1
|
Chu S, Li L, Zhang J, You J, Li X, Zhou Y, Huang X, Wu Q, Chen F, Bai X, Tan H, Weng J. Hierarchical interconnected porous scaffolds with regulated interfacial nanotopography exhibit antimicrobial, alleviate inflammation, neovascularization, and tissue integration for bone regeneration. Biomaterials 2025; 318:123186. [PMID: 39970602 DOI: 10.1016/j.biomaterials.2025.123186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 01/19/2025] [Accepted: 02/10/2025] [Indexed: 02/21/2025]
Abstract
Novel interconnected porous scaffolds featuring suitable micro-interface structures hold significance in bone regeneration. Therefore, a hierarchical interconnected porous scaffold with nanotopography interface of pores, mimicking natural bone structure and extracellular matrix microenvironment, are designed to enhance bone regeneration by improving cell adhesion, proliferation, alleviate inflammation, and tissue integration capabilities. The scaffold is fabricated through Pickering emulsion templating method, with aminated gelatin and copper-hydroxyapatite nanoparticles serving as co-stabilizers. This process results in a dual nanoparticles-decorated interface, which could provide ample anchoring points for cells. Adjusting the ratio of the two nanoparticles leads to scaffold with different interfacial roughness. The resultant scaffold increases the number of cellular focal adhesions, enhancing cell adhesion, while its high porosity supports cell recruitment, proliferation and immunomodulation. Copper-hydroxyapatite adsorption at the pore interface reduces copper ion usage and exposes nanoparticles for direct cell contact, endowing the scaffold with enhanced antibacterial and angiogenic properties. An initial burst release phase of copper ions exerts inhibitory effects on mRNA expression, followed by a sustained and optimal release phase that promotes osteogenesis. The molecular mechanism underlying the scaffold of osteogenic potential has been elucidated through RNA sequencing analysis, along with the regulation of inflammatory cytokine expression. In vitro and in vivo studies alike verify its neovascularization-promoting capacity. The efficacy shown in a rat model with critical cranial defects underscores its clinical promise for bone regeneration, as Cu-doped scaffolds retain osteoinductive qualities after 10 weeks in vivo. This study innovates a manufacturing method for a novel scaffold in bone tissue engineering.
Collapse
Affiliation(s)
- Shirun Chu
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, China; Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, China
| | - Linlong Li
- College of Medicine (Institute of Biomedical Engineering), Southwest Jiaotong University, Chengdu 610031, Sichuan, China
| | - Jiahao Zhang
- College of Medicine (Institute of Biomedical Engineering), Southwest Jiaotong University, Chengdu 610031, Sichuan, China
| | - Jing You
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, China
| | - Xiaolan Li
- College of Medicine (Institute of Biomedical Engineering), Southwest Jiaotong University, Chengdu 610031, Sichuan, China
| | - Yuanyuan Zhou
- College of Medicine (Institute of Biomedical Engineering), Southwest Jiaotong University, Chengdu 610031, Sichuan, China
| | - Xiao Huang
- College of Medicine (Institute of Biomedical Engineering), Southwest Jiaotong University, Chengdu 610031, Sichuan, China
| | - Qiaoli Wu
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, China
| | - Fang Chen
- Laboratory Medical Center, Jiangyou City Second People's Hospital, Mianyang 621700, Sichuan, China
| | - Xue Bai
- College of Medicine (Institute of Biomedical Engineering), Southwest Jiaotong University, Chengdu 610031, Sichuan, China
| | - Huan Tan
- College of Medicine (Institute of Biomedical Engineering), Southwest Jiaotong University, Chengdu 610031, Sichuan, China.
| | - Jie Weng
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, China; Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, China; College of Medicine (Institute of Biomedical Engineering), Southwest Jiaotong University, Chengdu 610031, Sichuan, China.
| |
Collapse
|
2
|
Bhatta MP, Won GW, Lee SH, Choi SH, Oh CH, Moon JH, Hoang HH, Lee J, Lee SD, Park JI. Determination of adipogenesis stages of human umbilical cord-derived mesenchymal stem cells using three-dimensional label-free holotomography. Methods 2024; 231:204-214. [PMID: 39395684 DOI: 10.1016/j.ymeth.2024.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/07/2024] [Accepted: 10/09/2024] [Indexed: 10/14/2024] Open
Abstract
Adipogenesis involves complex changes in gene expression, morphology, and cytoskeletal organization. However, the quantitative analysis of live cell images to identify their stages through morphological markers is limited. Distinct adipogenesis markers on human umbilical cord-derived mesenchymal stem cells (UC-MSCs) were identified through holotomography, a label-free live cell imaging technique. In the MSC-to-preadipocyte transition, the nucleus-to-cytoplasm ratio (0.080 vs. 0.052) and lipid droplet (LD) refractive index variation decreased (0.149 % vs. 0.061 %), whereas the LD number (20 vs. 65) increased. This event was also accompanied by the downregulation and upregulation of THY1 and Preadipocyte Factor-1 (PREF-1), respectively. In the preadipocyte to immature adipocyte shift, cell sphericity (0.20 vs. 0.43) and LD number (65 vs. 200) surged, large LDs (>10 μm3) appeared, and the major axis of the cell was reduced (143.7 μm vs. 83.12 μm). These findings indicate features of preadipocyte and immature adipocyte stages, alongside the downregulation of PREF-1 and upregulation of Peroxisome Proliferator-Activated Receptor gamma (PPARγ). In adipocyte maturation, along with PPARγ and Fatty Acid-Binding Protein 4 upregulation, cell compactness (0.15 vs. 0.29) and sphericity (0.43 vs. 0.59) increased, and larger LDs (>30 μm3) formed, marking immature and mature adipocyte stages. The study highlights the distinct adipogenic morphological biomarkers of adipogenesis stages in UC-MSCs, providing potential applications in biomedical and clinical settings, such as fostering innovative medical strategies for treating metabolic disease.
Collapse
Affiliation(s)
- Mahesh Prakash Bhatta
- Department of Biochemistry, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea; Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea; Brain Korea 21 FOUR Project for Medical Science, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Gun-Woo Won
- Department of Biochemistry, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Seung Hoon Lee
- Department of Biochemistry, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea; Translational Immunology Institute, Chungnam National University College of Medicine, Daejeon 35015, Republic of Korea
| | - Seung-Hyeon Choi
- Department of Biochemistry, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea; Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea; Brain Korea 21 FOUR Project for Medical Science, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Cheong-Hae Oh
- Department of Biochemistry, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Ji Hyun Moon
- Department of Biochemistry, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | | | | | - Sang Do Lee
- Department of Physiology, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea.
| | - Jong-Il Park
- Department of Biochemistry, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea; Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea; Brain Korea 21 FOUR Project for Medical Science, Chungnam National University, Daejeon 35015, Republic of Korea; Translational Immunology Institute, Chungnam National University College of Medicine, Daejeon 35015, Republic of Korea.
| |
Collapse
|
3
|
Kulthanaamondhita P, Kornsuthisopon C, Chansaenroj A, Suwittayarak R, Trachoo V, Manokawinchoke J, Lee SC, Egusa H, Kim JM, Osathanon T. Notch signaling regulates mineralization via microRNA modulation in dental pulp stem cells. Oral Dis 2024; 30:4547-4557. [PMID: 38243590 DOI: 10.1111/odi.14868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 12/01/2023] [Accepted: 01/03/2024] [Indexed: 01/21/2024]
Abstract
OBJECTIVES This study investigated the miRNA expression profile in Notch-activated human dental stem pulp stem cells (DPSCs) and validated the functions of miRNAs in modulating the odonto/osteogenic properties of DPSCs. METHODS DPSCs were treated with indirect immobilized Jagged1. The miRNA expression profile was examined using NanoString analysis. Bioinformatic analysis was performed, and miRNA expression was validated. Odonto/osteogenic differentiation was examined using alkaline phosphatase staining, Alizarin Red S staining, as well as odonto/osteogenic-related gene and protein expression. RESULTS Fourteen miRNAs were differentially expressed in Jagged1-treated DPSCs. Pathway analysis revealed that altered miRNAs were associated with TGF-β, Hippo, ErbB signalling pathways, FoxO and Ras signalling. Target prediction analysis demonstrated that 7604 genes were predicted to be targets for these altered miRNAs. Enrichment analysis revealed relationships to various DNA bindings. Among differentially expressed miRNA, miR-296-3p and miR-450b-5p were upregulated under Jagged1-treated conditions. Overexpression of miR-296-3p and miR-450b-5p enhanced mineralization and upregulation of odonto/osteogenic-related genes, whereas inhibition of these miRNAs revealed opposing results. The miR-296-3p and miR-450b-5p inhibitors attenuated the effects of Jagged1-induced mineralization in DPSCs. CONCLUSIONS Jagged-1 promotes mineralization in DPSCs that are partially regulated by miRNA. The novel understanding of these miRNAs could lead to innovative controlled mechanisms that can be applied to modulate biology-targeted dental materials.
Collapse
Affiliation(s)
- Promphakkon Kulthanaamondhita
- Center of Excellence for Dental Stem Cell Biology and Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Chatvadee Kornsuthisopon
- Center of Excellence for Dental Stem Cell Biology and Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Ajjima Chansaenroj
- Center of Excellence for Dental Stem Cell Biology and Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Ravipha Suwittayarak
- Center of Excellence for Dental Stem Cell Biology and Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Voraphat Trachoo
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Jeeranan Manokawinchoke
- Center of Excellence for Dental Stem Cell Biology and Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Seung-Cheol Lee
- Department of Oral Microbiology and Immunology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Hiroshi Egusa
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai, Miyagi, Japan
| | - Jin Man Kim
- Department of Oral Microbiology and Immunology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Thanaphum Osathanon
- Center of Excellence for Dental Stem Cell Biology and Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
4
|
Humenik F, Vdoviaková K, Krešáková L, Danko J, Giretová M, Medvecký Ľ, Lengyel P, Babík J. The Combination of Chitosan-Based Biomaterial and Cellular Therapy for Successful Treatment of Diabetic Foot-Pilot Study. Int J Mol Sci 2024; 25:8388. [PMID: 39125958 PMCID: PMC11313444 DOI: 10.3390/ijms25158388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/29/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
Diabetic foot ulceration is one of the most common complications in patients treated for diabetes mellitus. The presented pilot study describes the successful treatment of diabetic ulceration of the heel with ongoing osteomyelitis in a 39-year-old patient after using a combination of modified chitosan-based biomaterial in combination with autologous mesenchymal stem cells isolated from bone marrow and dermal fibroblasts. The isolated population of bone marrow mesenchymal stem cells fulfilled all of the attributes given by the International Society for Stem Cell Research, such as fibroblast-like morphology, the high expression of positive surface markers (CD29: 99.1 ± 0.4%; CD44: 99.8 ± 0.2% and CD90: 98.0 ± 0.6%) and the ability to undergo multilineage differentiation. Likewise, the population of dermal fibroblasts showed high positivity for the widely accepted markers collagen I, collagen III and vimentin, which was confirmed by immunocytochemical staining. Moreover, we were able to describe newly formed blood vessels shown by angio CT and almost complete closure of the skin defect after 8 months of the treatment.
Collapse
Affiliation(s)
- Filip Humenik
- Department of Morphological Sciences, University of Veterinary Medicine and Pharmacy in Košice, 041 81 Košice, Slovakia; (K.V.); (L.K.); (J.D.)
| | - Katarína Vdoviaková
- Department of Morphological Sciences, University of Veterinary Medicine and Pharmacy in Košice, 041 81 Košice, Slovakia; (K.V.); (L.K.); (J.D.)
| | - Lenka Krešáková
- Department of Morphological Sciences, University of Veterinary Medicine and Pharmacy in Košice, 041 81 Košice, Slovakia; (K.V.); (L.K.); (J.D.)
| | - Ján Danko
- Department of Morphological Sciences, University of Veterinary Medicine and Pharmacy in Košice, 041 81 Košice, Slovakia; (K.V.); (L.K.); (J.D.)
| | - Mária Giretová
- Division of Functional and Hybrid Systems, Institute of Materials Research of SAS, 040 01 Košice, Slovakia; (M.G.); (Ľ.M.)
| | - Ľubomír Medvecký
- Division of Functional and Hybrid Systems, Institute of Materials Research of SAS, 040 01 Košice, Slovakia; (M.G.); (Ľ.M.)
| | - Peter Lengyel
- Clinic of Burns and Reconstructive Medicine, AGEL Hospital, 040 15 Košice-Šaca, Slovakia; (P.L.); (J.B.)
| | - Ján Babík
- Clinic of Burns and Reconstructive Medicine, AGEL Hospital, 040 15 Košice-Šaca, Slovakia; (P.L.); (J.B.)
| |
Collapse
|
5
|
Astaneh ME, Noori F, Fereydouni N. Curcumin-loaded scaffolds in bone regeneration. Heliyon 2024; 10:e32566. [PMID: 38961905 PMCID: PMC11219509 DOI: 10.1016/j.heliyon.2024.e32566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 06/05/2024] [Accepted: 06/05/2024] [Indexed: 07/05/2024] Open
Abstract
In recent years, there has been a notable surge in the development of engineered bone scaffolds intended for the repair of bone defects. While autografts and allografts have traditionally served as the primary methods in bone tissue engineering, their inherent limitations have spurred the exploration of novel avenues in biomedical implant development. The emergence of bone scaffolds not only facilitates bone reconstruction but also offers a platform for the targeted delivery of therapeutic agents. There exists a pervasive interest in leveraging various drugs, proteins, growth factors, and biomolecules with osteogenic properties to augment bone formation, as the enduring side effects associated with current clinical modalities necessitate the pursuit of safer alternatives. Curcumin, the principal bioactive compound found in turmeric, has demonstrated notable efficacy in regulating the proliferation and differentiation of bone cells while promoting bone formation. Nevertheless, its utility is hindered by restricted water solubility and poor bioavailability. Strategies aimed at enhancing the solubility, stability, and bioavailability of curcumin, including formulation techniques such as liposomes and nanoparticles or its complexation with metals, have been explored. This investigation is dedicated to exploring the impact of curcumin on the proliferation, differentiation, and migration of osteocytes, osteoblasts, and osteoclasts.
Collapse
Affiliation(s)
- Mohammad Ebrahim Astaneh
- Department of Anatomical Sciences, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
- Department of Tissue Engineering, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
- Student Research Committee, Fasa University of Medical Sciences, Fasa, Iran
| | - Fariba Noori
- Department of Tissue Engineering, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
- Student Research Committee, Fasa University of Medical Sciences, Fasa, Iran
| | - Narges Fereydouni
- Department of Tissue Engineering, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
- Student Research Committee, Fasa University of Medical Sciences, Fasa, Iran
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| |
Collapse
|
6
|
Jang E, Yu H, Kim E, Hwang J, Yoo J, Choi J, Jeong HS, Jang S. The Therapeutic Effects of Blueberry-Treated Stem Cell-Derived Extracellular Vesicles in Ischemic Stroke. Int J Mol Sci 2024; 25:6362. [PMID: 38928069 PMCID: PMC11203670 DOI: 10.3390/ijms25126362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/23/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
An ischemic stroke, one of the leading causes of morbidity and mortality, is caused by ischemia and hemorrhage resulting in impeded blood supply to the brain. According to many studies, blueberries have been shown to have a therapeutic effect in a variety of diseases. Therefore, in this study, we investigated whether blueberry-treated mesenchymal stem cell (MSC)-derived extracellular vesicles (B-EVs) have therapeutic effects in in vitro and in vivo stroke models. We isolated the extracellular vesicles using cryo-TEM and characterized the particles and concentrations using NTA. MSC-derived extracellular vesicles (A-EVs) and B-EVs were round with a lipid bilayer structure and a diameter of ~150 nm. In addition, A-EVs and B-EVs were shown to affect angiogenesis, cell cycle, differentiation, DNA repair, inflammation, and neurogenesis following KEGG pathway and GO analyses. We investigated the protective effects of A-EVs and B-EVs against neuronal cell death in oxygen-glucose deprivation (OGD) cells and a middle cerebral artery occlusion (MCAo) animal model. The results showed that the cell viability was increased with EV treatment in HT22 cells. In the animal, the size of the cerebral infarction was decreased, and the behavioral assessment was improved with EV injections. The levels of NeuN and neurofilament heavy chain (NFH)-positive cells were also increased with EV treatment yet decreased in the MCAo group. In addition, the number of apoptotic cells was decreased with EV treatment compared with ischemic animals following TUNEL and Bax/Bcl-2 staining. These data suggested that EVs, especially B-EVs, had a therapeutic effect and could reduce apoptotic cell death after ischemic injury.
Collapse
Affiliation(s)
- Eunjae Jang
- Department of Physiology, Chonnam National University Medical School, Hwasun-gun 58128, Republic of Korea; (E.J.); (H.Y.); (J.H.); (J.C.)
- Jeonnam Bioindustry Foundation Biopharmaceutical Research Center, Hwasun-gun 58141, Republic of Korea
| | - Hee Yu
- Department of Physiology, Chonnam National University Medical School, Hwasun-gun 58128, Republic of Korea; (E.J.); (H.Y.); (J.H.); (J.C.)
- Jeonnam Bioindustry Foundation Biopharmaceutical Research Center, Hwasun-gun 58141, Republic of Korea
| | - Eungpil Kim
- Infrastructure Project Organization for Global Industrialization of Vaccine, Sejong-si 30121, Republic of Korea;
| | - Jinsu Hwang
- Department of Physiology, Chonnam National University Medical School, Hwasun-gun 58128, Republic of Korea; (E.J.); (H.Y.); (J.H.); (J.C.)
| | - Jin Yoo
- Department of Physical Education, Chonnam National University, Gwangju 61186, Republic of Korea;
| | - Jiyun Choi
- Department of Physiology, Chonnam National University Medical School, Hwasun-gun 58128, Republic of Korea; (E.J.); (H.Y.); (J.H.); (J.C.)
| | - Han-Seong Jeong
- Department of Physiology, Chonnam National University Medical School, Hwasun-gun 58128, Republic of Korea; (E.J.); (H.Y.); (J.H.); (J.C.)
| | - Sujeong Jang
- Department of Physiology, Chonnam National University Medical School, Hwasun-gun 58128, Republic of Korea; (E.J.); (H.Y.); (J.H.); (J.C.)
| |
Collapse
|
7
|
Shen H, Fu L, Cai Y, Zhu K, Chen X. Hexafluoropropylene oxide trimer acid (HFPO-TA) exerts cytotoxic effects on leydig cells via the ER stress/JNK/β-trcp/mcl-1 axis. Food Chem Toxicol 2024; 188:114678. [PMID: 38643823 DOI: 10.1016/j.fct.2024.114678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 04/23/2024]
Abstract
Hexafluoropropylene oxide trimer acid (HFPO-TA) is an alternative to perfluorooctanoic acid (PFOA) and is widely used in various industries. The effects of HFPO-TA on the male reproductive system and the underlying mechanisms are still not fully understood. In this study, TM3 mouse Leydig cells were used as the main model to evaluate the cytotoxicity of HFPO-TA in vitro. HFPO-TA inhibited the viability and expression of multiple biomarkers of Leydig cells. HFPO-TA also induced Leydig cell apoptosis in a caspase-dependent manner. Moreover, HFPO-TA induced the ubiquitination and degradation of Mcl-1 in a β-TrCP-dependent manner. Further investigations showed that HFPO-TA treatment led to the upregulation of ROS, which activated the ER stress/JNK/β-TrCP axis in Leydig cells. Overall, our study provides novel insights into the cytotoxic effects of HFPO-TA on the male reproductive system.
Collapse
Affiliation(s)
- Hongping Shen
- Department of Traditonal Chinese Medicine, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang Province, China
| | - Lingling Fu
- Jinhua Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Jinhua, Zhejiang Province, China
| | - Yili Cai
- Department of Acupuncture, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang Province, China
| | - Keqi Zhu
- Department of Traditonal Chinese Medicine, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang Province, China
| | - Xueqin Chen
- Department of Traditonal Chinese Medicine, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang Province, China.
| |
Collapse
|
8
|
Xiao HX, Yu L, Xia Y, Chen K, Li WM, Ge GR, Zhang W, Zhang Q, Zhang HT, Geng DC. Sinomenine increases osteogenesis in mice with ovariectomy-induced bone loss by modulating autophagy. World J Stem Cells 2024; 16:486-498. [PMID: 38817333 PMCID: PMC11135257 DOI: 10.4252/wjsc.v16.i5.486] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 03/01/2024] [Accepted: 04/07/2024] [Indexed: 05/24/2024] Open
Abstract
BACKGROUND A decreased autophagic capacity of bone marrow mesenchymal stromal cells (BMSCs) has been suggested to be an important cause of decreased osteogenic differentiation. A pharmacological increase in autophagy of BMSCs is a potential therapeutic option to increase osteoblast viability and ameliorate osteoporosis. AIM To explore the effects of sinomenine (SIN) on the osteogenic differentiation of BMSCs and the underlying mechanisms. METHODS For in vitro experiments, BMSCs were extracted from sham-treated mice and ovariectomized mice, and the levels of autophagy markers and osteogenic differentiation were examined after treatment with the appropriate concentrations of SIN and the autophagy inhibitor 3-methyladenine. In vivo, the therapeutic effect of SIN was verified by establishing an ovariectomy-induced mouse model and by morphological and histological assays of the mouse femur. RESULTS SIN reduced the levels of AKT and mammalian target of the rapamycin (mTOR) phosphorylation in the phosphatidylinositol 3-kinase (PI3K)/AKT/mTOR signaling pathway, inhibited mTOR activity, and increased autophagy ability of BMSCs, thereby promoting the osteogenic differentiation of BMSCs and effectively alleviating bone loss in ovariectomized mice in vivo. CONCLUSION The Chinese medicine SIN has potential for the treatment of various types of osteoporosis, bone homeostasis disorders, and autophagy-related diseases.
Collapse
Affiliation(s)
- Hai-Xiang Xiao
- Department of Orthopedics, The Fourth Affiliated Hospital of Soochow University, Suzhou Dushu Lake Hospital, Medical Centre of Soochow University, Suzhou 215006, Jiangsu Province, China
- Department of Orthopedics, Jingjiang People's Hospital Affiliated to Yangzhou University, Jingjiang 214500, Jiangsu Province, China
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu Province, China
| | - Lei Yu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu Province, China
| | - Yu Xia
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu Province, China
| | - Kai Chen
- Department of Orthopedics, Hai'an People's Hospital, Hai'an 226600, Jiangsu Province, China
| | - Wen-Ming Li
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu Province, China
| | - Gao-Ran Ge
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu Province, China
| | - Wei Zhang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu Province, China
| | - Qing Zhang
- Department of Orthopedics, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an Second People's Hospital, Xuzhou 223002, Jiangsu Province, China
| | - Hong-Tao Zhang
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu Province, China
| | - De-Chun Geng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu Province, China.
| |
Collapse
|
9
|
Qi JL, Zhang ZD, Dong Z, Shan T, Yin ZS. mir-150-5p inhibits the osteogenic differentiation of bone marrow-derived mesenchymal stem cells by targeting irisin to regulate the p38/MAPK signaling pathway. J Orthop Surg Res 2024; 19:190. [PMID: 38500202 PMCID: PMC10949585 DOI: 10.1186/s13018-024-04671-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 03/11/2024] [Indexed: 03/20/2024] Open
Abstract
PURPOSE To study the effect of miR-150-5p on the osteogenic differentiation of bone marrow-derived mesenchymal stem cells (BMSCs), and further explore the relationship between its regulatory mechanism and irisin. METHODS We isolated mouse BMSCs, and induced osteogenic differentiation by osteogenic induction medium. Using qPCR to detect the expression of osteogenic differentiation-related genes, western blot to detect the expression of osteogenic differentiation-related proteins, and luciferase reporter system to verify that FNDC5 is the target of miR-150-5p. Irisin intraperitoneal injection to treat osteoporosis in mice constructed by subcutaneous injection of dexamethasone. RESULTS Up-regulation of miR-150-5p inhibited the proliferation of BMSCs, and decreased the content of osteocalcin, ALP activity, calcium deposition, the expression of osteogenic differentiation genes (Runx2, OSX, OCN, OPN, ALP and BMP2) and protein (BMP2, OCN, and Runx2). And down-regulation of miR-150-5p plays the opposite role of up-regulation of miR-150-5p on osteogenic differentiation of BMSCs. Results of luciferase reporter gene assay showed that FNDC5 gene was the target gene of miR-150-5p, and miR-150-5p inhibited the expression of FNDC5 in mouse BMSCs. The expression of osteogenic differentiation genes and protein, the content of osteocalcin, ALP activity and calcium deposition in BMSCs co-overexpressed by miR-150-5p and FNDC5 was significantly higher than that of miR-150-5p overexpressed alone. In addition, the overexpression of FNDC5 reversed the blocked of p38/MAPK pathway by the overexpression of miR-150-5p in BMSCs. Irisin, a protein encoded by FNDC5 gene, improved symptoms in osteoporosis mice through intraperitoneal injection, while the inhibitor of p38/MAPK pathway weakened this function of irisin. CONCLUSION miR-150-5p inhibits the osteogenic differentiation of BMSCs by targeting irisin to regulate the/p38/MAPK signaling pathway, and miR-150-5p/irisin/p38 pathway is a potential target for treating osteoporosis.
Collapse
Affiliation(s)
- Jia-Long Qi
- Department of Orthopedics, First Affiliated Hospital of Anhui Medical University, Hefei City, 230022, Anhui Province, China
- Department of Spine Surgery, Hefei First People's Hospital, Hefei City, 230061, Anhui Province, China
| | - Zhi-Dong Zhang
- Department of Spine Surgery, Hefei First People's Hospital, Hefei City, 230061, Anhui Province, China
| | - Zhou Dong
- Department of Spine Surgery, Hefei First People's Hospital, Hefei City, 230061, Anhui Province, China
| | - Tao Shan
- Department of Spine Surgery, Hefei First People's Hospital, Hefei City, 230061, Anhui Province, China
| | - Zong-Sheng Yin
- Department of Orthopedics, First Affiliated Hospital of Anhui Medical University, Hefei City, 230022, Anhui Province, China.
| |
Collapse
|
10
|
Xiao Y, Xie X, Chen Z, Yin G, Kong W, Zhou J. Advances in the roles of ATF4 in osteoporosis. Biomed Pharmacother 2023; 169:115864. [PMID: 37948991 DOI: 10.1016/j.biopha.2023.115864] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/01/2023] [Accepted: 11/07/2023] [Indexed: 11/12/2023] Open
Abstract
Osteoporosis (OP) is characterized by reduced bone mass, decreased strength, and enhanced bone fragility fracture risk. Activating transcription factor 4 (ATF4) plays a role in cell differentiation, proliferation, apoptosis, redox balance, amino acid uptake, and glycolipid metabolism. ATF4 induces the differentiation of bone marrow mesenchymal stem cells (BM-MSCs) into osteoblasts, increases osteoblast activity, and inhibits osteoclast formation, promoting bone formation and remodeling. In addition, ATF4 mediates the energy metabolism in osteoblasts and promotes angiogenesis. ATF4 is also involved in the mediation of adipogenesis. ATF4 can selectively accumulate in osteoblasts. ATF4 can directly interact with RUNT-related transcription factor 2 (RUNX2) and up-regulate the expression of osteocalcin (OCN) and osterix (Osx). Several upstream factors, such as Wnt/β-catenin and BMP2/Smad signaling pathways, have been involved in ATF4-mediated osteoblast differentiation. ATF4 promotes osteoclastogenesis by mediating the receptor activator of nuclear factor κ-B (NF-κB) ligand (RANKL) signaling. Several agents, such as parathyroid (PTH), melatonin, and natural compounds, have been reported to regulate ATF4 expression and mediate bone metabolism. In this review, we comprehensively discuss the biological activities of ATF4 in maintaining bone homeostasis and inhibiting OP development. ATF4 has become a therapeutic target for OP treatment.
Collapse
Affiliation(s)
- Yaosheng Xiao
- Department of Orthopaetics, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Xunlu Xie
- Department of Pathology, Ganzhou People's Hospital, Ganzhou 341000, China
| | - Zhixi Chen
- Department of Pharmacy, Gannan Medical University, Ganzhou 341000, China
| | - Guoqiang Yin
- Ganzhou Hospital Affiliated to Nanchang University, Ganzhou 341000, China
| | - Weihao Kong
- Department of Joint Surgery, Ganzhou People's Hospital, Ganzhou 341000, China
| | - Jianguo Zhou
- Department of Joint Surgery, Ganzhou People's Hospital, Ganzhou 341000, China.
| |
Collapse
|
11
|
Franco-Obregón A. Harmonizing Magnetic Mitohormetic Regenerative Strategies: Developmental Implications of a Calcium-Mitochondrial Axis Invoked by Magnetic Field Exposure. Bioengineering (Basel) 2023; 10:1176. [PMID: 37892906 PMCID: PMC10604793 DOI: 10.3390/bioengineering10101176] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/05/2023] [Accepted: 10/08/2023] [Indexed: 10/29/2023] Open
Abstract
Mitohormesis is a process whereby mitochondrial stress responses, mediated by reactive oxygen species (ROS), act cumulatively to either instill survival adaptations (low ROS levels) or to produce cell damage (high ROS levels). The mitohormetic nature of extremely low-frequency electromagnetic field (ELF-EMF) exposure thus makes it susceptible to extraneous influences that also impinge on mitochondrial ROS production and contribute to the collective response. Consequently, magnetic stimulation paradigms are prone to experimental variability depending on diverse circumstances. The failure, or inability, to control for these factors has contributed to the existing discrepancies between published reports and in the interpretations made from the results generated therein. Confounding environmental factors include ambient magnetic fields, temperature, the mechanical environment, and the conventional use of aminoglycoside antibiotics. Biological factors include cell type and seeding density as well as the developmental, inflammatory, or senescence statuses of cells that depend on the prior handling of the experimental sample. Technological aspects include magnetic field directionality, uniformity, amplitude, and duration of exposure. All these factors will exhibit manifestations at the level of ROS production that will culminate as a unified cellular response in conjunction with magnetic exposure. Fortunately, many of these factors are under the control of the experimenter. This review will focus on delineating areas requiring technical and biological harmonization to assist in the designing of therapeutic strategies with more clearly defined and better predicted outcomes and to improve the mechanistic interpretation of the generated data, rather than on precise applications. This review will also explore the underlying mechanistic similarities between magnetic field exposure and other forms of biophysical stimuli, such as mechanical stimuli, that mutually induce elevations in intracellular calcium and ROS as a prerequisite for biological outcome. These forms of biophysical stimuli commonly invoke the activity of transient receptor potential cation channel classes, such as TRPC1.
Collapse
Affiliation(s)
- Alfredo Franco-Obregón
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore; ; Tel.: +65-6777-8427 or +65-6601-6143
- Institute of Health Technology and Innovation (iHealthtech), National University of Singapore, Singapore 117599, Singapore
- Biolonic Currents Electromagnetic Pulsing Systems Laboratory (BICEPS), National University of Singapore, Singapore 117599, Singapore
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore
- Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117544, Singapore
| |
Collapse
|