1
|
Stephens DR, Fung HYJ, Han Y, Liang J, Chen Z, Ready J, Collins JJ. A genome-scale drug discovery pipeline uncovers new therapeutic targets and a unique p97 allosteric binding site in Schistosoma mansoni. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.14.643303. [PMID: 40161785 PMCID: PMC11952559 DOI: 10.1101/2025.03.14.643303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Schistosomes are parasitic flatworms that infect more than 200 million people globally. However, there is a shortage of molecular tools that enable the discovery of potential drug targets within schistosomes. Thus, praziquantel has remained the frontline treatment for schistosomiasis despite known liabilities. Here, we have conducted a genome-wide study in S. mansoni using the human druggable genome as a bioinformatic template to identify essential genes within schistosomes bearing similarity to catalogued drug targets. Then, we assessed these candidate targets in silico using a set of unbiased criteria to determine which possess ideal characteristics for a ready-made drug discovery campaign. Following this prioritization, we pursued a parasite p97 ortholog as a bona-fide drug target for the development of therapeutics to treat schistosomiasis. From this effort, we identified a covalent inhibitor series that kills schistosomes through an on-target killing mechanism by disrupting the ubiquitin proteasome system. Fascinatingly, these inhibitors induce a conformational change in the conserved D2 domain P-loop of schistosome p97 upon modification of Cys519. This conformational change reveals an allosteric binding site adjacent to the D2 domain active site reminiscent of the 'DFG' flip in protein kinases. This allosteric binding site can potentially be utilized to generate new classes of species-selective p97 inhibitors. Furthermore, these studies provide a resource for the development of alternative therapeutics for schistosomiasis and a workflow to identify potential drug targets in similar systems with few available molecular tools.
Collapse
Affiliation(s)
- Dylon R Stephens
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Ho Yee Joyce Fung
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX
| | - Yan Han
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX
| | - Jue Liang
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX
| | - Zhe Chen
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX
| | - Joseph Ready
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX
| | - James J Collins
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX
- Howard Hughes Medical Institute, Chevy Chase, MD
| |
Collapse
|
2
|
Godinez-Macias KP, Chen D, Wallis JL, Siegel MG, Adam A, Bopp S, Carolino K, Coulson LB, Durst G, Thathy V, Esherick L, Farringer MA, Flannery EL, Forte B, Liu T, Godoy Magalhaes L, Gupta AK, Istvan ES, Jiang T, Kumpornsin K, Lobb K, McLean KJ, Moura IMR, Okombo J, Payne NC, Plater A, Rao SPS, Siqueira-Neto JL, Somsen BA, Summers RL, Zhang R, Gilson MK, Gamo FJ, Campo B, Baragaña B, Duffy J, Gilbert IH, Lukens AK, Dechering KJ, Niles JC, McNamara CW, Cheng X, Birkholtz LM, Bronkhorst AW, Fidock DA, Wirth DF, Goldberg DE, Lee MCS, Winzeler EA. Revisiting the Plasmodium falciparum druggable genome using predicted structures and data mining. NPJ DRUG DISCOVERY 2025; 2:3. [PMID: 40066064 PMCID: PMC11892419 DOI: 10.1038/s44386-025-00006-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 01/22/2025] [Indexed: 03/19/2025]
Abstract
Identification of novel drug targets is a key component of modern drug discovery. While antimalarial targets are often identified through the mechanism of action studies on phenotypically derived inhibitors, this method tends to be time- and resource-consuming. The discoverable target space is also constrained by existing compound libraries and phenotypic assay conditions. Leveraging recent advances in protein structure prediction, we systematically assessed the Plasmodium falciparum genome and identified 867 candidate protein targets with evidence of small-molecule binding and blood-stage essentiality. Of these, 540 proteins showed strong essentiality evidence and lack inhibitors that have progressed to clinical trials. Expert review and rubric-based scoring of this subset based on additional criteria such as selectivity, structural information, and assay developability yielded 27 high-priority antimalarial target candidates. This study also provides a genome-wide data resource for P. falciparum and implements a generalizable framework for systematically evaluating and prioritizing novel pathogenic disease targets.
Collapse
Affiliation(s)
| | - Daisy Chen
- Department of Pediatrics, University of California, San Diego, La Jolla, CA USA
| | | | | | - Anna Adam
- MMV Medicines for Malaria Venture, 1215, Geneva, Switzerland
| | - Selina Bopp
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA USA
| | - Krypton Carolino
- Department of Pediatrics, University of California, San Diego, La Jolla, CA USA
| | - Lauren B. Coulson
- Holistic Drug Discovery and Development (H3D) Centre, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Greg Durst
- Lgenia, Inc., 412 S Maple St, Fortville, IN USA
| | - Vandana Thathy
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY USA
| | - Lisl Esherick
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA USA
| | - Madeline A. Farringer
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA USA
- Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA USA
| | | | - Barbara Forte
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, School of Life Science, University of Dundee, Dundee, UK
| | - Tiqing Liu
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA USA
| | - Luma Godoy Magalhaes
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, School of Life Science, University of Dundee, Dundee, UK
| | - Anil K. Gupta
- Calibr-Skaggs Institute for Innovative Medicines, a division of The Scripps Research Institute, La Jolla, CA USA
| | - Eva S. Istvan
- Division of Infectious Diseases, Washington University School of Medicine, Saint Louis, MO USA
| | - Tiantian Jiang
- Department of Pediatrics, University of California, San Diego, La Jolla, CA USA
| | - Krittikorn Kumpornsin
- Calibr-Skaggs Institute for Innovative Medicines, a division of The Scripps Research Institute, La Jolla, CA USA
| | - Karen Lobb
- Lgenia, Inc., 412 S Maple St, Fortville, IN USA
| | - Kyle J. McLean
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA USA
| | - Igor M. R. Moura
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY USA
- São Carlos Institute of Physics, University of São Paulo, São Carlos, São Paulo, Brazil
| | - John Okombo
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY USA
| | - N. Connor Payne
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA USA
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA USA
| | - Andrew Plater
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, School of Life Science, University of Dundee, Dundee, UK
| | | | - Jair L. Siqueira-Neto
- Department of Pediatrics, University of California, San Diego, La Jolla, CA USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA USA
| | | | - Robert L. Summers
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA USA
- Infectious Disease and Microbiome Program, Broad Institute, Cambridge, MA USA
| | - Rumin Zhang
- Global Health Drug Discovery Institute, Beijing, China
| | - Michael K. Gilson
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA USA
| | | | - Brice Campo
- MMV Medicines for Malaria Venture, 1215, Geneva, Switzerland
| | - Beatriz Baragaña
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, School of Life Science, University of Dundee, Dundee, UK
| | - James Duffy
- MMV Medicines for Malaria Venture, 1215, Geneva, Switzerland
| | - Ian H. Gilbert
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, School of Life Science, University of Dundee, Dundee, UK
| | - Amanda K. Lukens
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA USA
- Infectious Disease and Microbiome Program, Broad Institute, Cambridge, MA USA
| | | | - Jacquin C. Niles
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA USA
| | - Case W. McNamara
- Calibr-Skaggs Institute for Innovative Medicines, a division of The Scripps Research Institute, La Jolla, CA USA
| | - Xiu Cheng
- Global Health Drug Discovery Institute, Beijing, China
| | - Lyn-Marie Birkholtz
- Department of Biochemistry, Genetics & Microbiology, Institute for Sustainable Malaria Control, University of Pretoria, Private Bag X20, Hatfield, Pretoria, South Africa
| | | | - David A. Fidock
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY USA
| | - Dyann F. Wirth
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA USA
- Infectious Disease and Microbiome Program, Broad Institute, Cambridge, MA USA
| | - Daniel E. Goldberg
- Division of Infectious Diseases, Washington University School of Medicine, Saint Louis, MO USA
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO USA
| | - Marcus C. S. Lee
- Division of Biological Chemistry and Drug Discovery, Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee, UK
| | - Elizabeth A. Winzeler
- Department of Pediatrics, University of California, San Diego, La Jolla, CA USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA USA
| |
Collapse
|
3
|
Xu L, Guo J, Xie X, Wang H, Jiang A, Huang C, Yang H, Luo S, Chen L. GTPase GPN3 facilitates cell proliferation and migration in non-small cell lung cancer by impeding clathrin-mediated endocytosis of EGFR. Cell Death Discov 2025; 11:38. [PMID: 39893205 PMCID: PMC11787391 DOI: 10.1038/s41420-025-02317-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 12/12/2024] [Accepted: 01/21/2025] [Indexed: 02/04/2025] Open
Abstract
Small GTPases play a critical role as regulatory molecules in signaling transduction and various cellular processes, contributing to the development of human diseases, including cancers. GPN3, an evolutionarily conserved member of the GPN-loop GTPase subfamily classified in 2007 according to its structure, has limited knowledge regarding its cellular functions and molecular mechanisms. In this study, we demonstrate that GPN3 interacts with clathrin light chain A (CLTA), a vesicle coat protein, as well as clathrin-mediated endocytosis associated modulators AP2B1 and AP2S1. Upregulation of GPN3 leads to the inhibition of clathrin-coated pit invagination. Furthermore, we discovered that GPN3 interacts with the epidermal growth factor receptor (EGFR) and regulates the co-localization of EGFR and CLTA, as well as the localization of EGFR in early endosomes upon EGF stimulation. As a result, this leads to a decrease in endocytic levels of EGFR and an increase in the accumulation of EGFR on the cell membrane surface, thereby prolonging activation of EGFR signaling. The functional effects exerted by GPN3 are dependent on cellular levels of GTP abundance. Furthermore, our findings indicate that aberrant overexpression of GPN3 is observed in non-small cell lung cancer (NSCLC) tissues compared to adjacent normal tissues, and high expression levels of GPN3 are associated with poor prognosis for NSCLC patients. Collectively, these findings reveal that GPN3 acts as an oncogene promoting cell proliferation and migration in NSCLC through regulation of clathrin-dependent EGFR endocytosis. These results suggest that targeting GPN3 could serve as a novel prognostic biomarker and therapeutic strategy for NSCLC treatment.
Collapse
Affiliation(s)
- Linlin Xu
- Medical Innovation Center, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
- Department of Pathology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Jiankun Guo
- Medical Innovation Center, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
- Center for Experimental Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Xinsheng Xie
- Medical Innovation Center, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Hailong Wang
- Medical Innovation Center, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Alan Jiang
- Medical Innovation Center, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Changhua Huang
- Medical Innovation Center, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
- Center for Experimental Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Hua Yang
- Medical Innovation Center, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
- Center for Experimental Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Shiwen Luo
- Center for Experimental Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China.
| | - Limin Chen
- Medical Innovation Center, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
4
|
Damodaran AP, Gavard O, Gagné JP, Rogalska ME, Behera AK, Mancini E, Bertolin G, Courtheoux T, Kumari B, Cailloce J, Mereau A, Poirier GG, Valcárcel J, Gonatopoulos-Pournatzis T, Watrin E, Prigent C. Proteomic study identifies Aurora-A-mediated regulation of alternative splicing through multiple splicing factors. J Biol Chem 2025; 301:108000. [PMID: 39551136 PMCID: PMC11732490 DOI: 10.1016/j.jbc.2024.108000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/06/2024] [Accepted: 11/08/2024] [Indexed: 11/19/2024] Open
Abstract
The cell cycle regulator Aurora-A kinase presents an attractive target for cancer therapies, though its inhibition is also associated with toxic side effects. To gain a more nuanced understanding of Aurora-A function, we applied shotgun proteomics to identify 407 specific protein partners, including several splicing factors. Supporting a role in alternative splicing, we found that Aurora-A localizes to nuclear speckles, the storehouse of splicing proteins. Aurora-A interacts with and phosphorylates splicing factors both in vitro and in vivo, suggesting that it regulates alternative splicing by modulating the activity of these splicing factors. Consistently, Aurora-A inhibition significantly impacts the alternative splicing of 505 genes, with RNA motif analysis revealing an enrichment for Aurora-A interacting splicing factors. Additionally, we observed a significant positive correlation between the splicing events regulated by Aurora-A and those modulated by its interacting splicing factors. An interesting example is represented by CLK1 exon 4, which appears to be regulated by Aurora-A through SRSF3. Collectively, our findings highlight a broad role of Aurora-A in the regulation of alternative splicing.
Collapse
Affiliation(s)
- Arun Prasath Damodaran
- Univ Rennes, CNRS, Institut de Génétique et Développement de Rennes (IGDR) UMR6290, Équipe labellisée LNCC 2014, Rennes, France; RNA Biology Laboratory, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Frederick, Maryland, USA.
| | - Olivia Gavard
- Univ Rennes, CNRS, Institut de Génétique et Développement de Rennes (IGDR) UMR6290, Équipe labellisée LNCC 2014, Rennes, France
| | - Jean-Philippe Gagné
- Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Québec City, Quebec, Canada; CHU de Québec Research Center, CHUL Pavilion, Oncology Division, Québec City, Quebec, Canada
| | - Malgorzata Ewa Rogalska
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Amit K Behera
- RNA Biology Laboratory, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Frederick, Maryland, USA
| | - Estefania Mancini
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Giulia Bertolin
- Univ Rennes, CNRS, Institut de Génétique et Développement de Rennes (IGDR) UMR6290, Équipe labellisée LNCC 2014, Rennes, France
| | - Thibault Courtheoux
- Univ Rennes, CNRS, Institut de Génétique et Développement de Rennes (IGDR) UMR6290, Équipe labellisée LNCC 2014, Rennes, France
| | - Bandana Kumari
- RNA Biology Laboratory, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Frederick, Maryland, USA
| | - Justine Cailloce
- Univ Rennes, CNRS, Institut de Génétique et Développement de Rennes (IGDR) UMR6290, Équipe labellisée LNCC 2014, Rennes, France
| | - Agnès Mereau
- Univ Rennes, CNRS, Institut de Génétique et Développement de Rennes (IGDR) UMR6290, Équipe labellisée LNCC 2014, Rennes, France
| | - Guy G Poirier
- Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Québec City, Quebec, Canada; CHU de Québec Research Center, CHUL Pavilion, Oncology Division, Québec City, Quebec, Canada
| | - Juan Valcárcel
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Institut Catalá de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Thomas Gonatopoulos-Pournatzis
- RNA Biology Laboratory, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Frederick, Maryland, USA.
| | - Erwan Watrin
- Univ Rennes, CNRS, Institut de Génétique et Développement de Rennes (IGDR) UMR6290, Équipe labellisée LNCC 2014, Rennes, France.
| | - Claude Prigent
- Univ Rennes, CNRS, Institut de Génétique et Développement de Rennes (IGDR) UMR6290, Équipe labellisée LNCC 2014, Rennes, France; Centre de Recherche de Biologie cellulaire de Montpellier (CRBM), University of Montpellier, CNRS, Montpellier, France.
| |
Collapse
|
5
|
Cresca S, Parise A, Magistrato A. Assessing the Mechanism of Rac1b: An All-Atom Simulation Study of the Alternative Spliced Variant of Rac1 Small Rho GTPase. J Chem Inf Model 2024; 64:9474-9486. [PMID: 39632743 DOI: 10.1021/acs.jcim.4c01376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
The Rho GTPase family plays a key role in cell migration, cytoskeletal dynamics, and intracellular signaling. Rac1 and its splice variant Rac1b, characterized by the insertion of an Extraloop, are frequently associated with cancer. These small GTPases switch between an active GTP-bound state and an inactive GDP-bound state, a process that is regulated by specific protein modulators. Among them, the Guanine nucleotide exchange factor (GEF) protein DOCK5 specifically targets Rho GTPases, promoting their activation by facilitating the exchange of GDP for GTP. In this study, we performed cumulative 10-μs-long all-atom molecular dynamics simulations of Rac1 and Rac1b, in isolation and in complex with DOCK5 and ELMO1, to investigate the impact of the Rac1b Extraloop. Our findings reveal that this Extraloop decreases the GDP residence time as compared to Rac1, mimicking the effect of accelerated GDP/GTP exchange induced by DOCK5. Furthermore, both Rac1b Extraloop and the ELMO1 protein stabilize the GTPase/DOCK5 complex, contributing to facilitate GDP dissociation. This shifts the balance between the GPT- and GDP-bound state of Rac1b toward the active GTP-bound state, sending a prooncogenic signal. Besides broadening our understanding of the biological functions of small Rho GTPases, this study provides key information to exploit a previously unexplored therapeutic niche to counter Rac1b-associated cancer.
Collapse
Affiliation(s)
- Sofia Cresca
- Theory Department, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
- Consiglio Nazionale delle Ricerche (CNR)-IOM, c/o International School for Advanced Studies (SISSA/ISAS), via Bonomea 265, 34136 Trieste, Italy
| | - Angela Parise
- Consiglio Nazionale delle Ricerche (CNR)-IOM, c/o International School for Advanced Studies (SISSA/ISAS), via Bonomea 265, 34136 Trieste, Italy
| | - Alessandra Magistrato
- Consiglio Nazionale delle Ricerche (CNR)-IOM, c/o International School for Advanced Studies (SISSA/ISAS), via Bonomea 265, 34136 Trieste, Italy
| |
Collapse
|
6
|
Godinez-Macias KP, Chen D, Wallis JL, Siegel MG, Adam A, Bopp S, Carolino K, Coulson LB, Durst G, Thathy V, Esherick L, Farringer MA, Flannery EL, Forte B, Liu T, Magalhaes LG, Gupta AK, Istvan ES, Jiang T, Kumpornsin K, Lobb K, McLean K, Moura IMR, Okombo J, Payne NC, Plater A, Rao SPS, Siqueira-Neto JL, Somsen BA, Summers RL, Zhang R, Gilson MK, Gamo FJ, Campo B, Baragaña B, Duffy J, Gilbert IH, Lukens AK, Dechering KJ, Niles JC, McNamara CW, Cheng X, Birkholtz LM, Bronkhorst AW, Fidock DA, Wirth DF, Goldberg DE, Lee MCS, Winzeler EA. Revisiting the Plasmodium falciparum druggable genome using predicted structures and data mining. RESEARCH SQUARE 2024:rs.3.rs-5412515. [PMID: 39649165 PMCID: PMC11623766 DOI: 10.21203/rs.3.rs-5412515/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2024]
Abstract
The identification of novel drug targets for the purpose of designing small molecule inhibitors is key component to modern drug discovery. In malaria parasites, discoveries of antimalarial targets have primarily occurred retroactively by investigating the mode of action of compounds found through phenotypic screens. Although this method has yielded many promising candidates, it is time- and resource-consuming and misses targets not captured by existing antimalarial compound libraries and phenotypic assay conditions. Leveraging recent advances in protein structure prediction and data mining, we systematically assessed the Plasmodium falciparum genome for proteins amenable to target-based drug discovery, identifying 867 candidate targets with evidence of small molecule binding and blood stage essentiality. Of these, 540 proteins showed strong essentiality evidence and lack inhibitors that have progressed to clinical trials. Expert review and rubric-based scoring of this subset based on additional criteria such as selectivity, structural information, and assay developability yielded 67 high priority candidates. This study also provides a genome-wide data resource and implements a generalizable framework for systematically evaluating and prioritizing novel pathogenic disease targets.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Anil K Gupta
- Calibr-Skaggs Institute for Innovative Medicines
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Xiu Cheng
- Global Health Drug Discovery Institute
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Parise A, Cresca S, Magistrato A. Molecular dynamics simulations for the structure-based drug design: targeting small-GTPases proteins. Expert Opin Drug Discov 2024; 19:1259-1279. [PMID: 39105536 DOI: 10.1080/17460441.2024.2387856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 07/30/2024] [Indexed: 08/07/2024]
Abstract
INTRODUCTION Molecular Dynamics (MD) simulations can support mechanism-based drug design. Indeed, MD simulations by capturing biomolecule motions at finite temperatures can reveal hidden binding sites, accurately predict drug-binding poses, and estimate the thermodynamics and kinetics, crucial information for drug discovery campaigns. Small-Guanosine Triphosphate Phosphohydrolases (GTPases) regulate a cascade of signaling events, that affect most cellular processes. Their deregulation is linked to several diseases, making them appealing drug targets. The broad roles of small-GTPases in cellular processes and the recent approval of a covalent KRas inhibitor as an anticancer agent renewed the interest in targeting small-GTPase with small molecules. AREA COVERED This review emphasizes the role of MD simulations in elucidating small-GTPase mechanisms, assessing the impact of cancer-related variants, and discovering novel inhibitors. EXPERT OPINION The application of MD simulations to small-GTPases exemplifies the role of MD simulations in the structure-based drug design process for challenging biomolecular targets. Furthermore, AI and machine learning-enhanced MD simulations, coupled with the upcoming power of quantum computing, are promising instruments to target elusive small-GTPases mutations and splice variants. This powerful synergy will aid in developing innovative therapeutic strategies associated to small-GTPases deregulation, which could potentially be used for personalized therapies and in a tissue-agnostic manner to treat tumors with mutations in small-GTPases.
Collapse
Affiliation(s)
- Angela Parise
- Consiglio Nazionale delle Ricerche (CNR) - Istituto Officina dei Materiali (IOM), c/o International School for Advanced Studies (SISSA), Trieste, Italy
| | - Sofia Cresca
- Consiglio Nazionale delle Ricerche (CNR) - Istituto Officina dei Materiali (IOM), c/o International School for Advanced Studies (SISSA), Trieste, Italy
| | - Alessandra Magistrato
- Consiglio Nazionale delle Ricerche (CNR) - Istituto Officina dei Materiali (IOM), c/o International School for Advanced Studies (SISSA), Trieste, Italy
| |
Collapse
|
8
|
Wang Y, Li Q, Ding Y, Luo C, Yang J, Wang N, Jiang N, Yao T, Wang G, Shi G, Hou SX. Novel Arf1 Inhibitors Drive Cancer Stem Cell Aging and Potentiate Anti-Tumor Immunity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404442. [PMID: 39225354 PMCID: PMC11497069 DOI: 10.1002/advs.202404442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/01/2024] [Indexed: 09/04/2024]
Abstract
The small G protein Arf1 has been identified as playing a selective role in supporting cancer stem cells (CSCs), making it an attractive target for cancer therapy. However, the current Arf1 inhibitors have limited translational potential due to their high toxicity and low specificity. In this study, two new potent small-molecule inhibitors of Arf1, identified as DU101 and DU102, for cancer therapy are introduced. Preclinical tumor models demonstrate that these inhibitors triggered a cascade of aging in CSCs and enhance anti-tumor immunity in mouse cancer and PDX models. Through single-cell sequencing, the remodeling of the tumor immune microenvironment induced by these new Arf1 inhibitors is analyzed and an increase in tumor-associated CD8+ CD4+ double-positive T (DPT) cells is identified. These DPT cells exhibit superior features of active CD8 single-positive T cells and a higher percentage of TCF1+PD-1+, characteristic of stem-like T cells. The frequency of tumor-infiltrating stem-like DPT cells correlates with better disease-free survival (DFS) in cancer patients, indicating that these inhibitors may offer a novel cancer immunotherapy strategy by converting the cold tumor immune microenvironment into a hot one, thus expanding the potential for immunotherapy in cancer patients.
Collapse
Affiliation(s)
- Yuetong Wang
- Department of Cell and Developmental Biology at School of Life SciencesState Key Laboratory of Genetic EngineeringInstitute of Metabolism and Integrative BiologyHuman Phenome InstituteDepartment of Liver Surgery and Transplantation of Liver Cancer Institute at Zhongshan HospitalFudan UniversityShanghai200438China
| | - Qiaoming Li
- Department of Cell and Developmental Biology at School of Life SciencesState Key Laboratory of Genetic EngineeringInstitute of Metabolism and Integrative BiologyHuman Phenome InstituteDepartment of Liver Surgery and Transplantation of Liver Cancer Institute at Zhongshan HospitalFudan UniversityShanghai200438China
| | - Yahui Ding
- Department of Cell and Developmental Biology at School of Life SciencesState Key Laboratory of Genetic EngineeringInstitute of Metabolism and Integrative BiologyHuman Phenome InstituteDepartment of Liver Surgery and Transplantation of Liver Cancer Institute at Zhongshan HospitalFudan UniversityShanghai200438China
| | - Chenfei Luo
- Department of Cell and Developmental Biology at School of Life SciencesState Key Laboratory of Genetic EngineeringInstitute of Metabolism and Integrative BiologyHuman Phenome InstituteDepartment of Liver Surgery and Transplantation of Liver Cancer Institute at Zhongshan HospitalFudan UniversityShanghai200438China
| | - Jun Yang
- Department of Cell and Developmental Biology at School of Life SciencesState Key Laboratory of Genetic EngineeringInstitute of Metabolism and Integrative BiologyHuman Phenome InstituteDepartment of Liver Surgery and Transplantation of Liver Cancer Institute at Zhongshan HospitalFudan UniversityShanghai200438China
| | - Na Wang
- Department of Cell and Developmental Biology at School of Life SciencesState Key Laboratory of Genetic EngineeringInstitute of Metabolism and Integrative BiologyHuman Phenome InstituteDepartment of Liver Surgery and Transplantation of Liver Cancer Institute at Zhongshan HospitalFudan UniversityShanghai200438China
| | - Ning Jiang
- Department of Cell and Developmental Biology at School of Life SciencesState Key Laboratory of Genetic EngineeringInstitute of Metabolism and Integrative BiologyHuman Phenome InstituteDepartment of Liver Surgery and Transplantation of Liver Cancer Institute at Zhongshan HospitalFudan UniversityShanghai200438China
| | - Tiange Yao
- Department of Cell and Developmental Biology at School of Life SciencesState Key Laboratory of Genetic EngineeringInstitute of Metabolism and Integrative BiologyHuman Phenome InstituteDepartment of Liver Surgery and Transplantation of Liver Cancer Institute at Zhongshan HospitalFudan UniversityShanghai200438China
| | - Guohao Wang
- The Basic Research LaboratoryCenter for Cancer ResearchNational Cancer Institute at FrederickNational Institutes of HealthFrederickMD21702USA
| | - Guoming Shi
- Department of Cell and Developmental Biology at School of Life SciencesState Key Laboratory of Genetic EngineeringInstitute of Metabolism and Integrative BiologyHuman Phenome InstituteDepartment of Liver Surgery and Transplantation of Liver Cancer Institute at Zhongshan HospitalFudan UniversityShanghai200438China
| | - Steven X. Hou
- Department of Cell and Developmental Biology at School of Life SciencesState Key Laboratory of Genetic EngineeringInstitute of Metabolism and Integrative BiologyHuman Phenome InstituteDepartment of Liver Surgery and Transplantation of Liver Cancer Institute at Zhongshan HospitalFudan UniversityShanghai200438China
- Leading Contact
| |
Collapse
|
9
|
Mu Q, Wang X, Huang K, Xia B, Bi S, Kong Y. THUMPD3-AS1 inhibits ovarian cancer cell apoptosis through the miR-320d/ARF1 axis. FASEB J 2024; 38:e23772. [PMID: 38963337 DOI: 10.1096/fj.202302475rrr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 06/06/2024] [Accepted: 06/17/2024] [Indexed: 07/05/2024]
Abstract
Ovarian cancer is one of the most common gynecologic malignancies that has a poor prognosis. THUMPD3-AS1 is an oncogenic long noncoding RNA (lncRNA) in several cancers. Moreover, miR-320d is downregulated and inhibited proliferation in ovarian cancer cells, whereas ARF1 was upregulated and promoted the malignant progression in epithelial ovarian cancer. Nevertheless, the role of THUMPD3-AS1 in ovarian cancer and the underlying mechanism has yet to be elucidated. Human normal ovarian epithelial cells (IOSE80) and ovarian cancer cell lines (CAVO3, A2780, SKOV3, OVCAR3, and HEY) were adopted for in vitro experiments. The functional roles of THUMPD3-AS1 in cell viability and apoptosis were determined using CCK-8, flow cytometry, and TUNEL assays. Western blot was performed to assess the protein levels of ARF1, Bax, Bcl-2, and caspase 3, whereas RT-qPCR was applied to measure ARF1 mRNA, THUMPD3-AS1, and miR-320d levels. The targeting relationship between miR-320d and THUMPD3-AS1 or ARF1 was validated with dual luciferase assay. THUMPD3-AS1 and ARF1 were highly expressed in ovarian cancer cells, whereas miR-320d level was lowly expressed. THUMPD3-AS1 knockdown was able to repress cell viability and accelerate apoptosis of OVCAR3 and SKOV3 cells. Also, THUMPD3-AS1 acted as a sponge of miR-320d, preventing the degradation of ARF1. MiR-320d downregulation reversed the tumor suppressive function induced by THUMPD3-AS1 depletion. Additionally, miR-320d overexpression inhibited ovarian cancer cell viability and accelerated apoptosis, which was overturned by overexpression of ARF1. THUMPD3-AS1 inhibited ovarian cancer cell apoptosis by modulation of miR-320d/ARF1 axis. The discoveries might provide a prospective target for ovarian cancer treatment.
Collapse
Affiliation(s)
- Qingling Mu
- Department of Gynecology and Obstetrics, Qingdao Municipal Hospital, Qingdao, Shandong, China
| | - Xin Wang
- Department of Gynecology and Obstetrics, Qingdao Municipal Hospital, Qingdao, Shandong, China
| | - Kui Huang
- Department of Obstetrics and Gynecology, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan, China
| | - Baoguo Xia
- Department of Gynecology and Obstetrics, Qingdao Municipal Hospital, Qingdao, Shandong, China
| | - Shuna Bi
- Department of Gynecology and Obstetrics, Qingdao Municipal Hospital, Qingdao, Shandong, China
| | - Yujie Kong
- Department of Gynecology and Obstetrics, Qingdao Municipal Hospital, Qingdao, Shandong, China
| |
Collapse
|
10
|
Agarwal P, Kumar A, Meena LS. Decoding the structural integrity and multifunctional role of Era protein in the survival of Mycobacterium tuberculosis H 37Rv. J Biomol Struct Dyn 2024:1-16. [PMID: 38319024 DOI: 10.1080/07391102.2024.2309332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 01/15/2024] [Indexed: 02/07/2024]
Abstract
Era, a widely known GTP binding protein found in many organisms including prokaryotes and eukaryotes and plays a significant role in many fundamental cellular processes like cell growth, differentiation and signaling. In Mycobacterium tuberculosis (Mtb) H37Rv, Era protein had been proved as a GTPase protein but its structural and functional insights are still lacking. Through comparative analysis, structural modeling, docking and using various bioinformatic tools, a detailed investigation of Era was carried out to deduce the structure, function and residues involved in the activity of the protein. Intriguingly, docking results revealed high binding affinity of Era not only with GTP but also with ATP. Myristoylation modifications and phosphorylations on Era were predicted to possibly aid in regulating Era activity and localization; and also the role of Era in translation regulation was foreseen by showing its association with 16s rRNA. Moreover, point mutation of Era residues revealed the effect of W288G and K19G in highly destabilizing the protein structure and activity. Additionally, Era protein was docked with 25 GTPase/ATPase inhibitors, where, Dynasore inhibitor showed the highest affinity for the protein's GTP binding sites and can be used for further drug trials to inhibit growth of mycobacteria.
Collapse
Affiliation(s)
- Preeti Agarwal
- AID, CSIR-Institute of Genomics and Integrative Biology, Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDG, Ghaziabad, India
| | - Ajit Kumar
- AID, CSIR-Institute of Genomics and Integrative Biology, Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDG, Ghaziabad, India
| | - Laxman S Meena
- AID, CSIR-Institute of Genomics and Integrative Biology, Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDG, Ghaziabad, India
- CSIR-Central Drug Research Institute, Lucknow, India
| |
Collapse
|
11
|
Li Y, Wang L, Jia X, Yang Y, Qiu Z. Bioinformatic analysis reveals the clinical value of SASH3 in survival prognosis and immune infiltration of acute myelocytic leukemia (AML). Am J Transl Res 2023; 15:6858-6866. [PMID: 38186980 PMCID: PMC10767538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 11/21/2023] [Indexed: 01/09/2024]
Abstract
Acute myeloid leukemia (AML), a malignant clonal disease, is the most prevalent form of leukemia, and it is associated with a poor prognosis and unfavorable treatment outcomes in both pediatric and adult populations. Accordingly, enhancing anti-tumor responses using immunomodulators is a promising therapeutic strategy and a new avenue for treating AML. In this study, we used publicly available data from The Cancer Genome Atlas and Genotype-Tissue Expression databases to investigate the correlation between SAM and SH3 domain-containing 3 (SASH3) and AML, and we performed Cox regression and Kaplan-Meier analyses to assess the clinical characteristics associated with overall survival among patients with AML. Additionally, we analyzed the relationship between immune infiltration and SASH3. Compared with that in the normal group, patients with AML were characterized by significantly higher levels of SASH3 expression (P = 3.05e-34), which was strongly associated with survival outcomes. We observed a significant correlation between SASH3 expression and the expression of cancer-related genes (HCK, SYK, FYN, ITGB2, PIK3CD, FGR, PIK3R5, VAV1, LCP2, and GRB2) and pathways. Our findings in this study indicate that SASH3 plays a key role in AML development and survival outcomes and in the regulation of small GTPase-mediated signal transduction and immune-related pathways. Accordingly, targeting SASH3 may offer a promising approach for the treatment of AML and may potentially influence the progression of other cancers via multiple immune pathways.
Collapse
Affiliation(s)
- Yufei Li
- Faculty of Medicine, Macau University of Science and TechnologyRoom PP-R203, Est. Seak Pai Van Praia Park, Rés-Do-Chão R, Coloane, Macau 999078, China
| | - Lin Wang
- Faculty of Medicine, Macau University of Science and TechnologyRoom PP-R203, Est. Seak Pai Van Praia Park, Rés-Do-Chão R, Coloane, Macau 999078, China
| | - Xueyuan Jia
- Faculty of Medicine, Macau University of Science and TechnologyRoom PP-R203, Est. Seak Pai Van Praia Park, Rés-Do-Chão R, Coloane, Macau 999078, China
| | - Yanru Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Health Science Center, Shenzhen UniversityShenzhen 518060, Guangdong, China
| | - Zhengqi Qiu
- Faculty of Medicine, Macau University of Science and TechnologyRoom PP-R203, Est. Seak Pai Van Praia Park, Rés-Do-Chão R, Coloane, Macau 999078, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Health Science Center, Shenzhen UniversityShenzhen 518060, Guangdong, China
| |
Collapse
|
12
|
Wright CA, Gordon ER, Cooper SJ. Genomic analysis reveals HDAC1 regulates clinically relevant transcriptional programs in Pancreatic cancer. BMC Cancer 2023; 23:1137. [PMID: 37996815 PMCID: PMC10666341 DOI: 10.1186/s12885-023-11645-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 11/15/2023] [Indexed: 11/25/2023] Open
Abstract
Novel strategies are needed to combat multidrug resistance in pancreatic ductal adenocarcinoma (PDAC). We applied genomic approaches to understand mechanisms of resistance in order to better inform treatment and precision medicine. Altered function of chromatin remodeling complexes contribute to chemoresistance. Our study generates and analyzes genomic and biochemical data from PDAC cells overexpressing HDAC1, a histone deacetylase involved in several chromatin remodeling complexes. We characterized the impact of overexpression on drug response, gene expression, HDAC1 binding, and chromatin structure using RNA-sequencing and ChIP-sequencing for HDAC1 and H3K27 acetylation. Integrative genomic analysis shows that HDAC1 overexpression promotes activation of key resistance pathways including epithelial to mesenchymal transition, cell cycle, and apoptosis through global chromatin remodeling. Target genes are similarly altered in patient tissues and show correlation with patient survival. We also demonstrate that direct targets of HDAC1 that also show altered chromatin are enriched near genes associated with altered GTPase activity. HDAC1 target genes identified using in vitro methods and observed in patient tissues were used to develop a clinically relevant nine-transcript signature associated with patient prognosis. Integration of multiple genomic and biochemical data types enables understanding of multidrug resistance and tumorigenesis in PDAC, a disease in desperate need of novel treatment strategies.
Collapse
Affiliation(s)
- Carter A Wright
- The University of Alabama in Huntsville, Huntsville, AL, 35899, USA
- HudsonAlpha Institute for Biotechnology, 601 Genome Way, Huntsville, AL, 35806, USA
| | - Emily R Gordon
- HudsonAlpha Institute for Biotechnology, 601 Genome Way, Huntsville, AL, 35806, USA
| | - Sara J Cooper
- HudsonAlpha Institute for Biotechnology, 601 Genome Way, Huntsville, AL, 35806, USA.
| |
Collapse
|
13
|
Han X, Jiang S, Gu Y, Ding L, Zhao E, Cao D, Wang X, Wen Y, Pan Y, Yan X, Duan L, Sun M, Zhou T, Liu Y, Hu H, Ye Q, Gao S. HUNK inhibits epithelial-mesenchymal transition of CRC via direct phosphorylation of GEF-H1 and activating RhoA/LIMK-1/CFL-1. Cell Death Dis 2023; 14:327. [PMID: 37193711 DOI: 10.1038/s41419-023-05849-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 04/26/2023] [Accepted: 05/02/2023] [Indexed: 05/18/2023]
Abstract
Epithelial-mesenchymal transition (EMT) is associated with the invasive and metastatic phenotypes in colorectal cancer (CRC). However, the mechanisms underlying EMT in CRC are not completely understood. In this study, we find that HUNK inhibits EMT and metastasis of CRC cells via its substrate GEF-H1 in a kinase-dependent manner. Mechanistically, HUNK directly phosphorylates GEF-H1 at serine 645 (S645) site, which activates RhoA and consequently leads to a cascade of phosphorylation of LIMK-1/CFL-1, thereby stabilizing F-actin and inhibiting EMT. Clinically, the levels of both HUNK expression and phosphorylation S645 of GEH-H1 are not only downregulated in CRC tissues with metastasis compared with that without metastasis, but also positively correlated among these tissues. Our findings highlight the importance of HUNK kinase direct phosphorylation of GEF-H1 in regulation of EMT and metastasis of CRC.
Collapse
Affiliation(s)
- Xiaoqi Han
- Medical School of Guizhou University, Guiyang, 550025, China
- Shanxi Academy of Advanced Research and Innovation, Taiyuan, 030032, China
- Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Southeast University, Nanjing, 210096, China
| | - Siyuan Jiang
- Zhongda Hospital, Medical School, Advanced Institute for Life and Health, Southeast University, Nanjing, 210096, China
| | - Yinmin Gu
- Zhongda Hospital, Medical School, Advanced Institute for Life and Health, Southeast University, Nanjing, 210096, China
| | - Lihua Ding
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Collaborative Innovation Center for Cancer Medicine, Beijing, 100850, China
| | - Enhao Zhao
- Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 201200, China
| | - Dongxing Cao
- Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 201200, China
| | - Xiaodong Wang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China
| | - Ya Wen
- Medical School of Guizhou University, Guiyang, 550025, China
- Shanxi Academy of Advanced Research and Innovation, Taiyuan, 030032, China
| | - Yongbo Pan
- Shanxi Academy of Advanced Research and Innovation, Taiyuan, 030032, China
| | - Xin Yan
- Shanxi Academy of Advanced Research and Innovation, Taiyuan, 030032, China
| | - Liqiang Duan
- Shanxi Academy of Advanced Research and Innovation, Taiyuan, 030032, China
| | - Minxuan Sun
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China
| | - Tao Zhou
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China
| | - Yajuan Liu
- Shanxi Academy of Advanced Research and Innovation, Taiyuan, 030032, China
| | - Hongbo Hu
- Center for Immunology and Hematology, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Sichuan, 610044, China.
| | - Qinong Ye
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Collaborative Innovation Center for Cancer Medicine, Beijing, 100850, China.
| | - Shan Gao
- Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Southeast University, Nanjing, 210096, China.
| |
Collapse
|
14
|
Di Matteo A, Belloni E, Pradella D, Chiaravalli AM, Pini GM, Bugatti M, Alfieri R, Barzan C, Franganillo Tena E, Bione S, Terenzani E, Sessa F, Wyatt CDR, Vermi W, Ghigna C. Alternative Splicing Changes Promoted by NOVA2 Upregulation in Endothelial Cells and Relevance for Gastric Cancer. Int J Mol Sci 2023; 24:ijms24098102. [PMID: 37175811 PMCID: PMC10178952 DOI: 10.3390/ijms24098102] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
Angiogenesis is crucial for cancer progression. While several anti-angiogenic drugs are in use for cancer treatment, their clinical benefits are unsatisfactory. Thus, a deeper understanding of the mechanisms sustaining cancer vessel growth is fundamental to identify novel biomarkers and therapeutic targets. Alternative splicing (AS) is an essential modifier of human proteome diversity. Nevertheless, AS contribution to tumor vasculature development is poorly known. The Neuro-Oncological Ventral Antigen 2 (NOVA2) is a critical AS regulator of angiogenesis and vascular development. NOVA2 is upregulated in tumor endothelial cells (ECs) of different cancers, thus representing a potential driver of tumor blood vessel aberrancies. Here, we identified novel AS transcripts generated upon NOVA2 upregulation in ECs, suggesting a pervasive role of NOVA2 in vascular biology. In addition, we report that NOVA2 is also upregulated in ECs of gastric cancer (GC), and its expression correlates with poor overall survival of GC patients. Finally, we found that the AS of the Rap Guanine Nucleotide Exchange Factor 6 (RapGEF6), a newly identified NOVA2 target, is altered in GC patients and associated with NOVA2 expression, tumor angiogenesis, and poor patient outcome. Our findings provide a better understanding of GC biology and suggest that AS might be exploited to identify novel biomarkers and therapeutics for anti-angiogenic GC treatments.
Collapse
Affiliation(s)
- Anna Di Matteo
- Istituto di Genetica Molecolare "Luigi Luca Cavalli-Sforza", Consiglio Nazionale delle Ricerche, 27100 Pavia, Italy
| | - Elisa Belloni
- Istituto di Genetica Molecolare "Luigi Luca Cavalli-Sforza", Consiglio Nazionale delle Ricerche, 27100 Pavia, Italy
| | - Davide Pradella
- Istituto di Genetica Molecolare "Luigi Luca Cavalli-Sforza", Consiglio Nazionale delle Ricerche, 27100 Pavia, Italy
| | | | - Giacomo Maria Pini
- Department of Pathology, Ospedale di Circolo, ASST-Sette Laghi, 21100 Varese, Italy
| | - Mattia Bugatti
- Department of Molecular and Translational Medicine, University of Brescia, 25100 Brescia, Italy
| | - Roberta Alfieri
- Istituto di Genetica Molecolare "Luigi Luca Cavalli-Sforza", Consiglio Nazionale delle Ricerche, 27100 Pavia, Italy
| | - Chiara Barzan
- Istituto di Genetica Molecolare "Luigi Luca Cavalli-Sforza", Consiglio Nazionale delle Ricerche, 27100 Pavia, Italy
- Istituto Universitario di Studi Superiori (IUSS), Università degli Studi di Pavia, 27100 Pavia, Italy
| | - Elena Franganillo Tena
- Istituto di Genetica Molecolare "Luigi Luca Cavalli-Sforza", Consiglio Nazionale delle Ricerche, 27100 Pavia, Italy
- Dipartimento di Biologia e Biotecnologie "Lazzaro Spallanzani", Università degli Studi di Pavia, 27100 Pavia, Italy
| | - Silvia Bione
- Istituto di Genetica Molecolare "Luigi Luca Cavalli-Sforza", Consiglio Nazionale delle Ricerche, 27100 Pavia, Italy
| | - Elisa Terenzani
- Istituto di Genetica Molecolare "Luigi Luca Cavalli-Sforza", Consiglio Nazionale delle Ricerche, 27100 Pavia, Italy
| | - Fausto Sessa
- Department of Pathology, Ospedale di Circolo, ASST-Sette Laghi, 21100 Varese, Italy
- Department of Medicine and Surgery, Università degli Studi dell'Insubria, 21100 Varese, Italy
| | - Christopher D R Wyatt
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, 08036 Barcelona, Spain
| | - William Vermi
- Department of Molecular and Translational Medicine, University of Brescia, 25100 Brescia, Italy
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110-1010, USA
| | - Claudia Ghigna
- Istituto di Genetica Molecolare "Luigi Luca Cavalli-Sforza", Consiglio Nazionale delle Ricerche, 27100 Pavia, Italy
| |
Collapse
|
15
|
Qiao L, Sinha S, Abd El‐Hafeez AA, Lo I, Midde KK, Ngo T, Aznar N, Lopez‐Sanchez I, Gupta V, Farquhar MG, Rangamani P, Ghosh P. A circuit for secretion-coupled cellular autonomy in multicellular eukaryotic cells. Mol Syst Biol 2023; 19:e11127. [PMID: 36856068 PMCID: PMC10090951 DOI: 10.15252/msb.202211127] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 03/02/2023] Open
Abstract
Cancers represent complex autonomous systems, displaying self-sufficiency in growth signaling. Autonomous growth is fueled by a cancer cell's ability to "secrete-and-sense" growth factors (GFs): a poorly understood phenomenon. Using an integrated computational and experimental approach, here we dissect the impact of a feedback-coupled GTPase circuit within the secretory pathway that imparts secretion-coupled autonomy. The circuit is assembled when the Ras-superfamily monomeric GTPase Arf1, and the heterotrimeric GTPase Giαβγ and their corresponding GAPs and GEFs are coupled by GIV/Girdin, a protein that is known to fuel aggressive traits in diverse cancers. One forward and two key negative feedback loops within the circuit create closed-loop control, allow the two GTPases to coregulate each other, and convert the expected switch-like behavior of Arf1-dependent secretion into an unexpected dose-response alignment behavior of sensing and secretion. Such behavior translates into cell survival that is self-sustained by stimulus-proportionate secretion. Proteomic studies and protein-protein interaction network analyses pinpoint GFs (e.g., the epidermal GF) as key stimuli for such self-sustenance. Findings highlight how the enhanced coupling of two biological switches in cancer cells is critical for multiscale feedback control to achieve secretion-coupled autonomy of growth factors.
Collapse
Affiliation(s)
- Lingxia Qiao
- Department of Mechanical and Aerospace Engineering, Jacob's School of EngineeringUniversity of California San DiegoLa JollaCAUSA
| | - Saptarshi Sinha
- Department of Cellular and Molecular Medicine, School of MedicineUniversity of California San DiegoLa JollaCAUSA
| | - Amer Ali Abd El‐Hafeez
- Department of Cellular and Molecular Medicine, School of MedicineUniversity of California San DiegoLa JollaCAUSA
- Present address:
Pharmacology and Experimental Oncology Unit, Cancer Biology Department, National Cancer InstituteCairo UniversityCairoEgypt
| | - I‐Chung Lo
- Department of Cellular and Molecular Medicine, School of MedicineUniversity of California San DiegoLa JollaCAUSA
| | - Krishna K Midde
- Department of Cellular and Molecular Medicine, School of MedicineUniversity of California San DiegoLa JollaCAUSA
| | - Tony Ngo
- Skaggs School of Pharmacy and Pharmaceutical ScienceUniversity of California San DiegoLa JollaCAUSA
| | - Nicolas Aznar
- Department of Cellular and Molecular Medicine, School of MedicineUniversity of California San DiegoLa JollaCAUSA
| | - Inmaculada Lopez‐Sanchez
- Department of Cellular and Molecular Medicine, School of MedicineUniversity of California San DiegoLa JollaCAUSA
| | - Vijay Gupta
- Department of Cellular and Molecular Medicine, School of MedicineUniversity of California San DiegoLa JollaCAUSA
| | - Marilyn G Farquhar
- Department of Cellular and Molecular Medicine, School of MedicineUniversity of California San DiegoLa JollaCAUSA
| | - Padmini Rangamani
- Department of Mechanical and Aerospace Engineering, Jacob's School of EngineeringUniversity of California San DiegoLa JollaCAUSA
| | - Pradipta Ghosh
- Department of Cellular and Molecular Medicine, School of MedicineUniversity of California San DiegoLa JollaCAUSA
- Moores Comprehensive Cancer CenterUniversity of California San DiegoLa JollaCAUSA
- Department of Medicine, School of MedicineUniversity of California San DiegoLa JollaCAUSA
- Veterans Affairs Medical CenterLa JollaCAUSA
| |
Collapse
|
16
|
GTPase Pathways in Health and Diseases. Cells 2022; 11:cells11244055. [PMID: 36552819 PMCID: PMC9777353 DOI: 10.3390/cells11244055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
GTPases, the molecular switches toggling between an inactive GDP-bound state and an active GTP-bound state, play a pivotal role in controlling complex cellular processes (e [...].
Collapse
|
17
|
Das AS, Sherry EC, Vaughan RM, Henderson ML, Zieba J, Uhl KL, Koehn O, Bupp CP, Rajasekaran S, Li X, Chhetri SB, Nissim S, Williams CL, Prokop JW. The complex, dynamic SpliceOme of the small GTPase transcripts altered by technique, sex, genetics, tissue specificity, and RNA base editing. Front Cell Dev Biol 2022; 10:1033695. [PMID: 36467401 PMCID: PMC9714508 DOI: 10.3389/fcell.2022.1033695] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/01/2022] [Indexed: 04/04/2024] Open
Abstract
The small GTPase family is well-studied in cancer and cellular physiology. With 162 annotated human genes, the family has a broad expression throughout cells of the body. Members of the family have multiple exons that require splicing. Yet, the role of splicing within the family has been underexplored. We have studied the splicing dynamics of small GTPases throughout 41,671 samples by integrating Nanopore and Illumina sequencing techniques. Within this work, we have made several discoveries. 1). Using the GTEx long read data of 92 samples, each small GTPase gene averages two transcripts, with 83 genes (51%) expressing two or more isoforms. 2). Cross-tissue analysis of GTEx from 17,382 samples shows 41 genes (25%) expressing two or more protein-coding isoforms. These include protein-changing transcripts in genes such as RHOA, RAB37, RAB40C, RAB4B, RAB5C, RHOC, RAB1A, RAN, RHEB, RAC1, and KRAS. 3). The isolation and library technique of the RNAseq influences the abundance of non-sense-mediated decay and retained intron transcripts of small GTPases, which are observed more often in genes than appreciated. 4). Analysis of 16,243 samples of "Blood PAXgene" identified seven genes (3.7%; RHOA, RAB40C, RAB4B, RAB37, RAB5B, RAB5C, RHOC) with two or more transcripts expressed as the major isoform (75% of the total gene), suggesting a role of genetics in altering splicing. 5). Rare (ARL6, RAB23, ARL13B, HRAS, NRAS) and common variants (GEM, RHOC, MRAS, RAB5B, RERG, ARL16) can influence splicing and have an impact on phenotypes and diseases. 6). Multiple genes (RAB9A, RAP2C, ARL4A, RAB3A, RAB26, RAB3C, RASL10A, RAB40B, and HRAS) have sex differences in transcript expression. 7). Several exons are included or excluded for small GTPase genes (RASEF, KRAS, RAC1, RHEB, ARL4A, RHOA, RAB30, RHOBTB1, ARL16, RAP1A) in one or more forms of cancer. 8). Ten transcripts are altered in hypoxia (SAR1B, IFT27, ARL14, RAB11A, RAB10, RAB38, RAN, RIT1, RAB9A) with RHOA identified to have a transient 3'UTR RNA base editing at a conserved site found in all of its transcripts. Overall, we show a remarkable and dynamic role of splicing within the small GTPase family that requires future explorations.
Collapse
Affiliation(s)
- Akansha S. Das
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States
- Department of Biology, Washington and Jefferson College, Washington, PA, United States
| | - Emily C. Sherry
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States
- Department of Cell and Molecular Biology, Grand Valley State University, Allendale, MI, United States
| | - Robert M. Vaughan
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States
| | - Marian L. Henderson
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States
- The Department of Biology, Calvin University, Grand Rapids, MI, United States
| | - Jacob Zieba
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States
- Genetics and Genome Sciences Program, BioMolecular Science, Michigan State University, East Lansing, MI, United States
| | - Katie L. Uhl
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States
| | - Olivia Koehn
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Caleb P. Bupp
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States
- Medical Genetics, Spectrum Health and Helen DeVos Children’s Hospital, Grand Rapids, MI, United States
| | - Surender Rajasekaran
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States
- Department of Pediatric Critical Care Medicine, Helen DeVos Children’s Hospital Spectrum Health, Grand Rapids, MI, United States
- Office of Research, Spectrum Health, Grand Rapids, MI, United States
| | - Xiaopeng Li
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States
| | - Surya B. Chhetri
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MA, United States
| | - Sahar Nissim
- Genetics and Gastroenterology Divisions, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- Dana-Farber Cancer Institute, Boston, MA, United States
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, United States
| | - Carol L. Williams
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Jeremy W. Prokop
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States
- Genetics and Genome Sciences Program, BioMolecular Science, Michigan State University, East Lansing, MI, United States
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
18
|
Laskovs M, Partridge L, Slack C. Molecular inhibition of RAS signalling to target ageing and age-related health. Dis Model Mech 2022; 15:276620. [PMID: 36111627 PMCID: PMC9510030 DOI: 10.1242/dmm.049627] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The RAS/MAPK pathway is a highly conserved signalling pathway with a well-established role in cancer. Mutations that hyperactivate this pathway are associated with unregulated cell proliferation. Evidence from a range of model organisms also links RAS/MAPK signalling to ageing. Genetic approaches that reduce RAS/MAPK signalling activity extend lifespan and also improve healthspan, delaying the onset and/or progression of age-related functional decline. Given its role in cancer, therapeutic interventions that target and inhibit this pathway's key components are under intense investigation. The consequent availability of small molecule inhibitors raises the possibility of repurposing these compounds to ameliorate the deleterious effects of ageing. Here, we review evidence that RAS/MAPK signalling inhibitors already in clinical use, such as trametinib, acarbose, statins, metformin and dihydromyricetin, lead to lifespan extension and to improved healthspan in a range of model systems. These findings suggest that the repurposing of small molecule inhibitors of RAS/MAPK signalling might offer opportunities to improve health during ageing, and to delay or prevent the development of age-related disease. However, challenges to this approach, including poor tolerance to treatment in older adults or development of drug resistance, first need to be resolved before successful clinical implementation. Summary: This Review critically discusses the links between RAS signalling and ageing, and how RAS inhibitors could extend lifespan and enhance healthspan.
Collapse
Affiliation(s)
- Mihails Laskovs
- School of Biosciences, College of Health and Life Sciences, Aston University 1 , Birmingham B4 7ET , UK
| | - Linda Partridge
- Institute of Healthy Ageing 2 , Department of Genetics, Evolution and Environment , , Darwin Building, Gower Street, London WC1E 6BT , UK
- University College London 2 , Department of Genetics, Evolution and Environment , , Darwin Building, Gower Street, London WC1E 6BT , UK
- Max Planck Institute for Biology of Ageing 3 , Joseph-Stelzmann-Strasse 9b, 50931 Cologne , Germany
| | - Cathy Slack
- School of Biosciences, College of Health and Life Sciences, Aston University 1 , Birmingham B4 7ET , UK
| |
Collapse
|
19
|
Hou W, Wang S, Wu H, Xue L, Wang B, Wang S, Wang H. Small GTPase-a Key Role in Host Cell for Coronavirus Infection and a Potential Target for Coronavirus Vaccine Adjuvant Discovery. Viruses 2022; 14:v14092044. [PMID: 36146850 PMCID: PMC9504349 DOI: 10.3390/v14092044] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/08/2022] [Accepted: 09/12/2022] [Indexed: 11/20/2022] Open
Abstract
Small GTPases are signaling molecules in regulating key cellular processes (e.g., cell differentiation, proliferation, and motility) as well as subcellular events (e.g., vesicle trafficking), making them key participants, especially in a great array of coronavirus infection processes. In this review, we discuss the role of small GTPases in the coronavirus life cycle, especially pre-entry, endocytosis, intracellular traffic, replication, and egress from the host cell. Furthermore, we also suggest the molecules that have potent adjuvant activity by targeting small GTPases. These studies provide deep insights and references to understand the pathogenesis of coronavirus as well as to propose the potential of small GTPases as targets for adjuvant development.
Collapse
Affiliation(s)
- Wei Hou
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China
| | - Sibei Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China
| | - Heqiong Wu
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China
| | - Linli Xue
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China
| | - Bin Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China
- Single Molecule Nanometry Laboratory (Sinmolab), Nanjing Agricultural University, Nanjing 210095, China
| | | | - Haidong Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China
- Correspondence:
| |
Collapse
|
20
|
Jiang YY, Gao Y, Liu JY, Xu Y, Wei MY, Wang CY, Gu YC, Shao CL. Design and Characterization of a Natural Arf-GEFs Inhibitor Prodrug CHNQD-01255 with Potent Anti-Hepatocellular Carcinoma Efficacy In Vivo. J Med Chem 2022; 65:11970-11984. [DOI: 10.1021/acs.jmedchem.2c00532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Yao-Yao Jiang
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266200, China
| | - Yang Gao
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Jian-Yu Liu
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Ying Xu
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Mei-Yan Wei
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Chang-Yun Wang
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266200, China
| | - Yu-Cheng Gu
- Syngenta Jealott’s Hill International Research Centre, Bracknell, Berkshire RG42 6EY, U.K
| | - Chang-Lun Shao
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266200, China
| |
Collapse
|
21
|
New brefeldin A-cinnamic acid ester derivatives as potential antitumor agents: Design, synthesis and biological evaluation. Eur J Med Chem 2022; 240:114598. [PMID: 35849940 DOI: 10.1016/j.ejmech.2022.114598] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/23/2022] [Accepted: 07/06/2022] [Indexed: 11/23/2022]
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver malignancy and ranks third in mortality rate worldwide. Brefeldin A (BFA, 1), a natural Arf1 inhibitor, qualifies extremely superior antitumor activity against HCC while its low aqueous solubility, poor bioavailability, and high toxicity have greatly hindered its translation to the clinic. Herein, a series of BFA-cinnamic acid ester derivatives was rationally designed and synthesized via introducing active cinnamic acid and its analogues into the structure of 1. Their in vitro cytotoxic activities on five cancer cell lines, including HepG2, BEL-7402, HeLa, Eca-109 and PANC-1, were evaluated using MTT assay. As expected, favorable cytotoxic activity was observed on majority of the mono-substituted derivatives. Especially, the most potent brefeldin A 4-O-(4)-dimethylaminocinnamate (CHNQD-01269, 33) with improved aqueous solubility, demonstrated the strong cytotoxic activity against HepG2 and BEL-7402 cell lines with IC50 values of 0.29 and 0.84 μM, respectively. More importantly, 33 performed low toxicity on normal liver cell line L-02 with the selectivity index (SI) of 9.69, which was more than 17-fold higher than that of 1. Results from mechanistic studies represented that 33 blocked the cell cycle in the G1 phase, and induced apoptosis via elevating reactive oxygen species (ROS) production and increasing expression of apoptosis-related proteins of HepG2 cells. Docking experiment also suggested 33 a promising Arf1 inhibitor, which was confirmed by the cellular thermal shift assay that 33 displayed a significant effect on the stability of Arf1 protein. Furthermore, 33 possessed high safety profile (MTD >100 mg/kg, ip) and favorable pharmacokinetic properties. Notably, the superior antiproliferative activity was verified in HepG2 tumor-bearing xenograft model in which 33 markedly suppressed the tumor growth (TGI = 46.17%) in nude mice at a dose of 10 mg/kg once a day for 16 d. The present study provided evidence of exploiting this series of highly efficacious derivatives, especially 33, for the treatment of HCC.
Collapse
|
22
|
Role of Host Small GTPases in Apicomplexan Parasite Infection. Microorganisms 2022; 10:microorganisms10071370. [PMID: 35889089 PMCID: PMC9319929 DOI: 10.3390/microorganisms10071370] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 12/04/2022] Open
Abstract
The Apicomplexa are obligate intracellular parasites responsible for several important human diseases. These protozoan organisms have evolved several strategies to modify the host cell environment to create a favorable niche for their survival. The host cytoskeleton is widely manipulated during all phases of apicomplexan intracellular infection. Moreover, the localization and organization of host organelles are altered in order to scavenge nutrients from the host. Small GTPases are a class of proteins widely involved in intracellular pathways governing different processes, from cytoskeletal and organelle organization to gene transcription and intracellular trafficking. These proteins are already known to be involved in infection by several intracellular pathogens, including viruses, bacteria and protozoan parasites. In this review, we recapitulate the mechanisms by which apicomplexan parasites manipulate the host cell during infection, focusing on the role of host small GTPases. We also discuss the possibility of considering small GTPases as potential targets for the development of novel host-targeted therapies against apicomplexan infections.
Collapse
|
23
|
Wang CF, Ma J, Jing QQ, Cao XZ, Chen L, Chao R, Zheng JY, Shao CL, He XX, Wei MY. Integrating Activity-Guided Strategy and Fingerprint Analysis to Target Potent Cytotoxic Brefeldin A from a Fungal Library of the Medicinal Mangrove Acanthus ilicifolius. Mar Drugs 2022; 20:432. [PMID: 35877725 PMCID: PMC9315649 DOI: 10.3390/md20070432] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 06/26/2022] [Accepted: 06/27/2022] [Indexed: 11/30/2022] Open
Abstract
Mangrove-associated fungi are rich sources of novel and bioactive compounds. A total of 102 fungal strains were isolated from the medicinal mangrove Acanthus ilicifolius collected from the South China Sea. Eighty-four independent culturable isolates were identified using a combination of morphological characteristics and internal transcribed spacer (ITS) sequence analyses, of which thirty-seven strains were selected for phylogenetic analysis. The identified fungi belonged to 22 genera within seven taxonomic orders of one phyla, of which four genera Verticillium, Neocosmospora, Valsa, and Pyrenochaeta were first isolated from mangroves. The cytotoxic activity of organic extracts from 55 identified fungi was evaluated against human lung cancer cell lines (A-549), human cervical carcinoma cell lines (HeLa), human hepatoma cells (HepG2), and human acute lymphoblastic leukemia cell lines (Jurkat). The crude extracts of 31 fungi (56.4%) displayed strong cytotoxicity at the concentration of 50 μg/mL. Furthermore, the fungus Penicillium sp. (HS-N-27) still showed strong cytotoxic activity at the concentration of 25 µg/mL. Integrating cytotoxic activity-guided strategy and fingerprint analysis, a well-known natural Golgi-disruptor and Arf-GEFs inhibitor, brefeldin A, was isolated from the target active strain HS-N-27. It displayed potential activity against A549, HeLa and HepG2 cell lines with the IC50 values of 101.2, 171.9 and 239.1 nM, respectively. Therefore, combining activity-guided strategy with fingerprint analysis as a discovery tool will be implemented as a systematic strategy for quick discovery of active compounds.
Collapse
Affiliation(s)
- Cui-Fang Wang
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; (C.-F.W.); (J.M.); (Q.-Q.J.); (X.-Z.C.); (L.C.); (R.C.)
- State Key Laboratory for Marine Corrosion and Protection, Luoyang Ship Material Research Institute (LSMRI), Qingdao 266061, China;
| | - Jie Ma
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; (C.-F.W.); (J.M.); (Q.-Q.J.); (X.-Z.C.); (L.C.); (R.C.)
- State Key Laboratory for Marine Corrosion and Protection, Luoyang Ship Material Research Institute (LSMRI), Qingdao 266061, China;
| | - Qian-Qian Jing
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; (C.-F.W.); (J.M.); (Q.-Q.J.); (X.-Z.C.); (L.C.); (R.C.)
| | - Xi-Zhen Cao
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; (C.-F.W.); (J.M.); (Q.-Q.J.); (X.-Z.C.); (L.C.); (R.C.)
| | - Lu Chen
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; (C.-F.W.); (J.M.); (Q.-Q.J.); (X.-Z.C.); (L.C.); (R.C.)
| | - Rong Chao
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; (C.-F.W.); (J.M.); (Q.-Q.J.); (X.-Z.C.); (L.C.); (R.C.)
| | - Ji-Yong Zheng
- State Key Laboratory for Marine Corrosion and Protection, Luoyang Ship Material Research Institute (LSMRI), Qingdao 266061, China;
| | - Chang-Lun Shao
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; (C.-F.W.); (J.M.); (Q.-Q.J.); (X.-Z.C.); (L.C.); (R.C.)
- State Key Laboratory for Marine Corrosion and Protection, Luoyang Ship Material Research Institute (LSMRI), Qingdao 266061, China;
| | - Xiao-Xi He
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; (C.-F.W.); (J.M.); (Q.-Q.J.); (X.-Z.C.); (L.C.); (R.C.)
| | - Mei-Yan Wei
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; (C.-F.W.); (J.M.); (Q.-Q.J.); (X.-Z.C.); (L.C.); (R.C.)
| |
Collapse
|
24
|
Ebrahimi N, Kharazmi K, Ghanaatian M, Miraghel SA, Amiri Y, Seyedebrahimi SS, Mobarak H, Yazdani E, Parkhideh S, Hamblin MR, Aref AR. Role of the Wnt and GTPase pathways in breast cancer tumorigenesis and treatment. Cytokine Growth Factor Rev 2022; 67:11-24. [DOI: 10.1016/j.cytogfr.2022.05.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 04/30/2022] [Accepted: 05/01/2022] [Indexed: 12/12/2022]
|
25
|
Mechanism of Antibacterial Enhancement and Drug Resistance Based on Smart Medical Imaging on Antibiotics. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:6103649. [PMID: 35371276 PMCID: PMC8967524 DOI: 10.1155/2022/6103649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/26/2022] [Accepted: 02/10/2022] [Indexed: 11/27/2022]
Abstract
With the development of antibacterial, synergistic, and drug resistance research, the requirements for the specificity of antibiotics are getting higher and higher. In the research based on the specificity of antibiotics, this article uses intelligent medical image processing methods to study the specificity of the antibacterial efficiency of nanocopper oxide and the inhibition of drug resistance. Copper oxide nanorods have the properties of surface effect, quantum size effect, volume effect, and macroscopic quantum tunneling effect. Compared with ordinary copper oxide, the nanoscale gives them special properties of electricity, optics, and catalysis. In this article, in the research based on the specificity of antibiotics, the specificity of antimicrobial efficiency and drug resistance inhibition of nanocopper oxide are studied by using smart medical information processing methods. Drug sensitivity paper tablet method is a drug sensitivity experiment to determine drug sensitivity to make accurate and effective use of drugs for treatment. Colony growth method is used to take the equivalent volume of fermentation liquid at different times to determine the content of bacteria. In this article, Staphylococcus aureus is cultivated by the drug-sensitive disk method and the colony growth method. Then, according to this type of antibiotic and bacterial group combination, Staphylococcus aureus is divided into a penicillin group, nanocopper oxide group, and cephalosporin group. 0.5 g of the corresponding antibiotic was added to each group. TMP (trimethoprim) acts as a synergist, and the ratio of TMP to antibiotic is 1 : 5. Finally, we compared the inhibitory concentration indexes of the above three groups and inferred the synergistic effect of antibiotics and the inhibitory effect of drug resistance through the specificity of the antibiotics that the antibacterial activity was further studied. The results showed that the antibacterial effect of TMP combined with nano-CuO was 38% higher than that of the penicillin group and 41% higher than that of the cephalosporin group. In addition, the combined effect of TMP and antibiotics is greater than the combined effect of TMP and antibiotics alone. From the observation of smart medical system processing, it is speculated that the reason may be that they provide each other with a suitable environment. Because of this combined effect between the TMP and the antibiotic, it can influence each other. From the results, the combined effect is 48% higher than the combined effect. Therefore, according to the results of medical imaging, the combination of antibiotics and antibacterial synergists can improve specificity and antibacterial rate.
Collapse
|
26
|
Yokoi K, Yamaguchi K, Umezawa M, Tsuchiya K, Aoki S. Induction of Paraptosis by Cyclometalated Iridium Complex-Peptide Hybrids and CGP37157 via a Mitochondrial Ca 2+ Overload Triggered by Membrane Fusion between Mitochondria and the Endoplasmic Reticulum. Biochemistry 2022; 61:639-655. [PMID: 35363482 PMCID: PMC9022229 DOI: 10.1021/acs.biochem.2c00061] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We previously reported that a cyclometalated iridium (Ir) complex-peptide hybrid (IPH) 4 functionalized with a cationic KKKGG peptide unit on the 2-phenylpyridine ligand induces paraptosis, a relatively newly found programmed cell death, in cancer cells (Jurkat cells) via the direct transport of calcium (Ca2+) from the endoplasmic reticulum (ER) to mitochondria. Here, we describe that CGP37157, an inhibitor of a mitochondrial sodium (Na+)/Ca2+ exchanger, induces paraptosis in Jurkat cells via intracellular pathways similar to those induced by 4. The findings allow us to suggest that the induction of paraptosis by 4 and CGP37157 is associated with membrane fusion between mitochondria and the ER, subsequent Ca2+ influx from the ER to mitochondria, and a decrease in the mitochondrial membrane potential (ΔΨm). On the contrary, celastrol, a naturally occurring triterpenoid that had been reported as a paraptosis inducer in cancer cells, negligibly induces mitochondria-ER membrane fusion. Consequently, we conclude that the paraptosis induced by 4 and CGP37157 (termed paraptosis II herein) proceeds via a signaling pathway different from that of the previously known paraptosis induced by celastrol, a process that negligibly involves membrane fusion between mitochondria and the ER (termed paraptosis I herein).
Collapse
Affiliation(s)
- Kenta Yokoi
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Kohei Yamaguchi
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Masakazu Umezawa
- Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Koji Tsuchiya
- Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Shin Aoki
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan.,Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan.,Research Institute for Biomedical Science (RIBS), Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| |
Collapse
|
27
|
Tonini C, Schiavi S, Macca F, Segatto M, Trezza V, Pallottini V. Long-lasting impact of perinatal dietary supplementation of omega 3 fatty acids on mevalonate pathway: potential role on neuron trophism in male offspring hippocampal formation. Nutr Neurosci 2022; 25:110-121. [PMID: 32037984 DOI: 10.1080/1028415x.2020.1724452] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Objective: We were aimed at evaluating the long-term impact of perinatal an omega-3 fatty acid-enriched diet on the mevalonate/cholesterol pathway in the brain of male offspring.Methods: Female rats were fed with standard or omega-3 fatty acid-enriched diet during pregnancy and lactation. Liver, brain and plasma were collected from infant, adolescent and adult male offspring for subsequent biochemical and morphological analyses.Results: The omega-3 enriched diet induced region-dependent changes of the 3-hydroxy 3-methylglutaryl Coenzyme A reductase in the brain and affected notably RhoA/CREB signaling and the nerve growth factor content in the hippocampus. Our data reveal a long-lasting impact of perinatal omega-3 fatty acid supplementation on hippocampal nerve growth factor levels mediated by reduced 3-hydroxy 3-methylglutaryl Coenzyme A reductase activation state and enhanced CREB signaling.Discussion: These data underline the importance of the perinatal omega-3 enriched diet for adult brain function and reveal a new pathway important for nerve growth factor regulation.
Collapse
Affiliation(s)
- Claudia Tonini
- Department of Science, Section of Biomedical Sciences and Technologies, University "Roma Tre", Rome, Italy
| | - Sara Schiavi
- Department of Science, Section of Biomedical Sciences and Technologies, University "Roma Tre", Rome, Italy
| | - Fabrizio Macca
- Department of Science, Section of Biomedical Sciences and Technologies, University "Roma Tre", Rome, Italy
| | - Marco Segatto
- Department of Biosciences and Territory, University of Molise, Pesche, Italy
| | - Viviana Trezza
- Department of Science, Section of Biomedical Sciences and Technologies, University "Roma Tre", Rome, Italy
| | - Valentina Pallottini
- Department of Science, Section of Biomedical Sciences and Technologies, University "Roma Tre", Rome, Italy
| |
Collapse
|
28
|
Lu XX, Jiang YY, Wu YW, Chen GY, Shao CL, Gu YC, Liu M, Wei MY. Semi-Synthesis, Cytotoxic Evaluation, and Structure-Activity Relationships of Brefeldin A Derivatives with Antileukemia Activity. Mar Drugs 2021; 20:26. [PMID: 35049881 PMCID: PMC8777696 DOI: 10.3390/md20010026] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/18/2021] [Accepted: 12/22/2021] [Indexed: 11/18/2022] Open
Abstract
Brefeldin A (1), a potent cytotoxic natural macrolactone, was produced by the marine fungus Penicillium sp. (HS-N-29) from the medicinal mangrove Acanthus ilicifolius. Series of its ester derivatives 2-16 were designed and semi-synthesized, and their structures were characterized by spectroscopic methods. Their cytotoxic activities were evaluated against human chronic myelogenous leukemia K562 cell line in vitro, and the preliminary structure-activity relationships revealed that the hydroxy group played an important role. Moreover, the monoester derivatives exhibited stronger cytotoxic activity than the diester derivatives. Among them, brefeldin A 7-O-2-chloro-4,5-difluorobenzoate (7) exhibited the strongest inhibitory effect on the proliferation of K562 cells with an IC50 value of 0.84 µM. Further evaluations indicated that 7 induced cell cycle arrest, stimulated cell apoptosis, inhibited phosphorylation of BCR-ABL, and thereby inactivated its downstream AKT signaling pathway. The expression of downstream signaling molecules in the AKT pathway, including mTOR and p70S6K, was also attenuated after 7-treatment in a dose-dependent manner. Furthermore, molecular modeling of 7 docked into 1 binding site of an ARF1-GDP-GEF complex represented well-tolerance. Taken together, 7 had the potential to be served as an effective antileukemia agent or lead compound for further exploration.
Collapse
Affiliation(s)
- Xu-Xiu Lu
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (X.-X.L.); (Y.-Y.J.); (Y.-W.W.); (C.-L.S.)
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266200, China
| | - Yao-Yao Jiang
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (X.-X.L.); (Y.-Y.J.); (Y.-W.W.); (C.-L.S.)
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266200, China
| | - Yan-Wei Wu
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (X.-X.L.); (Y.-Y.J.); (Y.-W.W.); (C.-L.S.)
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266200, China
| | - Guang-Ying Chen
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China;
| | - Chang-Lun Shao
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (X.-X.L.); (Y.-Y.J.); (Y.-W.W.); (C.-L.S.)
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266200, China
| | - Yu-Cheng Gu
- Syngenta Jealott’s Hill International Research Centre, Bracknell RG42 6EY, UK;
| | - Ming Liu
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (X.-X.L.); (Y.-Y.J.); (Y.-W.W.); (C.-L.S.)
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266200, China
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541001, China
| | - Mei-Yan Wei
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (X.-X.L.); (Y.-Y.J.); (Y.-W.W.); (C.-L.S.)
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| |
Collapse
|
29
|
Westrip CAE, Zhuang Q, Hall C, Eaton CD, Coleman ML. Developmentally regulated GTPases: structure, function and roles in disease. Cell Mol Life Sci 2021; 78:7219-7235. [PMID: 34664086 PMCID: PMC8629797 DOI: 10.1007/s00018-021-03961-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 08/13/2021] [Accepted: 09/28/2021] [Indexed: 01/01/2023]
Abstract
GTPases are a large superfamily of evolutionarily conserved proteins involved in a variety of fundamental cellular processes. The developmentally regulated GTP-binding protein (DRG) subfamily of GTPases consists of two highly conserved paralogs, DRG1 and DRG2, both of which have been implicated in the regulation of cell proliferation, translation and microtubules. Furthermore, DRG1 and 2 proteins both have a conserved binding partner, DRG family regulatory protein 1 and 2 (DFRP1 and DFRP2), respectively, that prevents them from being degraded. Similar to DRGs, the DFRP proteins have also been studied in the context of cell growth control and translation. Despite these proteins having been implicated in several fundamental cellular processes they remain relatively poorly characterized, however. In this review, we provide an overview of the structural biology and biochemistry of DRG GTPases and discuss current understanding of DRGs and DFRPs in normal physiology, as well as their emerging roles in diseases such as cancer.
Collapse
Affiliation(s)
- Christian A E Westrip
- Tumour Oxygenase Group, Institute of Cancer and Genomic Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Qinqin Zhuang
- Tumour Oxygenase Group, Institute of Cancer and Genomic Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
- Institute of Inflammation and Ageing, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Charlotte Hall
- Tumour Oxygenase Group, Institute of Cancer and Genomic Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Charlotte D Eaton
- Tumour Oxygenase Group, Institute of Cancer and Genomic Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
- Neurological Surgery, School of Medicine, University of California, 1450 Third St, San Francisco, CA, 94158, USA
| | - Mathew L Coleman
- Tumour Oxygenase Group, Institute of Cancer and Genomic Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| |
Collapse
|
30
|
Lin X, Wang S, Lin K, Zong J, Zheng Q, Su Y, Huang T. Competitive Endogenous RNA Landscape in Epstein-Barr Virus Associated Nasopharyngeal Carcinoma. Front Cell Dev Biol 2021; 9:782473. [PMID: 34805186 PMCID: PMC8600047 DOI: 10.3389/fcell.2021.782473] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 10/20/2021] [Indexed: 11/23/2022] Open
Abstract
Non-coding RNAs have been shown to play important regulatory roles, notably in cancer development. In this study, we investigated the role of microRNAs and circular RNAs in Nasopharyngeal Carcinoma (NPC) by constructing a circRNA-miRNA-mRNA co-expression network and performing differential expression analysis on mRNAs, miRNAs, and circRNAs. Specifically, the Epstein-Barr virus (EBV) infection has been found to be an important risk factor for NPC, and potential pathological differences may exist for EBV+ and EBV- subtypes of NPC. By comparing the expression profile of non-cancerous immortalized nasopharyngeal epithelial cell line and NPC cell lines, we identified differentially expressed coding and non-coding RNAs across three groups of comparison: cancer vs. non-cancer, EBV+ vs. EBV- NPC, and metastatic vs. non-metastatic NPC. We constructed a ceRNA network composed of mRNAs, miRNAs, and circRNAs, leveraging co-expression and miRNA target prediction tools. Within the network, we identified the regulatory ceRNAs of CDKN1B, ZNF302, ZNF268, and RPGR. These differentially expressed axis, along with other miRNA-circRNA pairs we identified through our analysis, helps elucidate the genetic and epigenetic changes central to NPC progression, and the differences between EBV+ and EBV- NPC.
Collapse
Affiliation(s)
- Xiandong Lin
- Laboratory of Radiation Oncology and Radiobiology, Fujian Medical University Cancer Hospital and Fujian Cancer Hospital, Fuzhou, China.,Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, China
| | - Steven Wang
- Department of Biological Sciences, Columbia University, New York, NY, United States
| | - Keyu Lin
- Laboratory of Radiation Oncology and Radiobiology, Fujian Medical University Cancer Hospital and Fujian Cancer Hospital, Fuzhou, China
| | - Jingfeng Zong
- Department of Radiotherapy, Fujian Medical University Cancer Hospital and Fujian Cancer Hospital, Fuzhou, China
| | - Qianlan Zheng
- Laboratory of Radiation Oncology and Radiobiology, Fujian Medical University Cancer Hospital and Fujian Cancer Hospital, Fuzhou, China
| | - Ying Su
- Laboratory of Radiation Oncology and Radiobiology, Fujian Medical University Cancer Hospital and Fujian Cancer Hospital, Fuzhou, China
| | - Tao Huang
- Bio-Med Big Data Center, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
31
|
FLT3-ITD transduces autonomous growth signals during its biosynthetic trafficking in acute myelogenous leukemia cells. Sci Rep 2021; 11:22678. [PMID: 34811450 PMCID: PMC8608843 DOI: 10.1038/s41598-021-02221-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 11/11/2021] [Indexed: 12/11/2022] Open
Abstract
FMS-like tyrosine kinase 3 (FLT3) in hematopoietic cells binds to its ligand at the plasma membrane (PM), then transduces growth signals. FLT3 gene alterations that lead the kinase to assume its permanently active form, such as internal tandem duplication (ITD) and D835Y substitution, are found in 30–40% of acute myelogenous leukemia (AML) patients. Thus, drugs for molecular targeting of FLT3 mutants have been developed for the treatment of AML. Several groups have reported that compared with wild-type FLT3 (FLT3-wt), FLT3 mutants are retained in organelles, resulting in low levels of PM localization of the receptor. However, the precise subcellular localization of mutant FLT3 remains unclear, and the relationship between oncogenic signaling and the mislocalization is not completely understood. In this study, we show that in cell lines established from leukemia patients, endogenous FLT3-ITD but not FLT3-wt clearly accumulates in the perinuclear region. Our co-immunofluorescence assays demonstrate that Golgi markers are co-localized with the perinuclear region, indicating that FLT3-ITD mainly localizes to the Golgi region in AML cells. FLT3-ITD biosynthetically traffics to the Golgi apparatus and remains there in a manner dependent on its tyrosine kinase activity. Tyrosine kinase inhibitors, such as quizartinib (AC220) and midostaurin (PKC412), markedly decrease FLT3-ITD retention and increase PM levels of the mutant. FLT3-ITD activates downstream in the endoplasmic reticulum (ER) and the Golgi apparatus during its biosynthetic trafficking. Results of our trafficking inhibitor treatment assays show that FLT3-ITD in the ER activates STAT5, whereas that in the Golgi can cause the activation of AKT and ERK. We provide evidence that FLT3-ITD signals from the early secretory compartments before reaching the PM in AML cells.
Collapse
|
32
|
Chen J, Zhang J, Zhang Z. Upregulation of GTPBP4 Promotes the Proliferation of Liver Cancer Cells. JOURNAL OF ONCOLOGY 2021; 2021:1049104. [PMID: 34712323 PMCID: PMC8548153 DOI: 10.1155/2021/1049104] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/16/2021] [Accepted: 08/26/2021] [Indexed: 01/21/2023]
Abstract
RESULTS The GTPBP4 has upregulated expression in liver cancer patients (P < 0.01), but there was no difference in its expression in patients with different clinicopathological stages. The expression of GTPBP4 increased with the increase of cancer metastasis in lymph nodes (P < 0.01). Liver cancer patients with upregulated expression of GTPBP4 showed a shorter overall survival rate (P=0.02). GTPBP4 is closely related to genes such as NIFK, WDR12, and RPF2, and these genes are involved in life processes such as GTP binding and rRNA processing. The upregulated expression of GTPBP4 promotes the proliferation of liver cancer cells and promotes the growth of tumors in mice, while the downregulated expression of GTPBP4 inhibits the proliferation of liver cancer cells and inhibits the growth of tumors in mice. CONCLUSION The expression of GTPBP4 is upregulated in liver cancer patients and affects the overall survival rate of patients. The upregulated expression of GTPBP4 promotes the proliferation of liver cancer cells and the growth of tumors.
Collapse
Affiliation(s)
- Jia Chen
- Cancer Research Institute of Hengyang Medical College, University of South China, Hengyang, China
- Physical Examination Center, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Jie Zhang
- Department of Laboratory Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Zhiwei Zhang
- Cancer Research Institute of Hengyang Medical College, University of South China, Hengyang, China
| |
Collapse
|
33
|
Zhang JM, Jiang YY, Huang QF, Lu XX, Wang GH, Shao CL, Liu M. Brefeldin A delivery nanomicelles in hepatocellular carcinoma therapy: Characterization, cytotoxic evaluation in vitro, and antitumor efficiency in vivo. Pharmacol Res 2021; 172:105800. [PMID: 34363949 DOI: 10.1016/j.phrs.2021.105800] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/01/2021] [Accepted: 08/02/2021] [Indexed: 12/24/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the major cancers with high mortality rate. Traditional drugs used in clinic are usually limited by the drug resistance and side effect and novel agents are still needed. Macrolide brefeldin A (BFA) is a well-known lead compound in cancer chemotherapy, however, with poor solubility and instability. In this study, to overcome these disadvantages, BFA was encapsulated in mixed nanomicelles based on TPGS and F127 copolymers (M-BFA). M-BFA was conferred high solubility, colloidal stability, and capability of sustained release of intact BFA. In vitro, M-BFA markedly inhibited the proliferation, induced G0/G1 phase arrest, and caspase-dependent apoptosis in human liver carcinoma HepG2 cells. Moreover, M-BFA also induced autophagic cell death via Akt/mTOR and ERK pathways. In HepG2 tumor-bearing xenograft mice, indocyanine green (ICG) as a fluorescent probe loaded in M-BFA distributed to the tumor tissue rapidly, prolonged the blood circulation, and improved the tumor accumulation capacity. More importantly, M-BFA (10 mg/kg) dramatically delayed the tumor progression and induced extensive necrosis of the tumor tissues. Taken together, the present work suggests that M-BFA has promising potential in HCC therapy.
Collapse
Affiliation(s)
- Jin-Man Zhang
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Yao-Yao Jiang
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Qun-Fa Huang
- School of Pharmacy, Guangdong Medical University, Dongguan 523808, China
| | - Xu-Xiu Lu
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Guan-Hai Wang
- School of Pharmacy, Guangdong Medical University, Dongguan 523808, China.
| | - Chang-Lun Shao
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266200, China.
| | - Ming Liu
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266200, China.
| |
Collapse
|
34
|
Rio-Vilariño A, del Puerto-Nevado L, García-Foncillas J, Cebrián A. Ras Family of Small GTPases in CRC: New Perspectives for Overcoming Drug Resistance. Cancers (Basel) 2021; 13:3757. [PMID: 34359657 PMCID: PMC8345156 DOI: 10.3390/cancers13153757] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/20/2021] [Accepted: 07/23/2021] [Indexed: 12/11/2022] Open
Abstract
Colorectal cancer remains among the cancers with the highest incidence, prevalence, and mortality worldwide. Although the development of targeted therapies against the EGFR and VEGFR membrane receptors has considerably improved survival in these patients, the appearance of resistance means that their success is still limited. Overactivation of several members of the Ras-GTPase family is one of the main actors in both tumour progression and the lack of response to cytotoxic and targeted therapies. This fact has led many resources to be devoted over the last decades to the development of targeted therapies against these proteins. However, they have not been as successful as expected in their move to the clinic so far. In this review, we will analyse the role of these Ras-GTPases in the emergence and development of colorectal cancer and their relationship with resistance to targeted therapies, as well as the status and new advances in the design of targeted therapies against these proteins and their possible clinical implications.
Collapse
Affiliation(s)
| | | | - Jesús García-Foncillas
- Translational Oncology Division, Hospital Universitario Fundación Jimenez Diaz, 28040 Madrid, Spain; (A.R.-V.); (L.d.P.-N.)
| | - Arancha Cebrián
- Translational Oncology Division, Hospital Universitario Fundación Jimenez Diaz, 28040 Madrid, Spain; (A.R.-V.); (L.d.P.-N.)
| |
Collapse
|
35
|
Lee JE, Kang YW, Jung KH, Son MK, Shin SM, Kim JS, Kim SJ, Fang Z, Yan HH, Park JH, Yoon YC, Han B, Cheon MJ, Woo MG, Seo MS, Lim JH, Kim YS, Hong SS. Intracellular KRAS-specific antibody enhances the anti-tumor efficacy of gemcitabine in pancreatic cancer by inducing endosomal escape. Cancer Lett 2021; 507:97-111. [PMID: 33744388 DOI: 10.1016/j.canlet.2021.03.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 02/16/2021] [Accepted: 03/11/2021] [Indexed: 02/07/2023]
Abstract
KRAS mutation is associated with the progression and growth of pancreatic cancer and contributes to chemo-resistance, which poses a significant clinical challenge in pancreatic cancer. Here, we developed a RT22-ep59 antibody (Ab) that directly targets the intracellularly activated GTP-bound form of oncogenic KRAS mutants after it is internalized into cytosol by endocytosis through tumor-associated receptor of extracellular epithelial cell adhesion molecule (EpCAM) and investigated its synergistic anticancer effects in the presence of gemcitabine in pancreatic cancer. We first observed that RT22-ep59 specifically recognized tumor-associated EpCAM and reached the cytosol by endosomal escape. In addition, the anticancer effect of RT22-ep59 was observed in the high-EpCAM-expressing pancreatic cancer cells and gemcitabine-resistant pancreatic cancer cells, but it had little effect on the low-EpCAM-expressing pancreatic cancer cells. Additionally, co-treatment with RT22-ep59 and gemcitabine synergistically inhibited cell viability, migration, and invasion in 3D-cultures and exhibited synergistic anticancer activity by inhibiting the RAF/ERK or PI3K/AKT pathways in cells with high-EpCAM expression. In an orthotopic mouse model, combined administration of RT22-ep59 and gemcitabine significantly inhibited tumor growth. Furthermore, the co-treatment suppressed cancer metastasis by blocking EMT signaling in vitro and in vivo. Our results demonstrated that RT22-ep59 synergistically increased the antitumor activity of gemcitabine by inhibiting RAS signaling by specifically targeting KRAS. This indicates that co-treatment with RT22-ep59 and gemcitabine might be considered a potential therapeutic strategy for pancreatic cancer patients harboring KRAS mutation.
Collapse
Affiliation(s)
- Ji Eun Lee
- Department of Medicine, College of Medicine and Program in Biomedical Science & Engineering, Inha University, 3-ga, Sinheung-dong, Jung-gu, Incheon, 400-712, Republic of Korea
| | - Yeo Wool Kang
- Department of Medicine, College of Medicine and Program in Biomedical Science & Engineering, Inha University, 3-ga, Sinheung-dong, Jung-gu, Incheon, 400-712, Republic of Korea
| | - Kyung Hee Jung
- Department of Medicine, College of Medicine and Program in Biomedical Science & Engineering, Inha University, 3-ga, Sinheung-dong, Jung-gu, Incheon, 400-712, Republic of Korea
| | - Mi Kwon Son
- Department of Medicine, College of Medicine and Program in Biomedical Science & Engineering, Inha University, 3-ga, Sinheung-dong, Jung-gu, Incheon, 400-712, Republic of Korea
| | - Seung-Min Shin
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, Republic of Korea
| | - Ji-Sun Kim
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, Republic of Korea
| | - Soo Jung Kim
- Department of Medicine, College of Medicine and Program in Biomedical Science & Engineering, Inha University, 3-ga, Sinheung-dong, Jung-gu, Incheon, 400-712, Republic of Korea
| | - Zhenghuan Fang
- Department of Medicine, College of Medicine and Program in Biomedical Science & Engineering, Inha University, 3-ga, Sinheung-dong, Jung-gu, Incheon, 400-712, Republic of Korea
| | - Hong Hua Yan
- Department of Medicine, College of Medicine and Program in Biomedical Science & Engineering, Inha University, 3-ga, Sinheung-dong, Jung-gu, Incheon, 400-712, Republic of Korea
| | - Jung Hee Park
- Department of Medicine, College of Medicine and Program in Biomedical Science & Engineering, Inha University, 3-ga, Sinheung-dong, Jung-gu, Incheon, 400-712, Republic of Korea
| | - Young-Chan Yoon
- Department of Medicine, College of Medicine and Program in Biomedical Science & Engineering, Inha University, 3-ga, Sinheung-dong, Jung-gu, Incheon, 400-712, Republic of Korea
| | - Boreum Han
- Department of Medicine, College of Medicine and Program in Biomedical Science & Engineering, Inha University, 3-ga, Sinheung-dong, Jung-gu, Incheon, 400-712, Republic of Korea
| | - Min Ji Cheon
- Department of Medicine, College of Medicine and Program in Biomedical Science & Engineering, Inha University, 3-ga, Sinheung-dong, Jung-gu, Incheon, 400-712, Republic of Korea
| | - Min Gyu Woo
- Department of Medicine, College of Medicine and Program in Biomedical Science & Engineering, Inha University, 3-ga, Sinheung-dong, Jung-gu, Incheon, 400-712, Republic of Korea
| | - Myung Sung Seo
- Department of Medicine, College of Medicine and Program in Biomedical Science & Engineering, Inha University, 3-ga, Sinheung-dong, Jung-gu, Incheon, 400-712, Republic of Korea
| | - Joo Han Lim
- Department of Medicine, College of Medicine and Program in Biomedical Science & Engineering, Inha University, 3-ga, Sinheung-dong, Jung-gu, Incheon, 400-712, Republic of Korea
| | - Yong-Sung Kim
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, Republic of Korea.
| | - Soon-Sun Hong
- Department of Medicine, College of Medicine and Program in Biomedical Science & Engineering, Inha University, 3-ga, Sinheung-dong, Jung-gu, Incheon, 400-712, Republic of Korea.
| |
Collapse
|
36
|
Gheyouche E, Bagueneau M, Loirand G, Offmann B, Téletchéa S. Structural Design and Analysis of the RHOA-ARHGEF1 Binding Mode: Challenges and Applications for Protein-Protein Interface Prediction. Front Mol Biosci 2021; 8:643728. [PMID: 34109211 PMCID: PMC8181724 DOI: 10.3389/fmolb.2021.643728] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 04/13/2021] [Indexed: 01/02/2023] Open
Abstract
The interaction between two proteins may involve local movements, such as small side-chains re-positioning or more global allosteric movements, such as domain rearrangement. We studied how one can build a precise and detailed protein-protein interface using existing protein-protein docking methods, and how it can be possible to enhance the initial structures using molecular dynamics simulations and data-driven human inspection. We present how this strategy was applied to the modeling of RHOA-ARHGEF1 interaction using similar complexes of RHOA bound to other members of the Rho guanine nucleotide exchange factor family for comparative assessment. In parallel, a more crude approach based on structural superimposition and molecular replacement was also assessed. Both models were then successfully refined using molecular dynamics simulations leading to protein structures where the major data from scientific literature could be recovered. We expect that the detailed strategy used in this work will prove useful for other protein-protein interface design. The RHOA-ARHGEF1 interface modeled here will be extremely useful for the design of inhibitors targeting this protein-protein interaction (PPI).
Collapse
Affiliation(s)
| | | | - Gervaise Loirand
- Université de Nantes, CHU Nantes, CNRS, Inserm, L'institut Du Thorax, Nantes, France
| | | | | |
Collapse
|
37
|
Pulmonary Inflammation and KRAS Mutation in Lung Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021. [PMID: 33788188 DOI: 10.1007/978-3-030-63046-1_5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2023]
Abstract
Chronic lung infection and lung cancer are two of the most important pulmonary diseases. Respiratory infection and its associated inflammation have been increasingly investigated for their role in increasing the risk of respiratory diseases including chronic obstructive pulmonary disease (COPD) and lung cancer. Kirsten rat sarcoma viral oncogene (KRAS) is one of the most important regulators of cell proliferation, differentiation, and survival. KRAS mutations are among the most common drivers of cancer. Lung cancer harboring KRAS mutations accounted for ~25% of the incidence but the relationship between KRAS mutation and inflammation remains unclear. In this chapter, we will describe the roles of KRAS mutation in lung cancer and how elevated inflammatory responses may increase KRAS mutation rate and create a vicious cycle of chronic inflammation and KRAS mutation that likely results in persistent potentiation for KRAS-associated lung tumorigenesis. We will discuss in this chapter regarding the studies of KRAS gene mutations in specimens from lung cancer patients and in animal models for investigating the role of inflammation in increasing the risk of lung tumorigenesis driven primarily by oncogenic KRAS.
Collapse
|
38
|
Small GTPases in Cancer: Still Signaling the Way. Cancers (Basel) 2021; 13:cancers13071500. [PMID: 33805854 PMCID: PMC8037031 DOI: 10.3390/cancers13071500] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 03/23/2021] [Indexed: 11/16/2022] Open
|
39
|
Qiao L, Sinha S, El-hafeez AAA, Lo I, Midde KK, Ngo T, Aznar N, Lopez-sanchez I, Gupta V, Farquhar MG, Rangamani P, Ghosh P. A Circuit for Secretion-coupled Cellular Autonomy in Multicellular Eukaryotes.. [DOI: 10.1101/2021.03.18.436048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
ABSTRACTCancers represent complex autonomous systems, displaying self-sufficiency in growth signaling. Autonomous growth is fueled by a cancer cell’s ability to ‘secrete-and-sense’ growth factors: a poorly understood phenomenon. Using an integrated systems and experimental approach, here we dissect the impact of a feedback-coupled GTPase circuit within the secretory pathway that imparts secretion-coupled autonomy. The circuit is assembled when the Ras-superfamily monomeric GTPase Arf1, and the heterotrimeric GTPase Giαβγ and their corresponding GAPs and GEFs are coupled by GIV/Girdin, a protein that is known to fuel aggressive traits in diverse cancers. One forward and two key negative feedback loops within the circuit create closed-loop control (CLC), allow the two GTPases to coregulate each other, and convert the expected switch-like behavior of Arf1-dependent secretion into an unexpected dose response alignment behavior of sensing and secretion. Such behavior translates into cell survival that is self-sustained by stimulus-proportionate secretion. Proteomic studies and protein-protein interaction network analyses pinpoint growth factors (e.g., the epidermal growth factor; EGF) as a key stimuli for such self-sustenance. Findings highlight how enhanced coupling of two biological switches in cancer cells is critical for multiscale feedback control to achieve secretion-coupled autonomy of growth factors.SYNOPSIS IMAGESTANDFIRST TEXTThis work defines the inner workings of a Golgi-localized molecular circuitry comprised of coupled GTPases, which empowers cells to achieve self-sufficiency in growth factor signaling by creating a secrete-and-sense autocrine loop.HIGHLIGHTS/MAIN FINDINGSModeling and experimental approaches were used to dissect a coupled GTPase circuit.Coupling enables closed loop feedback and mutual control of GTPases.Coupling generates dose response alignment behavior of sensing and secretion of growth factors.Coupling is critical for multiscale feedback control to achieve secretion-coupled autonomy.
Collapse
|
40
|
Wang P, van der Hoeven D, Ye N, Chen H, Liu Z, Ma X, Montufar-Solis D, Rehl KM, Cho KJ, Thapa S, Chen W, van der Hoeven R, Frost JA, Hancock JF, Zhou J. Scaffold repurposing of fendiline: Identification of potent KRAS plasma membrane localization inhibitors. Eur J Med Chem 2021; 217:113381. [PMID: 33756124 DOI: 10.1016/j.ejmech.2021.113381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 03/04/2021] [Accepted: 03/08/2021] [Indexed: 02/07/2023]
Abstract
KRAS plays an essential role in regulating cell proliferation, differentiation, migration and survival. Mutated KRAS is a major driver of malignant transformation in multiple human cancers. We showed previously that fendiline (6) is an effective inhibitor of KRAS plasma membrane (PM) localization and function. In this study, we designed, synthesized and evaluated a series of new fendiline analogs to optimize its drug properties. Systemic structure-activity relationship studies by scaffold repurposing led to the discovery of several more active KRAS PM localization inhibitors such as compounds 12f (NY0244), 12h (NY0331) and 22 (NY0335) which exhibit nanomolar potencies. These compounds inhibited oncogenic KRAS-driven cancer cell proliferation at single-digit micromolar concentrations in vitro. In vivo studies in a xenograft model of pancreatic cancer revealed that 12h and 22 suppressed oncogenic KRAS-expressing MiaPaCa-2 tumor growth at a low dose range of 1-5 mg/kg with no vasodilatory effects, indicating their potential as chemical probes and anticancer therapeutics.
Collapse
Affiliation(s)
- Pingyuan Wang
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Dharini van der Hoeven
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX, 77054, USA
| | - Na Ye
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Haiying Chen
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Zhiqing Liu
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Xiaoping Ma
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Dina Montufar-Solis
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Kristen M Rehl
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH, 45435, USA
| | - Kwang-Jin Cho
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH, 45435, USA
| | - Sabita Thapa
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX, 77054, USA
| | - Wei Chen
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Ransome van der Hoeven
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX, 77054, USA
| | - Jeffrey A Frost
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - John F Hancock
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.
| | - Jia Zhou
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, 77555, USA.
| |
Collapse
|
41
|
Sato T, Mukai S, Ikeda H, Mishiro-Sato E, Akao K, Kobayashi T, Hino O, Shimono W, Shibagaki Y, Hattori S, Sekido Y. Silencing of SmgGDS, a Novel mTORC1 Inducer That Binds to RHEBs, Inhibits Malignant Mesothelioma Cell Proliferation. Mol Cancer Res 2021; 19:921-931. [PMID: 33574130 DOI: 10.1158/1541-7786.mcr-20-0637] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 12/15/2020] [Accepted: 02/04/2021] [Indexed: 11/16/2022]
Abstract
Malignant mesothelioma (MM) is an aggressive tumor that typically develops after a long latency following asbestos exposure. Although mechanistic target of rapamycin complex 1 (mTORC1) activation enhances MM cell growth, the mTORC1 inhibitor everolimus has shown limited efficacy in clinical trials of MM patients. We explored the mechanism underlying mTORC1 activation in MM cells and its effects on cell proliferation and progression. Analysis of the expression profiles of 87 MMs from The Cancer Genome Atlas revealed that 40 samples (46%) displayed altered expression of RPTOR (mTORC1 component) and genes immediately upstream that activate mTORC1. Among them, we focused on RHEB and RHEBL1, which encode direct activators of mTORC1. Exogenous RHEBL1 expression enhanced MM cell growth, indicating that RHEB-mTORC1 signaling acts as a pro-oncogenic cascade. We investigated molecules that directly activate RHEBs, identifying SmgGDS as a novel RHEB-binding protein. SmgGDS knockdown reduced mTORC1 activation and inhibited the proliferation of MM cells with mTORC1 activation. Interestingly, SmgGDS displayed high binding affinity with inactive GDP-bound RHEBL1, and its knockdown reduced cytosolic RHEBL1 without affecting its activation. These findings suggest that SmgGDS retains GDP-bound RHEBs in the cytosol, whereas GTP-bound RHEBs are localized on intracellular membranes to promote mTORC1 activation. We revealed a novel role for SmgGDS in the RHEB-mTORC1 pathway and its potential as a therapeutic target in MM with aberrant mTORC1 activation. IMPLICATIONS: Our data showing that SmgGDS regulates RHEB localization to activate mTORC1 indicate that SmgGDS can be used as a new therapeutic target for MM exhibiting mTORC1 activation.
Collapse
Affiliation(s)
- Tatsuhiro Sato
- Division of Cancer Biology, Aichi Cancer Center Research Institute, Nagoya, Aichi, Japan
| | - Satomi Mukai
- Division of Cancer Biology, Aichi Cancer Center Research Institute, Nagoya, Aichi, Japan
| | - Haruna Ikeda
- Division of Cancer Biology, Aichi Cancer Center Research Institute, Nagoya, Aichi, Japan
| | - Emi Mishiro-Sato
- Division of Pathophysiology, Aichi Cancer Center Research Institute, Nagoya, Aichi, Japan
| | - Ken Akao
- Division of Cancer Biology, Aichi Cancer Center Research Institute, Nagoya, Aichi, Japan.,Department of Respiratory Medicine, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Toshiyuki Kobayashi
- Department of Molecular Pathogenesis, Graduate School of Medicine, Juntendo University, Bunkyo-ku, Tokyo, Japan
| | - Okio Hino
- Department of Molecular Pathogenesis, Graduate School of Medicine, Juntendo University, Bunkyo-ku, Tokyo, Japan
| | - Wataru Shimono
- Division of Biochemistry, School of Pharmaceutical Sciences, Kitasato University, Minato-ku, Tokyo, Japan
| | - Yoshio Shibagaki
- Division of Biochemistry, School of Pharmaceutical Sciences, Kitasato University, Minato-ku, Tokyo, Japan
| | - Seisuke Hattori
- Division of Biochemistry, School of Pharmaceutical Sciences, Kitasato University, Minato-ku, Tokyo, Japan
| | - Yoshitaka Sekido
- Division of Cancer Biology, Aichi Cancer Center Research Institute, Nagoya, Aichi, Japan. .,Division of Molecular and Cellular Oncology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| |
Collapse
|
42
|
Lu Q, Wang PS, Yang L. Golgi-associated Rab GTPases implicated in autophagy. Cell Biosci 2021; 11:35. [PMID: 33557950 PMCID: PMC7869216 DOI: 10.1186/s13578-021-00543-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 01/18/2021] [Indexed: 12/24/2022] Open
Abstract
Autophagy is a conserved cellular degradation process in eukaryotes that facilitates the recycling and reutilization of damaged organelles and compartments. It plays a pivotal role in cellular homeostasis, pathophysiological processes, and diverse diseases in humans. Autophagy involves dynamic crosstalk between different stages associated with intracellular vesicle trafficking. Golgi apparatus is the central organelle involved in intracellular vesicle trafficking where Golgi-associated Rab GTPases function as important mediators. This review focuses on the recent findings that highlight Golgi-associated Rab GTPases as master regulators of autophagic flux. The scope for future research in elucidating the role and mechanism of Golgi-associated Rab GTPases in autophagy and autophagy-related diseases is discussed further.
Collapse
Affiliation(s)
- Qingchun Lu
- Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine at Temple University, 3440 N Broad St, Kresge Hall, Rm. 624, Philadelphia, PA19140, USA
| | - Po-Shun Wang
- Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine at Temple University, 3440 N Broad St, Kresge Hall, Rm. 624, Philadelphia, PA19140, USA
| | - Ling Yang
- Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine at Temple University, 3440 N Broad St, Kresge Hall, Rm. 624, Philadelphia, PA19140, USA.
| |
Collapse
|
43
|
Peng X, Wang T, Gao H, Yue X, Bian W, Mei J, Zhang Y. The interplay between IQGAP1 and small GTPases in cancer metastasis. Biomed Pharmacother 2021; 135:111243. [PMID: 33434854 DOI: 10.1016/j.biopha.2021.111243] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/27/2020] [Accepted: 12/31/2020] [Indexed: 01/07/2023] Open
Abstract
The metastatic spread of tumor cells to distant anatomical locations is a critical cause for disease progression and leads to more than 90 % of cancer-related deaths. IQ motif-containing GTPase-activating protein 1 (IQGAP1), a prominent regulator in the cancer metastasis process, is a scaffold protein that interacts with components of the cytoskeleton. As a critical node within the small GTPase network, IQGAP1 acts as a binding partner of several small GTPases, which in turn function as molecular switches to control most cellular processes, including cell migration and invasion. Given the significant interaction between IQGAP1 and small GTPases in cancer metastasis, we briefly elucidate the role of IQGAP1 in regulating cancer metastasis and the varied interactions existing between IQGAP1 and small GTPases. In addition, the potential regulators for IQGAP1 activity and its interaction with small GTPases are also incorporated in this review. Overall, we comprehensively summarize the role of IQGAP1 in cancer tumorigenicity and metastasis, which may be a potential anti-tumor target to restrain cancer progression.
Collapse
Affiliation(s)
- Xiafeng Peng
- Department of Gynecology and Obstetrics, Wuxi Maternal and Child Health Hospital, the Affiliated Hospital to Nanjing Medical University, Wuxi, 214023, China; First Clinical Medicine College, Nanjing Medical University, Nanjing, 211166, China.
| | - Tiejun Wang
- Department of Gynecology and Obstetrics, Wuxi Maternal and Child Health Hospital, the Affiliated Hospital to Nanjing Medical University, Wuxi, 214023, China.
| | - Han Gao
- School of Medicine, Jiangnan University, Wuxi, 214122, China.
| | - Xin Yue
- First Clinical Medicine College, Nanjing Medical University, Nanjing, 211166, China.
| | - Weiqi Bian
- First Clinical Medicine College, Nanjing Medical University, Nanjing, 211166, China.
| | - Jie Mei
- Department of Gynecology and Obstetrics, Wuxi Maternal and Child Health Hospital, the Affiliated Hospital to Nanjing Medical University, Wuxi, 214023, China; Wuxi Clinical Medical College, Nanjing Medical University, Wuxi, 214023, China.
| | - Yan Zhang
- Department of Gynecology and Obstetrics, Wuxi Maternal and Child Health Hospital, the Affiliated Hospital to Nanjing Medical University, Wuxi, 214023, China.
| |
Collapse
|
44
|
Feng Y, Dramani Maman ST, Zhu X, Liu X, Bongolo CC, Liang C, Tu J. Clinical value and potential mechanisms of LINC00221 in hepatocellular carcinoma based on integrated analysis. Epigenomics 2021; 13:299-317. [PMID: 33406920 DOI: 10.2217/epi-2020-0363] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Aims:This study aimed to unveil the functional roles of LINC00221 in hepatocellular carcinoma (HCC). Materials and methods:A discovery cohort and a validation cohort were respectively used to identify and verify the clinical value of LINC00221 in HCC. Bioinformatics analysis was performed to explore its potential mechanisms. Results:LINC00221 was upregulated in HCC tissues and serum samples. Survival analysis and receiver operating characteristic curve further revealed its prognostic and diagnostic roles. Exploration of the mechanism showed that LINC00221 might exert a pro-cancer role via the lncRNA-miRNA-mRNA network.Conclusions: Our study reveals that upregulated LINC00221 can serve as a potential diagnostic and prognostic biomarker and provides novel clues as to the role of LINC00221 in HCC.
Collapse
Affiliation(s)
- Yanlin Feng
- Program & Department of Clinical Laboratory Medicine, Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Souraka Tapara Dramani Maman
- Program & Department of Clinical Laboratory Medicine, Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Xinyu Zhu
- Program & Department of Clinical Laboratory Medicine, Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Xuefang Liu
- Department of Clinical Laboratory, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Christian Cedric Bongolo
- Program & Department of Clinical Laboratory Medicine, Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Chunzi Liang
- Program & Department of Clinical Laboratory Medicine, Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Jiancheng Tu
- Program & Department of Clinical Laboratory Medicine, Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| |
Collapse
|
45
|
Hsieh YS, Chu SC, Huang SC, Kao SH, Lin MS, Chen PN. Gossypol Reduces Metastasis and Epithelial-Mesenchymal Transition by Targeting Protease in Human Cervical Cancer. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2020; 49:181-198. [PMID: 33371817 DOI: 10.1142/s0192415x21500105] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Metastasis is the most prevalent cause of cancer-associated deaths amongst patients with cervical cancer. Epithelial-mesenchymal transition (EMT) is essential for carcinogenesis, and it confers metastatic properties to cancer cells. Gossypol is a natural polyphenolic compound with anti-inflammation, anti-oxidant, and anticancer activities. In this study, we investigated the antimetastatic and antitumour effects of gossypol on human cervical cancer cells (HeLa and SiHa cells). Gossypol exerted a strong inhibition effect on the migration and invasion of human cervical cancer cells. It reduced the focal adhesion kinase (FAK) pathway-mediated expression of matrix metalloproteinase-2 and urokinase-type plasminogen activator, subsequently inhibiting the invasion of SiHa cells. In addition, gossypol reversed EMT induced by transforming growth factor beta 1 (TGF-[Formula: see text]1) and up-regulated epithelial markers, such as E-cadherin but significantly suppressed Ras homolog family member (Rho)A, RhoB, and p-Samd3. The tail vein injection model showed that gossypol treatment via oral gavage reduced lung metastasis. Gossypol also decreased tumour growth in vivo in the nude mouse xenograft model. All these findings suggest that gossypol suppressed the invasion and migration of human cervical cancer cells by targeting the FAK signaling pathway and reversing TGF-[Formula: see text]1-induced EMT. Hence, gossypol warrants further attention for basic mechanistic studies and drug development.
Collapse
Affiliation(s)
- Yih-Shou Hsieh
- Department of Biochemistry, School of Medicine, Chung Shan Medical University, Taichung, Taiwan, ROC
- Institute of Biochemistry, Microbiology and Immunology, Chung Shan Medical University, Taichung, Taiwan, ROC
- Clinical Laboratory Chung Shan Medical University Hospital, Taichung, Taiwan, ROC
| | - Shu-Chen Chu
- Institute and Department of Food Science Central Taiwan, University of Science and Technology, Taichung, Taiwan, ROC
| | - Shih-Chien Huang
- Department of Nutrition, Chung Shan Medical University, Taichung, Taiwan, ROC
| | - Shao-Hsuan Kao
- Institute of Biochemistry, Microbiology and Immunology, Chung Shan Medical University, Taichung, Taiwan, ROC
- Institute of Medicine Chung Shan Medical University, Taichung, Taiwan, ROC
| | - Meng-Shuan Lin
- Institute of Biochemistry, Microbiology and Immunology, Chung Shan Medical University, Taichung, Taiwan, ROC
| | - Pei-Ni Chen
- Institute of Biochemistry, Microbiology and Immunology, Chung Shan Medical University, Taichung, Taiwan, ROC
- Clinical Laboratory Chung Shan Medical University Hospital, Taichung, Taiwan, ROC
- Institute of Medicine Chung Shan Medical University, Taichung, Taiwan, ROC
| |
Collapse
|
46
|
Protein-membrane interactions in small GTPase signalling and pharmacology: perspectives from Arf GTPases studies. Biochem Soc Trans 2020; 48:2721-2728. [PMID: 33336699 DOI: 10.1042/bst20200482] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 11/17/2022]
Abstract
Small GTPases, in association with their GEFs, GAPs and effectors, control major intracellular processes such as signal transduction, cytoskeletal dynamics and membrane trafficking. Accordingly, dysfunctions in their biochemical properties are associated with many diseases, including cancers, diabetes, infections, mental disorders and cardiac diseases, which makes them attractive targets for therapies. However, small GTPases signalling modules are not well-suited for classical inhibition strategies due to their mode of action that combines protein-protein and protein-membrane interactions. As a consequence, there is still no validated drug available on the market that target small GTPases, whether directly or through their regulators. Alternative inhibitory strategies are thus highly needed. Here we review recent studies that highlight the unique modalities of the interaction of small GTPases and their GEFs at the periphery of membranes, and discuss how they can be harnessed in drug discovery.
Collapse
|
47
|
Effect of photodynamic therapy on expression of HRAS, NRAS and caspase 3 genes at mRNA levels, apoptosis of head and neck squamous cell carcinoma cell line. Photodiagnosis Photodyn Ther 2020; 33:102142. [PMID: 33307231 DOI: 10.1016/j.pdpdt.2020.102142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 11/14/2020] [Accepted: 11/30/2020] [Indexed: 12/13/2022]
Abstract
OBJECTIVES This study aimed to assess the effect of photodynamic therapy (PDT) on expression of CASP3, NRAS and HRAS genes at mRNA levels, and apoptosis of head and neck squamous cell carcinoma (HNSCC) cell line. MATERIALS AND METHODS In order to complete the present in vitro study, HNSCC cell line (NCBI C196 HN5) purchased from Pasteur Institute. Cells were divided into four groups; Group 1: photodynamic treatment (laser + methylene blue (MB) as photosensitizer), group 2: MB, group 3: laser (with 660 nm wavelength), and group 4: control (without any treatment). To determine the optimal concentration of MB, in a pilot study, toxicity of MB in different concentration was assessed using MTT assay. Cells in group 1, 2 and 3 was treated at optimal concentration of MB (1.6 μg/mL). Gene expression at mRNA levels was assessed after 24 h incubation, using real-time (qRT)-PCR. The expression of BAX and BCL2 genes at the mRNA levels was analyzed to evaluate apoptosis. 2-ΔΔCt values of BCL2, BAX, CASP3, NRAS, and HRAS in groups was analyzed using ANOVA. Tukey's HSD and Games Howell test was used to compare between two groups. RESULTS Over-expression of BAX (p < 0.001), CASP3 (p < 0.001) and down-regulation of BCL2 (p = 0.004), HRAS (p = 0.023) and NRAS (p = 0.045) were noted in group 1 (PDT), compared with the control group. Treatment by laser alone induce down-regulation of CASP3 (p < 0.05), BAX (p < 0.05), BCL2 (p > 0.05), HRAS (p > 0.05) and NRAS (p > 0.05). CONCLUSION PDT caused down-regulation of NRAS, HRAS and BCL2 and over-expression of CASP3 and BAX genes at mRNA levels in HNSCC cell line. The present study raises the possibility that the role of MB on BCL2 down-regulation and BAX and CASP3 over-expression was higher than laser alone while it seems that laser alone was more effective than MB in HRAS and NRAS down-regulation.
Collapse
|
48
|
Shi L, Huang Y, Huang X, Zhou W, Wei J, Deng D, Lai Y. Analyzing the key gene expression and prognostics values for acute myeloid leukemia. Transl Cancer Res 2020; 9:7284-7298. [PMID: 35117330 PMCID: PMC8797974 DOI: 10.21037/tcr-20-3177] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 11/11/2020] [Indexed: 01/20/2023]
Abstract
BACKGROUND Acute myeloid leukemia (AML) is one of the first tumor types sequenced at the whole genome level. However, numbers of the mutated genes expression levels, functions, and prognostics values still unclear. METHODS To most ordinary mutated genes were analyzed via cancer virtual cohort discovery analysis platform (CVCDAP), and further investigated the mutational conversions, variant allele frequencies (VAF), driver genes, and potential druggable mutated genes in AML. The top mutated gene mRNA expression levels and the relationship between gene expression levels and prognosis for AML patients were performed by Gene Expression Profiling Interactive Analysis (GEPIA). Moreover, we used the UALCAN dataset to confirm the association between gene expression levels and prognosis for AML patients. Enrichment functions of the top mutated genes of AML were analyzed through Metascape. Finally, the role of these defined genes in cancer pathways and potential drug targets were analyzed by gene set cancer analysis (GSCALite). RESULTS The top 20 mutated genes for AML included FLT3, HPS3, ABCA6, PCLO, SLIT2, and other ones. Compared to normal control samples, NPM1 and GABRB3 were significantly downregulated in AML samples, but TP53, DNMT3A, HPS3, FLT3, SENP6, and RUNX1 were significantly overexpressed (all these genes P value <0.01). Overexpression of FLT3 and PCLO indicated a poor prognosis, but the overexpression of SLIT3 functioned as a protector for AML via GEPIA. HSP3 indicates the favorable factor for AML, but overexpression of ABCA6 (P=0.066) may act as the adverse factor by UALCAN analysis. Enrichment function analysis shows the functions of defining genes, including negative regulation of cell differentiation, small GTPase mediated signal transduction, and immune system process. Finally, these genes participate in apoptosis, cell cycle, PI3K/AKT, and RAS/MAPK signaling pathway, and FLT3 is sensitive to 5-Fluorouracil, Methotrexate, ATRA. DNMT3A and IDH2 are resistant to Trametinib. RUNX1 and TP53 were sensitive to I-BET-762 and Tubastatin A. CONCLUSIONS Present study showed overexpression of FLT3, ABCA6, and PCLO indicated the poor prognosis of AML, but overexpression of SLIT3 and HSP3 functioned as an AML protector. There are several drugs and small molecules that target the top 20 mutated genes in AML.
Collapse
Affiliation(s)
- Lingling Shi
- Department of Hematology, the First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yan Huang
- Department of Hematology and Rheumatology, People’s Hospital of Baise, Baise, China
| | - Xunjun Huang
- Department of Hematology and Rheumatology, People’s Hospital of Baise, Baise, China
| | - Weijie Zhou
- Department of Hematology and Rheumatology, People’s Hospital of Baise, Baise, China
| | - Jie Wei
- Department of Hematology and Rheumatology, People’s Hospital of Baise, Baise, China
| | - Donghong Deng
- Department of Hematology, the First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yongrong Lai
- Department of Hematology, the First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
49
|
Identifying Cancer-Relevant Mutations in the DLC START Domain Using Evolutionary and Structure-Function Analyses. Int J Mol Sci 2020; 21:ijms21218175. [PMID: 33142932 PMCID: PMC7662654 DOI: 10.3390/ijms21218175] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/22/2020] [Accepted: 10/30/2020] [Indexed: 01/05/2023] Open
Abstract
Rho GTPase signaling promotes proliferation, invasion, and metastasis in a broad spectrum of cancers. Rho GTPase activity is regulated by the deleted in liver cancer (DLC) family of bona fide tumor suppressors which directly inactivate Rho GTPases by stimulating GTP hydrolysis. In addition to a RhoGAP domain, DLC proteins contain a StAR-related lipid transfer (START) domain. START domains in other organisms bind hydrophobic small molecules and can regulate interacting partners or co-occurring domains through a variety of mechanisms. In the case of DLC proteins, their START domain appears to contribute to tumor suppressive activity. However, the nature of this START-directed mechanism, as well as the identities of relevant functional residues, remain virtually unknown. Using the Catalogue of Somatic Mutations in Cancer (COSMIC) dataset and evolutionary and structure-function analyses, we identify several conserved residues likely to be required for START-directed regulation of DLC-1 and DLC-2 tumor-suppressive capabilities. This pan-cancer analysis shows that conserved residues of both START domains are highly overrepresented in cancer cells from a wide range tissues. Interestingly, in DLC-1 and DLC-2, three of these residues form multiple interactions at the tertiary structural level. Furthermore, mutation of any of these residues is predicted to disrupt interactions and thus destabilize the START domain. As such, these mutations would not have emerged from traditional hotspot scans of COSMIC. We propose that evolutionary and structure-function analyses are an underutilized strategy which could be used to unmask cancer-relevant mutations within COSMIC. Our data also suggest DLC-1 and DLC-2 as high-priority candidates for development of novel therapeutics that target their START domain.
Collapse
|
50
|
Brito C, Barral DC, Pojo M. Subversion of Ras Small GTPases in Cutaneous Melanoma Aggressiveness. Front Cell Dev Biol 2020; 8:575223. [PMID: 33072757 PMCID: PMC7538714 DOI: 10.3389/fcell.2020.575223] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 08/28/2020] [Indexed: 12/25/2022] Open
Abstract
The rising incidence and mortality rate associated with the metastatic ability of cutaneous melanoma represent a major public health concern. Cutaneous melanoma is one of the most invasive human cancers, but the molecular mechanisms are poorly understood. Moreover, currently available therapies are not efficient in avoiding melanoma lethality. In this context, new biomarkers of prognosis, metastasis, and response to therapy are necessary to better predict the disease outcome. Additionally, the knowledge about the molecular alterations and dysregulated pathways involved in melanoma metastasis may provide new therapeutic targets. Members of the Ras superfamily of small GTPases regulate various essential cellular activities, from signaling to membrane traffic and cytoskeleton dynamics. Therefore, it is not surprising that they are differentially expressed, and their functions subverted in several types of cancer, including melanoma. Indeed, Ras small GTPases were found to regulate melanoma progression and invasion. Hence, a better understanding of the mechanisms regulated by Ras small GTPases that are involved in melanoma tumorigenesis and progression may provide new therapeutic strategies to block these processes. Here, we review the current knowledge on the role of Ras small GTPases in melanoma aggressiveness and the molecular mechanisms involved. Furthermore, we summarize the known involvement of these proteins in melanoma metastasis and how these players influence the response to therapy.
Collapse
Affiliation(s)
- Cheila Brito
- Unidade de Investigação em Patobiologia Molecular (UIPM) do Instituto Português de Oncologia de Lisboa Francisco Gentil E.P.E., Lisbon, Portugal
| | - Duarte C Barral
- CEDOC, Faculdade de Ciências Médicas, NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Marta Pojo
- Unidade de Investigação em Patobiologia Molecular (UIPM) do Instituto Português de Oncologia de Lisboa Francisco Gentil E.P.E., Lisbon, Portugal
| |
Collapse
|