropolitana (UAM) Xochimilco, Mexico City 04960, Mexico; (N.M.-F.); (J.L.-C.)
| | - Sandra López-Verdín
- Health Science Center, Dentistry Research Institute, Universidad de Guadalajara, Guadalajara 4430, Mexico;
| | - Omar Tremillo-Maldonado
- Department of Research, School of Dentistry, Universidad Juárez del Estado de Durango, Durango 34000, Mexico; (R.G.-G.); (G.O.-S.); (O.T.-M.)
| | - Ronell Bologna-Molina
- Department of Research, School of Dentistry, Universidad Juárez del Estado de Durango, Durango 34000, Mexico; (R.G.-G.); (G.O.-S.); (O.T.-M.)
- Molecular Pathology Area, School of Dentistry, Universidad de la República, Montevideo 11600, Uruguay
| |
Collapse
|
10
|
Prieto-Granada CN, Xu B, Alzumaili B, Al Rasheed MRH, Eskander A, Enepekides D, Patel SG, Stevens TM, Dogan S, Ghossein R, Katabi N. Clinicopathologic features and outcome of head and neck mucosal spindle cell squamous cell carcinoma. Virchows Arch 2021; 479:729-739. [PMID: 33982148 DOI: 10.1007/s00428-021-03117-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/23/2021] [Accepted: 05/04/2021] [Indexed: 11/30/2022]
Abstract
Spindle cell squamous cell carcinoma (SpC-SCC) is rare, accounting for 0.4-4% of head and neck (HN) SCCs. Better understanding of HN SpC-SCC clinicopathologic characteristics, especially features that predict outcome, is needed. We present a clinicopathologic review of 71 HN mucosal SpC-SCC from three tertiary centers. The patient population showed a median age of 63 years (range 20-91), slight male predominance (M:F = 1.6:1), and a preponderance of smokers/ex-smokers (45/71, 64%). Most lesions involved oral cavity (42/71, 59%), especially oral tongue (n = 18), and larynx (n = 20, 28%). Polypoid/exophytic growth and surface ulceration were seen in 60% and 86% of cases, respectively. Histologically, most tumors showed sarcoma-like pattern (65/70, 93%), the remaining exhibiting granulation tissue-like or fibromatosis-like patterns, and 5 lesions showed osteosarcomatous/chondrosarcomatous elements. Most tumors (53/71, 74%) showed a conventional SCC (C-SCC) component, keratinizing (86%) or non-keratinizing/basaloid (14%). Nodal metastases, seen in 22 (31%) of resection specimens, showed SpC-SCC and/or C-SCC histomorphology. By immunohistochemistry, 76% of lesions showed immunoreactivity for keratin and 62/60% of lesions were p40/p63 positive. Ki-67 proliferation index ranged from 5 to 70%. Follow-up was available on 69 patients, median of 1.1 years from the time of SpC-SCC diagnosis. The 3-, 5-, and 10-year disease-specific survival (DSS) was 62, 37, and 12%, respectively. AJCC pN stage was an independent prognostic factor for DSS and distant metastasis-free survival (DMFS), whereas the presence of C-SCC was independently associated with improved DMFS. HN SpC-SCC is rare and might be diagnostically challenging. AJCC pN stage and co-existing C-SCC component appear to be prognostically relevant.
Collapse
Affiliation(s)
| | - Bin Xu
- Department of Pathology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Bayan Alzumaili
- Department of Pathology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | | | - Antoine Eskander
- Department of Otolaryngology-Head and Neck Surgery, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Danny Enepekides
- Department of Otolaryngology-Head and Neck Surgery, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Snehal G Patel
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Todd M Stevens
- Department of Pathology, University of Alabama At Birmingham, Birmingham, AL, USA
| | - Snjezana Dogan
- Department of Pathology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Ronald Ghossein
- Department of Pathology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Nora Katabi
- Department of Pathology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.
| |
Collapse
|
11
|
Yang Y, Wang R, Feng L, Ma H, Fang J. LINC00460 Promotes Cell Proliferation, Migration, Invasion, and Epithelial-Mesenchymal Transition of Head and Neck Squamous Cell Carcinoma via miR-320a/BGN Axis. Onco Targets Ther 2021; 14:2279-2291. [PMID: 33833526 PMCID: PMC8019668 DOI: 10.2147/ott.s282947] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 01/26/2021] [Indexed: 12/25/2022] Open
Abstract
Purpose Long non-coding RNAs (lncRNAs) play critical roles in cancer onset and development, including head and neck squamous cell carcinoma (HNSCC). This study aimed to investigate the biological role of LINC00460 and the mechanisms underlying epithelial-mesenchymal transition (EMT) in HNSCC. Methods Aberrantly LINC00460 expression in HNSCC and overall survival outcomes were constructed using the TCGA database. Quantitative real-time polymerase chain reaction (RT-qPCR) was applied to examine the LINC00460 expression level in HNSCC cell lines. The role of LINC00460 knockdown on HNSCC cell growth, migration, invasion, and EMT was investigated in vitro using cell counting kit-8 (CCK-8), colony formation, transwell assay, and Western blot assay. Besides, bioinformatics prediction, dual-luciferase reporter assay, and RNA immunoprecipitation (RIP) were performed to reveal the interaction among LINC00460 and its target genes. The function of the LINC00460/miR-320a/BGN axis in HNSCC cells was clarified by rescue assays. Furthermore, the in vivo effects of LINC00460 on tumor growth were investigated using mice xenograft models. Results In this study, LINC00460 was upregulated in HNSCC tissues and cells and was associated with poor clinical prognosis. Further functional analysis showed that LINC00460 knockdown decreased HNSCC cell proliferation, migration, invasion, as well as EMT in vitro. Mechanistic investigation indicated that LINC00460 sponged miR-320a to upregulate Biglycan (BGN) expression, thereby facilitating HNSCC progression and induced EMT. Moreover, knockdown of LINC00460 significantly suppressed the progression of HNSCC cells in vivo. Conclusion Taken together, LINC00460 mediates miR-320a/BGN signaling axis to promote cell proliferation, migration, invasion, and induce the EMT process in HNSCC cells. Our findings elucidated a novel mechanism underlying the progression of HNSCC. LINC00460 could serve as a potential therapeutic target for the treatment of HNSCC.
Collapse
Affiliation(s)
- Yifan Yang
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, People's Republic of China.,Key Laboratory of Otolaryngology Head and Neck Surgery (Ministry of Education of China), Beijing Institute of Otolaryngology, Beijing, 100005, People's Republic of China
| | - Ru Wang
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, People's Republic of China.,Key Laboratory of Otolaryngology Head and Neck Surgery (Ministry of Education of China), Beijing Institute of Otolaryngology, Beijing, 100005, People's Republic of China
| | - Ling Feng
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, People's Republic of China.,Key Laboratory of Otolaryngology Head and Neck Surgery (Ministry of Education of China), Beijing Institute of Otolaryngology, Beijing, 100005, People's Republic of China
| | - Hongzhi Ma
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, People's Republic of China.,Key Laboratory of Otolaryngology Head and Neck Surgery (Ministry of Education of China), Beijing Institute of Otolaryngology, Beijing, 100005, People's Republic of China
| | - Jugao Fang
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, People's Republic of China.,Key Laboratory of Otolaryngology Head and Neck Surgery (Ministry of Education of China), Beijing Institute of Otolaryngology, Beijing, 100005, People's Republic of China.,Beijing Key Laboratory of Head and Neck Molecular Diagnostic Pathology, Beijing, 100730, People's Republic of China
| |
Collapse
|
12
|
Liu SC, Wu YC, Huang CM, Hsieh MS, Huang TY, Huang CS, Hsu TN, Huang MS, Lee WH, Yeh CT, Lin CS. Inhibition of Bruton's tyrosine kinase as a therapeutic strategy for chemoresistant oral squamous cell carcinoma and potential suppression of cancer stemness. Oncogenesis 2021; 10:20. [PMID: 33640903 PMCID: PMC7914253 DOI: 10.1038/s41389-021-00308-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 02/03/2021] [Accepted: 02/10/2021] [Indexed: 02/07/2023] Open
Abstract
Locally advanced oral squamous cell carcinoma (OSCC) requires multimodal therapy, including surgery and concurrent chemoradiotherapy (CCRT). CCRT-resistant and recurrent cancer has a poor prognosis. We investigated the effects of Bruton's tyrosine kinase (BTK) on CCRT-resistant OSCC tissues. The effect of ibrutinib, a first-in-class BTK inhibitor, was tested on stem cell-like OSCC tumorspheres. A tissue array was constructed using tissue samples from 70 patients with OSCC. Human OSCC cell lines, SAS, TW2.6 and HSC-3, were examined. Wound healing, Matrigel invasion, and tumorsphere formation assays, as well as immunofluorescence analysis and flow cytometry, were used to investigate the effects of BTK knockdown (shBTK), ibrutinib, cisplatin, and ibrutinib/cisplatin combination on OSCC cells. We demonstrated that BTK was aberrantly highly expressed in the clinical CCRT-resistant OSCC tissue array, which resulted in poor overall survival in our local Tri-Service General Hospital and freely accessible TCGA OSCC cohorts. shBTK significantly downregulated the stemness markers Nanog, CD133, T cell immunoglobulin-3 (TIM-3), and Krüppel-like factor 4 (KLF4) in SAS tumorspheres and attenuated OSCC cell migration and colony formation. Ibrutinib reduced the number of aldehyde dehydrogenase (ALDH)-rich OSCC cells and reduced tumorsphere formation, migration, and invasion in a dose-dependent manner. Compared with ibrutinib or cisplatin monotherapy, the ibrutinib/cisplatin combination significantly reduced the formation of ALDH + OSCC tumorspheres and enhanced apoptosis. These results demonstrate that ibrutinib effectively inhibits the CSCs-like phenotype of OSCC cells through dysregulation of BTK/CD133 signaling. The ibrutinib/cisplatin combination may be considered for future clinical use.
Collapse
Affiliation(s)
- Shao-Cheng Liu
- grid.260565.20000 0004 0634 0356Department of Otolaryngology-Head and Neck Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei City, 114 Taiwan
| | - Yang-Che Wu
- grid.412896.00000 0000 9337 0481School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei City, 110 Taiwan ,grid.412955.e0000 0004 0419 7197Department of Dentistry, Taipei Medical University—Shuang Ho Hospital, New Taipei City, 235 Taiwan
| | - Chih-Ming Huang
- grid.413593.90000 0004 0573 007XDepartment of Otolaryngology, Taitung Mackay Memorial Hospital, Taipei City, Taiwan
| | - Ming-Shou Hsieh
- grid.412896.00000 0000 9337 0481School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei City, 110 Taiwan ,grid.412955.e0000 0004 0419 7197Department of Dentistry, Taipei Medical University—Shuang Ho Hospital, New Taipei City, 235 Taiwan
| | - Ting-Yi Huang
- grid.412955.e0000 0004 0419 7197Department of Hematology and Oncology, Cancer Center, Taipei Medical University—Shuang Ho Hospital, New Taipei City, 235 Taiwan ,grid.412955.e0000 0004 0419 7197Department of Medical Research & Education, Taipei Medical University—Shuang Ho Hospital, New Taipei City, 235 Taiwan
| | - Chin-Sheng Huang
- grid.412896.00000 0000 9337 0481School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei City, 110 Taiwan ,grid.412955.e0000 0004 0419 7197Department of Dentistry, Taipei Medical University—Shuang Ho Hospital, New Taipei City, 235 Taiwan
| | - Tung-Nien Hsu
- grid.412896.00000 0000 9337 0481School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei City, 110 Taiwan ,grid.412955.e0000 0004 0419 7197Department of Dentistry, Taipei Medical University—Shuang Ho Hospital, New Taipei City, 235 Taiwan
| | - Mao-Suan Huang
- grid.412896.00000 0000 9337 0481School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei City, 110 Taiwan ,grid.412955.e0000 0004 0419 7197Department of Dentistry, Taipei Medical University—Shuang Ho Hospital, New Taipei City, 235 Taiwan
| | - Wei-Hwa Lee
- grid.412955.e0000 0004 0419 7197Department of Medical Research & Education, Taipei Medical University—Shuang Ho Hospital, New Taipei City, 235 Taiwan ,grid.412955.e0000 0004 0419 7197Department of Pathology, Taipei Medical University—Shuang Ho Hospital, New Taipei City, 235 Taiwan
| | - Chi-Tai Yeh
- grid.412955.e0000 0004 0419 7197Department of Medical Research & Education, Taipei Medical University—Shuang Ho Hospital, New Taipei City, 235 Taiwan ,grid.412955.e0000 0004 0419 7197Department of Pathology, Taipei Medical University—Shuang Ho Hospital, New Taipei City, 235 Taiwan ,grid.413051.20000 0004 0444 7352Department of Medical Laboratory Science and Biotechnology, Yuanpei University of Medical Technology, Hsinchu City, 30015 Taiwan
| | - Chun-Shu Lin
- Department of Radiation Oncology, Tri-Service General Hospital, National Defense Medical Center, Taipei City, 114 Taiwan
| |
Collapse
|
13
|
Silva LABD, Lopes MLDDS, Sá MC, de Almeida Freitas R, Coletta RD, da Silveira EJD, da Costa Miguel MC. Histopathologic grading and its relationship with outcome in oral tongue squamous cell carcinoma. J Oral Pathol Med 2021; 50:183-190. [PMID: 33151566 DOI: 10.1111/jop.13118] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/16/2020] [Accepted: 08/22/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND Histopathologic grading has been routinely used as a complement for clinical staging in the prognostication of patients with oral tongue squamous cell carcinoma (OTSCC). However, this subject remains contentious because there is no universally accepted grading system. OBJECTIVES This study compared the prognostic significance of four histopathologic grading systems in 80 cases of oral tongue squamous cell carcinoma (OTSCC). METHODS Clinical and follow-up information of the patients were obtained from medical records. Histopathologic malignancy grading of the tumor invasive front, Histologic risk assessment (HRA), World Health Organization (WHO) grading system, and Budding and Depth of invasion (BD) model were evaluated in the surgical specimens. RESULTS The HRA, histopathologic malignancy grading and WHO systems did not predict survival. Patients with larger tumor size [Hazard ratio (HR): 2.38; 95% confidence interval (CI): 1.07-5.27; P = 0.026] and patients with BD model high-grade tumors (HR: 2.99; 95% CI: 1.03-8.68; P = 0.034) were significantly associated with a poor 5-year overall survival rate. In the multivariate analysis, tumor size was identified as the only significant independent prognostic factor (HR: 2.23; 95% CI: 1.00-4.99; P = 0.050). None of the grading systems studied was associated with 5-year disease-free survival rates. CONCLUSIONS BD model was the only histopathologic grading system associated with the outcome of patients with OTSCC, indicating its potential value as an effective tool for the prognostication of OTSCC.
Collapse
Affiliation(s)
| | | | - Melka Coelho Sá
- Department of Dentistry, Federal University of Sergipe, Aracaju, Brazil
| | | | - Ricardo Della Coletta
- Department of Oral Diagnosis, School of Dentistry, University of Campinas, Piracicaba, Brazil
| | | | | |
Collapse
|
14
|
Cooperation and Interplay between EGFR Signalling and Extracellular Vesicle Biogenesis in Cancer. Cells 2020; 9:cells9122639. [PMID: 33302515 PMCID: PMC7764760 DOI: 10.3390/cells9122639] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 11/30/2020] [Accepted: 12/02/2020] [Indexed: 12/13/2022] Open
Abstract
Epidermal growth factor receptor (EGFR) takes centre stage in carcinogenesis throughout its entire cellular trafficking odyssey. When loaded in extracellular vesicles (EVs), EGFR is one of the key proteins involved in the transfer of information between parental cancer and bystander cells in the tumour microenvironment. To hijack EVs, EGFR needs to play multiple signalling roles in the life cycle of EVs. The receptor is involved in the biogenesis of specific EV subpopulations, it signals as an active cargo, and it can influence the uptake of EVs by recipient cells. EGFR regulates its own inclusion in EVs through feedback loops during disease progression and in response to challenges such as hypoxia, epithelial-to-mesenchymal transition and drugs. Here, we highlight how the spatiotemporal rules that regulate EGFR intracellular function intersect with and influence different EV biogenesis pathways and discuss key regulatory features and interactions of this interplay. We also elaborate on outstanding questions relating to EGFR-driven EV biogenesis and available methods to explore them. This mechanistic understanding will be key to unravelling the functional consequences of direct anti-EGFR targeted and indirect EGFR-impacting cancer therapies on the secretion of pro-tumoural EVs and on their effects on drug resistance and microenvironment subversion.
Collapse
|
15
|
Role of the AMPK/ACC Signaling Pathway in TRPP2-Mediated Head and Neck Cancer Cell Proliferation. BIOMED RESEARCH INTERNATIONAL 2020; 2020:4375075. [PMID: 33274210 PMCID: PMC7683127 DOI: 10.1155/2020/4375075] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 09/21/2020] [Accepted: 11/02/2020] [Indexed: 12/24/2022]
Abstract
Transient receptor potential polycystic 2 (TRPP2) exerts vital roles in various types of cancer; however, its underlying mechanisms remain largely unknown. This study is aimed at investigating whether knockdown of TRPP2 affected the AMP-activated protein kinase (AMPK)/acetyl-CoA carboxylase (ACC) signaling pathway and the proliferation of HN-4, cell line originating from human oral and hypopharyngeal squamous cell carcinoma. In addition, the interactions among AMPK/ACC, AMPK/protein kinase RNA-like endoplasmic reticulum kinase (PERK)/eukaryotic initiation factor 2α (eIF2α) and TRPP2/PERK/eIF2α signaling pathways, and their association with cell proliferation were also explored. The results showed that the relative expression levels of phosphorylated (p)-ACC, p-PERK, and p-eIF2α in HN-4 cells were significantly increased following treatment with 5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside (AICAR) and significantly decreased in cells treated with compound C. Therefore, consistent with previous studies, the AMPK/ACC and AMPK/PERK/eIF2α signaling pathways were upregulated and downregulated following treatment with an AMPK agonist and inhibitor, respectively. Furthermore, TRPP2 knockdown decreased p-PERK and p-eIF2α expression levels and increased those of p-AMPK and p-ACC. Additionally, knockdown of TRPP2 increased HN-4 cell proliferation, while treatment with an AMPK inhibitor or agonist increased or inhibited TRPP2-specific siRNA-mediated cell proliferation, respectively. In conclusion, silencing of TRPP2 expression increased HN-4 cell proliferation via inhibiting the PERK/eIF2α signaling pathway, while the AMPK/ACC signaling pathway was possibly activated by a feedback mechanism to reduce enhanced cell proliferation.
Collapse
|
16
|
Vieira V, Campos LH, Jesus LH, Klabunde C, Gamba TD, Flores IL, Oliveira MG, Rados PV. Overexpression of ALDH1 and EMT marker profile are linked with unfavorable outcome in head and neck cancer. Med Oral Patol Oral Cir Bucal 2020; 25:e752-e761. [PMID: 32701933 PMCID: PMC7648914 DOI: 10.4317/medoral.23777] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 05/19/2020] [Indexed: 01/06/2023] Open
Abstract
Background The aim of this research was to assess the expression of aldehyde dehydrogenase 1 (ALDH1) and epithelial-mesenchymal transition (EMT) markers in head and neck squamous cell carcinoma (HNSCC), and to correlate them with the clinical and histopathological parameters of a patient cohort with follow-up over an 8-year period.
Material and Methods For this, seventeen HNSCC and non-neoplastic adjacent epithelium (AE) samples were subjected to laser microdissection and real-time PCR to evaluate the mRNA expression of ALDH1, E-cadherin (E-CAD), N-cadherin (N-CAD), and vimentin (VIM). Also, immunohistochemistry was performed for ALDH1, E-CAD, N-CAD, and VIM in the tumor center (TC), invasion front (IF), and AE of the seventeen samples. Mann-Whitney, Kruskal-Wallis and Chi-square tests were used to correlate the mRNA and immunohistochemical expression with different variables, considering p<0.05. Kaplan-Meier curves were produced for local recurrence, regional metastasis and treatment.
Results A mRNA overexpression of ALDH1 in primary tumors was associated with regional metastasis and a high ALDH1 immunostaining was related to metastasis and a worse patient outcome. Additionally, a favorable outcome was associated with the transition phase and an unfavorable outcome was associated with EMT event. An overall 26.9 months was observed with longer survival associated with surgery and radiotherapy.
Conclusions However, due to the intense variability inherent to the indicator proteins in the EMT process, the complete profile markers related to this biological process should be continuous investigated. Key words:Aldehyde dehydrogenase 1, epithelial mesenchymal transition, head and neck cancer, squamous cell carcinoma, follow-up study.
Collapse
Affiliation(s)
- V Vieira
- Rua Ramiro Barcelos 2492/sala 503, Brazil Zip code: 90035-004
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Zheng Y, Wang C, Song A, Jiang F, Zhou J, Li G, Zhang W, Ye J, Ding X, Zhang W, Du Y, Zhang H, Wu H, Song X, Wu Y. CMTM6 promotes cell proliferation and invasion in oral squamous cell carcinoma by interacting with NRP1. Am J Cancer Res 2020; 10:1691-1709. [PMID: 32642284 PMCID: PMC7339282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 05/21/2020] [Indexed: 06/11/2023] Open
Abstract
Previous studies have identified that both CKLF-like MARVEL transmembrane domain-containing member (CMTM6) and Neuropilin-1 (NRP1) played an essential part in regulating tumorigenesis and immune response. However, the potential connection between CMTM6 and NRP1 in oral squamous cell carcinoma (OSCC) remains unknown. In this study, we investigated the clinicopathologic significance of CMTM6 and NRP1 in OSCC. We examined the co-expression of CMTM6 and NRP1 in both OSCC tissues and cell lines. Co-overexpression of CMTM6 and NRP1 was generally highly expressed in cancer tissues and is associated with poor prognosis. Gain- and loss-of-function assays confirmed the oncogenic properties of CMTM6 in OSCC cells. Depletion of NRP1 abrogated tumorigenesis induced by CMTM6. By performing co-immunoprecipitation (co-IP), we discovered a potential interaction between CMTM6 and NRP1. Meanwhile, the stability of CMTM6 was significantly decreased in the NRP1-silencing cells, indicating the involvement of NRP1 in the degradation process of CMTM6. The crosstalk between CMTM6 and NRP1 provided a new insight into the progression of OSCC, which may indicate an alternative strategy for OSCC treatment.
Collapse
Affiliation(s)
- Yang Zheng
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical UniversityNanjing, China
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomotology, Nanjing Medical UniversityNanjing, China
| | - Chundi Wang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical UniversityNanjing, China
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomotology, Nanjing Medical UniversityNanjing, China
| | - An Song
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical UniversityNanjing, China
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomotology, Nanjing Medical UniversityNanjing, China
| | - Feng Jiang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical UniversityNanjing, China
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomotology, Nanjing Medical UniversityNanjing, China
| | - Junbo Zhou
- Department of Stomatology, Nanjing Integrated Traditional Chinese and Western Medicine HospitalNanjing, China
| | - Gang Li
- Department of Stomatology, Affiliated Hospital of Xuzhou Medical UniversityXuzhou, China
| | - Wei Zhang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical UniversityNanjing, China
| | - Jinhai Ye
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical UniversityNanjing, China
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomotology, Nanjing Medical UniversityNanjing, China
| | - Xu Ding
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical UniversityNanjing, China
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomotology, Nanjing Medical UniversityNanjing, China
| | - Wei Zhang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical UniversityNanjing, China
- Department of Oral Pathology, Affiliated Stomatological Hospital, Nanjing Medical UniversityNanjing, China
| | - Yifei Du
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical UniversityNanjing, China
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomotology, Nanjing Medical UniversityNanjing, China
| | - Hongchuang Zhang
- Department of Stomatology, Xuzhou No. 1 Peoples HospitalXuzhou, China
- Department of Stomatology, Affiliated Xuzhou Municipal Hospital of Xuzhou Medical UniversityXuzhou, China
| | - Heming Wu
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomotology, Nanjing Medical UniversityNanjing, China
| | - Xiaomeng Song
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical UniversityNanjing, China
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomotology, Nanjing Medical UniversityNanjing, China
| | - Yunong Wu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical UniversityNanjing, China
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomotology, Nanjing Medical UniversityNanjing, China
| |
Collapse
|
18
|
Aquino IGD, Bastos DC, Cuadra-Zelaya FJM, Teixeira IF, Salo T, Coletta RD, Graner E. Anticancer properties of the fatty acid synthase inhibitor TVB-3166 on oral squamous cell carcinoma cell lines. Arch Oral Biol 2020; 113:104707. [PMID: 32197133 DOI: 10.1016/j.archoralbio.2020.104707] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/11/2020] [Accepted: 03/04/2020] [Indexed: 01/15/2023]
Abstract
OBJECTIVE Fatty acid synthase (FASN) is overexpressed in several human cancers, including oral squamous cell carcinoma (OSCC). TVB-3166 is a recently described FASN inhibitor with antitumor effects and potential clinical relevance. The objective of this study was to evaluate the effects of TVB-3166 on OSCC cell lines. MATERIALS AND METHODS The OSCC cell line SCC-9 modified to express ZsGreen (ZsG) (SCC-9 ZsG) and its in vivo selected metastatic derivative LN-1A were used to evaluate anticancer properties of TVB-3166. Cell viability was determined using MTT assays and proliferation determined by cell counting in a Neubauer chamber. Cell death and cell cycle progression were analyzed by Annexin V-PE/7-ADD-PerCP labeling and PI staining, respectively. Cell migration was assayed by scratch assays and cell adhesion using myogel. Production of FASN, p-AKT, CPT1-α, and epithelial-mesenchymal transition (EMT) markers were examined by Western blotting. RESULTS TVB-3166 significantly reduced cell viability and proliferation, promoted cell cycle arrest and apoptosis, and increased adhesion to myogel in both OSCC cell lines. Finally, the drug reduced SCC-9 ZsG migration. CONCLUSION Our results demonstrated that TVB-3166 has anticancer effects on both SCC-9 ZsG and its metastatic version LN-1A, which are worthy of investigation in preclinical models for OSCC.
Collapse
Affiliation(s)
- Iara Gonçalves de Aquino
- Department of Oral Diagnosis, School of Dentistry of Piracicaba, State University of Campinas (UNICAMP), Piracicaba, Sao Paulo, Brazil
| | - Débora Campanella Bastos
- Department of Oral Diagnosis, School of Dentistry of Piracicaba, State University of Campinas (UNICAMP), Piracicaba, Sao Paulo, Brazil; Department of Morphology, School of Dentistry of Piracicaba, State University of Campinas (UNICAMP), Piracicaba, Sao Paulo, Brazil
| | | | - Isadora Ferrari Teixeira
- Department of Oral Diagnosis, School of Dentistry of Piracicaba, State University of Campinas (UNICAMP), Piracicaba, Sao Paulo, Brazil
| | - Tuula Salo
- Cancer and Translational Medicine Research Unit, Faculty of Medicine and Medical Research Center Oulu, Oulu University Hospital, University of Oulu, Oulu, Finland; Institute of Oral and Maxillofacial Disease, University of Helsinki, and HUSLAB, Department of Pathology, Helsinki University Hospital, Helsinki, Finland
| | - Ricardo Della Coletta
- Department of Oral Diagnosis, School of Dentistry of Piracicaba, State University of Campinas (UNICAMP), Piracicaba, Sao Paulo, Brazil
| | - Edgard Graner
- Department of Oral Diagnosis, School of Dentistry of Piracicaba, State University of Campinas (UNICAMP), Piracicaba, Sao Paulo, Brazil.
| |
Collapse
|
19
|
de Vicente JC, Donate-Pérez Del Molino P, Rodrigo JP, Allonca E, Hermida-Prado F, Granda-Díaz R, Rodríguez Santamarta T, García-Pedrero JM. SOX2 Expression Is an Independent Predictor of Oral Cancer Progression. J Clin Med 2019; 8:jcm8101744. [PMID: 31640140 PMCID: PMC6832966 DOI: 10.3390/jcm8101744] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/14/2019] [Accepted: 10/16/2019] [Indexed: 12/11/2022] Open
Abstract
Potentially malignant oral lesions, mainly leukoplakia, are common. Malignant transformation varies widely, even in the absence of histological features such as dysplasia. Hence, there is a need for novel biomarker-based systems to more accurately predict the risk of cancer progression. The pluripotency transcription factor SOX2 is frequently overexpressed in cancers, including oral squamous cell carcinoma (OSCC), thereby providing a link between malignancy and stemness. This study investigates the clinical relevance of SOX2 protein expression in early stages of oral carcinogenesis as a cancer risk biomarker, and also its impact on prognosis and disease outcome at late stages of OSCC progression. SOX2 expression was evaluated by immunohistochemistry in 55 patients with oral epithelial dysplasia, and in 125 patients with OSCC, and correlated with clinicopathological data and outcomes. Nuclear SOX2 expression was detected in four (7%) cases of oral epithelial dysplasia, using a cut-off of 10% stained nuclei, and in 16 (29%) cases when any positive nuclei was evaluated. Univariate analysis showed that SOX2 expression and histopathological grading were significantly associated with oral cancer risk; and both were found to be significant independent predictors in the multivariate analysis. Nuclear SOX2 expression was also found in 49 (39%) OSCC cases, was more frequent in early tumor stages and N0 cases, and was associated with a better survival. In conclusion, SOX2 expression emerges as an independent predictor of oral cancer risk in patients with oral leukoplakia. These findings underscore the relevant role of SOX2 in early oral tumorigenesis rather than in tumor progression.
Collapse
Affiliation(s)
- Juan C de Vicente
- Department of Oral and Maxillofacial Surgery, Hospital Universitario Central de Asturias (HUCA). C/Carretera de Rubín, s/n, 33011 Oviedo, Asturias, Spain.
- Department of Surgery, University of Oviedo. Avda. Julián Clavería, s/n, 33006 Oviedo, Asturias, Spain.
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo. C/Carretera de Rubín, s/n, 33011 Oviedo, Asturias, Spain.
| | - Paula Donate-Pérez Del Molino
- Department of Oral and Maxillofacial Surgery, Hospital Universitario Central de Asturias (HUCA). C/Carretera de Rubín, s/n, 33011 Oviedo, Asturias, Spain.
- Department of Surgery, University of Oviedo. Avda. Julián Clavería, s/n, 33006 Oviedo, Asturias, Spain.
| | - Juan P Rodrigo
- Department of Surgery, University of Oviedo. Avda. Julián Clavería, s/n, 33006 Oviedo, Asturias, Spain.
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo. C/Carretera de Rubín, s/n, 33011 Oviedo, Asturias, Spain.
- Department of Otolaryngology, Hospital Universitario Central de Asturias (HUCA). C/Carretera de Rubín, s/n, 33011 Oviedo, Asturias, Spain.
- Ciber de Cáncer (CIBERONC), Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5. 28029 Madrid, Spain.
| | - Eva Allonca
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo. C/Carretera de Rubín, s/n, 33011 Oviedo, Asturias, Spain.
- Ciber de Cáncer (CIBERONC), Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5. 28029 Madrid, Spain.
| | - Francisco Hermida-Prado
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo. C/Carretera de Rubín, s/n, 33011 Oviedo, Asturias, Spain.
- Ciber de Cáncer (CIBERONC), Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5. 28029 Madrid, Spain.
| | - Rocío Granda-Díaz
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo. C/Carretera de Rubín, s/n, 33011 Oviedo, Asturias, Spain.
- Ciber de Cáncer (CIBERONC), Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5. 28029 Madrid, Spain.
| | - Tania Rodríguez Santamarta
- Department of Oral and Maxillofacial Surgery, Hospital Universitario Central de Asturias (HUCA). C/Carretera de Rubín, s/n, 33011 Oviedo, Asturias, Spain.
- Department of Surgery, University of Oviedo. Avda. Julián Clavería, s/n, 33006 Oviedo, Asturias, Spain.
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo. C/Carretera de Rubín, s/n, 33011 Oviedo, Asturias, Spain.
| | - Juana M García-Pedrero
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo. C/Carretera de Rubín, s/n, 33011 Oviedo, Asturias, Spain.
- Department of Otolaryngology, Hospital Universitario Central de Asturias (HUCA). C/Carretera de Rubín, s/n, 33011 Oviedo, Asturias, Spain.
- Ciber de Cáncer (CIBERONC), Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5. 28029 Madrid, Spain.
| |
Collapse
|
20
|
Hermida-Prado F, Villaronga MÁ, Granda-Díaz R, Del-Río-Ibisate N, Santos L, Hermosilla MA, Oro P, Allonca E, Agorreta J, Garmendia I, Tornín J, Perez-Escuredo J, Fuente R, Montuenga LM, Morís F, Rodrigo JP, Rodríguez R, García-Pedrero JM. The SRC Inhibitor Dasatinib Induces Stem Cell-Like Properties in Head and Neck Cancer Cells that are Effectively Counteracted by the Mithralog EC-8042. J Clin Med 2019; 8:jcm8081157. [PMID: 31382448 PMCID: PMC6722627 DOI: 10.3390/jcm8081157] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 07/31/2019] [Indexed: 12/19/2022] Open
Abstract
The frequent dysregulation of SRC family kinases (SFK) in multiple cancers prompted various inhibitors to be actively tested in preclinical and clinical trials. Disappointingly, dasatinib and saracatinib failed to demonstrate monotherapeutic efficacy in patients with head and neck squamous cell carcinomas (HNSCC). Deeper functional and mechanistic knowledge of the actions of these drugs is therefore needed to improve clinical outcome and to develop more efficient combinational strategies. Even though the SFK inhibitors dasatinib and saracatinib robustly blocked cell migration and invasion in HNSCC cell lines, this study unveils undesirable stem cell-promoting functions that could explain the lack of clinical efficacy in HNSCC patients. These deleterious effects were targeted by the mithramycin analog EC-8042 that efficiently eliminated cancer stem cells (CSC)-enriched tumorsphere cultures as well as tumor bulk cells and demonstrated potent antitumor activity in vivo. Furthermore, combination treatment of dasatinib with EC-8042 provided favorable complementary anti-proliferative, anti-invasive, and anti-CSC functions without any noticeable adverse interactions of both agents. These findings strongly support combinational strategies with EC-8042 for clinical testing in HNSCC patients. These data may have implications on ongoing dasatinib-based trials.
Collapse
Affiliation(s)
- Francisco Hermida-Prado
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria del Principado de Asturias; Instituto Universitario de Oncología del Principado de Asturias, University of Oviedo, 33011 Oviedo, Spain
- Ciber de Cáncer, CIBERONC, 28029 Madrid, Spain
| | - M Ángeles Villaronga
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria del Principado de Asturias; Instituto Universitario de Oncología del Principado de Asturias, University of Oviedo, 33011 Oviedo, Spain
- Ciber de Cáncer, CIBERONC, 28029 Madrid, Spain
| | - Rocío Granda-Díaz
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria del Principado de Asturias; Instituto Universitario de Oncología del Principado de Asturias, University of Oviedo, 33011 Oviedo, Spain
- Ciber de Cáncer, CIBERONC, 28029 Madrid, Spain
| | - Nagore Del-Río-Ibisate
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria del Principado de Asturias; Instituto Universitario de Oncología del Principado de Asturias, University of Oviedo, 33011 Oviedo, Spain
- Ciber de Cáncer, CIBERONC, 28029 Madrid, Spain
| | - Laura Santos
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria del Principado de Asturias; Instituto Universitario de Oncología del Principado de Asturias, University of Oviedo, 33011 Oviedo, Spain
| | | | - Patricia Oro
- EntreChem SL, Vivero Ciencias de la Salud, 33011 Oviedo, Spain
| | - Eva Allonca
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria del Principado de Asturias; Instituto Universitario de Oncología del Principado de Asturias, University of Oviedo, 33011 Oviedo, Spain
- Ciber de Cáncer, CIBERONC, 28029 Madrid, Spain
| | - Jackeline Agorreta
- Ciber de Cáncer, CIBERONC, 28029 Madrid, Spain
- Program in Solid Tumors, Center for Applied Medical Research (CIMA), Department of Pathology, Anatomy and Physiology, University of Navarra, and Navarra's Health Research Institute (IDISNA), 31008 Pamplona, Spain
| | - Irati Garmendia
- Ciber de Cáncer, CIBERONC, 28029 Madrid, Spain
- Program in Solid Tumors, Center for Applied Medical Research (CIMA), Department of Pathology, Anatomy and Physiology, University of Navarra, and Navarra's Health Research Institute (IDISNA), 31008 Pamplona, Spain
| | - Juan Tornín
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria del Principado de Asturias; Instituto Universitario de Oncología del Principado de Asturias, University of Oviedo, 33011 Oviedo, Spain
| | | | - Rocío Fuente
- Division of Pediatrics, Department of Medicine, Faculty of Medicine, University of Oviedo, 33006 Oviedo, Spain
| | - Luis M Montuenga
- Ciber de Cáncer, CIBERONC, 28029 Madrid, Spain
- Program in Solid Tumors, Center for Applied Medical Research (CIMA), Department of Pathology, Anatomy and Physiology, University of Navarra, and Navarra's Health Research Institute (IDISNA), 31008 Pamplona, Spain
| | - Francisco Morís
- EntreChem SL, Vivero Ciencias de la Salud, 33011 Oviedo, Spain
| | - Juan P Rodrigo
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria del Principado de Asturias; Instituto Universitario de Oncología del Principado de Asturias, University of Oviedo, 33011 Oviedo, Spain
- Ciber de Cáncer, CIBERONC, 28029 Madrid, Spain
| | - René Rodríguez
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria del Principado de Asturias; Instituto Universitario de Oncología del Principado de Asturias, University of Oviedo, 33011 Oviedo, Spain.
- Ciber de Cáncer, CIBERONC, 28029 Madrid, Spain.
| | - Juana M García-Pedrero
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria del Principado de Asturias; Instituto Universitario de Oncología del Principado de Asturias, University of Oviedo, 33011 Oviedo, Spain.
- Ciber de Cáncer, CIBERONC, 28029 Madrid, Spain.
| |
Collapse
|
21
|
Schmitt K, Molfenter B, Laureano NK, Tawk B, Bieg M, Hostench XP, Weichenhan D, Ullrich ND, Shang V, Richter D, Stögbauer F, Schroeder L, de Bem Prunes B, Visioli F, Rados PV, Jou A, Plath M, Federspil PA, Thierauf J, Döscher J, Weissinger SE, Hoffmann TK, Wagner S, Wittekindt C, Ishaque N, Eils R, Klussmann JP, Holzinger D, Plass C, Abdollahi A, Freier K, Weichert W, Zaoui K, Hess J. Somatic mutations and promotor methylation of the ryanodine receptor 2 is a common event in the pathogenesis of head and neck cancer. Int J Cancer 2019; 145:3299-3310. [PMID: 31135957 DOI: 10.1002/ijc.32481] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 04/02/2019] [Accepted: 04/04/2019] [Indexed: 12/31/2022]
Abstract
Genomic sequencing projects unraveled the mutational landscape of head and neck squamous cell carcinoma (HNSCC) and provided a comprehensive catalog of somatic mutations. However, the limited number of significant cancer-related genes obtained so far only partially explains the biological complexity of HNSCC and hampers the development of novel diagnostic biomarkers and therapeutic targets. We pursued a multiscale omics approach based on whole-exome sequencing, global DNA methylation and gene expression profiling data derived from tumor samples of the HIPO-HNC cohort (n = 87), and confirmed new findings with datasets from The Cancer Genome Atlas (TCGA). Promoter methylation was confirmed by MassARRAY analysis and protein expression was assessed by immunohistochemistry and immunofluorescence staining. We discovered a set of cancer-related genes with frequent somatic mutations and high frequency of promoter methylation. This included the ryanodine receptor 2 (RYR2), which showed variable promoter methylation and expression in both tumor samples and cell lines. Immunohistochemical staining of tissue sections unraveled a gradual loss of RYR2 expression from normal mucosa via dysplastic lesion to invasive cancer and indicated that reduced RYR2 expression in adjacent tissue and precancerous lesions might serve as risk factor for unfavorable prognosis and upcoming malignant conversion. In summary, our data indicate that impaired RYR2 function by either somatic mutation or epigenetic silencing is a common event in HNSCC pathogenesis. Detection of RYR2 expression and/or promoter methylation might enable risk assessment for malignant conversion of dysplastic lesions.
Collapse
Affiliation(s)
- Katrin Schmitt
- Department of Otorhinolaryngology, Head and Neck Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Britta Molfenter
- Department of Otorhinolaryngology, Head and Neck Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Natalia Koerich Laureano
- Department of Otorhinolaryngology, Head and Neck Surgery, Heidelberg University Hospital, Heidelberg, Germany.,Molecular Mechanisms of Head and Neck Tumors, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Oral Pathology, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Bouchra Tawk
- Division of Molecular and Translational Radiation Oncology, Heidelberg Ion Therapy Center (HIT), Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg University Hospital, and Translational Radiation Oncology, German Cancer Consortium (DKTK), National Center for Tumor Diseases (NCT), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Matthias Bieg
- Division of Theoretical Bioinformatics, German Cancer Research Center (DKFZ), and Heidelberg Center for Personalized Oncology (DKFZ-HIPO), Heidelberg, Germany
| | - Xavier Pastor Hostench
- Division of Theoretical Bioinformatics, German Cancer Research Center (DKFZ), and Heidelberg Center for Personalized Oncology (DKFZ-HIPO), Heidelberg, Germany
| | - Dieter Weichenhan
- Cancer Epigenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Nina D Ullrich
- Institute of Physiology and Pathophysiology, Division of Cardiovascular Physiology, Heidelberg University, Heidelberg, Germany
| | - Viny Shang
- Department of Otorhinolaryngology, Head and Neck Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Daniela Richter
- Translational Medical Oncology, National Center for Tumor Diseases (NCT) Dresden, Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Fabian Stögbauer
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Lea Schroeder
- Division of Molecular Diagnostics of Oncogenic Infections, Infection, Inflammation and Cancer Program, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Bianca de Bem Prunes
- Oral Pathology, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Fernanda Visioli
- Oral Pathology, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | | | - Adriana Jou
- Department of Otorhinolaryngology, Head and Neck Surgery, Heidelberg University Hospital, Heidelberg, Germany.,Molecular Mechanisms of Head and Neck Tumors, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Michaela Plath
- Department of Otorhinolaryngology, Head and Neck Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Philippe A Federspil
- Department of Otorhinolaryngology, Head and Neck Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Julia Thierauf
- Department of Otorhinolaryngology, Head and Neck Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Johannes Döscher
- Department of Otorhinolaryngology, Head and Neck Surgery, University Medical Center Ulm, Ulm, Germany
| | | | - Thomas K Hoffmann
- Department of Otorhinolaryngology, Head and Neck Surgery, University Medical Center Ulm, Ulm, Germany
| | - Steffen Wagner
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Giessen, Giessen, Germany
| | - Claus Wittekindt
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Giessen, Giessen, Germany
| | - Naveed Ishaque
- Division of Theoretical Bioinformatics, German Cancer Research Center (DKFZ), and Heidelberg Center for Personalized Oncology (DKFZ-HIPO), Heidelberg, Germany
| | - Roland Eils
- Division of Theoretical Bioinformatics, German Cancer Research Center (DKFZ), and Heidelberg Center for Personalized Oncology (DKFZ-HIPO), Heidelberg, Germany
| | - Jens P Klussmann
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Cologne, Cologne, Germany
| | - Dana Holzinger
- Division of Molecular Diagnostics of Oncogenic Infections, Infection, Inflammation and Cancer Program, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Christoph Plass
- Cancer Epigenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Amir Abdollahi
- Division of Molecular and Translational Radiation Oncology, Heidelberg Ion Therapy Center (HIT), Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg University Hospital, and Translational Radiation Oncology, German Cancer Consortium (DKTK), National Center for Tumor Diseases (NCT), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Kolja Freier
- Department of Oral and Maxillofacial Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Wilko Weichert
- Institute of Pathology, Technical University Munich (TUM), and German Cancer Consortium (DKTK) partner site, Munich, Germany
| | - Karim Zaoui
- Department of Otorhinolaryngology, Head and Neck Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Jochen Hess
- Department of Otorhinolaryngology, Head and Neck Surgery, Heidelberg University Hospital, Heidelberg, Germany.,Molecular Mechanisms of Head and Neck Tumors, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
22
|
Luo YD, Ding X, Du HM, Wu YN, Li HQ, Wu HM, Zhang XM. FOXM1 is a novel predictor of recurrence in patients with oral squamous cell carcinoma associated with an increase in epithelial‑mesenchymal transition. Mol Med Rep 2019; 19:4101-4108. [PMID: 30942437 PMCID: PMC6471394 DOI: 10.3892/mmr.2019.10094] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 01/22/2019] [Indexed: 12/25/2022] Open
Abstract
Although forkhead box protein M1 (FOXM1) is markedly upregulated in human premalignant and oral squamous cell carcinoma (OSCC) tissues and cultured cells, the association of FOXM1 expression with OSCC prognosis is not well understood. The present study investigated the possible association of FOXM1 expression in patients with OSCC with their clinicopathological characteristics and clinical outcomes. The expression of FOXM1 protein in OSCC tissues from 119 patients was evaluated by immunohistochemistry, and the results demonstrated that FOXM1 overexpression in patients with OSCC was associated with tumour recurrence and poor prognosis. To study the in vitro effects of FOXM1, its expression was decreased by small interfering RNA (siRNA) in OSCC cell lines, and FOXM1 knockdown decreased the proliferative, migratory and invasive capacities of cells. FOXM1 inhibition by siRNA gave rise to reduced expression of vimentin and increased expression of E‑cadherin. The present study reported FOXM1 as a novel predictor of tumour recurrence in patients with OSCC and its potential involvement in epithelial‑mesenchymal transition in OSCC cells.
Collapse
Affiliation(s)
- Ya-Dong Luo
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Xu Ding
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Hong-Ming Du
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Yu-Nong Wu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Huai-Qi Li
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - He-Ming Wu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Xiao-Min Zhang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|
23
|
Melissaridou S, Wiechec E, Magan M, Jain MV, Chung MK, Farnebo L, Roberg K. The effect of 2D and 3D cell cultures on treatment response, EMT profile and stem cell features in head and neck cancer. Cancer Cell Int 2019; 19:16. [PMID: 30651721 PMCID: PMC6332598 DOI: 10.1186/s12935-019-0733-1] [Citation(s) in RCA: 185] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 01/08/2019] [Indexed: 01/20/2023] Open
Abstract
Background Head and Neck Squamous Cell Carcinoma (HNSCC) tumors are often resistant to therapies. Therefore searching for predictive markers and new targets for treatment in clinically relevant in vitro tumor models is essential. Five HNSCC-derived cell lines were used to assess the effect of 3D culturing compared to 2D monolayers in terms of cell proliferation, response to anti-cancer therapy as well as expression of EMT and CSC genes. Methods The viability and proliferation capacity of HNSCC cells as well as induction of apoptosis in tumor spheroids cells after treatment was assessed by MTT assay, crystal violet- and TUNEL assay respectively. Expression of EMT and CSC markers was analyzed on mRNA (RT-qPCR) and protein (Western blot) level. Results We showed that HNSCC cells from different tumors formed spheroids that differed in size and density in regard to EMT-associated protein expression and culturing time. In all spheroids, an up regulation of CDH1, NANOG and SOX2 was observed in comparison to 2D but changes in the expression of EGFR and EMT markers varied among the cell lines. Moreover, most HNSCC cells grown in 3D showed decreased sensitivity to cisplatin and cetuximab (anti-EGFR) treatment. Conclusions Taken together, our study points at notable differences between these two cellular systems in terms of EMT-associated gene expression profile and drug response. As the 3D cell cultures imitate the in vivo behaviour of neoplastic cells within the tumor, our study suggest that 3D culture model is superior to 2D monolayers in the search for new therapeutic targets. Electronic supplementary material The online version of this article (10.1186/s12935-019-0733-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Styliani Melissaridou
- 1Division of Cell Biology, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Emilia Wiechec
- 1Division of Cell Biology, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Mustafa Magan
- 1Division of Cell Biology, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden.,Department of Otorhinolaryngology in Linköping, Anaesthetics, Operations and Specialty Surgery Center, Region Östergötland, Linköping, Sweden
| | - Mayur Vilas Jain
- 1Division of Cell Biology, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden.,3Department of Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Man Ki Chung
- Department of Otorhinolaryngology-Head & Neck Surgery, Sungkyunkwan University School of Medicine, Samsung Medical Center, Seoul, South Korea
| | - Lovisa Farnebo
- 1Division of Cell Biology, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden.,Department of Otorhinolaryngology in Linköping, Anaesthetics, Operations and Specialty Surgery Center, Region Östergötland, Linköping, Sweden
| | - Karin Roberg
- 1Division of Cell Biology, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden.,Department of Otorhinolaryngology in Linköping, Anaesthetics, Operations and Specialty Surgery Center, Region Östergötland, Linköping, Sweden
| |
Collapse
|
24
|
Wolf GT, Winter W, Bellile E, Nguyen A, Donnelly CR, McHugh JB, Thomas D, Amlani L, Rozek L, Lei YL. Histologic pattern of invasion and epithelial-mesenchymal phenotype predict prognosis in squamous carcinoma of the head and neck. Oral Oncol 2018; 87:29-35. [PMID: 30527240 PMCID: PMC6293994 DOI: 10.1016/j.oraloncology.2018.10.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 09/11/2018] [Accepted: 10/06/2018] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Disruption of E-cadherin function and increased expression of vimentin and the transcriptional oncogene, SOX2, are thought to characterize epithelial to mesenchymal transition (EMT) in HNSCC that contributes to invasive and metastatic behavior. To determine if such changes relate to prognosis or host immune response, expression of these markers and correlations with clinical characteristics, histologic worst pattern of invasion (WPOI) and tumor infiltrating lymphocytes (TIL) and survival were assessed. METHODS Immunohistologic expression of markers was determined in tissue microarrays from 274 previously untreated HNSCC patients. Expression was correlated with levels of TILs in microcores and WPOI in biopsy specimens. Correlations were assessed by Kruskal-Wallis testing and Spearman correlation coefficients where appropriate. Overall and relapse-free survival were analyzed with Cox proportional hazards models. Median follow up was 60.0 months. RESULTS Loss of E-cadherin expression was significantly associated with low or absent SOX2 expression (R = 0.433, p < 0.0001). SOX2 expression and low grade WPOI were significantly associated with favorable overall (OS) and relapse free (RFS) survival in multivariable analysis. E-cadherin expression did not correlate with TILs, however WPOI score correlated indirectly with CD4, CD8, and FoxP3 levels. When grouped by primary treatment, lower grades (1, 2) of WPOI predicted improved RFS and OS in patients treated with primary surgery but not for patients treated with chemoradiation. CONCLUSION The findings suggest that SOX2 expression and WPOI are significant prognostic factors and that WPOI correlates with decreased T cell infiltration. The combination of markers and TILs might be useful in selecting patients for primary surgery.
Collapse
Affiliation(s)
- Gregory T Wolf
- Departments of Otolaryngology-Head and Neck Surgery, University of Michigan, Ann Arbor, MI 48176, United States.
| | - William Winter
- Departments of Otolaryngology-Head and Neck Surgery, University of Michigan, Ann Arbor, MI 48176, United States
| | - Emily Bellile
- Departments of Biostatistics, University of Michigan, Ann Arbor, MI 48176, United States
| | - Ariane Nguyen
- Departments of Otolaryngology-Head and Neck Surgery, University of Michigan, Ann Arbor, MI 48176, United States
| | - C R Donnelly
- Departments of Periodontics and Oral Medicine, University of Michigan, Ann Arbor, MI 48176, United States
| | - Jonathan B McHugh
- Departments of Pathology, University of Michigan, Ann Arbor, MI 48176, United States
| | - Dafydd Thomas
- Departments of Pathology, University of Michigan, Ann Arbor, MI 48176, United States
| | - Lahin Amlani
- Departments of Otolaryngology-Head and Neck Surgery, University of Michigan, Ann Arbor, MI 48176, United States
| | - Laura Rozek
- Departments of Environmental Health Sciences, University of Michigan, Ann Arbor, MI 48176, United States
| | - Yu L Lei
- Departments of Periodontics and Oral Medicine, University of Michigan, Ann Arbor, MI 48176, United States
| |
Collapse
|
25
|
Liu J, Huang Y, Wang H, Wu D. MiR-106a-5p promotes 5-FU resistance and the metastasis of colorectal cancer by targeting TGFβR2. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2018; 11:5622-5634. [PMID: 31949649 PMCID: PMC6963073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 10/26/2018] [Indexed: 06/10/2023]
Abstract
BACKGROUND Colorectal cancer (CRC) is the third leading cause of cancer-related deaths. 5-Fluorouracil (5-FU)-based chemotherapy has always been the first-line treatment. However, development of 5-FU resistance seriously affects its curative effect. The aim of this study was to elucidate the molecular mechanisms of 5-FU resistance through miR-106a-5p in CRC. METHODS Colorectal cancer tissues were collected to analyze miR-106a-5p and TGFβR2 expressions by qPCR. Functional experiments for evaluating cell survival and metastasis were conducted to observe the biological effects of miR-106a-5p and TGFβR2. The cell survival rate was calculated using an MTT assay; the metastasis was confirmed with a Transwell invasion assay and Western blotting, which we used to measure the expression levels of the epithelial-mesenchymal transition (EMT) markers E-cadherin and vimentin. The combination of miR-106a to TGFβR2 was predicted using Targetscan, and confirmed through the construction of the luciferase reporter plasmid pGL3-basic. The interplay between miR-106a-5p and TGFβR2 was tested with qPCR and Western blotting. A Spearman rank analysis was employed to verify the correlation of miR-106a-5p and TGFβR2 expressions. RESULTS MiR-106a-5p was up-regulated and TGFβR2 was down-regulated in 5-FU resistant CRC tissues and HT-29 cells. MiR-106a-5p promoted cell survival and suppressed the apoptosis rate and caspase 3 activity. Additionally, cell invasion was promoted by miR-106a-5p overexpression in the HT-29 cells and was inhibited by miR-106a-5p knockdown in the 5-FU resistant HT-29 cells; miR-106a-5p overexpression contributed to migration by increasing vimentin expression and by decreasing E-cadherin expression in the HT-29 cells; miR-106a-5p functioned by directly binding to TGFβR2. The TGFβR2 knockdown conferred chemoresistance of 5-FU and metastasis in 5-FU resistant HT-29 cells, and TGFβR2 overexpression reduced cell survival, invasion numbers, vimentin expression, and increased the cell apoptosis rate and caspase 3 activity in 5-FU resistant HT-29 cells. Also, miR-106a-5p negatively regulated TGFβR2 in a linear correlation way in the CRC tissues. CONCLUSION The up-regulation of miR-106a-5p contributes to the pathomechanism of colorectal cancer by promoting 5-FU resistance and metastasis via inhibiting target TGFβR2. Our findings provide new promising ways for the clinical application of the TGFβR2-miR-106a axis in clinical chemotherapy for 5-FU resistant colorectal cancer.
Collapse
Affiliation(s)
- Jian Liu
- Department of General Surgery, The Second Affiliated Hospital of Zhejiang Chinese Medical University (Xinhua Hospital of Zhejiang Province)Hangzhou, China
| | - Yanqin Huang
- Cancer Institute, Second Affiliated Hospital, College of Medicine, Zhejiang UniversityHangzhou, China
| | - Hongqian Wang
- Department of General Surgery, The Second Affiliated Hospital of Zhejiang Chinese Medical University (Xinhua Hospital of Zhejiang Province)Hangzhou, China
| | - Denghai Wu
- Department of General Surgery, The Second Affiliated Hospital of Zhejiang Chinese Medical University (Xinhua Hospital of Zhejiang Province)Hangzhou, China
| |
Collapse
|
26
|
Guo LM, Ding GF, Xu W, Ge H, Jiang Y, Chen XJ, Lu Y. MiR-135a-5p represses proliferation of HNSCC by targeting HOXA10. Cancer Biol Ther 2018; 19:973-983. [PMID: 29580143 PMCID: PMC6301828 DOI: 10.1080/15384047.2018.1450112] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 02/01/2018] [Accepted: 03/03/2018] [Indexed: 01/23/2023] Open
Abstract
Objectives: This research aimed to explore the role of miR-135a-5p in head and neck squamous cell carcinoma (HNSCC) cells and its influence on cell viability. Moreover, we aimed to compare effects of miR-135a-5p and miR-494 in HNSCC, which was found to repress HOXA10 expression in oral cancer. Methods: The association between miR-135a-5p and HOXA10 was confirmed by green fluorescence protein reporter assay and qRT-PCR. The expression levels of HOXA10 in HNSCC cell lines (CAL-27, FaDu and NEC) were examined using western blot. The expression levels of HOXA10 in FaDu cells and CAL-27 cells were examined by western blot after transfection with miR-135a-5p mimics and miR-494 mimics. Colony formation assay and flow cytometry assay were respectively utilized to detect the proliferation and apoptosis of HNSCC cells after transfection with HOXA10 plasmids and HOXA10-KO plasmids. In vitro tumor xenograft experiments were performed to analyze the inhibitive effect of miR-135a-5p on HOXA10 in BALA/c mice. Results: HOXA10 was overexpressed in HNSCC cells, while miR-135a-5p was under-expressed. Therefore, low expression of HOXA10 lengthened disease-free survival time and overall survival time. MiR-135a-5p overexpression could inhibit HOXA10 expression by directly targeting HOXA10 3'UTR, and the inhibition was more effective than miR-494. HOXA10 suppression inhibited proliferation and enhanced apoptosis of HNSCC cells. In vivo experiments showed that miR-135a-5p could decelerate the growth of tumor cells in mice by downregulating HOXA10 expression. Conclusion: MiR-135a-5p could repress HNSCC cells proliferation and enhance apoptosis by directly targeting HOXA10, implying miR-135a-5p's significance on HNSCC treatment.
Collapse
Affiliation(s)
- Lei-Ming Guo
- a Department of Radiotherapy , Affiliated Cancer Hospital of Zhengzhou University/Henan Cancer Hospital , Zhengzhou 450000 , Henan , China
| | - Gao-Feng Ding
- a Department of Radiotherapy , Affiliated Cancer Hospital of Zhengzhou University/Henan Cancer Hospital , Zhengzhou 450000 , Henan , China
| | - Wencai Xu
- a Department of Radiotherapy , Affiliated Cancer Hospital of Zhengzhou University/Henan Cancer Hospital , Zhengzhou 450000 , Henan , China
| | - Hong Ge
- a Department of Radiotherapy , Affiliated Cancer Hospital of Zhengzhou University/Henan Cancer Hospital , Zhengzhou 450000 , Henan , China
| | - Yue Jiang
- a Department of Radiotherapy , Affiliated Cancer Hospital of Zhengzhou University/Henan Cancer Hospital , Zhengzhou 450000 , Henan , China
| | - Xi-Juan Chen
- a Department of Radiotherapy , Affiliated Cancer Hospital of Zhengzhou University/Henan Cancer Hospital , Zhengzhou 450000 , Henan , China
| | - Yufei Lu
- a Department of Radiotherapy , Affiliated Cancer Hospital of Zhengzhou University/Henan Cancer Hospital , Zhengzhou 450000 , Henan , China
| |
Collapse
|
27
|
Marioni G, Cappellesso R, Ottaviano G, Fasanaro E, Marchese-Ragona R, Favaretto N, Giacomelli L, Guzzardo V, Martini A, Fassina A, Blandamura S. Nuclear nonmetastatic protein 23-H1 expression and epithelial-mesenchymal transition in laryngeal carcinoma: A pilot investigation. Head Neck 2018; 40:2020-2028. [DOI: 10.1002/hed.25188] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 01/05/2018] [Accepted: 03/02/2018] [Indexed: 12/22/2022] Open
Affiliation(s)
- Gino Marioni
- Department of Neuroscience DNS, Otolaryngology Section; University of Padova; Padova Italy
| | | | - Giancarlo Ottaviano
- Department of Neuroscience DNS, Otolaryngology Section; University of Padova; Padova Italy
| | - Elena Fasanaro
- Department of Radiotherapy; Veneto Institute of Oncology IOV-IRCCS; Padova Italy
| | | | - Niccolò Favaretto
- Department of Neuroscience DNS, Otolaryngology Section; University of Padova; Padova Italy
| | | | | | - Alessandro Martini
- Department of Neuroscience DNS, Otolaryngology Section; University of Padova; Padova Italy
| | - Ambrogio Fassina
- Department of Medicine DIMED; University of Padova; Padova Italy
| | | |
Collapse
|
28
|
Shang W, Zhang Q, Huang Y, Shanti R, Alawi F, Le A, Jiang C. Cellular Plasticity-Targeted Therapy in Head and Neck Cancers. J Dent Res 2018; 97:654-664. [PMID: 29486673 DOI: 10.1177/0022034518756351] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Head and neck cancer is one of the most frequent human malignancies worldwide, with a high rate of recurrence and metastasis. Head and neck squamous cell carcinoma (HNSCC) is cellularly and molecularly heterogeneous, with subsets of undifferentiated cancer cells exhibiting stem cell-like properties, called cancer stem cells (CSCs). Epithelial-mesenchymal transition, gene mutation, and epigenetic modification are associated with the formation of cellular plasticity of tumor cells in HNSCC, contributing to the acquisition of invasive, recurrent, and metastatic properties and therapeutic resistance. Tumor microenvironment (TME) plays a supportive role in the initiation, progression, and metastasis of head and neck cancer. Stromal fibroblasts, vasculature, immune cells, cytokines, and hypoxia constitute the main components of TME in HNSCC, which contributes not only to the acquisition of CSC properties but also to the recurrence and therapeutic resistance of the malignancies. In this review, we discuss the potential mechanisms underlying the development of cellular plasticity, especially the emergence of CSCs, in HNSCC. We also highlight recent studies implicating the complex interplays among TME components, plastic CSCs, tumorigenesis, recurrence, and therapeutic resistance of HNSCC. Finally, we summarize the treatment modalities of HNSCC and reinforce the novel concept of therapeutic targeting CSCs in HNSCC.
Collapse
Affiliation(s)
- W Shang
- 1 Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Qingdao University, Shandong, China.,4 School of Stomatology, Qingdao University, Shandong, China
| | - Q Zhang
- 2 Department of Oral and Maxillofacial Surgery and Pharmacology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Y Huang
- 3 Department of Orthodontics, The Affiliated Hospital of Qingdao University, Shandong, China.,4 School of Stomatology, Qingdao University, Shandong, China
| | - R Shanti
- 2 Department of Oral and Maxillofacial Surgery and Pharmacology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA.,5 Department of Oral and Maxillofacial Surgery, Perelman Center for Advanced Medicine, Penn Medicine Hospital of the University of Pennsylvania, Philadelphia, PA, USA.,6 Department of Otorhinolaryngology-Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - F Alawi
- 7 Department of Pathology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - A Le
- 2 Department of Oral and Maxillofacial Surgery and Pharmacology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA.,5 Department of Oral and Maxillofacial Surgery, Perelman Center for Advanced Medicine, Penn Medicine Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - C Jiang
- 3 Department of Orthodontics, The Affiliated Hospital of Qingdao University, Shandong, China.,4 School of Stomatology, Qingdao University, Shandong, China
| |
Collapse
|
29
|
Roche J. The Epithelial-to-Mesenchymal Transition in Cancer. Cancers (Basel) 2018; 10:cancers10020052. [PMID: 29462906 PMCID: PMC5836084 DOI: 10.3390/cancers10020052] [Citation(s) in RCA: 257] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 02/13/2018] [Accepted: 02/13/2018] [Indexed: 12/21/2022] Open
Abstract
The epithelial-to-mesenchymal transition (EMT) occurs during normal embryonic development, tissue regeneration, organ fibrosis, and wound healing.[...].
Collapse
Affiliation(s)
- Joëlle Roche
- Université de Poitiers, UMR-CNRS 7267, Laboratoire EBI, SEVE, F-86073 Poitiers, France.
| |
Collapse
|
30
|
Abstract
In this issue of JEM, Sundaram et al. (https://doi.org/10.1084/jem.20170354) report a mechanism by which the normal epithelial wound healing response is "hijacked" to promote invasion and metastasis in head and neck squamous carcinomas (HNSCCs), a finding that unveils new markers of poor outcomes and potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Leif W Ellisen
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA
| |
Collapse
|