1
|
Han H, Du A, Li J, Han H, Feng P, Zhu Y, Li X, Tian G, Yu H, Zhang B, Liu W, Yuan G. Transitioning from molecular methods to therapeutic methods: An in‑depth analysis of glioblastoma (Review). Oncol Rep 2025; 53:48. [PMID: 40017136 PMCID: PMC11894601 DOI: 10.3892/or.2025.8881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 02/13/2025] [Indexed: 03/01/2025] Open
Abstract
Glioblastoma (GBM) is the most aggressive primary brain tumour, characterised by high heterogeneity, aggressiveness and resistance to conventional therapies, leading to poor prognosis for patients. In recent years, with the rapid development of molecular biology and genomics technologies, significant progress has been made in understanding the molecular mechanisms of GBM. This has revealed a complex molecular network involving aberrant key signalling pathways, epigenetic alterations, interactions in the tumour microenvironment and regulation of non‑coding RNAs. Based on these molecular features, novel therapeutic strategies such as targeted therapies, immunotherapy and gene therapy are rapidly evolving and hold promise for improving the outcome of GBM. This review systematically summarises the advances in molecular mechanisms and therapeutic approaches for GBM. It aims to provide new perspectives for the precise diagnosis and personalised treatment of GBM, and to ultimately improve the prognosis of patients.
Collapse
Affiliation(s)
- Hongxi Han
- Department of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, P.R. China
| | - Aichao Du
- Department of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, P.R. China
| | - Jinwen Li
- College of Integrative Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, Gansu 730000, P.R. China
| | - Hongyan Han
- Department of Neurology, Tianshui First People's Hospital, Tianshui, Gansu 741000, P.R. China
| | - Peng Feng
- Department of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, P.R. China
| | - Yufeng Zhu
- Department of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, P.R. China
| | - Xinlong Li
- Department of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, P.R. China
| | - Guopeng Tian
- Department of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, P.R. China
| | - Haijia Yu
- Department of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, P.R. China
| | - Bo Zhang
- Department of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, P.R. China
| | - Weiguo Liu
- Lanzhou University of Basic Medical Sciences, Lanzhou, Gansu 730000, P.R. China
| | - Guoqiang Yuan
- Department of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, P.R. China
| |
Collapse
|
2
|
Shih PC, Tzeng IS, Chen YC, Chen ML. Gastrodin Mitigates Ketamine-Induced Inhibition of F-Actin Remodeling and Cell Migration by Regulating the Rho Signaling Pathway. Biomedicines 2025; 13:649. [PMID: 40149625 PMCID: PMC11940296 DOI: 10.3390/biomedicines13030649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 02/16/2025] [Accepted: 03/04/2025] [Indexed: 03/29/2025] Open
Abstract
Background/Objects: Rho signaling plays a role in calcium-regulated cytoskeletal reorganization and cell movement, processes linked to neuronal function and cancer metastasis. Gastrodia elata, a traditional herbal medicine, can regulate glutamate-induced calcium influx in PC12 cells and influence cell function by modulating neuronal cytoskeleton remodeling via the monoaminergic system and Rho signaling. This study investigates the effects of gastrodin, a key component of Gastrodia elata, on Rho signaling, cytoskeleton remodeling, and cell migration in B35 and C6 cells. It also explores gastrodin's impact on Rho signaling in the prefrontal cortex of Sprague Dawley rats. Methods: B35 cells, C6 cells, and Sprague Dawley rats were treated with ketamine, gastrodin, or both. The expression of examined proteins from B35 cells, C6 cells, and the prefrontal cortex of Sprague Dawley rats were analyzed using immunoblotting. Immunofluorescent staining was applied to detect the phosphorylation of RhoGDI1. F-actin was stained using phalloidin-488 staining. Cell migration was analyzed using the Transwell and wound-healing assays. Results: Gastrodin reversed the ketamine-induced regulation of cell mobility inhibition, F-actin condensation, and Rho signaling modulation including Rho GDP dissociation inhibitor 1 (RhoGDI1); the Rho family protein (Ras homolog family member A (RhoA); cell division control protein 42 homolog (CDC42); Ras-related C3 botulinum toxin substrate 1(Rac1)); rho-associated, coiled-coil-containing protein kinase 1 (ROCK1); neural Wiskott-Aldrich syndrome protein (NWASP); myosin light chain 2 (MLC2); profilin1 (PFN1); and cofilin-1 (CFL1) in B35 and C6 cells. Similar modulations on Rho signaling were also observed in the prefrontal cortex of rats. Conclusions: Our findings show that gastrodin counteracts ketamine-induced disruptions in Rho signaling, cytoskeletal dynamics, and cell migration by regulating key components like RhoGDI1, ROCK1, MLC2, PFN1, and CFL1. This suggests the potential of gastrodin as a comprehensive regulator of cellular signaling.
Collapse
Affiliation(s)
- Ping-Cheng Shih
- Department of Anesthesiology, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231016, Taiwan;
| | - I-Shiang Tzeng
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231016, Taiwan;
| | - Yi-Chyan Chen
- Department of Psychiatry, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231016, Taiwan;
| | - Mao-Liang Chen
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231016, Taiwan;
| |
Collapse
|
3
|
Yelkenci HE, Degirmenci Z, Koc HI, Bayirli S, Baltaci SB, Altunay S, Oztekin N, Kocak M, Kilic E, Beker MC. Vinpocetine Ameliorates Neuronal Injury After Cold-Induced Traumatic Brain Injury in Mice. Mol Neurobiol 2025; 62:3956-3972. [PMID: 39361199 DOI: 10.1007/s12035-024-04515-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 09/15/2024] [Indexed: 02/04/2025]
Abstract
Traumatic brain injury (TBI), also known as intracranial injury, is a common condition with the highest incidence rate among neurodegenerative disorders and poses a significant public health burden. Various methods are used in the treatment of TBI, but the effects of cold-induced traumatic brain injury have not been thoroughly studied. In this context, vinpocetine (VPN), derived from Vinca minor, exhibits notable anti-inflammatory and antioxidant properties. VPN is known for its neuroprotective role and is generally utilized for treating various neurodegenerative disorders. However, the function of VPN after cold-induced TBI needs to be studied in more detail. This study aims to investigate the neuroprotective effects of VPN at varying doses (5 mg/kg or 10 mg/kg) after cold-induced TBI. C57BL/6 mice were sacrificed 2 or 28 days after cold-induced TBI. Results indicate that VPN administration significantly reduces brain infarct volume, brain swelling, blood-brain barrier disruption, and DNA fragmentation in a dose-dependent manner. Additionally, VPN enhances neuronal survival in the ipsilesional cortex. In the long term, VPN treatment (5 mg/kg/day or 10 mg/kg/day, initiated 48 h post-TBI) improved locomotor activity, cell proliferation, neurogenesis, and decreased whole brain atrophy, specifically motor cortex atrophy. We performed liquid chromatography-tandem mass spectrometry (LC-MS/MS) to elucidate the underlying mechanisms to profile proteins and signaling pathways influenced by prolonged VPN treatment post-TBI. Notably, we found that 192 different proteins were significantly altered by VPN treatment, which is a matter of further investigation for the development of therapeutic targets. Our study has shown that VPN may have a neuroprotective role in cold-induced TBI.
Collapse
Affiliation(s)
- Hayriye E Yelkenci
- Department of Chemistry, Istanbul Technical University, Istanbul, Türkiye
- Regenerative and Restorative Medical Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Türkiye
| | - Zehra Degirmenci
- Regenerative and Restorative Medical Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Türkiye
| | - Halil I Koc
- Regenerative and Restorative Medical Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Türkiye
| | - Sevban Bayirli
- Regenerative and Restorative Medical Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Türkiye
- Department of Physiology, School of Medicine, Istanbul Medipol University, Istanbul, Türkiye
| | - Saltuk B Baltaci
- Regenerative and Restorative Medical Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Türkiye
- Department of Physiology, School of Medicine, Istanbul Medipol University, Istanbul, Türkiye
| | - Serdar Altunay
- Regenerative and Restorative Medical Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Türkiye
- Department of Physiology, School of Medicine, Istanbul Medipol University, Istanbul, Türkiye
| | - Nevin Oztekin
- Department of Chemistry, Istanbul Technical University, Istanbul, Türkiye
| | - Mehmet Kocak
- Department of Biostatistics and Medical Informatics, International School of Medicine, Istanbul Medipol University, Istanbul, Türkiye
| | - Ertugrul Kilic
- Department of Physiology, Faculty of Medicine, Istanbul Medeniyet University, Istanbul, Türkiye
| | - Mustafa C Beker
- Regenerative and Restorative Medical Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Türkiye.
- Department of Physiology, Faculty of Medicine, Istanbul Medeniyet University, Istanbul, Türkiye.
| |
Collapse
|
4
|
Hwang JS, Vo TTL, Kim M, Cha EH, Mun KC, Ha E, Seo JH. Involvement of RhoA/ROCK Signaling Pathway in Methamphetamine-Induced Blood-Brain Barrier Disruption. Biomolecules 2025; 15:340. [PMID: 40149876 PMCID: PMC11940822 DOI: 10.3390/biom15030340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 01/27/2025] [Accepted: 02/25/2025] [Indexed: 03/29/2025] Open
Abstract
Methamphetamine (METH) is a powerful addictive psychostimulant that gives rise to severe abusers worldwide. While many studies have reported on the neurotoxicity of METH, blood-brain barrier (BBB) dysfunction has recently attracted attention as an essential target in METH-induced pathological changes in the brain. However, its mechanism has not been fully understood. We found that METH increased paracellular permeability and decreased vascular integrity through FITC-dextran and trans-endothelial electrical resistance (TEER) assay in primary human brain endothelial cells (HBMECs). Also, redistribution of tight junction proteins (zonula occluden-1 and claudin-5) and reorganization of F-actin cytoskeleton were observed in METH-exposed HBMECs. To determine the mechanism of METH-induced BBB disruption, the RhoA/ROCK signaling pathway was examined in METH-treated HBMECs. METH-activated RhoA, followed by an increase in the phosphorylation of downstream effectors, myosin light chain (MLC) and cofilin, occurs in HBMECs. Pretreatment with ROCK inhibitors Y-27632 and fasudil reduced the METH-induced increase in phosphorylation of MLC and cofilin, preventing METH-induced redistribution of junction proteins and F-actin cytoskeletal reorganization. Moreover, METH-induced BBB leakage was alleviated by ROCK inhibitors in vitro and in vivo. Taken together, these results suggest that METH induces BBB dysfunction by activating the RhoA/ROCK signaling pathway, which results in the redistribution of junction proteins via F-actin cytoskeletal reorganization.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ji Hae Seo
- Department of Biochemistry, School of Medicine, Keimyung University, Daegu 42601, Republic of Korea; (J.S.H.); (T.T.L.V.); (M.K.); (E.H.C.); (K.C.M.); (E.H.)
| |
Collapse
|
5
|
Zou Y, Zeng X, Wang K, Ye J, Zhao Y, Jin H, Zhang J, Cheng G, Nie X. CD271 regulates osteogenic differentiation of ectomesenchymal stem cells via the RhoA/ROCK signaling pathway. Int Immunopharmacol 2025; 148:114068. [PMID: 39826451 DOI: 10.1016/j.intimp.2025.114068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 12/28/2024] [Accepted: 01/07/2025] [Indexed: 01/22/2025]
Abstract
The low-affinity neurotrophic receptor CD271 plays a crucial role in the osteogenic differentiation of ectomesenchyme stem cells (EMSCs), which is essential for the development and regeneration of jaw bones. This study aimed to investigate the influence of CD271 on EMSCs osteogenic differentiation and to uncover the underlying mechanisms. CD271-deficient mice exhibited delayed mandibular bone development, with a significantly reduction in the expression of osteogenic makers such as ALP, Col-1, OPN, and RUNX2. Single-cell sequencing further proved that the RhoA/ROCK signaling pathway was downregulated in CD271ExIII-/- EMSCs, highlighting the potential role of CD271 in regulating the osteogenic differentiation of EMSCs. After treatment with Pentanoic Acid or Y27632, the protein expression of Runx2 and Col-1 in EMSCs was either enhanced or reduced, respectively. These findings suggest that CD271 facilitates the osteogenic differentiation of EMSCs in vitro and contributes to mandibular alveolar bone formation in vivo through activation of the RhoA/ROCK signaling pathway.
Collapse
Affiliation(s)
- Yanhui Zou
- School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, China
| | - Xiaoke Zeng
- School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, China
| | - Keyu Wang
- School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, China
| | - Jiaqi Ye
- School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, China
| | - Yeke Zhao
- School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, China
| | - Haoyang Jin
- School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, China
| | - Jiajun Zhang
- School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, China
| | - Gu Cheng
- School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, China.
| | - Xin Nie
- School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, China.
| |
Collapse
|
6
|
Taroc EZM, Amato E, Semon A, Dolphin N, Beck B, Belin S, Poitelon Y, Forni PE. Shared Lineage, Distinct Outcomes: Yap and Taz Loss Differentially Impact Schwann and Olfactory Ensheathing Cell Development Without Disrupting GnRH-1 Migration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.13.638196. [PMID: 40027653 PMCID: PMC11870449 DOI: 10.1101/2025.02.13.638196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Olfactory Ensheathing Cells (OECs) are glial cells originating from the neural crest, critical for bundling olfactory axons to the brain. Their development is crucial for the migration of Gonadotropin-Releasing Hormone-1 (GnRH-1) neurons, which are essential for puberty and fertility. OECs have garnered interest as potential therapeutic targets for central nervous system lesions, although their development is not fully understood. Our single-cell RNA sequencing of mouse embryonic nasal tissues suggests that OECs and Schwann cells share a common origin from Schwann cell precursors yet exhibit significant genetic differences. The transcription factors Yap and Taz have previously been shown to play a crucial role in Schwann cell development. We used Sox10 -Cre mice to conditionally ablate Yap and Taz in migrating the neural crest and its derivatives. Our analyses showed reduced Sox10+ glial cells along nerves in the nasal region, altered gene expression of SCs, melanocytes, and OECs, and a significant reduction in olfactory sensory neurons and vascularization in the vomeronasal organ. However, despite these changes, GnRH-1 neuronal migration remained unaffected. Our findings highlight the importance of the Hippo pathway in OEC development and how changes in cranial neural crest derivatives indirectly impact the development of olfactory epithelia.
Collapse
|
7
|
Medd MM, Yon JE, Dong H. RhoA/ROCK/GSK3β Signaling: A Keystone in Understanding Alzheimer's Disease. Curr Issues Mol Biol 2025; 47:124. [PMID: 39996845 PMCID: PMC11854763 DOI: 10.3390/cimb47020124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 02/10/2025] [Accepted: 02/12/2025] [Indexed: 02/26/2025] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease characterized by progressive cognitive decline and loss of neuronal integrity. Emerging evidence suggests that RhoA, Rho-associated coiled-coil kinase (ROCK), and their downstream effector molecule glycogen synthase 3β (GSK3β) interact within a complex signaling pathway (RhoA/ROCK/GSK3β) that plays a crucial role in the pathogenesis of AD. RhoA, a small GTPase, along with its downstream effector, ROCK, regulates various cellular processes, including actin cytoskeleton dynamics, apoptosis, and synaptic plasticity. GSK3β, a serine/threonine kinase, plays a key role in neuronal function and AD pathology, including the regulation of tau phosphorylation and amyloid-beta cleavage. Overactive GSK3β has been closely linked to tau hyperphosphorylation, neurodegeneration, and the progression of AD. Thus, GSK3β has been considered as a promising therapeutic target for treating AD and mitigating cognitive impairment. However, clinical trials of GSK3β in AD have faced considerable challenges due to the complexity of the specific neuronal inhibition of GSK3β. In this review, we summarize the literature regarding the relationship of RhoA/ROCK and GSK3β signaling pathways in AD pathogenesis. We further discuss recent findings of the sTREM2-transgelin-2 (TG2) axis as a potential mediator of this complex pathway and provide our review on a novel targeting strategy for AD.
Collapse
Affiliation(s)
- Milan M. Medd
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; (M.M.M.); (J.E.Y.)
| | - Jayden E. Yon
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; (M.M.M.); (J.E.Y.)
| | - Hongxin Dong
- Stephen M. Stahl Center for Psychiatric Neuroscience, Departments of Psychiatry & Behavioral Sciences and Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
8
|
Ma X, Wei X, Niu M, Zhang C, Peng Z, Liu W, Yan J, Su X, Lu S, Cui W, Sesaki H, Zong WX, Ni HM, Ding WX. Disruption of Mitochondrial Dynamics and Stasis Leads to Liver Injury and Tumorigenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.11.637688. [PMID: 39990472 PMCID: PMC11844448 DOI: 10.1101/2025.02.11.637688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Background & Aims Mitochondrial dysfunction has been implicated in aging and various cancer development. As highly dynamic organelles, mitochondria constantly undergo fission, mediated by dynamin-related protein 1 (DRP1, gene name Dnm1l ), and fusion, regulated by mitofusin 1 (MFN1), MFN2, and optic atrophy 1 (OPA1). However, whether and how dysregulation of mitochondria dynamics would be involved in liver pathogenesis and tumorigenesis is unknown. Methods Dnm1l Flox/Flox ( Dnm1l F/F ), Mfn1 F/F and Mfn2 F/F mice were crossed with albumin-Cre mice to generate liver-specific Dnm1l knockout (L- Dnm1l KO), L- Mfn1 KO, L- Mfn2 KO, L- Mfn1, Mfn2 double KO (DKO), and L- Mfn1, Mfn2, Dnm1l triple KO (TKO) mice. These mice were housed for various periods up to 18 months. Some mice also received hydrodynamic tail vein injections of a Sleeping Beauty transposon-transposase plasmid system with c-MYC and YAP . Blood and liver tissues were harvested for biochemical and histological analysis. Results L- Dnm1l KO mice had elevated serum alanine aminotransferase levels and increased hepatic fibrosis as early as two months of age. By 12 to 18 months, male L- Dnm1l KO mice developed spontaneous liver tumors, primarily hepatocellular adenomas. While female L- Dnm1l KO mice also developed liver tumors, their incidence was much lower. In contrast, neither L- Mfn1 KO nor L- Mfn2 KO mice had notable liver injury or tumorigenesis. However, a small portion of DKO mice developed tumors at 15-18 month-old. Increased DNA damage, senescence and compensatory proliferation were observed in L- Dnm1l KO mice but were less evident in L- Mfn1 KO, L- Mfn2 KO or DKO mice, indicating that mitochondrial fission is more important to maintain hepatocyte homeostasis and prevent liver tumorigenesis. Interestingly, further deletion of Mfn1 and Mfn2 in L- Dnm1l KO mice markedly abolished liver injury, fibrosis, and both spontaneous and oncogene-induced tumorigenesis. RNA sequencing and metabolomics analysis revealed significant activation of the cGAS-STING-interferon pathway and alterations in the tumor microenvironment pathways, alongside increased pyrimidine synthesis and metabolism in the livers of L- Dnm1l KO mice. Notably, the changes in gene expression and pyrimidine metabolism were considerably corrected in the TKO mice. Conclusions Mitochondrial dynamics and stability are essential for maintaining hepatic mitochondrial homeostasis and hepatocyte functions. Loss of hepatic DRP1 promotes liver tumorigenesis by increasing pyrimidine metabolism and activating the cGAS-STING-mediated innate immune response.
Collapse
|
9
|
Dunn J, Moore C, Kim NS, Gao T, Cheng Z, Jin P, Ming GL, Qian J, Su Y, Song H, Zhu H. Transcription Factor-Wide Association Studies to Identify Functional SNPs in Alzheimer's Disease. J Neurosci 2025; 45:e1800242024. [PMID: 39622643 PMCID: PMC11714347 DOI: 10.1523/jneurosci.1800-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/01/2024] [Accepted: 11/08/2024] [Indexed: 12/12/2024] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder with profound global impact. While genome-wide association studies (GWAS) have revealed genomic variants linked to AD, their translational impact has been limited due to challenges in interpreting the identified genetic associations. To address this challenge, we have devised a novel approach termed transcription factor-wide association studies (TF-WAS). By integrating the GWAS, expression quantitative trait loci, and transcriptome analyses, we selected 30 AD single nucleotide polymorphisms (SNPs) in noncoding regions that are likely to be functional. Using human transcription factor (TF) microarrays, we have identified 90 allele-specific TF interactions with 53 unique TFs. We then focused on several interactions involving SMAD4 and further validated them using electrophoretic mobility shift assay, luciferase, and chromatin immunoprecipitation on engineered genetic backgrounds (female cells). This approach holds promise for unraveling the intricacies of not just AD, but any complex disease with available GWAS data, providing insight into underlying molecular mechanisms and clues toward potential therapeutic targets.
Collapse
Affiliation(s)
- Jessica Dunn
- Department of Pharmacology, Johns Hopkins University, Baltimore, Maryland 21205
| | - Cedric Moore
- Department of Pharmacology, Johns Hopkins University, Baltimore, Maryland 21205
| | - Nam-Shik Kim
- Department of Neuroscience and Mahoney Institute for Neurosciences, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Tianshun Gao
- Department of Ophthalmology, Johns Hopkins University, Baltimore, Maryland 21205
| | - Zhiqiang Cheng
- Department of Pharmacology, Johns Hopkins University, Baltimore, Maryland 21205
| | - Peng Jin
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Guo-Li Ming
- Department of Neuroscience and Mahoney Institute for Neurosciences, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Jiang Qian
- Department of Ophthalmology, Johns Hopkins University, Baltimore, Maryland 21205
| | - Yijing Su
- Department of Neuroscience and Mahoney Institute for Neurosciences, University of Pennsylvania, Philadelphia, Pennsylvania 19104
- Department of Oral Medicine, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Hongjun Song
- Department of Neuroscience and Mahoney Institute for Neurosciences, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Heng Zhu
- Department of Pharmacology, Johns Hopkins University, Baltimore, Maryland 21205
| |
Collapse
|
10
|
He C, Song X, Zhu Z, Xiao Y, Chen J, Yao H, Xie R. Ghrelin may protect against vascular endothelial injury in Acute traumatic coagulopathy by mediating the RhoA/ROCK/MLC2 pathway. J Thromb Thrombolysis 2025; 58:84-95. [PMID: 39179950 PMCID: PMC11762449 DOI: 10.1007/s11239-024-03029-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/01/2024] [Indexed: 08/26/2024]
Abstract
Ghrelin exerts widespread effects in several diseases, but its role and mechanism in Acute Traumatic Coagulopathy (ATC) are largely unknown. The effect of ghrelin on cell proliferation was examined using three assays: 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT), Lactate Dehydrogenase (LDH), and flow cytometry. The barrier function of the endothelial cells was evaluated using the Trans-Endothelial Electrical Resistance (TEER) and the endothelial permeability assay. An ATC mouse model was established to evaluate the in vivo effects of ghrelin. The Ras homolog family member A (RhoA) overexpression plasmid or adenovirus was used to examine the molecular mechanism of ghrelin. Ghrelin enhanced Human Umbilical Vein Endothelial Cells (HUVEC) proliferation and endothelial cell barrier function and inhibited HUVEC permeability damage in vitro. Additionally, ghrelin decreased the activated Partial Thromboplastin Time (aPTT) and Prothrombin Time (PT) in mice blood samples in the ATC mouse model. Ghrelin also improved the pathological alterations in postcava. Mechanistically, ghrelin acts through the RhoA/ Rho-associated Coiled-coil Containing Kinases (ROCK)/ Myosin Light Chain 2 (MLC2) pathway. Furthermore, the protective effects of ghrelin, both in vitro and in vivo, were reversed by RhoA overexpression. Our findings demonstrate that ghrelin may reduce vascular endothelial cell damage and endothelial barrier dysfunction by blocking the RhoA pathway, suggesting that ghrelin may serve as a potential therapeutic target for ATC treatment.
Collapse
Affiliation(s)
- Chengjian He
- Affiliated Nanhua Hospital, University of South China, No. 336, Dongfeng South Road Zhuhui District, Hengyang City, Hunan Province, China
| | - Xiaojing Song
- Affiliated Nanhua Hospital, University of South China, No. 336, Dongfeng South Road Zhuhui District, Hengyang City, Hunan Province, China
| | - Zigui Zhu
- Affiliated Nanhua Hospital, University of South China, No. 336, Dongfeng South Road Zhuhui District, Hengyang City, Hunan Province, China
| | - Yan Xiao
- Affiliated Nanhua Hospital, University of South China, No. 336, Dongfeng South Road Zhuhui District, Hengyang City, Hunan Province, China
| | - Jiacheng Chen
- Affiliated Nanhua Hospital, University of South China, No. 336, Dongfeng South Road Zhuhui District, Hengyang City, Hunan Province, China
| | - Hongyi Yao
- Affiliated Nanhua Hospital, University of South China, No. 336, Dongfeng South Road Zhuhui District, Hengyang City, Hunan Province, China
| | - Rongjun Xie
- Affiliated Nanhua Hospital, University of South China, No. 336, Dongfeng South Road Zhuhui District, Hengyang City, Hunan Province, China.
| |
Collapse
|
11
|
Park G, Jin Z, Lu H, Du J. Clearing Amyloid-Beta by Astrocytes: The Role of Rho GTPases Signaling Pathways as Potential Therapeutic Targets. Brain Sci 2024; 14:1239. [PMID: 39766438 PMCID: PMC11674268 DOI: 10.3390/brainsci14121239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/05/2024] [Accepted: 12/07/2024] [Indexed: 01/11/2025] Open
Abstract
Astrocytes, vital support cells in the central nervous system (CNS), are crucial for maintaining neuronal health. In neurodegenerative diseases such as Alzheimer's disease (AD), astrocytes play a key role in clearing toxic amyloid-β (Aβ) peptides. Aβ, a potent neuroinflammatory trigger, stimulates astrocytes to release excessive glutamate and inflammatory factors, exacerbating neuronal dysfunction and death. Recent studies underscore the role of Rho GTPases-particularly RhoA, Rac1, and Cdc42-in regulating Aβ clearance and neuroinflammation. These key regulators of cytoskeletal dynamics and intracellular signaling pathways function independently through distinct mechanisms but may converge to modulate inflammatory responses. Their influence on astrocyte structure and function extends to regulating endothelin-converting enzyme (ECE) activity, which modulates vasoactive peptides such as endothelin-1 (ET-1). Through these processes, Rho GTPases impact vascular permeability and neuroinflammation, contributing to AD pathogenesis by affecting both Aβ clearance and cerebrovascular interactions. Understanding the interplay between Rho GTPases and the cerebrovascular system provides fresh insights into AD pathogenesis. Targeting Rho GTPase signaling pathways in astrocytes could offer a promising therapeutic approach to mitigate neuroinflammation, enhance Aβ clearance, and slow disease progression, ultimately improving cognitive outcomes in AD patients.
Collapse
Affiliation(s)
- Gyeongah Park
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA;
| | - Zhen Jin
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA;
| | - Hui Lu
- Department of Pharmacology and Physiology, School of Medicine, The George Washington University, Washington, DC 20037, USA;
| | - Jianyang Du
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA;
| |
Collapse
|
12
|
Xiao Y, Zhang Y, Yuan W, Wang C, Ge Y, Huang T, Gao J. Piezo2 Contributes to Traumatic Brain Injury by Activating the RhoA/ROCK1 Pathways. Mol Neurobiol 2024; 61:7419-7430. [PMID: 38388773 PMCID: PMC11415480 DOI: 10.1007/s12035-024-04058-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/16/2024] [Indexed: 02/24/2024]
Abstract
Traumatic brain injury (TBI) can lead to short-term and long-term physical and cognitive impairments, which have significant impacts on patients, families, and society. Currently, treatment outcomes for this disease are often unsatisfactory, due at least in part to the fact that the molecular mechanisms underlying the development of TBI are largely unknown. Here, we observed significant upregulation of Piezo2, a key mechanosensitive ion channel protein, in the injured brain tissue of a mouse model of TBI induced by controlled cortical impact. Pharmacological inhibition and genetic knockdown of Piezo2 after TBI attenuated neuronal death, brain edema, brain tissue necrosis, and deficits in neural function and cognitive function. Mechanistically, the increase in Piezo2 expression contributed to TBI-induced neuronal death and subsequent production of TNF-α and IL-1β, likely through activation of the RhoA/ROCK1 pathways in the central nervous system. Our findings suggest that Piezo2 is a key player in and a potential therapeutic target for TBI.
Collapse
Affiliation(s)
- Yinggang Xiao
- Department of Anesthesiology, Northern Jiangsu People's Hospital Affiliated to Yangzhou University/Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, China
- Yangzhou Key Laboratory of Anaesthesiology, Yangzhou, Jiangsu, China
| | - Yang Zhang
- Department of Anesthesiology, Northern Jiangsu People's Hospital Affiliated to Yangzhou University/Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, China
- Yangzhou Key Laboratory of Anaesthesiology, Yangzhou, Jiangsu, China
| | - Wenjuan Yuan
- Department of Anesthesiology, Northern Jiangsu People's Hospital Affiliated to Yangzhou University/Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, China
- Yangzhou Key Laboratory of Anaesthesiology, Yangzhou, Jiangsu, China
| | - Cunjin Wang
- Department of Anesthesiology, Northern Jiangsu People's Hospital Affiliated to Yangzhou University/Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, China
- Yangzhou Key Laboratory of Anaesthesiology, Yangzhou, Jiangsu, China
| | - Yali Ge
- Department of Anesthesiology, Northern Jiangsu People's Hospital Affiliated to Yangzhou University/Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, China
- Yangzhou Key Laboratory of Anaesthesiology, Yangzhou, Jiangsu, China
| | - Tianfeng Huang
- Department of Anesthesiology, Northern Jiangsu People's Hospital Affiliated to Yangzhou University/Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, China.
- Yangzhou Key Laboratory of Anaesthesiology, Yangzhou, Jiangsu, China.
| | - Ju Gao
- Department of Anesthesiology, Northern Jiangsu People's Hospital Affiliated to Yangzhou University/Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, China.
- Yangzhou Key Laboratory of Anaesthesiology, Yangzhou, Jiangsu, China.
| |
Collapse
|
13
|
Zhu L, Ma L, Du X, Jiang Y, Gao J, Fan Z, Zheng H, Zhu J, Zhang G. M2 Microglia-Derived Exosomes Protect Against Glutamate-Induced HT22 Cell Injury via Exosomal miR-124-3p. Mol Neurobiol 2024; 61:7845-7861. [PMID: 38433165 DOI: 10.1007/s12035-024-04075-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 02/26/2024] [Indexed: 03/05/2024]
Abstract
As one of the most serious complications of sepsis, sepsis-associated encephalopathy has not been effectively treated or prevented. Exosomes, as a new therapeutic method, play a protective role in neurodegenerative diseases, stroke and traumatic brain injury in recent years. The purpose of this study was to investigate the role of exosomes in glutamate (Glu)-induced neuronal injury, and to explore its mechanism, providing new ideas for the treatment of sepsis-associated encephalopathy. The neuron damage model induced by Glu was established, and its metabolomics was analyzed and identified. BV2 cells were induced to differentiate into M1 and M2 subtypes. After the exosomes from both M1-BV2 cells and M2-BV2 cells were collected, exosome morphological identification was performed by transmission electron microscopy and exosome-specific markers were also detected. These exosomes were then cocultured with HT22 cells. CCK-8 method and LDH kit were used to detect cell viability and toxicity. Cell apoptosis, mitochondrial membrane potential and ROS content were respectively detected by flow cytometry, JC-1 assay and DCFH-DA assay. MiR-124-3p expression level was detected by qRT-PCR and Western blot. Bioinformatics analysis and luciferase reporter assay predicted and verified the relationship between miR-124-3p and ROCK1 or ROCK2. Through metabolomics, 81 different metabolites were found, including fructose, GABA, 2, 4-diaminobutyric acid, etc. The enrichment analysis of differential metabolites showed that they were mainly enriched in glutathione metabolism, glycine and serine metabolism, and urea cycle. M2 microglia-derived exosomes could reduce the apoptosis, decrease the accumulation of ROS, restore the mitochondrial membrane potential and the anti-oxidative stress ability in HT22 cells induced by Glu. It was also found that the protective effect of miR-124-3p mimic on neurons was comparable to that of M2-EXOs. Additionally, M2-EXOs might carry miR-124-3p to target ROCK1 and ROCK2 in neurons, affecting ROCK/PTEN/AKT/mTOR signaling pathway, and then reducing Glu-induced neuronal apoptosis. M2 microglia-derived exosomes may protect HT22 cells against Glu-induced injury by transferring miR-124-3p into HT22 cells, with ROCK being a target gene for miR-124-3p.
Collapse
Affiliation(s)
- Lan Zhu
- Department of Emergency and Critical Care Medicine, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou, Jiangsu, 215004, People's Republic of China
| | - Limei Ma
- Department of Emergency and Critical Care Medicine, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou, Jiangsu, 215004, People's Republic of China
| | - Xin Du
- Department of Emergency and Critical Care Medicine, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou, Jiangsu, 215004, People's Republic of China
| | - Yuhao Jiang
- Department of Emergency and Critical Care Medicine, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou, Jiangsu, 215004, People's Republic of China
| | - Jiake Gao
- Department of Emergency and Critical Care Medicine, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou, Jiangsu, 215004, People's Republic of China
| | - Zihao Fan
- Department of Emergency and Critical Care Medicine, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou, Jiangsu, 215004, People's Republic of China
| | - Hengheng Zheng
- Department of Emergency and Critical Care Medicine, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou, Jiangsu, 215004, People's Republic of China
| | - Jianjun Zhu
- Department of Emergency and Critical Care Medicine, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou, Jiangsu, 215004, People's Republic of China.
| | - Gaofeng Zhang
- Department of Critical Care Medicine, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, No.6 Huanghe Road, Changshu, Jiangsu, 215500, People's Republic of China.
| |
Collapse
|
14
|
Liu Y, Zhao C, Zhang R, Pang Y, Li L, Feng S. Progression of mesenchymal stem cell regulation on imbalanced microenvironment after spinal cord injury. Stem Cell Res Ther 2024; 15:343. [PMID: 39354635 PMCID: PMC11446099 DOI: 10.1186/s13287-024-03914-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 09/01/2024] [Indexed: 10/03/2024] Open
Abstract
Spinal cord injury (SCI) results in significant neural damage and inhibition of axonal regeneration due to an imbalanced microenvironment. Extensive evidence supports the efficacy of mesenchymal stem cell (MSC) transplantation as a therapeutic approach for SCI. This review aims to present an overview of MSC regulation on the imbalanced microenvironment following SCI, specifically focusing on inflammation, neurotrophy and axonal regeneration. The application, limitations and future prospects of MSC transplantation are discussed as well. Generally, a comprehensive perspective is provided for the clinical translation of MSC transplantation for SCI.
Collapse
Affiliation(s)
- Yifan Liu
- Department of Orthopaedics, Qilu Hospital of Shandong University, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, 107 West Wenhua Road, Lixia District, Jinan, 250012, Shandong, China
- Institute of Medical Sciences, The Second Hospital of Shandong University, Shandong University Center for Orthopaedics, Cheeloo College of Medicine, Shandong University, Jinan, 250033, Shandong, China
| | - Chenxi Zhao
- Department of Orthopaedics, Qilu Hospital of Shandong University, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, 107 West Wenhua Road, Lixia District, Jinan, 250012, Shandong, China
| | - Rong Zhang
- Department of Orthopaedics, Qilu Hospital of Shandong University, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, 107 West Wenhua Road, Lixia District, Jinan, 250012, Shandong, China
| | - Yilin Pang
- Department of Orthopaedics, Qilu Hospital of Shandong University, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, 107 West Wenhua Road, Lixia District, Jinan, 250012, Shandong, China
- Department of Orthopedics, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Linquan Li
- Department of Orthopaedics, Qilu Hospital of Shandong University, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, 107 West Wenhua Road, Lixia District, Jinan, 250012, Shandong, China
| | - Shiqing Feng
- Department of Orthopaedics, Qilu Hospital of Shandong University, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, 107 West Wenhua Road, Lixia District, Jinan, 250012, Shandong, China.
- Institute of Medical Sciences, The Second Hospital of Shandong University, Shandong University Center for Orthopaedics, Cheeloo College of Medicine, Shandong University, Jinan, 250033, Shandong, China.
- Department of Orthopedics, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China.
| |
Collapse
|
15
|
Hammer MF, Bahramnejad E, Watkins JC, Ronaldson PT. Candesartan restores blood-brain barrier dysfunction, mitigates aberrant gene expression, and extends lifespan in a knockin mouse model of epileptogenesis. Clin Sci (Lond) 2024; 138:1089-1110. [PMID: 39092536 DOI: 10.1042/cs20240771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/01/2024] [Accepted: 08/02/2024] [Indexed: 08/04/2024]
Abstract
Blockade of Angiotensin type 1 receptor (AT1R) has potential therapeutic utility in the treatment of numerous detrimental consequences of epileptogenesis, including oxidative stress, neuroinflammation, and blood-brain barrier (BBB) dysfunction. We have recently shown that many of these pathological processes play a critical role in seizure onset and propagation in the Scn8a-N1768D mouse model. Here we investigate the efficacy and potential mechanism(s) of action of candesartan (CND), an FDA-approved angiotensin receptor blocker (ARB) indicated for hypertension, in improving outcomes in this model of pediatric epilepsy. We compared length of lifespan, seizure frequency, and BBB permeability in juvenile (D/D) and adult (D/+) mice treated with CND at times after seizure onset. We performed RNAseq on hippocampal tissue to quantify differences in genome-wide patterns of transcript abundance and inferred beneficial and detrimental effects of canonical pathways identified by enrichment methods in untreated and treated mice. Our results demonstrate that treatment with CND gives rise to increased survival, longer periods of seizure freedom, and diminished BBB permeability. CND treatment also partially reversed or 'normalized' disease-induced genome-wide gene expression profiles associated with inhibition of NF-κB, TNFα, IL-6, and TGF-β signaling in juvenile and adult mice. Pathway analyses reveal that efficacy of CND is due to its known dual mechanism of action as both an AT1R antagonist and a PPARγ agonist. The robust effectiveness of CND across ages, sexes and mouse strains is a positive indication for its translation to humans and its suitability of use for clinical trials in children with SCN8A epilepsy.
Collapse
Affiliation(s)
- Michael F Hammer
- BIO5 Institute, University of Arizona, Tucson, AZ, U.S.A
- Department of Neurology, University of Arizona, Tucson, AZ, U.S.A
| | - Erfan Bahramnejad
- BIO5 Institute, University of Arizona, Tucson, AZ, U.S.A
- Department of Pharmacology, University of Arizona, Tucson, AZ, U.S.A
| | - Joseph C Watkins
- Department of Mathematics, University of Arizona, Tucson, AZ, U.S.A
| | | |
Collapse
|
16
|
Sun H, Gao Y, Ma X, Deng Y, Bi L, Li L. Mechanism and application of feedback loops formed by mechanotransduction and histone modifications. Genes Dis 2024; 11:101061. [PMID: 39071110 PMCID: PMC11282412 DOI: 10.1016/j.gendis.2023.06.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 03/24/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2024] Open
Abstract
Mechanical stimulation is the key physical factor in cell environment. Mechanotransduction acts as a fundamental regulator of cell behavior, regulating cell proliferation, differentiation, apoptosis, and exhibiting specific signature alterations during the pathological process. As research continues, the role of epigenetic science in mechanotransduction is attracting attention. However, the molecular mechanism of the synergistic effect between mechanotransduction and epigenetics in physiological and pathological processes has not been clarified. We focus on how histone modifications, as important components of epigenetics, are coordinated with multiple signaling pathways to control cell fate and disease progression. Specifically, we propose that histone modifications can form regulatory feedback loops with signaling pathways, that is, histone modifications can not only serve as downstream regulators of signaling pathways for target gene transcription but also provide feedback to regulate signaling pathways. Mechanotransduction and epigenetic changes could be potential markers and therapeutic targets in clinical practice.
Collapse
Affiliation(s)
- Han Sun
- Department of Hematology and Oncology, China-Japan Union Hospital, Jilin University, Changchun, Jilin 130021, China
| | - Yafang Gao
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, China
| | - Xinyu Ma
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, China
| | - Yizhou Deng
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, China
| | - Lintao Bi
- Department of Hematology and Oncology, China-Japan Union Hospital, Jilin University, Changchun, Jilin 130021, China
| | - Lisha Li
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, China
| |
Collapse
|
17
|
Helder M, Pandeya N, Seviiri M, Olsen CM, Whiteman DC, Law MH. No evidence that retinol is protective for skin cancer. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.08.27.24312670. [PMID: 39252920 PMCID: PMC11383465 DOI: 10.1101/2024.08.27.24312670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
With over 1.5 million new cases annually, skin cancers are the most commonly diagnosed group of cancers worldwide. Among these, melanoma and keratinocyte cancers (KC), comprising squamous cell carcinoma (SCC) and basal cell carcinoma (BCC), are predominant. Retinol, a vitamin A derivative, is essential in the regulation of growth and differentiation of epidermal cells. Moreover, retinol exhibits antioxidant properties, protecting the skin against ultra-violet (UV) radiation induced oxidative damage. Existing research on the impact of retinol on melanoma, SCC and BCC development shows mixed results. Several dietary intake studies have suggested that higher retinol levels reduce skin cancer risk, however, others have failed to find this association. We used two-sample Mendelian randomization (MR) to explore if there is a causal relationship between retinol and the risk of developing melanoma, SCC or BCC. Genetically predicted circulating retinol levels were obtained from a genome wide association study (GWAS) meta-analysis of the INTERVAL (N=11,132) and METSIM (N=6,136) cohorts. Melanoma (30,134 cases and 375,188 controls), SCC (10,557 cases and 537,850 controls) and BCC (36,479 cases and 540,185 controls) risks were derived from published GWAS meta-analyses. We conducted two MR approaches. In the first MR we used a single SNP (rs10882283) that is associated with the levels of Retinol Binding Protein 4 (RBP4) as an instrument variable (IV) for circulating retinol levels. In the second MR we used all independent genetic variants that were strongly associated (P < 5 × 10-8) with retinol levels as IVs. Odds ratios (OR) for skin cancer were calculated for a one standard deviation (SD) increase in genetically predicted retinol levels. The single IV approach revealed that retinol levels were not significantly associated with risk of melanoma (OR = 1.04 [95% confidence interval 0.83, 1.31], P = 0.72), SCC (OR = 1.15 [0.87, 1.51], P = 0.32) or BCC (OR = 1.06 [0.90, 1.23], P = 0.50). Similar null results were observed with the multiple IV approach for melanoma (OR = 1.03 [0.95, 1.11], P = 0.54), SCC (OR = 1.01 [0.91, 1.13], P = 0.83), and BCC (OR = 1.04 [0.96, 1.12], P = 0.38). In conclusion, we found no evidence that circulating retinol levels were causally associated with the development of melanoma, SCC and BCC.
Collapse
Affiliation(s)
- Marloes Helder
- Division of Human Nutrition and Health, Wageningen University, the Netherlands
- Statistical Genetics, QIMR Berghofer Medical Research Institute
| | - Nirmala Pandeya
- Cancer Control, QIMR Berghofer Medical Research Institute
- Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Mathias Seviiri
- Statistical Genetics, QIMR Berghofer Medical Research Institute
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
- School of Biomedical Sciences, University of Queensland, Brisbane, Australia
| | - Catherine M. Olsen
- Cancer Control, QIMR Berghofer Medical Research Institute
- Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - David C. Whiteman
- Cancer Control, QIMR Berghofer Medical Research Institute
- Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Matthew H. Law
- Statistical Genetics, QIMR Berghofer Medical Research Institute
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
- School of Biomedical Sciences, University of Queensland, Brisbane, Australia
| |
Collapse
|
18
|
Agrawal P, Olgun G, Singh A, Gopalan V, Hannenhalli S. Characterizing the role of exosomal miRNAs in metastasis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.20.608894. [PMID: 39372783 PMCID: PMC11451750 DOI: 10.1101/2024.08.20.608894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Background Exosomal microRNAs (exomiRs), transported via exosomes, play a pivotal role in intercellular communication. In cancer, exomiRs influence tumor progression by regulating key cellular processes such as proliferation, angiogenesis, and metastasis. Their role in mediating communication between cancer cells and the tumor microenvironment highlights their significance as potential diagnostic and therapeutic targets. Methodology In this study, we aimed to characterize the role of exomiRs in influencing the pre-metastatic niche (PMN). Across 7 tumor types, including 4 cell lines and three tumors, we extracted high confidence exomiRs (Log FC >= 2 in exosomes relative to control) and their targets (experimentally identified and targeted by at least 2 exomiRs). Subsequently, we identified enriched pathways and selected the top 100 high-confidence exomiR targets based on the frequency of their appearance in the enriched pathways. These top 100 targets were consistently used throughout the analysis. Results Cancer cell line and tumor derived ExomiRs have significantly higher GC content relative to genomic background. Pathway enriched among the top exomiR targets included general cancer-associated processes such as "wound healing" and "regulation of epithelial cell proliferation", as well as cancer-specific processes, such as "regulation of angiogenesis in kidney" (KIRC), "ossification" in lung (LUAD), and "positive regulation of cytokine production" in pancreatic cancer (PAAD). Similarly, 'Pathways in cancer' and 'MicroRNAs in cancer' ranked among the top 10 enriched KEGG pathways in all cancer types. ExomiR targets were not only enriched for cancer-specific tumor suppressor genes (TSG) but are also downregulated in pre-metastatic niche formed in lungs compared to normal lung. Motif analysis shows high similarity among motifs identified from exomiRs across cancer types. Our analysis recapitulates exomiRs associated with M2 macrophage differentiation and chemoresistance such as miR-21 and miR-222-3p, regulating signaling pathways such as PTEN/PI3/Akt, NF-κB, etc. Cox regression indicated that exomiR targets are significantly associated with overall survival of patients in TCGA. Lastly, a Support Vector Machine (SVM) model using exomiR target gene expression classified responders and non-responders to neoadjuvant chemotherapy with an AUROC of 0.96 (in LUAD), higher than other previously reported gene signatures. Conclusion Our study characterizes the pivotal role of exomiRs in shaping the PMN in diverse cancers, underscoring their diagnostic and therapeutic potential.
Collapse
Affiliation(s)
- Piyush Agrawal
- Department of Medical Research, SRM Medical College Hospital & Research Centre, SRMIST, Kattankulathur, Chennai, Tamil Nadu, India
| | - Gulden Olgun
- Department of Computer Engineering, Hacettepe University, 06800, Ankara, Turkey
| | - Arashdeep Singh
- Cancer Data Science Laboratory, National Cancer Institute, Bethesda, MD, USA
| | - Vishaka Gopalan
- Cancer Data Science Laboratory, National Cancer Institute, Bethesda, MD, USA
| | - Sridhar Hannenhalli
- Cancer Data Science Laboratory, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|
19
|
Doody NE, Smith NJ, Akam EC, Askew GN, Kwok JCF, Ichiyama RM. Differential expression of genes in the RhoA/ROCK pathway in the hippocampus and cortex following intermittent hypoxia and high-intensity interval training. J Neurophysiol 2024; 132:531-543. [PMID: 38985935 PMCID: PMC11427053 DOI: 10.1152/jn.00422.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 06/13/2024] [Accepted: 07/04/2024] [Indexed: 07/12/2024] Open
Abstract
Structural neuroplasticity such as neurite extension and dendritic spine dynamics is enhanced by brain-derived neurotrophic factor (BDNF) and impaired by types of inhibitory molecules that induce growth cone collapse and actin depolymerization, for example, myelin-associated inhibitors, chondroitin sulfate proteoglycans, and negative guidance molecules. These inhibitory molecules can activate RhoA/rho-associated coiled-coil containing protein kinase (ROCK) signaling (known to restrict structural plasticity). Intermittent hypoxia (IH) and high-intensity interval training (HIIT) are known to upregulate BDNF that is associated with improvements in learning and memory and greater functional recovery following neural insults. We investigated whether the RhoA/ROCK signaling pathway is also modulated by IH and HIIT in the hippocampus, cortex, and lumbar spinal cord of male Wistar rats. The gene expression of 25 RhoA/ROCK signaling pathway components was determined following IH, HIIT, or IH combined with HIIT (30 min/day, 5 days/wk, 6 wk). IH included 10 3-min bouts that alternated between hypoxia (15% O2) and normoxia. HIIT included 10 3-min bouts alternating between treadmill speeds of 50 cm·s-1 and 15 cm·s-1. In the hippocampus, IH and HIIT significantly downregulated Acan and NgR2 mRNA that are involved in the inhibition of neuroplasticity. However, IH and IH + HIIT significantly upregulated Lingo-1 and NgR3 in the cortex. This is the first time IH and HIIT have been linked to the modulation of plasticity-inhibiting pathways. These results provide a fundamental step toward elucidating the interplay between the neurotrophic and inhibitory mechanisms involved in experience-driven neural plasticity that will aid in optimizing physiological interventions for the treatment of cognitive decline or neurorehabilitation.NEW & NOTEWORTHY Intermittent hypoxia (IH) and high-intensity interval training (HIIT) enhance neuroplasticity and upregulate neurotrophic factors in the central nervous system (CNS). We provide evidence that IH and IH + HIIT also have the capacity to regulate genes involved in the RhoA/ROCK signaling pathway that is known to restrict structural plasticity in the CNS. This provides a new mechanistic insight into how these interventions may enhance hippocampal-related plasticity and facilitate learning, memory, and neuroregeneration.
Collapse
Affiliation(s)
- Natalie E Doody
- School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom
- School of Psychology and Neuroscience, University of St Andrews, St Andrews, United Kingdom
| | - Nicole J Smith
- School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden
| | - Elizabeth C Akam
- School of Sport, Exercise, and Health Sciences, Loughborough University, Loughborough, United Kingdom
| | - Graham N Askew
- School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom
| | - Jessica C F Kwok
- School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom
- Institute of Experimental Medicine, The Czech Academy of Sciences, Prague 4, Czech Republic
| | - Ronaldo M Ichiyama
- School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
20
|
Li J, Li X, Li X, Liang Z, Wang Z, Shahzad KA, Xu M, Tan F. Local Delivery of Dual Stem Cell-Derived Exosomes Using an Electrospun Nanofibrous Platform for the Treatment of Traumatic Brain Injury. ACS APPLIED MATERIALS & INTERFACES 2024; 16:37497-37512. [PMID: 38980910 DOI: 10.1021/acsami.4c05004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Traumatic brain injury poses serious physical, psychosocial, and economic threats. Although systemic administration of stem cell-derived exosomes has recently been proven to be a promising modality for traumatic brain injury treatment, they come with distinct drawbacks. Luckily, various biomaterials have been developed to assist local delivery of exosomes to improve the targeting of organs, minimize nonspecific accumulation in vital organs, and ensure the protection and release of exosomes. In this study, we developed an electrospun nanofibrous scaffold to provide sustained delivery of dual exosomes derived from mesenchymal stem cells and neural stem cells for traumatic brain injury treatment. The electrospun nanofibrous scaffold employed a functionalized layer of polydopamine on electrospun poly(ε-caprolactone) nanofibers, thereby enhancing the efficient incorporation of exosomes through a synergistic interplay of adhesive forces, hydrogen bonding, and electrostatic interactions. First, the mesenchymal stem cell-derived exosomes and the neural stem cell-derived exosomes were found to modulate microglial polarization toward M2 phenotype, play an important role in the modulation of inflammatory responses, and augment axonal outgrowth and neural repair in PC12 cells. Second, the nanofibrous scaffold loaded with dual stem cell-derived exosomes (Duo-Exo@NF) accelerated functional recovery in a murine traumatic brain injury model, as it mitigated the presence of reactive astrocytes and microglia while elevating the levels of growth associated protein-43 and doublecortin. Additionally, multiomics analysis provided mechanistic insights into how dual stem cell-derived exosomes exerted its therapeutic effects. These findings collectively suggest that our novel Duo-Exo@NF system could function as an effective treatment modality for traumatic brain injury using sustained local delivery of dual exosomes from stem cells.
Collapse
Affiliation(s)
- Jiaojiao Li
- Department of ORL-HNS, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China
| | - Xuran Li
- Department of ORL-HNS, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China
- Plasma Medicine and Surgical Implants Center, Tongji University, Shanghai 200070, China
| | - Xiangyu Li
- Center for Translational Neurodegeneration and Regenerative Therapy, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai 200065, China
| | - Zhanping Liang
- Center for Translational Neurodegeneration and Regenerative Therapy, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai 200065, China
| | - Zhao Wang
- Department of ORL-HNS, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China
| | - Khawar Ali Shahzad
- Department of ORL-HNS, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China
- Plasma Medicine and Surgical Implants Center, Tongji University, Shanghai 200070, China
| | - Maoxiang Xu
- Department of ORL-HNS, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China
- Plasma Medicine and Surgical Implants Center, Tongji University, Shanghai 200070, China
| | - Fei Tan
- Department of ORL-HNS, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China
- Plasma Medicine and Surgical Implants Center, Tongji University, Shanghai 200070, China
- The Royal College of Surgeons in Ireland, Dublin D02YN77, Ireland
- The Royal College of Surgeons of England, London WC2A3PE, U.K
| |
Collapse
|
21
|
Wang H, Fang F, Jing X, Xu D, Ren Z, Dou S, Xie Y, Zhuang Y. Augmentation of functional recovery via ROCK/PI3K/AKT pathway by Fasudil Hydrochloride in a rat sciatic nerve transection model. J Orthop Translat 2024; 47:74-86. [PMID: 39007038 PMCID: PMC11245988 DOI: 10.1016/j.jot.2024.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/18/2024] [Accepted: 06/03/2024] [Indexed: 07/16/2024] Open
Abstract
Backgrounds The functional recovery after peripheral nerve injury remains unsatisfactory. This study aims to perform a comprehensive evaluation of the efficacy of Fasudil Hydrochloride at treating the sciatic nerve transection injury in rats and the mechanism involved. Materials and methods In animal experiments, 75 Sprague Dawley rats that underwent transection and repair of the right sciatic nerve were divided into a control, Fasudil, and Fas + LY group, receiving daily intraperitoneal injection of saline, Fasudil Hydrochloride (10 mg/kg), and Fasudil Hydrochloride plus LY294002 (5 mg/kg), respectively. At day 3 after surgery, the expression of ROCK2, p-PI3K, and p-AKT in L4-5 DRG and the lumbosacral enlargement was determined using Western blotting. At day 7 and 14, axon density in the distal stump was evaluated with immunostaining using the anti-Neurofilament-200 antibody. At day 30, retrograde tracing by injecting Fluoro-gold in the distal stump was performed. Three months after surgery, remyelination was analyzed with immostaining using the anti-MPZ antibody and the transmission electron microscope; Moreover, Motion-Evoked Potential, and recovery of sensorimotor functions was evaluated with a neuromonitor, Footprint, Hot Plate and Von Frey Filaments, respectively. Moveover, the Gastrocnemius muscles were weighed, and then underwent H&E staining, and staining of the neuromuscular junction using α-Bungarotoxin to evaluate the extent of atrophy and degeneration of the endplates in the Gastrocnemius. In vitro, spinal motor neurons (SMNs) and dorsal root ganglia (DRG) were cultured to examine the impact of Fasudil Hydrochloride and LY294002 on the axon outgrowth. Results Three days after injury, the expression of ROCK2 increased significantly (P<0.01), and Fasudil application significantly increased the expression of p-PI3K and p-AKT in L4-6 DRG and the lumbosacral enlargement (P < 0.05). At day 7 and 14 after surgery, a higher axon density could be observed in the Fasudil group(P < 0.05). At day 30 after surgery, a larger number of motor and sensory neurons absorbing Fluoro-gold could be observed in the Fasudil group (P < 0.01) Three months after surgery, a greater thickness of myelin sheath could be observed in the Fasudil group (P < 0.05). The electrophysiological test showed that a larger amplitude of motion-evoked potential could be triggered in the Fasudil group (P < 0.01). Behavioral tests showed that a higher sciatic function index and a lower threshold for reacting to heat and mechanical stimuli could be measured in the Fasudil group. (P < 0.01). The wet weight ratio of the Gastrocnemius muscles and the area of the cross section of its myofibrils were greater in the Fasudil group (P < 0.01), which also demonstrated a higer ratio of axon-endplate connection and a larger size of endplates (P < 0.05). And there were no significant differences for the abovementioned parameters between the control and Fas + LY groups (P>0.05). In vitro studies showed that Fasudil could significantly promote axon growth in DRG and SMNs, and increase the expression of p-PI3K and p-AKT, which could be abolished by LY294002 (P < 0.05). Conclusions Fasudil can augment axon regeneration and remyelination, and functional recovery after sciatic nerve injury by activating the PI3K/AKT pathway. The translational potential of this article The translation potential of this article is that we report for the first time that Fasudil Hydrochloride has a remarkable efficacy at improving axon regeneration and remyelination following a transection injury of the right sciatic nerve in rats through the ROCK/PI3K/AKT pathway, which has a translational potential to be used clinically to treat peripheral nerve injury.
Collapse
Affiliation(s)
- Hai Wang
- Department of Orthopedics, First Affiliated Hospital, Fujian Medical University, Fuzhou, 350004, Fujian, China
- Department of Orthopedics, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Fang Fang
- Department of pharmacology, Fujian medical university, Fuzhou, 350108, China
| | - Xing Jing
- Fujian Key Laboratory of brain aging and neurodegenerative diseases, institute of clinical applied anatomy, the school of basic medical sciences, Fujian medical university, Fuzhou, 350108, Fujian, China
| | - Dan Xu
- Fujian Key Laboratory of brain aging and neurodegenerative diseases, institute of clinical applied anatomy, the school of basic medical sciences, Fujian medical university, Fuzhou, 350108, Fujian, China
| | - Zhenyu Ren
- Department of Orthopedics, First Affiliated Hospital, Fujian Medical University, Fuzhou, 350004, Fujian, China
- Department of Orthopedics, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Shuang Dou
- Fujian Key Laboratory of brain aging and neurodegenerative diseases, institute of clinical applied anatomy, the school of basic medical sciences, Fujian medical university, Fuzhou, 350108, Fujian, China
| | - Yun Xie
- Department of Orthopedics, First Affiliated Hospital, Fujian Medical University, Fuzhou, 350004, Fujian, China
- Department of Orthopedics, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Yuehong Zhuang
- Fujian Key Laboratory of brain aging and neurodegenerative diseases, institute of clinical applied anatomy, the school of basic medical sciences, Fujian medical university, Fuzhou, 350108, Fujian, China
| |
Collapse
|
22
|
El-Gazar AA, El-Emam SZ, M El-Sayyad S, El-Mancy SS, Fayez SM, Sheta NM, Al-Mokaddem AK, Ragab GM. Pegylated polymeric micelles of boswellic acid-selenium mitigates repetitive mild traumatic brain injury: Regulation of miR-155 and miR-146a/BDNF/ Klotho/Foxo3a cue. Int Immunopharmacol 2024; 134:112118. [PMID: 38705029 DOI: 10.1016/j.intimp.2024.112118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 04/07/2024] [Accepted: 04/17/2024] [Indexed: 05/07/2024]
Abstract
This study aims to explore the protective machinery of pegylated polymeric micelles of boswellic acid-selenium (PMBS) against secondary neuronal damage triggered by mild repetitive traumatic brain injury (RTBI). After PMBS characterization in terms of particle size, size distribution, zeta potential, and transmission electronic microscopy, the selected formula was used to investigate its potency against experimental RTBI. Five groups of rats were used; group 1 (control) and the other four groups were subjected to RTBI. Groups 2 was RTBI positive control, while 3, 4, and 5 received boswellic acid (BSA), selenium (SEL), and PMBS, respectively. The open-field behavioral test was used for behavioral assessment. Subsequently, brain tissues were utilized for hematoxylin and eosin staining, Nissl staining, Western blotting, and ELISA in addition to evaluating microRNA expression (miR-155 and miR-146a). The behavioral changes, oxidative stress, and neuroinflammation triggered by RTBI were all improved by PMBS. Moreover, PMBS mitigated excessive glutamate-induced excitotoxicity and the dysregulation in miR-155 and miR-146a expression. Besides, connexin43 (Cx43) expression as well as klotho and brain-derived neurotrophic factor (BDNF) were upregulated with diminished neuronal cell death and apoptosis because of reduced Forkhead Box class O3a(Foxo3a) expression in the PMBS-treated group. The current study has provided evidence of the benefits produced by incorporating BSA and SEL in PEGylated polymeric micelles formula. PMBS is a promising therapy for RTBI. Its beneficial effects are attributed to the manipulation of many pathways, including the regulation of miR-155 and miR-146a expression, as well as the BDNF /Klotho/Foxo3a signaling pathway.
Collapse
Affiliation(s)
- Amira A El-Gazar
- Pharmacology and Toxicology Department, Faculty of Pharmacy, October 6 University, Giza, Egypt.
| | - Soad Z El-Emam
- Pharmacology and Toxicology Department, Faculty of Pharmacy, October 6 University, Giza, Egypt
| | - Shorouk M El-Sayyad
- Pharmacology and Toxicology Department, Faculty of Pharmacy, October 6 University, Giza, Egypt
| | - Shereen S El-Mancy
- Pharmaceutics and industrial pharmacy department, Faculty of Pharmacy, October 6 University, Giza, Egypt
| | - Sahar M Fayez
- Pharmaceutics and industrial pharmacy department, Faculty of Pharmacy, October 6 University, Giza, Egypt
| | - Nermin M Sheta
- Pharmaceutics and industrial pharmacy department, Faculty of Pharmacy, October 6 University, Giza, Egypt
| | - Asmaa K Al-Mokaddem
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Ghada M Ragab
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Misr University for Science and Technology, Giza 12585, Egypt
| |
Collapse
|
23
|
Gathings A, Zaman V, Banik NL, Haque A. Insights into Calpain Activation and Rho-ROCK Signaling in Parkinson's Disease and Aging. Biomedicines 2024; 12:1074. [PMID: 38791036 PMCID: PMC11117523 DOI: 10.3390/biomedicines12051074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/26/2024] [Accepted: 05/02/2024] [Indexed: 05/26/2024] Open
Abstract
Parkinson's disease (PD), a progressive neurodegenerative disease, has no cure, and current therapies are not effective at halting disease progression. The disease affects mid-brain dopaminergic neurons and, subsequently, the spinal cord, contributing to many debilitating symptoms associated with PD. The GTP-binding protein, Rho, plays a significant role in the cellular pathology of PD. The downstream effector of Rho, Rho-associated kinase (ROCK), plays multiple functions, including microglial activation and induction of inflammatory responses. Activated microglia have been implicated in the pathology of many neurodegenerative diseases, including PD, that initiate inflammatory responses, leading to neuron death. Calpain expression and activity is increased following glial activation, which triggers the Rho-ROCK pathway and induces inflammatory T cell activation and migration as well as mediates toxic α-synuclein (α-syn) aggregation and neuron death, indicating a pivotal role for calpain in the inflammatory and degenerative processes in PD. Increased calpain activity and Rho-ROCK activation may represent a new mechanism for increased oxidative damage in aging. This review will summarize calpain activation and the role of the Rho-ROCK pathway in oxidative stress and α-syn aggregation, their influence on the neurodegenerative process in PD and aging, and possible strategies and research directions for therapeutic intervention.
Collapse
Affiliation(s)
- Amy Gathings
- Department of Microbiology and Immunology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA; (A.G.); (N.L.B.)
- Department of Neurosurgery, Medical University of South Carolina, 96 Jonathan Lucas Street, Charleston, SC 29425, USA;
| | - Vandana Zaman
- Department of Neurosurgery, Medical University of South Carolina, 96 Jonathan Lucas Street, Charleston, SC 29425, USA;
- Ralph H. Johnson Veterans Administration Medical Center, 109 Bee Street, Charleston, SC 29401, USA
| | - Narendra L. Banik
- Department of Microbiology and Immunology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA; (A.G.); (N.L.B.)
- Department of Neurosurgery, Medical University of South Carolina, 96 Jonathan Lucas Street, Charleston, SC 29425, USA;
- Ralph H. Johnson Veterans Administration Medical Center, 109 Bee Street, Charleston, SC 29401, USA
| | - Azizul Haque
- Department of Microbiology and Immunology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA; (A.G.); (N.L.B.)
- Department of Neurosurgery, Medical University of South Carolina, 96 Jonathan Lucas Street, Charleston, SC 29425, USA;
- Ralph H. Johnson Veterans Administration Medical Center, 109 Bee Street, Charleston, SC 29401, USA
| |
Collapse
|
24
|
Zhao Y, Zhou YG, Chen JF. Targeting the adenosine A 2A receptor for neuroprotection and cognitive improvement in traumatic brain injury and Parkinson's disease. Chin J Traumatol 2024; 27:125-133. [PMID: 37679245 PMCID: PMC11138351 DOI: 10.1016/j.cjtee.2023.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 07/25/2023] [Accepted: 08/16/2023] [Indexed: 09/09/2023] Open
Abstract
Adenosine exerts its dual functions of homeostasis and neuromodulation in the brain by acting at mainly 2 G-protein coupled receptors, called A1 and A2A receptors. The adenosine A2A receptor (A2AR) antagonists have been clinically pursued for the last 2 decades, leading to final approval of the istradefylline, an A2AR antagonist, for the treatment of OFF-Parkinson's disease (PD) patients. The approval paves the way to develop novel therapeutic methods for A2AR antagonists to address 2 major unmet medical needs in PD and traumatic brain injury (TBI), namely neuroprotection or improving cognition. In this review, we first consider the evidence for aberrantly increased adenosine signaling in PD and TBI and the sufficiency of the increased A2AR signaling to trigger neurotoxicity and cognitive impairment. We further discuss the increasing preclinical data on the reversal of cognitive deficits in PD and TBI by A2AR antagonists through control of degenerative proteins and synaptotoxicity, and on protection against TBI and PD pathologies by A2AR antagonists through control of neuroinflammation. Moreover, we provide the supporting evidence from multiple human prospective epidemiological studies which revealed an inverse relation between the consumption of caffeine and the risk of developing PD and cognitive decline in aging population and Alzheimer's disease patients. Collectively, the convergence of clinical, epidemiological and experimental evidence supports the validity of A2AR as a new therapeutic target and facilitates the design of A2AR antagonists in clinical trials for disease-modifying and cognitive benefit in PD and TBI patients.
Collapse
Affiliation(s)
- Yan Zhao
- Department of Army Occupational Disease, State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Yuan-Guo Zhou
- Department of Army Occupational Disease, State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Jiang-Fan Chen
- The Molecular Neuropharmacology Laboratory and the Eye-Brain Research Center, The State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, 325035, Zhejiang Province, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, 325035, Zhejiang Province, China.
| |
Collapse
|
25
|
Zheng W, Borja M, Dorman L, Liu J, Zhou A, Seng A, Arjyal R, Sunshine S, Nalyvayko A, Pisco A, Rosenberg O, Neff N, Zha BS. How Mycobacterium tuberculosis builds a home: Single-cell analysis reveals M. tuberculosis ESX-1-mediated accumulation of anti-inflammatory macrophages in infected mouse lungs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.20.590421. [PMID: 38712150 PMCID: PMC11071417 DOI: 10.1101/2024.04.20.590421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Mycobacterium tuberculosis (MTB) infects and replicates in lung mononuclear phagocytes (MNPs) with astounding ability to evade elimination. ESX-1, a type VII secretion system, acts as a virulence determinant that contributes to MTB's ability to survive within MNPs, but its effect on MNP recruitment and/or differentiation remains unknown. Here, using single-cell RNA sequencing, we studied the role of ESX-1 in MNP heterogeneity and response in mice and murine bone marrow-derived macrophages (BMDM). We found that ESX-1 is required for MTB to recruit diverse MNP subsets with high MTB burden. Further, MTB induces an anti-inflammatory signature in MNPs and BMDM in an ESX-1 dependent manner. Similarly, spatial transcriptomics revealed an upregulation of anti-inflammatory signals in MTB lesions, where monocyte-derived macrophages concentrate near MTB-infected cells. Together, our findings suggest that MTB ESX-1 mediates the recruitment and differentiation of anti-inflammatory MNPs, which MTB can infect and manipulate for survival.
Collapse
|
26
|
Pinoșanu EA, Pîrșcoveanu D, Albu CV, Burada E, Pîrvu A, Surugiu R, Sandu RE, Serb AF. Rhoa/ROCK, mTOR and Secretome-Based Treatments for Ischemic Stroke: New Perspectives. Curr Issues Mol Biol 2024; 46:3484-3501. [PMID: 38666949 PMCID: PMC11049286 DOI: 10.3390/cimb46040219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/11/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Ischemic stroke triggers a complex cascade of cellular and molecular events leading to neuronal damage and tissue injury. This review explores the potential therapeutic avenues targeting cellular signaling pathways implicated in stroke pathophysiology. Specifically, it focuses on the articles that highlight the roles of RhoA/ROCK and mTOR signaling pathways in ischemic brain injury and their therapeutic implications. The RhoA/ROCK pathway modulates various cellular processes, including cytoskeletal dynamics and inflammation, while mTOR signaling regulates cell growth, proliferation, and autophagy. Preclinical studies have demonstrated the neuroprotective effects of targeting these pathways in stroke models, offering insights into potential treatment strategies. However, challenges such as off-target effects and the need for tissue-specific targeting remain. Furthermore, emerging evidence suggests the therapeutic potential of MSC secretome in stroke treatment, highlighting the importance of exploring alternative approaches. Future research directions include elucidating the precise mechanisms of action, optimizing treatment protocols, and translating preclinical findings into clinical practice for improved stroke outcomes.
Collapse
Affiliation(s)
- Elena Anca Pinoșanu
- Department of Neurology, University of Medicine and Pharmacy of Craiova, St. Petru Rares, No. 2-4, 200433 Craiova, Romania; (E.A.P.); (D.P.); (C.V.A.)
- Doctoral School, University of Medicine and Pharmacy of Craiova, St. Petru Rares, No. 2-4, 200433 Craiova, Romania
| | - Denisa Pîrșcoveanu
- Department of Neurology, University of Medicine and Pharmacy of Craiova, St. Petru Rares, No. 2-4, 200433 Craiova, Romania; (E.A.P.); (D.P.); (C.V.A.)
| | - Carmen Valeria Albu
- Department of Neurology, University of Medicine and Pharmacy of Craiova, St. Petru Rares, No. 2-4, 200433 Craiova, Romania; (E.A.P.); (D.P.); (C.V.A.)
| | - Emilia Burada
- Department of Physiology, University of Medicine and Pharmacy of Craiova, St. Petru Rares, No. 2-4, 200433 Craiova, Romania;
| | - Andrei Pîrvu
- Dolj County Regional Centre of Medical Genetics, Clinical Emergency County Hospital Craiova, St. Tabaci, No. 1, 200642 Craiova, Romania;
| | - Roxana Surugiu
- Department of Biochemistry, University of Medicine and Pharmacy of Craiova, St. Petru Rares, No. 2-4, 200433 Craiova, Romania;
| | - Raluca Elena Sandu
- Department of Neurology, University of Medicine and Pharmacy of Craiova, St. Petru Rares, No. 2-4, 200433 Craiova, Romania; (E.A.P.); (D.P.); (C.V.A.)
- Department of Biochemistry, University of Medicine and Pharmacy of Craiova, St. Petru Rares, No. 2-4, 200433 Craiova, Romania;
| | - Alina Florina Serb
- Department of Biochemistry and Pharmacology, Biochemistry Discipline, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania;
| |
Collapse
|
27
|
Lo Presti V, Meringa A, Dunnebach E, van Velzen A, Moreira AV, Stam RW, Kotecha RS, Krippner-Heidenreich A, Heidenreich OT, Plantinga M, Cornel A, Sebestyen Z, Kuball J, van Til NP, Nierkens S. Combining CRISPR-Cas9 and TCR exchange to generate a safe and efficient cord blood-derived T cell product for pediatric relapsed AML. J Immunother Cancer 2024; 12:e008174. [PMID: 38580329 PMCID: PMC11002379 DOI: 10.1136/jitc-2023-008174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2024] [Indexed: 04/07/2024] Open
Abstract
BACKGROUND Hematopoietic cell transplantation (HCT) is an effective treatment for pediatric patients with high-risk, refractory, or relapsed acute myeloid leukemia (AML). However, a large proportion of transplanted patients eventually die due to relapse. To improve overall survival, we propose a combined strategy based on cord blood (CB)-HCT with the application of AML-specific T cell receptor (TCR)-engineered T cell therapy derived from the same CB graft. METHODS We produced CB-CD8+ T cells expressing a recombinant TCR (rTCR) against Wilms tumor 1 (WT1) while lacking endogenous TCR (eTCR) expression to avoid mispairing and competition. CRISPR-Cas9 multiplexing was used to target the constant region of the endogenous TCRα (TRAC) and TCRβ (TRBC) chains. Next, an optimized method for lentiviral transduction was used to introduce recombinant WT1-TCR. The cytotoxic and migration capacity of the product was evaluated in coculture assays for both cell lines and primary pediatric AML blasts. RESULTS The gene editing and transduction procedures achieved high efficiency, with up to 95% of cells lacking eTCR and over 70% of T cells expressing rWT1-TCR. WT1-TCR-engineered T cells lacking the expression of their eTCR (eTCR-/- WT1-TCR) showed increased cell surface expression of the rTCR and production of cytotoxic cytokines, such as granzyme A and B, perforin, interferon-γ (IFNγ), and tumor necrosis factor-α (TNFα), on antigen recognition when compared with WT1-TCR-engineered T cells still expressing their eTCR (eTCR+/+ WT1-TCR). CRISPR-Cas9 editing did not affect immunophenotypic characteristics or T cell activation and did not induce increased expression of inhibitory molecules. eTCR-/- WT1-TCR CD8+ CB-T cells showed effective migratory and killing capacity in cocultures with neoplastic cell lines and primary AML blasts, but did not show toxicity toward healthy cells. CONCLUSIONS In summary, we show the feasibility of developing a potent CB-derived CD8+ T cell product targeting WT1, providing an option for post-transplant allogeneic immune cell therapy or as an off-the-shelf product, to prevent relapse and improve the clinical outcome of children with AML.
Collapse
Affiliation(s)
- Vania Lo Presti
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Angelo Meringa
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Ester Dunnebach
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Alice van Velzen
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | | | - Ronald W Stam
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Rishi S Kotecha
- Department of Clinical Haematology, Oncology, Blood and Marrow Transplantation, Perth Children's Hospital, Perth, Western Australia, Australia
- University of Western Australia, Perth, Western Australia, Australia
| | | | | | - Maud Plantinga
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Annelisa Cornel
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Zsolt Sebestyen
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jurgen Kuball
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Niek P van Til
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Child Neurology, Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam and Amsterdam Neuroscience, Cellular & Molecular Mechanisms, Amsterdam, The Netherlands
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - S Nierkens
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
28
|
Primak A, Bozov K, Rubina K, Dzhauari S, Neyfeld E, Illarionova M, Semina E, Sheleg D, Tkachuk V, Karagyaur M. Morphogenetic theory of mental and cognitive disorders: the role of neurotrophic and guidance molecules. Front Mol Neurosci 2024; 17:1361764. [PMID: 38646100 PMCID: PMC11027769 DOI: 10.3389/fnmol.2024.1361764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 03/04/2024] [Indexed: 04/23/2024] Open
Abstract
Mental illness and cognitive disorders represent a serious problem for the modern society. Many studies indicate that mental disorders are polygenic and that impaired brain development may lay the ground for their manifestation. Neural tissue development is a complex and multistage process that involves a large number of distant and contact molecules. In this review, we have considered the key steps of brain morphogenesis, and the major molecule families involved in these process. The review provides many indications of the important contribution of the brain development process and correct functioning of certain genes to human mental health. To our knowledge, this comprehensive review is one of the first in this field. We suppose that this review may be useful to novice researchers and clinicians wishing to navigate the field.
Collapse
Affiliation(s)
- Alexandra Primak
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Kirill Bozov
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Kseniya Rubina
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Stalik Dzhauari
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Elena Neyfeld
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
- Federal State Budgetary Educational Institution of the Higher Education “A.I. Yevdokimov Moscow State University of Medicine and Dentistry” of the Ministry of Healthcare of the Russian Federation, Moscow, Russia
| | - Maria Illarionova
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Ekaterina Semina
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Dmitriy Sheleg
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
- Federal State Budgetary Educational Institution of the Higher Education “A.I. Yevdokimov Moscow State University of Medicine and Dentistry” of the Ministry of Healthcare of the Russian Federation, Moscow, Russia
| | - Vsevolod Tkachuk
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, Moscow, Russia
| | - Maxim Karagyaur
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
29
|
Saikia BB, Bhowmick S, Malat A, Preetha Rani MR, Thaha A, Muneer PMA. ICAM-1 Deletion Using CRISPR/Cas9 Protects the Brain from Traumatic Brain Injury-Induced Inflammatory Leukocyte Adhesion and Transmigration Cascades by Attenuating the Paxillin/FAK-Dependent Rho GTPase Pathway. J Neurosci 2024; 44:e1742232024. [PMID: 38326036 PMCID: PMC10941244 DOI: 10.1523/jneurosci.1742-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/09/2024] [Accepted: 01/27/2024] [Indexed: 02/09/2024] Open
Abstract
Intercellular adhesion molecule-1 (ICAM-1) is identified as an initiator of neuroinflammatory responses that lead to neurodegeneration and cognitive and sensory-motor deficits in several pathophysiological conditions including traumatic brain injury (TBI). However, the underlying mechanisms of ICAM-1-mediated leukocyte adhesion and transmigration and its link with neuroinflammation and functional deficits following TBI remain elusive. Here, we hypothesize that blocking of ICAM-1 attenuates the transmigration of leukocytes to the brain and promotes functional recovery after TBI. The experimental TBI was induced in vivo by fluid percussion injury (25 psi) in male and female wild-type and ICAM-1-/- mice and in vitro by stretch injury (3 psi) in human brain microvascular endothelial cells (hBMVECs). We treated hBMVECs and animals with ICAM-1 CRISPR/Cas9 and conducted several biochemical analyses and demonstrated that CRISPR/Cas9-mediated ICAM-1 deletion mitigates blood-brain barrier (BBB) damage and leukocyte transmigration to the brain by attenuating the paxillin/focal adhesion kinase (FAK)-dependent Rho GTPase pathway. For analyzing functional outcomes, we used a cohort of behavioral tests that included sensorimotor functions, psychological stress analyses, and spatial memory and learning following TBI. In conclusion, this study could establish the significance of deletion or blocking of ICAM-1 in transforming into a novel preventive approach against the pathophysiology of TBI.
Collapse
Affiliation(s)
- Bibhuti Ballav Saikia
- Laboratory of CNS injury and Molecular Therapy, JFK Neuroscience Institute, Hackensack Meridian Health JFK University Medical Center, Edison, New Jersey 08820
| | - Saurav Bhowmick
- Laboratory of CNS injury and Molecular Therapy, JFK Neuroscience Institute, Hackensack Meridian Health JFK University Medical Center, Edison, New Jersey 08820
| | - Anitha Malat
- Laboratory of CNS injury and Molecular Therapy, JFK Neuroscience Institute, Hackensack Meridian Health JFK University Medical Center, Edison, New Jersey 08820
| | - M R Preetha Rani
- Laboratory of CNS injury and Molecular Therapy, JFK Neuroscience Institute, Hackensack Meridian Health JFK University Medical Center, Edison, New Jersey 08820
| | - Almas Thaha
- Laboratory of CNS injury and Molecular Therapy, JFK Neuroscience Institute, Hackensack Meridian Health JFK University Medical Center, Edison, New Jersey 08820
| | - P M Abdul Muneer
- Laboratory of CNS injury and Molecular Therapy, JFK Neuroscience Institute, Hackensack Meridian Health JFK University Medical Center, Edison, New Jersey 08820
- Department of Neurology, Hackensack Meridian School of Medicine, Nutley, New Jersey 07110
| |
Collapse
|
30
|
Liu C, Guo S, Liu R, Guo M, Wang Q, Chai Z, Xiao B, Ma C. Fasudil-modified macrophages reduce inflammation and regulate the immune response in experimental autoimmune encephalomyelitis. Neural Regen Res 2024; 19:671-679. [PMID: 37721300 PMCID: PMC10581551 DOI: 10.4103/1673-5374.379050] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/10/2023] [Accepted: 05/22/2023] [Indexed: 09/19/2023] Open
Abstract
Multiple sclerosis is characterized by demyelination and neuronal loss caused by inflammatory cell activation and infiltration into the central nervous system. Macrophage polarization plays an important role in the pathogenesis of experimental autoimmune encephalomyelitis, a traditional experimental model of multiple sclerosis. This study investigated the effect of Fasudil on macrophages and examined the therapeutic potential of Fasudil-modified macrophages in experimental autoimmune encephalomyelitis. We found that Fasudil induced the conversion of macrophages from the pro-inflammatory M1 type to the anti-inflammatory M2 type, as shown by reduced expression of inducible nitric oxide synthase/nitric oxide, interleukin-12, and CD16/32 and increased expression of arginase-1, interleukin-10, CD14, and CD206, which was linked to inhibition of Rho kinase activity, decreased expression of toll-like receptors, nuclear factor-κB, and components of the mitogen-activated protein kinase signaling pathway, and generation of the pro-inflammatory cytokines tumor necrosis factor-α, interleukin-1β, and interleukin-6. Crucially, Fasudil-modified macrophages effectively decreased the impact of experimental autoimmune encephalomyelitis, resulting in later onset of disease, lower symptom scores, less weight loss, and reduced demyelination compared with unmodified macrophages. In addition, Fasudil-modified macrophages decreased interleukin-17 expression on CD4+ T cells and CD16/32, inducible nitric oxide synthase, and interleukin-12 expression on F4/80+ macrophages, as well as increasing interleukin-10 expression on CD4+ T cells and arginase-1, CD206, and interleukin-10 expression on F4/80+ macrophages, which improved immune regulation and reduced inflammation. These findings suggest that Fasudil-modified macrophages may help treat experimental autoimmune encephalomyelitis by inducing M2 macrophage polarization and inhibiting the inflammatory response, thereby providing new insight into cell immunotherapy for multiple sclerosis.
Collapse
Affiliation(s)
- Chunyun Liu
- Institute of Brain Science, Shanxi Datong University, Datong, Shanxi Province, China
| | - Shangde Guo
- Institute of Brain Science, Shanxi Datong University, Datong, Shanxi Province, China
| | - Rong Liu
- Institute of Brain Science, Shanxi Datong University, Datong, Shanxi Province, China
| | - Minfang Guo
- Institute of Brain Science, Shanxi Datong University, Datong, Shanxi Province, China
| | - Qing Wang
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine/Research Center of Neurobiology, Shanxi University of Chinese Medicine, Taiyuan, Shanxi Province, China
| | - Zhi Chai
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine/Research Center of Neurobiology, Shanxi University of Chinese Medicine, Taiyuan, Shanxi Province, China
| | - Baoguo Xiao
- Institute of Neurology, Huashan Hospital, Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | - Cungen Ma
- Institute of Brain Science, Shanxi Datong University, Datong, Shanxi Province, China
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine/Research Center of Neurobiology, Shanxi University of Chinese Medicine, Taiyuan, Shanxi Province, China
| |
Collapse
|
31
|
Haspel N, Jang H, Nussinov R. Allosteric Activation of RhoA Complexed with p115-RhoGEF Deciphered by Conformational Dynamics. J Chem Inf Model 2024; 64:862-873. [PMID: 38215280 DOI: 10.1021/acs.jcim.3c01412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2024]
Abstract
The Ras homologue family member A (RhoA) is a member of the Rho family, a subgroup of the Ras superfamily. RhoA interacts with the 115 kDa guanine nucleotide exchange factor (p115-RhoGEF), which assists in activation and binding with downstream effectors. Here, we use molecular dynamics (MD) simulations and essential dynamics analysis of the inactive RhoA-GDP and active RhoA-GTP, when bound to p115-RhoGEF to decipher the mechanism of RhoA activation at the structural level. We observe that inactive RhoA-GDP maintains its position near the catalytic site on the Dbl homology (DH) domain of p115-RhoGEF through the interaction of its Switch I region with the DH domain. We further show that the active RhoA-GTP is engaged in more interactions with the p115-RhoGEF membrane-bound Pleckstrin homology (PH) domain as compared to RhoA-GDP. We hypothesize that the role of the interactions between the active RhoA-GTP and the PH domain is to help release it from the DH domain upon activation. Our results support this premise, and our simulations uncover the beginning of this process and provide structural details. They also point to allosteric communication pathways that take part in RhoA activation to promote and strengthen the interaction between the active RhoA-GTP and the PH domain. Allosteric regulation also occurs among other members of the Rho superfamily. Collectively, we suggest that in the activation process, the role of the RhoA-GTP interaction with the PH domain is to release RhoA-GTP from the DH domain after activation, making it available to downstream effectors.
Collapse
Affiliation(s)
- Nurit Haspel
- Department of Computer Science, University of Massachusetts Boston, Boston, Massachusetts 02125, United States
| | - Hyunbum Jang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Cancer Innovation Laboratory, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Cancer Innovation Laboratory, National Cancer Institute, Frederick, Maryland 21702, United States
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
32
|
Liu Y, Zhao Y, Liao X, Zhou S, Guo X, Yang L, Lv B. PD-1 deficiency aggravates spinal cord injury by regulating the reprogramming of NG2 glia and activating the NgR/RhoA/ROCK signaling pathway. Cell Signal 2024; 114:110978. [PMID: 37972801 DOI: 10.1016/j.cellsig.2023.110978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 10/24/2023] [Accepted: 11/13/2023] [Indexed: 11/19/2023]
Abstract
Spinal cord injury (SCI) is a devastating disorder and a leading cause of disability in adults worldwide. Multiple studies have reported the upregulation of programmed cell death 1 (PD-1) following SCI. However, the underlying mechanism of PD-1 deficiency in SCI is not well established. Therefore, we aimed to investigate the role and potential mechanism of PD-1 in SCI pathogenesis. PD-1 Knockout (KO) SCI mouse model was established, and PD-1 expression was evaluated in tissue samples by western blot assay. We then used a series of function gain-and-loss assays to determine the role of PD-1 in SCI pathogenesis. Moreover, mechanistic assays were performed to explore the association between PD-1, neuron-glia antigen-2 (NG2) glia cells, and miR-23b-5p and then investigated the involved signaling pathway. Results illustrated that PD-1 deficiency enhanced the inflammatory response, neuron loss, and functional impairment induced by SCI. We found that NG2 glia depletion aggravated inflammation, reduced neural survival, and suppressed locomotor recovery in murine SCI model. Further analysis indicated that NG2+ cells were increased in the spinal cord of SCI mice, and PD-1 deficiency increased the number of NG2+ cells by activating the Nogo receptor/ras homolog family member A/Rho kinase (NgR/RhoA/ROCK) signaling. Mechanistically, miR-23b-5p was identified as the negative regulator of PD-1 in NG2 glia. MiR-23b-5p deficiency reduced the expression of inflammatory cytokines, enhanced neural survival, and promoted locomotor recovery in SCI mice, which was counteracted by PD-1 deficiency. In conclusion, PD-1 deficiency exacerbates SCI in vivo by regulating reprogramming of NG2 glia and activating the NgR/RhoA/ROCK signaling.
Collapse
Affiliation(s)
- Yang Liu
- Spine Center, Department of Orthopaedics, Shanghai Changzheng Hospital, Second Affiliated Hospital of Naval Medical University, No.415 Fengyang Road, Shanghai, 200003, China
| | - Yin Zhao
- Spine Center, Department of Orthopaedics, Shanghai Changzheng Hospital, Second Affiliated Hospital of Naval Medical University, No.415 Fengyang Road, Shanghai, 200003, China
| | - Xinyuan Liao
- Spine Center, Department of Orthopaedics, Shanghai Changzheng Hospital, Second Affiliated Hospital of Naval Medical University, No.415 Fengyang Road, Shanghai, 200003, China
| | - Shengyuan Zhou
- Spine Center, Department of Orthopaedics, Shanghai Changzheng Hospital, Second Affiliated Hospital of Naval Medical University, No.415 Fengyang Road, Shanghai, 200003, China
| | - Xiang Guo
- Spine Center, Department of Orthopaedics, Shanghai Changzheng Hospital, Second Affiliated Hospital of Naval Medical University, No.415 Fengyang Road, Shanghai, 200003, China
| | - Lili Yang
- Spine Center, Department of Orthopaedics, Shanghai Changzheng Hospital, Second Affiliated Hospital of Naval Medical University, No.415 Fengyang Road, Shanghai, 200003, China
| | - Bitao Lv
- Spine Center, Department of Orthopaedics, Shanghai Changzheng Hospital, Second Affiliated Hospital of Naval Medical University, No.415 Fengyang Road, Shanghai, 200003, China.
| |
Collapse
|
33
|
Soltani A, Chugaeva UY, Ramadan MF, Saleh EAM, Al-Hasnawi SS, Romero-Parra RM, Alsaalamy A, Mustafa YF, Zamanian MY, Golmohammadi M. A narrative review of the effects of dexamethasone on traumatic brain injury in clinical and animal studies: focusing on inflammation. Inflammopharmacology 2023; 31:2955-2971. [PMID: 37843641 DOI: 10.1007/s10787-023-01361-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 09/26/2023] [Indexed: 10/17/2023]
Abstract
Traumatic brain injury (TBI) is a type of brain injury resulting from a sudden physical force to the head. TBI can range from mild, such as a concussion, to severe, which might result in long-term complications or even death. The initial impact or primary injury to the brain is followed by neuroinflammation, excitotoxicity, and oxidative stress, which are the hallmarks of the secondary injury phase, that can further damage the brain tissue. Dexamethasone (DXM) has neuroprotective effects. It reduces neuroinflammation, a critical factor in secondary injury-associated neuronal damage. DXM can also suppress the microglia activation and infiltrated macrophages, which are responsible for producing pro-inflammatory cytokines that contribute to neuroinflammation. Considering the outcomes of this research, some of the effects of DXM on TBI include: (1) DXM-loaded hydrogels reduce apoptosis, neuroinflammation, and lesion volume and improves neuronal cell survival and motor performance, (2) DXM treatment elevates the levels of Ndufs2, Gria3, MAOB, and Ndufv2 in the hippocampus following TBI, (3) DXM decreases the quantity of circulating endothelial progenitor cells, (4) DXM reduces the expression of IL1, (5) DXM suppresses the infiltration of RhoA + cells into primary lesions of TBI and (6) DXM treatment led to an increase in fractional anisotropy values and a decrease in apparent diffusion coefficient values, indicating improved white matter integrity. According to the study, the findings show that DXM treatment has neuroprotective effects in TBI. This indicates that DXM is a promising therapeutic approach to treating TBI.
Collapse
Affiliation(s)
- Afsaneh Soltani
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- USERN Office, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Uliana Y Chugaeva
- Department of Pediatric, Preventive Dentistry and Orthodontics, Institute of Dentistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | | | - Ebraheem Abdu Musad Saleh
- Department of Chemistry, Prince Sattam Bin Abdulaziz University, College of Arts and Science, 11991, Wadi Al-Dawasir, Saudi Arabia
| | | | | | - Ali Alsaalamy
- College of Technical Engineering, Imam Ja'afar Al-Sadiq University, Al-Muthanna, 66002, Iraq
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, 41001, Iraq
| | - Mohammad Yasin Zamanian
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, 6718773654, Iran.
- Department of Pharmacology and Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, 6718773654, Iran.
- Department of Physiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, 6718773654, Iran.
| | - Maryam Golmohammadi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
34
|
Soh JEC, Shimizu A, Sato A, Ogita H. Novel cardiovascular protective effects of RhoA signaling and its therapeutic implications. Biochem Pharmacol 2023; 218:115899. [PMID: 37907138 DOI: 10.1016/j.bcp.2023.115899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/24/2023] [Accepted: 10/26/2023] [Indexed: 11/02/2023]
Abstract
Ras homolog gene family member A (RhoA) belongs to the Rho GTPase superfamily, which was first studied in cancers as one of the essential regulators controlling cellular function. RhoA has long attracted attention as a key molecule involved in cell signaling and gene transcription, through which it affects cellular processes. A series of studies have demonstrated that RhoA plays crucial roles under both physiological states and pathological conditions in cardiovascular diseases. RhoA has been identified as an important regulator in cardiac remodeling by regulating actin stress fiber dynamics and cytoskeleton formation. However, its underlying mechanisms remain poorly understood, preventing definitive conclusions being drawn about its protective role in the cardiovascular system. In this review, we outline the characteristics of RhoA and its related signaling molecules, and present an overview of RhoA classical function and the corresponding cellular responses of RhoA under physiological and pathological conditions. Overall, we provide an update on the novel signaling under RhoA in the cardiovascular system and its potential clinical and therapeutic targets in cardiovascular medicine.
Collapse
Affiliation(s)
- Joanne Ern Chi Soh
- Division of Molecular Medical Biochemistry, Department of Biochemistry and Molecular Biology, Shiga University of Medical Science, Otsu, Japan
| | - Akio Shimizu
- Division of Molecular Medical Biochemistry, Department of Biochemistry and Molecular Biology, Shiga University of Medical Science, Otsu, Japan
| | - Akira Sato
- Division of Molecular Medical Biochemistry, Department of Biochemistry and Molecular Biology, Shiga University of Medical Science, Otsu, Japan
| | - Hisakazu Ogita
- Division of Molecular Medical Biochemistry, Department of Biochemistry and Molecular Biology, Shiga University of Medical Science, Otsu, Japan.
| |
Collapse
|
35
|
Mohammed Butt A, Rupareliya V, Hariharan A, Kumar H. Building a pathway to recovery: Targeting ECM remodeling in CNS injuries. Brain Res 2023; 1819:148533. [PMID: 37586675 DOI: 10.1016/j.brainres.2023.148533] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/07/2023] [Accepted: 08/09/2023] [Indexed: 08/18/2023]
Abstract
Extracellular matrix (ECM) is a complex and dynamic network of proteoglycans, proteins, and other macromolecules that surrounds cells in tissues. The ECM provides structural support to cells and plays a critical role in regulating various cellular functions. ECM remodeling is a dynamic process involving the breakdown and reconstruction of the ECM. This process occurs naturally during tissue growth, wound healing, and tissue repair. However, in the context of central nervous system (CNS) injuries, dysregulated ECM remodeling can lead to the formation of fibrotic and glial scars. CNS injuries encompass various traumatic events, including concussions and fractures. Following CNS trauma, the formation of glial and fibrotic scars becomes prominent. Glial scars primarily consist of reactive astrocytes, while fibrotic scars are characterized by an abundance of ECM proteins. ECM remodeling plays a pivotal and tightly regulated role in the development of these scars after spinal cord and brain injuries. Various factors like ECM components, ECM remodeling enzymes, cell surface receptors of ECM molecules, and downstream pathways of ECM molecules are responsible for the remodeling of the ECM. The aim of this review article is to explore the changes in ECM during normal physiological conditions and following CNS injuries. Additionally, we discuss various approaches that target various factors responsible for ECM remodeling, with a focus on promoting axon regeneration and functional recovery after CNS injuries. By targeting ECM remodeling, it may be possible to enhance axonal regeneration and facilitate functional recovery after CNS injuries.
Collapse
Affiliation(s)
- Ayub Mohammed Butt
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India
| | - Vimal Rupareliya
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India
| | - A Hariharan
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India
| | - Hemant Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India.
| |
Collapse
|
36
|
Magalhaes YT, Forti FL. ROCK inhibition reduces the sensitivity of mutant p53 glioblastoma to genotoxic stress through a Rac1-driven ROS production. Int J Biochem Cell Biol 2023; 164:106474. [PMID: 37778694 DOI: 10.1016/j.biocel.2023.106474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 09/16/2023] [Accepted: 09/21/2023] [Indexed: 10/03/2023]
Abstract
Resistance to radio and chemotherapy in Glioblastoma (GBM) is correlated with its malignancy, invasiveness, and aggressiveness. The Rho GTPase pathway plays important roles in these processes, but its involvement in the GBM response to genotoxic treatments remains unsolved. Inhibition of this signaling pathway has emerged as a promising approach for the treatment of CNS injuries and diseases, proving to be a strong candidate for therapeutic approaches. To this end, Rho-associated kinases (ROCK), classic downstream effectors of small Rho GTPases, were targeted for pharmacological inhibition using Y-27632 in GBM cells, expressing the wild-type or mutated p53 gene, and exposed to genotoxic stress by gamma ionizing radiation (IR) or cisplatin (PT). The use of the ROCK inhibitor (ROCKi) had opposite effects in these cells: in cells expressing wild-type p53, ROCKi reduced survival and DNA repair capacity (reduction of γH2AX foci and accumulation of strand breaks) after stress promoted by IR or PT; in cells expressing the mutant p53 protein, both treatments promoted longer survival and more efficient DNA repair, responses further enhanced by ROCKi. The target DNA repair mechanisms of ROCK inhibition were, respectively, an attenuation of NHEJ and NER pathways in wild-type p53 cells, and a stimulation of HR and NER pathways in mutant p53 cells. These effects were accompanied by the formation of reactive oxygen species (ROS) induced by genotoxic stress only in mutant p53 cells but potentiated by ROCKi and reversed by p53 knockdown. N-acetyl-L-cysteine (NAC) treatment or Rac1 knockdown completely eliminated ROCKi's p53-dependent actions, since ROCK inhibition specifically elevated Rac-GTP levels only in mutant p53 cells. Combining IR or PT and ROCKi treatments broadens our understanding of the sensitivity and resistance of, respectively, GBM expressing wild-type or mutant p53 to genotoxic agents. Our proposal may be a determining factor in improving the efficiency and assertiveness of CNS antitumor therapies based on ROCK inhibitors. SIGNIFICANCE: The use of ROCK inhibitors in association with radio or chemotherapy modulates GBM resistance and sensitivity depending on the p53 activity, suggesting the potential value of this protein as therapeutic target for tumor pre-sensitization strategies.
Collapse
Affiliation(s)
- Yuli Thamires Magalhaes
- Laboratory of Signaling in Biomolecular Systems, Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Fabio Luis Forti
- Laboratory of Signaling in Biomolecular Systems, Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
37
|
Jiang R, Zhou Y, Gao Q, Han L, Hong Z. ZC3H4 governs epithelial cell migration through ROCK/p-PYK2/p-MLC2 pathway in silica-induced pulmonary fibrosis. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 104:104301. [PMID: 37866415 DOI: 10.1016/j.etap.2023.104301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 10/03/2023] [Accepted: 10/18/2023] [Indexed: 10/24/2023]
Abstract
BACKGROUND Increased epithelial migration capacity is a key step accompanying epithelial-mesenchymal transition (EMT). Our lab has described that ZC3H4 mediated EMT in silicosis. Here, we aimed to explore the mechanisms of ZC3H4 by which to stimulate epithelial cell migration. METHODS Silicon dioxide (SiO2)-induced pulmonary fibrosis (PF) animal models were administered by intratracheal instillation in C57BL/6 J mice. Pathological analysis and 2D migration assay were established to uncover the pulmonary fibrotic lesions and epithelial cell migration, respectively. Inhibitors targeting ROCK/p-PYK2/p-MLC2 and CRISPR/Cas9 plasmids targeting ZC3H4 were administrated to explore the signaling pathways. RESULTS 1) SiO2 upregulated epithelial migration in pulmonary fibrotic lesions. 2) ZC3H4 modulated SiO2-induced epithelial migration. 3) ZC3H4 governed epithelial migration through ROCK/p-PYK2/p-MLC2 signaling pathway. CONCLUSIONS ZC3H4 regulates epithelial migration through the ROCK/p-PYK2/p-MLC2 signaling pathway, providing the possibility that molecular drugs targeting ZC3H4-overexpression may exert effects on pulmonary fibrosis induced by silica.
Collapse
Affiliation(s)
- Rong Jiang
- Jiangsu Health Vocational College, Nanjing, Jiangsu Province, China
| | - Yichao Zhou
- Department of Occupation Disease Prevention and Cure, Changzhou Wujin District Center for Disease Control and Prevention, Changzhou, Jiangsu Province, China
| | - Qianqian Gao
- Department of Occupation Disease Prevention and Cure, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, Jiangsu Province, China; Department of Respiratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Lei Han
- Department of Occupation Disease Prevention and Cure, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, Jiangsu Province, China.
| | - Zhen Hong
- Jiangsu Health Vocational College, Nanjing, Jiangsu Province, China.
| |
Collapse
|
38
|
Firth W, Robb JL, Stewart D, Pye KR, Bamford R, Oguro-Ando A, Beall C, Ellacott KLJ. Regulation of astrocyte metabolism by mitochondrial translocator protein 18kDa. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.29.560159. [PMID: 37873215 PMCID: PMC10592862 DOI: 10.1101/2023.09.29.560159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
The mitochondrial translocator protein 18kDa (TSPO) has been linked to a variety of functions from steroidogenesis to regulation of cellular metabolism and is an attractive therapeutic target for chronic CNS inflammation. Studies in the periphery using Leydig cells and hepatocytes, as well as work in microglia, indicate that the function of TSPO may vary between cells depending on their specialised roles. Astrocytes are critical for providing trophic and metabolic support in the brain as part of their role in maintaining brain homeostasis. Recent work has highlighted that TSPO expression increases in astrocytes under inflamed conditions and may drive astrocyte reactivity. However, relatively little is known about the role TSPO plays in regulating astrocyte metabolism and whether this protein is involved in immunometabolic processes in these cells. Using TSPO-deficient (TSPO-/-) mouse primary astrocytes in vitro (MPAs) and a human astrocytoma cell line (U373 cells), we performed metabolic flux analyses. We found that loss of TSPO reduced basal astrocyte respiration and increased the bioenergetic response to glucose reintroduction following glucopenia, while increasing fatty acid oxidation (FAO). Lactate production was significantly reduced in TSPO-/- astrocytes. Co-immunoprecipitation studies in U373 cells revealed that TSPO forms a complex with carnitine palmitoyltransferase 1a, which presents a mechanism wherein TSPO may regulate FAO in astrocytes. Compared to TSPO+/+ cells, inflammation induced by 3h lipopolysaccharide (LPS) stimulation of TSPO-/- MPAs revealed attenuated tumour necrosis factor release, which was enhanced in TSPO-/- MPAs at 24h LPS stimulation. Together these data suggest that while TSPO acts as a regulator of metabolic flexibility in astrocytes, loss of TSPO does not appear to modulate the metabolic response of astrocytes to inflammation, at least in response to the stimulus/time course used in this study.
Collapse
Affiliation(s)
- Wyn Firth
- University of Exeter Medical School, Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Josephine L Robb
- University of Exeter Medical School, Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Daisy Stewart
- University of Exeter Medical School, Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Katherine R Pye
- University of Exeter Medical School, Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Rosemary Bamford
- University of Exeter Medical School, Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Asami Oguro-Ando
- University of Exeter Medical School, Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Craig Beall
- University of Exeter Medical School, Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Kate LJ Ellacott
- University of Exeter Medical School, Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| |
Collapse
|
39
|
Arya S, Bahuguna D, Bajad G, Loharkar S, Devangan P, Khatri DK, Singh SB, Madan J. Colloidal therapeutics in the management of traumatic brain injury: Portray of biomarkers and drug-targets, preclinical and clinical pieces of evidence and future prospects. Colloids Surf B Biointerfaces 2023; 230:113509. [PMID: 37595379 DOI: 10.1016/j.colsurfb.2023.113509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/28/2023] [Accepted: 08/05/2023] [Indexed: 08/20/2023]
Abstract
Complexity associated with the aberrant physiology of traumatic brain injury (TBI) makes its therapeutic targeting vulnerable. The underlying mechanisms of pathophysiology of TBI are yet to be completely illustrated. Primary injury in TBI is associated with contusions and axonal shearing whereas excitotoxicity, mitochondrial dysfunction, free radicals generation, and neuroinflammation are considered under secondary injury. MicroRNAs, proinflammatory cytokines, and Glial fibrillary acidic protein (GFAP) recently emerged as biomarkers in TBI. In addition, several approved therapeutic entities have been explored to target existing and newly identified drug-targets in TBI. However, drug delivery in TBI is hampered due to disruption of blood-brain barrier (BBB) in secondary TBI, as well as inadequate drug-targeting and retention effect. Colloidal therapeutics appeared helpful in providing enhanced drug availability to the brain owing to definite targeting strategies. Moreover, immense efforts have been put together to achieve increased bioavailability of therapeutics to TBI by devising effective targeting strategies. The potential of colloidal therapeutics to efficiently deliver drugs at the site of injury and down-regulate the mediators of TBI are serving as novel policies in the management of TBI. Therefore, in present manuscript, we have illuminated a myriad of molecular-targets currently identified and recognized in TBI. Moreover, particular emphasis is given to frame armamentarium of repurpose drugs which could be utilized to block molecular targets in TBI in addition to drug delivery barriers. The critical role of colloidal therapeutics such as liposomes, nanoparticles, dendrimers, and exosomes in drug delivery to TBI through invasive and non-invasive routes has also been highlighted.
Collapse
Affiliation(s)
- Shristi Arya
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Deepankar Bahuguna
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Gopal Bajad
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Soham Loharkar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Pawan Devangan
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Dharmendra Kumar Khatri
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Shashi Bala Singh
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Jitender Madan
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India.
| |
Collapse
|
40
|
Benarroch E. What Is the Role of the Rho-ROCK Pathway in Neurologic Disorders? Neurology 2023; 101:536-543. [PMID: 37722862 PMCID: PMC10516277 DOI: 10.1212/wnl.0000000000207779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 06/29/2023] [Indexed: 09/20/2023] Open
|
41
|
Di X, Gao X, Peng L, Ai J, Jin X, Qi S, Li H, Wang K, Luo D. Cellular mechanotransduction in health and diseases: from molecular mechanism to therapeutic targets. Signal Transduct Target Ther 2023; 8:282. [PMID: 37518181 PMCID: PMC10387486 DOI: 10.1038/s41392-023-01501-9] [Citation(s) in RCA: 122] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 08/01/2023] Open
Abstract
Cellular mechanotransduction, a critical regulator of numerous biological processes, is the conversion from mechanical signals to biochemical signals regarding cell activities and metabolism. Typical mechanical cues in organisms include hydrostatic pressure, fluid shear stress, tensile force, extracellular matrix stiffness or tissue elasticity, and extracellular fluid viscosity. Mechanotransduction has been expected to trigger multiple biological processes, such as embryonic development, tissue repair and regeneration. However, prolonged excessive mechanical stimulation can result in pathological processes, such as multi-organ fibrosis, tumorigenesis, and cancer immunotherapy resistance. Although the associations between mechanical cues and normal tissue homeostasis or diseases have been identified, the regulatory mechanisms among different mechanical cues are not yet comprehensively illustrated, and no effective therapies are currently available targeting mechanical cue-related signaling. This review systematically summarizes the characteristics and regulatory mechanisms of typical mechanical cues in normal conditions and diseases with the updated evidence. The key effectors responding to mechanical stimulations are listed, such as Piezo channels, integrins, Yes-associated protein (YAP) /transcriptional coactivator with PDZ-binding motif (TAZ), and transient receptor potential vanilloid 4 (TRPV4). We also reviewed the key signaling pathways, therapeutic targets and cutting-edge clinical applications of diseases related to mechanical cues.
Collapse
Affiliation(s)
- Xingpeng Di
- Department of Urology and Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Xiaoshuai Gao
- Department of Urology and Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Liao Peng
- Department of Urology and Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Jianzhong Ai
- Department of Urology and Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Xi Jin
- Department of Urology and Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Shiqian Qi
- Department of Urology and Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, P.R. China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Hong Li
- Department of Urology and Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Kunjie Wang
- Department of Urology and Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, P.R. China.
| | - Deyi Luo
- Department of Urology and Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, P.R. China.
| |
Collapse
|
42
|
Dorsey SG, Mocci E, Lane MV, Krueger BK. Rapid effects of valproic acid on the fetal brain transcriptome: Implications for brain development and autism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.01.538959. [PMID: 37205520 PMCID: PMC10187231 DOI: 10.1101/2023.05.01.538959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
There is an increased incidence of autism among the children of women who take the anti-epileptic, mood stabilizing drug, valproic acid (VPA) during pregnancy; moreover, exposure to VPA in utero causes autistic-like symptoms in rodents and non-human primates. Analysis of RNAseq data ob-tained from E12.5 fetal mouse brains 3 hours after VPA administration revealed that VPA significant-ly increased or decreased the expression of approximately 7,300 genes. No significant sex differ-ences in VPA-induced gene expression were observed. Expression of genes associated with neu-rodevelopmental disorders (NDDs) such as autism as well as neurogenesis, axon growth and syn-aptogenesis, GABAergic, glutaminergic and dopaminergic synaptic transmission, perineuronal nets, and circadian rhythms was dysregulated by VPA. Moreover, expression of 399 autism risk genes was significantly altered by VPA as was expression of 252 genes that have been reported to play fundamental roles in the development of the nervous system but are not otherwise linked to autism. The goal of this study was to identify mouse genes that are: (a) significantly up- or down-regulated by VPA in the fetal brain and (b) known to be associated with autism and/or to play a role in embryonic neurodevelopmental processes, perturbation of which has the potential to alter brain connectivity in the postnatal and adult brain. The set of genes meeting these criteria pro-vides potential targets for future hypothesis-driven approaches to elucidating the proximal underly-ing causes of defective brain connectivity in NDDs such as autism.
Collapse
|
43
|
Kim JT, Cho SM, Youn DH, Hong EP, Park CH, Lee Y, Jung H, Jeon JP. Therapeutic Effect of a Hydrogel-based Neural Stem Cell Delivery Sheet for Mild Traumatic Brain Injury. Acta Biomater 2023:S1742-7061(23)00351-3. [PMID: 37356785 DOI: 10.1016/j.actbio.2023.06.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 06/18/2023] [Accepted: 06/20/2023] [Indexed: 06/27/2023]
Abstract
OBJECTIVE There are no effective clinically applicable treatments for neuronal dysfunction after mild traumatic brain injury (TBI). Here, we evaluated the therapeutic effect of a new delivery method of mouse neural stem cell (mNSC) spheroids using a hydrogel, in terms of improvement in damaged cortical lesions and cognitive impairment after mild TBI. METHODS mNSCs were isolated from the subventricular zone and subgranular zone by a hydrogel-based culture system. GFP-transduced mNSCs were generated into spheroids and wrapped into a sheet for transplantation. Male C57BL/6J mice were randomly divided into four groups: sham operation, TBI, TBI with mNSC spheroids, and TBI with mNSC spheroid sheet transplantation covering the damaged cortex. Histopathological and immunohistochemical features and cognitive function were evaluated 7, 14, and 28 days after transplantation following TBI. RESULTS Hydrogel-based culture systems and mNSC isolation were successfully established from the adult mice. Essential transcription factors for NSCs, such as SOX2, PAX6, Olig2, nestin, and doublecortin (DCX), were highly expressed in the mNSCs. A transplanted hydrogel-based mNSC spheroid sheet showed good engraftment and survival ability, differentiated into TUJ1-positive neurons, promoted angiogenesis, and reduced neuronal degeneration. Also, TBI mice treated with mNSC spheroid sheet transplantation exhibited a significantly increased preference for a new object, suggesting improved cognitive function compared to the mNSC spheroids or no treatment groups. CONCLUSION Transplantation with a hydrogel-based mNSC spheroid sheet showed engraftment, migration, and stability of delivered cells in a hostile microenvironment after TBI, resulting in improved cognitive function via reconstruction of the damaged cortex. STATEMENT OF SIGNIFICANCE This study presents the therapeutic effect of a new delivery method of mouse neural stem cells spheroids using a hydrogel, in terms of improvement in damaged cortical lesions and cognitive impairment after traumatic brain injury. Collagen/fibrin hydrogel allowed long-term survival and migratory ability of NSCs spheroids. Furthermore, transplanted hydrogel-based mNSCs spheroids sheet showed good engraftment, migration, and stability of delivered cells in a hostile microenvironment, resulting in reconstruction of the damaged cortex and improved cognitive function after TBI. Therefore, we suggest that a hydrogel-based mNSCs spheroids sheet could help to improve cognitive impairment after TBI.
Collapse
Affiliation(s)
- Jong-Tae Kim
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon, Korea
| | - Sung Min Cho
- Department of Neurosurgery, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Dong Hyuk Youn
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon, Korea
| | - Eun Pyo Hong
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon, Korea
| | - Chan Hum Park
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon, Korea
| | - Younghyurk Lee
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon, Korea
| | - Harry Jung
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon, Korea
| | - Jin Pyeong Jeon
- Department of Neurosurgery, Hallym University College of Medicine, Chuncheon, Korea.
| |
Collapse
|
44
|
Zaalberg A, Minnee E, Mayayo-Peralta I, Schuurman K, Gregoricchio S, van Schaik TA, Hoekman L, Li D, Corey E, Janssen H, Lieftink C, Prekovic S, Altelaar M, Nelson PS, Beijersbergen RL, Zwart W, Bergman A. A genome-wide CRISPR screen in human prostate cancer cells reveals drivers of macrophage-mediated cell killing and positions AR as a tumor-intrinsic immunomodulator. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.06.543873. [PMID: 37333335 PMCID: PMC10274642 DOI: 10.1101/2023.06.06.543873] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
The crosstalk between prostate cancer (PCa) cells and the tumor microenvironment plays a pivotal role in disease progression and metastasis and could provide novel opportunities for patient treatment. Macrophages are the most abundant immune cells in the prostate tumor microenvironment (TME) and are capable of killing tumor cells. To identify genes in the tumor cells that are critical for macrophage-mediated killing, we performed a genome-wide co-culture CRISPR screen and identified AR, PRKCD, and multiple components of the NF-κB pathway as hits, whose expression in the tumor cell are essential for being targeted and killed by macrophages. These data position AR signaling as an immunomodulator, and confirmed by androgen-deprivation experiments, that rendered hormone-deprived tumor cells resistant to macrophage-mediated killing. Proteomic analyses showed a downregulation of oxidative phosphorylation in the PRKCD- and IKBKG-KO cells compared to the control, suggesting impaired mitochondrial function, which was confirmed by electron microscopy analyses. Furthermore, phosphoproteomic analyses revealed that all hits impaired ferroptosis signaling, which was validated transcriptionally using samples from a neoadjuvant clinical trial with the AR-inhibitor enzalutamide. Collectively, our data demonstrate that AR functions together with the PRKCD and the NF-κB pathway to evade macrophage-mediated killing. As hormonal intervention represents the mainstay therapy for treatment of prostate cancer patients, our findings may have direct implications and provide a plausible explanation for the clinically observed persistence of tumor cells despite androgen deprivation therapy.
Collapse
|
45
|
Feng G, Liu X, Wang B, Li R, Chang Y, Guo N, Li Y, Chen T, Ma B. Exploring the mechanism of Chaihujia Longgu Muli decoction in the treatment of epilepsy in rats based on the RhoA/ROCK signaling pathway. Mol Biol Rep 2023; 50:3389-3399. [PMID: 36739316 DOI: 10.1007/s11033-023-08301-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 01/23/2023] [Indexed: 02/06/2023]
Abstract
BACKGROUND The Chinese herbal formula Chaihujia Longgu Muli Decoction (CD) has a good antiepileptic effect, but its mechanisms remain unclear. Therefore, in this study we explored the molecular mechanisms of CD against epilepsy. METHODS Twelve-day-old SD rats were randomly divided into a normal group, model group, valproic acid group, and CD high, medium, and low groups. Except for the normal group, the other groups were given an intraperitoneal injection of pentylenetetrazol (PTZ) to establish epilepsy models, and the Racine score was applied for model judgment. After 14 consecutive days of dosing, the Morris water maze test was performed. Then, hippocampal Nissl staining and immunofluorescence staining were performed, and synaptic ultrastructure was observed by transmission electron microscopy (TEM). RhoA/ROCK signaling pathway proteins were detected. RESULTS In PTZ model rats, the passing times were reduced, and the escape latency was prolonged in the Morris water maze test. Nissl staining showed that some hippocampal neurons swelled and ruptured, Nissl bodies in the cytoplasm were significantly reduced, and neurons were lost. Immunofluorescence detection revealed that the expression of PSD95 and SYP was significantly reduced. Electron microscopy results revealed that the number of synapses in hippocampal neurons was significantly reduced and the postsynaptic membrane length was significantly reduced. Western blot analysis showed that the RhoA/ROCK signaling pathway was activated, while SYP, SPD95, and PTEN expression was significantly decreased. After treatment with CD, neurobehavioral abnormalities and neuronal damage caused by epileptic seizures were improved. CONCLUSION CD exerted an antiepileptic effect by inhibiting the activation of the RhoA/ROCK signaling pathway.
Collapse
Affiliation(s)
- Gang Feng
- College of Pediatric Medicine, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Xianghua Liu
- College of Pediatric Medicine, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Baoying Wang
- College of Pediatric Medicine, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Ruixing Li
- College of Pediatric Medicine, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Yaxin Chang
- College of Pediatric Medicine, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Nannan Guo
- College of Pediatric Medicine, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Yawei Li
- College of Pediatric Medicine, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Tiantian Chen
- The First Affiliated Hospital of Henan University of Chinese Medicine, Shanghai, 450099, China
| | - Bingxiang Ma
- College of Pediatric Medicine, Henan University of Chinese Medicine, Zhengzhou, 450046, China. .,The First Affiliated Hospital of Henan University of Chinese Medicine, Shanghai, 450099, China. .,, No. 19, Renmin Road, Jinshui District, Zhengzhou, 450099, China.
| |
Collapse
|
46
|
Chen Y, Huang C, Duan ZB, Chen YX, Xu CY. LncRNA NEAT1 accelerates renal fibrosis progression via targeting miR-31 and modulating RhoA/ROCK signal pathway. Am J Physiol Cell Physiol 2023; 324:C292-C306. [PMID: 36440854 DOI: 10.1152/ajpcell.00382.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Renal fibrosis is the final pathway for chronic kidney disease to end-stage renal failure. Noncoding RNAs have been reported to play a crucial role in renal fibrosis. Here, the effects of long noncoding RNA (lncRNA) nuclear-enriched abundant transcript 1 (NEAT1) and miR-31 on renal fibrosis and their regulatory mechanism were evaluated. RT-qPCR was used to assess NEAT1, miR-31, and RhoA levels. Western blot was performed to analyze the expression of fibrosis markers, RhoA, rho-related kinase (ROCK1), and connective tissue growth factor (CTGF). RNA immunoprecipitation (RIP), fluorescence in situ hybridization (FISH), and luciferase reporter assays verified the interaction between miR-31 and NEAT1 or RhoA. Renal fibrosis and injury were observed by Masson and hematoxylin and eosin (H&E) staining. The expression level of inflammatory cytokines was detected by ELISA. Immunohistochemistry (IHC) was performed to examine the expression levels of α-smooth muscle actin (α-SMA) and RhoA in renal tissues. We showed that NEAT1 was highly expressed, whereas miR-31 was decreased in renal fibrosis. NEAT1 was found to directly bind miR-31 to positively regulate RhoA expression. Furthermore, NEAT1 silencing inhibited renal fibrosis and inflammation and suppressed the RhoA/ROCK1 signaling pathway. However, knockdown of miR-31 could reverse these effects. NEAT1 silencing or overexpression of miR-31 alleviated renal fibrosis in vivo. In conclusion, NEAT1 accelerates renal fibrosis progression via negative regulation of miR-31 and the activation of RhoA/ROCK1 pathway, thereby upregulating the expression level of CTGF, providing a theoretical basis for treatment and prognostic evaluation of renal fibrosis.
Collapse
Affiliation(s)
- Yan Chen
- Department of Nephrology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Chong Huang
- Department of Nephrology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhi-Bin Duan
- Department of Nephrology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yan-Xia Chen
- Department of Nephrology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Cheng-Yun Xu
- Department of Nephrology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
47
|
Saeidi N, Goudarzvand H, Mohammadi H, Mardi A, Ghoreishizadeh S, Shomali N, Goudarzvand M. Dysregulation of miR-193a serves as a potential contributor to MS pathogenesis via affecting RhoA and Rock1. Mult Scler Relat Disord 2023; 69:104468. [PMID: 36529069 DOI: 10.1016/j.msard.2022.104468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 11/30/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND Multiple sclerosis (MS) is one of the most common neurological diseases that cause chronic inflammation of the central nervous system and demyelination of the myelin sheath. At present, microRNAs (miRNAs) are considered not only a diagnostic and prognostic indicator of diseases but also a new goal in gene therapy. This study aims to find a simple, non-invasive, valuable biomarker for early detection and potential treatment of MS. METHODS In the present study, 30 patients with MS were included. The qRT-PCR method was performed to evaluate the expression level of miR-193a, RhoA, and ROCK1. Besides, western blotting was performed to determine the expression level of RhoA and ROCK1 at protein levels. Moreover, we aimed to clarify the possible correlation between miR-193a-5p and its-regulated target genes so that miR-193a-5p mimic was transfected into MS-derived cultured PBMSs, and the expression level of RhoA and ROCK1 were then evaluated by qRT-PCR and Western blotting. In the final step, the correlation between miR-193a-5p and clinicopathological features of patients was investigated. RESULTS Results showed that miR-193a was decreased while RhoA and ROCK1 were up-regulated in PBMCs obtained from patients with MS compared to the control group. It was also revealed that miR-193a transfection reduced RhoA and ROCK1 expression at mRNA and protein levels. The results from the Chi-square analysis showed that down-regulation of miR-193a was associated with increased CRP level, CSF IgG positivity, and MSSS (Multiple Sclerosis Severity Score), suggesting miR-193a is a potential diagnostic and prognostic indicator. CONCLUSION We implied that miR-193a could modulate RhoA and ROCK 1 expression in MS patients, in which its down-regulation leads to increased expression of RhoA and ROCK1 and poor prognosis of patients with MS. Therefore, miR-193a and its associated targets could serve potential prognostic, diagnostic, and therapeutic efficacy in MS patients.
Collapse
Affiliation(s)
- Nasim Saeidi
- DNA Laboratory, Analytical Laboratories, Hamilton, New Zealand
| | | | - Hamed Mohammadi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Amirhossein Mardi
- Department of Immunology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Shadi Ghoreishizadeh
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Navid Shomali
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdi Goudarzvand
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran; Department of Physiology and Pharmacology, Faculty of Medicine, Alborz University of Medical Sciences, Karaj, Iran.
| |
Collapse
|
48
|
Components of Salvia miltiorrhiza and Panax notoginseng Protect Pericytes Against OGD/R-Induced Injury via Regulating the PI3K/AKT/mTOR and JNK/ERK/P38 Signaling Pathways. J Mol Neurosci 2022; 72:2377-2388. [PMID: 36394713 DOI: 10.1007/s12031-022-02082-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 11/10/2022] [Indexed: 11/18/2022]
Abstract
Salvia miltiorrhiza (SAL) and Panax notoginseng (PNS) are widely used in treating of ischemic stroke. However, it is unknown which components of SAL and PNS protect brain microvascular pericytes after an ischemic stroke. We evaluated the protective effects and mechanisms of SAL and PNS components in pericytes subjected to oxygen-glucose deprivation/reoxygenation (OGD/R). Pericytes were subjected to OGD/R. Cell Counting Kit-8 (CCK-8) was used to evaluate cell viability. ROS and SOD kits were used to detect oxidative stress. Flow cytometry was performed to analyze cell apoptosis. To evaluate cell migration, a scratch assay was performed. Expression of cleaved caspase-3, Bcl-2, Bax, VEGF, Ang-1, PDGFR-β, PI3K/AKT/mTOR, and JNK/ERK/P38 signaling pathways were identified using western blot. The results revealed that salvianolic acid B (Sal B), salvianolic acid D (Sal D), notoginsenoside R1 (R1), ginsenoside Rb1 (Rb1), and ginsenoside Rg1 (Rg1) increased the cell viability of pericytes subjected to OGD/R, reduced the level of ROS, and increased the expression of SOD. The components reduced cell apoptosis, increased the protein level of Bcl-2/Bax, reduced the level of cleaved caspase-3/caspase-3, increased cell migration, and enhanced the levels of Ang-1, PDGFR-β, and VEGF. The components could activate PI3K/AKT/mTOR pathway while inhibiting the JNK/ERK/P38 pathway. Studies found that Sal B, Sal D, R1, Rb1, and Rg1 inhibited oxidative stress and apoptosis while increasing the release of pro-angiogenic regulators of pericytes related to the PI3K/AKT/mTOR and JNK/ERK/P38 signaling pathways. This provides a potential foundation for developing monomeric drugs for treating ischemic stroke.
Collapse
|
49
|
Zhang Y, Wang X, Jiang C, Chen Z, Ni S, Fan H, Wang Z, Tian F, An J, Yang H, Hao D. Rho Kinase Inhibitor Y27632 Improves Recovery After Spinal Cord Injury by Shifting Astrocyte Phenotype and Morphology via the ROCK/NF-κB/C3 Pathway. Neurochem Res 2022; 47:3733-3744. [PMID: 36103106 PMCID: PMC9718714 DOI: 10.1007/s11064-022-03756-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 11/28/2022]
Abstract
Spinal cord injury (SCI) usually results in loss or reduction in motor and sensory functions. Despite extensive research, no available therapy can restore the lost functions after SCI. Reactive astrocytes play a pivotal role in SCI. Rho kinase inhibitors have also been shown to promote functional recovery of SCI. However, the role of Rho kinase inhibitors in reactive astrocytic phenotype switch within SCI remains largely unexplored. In this study, astrocytes were treated with proinflammatory cytokines and/or the Rho kinase inhibitor Y27632. Concomitantly the phenotype and morphology of astrocytes were examined. Meanwhile, the SCI model of SD rats was established, and nerve functions were evaluated following treatment with Y27632. Subsequently, the number of A1 astrocytes in the injured area was observed and analyzed. Eventually, the expression levels of nuclear factor kappa B (NF-κB), C3, and S100A10 were measured. The present study showed that the Rho kinase inhibitor Y27632 improved functional recovery of SCI and elevated the proliferation and migration abilities of the astrocytes. In addition, Y27632 treatment initiated the switch of astrocytes morphology from a flattened shape to a process-bearing shape and transformed the reactive astrocytes A1 phenotype to an A2 phenotype. More importantly, further investigation suggested that Y27632 was actively involved in promoting the functional recovery of SCI in rats by inhabiting the ROCK/NF-κB/C3 signaling pathway. Together, Rho kinase inhibitor Y27632 effectively promotes the functional recovery of SCI by shifting astrocyte phenotype and morphology. Furthermore, the pro-regeneration event is strongly associated with the ROCK/NF-κB/C3 signal pathway.
Collapse
Affiliation(s)
- Yongyuan Zhang
- Xi'an Jiaotong University Health Science Center, 710000, Xi'an, China
- Department of Spine Surgery, Hong Hui Hospital, Xi'an Jiaotong University, 710054, Xi'an, China
| | - Xiaohui Wang
- Department of Spine Surgery, Hong Hui Hospital, Xi'an Jiaotong University, 710054, Xi'an, China
| | - Chao Jiang
- Department of Spine Surgery, Hong Hui Hospital, Xi'an Jiaotong University, 710054, Xi'an, China
| | - Zhe Chen
- Xi'an Jiaotong University Health Science Center, 710000, Xi'an, China
| | - Shuangyang Ni
- Xi'an Medical University, No.74 Han'guang North Road, Beilin District, Xi'an, Shaanxi Province, China
| | - Hong Fan
- Department of Neurology, The Second Affiliated Hospital of Xi'an Jiaotong University, 710004, Xi'an, China
| | - Zhiyuan Wang
- Xi'an Jiaotong University Health Science Center, 710000, Xi'an, China
| | - Fang Tian
- Xi'an Jiaotong University Health Science Center, 710000, Xi'an, China
| | - Jing An
- Translational Medicine Center, Hong Hui Hospital, Xi'an Jiaotong University, 710054, Xi'an, China
| | - Hao Yang
- Translational Medicine Center, Hong Hui Hospital, Xi'an Jiaotong University, 710054, Xi'an, China.
| | - Dingjun Hao
- Xi'an Jiaotong University Health Science Center, 710000, Xi'an, China.
- Department of Spine Surgery, Hong Hui Hospital, Xi'an Jiaotong University, 710054, Xi'an, China.
| |
Collapse
|
50
|
Moreira NCDS, Tamarozzi ER, Lima JEBDF, Piassi LDO, Carvalho I, Passos GA, Sakamoto-Hojo ET. Novel Dual AChE and ROCK2 Inhibitor Induces Neurogenesis via PTEN/AKT Pathway in Alzheimer's Disease Model. Int J Mol Sci 2022; 23:ijms232314788. [PMID: 36499116 PMCID: PMC9737254 DOI: 10.3390/ijms232314788] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/07/2022] [Accepted: 11/15/2022] [Indexed: 11/29/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive and complex neurodegenerative disease. Acetylcholinesterase inhibitors (AChEIs) are a major class of drugs used in AD therapy. ROCK2, another promising target for AD, has been associated with the induction of neurogenesis via PTEN/AKT. This study aimed to characterize the therapeutic potential of a novel donepezil-tacrine hybrid compound (TA8Amino) to inhibit AChE and ROCK2 protein, leading to the induction of neurogenesis in SH-SY5Y cells. Experiments were carried out with undifferentiated and neuron-differentiated SH-SY5Y cells submitted to treatments with AChEIs (TA8Amino, donepezil, and tacrine) for 24 h or 7 days. TA8Amino was capable of inhibiting AChE at non-cytotoxic concentrations after 24 h. Following neuronal differentiation for 7 days, TA8Amino and donepezil increased the percentage of neurodifferentiated cells and the length of neurites, as confirmed by β-III-tubulin and MAP2 protein expression. TA8Amino was found to participate in the activation of PTEN/AKT signaling. In silico analysis showed that TA8Amino can stably bind to the active site of ROCK2, and in vitro experiments in SH-SY5Y cells demonstrate that TA8Amino significantly reduced the expression of ROCK2 protein, contrasting with donepezil and tacrine. Therefore, these results provide important information on the mechanism underlying the action of TA8Amino with regard to multi-target activities.
Collapse
Affiliation(s)
| | - Elvira Regina Tamarozzi
- Department of Biotechnology, School of Arts, Sciences and Humanities—USP, São Paulo 03828-000, Brazil
| | | | - Larissa de Oliveira Piassi
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo—USP, Ribeirão Preto 14049-900, Brazil
| | - Ivone Carvalho
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo—USP, Ribeirão Preto 14040-900, Brazil
| | - Geraldo Aleixo Passos
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo—USP, Ribeirão Preto 14049-900, Brazil
- Laboratory of Genetics and Molecular Biology, Department of Basic and Oral Biology, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14049-900, Brazil
| | - Elza Tiemi Sakamoto-Hojo
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo—USP, Ribeirão Preto 14049-900, Brazil
- Department of Biology, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo—USP, Ribeirão Preto 14040-901, Brazil
- Correspondence: ; Tel.: +55-16-3315-3827
| |
Collapse
|