1
|
Ubaida‐Mohien C, Moaddel R, Spendiff S, MacMillan NJ, Filion M, Morais JA, Candia J, Fitzgerald LF, Taivassalo T, Coen PM, Ferrucci L, Hepple RT. Serum Proteomic and Metabolomic Signatures of High Versus Low Physical Function in Octogenarians. Aging Cell 2025; 24:e70002. [PMID: 40059508 PMCID: PMC12073904 DOI: 10.1111/acel.70002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 12/12/2024] [Accepted: 01/10/2025] [Indexed: 05/15/2025] Open
Abstract
Physical function declines with aging, yet there is considerable heterogeneity, with some individuals declining very slowly while others experience accelerated functional decline. To gain insight into mechanisms promoting high physical function with aging, we performed proteomics, targeted metabolomics, and targeted kynurenine-focused metabolomic analyses on serum specimens from three groups of octogenarians: High-functioning master athletes (HF, n = 16), healthy normal-functioning non-athletes (NF, n = 12), and lower functioning non-athletes (LF, n = 11). Higher performance status was associated with evidence consistent with: Lower levels of circulating proinflammatory markers, as well as unperturbed tryptophan metabolism, with the normal function of the kynurenic pathway; higher circulating levels of lysophosphatidylcholines that have been previously associated with better mitochondrial oxidative capacity; lower activity of the integrated stress response; lower levels of circulating SASP protein members; and lower levels of proteins that reflect neurodegeneration/denervation. Extending the observations of previous studies focused on the biomarkers of aging that predict poor function, our findings show that many of the same biomarkers associated with poor function exhibit attenuated changes in those who maintain a high function. Because of the cross-sectional nature of this study, results should be interpreted with caution, and bidirectional causality, where physical activity behavior is both a cause and outcome of differences in the biomarker changes, remains a possible interpretation.
Collapse
Affiliation(s)
- Ceereena Ubaida‐Mohien
- Intramural Research Program, National Institute on AgingNational Institutes of HealthBaltimoreMarylandUSA
| | - Ruin Moaddel
- Intramural Research Program, National Institute on AgingNational Institutes of HealthBaltimoreMarylandUSA
| | - Sally Spendiff
- Children's Hospital of Eastern Ontario Research InstituteOttawaCanada
| | - Norah J. MacMillan
- Research Institute of the McGill University Health CentreMcGill UniversityMontrealCanada
| | - Marie‐Eve Filion
- Research Institute of the McGill University Health CentreMcGill UniversityMontrealCanada
| | - Jose A. Morais
- Research Institute of the McGill University Health CentreMcGill UniversityMontrealCanada
| | - Julián Candia
- Intramural Research Program, National Institute on AgingNational Institutes of HealthBaltimoreMarylandUSA
| | - Liam F. Fitzgerald
- Department of Physical TherapyUniversity of FloridaGainesvilleFloridaUSA
| | - Tanja Taivassalo
- Department of Physiology and AgingUniversity of FloridaGainesvilleFloridaUSA
| | - Paul M. Coen
- Translational Research InstituteAdvent HealthOrlandoFloridaUSA
| | - Luigi Ferrucci
- Intramural Research Program, National Institute on AgingNational Institutes of HealthBaltimoreMarylandUSA
| | - Russell T. Hepple
- Department of Physical TherapyUniversity of FloridaGainesvilleFloridaUSA
- Department of Physiology and AgingUniversity of FloridaGainesvilleFloridaUSA
| |
Collapse
|
2
|
Makanae Y, Ato S, Kouzaki K, Tamura Y, Nakazato K. Acute high-intensity muscle contraction moderates AChR gene expression independent of rapamycin-sensitive mTORC1 pathway in rat skeletal muscle. Exp Physiol 2025; 110:127-146. [PMID: 39501426 DOI: 10.1113/ep091006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 09/24/2024] [Indexed: 01/02/2025]
Abstract
The relationship between mechanistic target of rapamycin complex 1 (mTORC1) activation after resistance exercise and acetylcholine receptor (AChR) subunit gene expression remains largely unknown. Therefore, we aimed to investigate the effect of electrical stimulation-induced intense muscle contraction, which mimics acute resistance exercise, on the mRNA expression of AChR genes and the signalling pathways involved in neuromuscular junction (NMJ) maintenance, such as mTORC1 and muscle-specific kinase (MuSK). The gastrocnemius muscle of male adult Sprague-Dawley rats was isometrically exercised. Upon completion of muscle contraction, the rats were euthanized in the early (after 0, 1, 3, 6 or 24 h) and late (after 48 or 72 h) recovery phases and the gastrocnemius muscles were removed. Non-exercised control animals were euthanized in the basal state (control group). In the early recovery phase, Agrn gene expression increased whereas LRP4 decreased without any change in the protein and gene expression of AChR gene subunits. In the late recovery phase, Agrn, Musk, Chrnb1, Chrnd and Chrne gene expression were altered and agrin and MuSK protein expression increased. Moreover, mTORC1 and protein kinase B/Akt-histone deacetylase 4 (HDAC) were activated in the early phase but not in the late recovery phase. Furthermore, rapamycin, an inhibitor of mTORC1, did not disturb changes in AChR subunit gene expression after muscle contraction. However, rapamycin addition slightly increased AChR gene expression, while insulin did not impact it in rat L6 myotube. These results suggest that changes in the AChR subunits after muscle contraction are independent of the rapamycin-sensitive mTORC1 pathway.
Collapse
Affiliation(s)
- Yuhei Makanae
- Department of Physical Education, National Defence Academy, Yokosuka, Japan
| | - Satoru Ato
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Nagoya, Japan
- Japan Society for the Promotion of Science, Tokyo, Japan
- Healty Food Science Research Group, Cellular and Molecular Biotechnology Research Institute, Industrial Science and Technology (AIST), Tsukuba, Japan
- Faculty of Health and Sports Sciences, Toyo University, Tokyo, Japan
| | - Karina Kouzaki
- Faculty of Medical Science, Nippon Sport Science University, Tokyo, Japan
- Graduate School of Health and Sport Science, Nippon Sport Science University, Tokyo, Japan
| | - Yuki Tamura
- Graduate School of Health and Sport Science, Nippon Sport Science University, Tokyo, Japan
| | - Koichi Nakazato
- Graduate School of Health and Sport Science, Nippon Sport Science University, Tokyo, Japan
| |
Collapse
|
3
|
Motanova E, Pirazzini M, Negro S, Rossetto O, Narici M. Impact of ageing and disuse on neuromuscular junction and mitochondrial function and morphology: Current evidence and controversies. Ageing Res Rev 2024; 102:102586. [PMID: 39557298 DOI: 10.1016/j.arr.2024.102586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/01/2024] [Accepted: 11/12/2024] [Indexed: 11/20/2024]
Abstract
Inactivity and ageing can have a detrimental impact on skeletal muscle and the neuromuscular junction (NMJ). Decreased physical activity results in muscle atrophy, impaired mitochondrial function, and NMJ instability. Ageing is associated with a progressive decrease in muscle mass, deterioration of mitochondrial function in the motor axon terminals and in myofibres, NMJ instability and loss of motor units. Focusing on the impact of inactivity and ageing, this review examines the consequences on NMJ stability and the role of mitochondrial dysfunction, delving into their complex relationship with ageing and disuse. Evidence suggests that mitochondrial dysfunction can be a pathogenic driver for NMJ alterations, with studies revealing the role of mitochondrial defects in motor neuron degeneration and NMJ instability. Two perspectives behind NMJ instability are discussed: one is that mitochondrial dysfunction in skeletal muscle triggers NMJ deterioration, the other envisages dysfunction of motor terminal mitochondria as a primary contributor to NMJ instability. While evidence from these studies supports both perspectives on the relationship between NMJ dysfunction and mitochondrial impairment, gaps persist in the understanding of how mitochondrial dysfunction can cause NMJ deterioration. Further research, both in humans and in animal models, is essential for unravelling the mechanisms and potential interventions for age- and inactivity-related neuromuscular and mitochondrial alterations.
Collapse
Affiliation(s)
- Evgeniia Motanova
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58/B, Padova 35131, Italy.
| | - Marco Pirazzini
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58/B, Padova 35131, Italy; CIR-MYO Myology Center, University of Padova, Via U. Bassi 58/B, Padova 35131, Italy
| | - Samuele Negro
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58/B, Padova 35131, Italy; CIR-MYO Myology Center, University of Padova, Via U. Bassi 58/B, Padova 35131, Italy
| | - Ornella Rossetto
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58/B, Padova 35131, Italy; CIR-MYO Myology Center, University of Padova, Via U. Bassi 58/B, Padova 35131, Italy; Institute of Neuroscience, National Research Council, Via Ugo Bassi 58/B, Padova 35131, Italy
| | - Marco Narici
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58/B, Padova 35131, Italy; CIR-MYO Myology Center, University of Padova, Via U. Bassi 58/B, Padova 35131, Italy
| |
Collapse
|
4
|
Zhao Y, Yan H, Liu K, Ma J, Sun W, Lai H, Li H, Gu J, Huang H. Acetylcholine receptor-β inhibition by interleukin-6 in skeletal muscles contributes to modulating neuromuscular junction during aging. Mol Med 2024; 30:171. [PMID: 39390392 PMCID: PMC11468496 DOI: 10.1186/s10020-024-00943-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 09/30/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND Aging-related strength decline contributes to physiological deterioration and is a good predictor of poor prognosis. However, the mechanisms underlying neuromuscular junction disorders affecting contraction in aging are not well described. We hypothesized that the autocrine effect of interleukin (IL)-6 secreted by skeletal muscle inhibits acetylcholine receptor (AChR) expression, potentially causing aging-related strength decline. Therefore, we investigated IL-6 and AChR β-subunit (AChR-β) expression in the muscles and sera of aging C57BL/6J mice and verified the effect of IL-6 on AChR-β expression. METHODS Animal experiments, in vitro studies, bioinformatics, gene manipulation, dual luciferase reporter gene assays, and chromatin immunoprecipitation experiments were used to explore the role of the transcription cofactor peroxisome proliferator-activated receptor gamma coactivator 1-α (PGC1α) and its interacting transcription factors in the IL-6-mediated regulation of AChR-β expression. RESULTS IL-6 expression gradually increased during aging, inhibiting AChR-β expression, which was reversed by tocilizumab. Both tocilizumab and the PGC1α agonist reversed the inhibiting effect of IL-6 expression on AChR-β. Compared to inhibition of signal transducer and activator of transcription 3, extracellular signal-regulated kinases 1/2 (ERK1/2) inhibition suppressed the effects of IL-6 on AChR-β and PGC1α. In aging mouse muscles and myotubes, myocyte enhancer factor 2 C (MEF2C) was recruited by PGC1α, which directly binds to the AChR-β promoter to regulate its expression. CONCLUSIONS This study verifies AChR-β regulation by the IL-6/IL-6R-ERK1/2-PGC1α/MEF2C pathway. Hence, evaluating muscle secretion, myokines, and AChRs at an earlier stage to determine pathological progression is important. Moreover, developing intervention strategies for monitoring, maintaining, and improving muscle structure and function is necessary.
Collapse
Affiliation(s)
- Yanling Zhao
- Department of Geriatrics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, P.R. China
| | - Han Yan
- Department of Neurology, Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, P.R. China
| | - Ke Liu
- Department of Neurology, Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, P.R. China
| | - Jiangping Ma
- Department of Neurology, Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, P.R. China
| | - Wenlan Sun
- Department of Geriatrics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, P.R. China
| | - Hejin Lai
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Hongli Li
- Department of Geriatrics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, P.R. China
| | - Jianbang Gu
- Department of Neurology, Shanghai Tenth People's Hospital Chongming Branch, Shanghai, 202150, P.R. China.
| | - He Huang
- Department of Neurology, Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, P.R. China.
- Department of Neurology, Shanghai Tenth People's Hospital Chongming Branch, Shanghai, 202150, P.R. China.
| |
Collapse
|
5
|
Deane C, Piasecki M, Atherton P. Skeletal muscle immobilisation-induced atrophy: mechanistic insights from human studies. Clin Sci (Lond) 2024; 138:741-756. [PMID: 38895777 PMCID: PMC11186857 DOI: 10.1042/cs20231198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/28/2024] [Accepted: 06/04/2024] [Indexed: 06/21/2024]
Abstract
Periods of skeletal muscle disuse lead to rapid declines in muscle mass (atrophy), which is fundamentally underpinned by an imbalance between muscle protein synthesis (MPS) and muscle protein breakdown (MPB). The complex interplay of molecular mechanisms contributing to the altered regulation of muscle protein balance during disuse have been investigated but rarely synthesised in the context of humans. This narrative review discusses human models of muscle disuse and the ensuing inversely exponential rate of muscle atrophy. The molecular processes contributing to altered protein balance are explored, with a particular focus on growth and breakdown signalling pathways, mitochondrial adaptations and neuromuscular dysfunction. Finally, key research gaps within the disuse atrophy literature are highlighted providing future avenues to enhance our mechanistic understanding of human disuse atrophy.
Collapse
Affiliation(s)
- Colleen S. Deane
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton General Hospital, U.K
| | - Matthew Piasecki
- Centre of Metabolism, Ageing and Physiology (CoMAP), Medical Research Council/Versus Arthritis UK Centre of Excellence for Musculoskeletal Ageing Research (CMAR), National Institute of Health Research (NIHR) Biomedical Research Centre (BRC), University of Nottingham, U.K
| | - Philip J. Atherton
- Centre of Metabolism, Ageing and Physiology (CoMAP), Medical Research Council/Versus Arthritis UK Centre of Excellence for Musculoskeletal Ageing Research (CMAR), National Institute of Health Research (NIHR) Biomedical Research Centre (BRC), University of Nottingham, U.K
| |
Collapse
|
6
|
Espino-Gonzalez E, Dalbram E, Mounier R, Gondin J, Farup J, Jessen N, Treebak JT. Impaired skeletal muscle regeneration in diabetes: From cellular and molecular mechanisms to novel treatments. Cell Metab 2024; 36:1204-1236. [PMID: 38490209 DOI: 10.1016/j.cmet.2024.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 01/10/2024] [Accepted: 02/22/2024] [Indexed: 03/17/2024]
Abstract
Diabetes represents a major public health concern with a considerable impact on human life and healthcare expenditures. It is now well established that diabetes is characterized by a severe skeletal muscle pathology that limits functional capacity and quality of life. Increasing evidence indicates that diabetes is also one of the most prevalent disorders characterized by impaired skeletal muscle regeneration, yet underlying mechanisms and therapeutic treatments remain poorly established. In this review, we describe the cellular and molecular alterations currently known to occur during skeletal muscle regeneration in people with diabetes and animal models of diabetes, including its associated comorbidities, e.g., obesity, hyperinsulinemia, and insulin resistance. We describe the role of myogenic and non-myogenic cell types on muscle regeneration in conditions with or without diabetes. Therapies for skeletal muscle regeneration and gaps in our knowledge are also discussed, while proposing future directions for the field.
Collapse
Affiliation(s)
- Ever Espino-Gonzalez
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Emilie Dalbram
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Rémi Mounier
- Institut NeuroMyoGène, Unité Physiopathologie et Génétique du Neurone et du Muscle, Université Claude Bernard Lyon 1, CNRS UMR 5261, Inserm U1315, Univ Lyon, Lyon, France
| | - Julien Gondin
- Institut NeuroMyoGène, Unité Physiopathologie et Génétique du Neurone et du Muscle, Université Claude Bernard Lyon 1, CNRS UMR 5261, Inserm U1315, Univ Lyon, Lyon, France
| | - Jean Farup
- Department of Biomedicine, Aarhus University, Aarhus 8000, Denmark; Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus 8200, Denmark
| | - Niels Jessen
- Department of Biomedicine, Aarhus University, Aarhus 8000, Denmark; Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus 8200, Denmark; Department of Clinical Pharmacology, Aarhus University Hospital, Aarhus 8200, Denmark
| | - Jonas T Treebak
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark.
| |
Collapse
|
7
|
Wang Q, Cui C, Zhang N, Lin W, Chai S, Chow SKH, Wong RMY, Hu Y, Law SW, Cheung WH. Effects of physical exercise on neuromuscular junction degeneration during ageing: A systematic review. J Orthop Translat 2024; 46:91-102. [PMID: 38817243 PMCID: PMC11137388 DOI: 10.1016/j.jot.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/27/2024] [Accepted: 03/31/2024] [Indexed: 06/01/2024] Open
Abstract
The neuromuscular junction (NMJ) is a specialized chemical synapse that converts neural impulses into muscle action. Age-associated NMJ degeneration, which involves nerve terminal and postsynaptic decline, denervation, and loss of motor units, significantly contributes to muscle weakness and dysfunction. Although physical training has been shown to make substantial modifications in NMJ of both young and aged animals, the results are often influenced by methodological variables in existing studies. Moreover, there is still lack of strong consensus on the specific effects of exercise on improving the morphology and function of the ageing NMJ. Consequently, the purpose of this study was to conduct a systematic review to elucidate the effects of exercise training on NMJ compartments in the elderly. We conducted a systematic review using PubMed, Embase, and Web of Science databases, employing relevant keywords. Two independent reviewers selected studies that detailed NMJ changes during exercise in ageing, written in English, and available in full text. In total, 20 papers were included. We examined the altered adaptation of the NMJ to exercise, focusing on presynaptic and postsynaptic structures and myofibers in older animals or humans. Our findings indicated that aged NMJs exhibited different adaptive responses to physical exercise compared to younger counterparts. Endurance training, compared with resistance and voluntary exercise regimens, was found to have a more pronounced effect on NMJ structural remodeling, particularly in fast twitch muscle fibers. Physical exercise was observed to promote the formation and maintenance of acetylcholine receptor (AChR) clusters by increasing the recombinant docking protein 7 (Dok7) expression and stabilizing Agrin and lipoprotein receptor-related protein 4 (LRP4). These insights suggest that research on exercise-related therapies could potentially attenuate the progression of neuromuscular degeneration. Translational potential of this article: This systematic review provides a detailed overview of the effects of different types of physical exercise on improving NMJ in the elderly, providing scientific support for the timely intervention of muscle degeneration in the elderly by physical exercise, and providing help for the development of new therapeutic interventions in the future.
Collapse
Affiliation(s)
- Qianjin Wang
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Can Cui
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Ning Zhang
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Wujian Lin
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Senlin Chai
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Simon Kwoon-Ho Chow
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, USA
| | - Ronald Man Yeung Wong
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Yong Hu
- Department of Orthopaedics and Traumatology, The University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Sheung Wai Law
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Wing-Hoi Cheung
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
| |
Collapse
|
8
|
Ruple BA, Mattingly ML, Godwin JS, McIntosh MC, Kontos NJ, Agyin-Birikorang A, Michel JM, Plotkin DL, Chen SY, Ziegenfuss TN, Fruge AD, Gladden LB, Robinson AT, Mobley CB, Mackey AL, Roberts MD. The effects of resistance training on denervated myofibers, senescent cells, and associated protein markers in middle-aged adults. FASEB J 2024; 38:e23621. [PMID: 38651653 PMCID: PMC11047210 DOI: 10.1096/fj.202302103rrr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 04/04/2024] [Accepted: 04/08/2024] [Indexed: 04/25/2024]
Abstract
Denervated myofibers and senescent cells are hallmarks of skeletal muscle aging. However, sparse research has examined how resistance training affects these outcomes. We investigated the effects of unilateral leg extensor resistance training (2 days/week for 8 weeks) on denervated myofibers, senescent cells, and associated protein markers in apparently healthy middle-aged participants (MA, 55 ± 8 years old, 17 females, 9 males). We obtained dual-leg vastus lateralis (VL) muscle cross-sectional area (mCSA), VL biopsies, and strength assessments before and after training. Fiber cross-sectional area (fCSA), satellite cells (Pax7+), denervated myofibers (NCAM+), senescent cells (p16+ or p21+), proteins associated with denervation and senescence, and senescence-associated secretory phenotype (SASP) proteins were analyzed from biopsy specimens. Leg extensor peak torque increased after training (p < .001), while VL mCSA trended upward (interaction p = .082). No significant changes were observed for Type I/II fCSAs, NCAM+ myofibers, or senescent (p16+ or p21+) cells, albeit satellite cells increased after training (p = .037). While >90% satellite cells were not p16+ or p21+, most p16+ and p21+ cells were Pax7+ (>90% on average). Training altered 13 out of 46 proteins related to muscle-nerve communication (all upregulated, p < .05) and 10 out of 19 proteins related to cellular senescence (9 upregulated, p < .05). Only 1 out of 17 SASP protein increased with training (IGFBP-3, p = .031). In conclusion, resistance training upregulates proteins associated with muscle-nerve communication in MA participants but does not alter NCAM+ myofibers. Moreover, while training increased senescence-related proteins, this coincided with an increase in satellite cells but not alterations in senescent cell content or SASP proteins. These latter findings suggest shorter term resistance training is an unlikely inducer of cellular senescence in apparently healthy middle-aged participants. However, similar study designs are needed in older and diseased populations before definitive conclusions can be drawn.
Collapse
Affiliation(s)
| | | | | | | | | | | | - J. Max Michel
- School of Kinesiology, Auburn University, Auburn, AL, USA
| | | | | | | | | | | | | | | | - Abigail L. Mackey
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, DK
- Institute of Sports Medicine Copenhagen, Department of Orthopaedic Surgery, Copenhagen University Hospital – Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | | |
Collapse
|
9
|
Schellino R, Boido M, Vrijbloed JW, Fariello RG, Vercelli A. Synergistically Acting on Myostatin and Agrin Pathways Increases Neuromuscular Junction Stability and Endurance in Old Mice. Aging Dis 2024; 15:893-910. [PMID: 37548943 PMCID: PMC10917542 DOI: 10.14336/ad.2023.0713-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 07/13/2023] [Indexed: 08/08/2023] Open
Abstract
Sarcopenia is the primary cause of impaired motor performance in the elderly. The current prevailing approach to counteract such condition is increasing the muscle mass through inhibition of the myostatin system: however, this strategy only moderately improves muscular strength, not being able to sustain the innervation of the hypertrophic muscle per se, leading to a progressive worsening of motor performances. Thus, we proposed the administration of ActR-Fc-nLG3, a protein that combines the soluble activin receptor, a strong myostatin inhibitor, with the C-terminal agrin nLG3 domain. This compound has the potential of reinforcing neuro-muscular stability to the hypertrophic muscle. We previously demonstrated an enhancement of motor endurance and ACh receptor aggregation in young mice after ActR-Fc-nLG3 administration. Now we extended these observations by demonstrating that also in aged (2 years-old) mice, long-term administration of ActR-Fc-nLG3 increases in a sustained way both motor endurance and muscle strength, compared with ActR-Fc, a myostatin inhibitor, alone. Histological data demonstrate that the administration of this biological improves neuromuscular stability and fiber innervation maintenance, preventing muscle fiber atrophy and inducing only moderate hypertrophy. Moreover, at the postsynaptic site we observe an increased folding in the soleplate, a likely anatomical substrate for improved neurotransmission efficiency in the NMJ, that may lead to enhanced motor endurance. We suggest that ActR-Fc-nLG3 may become a valid option for treating sarcopenia and possibly other disorders of striatal muscles.
Collapse
Affiliation(s)
- Roberta Schellino
- Department of Neuroscience Rita Levi-Montalcini, University of Turin, Turin 10126, Italy
- Neuroscience Institute Cavalieri Ottolenghi, University of Turin, Orbassano, 10043 Italy
| | - Marina Boido
- Department of Neuroscience Rita Levi-Montalcini, University of Turin, Turin 10126, Italy
- Neuroscience Institute Cavalieri Ottolenghi, University of Turin, Orbassano, 10043 Italy
| | | | | | - Alessandro Vercelli
- Department of Neuroscience Rita Levi-Montalcini, University of Turin, Turin 10126, Italy
- Neuroscience Institute Cavalieri Ottolenghi, University of Turin, Orbassano, 10043 Italy
| |
Collapse
|
10
|
Eguchi T, Tezuka T, Watanabe Y, Inoue-Yamauchi A, Sagara H, Ozawa M, Yamanashi Y. Calcium-binding protein 7 expressed in muscle negatively regulates age-related degeneration of neuromuscular junctions in mice. iScience 2024; 27:108997. [PMID: 38327785 PMCID: PMC10847746 DOI: 10.1016/j.isci.2024.108997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/05/2023] [Accepted: 01/19/2024] [Indexed: 02/09/2024] Open
Abstract
The neuromuscular junction (NMJ) forms centrally in myotubes and, as the only synapse between motor neuron and myotube, are indispensable for motor activity. The midmuscle formation of NMJs, including midmuscle-restricted expression of NMJ-related genes, is governed by the muscle-specific kinase (MuSK). However, mechanisms underlying MuSK-mediated signaling are unclear. Here, we find that the Calcium-binding protein 7 (Cabp7) gene shows midmuscle-restricted expression, and muscle-specific depletion of Cabp7 in mice accelerated age-related NMJ degeneration, muscle weakness/atrophy, and motor dysfunction. Surprisingly, forced expression in muscle of CIP, an inhibitory peptide of the negative regulator of NMJ formation cyclin-dependent kinase 5 (Cdk5), restored NMJ integrity and muscle strength, and healed muscle atrophy in muscle-specific Cabp7-deficient mice, which showed increased muscle expression of the Cdk5 activator p25. These findings together demonstrate that MuSK-mediated signaling induces muscle expression of Cabp7, which suppresses age-related NMJ degeneration likely by attenuating p25 expression, providing insights into prophylactic/therapeutic intervention against age-related motor dysfunction.
Collapse
Affiliation(s)
- Takahiro Eguchi
- Division of Genetics, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Tohru Tezuka
- Division of Genetics, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Yuji Watanabe
- Medical Proteomics Laboratory, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Akane Inoue-Yamauchi
- Division of Genetics, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Hiroshi Sagara
- Medical Proteomics Laboratory, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Manabu Ozawa
- Laboratory of Reproductive Systems Biology, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
- Core Laboratory for Developing Advanced Animal Models, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Yuji Yamanashi
- Division of Genetics, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| |
Collapse
|
11
|
Sánchez-Sánchez JL, He L, Morales JS, de Souto Barreto P, Jiménez-Pavón D, Carbonell-Baeza A, Casas-Herrero Á, Gallardo-Gómez D, Lucia A, Del Pozo Cruz B, Valenzuela PL. Association of physical behaviours with sarcopenia in older adults: a systematic review and meta-analysis of observational studies. THE LANCET. HEALTHY LONGEVITY 2024; 5:e108-e119. [PMID: 38310891 DOI: 10.1016/s2666-7568(23)00241-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 11/08/2023] [Accepted: 11/13/2023] [Indexed: 02/06/2024] Open
Abstract
BACKGROUND Physical behaviours (ie, physical activity and sedentary behaviour) might have a role in the development of sarcopenia, although the evidence is unclear. We aimed to explore the association of total and intensity-specific levels of physical activity and sedentary behaviour with sarcopenia and its components (ie, muscle mass, muscle strength, and physical performance) in older adults. METHODS We conducted a systematic review and meta-analysis and searched MEDLINE (via PubMed), Scopus, and Web of Science from inception to July 26, 2022, for peer-reviewed, observational studies or baseline data from randomised clinical trials conducted in older adults (ie, individual age ≥60 years or mean age ≥65 years) and published in English that reported on the association of physical activity or sedentary behaviour or both with sarcopenia (or its determinants: muscle mass or strength, and physical performance). Physical activity and sedentary behaviour were measured by any method. The main outcome was sarcopenia, which could be diagnosed by any means. Estimates were extracted and pooled using Bayesian meta-analytic models and publication bias was assessed using the Egger's test. This study is registered with PROSPERO, CRD42022315865. FINDINGS We identified 15 766 records, of which 124 studies (230 174 older adults; 121 301 [52·7%] were female and 108 873 [47·3%] were male) were included in the systematic review. 86 studies were subsequently included in the meta-analysis. Higher levels of total physical activity were inversely associated with sarcopenia both cross-sectionally (21 studies, n=59 572; odds ratio 0·49, 95% credible interval 0·37-0·62) and longitudinally (four studies, n=7545; 0·51, 0·27-0·94). A protective association was also identified for moderate-to-vigorous physical activity in cross-sectional research (five studies, n=6787; 0·85, 0·71-0·99), whereas no association was identified for the remaining physical behaviours (ie, steps, light physical activity, or sedentary behaviour). INTERPRETATION Total and moderate-to-vigorous physical activity are inversely associated with sarcopenia. These findings might support the importance of moderate-to-vigorous, rather than light, intensity physical activity-based interventions to prevent sarcopenia. FUNDING None. TRANSLATION For the Spanish translation of the abstract see Supplementary Materials section.
Collapse
Affiliation(s)
- Juan Luis Sánchez-Sánchez
- Faculty of Sports Sciences, Universidad Europea de Madrid, Madrid, Spain; Department of Physical Education, Faculty of Education Sciences, University of Cádiz, Puerto Real, Spain; Health Sciences Department, Universidad Pública de Navarra, Pamplona, Spain.
| | - Lingxiao He
- School of Public Health, Xiamen University, Xiamen, China
| | - Javier S Morales
- Department of Physical Education, Faculty of Education Sciences, University of Cádiz, Puerto Real, Spain; Biomedical Research Innovation Institute of Cádiz, University of Cádiz, Cádiz, Spain
| | - Philipe de Souto Barreto
- IHU HealthAge, Toulouse, France; Gerontopole of Toulouse, Institute of Ageing, Toulouse University Hospital (CHU Toulouse), Toulouse, France; Maintain Aging Research Team, Centre d'Epidémiologie et de Recherche en santé des POPulations (CERPOP), Inserm, Université Paul Sabatier, Toulouse, France
| | - David Jiménez-Pavón
- Department of Physical Education, Faculty of Education Sciences, University of Cádiz, Puerto Real, Spain; Biomedical Research Innovation Institute of Cádiz, University of Cádiz, Cádiz, Spain; CIBER of Frailty and Healthy Aging (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - Ana Carbonell-Baeza
- Department of Physical Education, Faculty of Education Sciences, University of Cádiz, Puerto Real, Spain; Biomedical Research Innovation Institute of Cádiz, University of Cádiz, Cádiz, Spain
| | - Álvaro Casas-Herrero
- CIBER of Frailty and Healthy Aging (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain; Navarrabiomed, Hospital Universitario de Navarra, Universidad Pública de Navarra, IdiSNA, Pamplona, Spain; Geriatric Department, Hospital Universitario de Navarra, Pamplona, Spain
| | - Daniel Gallardo-Gómez
- Department of Physical Education and Sports, Faculty of Education, University of Seville, Seville, Spain; Epidemiology of Physical Activity and Fitness Across Lifespan Research Group, University of Seville, Seville, Spain
| | - Alejandro Lucia
- Faculty of Sports Sciences, Universidad Europea de Madrid, Madrid, Spain; CIBER of Frailty and Healthy Aging (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - Borja Del Pozo Cruz
- Department of Physical Education, Faculty of Education Sciences, University of Cádiz, Puerto Real, Spain; Biomedical Research Innovation Institute of Cádiz, University of Cádiz, Cádiz, Spain; Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| | - Pedro L Valenzuela
- Faculty of Sports Sciences, Universidad Europea de Madrid, Madrid, Spain; Physical Activity and Health Research Group, Research Institute of Hospital 12 de Octubre, Madrid, Spain; Department of Systems Biology, University of Alcalá, Madrid, Spain
| |
Collapse
|
12
|
Tøien T, Nielsen JL, Berg OK, Brobakken MF, Nyberg SK, Espedal L, Malmo T, Frandsen U, Aagaard P, Wang E. The impact of life-long strength versus endurance training on muscle fiber morphology and phenotype composition in older men. J Appl Physiol (1985) 2023; 135:1360-1371. [PMID: 37881849 PMCID: PMC10979801 DOI: 10.1152/japplphysiol.00208.2023] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 10/11/2023] [Accepted: 10/25/2023] [Indexed: 10/27/2023] Open
Abstract
Aging is typically associated with decreased muscle strength and rate of force development (RFD), partly explained by motor unit remodeling due to denervation, and subsequent loss of fast-twitch type II myofibers. Exercise is commonly advocated to counteract this detrimental loss. However, it is unclear how life-long strength versus endurance training may differentially affect markers of denervation and reinnervation of skeletal myofibers and, in turn, affect the proportion and morphology of fast-twitch type II musculature. Thus, we compared fiber type distribution, fiber type grouping, and the prevalence of atrophic myofibers (≤1,494 µm2) in strength-trained (OS) versus endurance-trained (OE) master athletes and compared the results to recreationally active older adults (all >70 yr, OC) and young habitually active references (<30 yr, YC). Immunofluorescent stainings were performed on biopsy samples from vastus lateralis, along with leg press maximal strength and RFD measurements. OS demonstrated similar type II fiber distribution (OS: 52.0 ± 16.4%; YC: 51.1 ± 14.4%), fiber type grouping, maximal strength (OS: 170.0 ± 18.9 kg, YC: 151.0 ± 24.4 kg), and RFD (OS: 3,993 ± 894 N·s-1, YC: 3,470 ± 1,394 N·s-1) as young, and absence of atrophic myofibers (OS: 0.2 ± 0.7%; YC: 0.1 ± 0.4%). In contrast, OE and OC exhibited more atrophic fibers (OE: 1.2 ± 1.0%; OC: 1.1 ± 1.4%), more grouped fibers, and smaller proportion of type II fibers (OE: 39.3 ± 11.9%; OC: 35.0 ± 12.4%) than OS and YC (all P < 0.05). In conclusion, strength-trained master athletes were characterized by similar muscle morphology as young, which was not the case for recreationally active or endurance-trained old. These results indicate that strength training may preserve type II fibers with advancing age in older men, likely as a result of chronic use of high contractile force generation.NEW & NOTEWORTHY Aging is associated with loss of fast-twitch type II myofibers, motor unit remodeling, and grouping of myofibers. This study reveals, for the first time, that strength training preserves neural innervation of type II fibers, resulting in similar myofiber type distribution and grouping in life-long strength-trained master athletes as young moderately active adults. In contrast, life-long endurance-trained master athletes and recreationally active old adults demonstrated higher proportion of type I fibers accompanied by more marked grouping of type I myofibers, and more atrophic fibers compared with strength-trained master athletes and young individuals. Thus, strength training should be utilized as a training modality for preservation of fast-twitch musculature, maximal muscle strength, and rapid force capacity (RFD) with advancing age.
Collapse
Affiliation(s)
- Tiril Tøien
- Department of Health and Social Sciences, Molde University College, Molde, Norway
| | - Jakob Lindberg Nielsen
- Department of Sports Science and Clinical Biomechanics, Research Unit for Muscle Physiology and Biomechanics, University of Southern Denmark, Odense, Denmark
| | - Ole Kristian Berg
- Department of Health and Social Sciences, Molde University College, Molde, Norway
| | - Mathias Forsberg Brobakken
- Department of Health and Social Sciences, Molde University College, Molde, Norway
- Department of Psychosis and Rehabilitation, Psychiatry Clinic, St. Olavs University Hospital, Trondheim, Norway
| | - Stian Kwak Nyberg
- Department of Anesthesiology and Intensive Care, Drammen Hospital, Vestre Viken Hospital Trust, Drammen, Norway
| | - Lars Espedal
- Department of Health and Social Sciences, Molde University College, Molde, Norway
| | - Thomas Malmo
- Norwegian Defence University College, Norwegian Armed Forces, Oslo, Norway
| | - Ulrik Frandsen
- Department of Sports Science and Clinical Biomechanics, Research Unit for Muscle Physiology and Biomechanics, University of Southern Denmark, Odense, Denmark
| | - Per Aagaard
- Department of Sports Science and Clinical Biomechanics, Research Unit for Muscle Physiology and Biomechanics, University of Southern Denmark, Odense, Denmark
| | - Eivind Wang
- Department of Health and Social Sciences, Molde University College, Molde, Norway
- Department of Psychosis and Rehabilitation, Psychiatry Clinic, St. Olavs University Hospital, Trondheim, Norway
| |
Collapse
|
13
|
Chen YC, Chen WC, Liu CW, Huang WY, Lu IC, Lin CW, Huang RY, Chen JS, Huang CH. Is moderate resistance training adequate for older adults with sarcopenia? A systematic review and network meta-analysis of RCTs. Eur Rev Aging Phys Act 2023; 20:22. [PMID: 38030985 PMCID: PMC10687931 DOI: 10.1186/s11556-023-00333-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 11/19/2023] [Indexed: 12/01/2023] Open
Abstract
BACKGROUND Resistance training (RT) and nutritional supplementation are recommended for the management of sarcopenia in older adults. However, optimal RT intensity for the treatment of sarcopenia has not been well investigated. METHODS This network meta-analysis aims to determine the comparative effectiveness of interventions for sarcopenia, taking RT intensity into consideration. RT intensity was classified into light-to-moderate intensity RT(LMRT), moderate intensity RT(MRT), and moderate-to-vigorous intensity RT(MVRT) based on percentage of one repetition maximum (%1RM) and/or rating of perceived exertion. RESULTS A total of 50 RCTs (N = 4,085) were included after screening 3,485 articles. The results confirmed that RT with or without nutrition was positively associated with improved measures of muscle strength and physical performance. Regarding RT intensity, LMRT only demonstrated positive effects on hand grip (aerobic training + LMRT + nutrition: mean difference [MD] = 2.88; 95% credential intervals [CrI] = 0.43,5.32). MRT provided benefits on improvement in the 30-s chair stand test (repetitions) (MRT: MD = 2.98, 95% CrI = 0.35,5.59), timed up and go test (MRT: MD = -1.74, 95% CrI: = -3.34,-0.56), hand grip (MRT: MD = 2.44; 95% CrI = 0.03,5.70), and leg press (MRT: MD = 8.36; 95% CrI = 1.87,13.4). MVRT also improved chair stand test repetitions (MVRT: MD = 5.64, 95% CrI = 0.14,11.4), gait speed (MVRT + nutrition: MD = 0.21, 95% CrI = 0.003,0.48), appendicular skeletal muscle index (MVRT + nutrition: MD = 0.25, 95% CrI = 0.01,0.5), and leg press (MVRT: MD = 14.7, 95% CrI: 5.96,22.4; MVRT + nutrition: MD = 17.8, 95% CrI: 7.55,28.6). CONCLUSION MVRT had greater benefits on muscle mass, lower extremity strength, and physical performance compared to MRT. Increasing RT intensity may be recommended for sarcopenic older adults.
Collapse
Affiliation(s)
- Yu Chang Chen
- Department of Family Medicine and Community Medicine, E-Da Hospital, I-Shou University, No. 1, Yida Road, Jiaosu Village, Yanchao District, Kaohsiung City, 82445, Taiwan
| | - Wang-Chun Chen
- Department of Pharmacy, E-Da Hospital, I-Shou University, No. 1, Yida Rd., Jiaosu Village, Yanchao District, Kaohsiung City, 82445, Taiwan
- Department of Chemical Engineering and Institute of Biotechnology and Chemical Engineering, I-Shou University, No.8, Yida Rd., Jiaosu Village, Yanchao District, Kaohsiung City, 82445, Taiwan
| | - Chia-Wei Liu
- Department of Family Medicine and Community Medicine, E-Da Hospital, I-Shou University, No. 1, Yida Road, Jiaosu Village, Yanchao District, Kaohsiung City, 82445, Taiwan
| | - Wei-Yu Huang
- Department of Family Medicine and Community Medicine, E-Da Hospital, I-Shou University, No. 1, Yida Road, Jiaosu Village, Yanchao District, Kaohsiung City, 82445, Taiwan
| | - ICheng Lu
- Department of Family Medicine and Community Medicine, E-Da Hospital, I-Shou University, No. 1, Yida Road, Jiaosu Village, Yanchao District, Kaohsiung City, 82445, Taiwan
- School of Medicine for International Students, College of Medicine, I-Shou University, No. 8, Yida Rd., Jiaosu Village, Yanchao District, Kaohsiung City, 82445, Taiwan
| | - Chi Wei Lin
- Department of Family Medicine and Community Medicine, E-Da Hospital, I-Shou University, No. 1, Yida Road, Jiaosu Village, Yanchao District, Kaohsiung City, 82445, Taiwan
- School of Medicine for International Students, College of Medicine, I-Shou University, No. 8, Yida Rd., Jiaosu Village, Yanchao District, Kaohsiung City, 82445, Taiwan
| | - Ru Yi Huang
- Department of Family Medicine and Community Medicine, E-Da Hospital, I-Shou University, No. 1, Yida Road, Jiaosu Village, Yanchao District, Kaohsiung City, 82445, Taiwan
- School of Medicine for International Students, College of Medicine, I-Shou University, No. 8, Yida Rd., Jiaosu Village, Yanchao District, Kaohsiung City, 82445, Taiwan
- Data Science Degree Program, National Taiwan University and Academia sinica, No.1, Section 4, Roosevelt Rd, Da'an District, Taipei City, 10617, Taiwan (R.O.C.)
| | - Jung Sheng Chen
- Department of Medical Research, E-Da Hospital, I-Shou University, No. 1, Yida Rd., Jiaosu Village, Yanchao District, Kaohsiung City, 82445, Taiwan
| | - Chi Hsien Huang
- Department of Family Medicine and Community Medicine, E-Da Hospital, I-Shou University, No. 1, Yida Road, Jiaosu Village, Yanchao District, Kaohsiung City, 82445, Taiwan.
- School of Medicine for International Students, College of Medicine, I-Shou University, No. 8, Yida Rd., Jiaosu Village, Yanchao District, Kaohsiung City, 82445, Taiwan.
| |
Collapse
|
14
|
Shavlakadze T, Xiong K, Mishra S, McEwen C, Gadi A, Wakai M, Salmon H, Stec MJ, Negron N, Ni M, Wei Y, Atwal GS, Bai Y, Glass DJ. Age-related gene expression signatures from limb skeletal muscles and the diaphragm in mice and rats reveal common and species-specific changes. Skelet Muscle 2023; 13:11. [PMID: 37438807 DOI: 10.1186/s13395-023-00321-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 06/13/2023] [Indexed: 07/14/2023] Open
Abstract
BACKGROUND As a result of aging, skeletal muscle undergoes atrophy and a decrease in function. This age-related skeletal muscle weakness is known as "sarcopenia". Sarcopenia is part of the frailty observed in humans. In order to discover treatments for sarcopenia, it is necessary to determine appropriate preclinical models and the genes and signaling pathways that change with age in these models. METHODS AND RESULTS To understand the changes in gene expression that occur as a result of aging in skeletal muscles, we generated a multi-time-point gene expression signature throughout the lifespan of mice and rats, as these are the most commonly used species in preclinical research and intervention testing. Gastrocnemius, tibialis anterior, soleus, and diaphragm muscles from male and female C57Bl/6J mice and male Sprague Dawley rats were analyzed at ages 6, 12, 18, 21, 24, and 27 months, plus an additional 9-month group was used for rats. More age-related genes were identified in rat skeletal muscles compared with mice; this was consistent with the finding that rat muscles undergo more robust age-related decline in mass. In both species, pathways associated with innate immunity and inflammation linearly increased with age. Pathways linked with extracellular matrix remodeling were also universally downregulated. Interestingly, late downregulated pathways were exclusively found in the rat limb muscles and these were linked to metabolism and mitochondrial respiration; this was not seen in the mouse. CONCLUSIONS This extensive, side-by-side transcriptomic profiling shows that the skeletal muscle in rats is impacted more by aging compared with mice, and the pattern of decline in the rat may be more representative of the human. The observed changes point to potential therapeutic interventions to avoid age-related decline in skeletal muscle function.
Collapse
Affiliation(s)
- Tea Shavlakadze
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY, 10591, USA
| | - Kun Xiong
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY, 10591, USA
| | - Shawn Mishra
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY, 10591, USA
| | - Corissa McEwen
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY, 10591, USA
| | - Abhilash Gadi
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY, 10591, USA
| | - Matthew Wakai
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY, 10591, USA
| | - Hunter Salmon
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY, 10591, USA
| | - Michael J Stec
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY, 10591, USA
| | - Nicole Negron
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY, 10591, USA
| | - Min Ni
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY, 10591, USA
| | - Yi Wei
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY, 10591, USA
| | - Gurinder S Atwal
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY, 10591, USA
| | - Yu Bai
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY, 10591, USA
| | - David J Glass
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY, 10591, USA.
| |
Collapse
|
15
|
So HK, Kim H, Lee J, You CL, Yun CE, Jeong HJ, Jin EJ, Jo Y, Ryu D, Bae GU, Kang JS. Protein Arginine Methyltransferase 1 Ablation in Motor Neurons Causes Mitochondrial Dysfunction Leading to Age-related Motor Neuron Degeneration with Muscle Loss. RESEARCH (WASHINGTON, D.C.) 2023; 6:0158. [PMID: 37342629 PMCID: PMC10278992 DOI: 10.34133/research.0158] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 05/08/2023] [Indexed: 06/23/2023]
Abstract
Neuromuscular dysfunction is tightly associated with muscle wasting that occurs with age or due to degenerative diseases. However, the molecular mechanisms underlying neuromuscular dysfunction are currently unclear. Recent studies have proposed important roles of Protein arginine methyltransferase 1 (Prmt1) in muscle stem cell function and muscle maintenance. In the current study, we set out to determine the role of Prmt1 in neuromuscular function by generating mice with motor neuron-specific ablation of Prmt1 (mnKO) using Hb9-Cre. mnKO exhibited age-related motor neuron degeneration and neuromuscular dysfunction leading to premature muscle loss and lethality. Prmt1 deficiency also impaired motor function recovery and muscle reinnervation after sciatic nerve injury. The transcriptome analysis of aged mnKO lumbar spinal cords revealed alterations in genes related to inflammation, cell death, oxidative stress, and mitochondria. Consistently, mnKO lumbar spinal cords of sciatic nerve injury model or aged mice exhibited elevated cellular stress response in motor neurons. Furthermore, Prmt1 inhibition in motor neurons elicited mitochondrial dysfunction. Our findings demonstrate that Prmt1 ablation in motor neurons causes age-related motor neuron degeneration attributing to muscle loss. Thus, Prmt1 is a potential target for the prevention or intervention of sarcopenia and neuromuscular dysfunction related to aging.
Collapse
Affiliation(s)
- Hyun-Kyung So
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Korea
- Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Hyebeen Kim
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Korea
- Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Jinwoo Lee
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Korea
- Research Institute of Aging-Related Diseases, AniMusCure, Inc., Suwon, Korea
| | - Chang-Lim You
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Korea
- Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Chae-Eun Yun
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Korea
- Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Hyeon-Ju Jeong
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Korea
- Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Eun-Ju Jin
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Yunju Jo
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Dongryeol Ryu
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Gyu-Un Bae
- Drug Information Research Institute, Muscle Physiome Research Center, College of Pharmacy, Sookmyung Women’s University, Seoul, Korea
| | - Jong-Sun Kang
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Korea
- Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon, Korea
| |
Collapse
|
16
|
Hughes DC, Baehr LM, Waddell DS, Sharples AP, Bodine SC. Ubiquitin Ligases in Longevity and Aging Skeletal Muscle. Int J Mol Sci 2022; 23:7602. [PMID: 35886949 PMCID: PMC9315556 DOI: 10.3390/ijms23147602] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/07/2022] [Accepted: 07/08/2022] [Indexed: 12/07/2022] Open
Abstract
The development and prevalence of diseases associated with aging presents a global health burden on society. One hallmark of aging is the loss of proteostasis which is caused in part by alterations to the ubiquitin-proteasome system (UPS) and lysosome-autophagy system leading to impaired function and maintenance of mass in tissues such as skeletal muscle. In the instance of skeletal muscle, the impairment of function occurs early in the aging process and is dependent on proteostatic mechanisms. The UPS plays a pivotal role in degradation of misfolded and aggregated proteins. For the purpose of this review, we will discuss the role of the UPS system in the context of age-related loss of muscle mass and function. We highlight the significant role that E3 ubiquitin ligases play in the turnover of key components (e.g., mitochondria and neuromuscular junction) essential to skeletal muscle function and the influence of aging. In addition, we will briefly discuss the contribution of the UPS system to lifespan. By understanding the UPS system as part of the proteostasis network in age-related diseases and disorders such as sarcopenia, new discoveries can be made and new interventions can be developed which will preserve muscle function and maintain quality of life with advancing age.
Collapse
Affiliation(s)
- David C. Hughes
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; (L.M.B.); (S.C.B.)
| | - Leslie M. Baehr
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; (L.M.B.); (S.C.B.)
| | - David S. Waddell
- Department of Biology, University of North Florida, Jacksonville, FL 32224, USA;
| | - Adam P. Sharples
- Institute for Physical Performance, Norwegian School of Sport Sciences (NiH), 0863 Oslo, Norway;
| | - Sue C. Bodine
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; (L.M.B.); (S.C.B.)
| |
Collapse
|
17
|
Soendenbroe C, Flindt Heisterberg MF, Schjerling P, Kjaer M, Andersen JL, Mackey AL. Human skeletal muscle acetylcholine receptor gene expression in elderly males performing heavy resistance exercise. Am J Physiol Cell Physiol 2022; 323:C159-C169. [PMID: 35649253 DOI: 10.1152/ajpcell.00365.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Muscle fiber denervation is a major contributor to the decline in muscle mass and function during aging. Heavy resistance exercise is an effective tool for increasing muscle mass and strength, but whether it can rescue denervated muscle fibers remains unclear. Therefore, the purpose of this study was to investigate the potential of heavy resistance exercise to modify indices of denervation in healthy elderly individuals. 38 healthy elderly men (72±5 years) underwent 16 weeks of heavy resistance exercise while 20 healthy elderly men (72±6 years) served as non-exercising sedentary controls. Muscle biopsies were obtained pre and post training, and midway at eight weeks. Biopsies were analysed by immunofluorescence for the prevalence of myofibers expressing embryonic myosin (MyHCe), neonatal myosin (MyHCn), nestin, and neural cell adhesion molecule (NCAM), and by RT-qPCR for gene expression levels of acetylcholine receptor (AChR) subunits, MyHCn, MyHCe, p16 and Ki67. In addition to increases in strength and type II fiber hypertrophy, heavy resistance exercise training led to a decrease in AChR α1 and ε subunit mRNA (at eight weeks). Changes in gene expression levels of the α1 and ε AChR subunits with eight weeks of heavy resistance exercise supports the role of this type of exercise in targeting stability of the neuromuscular junction. The number of fibers positive for NCAM, nestin, and MyHCn was not affected, suggesting that a longer timeframe is needed for adaptations to manifest at the protein level.
Collapse
Affiliation(s)
- Casper Soendenbroe
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery M, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen NV, Denmark.,Xlab, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen N, Denmark.,Center for Healthy Aging, Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen N, Denmark
| | - Mette F Flindt Heisterberg
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery M, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen NV, Denmark
| | - Peter Schjerling
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery M, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen NV, Denmark.,Center for Healthy Aging, Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen N, Denmark
| | - Michael Kjaer
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery M, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen NV, Denmark.,Center for Healthy Aging, Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen N, Denmark
| | - Jesper L Andersen
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery M, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen NV, Denmark.,Center for Healthy Aging, Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen N, Denmark
| | - Abigail L Mackey
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery M, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen NV, Denmark.,Xlab, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen N, Denmark.,Center for Healthy Aging, Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen N, Denmark
| |
Collapse
|
18
|
Soendenbroe C, Dahl CL, Meulengracht C, Tamáš M, Svensson RB, Schjerling P, Kjaer M, Andersen JL, Mackey AL. Preserved stem cell content and innervation profile of elderly human skeletal muscle with lifelong recreational exercise. J Physiol 2022; 600:1969-1989. [PMID: 35229299 PMCID: PMC9315046 DOI: 10.1113/jp282677] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 02/14/2022] [Indexed: 11/21/2022] Open
Abstract
Abstract Muscle fibre denervation and declining numbers of muscle stem (satellite) cells are defining characteristics of ageing skeletal muscle. The aim of this study was to investigate the potential for lifelong recreational exercise to offset muscle fibre denervation and compromised satellite cell content and function, both at rest and under challenged conditions. Sixteen elderly lifelong recreational exercisers (LLEX) were studied alongside groups of age‐matched sedentary (SED) and young subjects. Lean body mass and maximal voluntary contraction were assessed, and a strength training bout was performed. From muscle biopsies, tissue and primary myogenic cell cultures were analysed by immunofluorescence and RT‐qPCR to assess myofibre denervation and satellite cell quantity and function. LLEX demonstrated superior muscle function under challenged conditions. When compared with SED, the muscle of LLEX was found to contain a greater content of satellite cells associated with type II myofibres specifically, along with higher mRNA levels of the beta and gamma acetylcholine receptors (AChR). No difference was observed between LLEX and SED for the proportion of denervated fibres or satellite cell function, as assessed in vitro by myogenic cell differentiation and fusion index assays. When compared with inactive counterparts, the skeletal muscle of lifelong exercisers is characterised by greater fatigue resistance under challenged conditions in vivo, together with a more youthful tissue satellite cell and AChR profile. Our data suggest a little recreational level exercise goes a long way in protecting against the emergence of classic phenotypic traits associated with the aged muscle. Key points The detrimental effects of ageing can be partially offset by lifelong self‐organized recreational exercise, as evidence by preserved type II myofibre‐associated satellite cells, a beneficial muscle innervation status and greater fatigue resistance under challenged conditions. Satellite cell function (in vitro), muscle fibre size and muscle fibre denervation determined by immunofluorescence were not affected by recreational exercise. Individuals that are recreationally active are far more abundant than master athletes, which sharply increases the translational perspective of the present study. Future studies should further investigate recreational activity in relation to muscle health, while also including female participants.
Collapse
Affiliation(s)
- Casper Soendenbroe
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery M, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Building 8, Nielsine Nielsens vej 11, Copenhagen, NV, 2400, Denmark.,Xlab, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen N, 2200, Denmark.,Center for Healthy Aging, Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen N, 2200, Denmark
| | - Christopher L Dahl
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery M, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Building 8, Nielsine Nielsens vej 11, Copenhagen, NV, 2400, Denmark
| | - Christopher Meulengracht
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery M, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Building 8, Nielsine Nielsens vej 11, Copenhagen, NV, 2400, Denmark
| | - Michal Tamáš
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery M, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Building 8, Nielsine Nielsens vej 11, Copenhagen, NV, 2400, Denmark
| | - Rene B Svensson
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery M, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Building 8, Nielsine Nielsens vej 11, Copenhagen, NV, 2400, Denmark.,Center for Healthy Aging, Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen N, 2200, Denmark
| | - Peter Schjerling
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery M, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Building 8, Nielsine Nielsens vej 11, Copenhagen, NV, 2400, Denmark.,Center for Healthy Aging, Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen N, 2200, Denmark
| | - Michael Kjaer
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery M, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Building 8, Nielsine Nielsens vej 11, Copenhagen, NV, 2400, Denmark.,Center for Healthy Aging, Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen N, 2200, Denmark
| | - Jesper L Andersen
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery M, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Building 8, Nielsine Nielsens vej 11, Copenhagen, NV, 2400, Denmark.,Center for Healthy Aging, Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen N, 2200, Denmark
| | - Abigail L Mackey
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery M, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Building 8, Nielsine Nielsens vej 11, Copenhagen, NV, 2400, Denmark.,Xlab, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen N, 2200, Denmark.,Center for Healthy Aging, Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen N, 2200, Denmark
| |
Collapse
|
19
|
Moreira-Pais A, Ferreira R, Oliveira PA, Duarte JA. A neuromuscular perspective of sarcopenia pathogenesis: deciphering the signaling pathways involved. GeroScience 2022; 44:1199-1213. [PMID: 34981273 DOI: 10.1007/s11357-021-00510-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/26/2021] [Indexed: 12/18/2022] Open
Abstract
The escalation of life expectancy is accompanied by an increase in the prevalence of age-related conditions, such as sarcopenia. Sarcopenia, a muscle condition defined by low muscle strength, muscle quality or quantity, and physical performance, has a high prevalence among the elderly and is associated to increased mortality. The neuromuscular system has been emerging as a key contributor to sarcopenia pathogenesis. Indeed, the age-related degeneration of the neuromuscular junction (NMJ) function and structure may contribute to the loss of muscle strength and ultimately to the loss of muscle mass that characterize sarcopenia. The present mini-review discusses important signaling pathways involved in the function and maintenance of the NMJ, giving emphasis to the ones that might contribute to sarcopenia pathogenesis. Some conceivable biomarkers, such as C-terminal agrin fragment (CAF) and brain-derived neurotrophic factor (BDNF), and therapeutic targets, namely acetylcholine and calcitonin gene-related peptide (CGRP), can be retrieved, making way to future studies to validate their clinical use.
Collapse
Affiliation(s)
- Alexandra Moreira-Pais
- CIAFEL, Faculty of Sport, University of Porto, Dr. Plácido da Costa 91, 4200-450, Porto, Portugal. .,LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal. .,Centre for Research and Technology of Agro Environmental and Biological Sciences (CITAB), Inov4Agro, University of Trás-Os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801, Vila Real, Portugal.
| | - Rita Ferreira
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Paula A Oliveira
- Centre for Research and Technology of Agro Environmental and Biological Sciences (CITAB), Inov4Agro, University of Trás-Os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801, Vila Real, Portugal
| | - José A Duarte
- CIAFEL, Faculty of Sport, University of Porto, Dr. Plácido da Costa 91, 4200-450, Porto, Portugal.,TOXRUN - Toxicology Research Unit, University Institute of Health Sciences, CESPU, CRL, Gandra, Portugal
| |
Collapse
|
20
|
Tamáš M, Pankratova S, Schjerling P, Soendenbroe C, Yeung CC, Pennisi CP, Jakobsen JR, Krogsgaard MR, Kjaer M, Mackey AL. Mutual stimulatory signaling between human myogenic cells and rat cerebellar neurons. Physiol Rep 2021; 9:e15077. [PMID: 34713978 PMCID: PMC8554775 DOI: 10.14814/phy2.15077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 09/21/2021] [Indexed: 12/29/2022] Open
Abstract
Insight into the bidirectional signaling between primary human myogenic cells and neurons is lacking. For this purpose, human myogenic cells were derived from the semitendinosus and gracilis muscles of five healthy individuals and co-cultured with cerebellar granule neurons from two litters of 7-day-old Wistar rat pups, in muscle medium or neural medium, alongside monocultures of myogenic cells or neurons. RT-PCR was performed to determine human mRNA levels of GAPDH, Ki67, myogenin, and MUSK, and the acetylcholine receptor subtypes CHRNA1, CHRNB1, CHRNG, CHRND, and CHRNE, and rat mRNA levels of GAPDH, Fth1, Rack1, vimentin, Cdh13, and Ppp1r1a. Immunocytochemistry was used to evaluate neurite outgrowth (GAP43) in the presence and absence of myogenic cells. Co-culture with primary neurons lead to higher myogenic cell gene expression levels of GAPDH, myogenin, MUSK, CHRNA1, CHRNG, and CHRND, compared to myogenic cells cultured alone. It appeared that neurons preferentially attached to myotubes and that neurite outgrowth was enhanced when neurons were cultured with myogenic cells compared to monoculture. In neural medium, rat mRNA levels of GAPDH, vimentin, Cdh13, and Ppp1r1a were greater in co-culture, versus monoculture, whereas in muscle medium co-culture lead to lower levels of Fth1, Rack1, vimentin, and Cdh13 than monoculture. These findings demonstrate mutually beneficial stimulatory signaling between rat cerebellar granule neurons and human myogenic cells, providing support for an active role for both the neuron and the muscle cell in stimulating neurite growth and myogenesis. Bidirectional muscle nerve signaling.
Collapse
Affiliation(s)
- Michal Tamáš
- Institute of Sports Medicine CopenhagenDepartment of Orthopaedic SurgeryCopenhagen University Hospital – Bispebjerg and FrederiksbergCopenhagenDenmark
- Center for Healthy AgingDepartment of Clinical MedicineUniversity of CopenhagenCopenhagenDenmark
| | - Stanislava Pankratova
- Laboratory of Neural PlasticityDepartment of NeuroscienceUniversity of CopenhagenCopenhagenDenmark
- Comparative Pediatrics and NutritionDepartment of Veterinary and Animal SciencesUniversity of CopenhagenFrederiksberg CDenmark
| | - Peter Schjerling
- Institute of Sports Medicine CopenhagenDepartment of Orthopaedic SurgeryCopenhagen University Hospital – Bispebjerg and FrederiksbergCopenhagenDenmark
- Center for Healthy AgingDepartment of Clinical MedicineUniversity of CopenhagenCopenhagenDenmark
| | - Casper Soendenbroe
- Institute of Sports Medicine CopenhagenDepartment of Orthopaedic SurgeryCopenhagen University Hospital – Bispebjerg and FrederiksbergCopenhagenDenmark
- Center for Healthy AgingDepartment of Clinical MedicineUniversity of CopenhagenCopenhagenDenmark
- XlabDepartment of Biomedical SciencesFaculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Ching‐Yan Chloé Yeung
- Institute of Sports Medicine CopenhagenDepartment of Orthopaedic SurgeryCopenhagen University Hospital – Bispebjerg and FrederiksbergCopenhagenDenmark
- Center for Healthy AgingDepartment of Clinical MedicineUniversity of CopenhagenCopenhagenDenmark
| | - Cristian Pablo Pennisi
- Regenerative Medicine GroupDepartment of Health Science and TechnologyAalborg UniversityAalborgDenmark
| | - Jens R. Jakobsen
- Section for Sports Traumatology M51Department of Orthopaedic SurgeryCopenhagen University Hospital – Bispebjerg and FrederiksbergCopenhagenDenmark
| | - Michael R. Krogsgaard
- Section for Sports Traumatology M51Department of Orthopaedic SurgeryCopenhagen University Hospital – Bispebjerg and FrederiksbergCopenhagenDenmark
| | - Michael Kjaer
- Institute of Sports Medicine CopenhagenDepartment of Orthopaedic SurgeryCopenhagen University Hospital – Bispebjerg and FrederiksbergCopenhagenDenmark
- Center for Healthy AgingDepartment of Clinical MedicineUniversity of CopenhagenCopenhagenDenmark
| | - Abigail L. Mackey
- Institute of Sports Medicine CopenhagenDepartment of Orthopaedic SurgeryCopenhagen University Hospital – Bispebjerg and FrederiksbergCopenhagenDenmark
- Center for Healthy AgingDepartment of Clinical MedicineUniversity of CopenhagenCopenhagenDenmark
- XlabDepartment of Biomedical SciencesFaculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| |
Collapse
|
21
|
Lagerwaard B, Nieuwenhuizen AG, Bunschoten A, de Boer VC, Keijer J. Matrisome, innervation and oxidative metabolism affected in older compared with younger males with similar physical activity. J Cachexia Sarcopenia Muscle 2021; 12:1214-1231. [PMID: 34219410 PMCID: PMC8517362 DOI: 10.1002/jcsm.12753] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 04/29/2021] [Accepted: 06/08/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Due to the interaction between skeletal muscle ageing and lifestyle factors, it is often challenging to attribute the decline in muscle mass and quality to either changes in lifestyle or to advancing age itself. Because many of the physiological factors affecting muscle mass and quality are modulated by physical activity and physical activity declines with age, the aim of this study is to better understand the effects of early ageing on muscle function by comparing a population of healthy older and young males with similar physical activity patterns. METHODS Eighteen older (69 ± 2.0 years) and 20 young (22 ± 2.0 years) males were recruited based on similar self-reported physical activity, which was verified using accelerometry measurements. Gene expression profiles of vastus lateralis biopsies obtained by RNA sequencing were compared, and key results were validated using quantitative polymerase chain reaction and western blot. RESULTS Total physical activity energy expenditure was similar between the young and old group (404 ± 215 vs. 411 ± 189 kcal/day, P = 0.11). Three thousand seven hundred ninety-seven differentially expressed coding genes (DEGs) were identified (adjusted P-value cut-off of <0.05), of which 1891 were higher and 1906 were lower expressed in the older muscle. The matrisome, innervation and inflammation were the main upregulated processes, and oxidative metabolism was the main downregulated process in old compared with young muscle. Lower protein levels of mitochondrial transcription factor A (TFAM, P = 0.030) and mitochondrial respiratory Complexes IV and II (P = 0.011 and P = 0.0009, respectively) were observed, whereas a trend was observed for Complex I (P = 0.062), in older compared with young muscle. Protein expression of Complexes I and IV was significantly correlated to mitochondrial capacity in the vastus lateralis as measured in vivo (P = 0.017, R2 = 0.42 and P = 0.030, R2 = 0.36). A trend for higher muscle-specific receptor kinase (MUSK) protein levels in the older group was observed (P = 0.08). CONCLUSIONS There are clear differences in the transcriptome signatures of the vastus lateralis muscle of healthy older and young males with similar physical activity levels, including significant differences at the protein level. By disentangling physical activity and ageing, we appoint early skeletal muscle ageing processes that occur despite similar physical activity. Improved understanding of these processes will be key to design targeted anti-ageing therapies.
Collapse
Affiliation(s)
- Bart Lagerwaard
- Human and Animal PhysiologyWageningen University and ResearchWageningenThe Netherlands
- TI Food and NutritionWageningenThe Netherlands
| | - Arie G. Nieuwenhuizen
- Human and Animal PhysiologyWageningen University and ResearchWageningenThe Netherlands
| | - Annelies Bunschoten
- Human and Animal PhysiologyWageningen University and ResearchWageningenThe Netherlands
| | - Vincent C.J. de Boer
- Human and Animal PhysiologyWageningen University and ResearchWageningenThe Netherlands
| | - Jaap Keijer
- Human and Animal PhysiologyWageningen University and ResearchWageningenThe Netherlands
| |
Collapse
|
22
|
Pratt J, De Vito G, Narici M, Boreham C. Neuromuscular Junction Aging: A Role for Biomarkers and Exercise. J Gerontol A Biol Sci Med Sci 2021; 76:576-585. [PMID: 32832976 DOI: 10.1093/gerona/glaa207] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Indexed: 12/13/2022] Open
Abstract
Age-related skeletal muscle degradation known as "sarcopenia" exerts considerable strain on public health systems globally. While the pathogenesis of such atrophy is undoubtedly multifactorial, disruption at the neuromuscular junction (NMJ) has recently gained traction as a key explanatory factor. The NMJ, an essential communicatory link between nerve and muscle, undergoes profound changes with advancing age. Ascertaining whether such changes potentiate the onset of sarcopenia would be paramount in facilitating a timely implementation of targeted therapeutic strategies. Hence, there is a growing level of importance to further substantiate the effects of age on NMJs, in parallel with developing measures to attenuate such changes. As such, this review aimed to establish the current standpoint on age-related NMJ deterioration and consequences for skeletal muscle, while illuminating a role for biomarkers and exercise in ameliorating these alterations. Recent insights into the importance of key biomarkers for NMJ stability are provided, while the stimulative benefits of exercise in preserving NMJ function are demonstrated. Further elucidation of the diagnostic and prognostic relevance of biomarkers, coupled with the therapeutic benefits of regular exercise may be crucial in combating age-related NMJ and skeletal muscle degradation.
Collapse
Affiliation(s)
- Jedd Pratt
- Institute for Sport and Health, University College Dublin, Ireland.,Genuity Science, Dublin, Ireland
| | - Giuseppe De Vito
- Department of Biomedical Sciences, CIR-Myo Myology Centre, Neuromuscular Physiology Laboratory, University of Padua, Italy
| | - Marco Narici
- Department of Biomedical Sciences, CIR-Myo Myology Centre, Neuromuscular Physiology Laboratory, University of Padua, Italy
| | - Colin Boreham
- Institute for Sport and Health, University College Dublin, Ireland
| |
Collapse
|
23
|
Marcolin G, Franchi MV, Monti E, Pizzichemi M, Sarto F, Sirago G, Paoli A, Maggio M, Zampieri S, Narici M. Active older dancers have lower C-terminal Agrin fragment concentration, better balance and gait performance than sedentary peers. Exp Gerontol 2021; 153:111469. [PMID: 34246731 DOI: 10.1016/j.exger.2021.111469] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 12/12/2022]
Abstract
Motor neuron degeneration, denervation, neuromuscular junction (NMJ) fragmentation and loss of motor units (MUs), play a key-role in the development of sarcopenia. The aim of the present study was to investigate the beneficial effects of regular practice of dancing in physically active elders on concentration of C-terminal Agrin fragment (CAF), a marker of NMJ instability, muscle mass, strength, and physical performance in a group of 16 recreationally active older dancers (AOD; 70.1 ± 3.4 yr) compared to 15 age-matched sedentary peers (OS; 70.9 ± 6.2 yr). Circulating concentration of CAF was measured in serum, while morphology of the vastus lateralis and multifidus muscles was assessed by ultrasound imaging. In addition, the participants underwent two functional performance tests, the Timed Up and Go (TUG) and the 10-meter walk test (10-MWT), a lower and upper limb isometric strength test, a static and a dynamic balance test. Although no statistically significant differences were detected for both muscle morphology and isometric strength, higher CAF concentration (20%, p < 0.01) was found in OS. AOD showed a better performance in TUG (22%, p < 0.001), 10-MWT (17%, p < 0.001) and dynamic balance (25%, p < 0.01) than OS. Notably, CAF concentration correlated with dynamic balance performance (r = 0.3711, p < 0.05). Our results provide evidence that the regular practice of dancing in older age, together with non-structured light aerobic physical activities, is associated to lower CAF concentration and improved walking and balance performance. Our findings also suggest that NMJ instability, as indicated by elevated CAF serum concentration, seems to precede the loss of muscle size and alterations in muscle architecture normally associated with sarcopenia.
Collapse
Affiliation(s)
- Giuseppe Marcolin
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Martino V Franchi
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Elena Monti
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | | | - Fabio Sarto
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Giuseppe Sirago
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Antonio Paoli
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Marcello Maggio
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Sandra Zampieri
- Department of Biomedical Sciences, University of Padova, Padova, Italy; Department of Surgery, Oncology, and Gastroenterology, University of Padova, Padova, Italy
| | - Marco Narici
- Department of Biomedical Sciences, University of Padova, Padova, Italy; Myology Center (CIR-Myo), Department of Biomedical Sciences, University of Padova, Italy.
| |
Collapse
|
24
|
Gustafsson T, Ulfhake B. Sarcopenia: What Is the Origin of This Aging-Induced Disorder? Front Genet 2021; 12:688526. [PMID: 34276788 PMCID: PMC8285098 DOI: 10.3389/fgene.2021.688526] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/10/2021] [Indexed: 01/03/2023] Open
Abstract
We here review the loss of muscle function and mass (sarcopenia) in the framework of human healthspan and lifespan, and mechanisms involved in aging. The rapidly changing composition of the human population will impact the incidence and the prevalence of aging-induced disorders such as sarcopenia and, henceforth, efforts to narrow the gap between healthspan and lifespan should have top priority. There are substantial knowledge gaps in our understanding of aging. Heritability is estimated to account for only 25% of lifespan length. However, as we push the expected lifespan at birth toward those that we consider long-lived, the genetics of aging may become increasingly important. Linkage studies of genetic polymorphisms to both the susceptibility and aggressiveness of sarcopenia are still missing. Such information is needed to shed light on the large variability in clinical outcomes between individuals and why some respond to interventions while others do not. We here make a case for the concept that sarcopenia has a neurogenic origin and that in manifest sarcopenia, nerve and myofibers enter into a vicious cycle that will escalate the disease progression. We point to gaps in knowledge, for example the crosstalk between the motor axon, terminal Schwann cell, and myofiber in the denervation processes that leads to a loss of motor units and muscle weakness. Further, we argue that the operational definition of sarcopenia should be complemented with dynamic metrics that, along with validated biomarkers, may facilitate early preclinical diagnosis of individuals vulnerable to develop advanced sarcopenia. We argue that preventive measures are likely to be more effective to counter act aging-induced disorders than efforts to treat manifest clinical conditions. To achieve compliance with a prescription of preventive measures that may be life-long, we need to identify reliable predictors to design rational and convincing interventions.
Collapse
Affiliation(s)
- Thomas Gustafsson
- Division of Clinical Physiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Brun Ulfhake
- Division of Clinical Physiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
25
|
Soendenbroe C, Andersen JL, Mackey AL. Muscle-nerve communication and the molecular assessment of human skeletal muscle denervation with aging. Am J Physiol Cell Physiol 2021; 321:C317-C329. [PMID: 34161153 DOI: 10.1152/ajpcell.00174.2021] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Muscle fiber denervation is a major contributor to the decline in physical function observed with aging. Denervation can occur through breakdown of the neuromuscular junctions (NMJ) itself, affecting only that particular fiber, or through the death of a motor neuron, which can lead to a loss of all the muscle fibers in that motor unit. In this review, we discuss the muscle-nerve relationship, where signaling from both the motor neuron and the muscle fiber is required for maximal preservation of neuromuscular function in old age. Physical activity is likely to be the most important single factor that can contribute to this preservation. Furthermore, we propose that inactivity is not an innocent bystander, but plays an active role in denervation through the production of signals hostile to neuron survival. Investigating denervation in human muscle tissue samples is challenging due to the shared protein profile of regenerating and denervated muscle fibers. In this review, we provide a detailed overview of the key traits observed in immunohistochemical preparations of muscle biopsies from healthy, young, and elderly individuals. Overall, a combination of assessing tissue samples, circulating biomarkers, and electrophysiological assessments in humans will prove fruitful in the quest to gain more understanding of denervation of skeletal muscle. In addition, cell culture models represent a valuable tool in the search for key signaling factors exchanged between muscle and nerve, and which exercise has the capacity to alter.
Collapse
Affiliation(s)
- Casper Soendenbroe
- Department of Orthopedic Surgery, Institute of Sports Medicine Copenhagen, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark.,Xlab, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Clinical Medicine, Center for Healthy Aging, University of Copenhagen, Copenhagen, Denmark
| | - Jesper L Andersen
- Department of Orthopedic Surgery, Institute of Sports Medicine Copenhagen, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark.,Department of Clinical Medicine, Center for Healthy Aging, University of Copenhagen, Copenhagen, Denmark
| | - Abigail L Mackey
- Department of Orthopedic Surgery, Institute of Sports Medicine Copenhagen, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark.,Xlab, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Clinical Medicine, Center for Healthy Aging, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
26
|
Soendenbroe C, Mackey AL, Kjaer M. Resting in bed - how quickly does the muscle lose its nerve? J Physiol 2021; 599:2995-2996. [PMID: 33896008 DOI: 10.1113/jp281761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 04/21/2021] [Indexed: 11/08/2022] Open
Affiliation(s)
- Casper Soendenbroe
- Department of Orthopedic Surgery, Institute of Sports Medicine Copenhagen, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark.,Xlab, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen N, 2200, Denmark.,Department of Clinical Medicine, Center for Healthy Aging, University of Copenhagen, Denmark
| | - Abigail L Mackey
- Department of Orthopedic Surgery, Institute of Sports Medicine Copenhagen, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark.,Xlab, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen N, 2200, Denmark.,Department of Clinical Medicine, Center for Healthy Aging, University of Copenhagen, Denmark
| | - Michael Kjaer
- Department of Orthopedic Surgery, Institute of Sports Medicine Copenhagen, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark.,Department of Clinical Medicine, Center for Healthy Aging, University of Copenhagen, Denmark
| |
Collapse
|
27
|
Sewry CA, Feng L, Chambers D, Matthews E, Phadke R. Importance of immunohistochemical evaluation of developmentally regulated myosin heavy chains in human muscle biopsies. Neuromuscul Disord 2021; 31:371-384. [PMID: 33685841 DOI: 10.1016/j.nmd.2021.02.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/13/2021] [Accepted: 02/09/2021] [Indexed: 01/01/2023]
Abstract
Our retrospective immunohistochemical study of normal quadriceps muscle biopsies shows that embryonic myosin heavy chains are down-regulated by, or soon after, birth. Fetal myosin heavy chains are down-regulated by 4-6 months. Thus the presence of an appreciable number of fibres with embryonic myosin heavy chains at birth or of fetal myosin heavy chains after 6 months of age suggests a delay in maturation or an underlying abnormality. Regenerating fibres in dystrophic muscle often co-express both embryonic and fetal myosin heavy chains but more fibres with fetal than embryonic myosin heavy chains can occur. Embryonic myosin heavy chains are a useful marker of regeneration but effects of denervation, stress, disuse, and fibre maintenance also have to be taken into account. In neurogenic disorders fibres with embryonic myosin heavy chains are rare but fetal myosin heavy chain expression is common, particularly in 5q spinal muscle atrophy. Nuclear clumps in denervated muscle show fetal and sometimes embryonic myosin heavy chains. Developmentally regulated myosins are useful for highlighting the perifascicular atrophy in juvenile dermatomyositis. Our studies highlight the importance of baseline data for embryonic and fetal myosin heavy chains in human muscle biopsies and the importance of assessing them in a spectrum of neuromuscular disorders.
Collapse
Affiliation(s)
- C A Sewry
- The Dubowitz Neuromuscular Centre, UCL Queen Square Institute of Neurology Division of Neuropathology & National Hospital for Neurology and Neurosurgery, London WC1N 3BG, United Kingdom; Department of Musculoskeletal Histopathology and the Wolfson Centre for Inherited Neuromuscular Diseases, RJAH Orthopaedic Hospital NHS Trust, Oswestry, SY10 7AG, United Kingdom; Department of Cellular Pathology, Salford Royal Hospital NHS Foundation Trust, Northern Care Alliance NHS Group, Stott Lane, Salford M6 8HD, United Kingdom; The Dubowitz Neuromuscular Centre, Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, United Kingdom.
| | - L Feng
- The Dubowitz Neuromuscular Centre, UCL Queen Square Institute of Neurology Division of Neuropathology & National Hospital for Neurology and Neurosurgery, London WC1N 3BG, United Kingdom; The Dubowitz Neuromuscular Centre, Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, United Kingdom
| | - D Chambers
- The Dubowitz Neuromuscular Centre, UCL Queen Square Institute of Neurology Division of Neuropathology & National Hospital for Neurology and Neurosurgery, London WC1N 3BG, United Kingdom; The Dubowitz Neuromuscular Centre, Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, United Kingdom; The Dubowitz Neuromuscular Centre, Developmental Neurosciences Programme, UCL Great Ormond Street Institute of Child Health 30 Guildford Street, London, WC1N 1EH, United Kingdom
| | - E Matthews
- Atkinson-Morley Neuromuscular Centre, Department of Neurology, St George's University Hospitals NHS Foundation Trust, London, SW17 0QT, United Kingdom; Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, United Kingdom
| | - R Phadke
- The Dubowitz Neuromuscular Centre, UCL Queen Square Institute of Neurology Division of Neuropathology & National Hospital for Neurology and Neurosurgery, London WC1N 3BG, United Kingdom; The Dubowitz Neuromuscular Centre, Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, United Kingdom; Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London WC1N 3BG, United Kingdom
| |
Collapse
|
28
|
Piasecki J, Inns TB, Bass JJ, Scott R, Stashuk DW, Phillips BE, Atherton PJ, Piasecki M. Influence of sex on the age-related adaptations of neuromuscular function and motor unit properties in elite masters athletes. J Physiol 2021; 599:193-205. [PMID: 33006148 DOI: 10.1113/jp280679] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 09/24/2020] [Indexed: 12/30/2022] Open
Abstract
KEY POINTS Masters athletes maintain high levels of activity into older age and allow an examination of the effects of aging dissociated from the effects of increased sedentary behaviour. Evidence suggests masters athletes are more successful at motor unit remodelling, the reinnervation of denervated fibres acting to preserve muscle fibre number, but little data are available in females. Here we used intramuscular electromyography to demonstrate that motor units sampled from the tibialis anterior show indications of remodelling from middle into older age and which does not differ between males and females. The age-related trajectory of motor unit discharge characteristic differs according to sex, with female athletes progressing to a slower firing pattern that was not observed in males. Our findings indicate motor unit remodelling from middle to older age occurs to a similar extent in male and female athletes, with discharge rates progressively slowing in females only. ABSTRACT Motor unit (MU) remodelling acts to minimise loss of muscle fibres following denervation in older age, which may be more successful in masters athletes. Evidence suggests performance and neuromuscular function decline with age in this population, although the majority of studies have focused on males, with little available data on female athletes. Functional assessments of strength, balance and motor control were performed in 30 masters athletes (16 male) aged 44-83 years. Intramuscular needle electrodes were used to sample individual motor unit potentials (MUPs) and near-fibre MUPs in the tibialis anterior (TA) during isometric contractions at 25% maximum voluntary contraction, and used to determine discharge characteristics (firing rate, variability) and biomarkers of peripheral MU remodelling (MUP size, complexity, stability). Multilevel mixed-effects linear regression models examined effects of age and sex. All aspects of neuromuscular function deteriorated with age (P < 0.05) with no age × sex interactions, although males were stronger (P < 0.001). Indicators of MU remodelling also progressively increased with age to a similar extent in both sexes (P < 0.05), whilst MU firing rate progressively decreased with age in females (p = 0.029), with a non-significant increase in males (p = 0.092). Masters athletes exhibit age-related declines in neuromuscular function that are largely equal across males and females. Notably, they also display features of MU remodelling with advancing age, probably acting to reduce muscle fibre loss. The age trajectory of MU firing rate assessed at a single contraction level differed between sexes, which may reflect a greater tendency for females to develop a slower muscle phenotype.
Collapse
Affiliation(s)
- Jessica Piasecki
- Musculoskeletal Physiology Research Group, Sport, Health and Performance Enhancement Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Thomas B Inns
- Clinical, Metabolic and Molecular Physiology, MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, UK
| | - Joseph J Bass
- Clinical, Metabolic and Molecular Physiology, MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, UK
| | - Reece Scott
- Musculoskeletal Physiology Research Group, Sport, Health and Performance Enhancement Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Daniel W Stashuk
- Department of Systems Design Engineering, University of Waterloo, Ontario, Canada
| | - Bethan E Phillips
- Clinical, Metabolic and Molecular Physiology, MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, UK
| | - Philip J Atherton
- Clinical, Metabolic and Molecular Physiology, MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, UK
| | - Mathew Piasecki
- Clinical, Metabolic and Molecular Physiology, MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, UK
| |
Collapse
|
29
|
Bao Z, Cui C, Chow SKH, Qin L, Wong RMY, Cheung WH. AChRs Degeneration at NMJ in Aging-Associated Sarcopenia-A Systematic Review. Front Aging Neurosci 2020; 12:597811. [PMID: 33362532 PMCID: PMC7759742 DOI: 10.3389/fnagi.2020.597811] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 11/19/2020] [Indexed: 12/16/2022] Open
Abstract
Sarcopenia is an aging process with a decline of skeletal muscle mass and function, which is a challenging public health problem with reduced quality of life in patients. The endplate, the post-synaptic part of the neuromuscular junction (NMJ), occupies 0.1% of the myofiber surface area only, but is composed of millions of acetylcholine receptors (AChRs) that are efficient in binding to acetylcholine (ACh) and triggering skeletal muscle contraction. This systematic review aims to examine aging-associated alterations of post-synaptic AChRs, including morphology, function and related gene expression. A systematic literature search was conducted in PubMed, Embase and Web of Science with relevant keywords by two independent reviewers. Original pre-clinical and clinical studies regarding AChRs changes during aging with available full text and written in English were included. Information was extracted from the included studies for further review. In total, 30 articles were included. Various parameters assessing AChRs alterations by radioassay, immunofluorescence, electrophysiology and mechanical test were reported. Endplate fragmentation and denervation were common in old skeletal muscles during aging. To ensure efficient NMJ transmission and force generation, type I or IIb muscle fibers tended to have increased ACh quanta releasing after electrical stimulations, while type IIa muscle fibers tended to have stronger binding between ACh and AChRs, but the overall function of AChRs was reduced during aging. Alterations of AChRs area depended on muscle type, species and the progress of muscle atrophy and type I muscles fibers tended to demonstrate enlarging AChRs areas. Myogenic regulator factors (MRFs) can regulate the expression of AChRs subunits, while decreased MRF4 may lead to expression changes of AChRs subunits during aging. Sarcoglycan-α can delay low-density lipoprotein receptor-related protein 4 (LRP4) degradation. This protein was increased in old muscles but still cannot suppress the degradation of LRP4. Investigating the role of these AChRs-related genes in the process of aging may provide a potential target to treat sarcopenia.
Collapse
Affiliation(s)
- Zhengyuan Bao
- Department of Orthopaedics and Traumatology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Can Cui
- Department of Orthopaedics and Traumatology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Simon Kwoon-Ho Chow
- Department of Orthopaedics and Traumatology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China.,The CUHK-ACC Space Medicine Centre on Health Maintenance of Musculoskeletal System, The Chinese University of Hong Kong Shenzhen Research Institute, Shenzhen, China
| | - Ling Qin
- Department of Orthopaedics and Traumatology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Ronald Man Yeung Wong
- Department of Orthopaedics and Traumatology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Wing-Hoi Cheung
- Department of Orthopaedics and Traumatology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China.,The CUHK-ACC Space Medicine Centre on Health Maintenance of Musculoskeletal System, The Chinese University of Hong Kong Shenzhen Research Institute, Shenzhen, China
| |
Collapse
|
30
|
Musarò A. Muscle Homeostasis and Regeneration: From Molecular Mechanisms to Therapeutic Opportunities. Cells 2020; 9:cells9092033. [PMID: 32899793 PMCID: PMC7563331 DOI: 10.3390/cells9092033] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 09/03/2020] [Indexed: 12/31/2022] Open
Abstract
The capacity of adult muscle to regenerate in response to injury stimuli represents an important homeostatic process. Regeneration is a highly coordinated program that partially recapitulates the embryonic developmental program and involves the activation of the muscle compartment of stem cells, namely satellite cells, as well as other precursor cells, whose activity is strictly dependent on environmental signals. However, muscle regeneration is severely compromised in several pathological conditions due to either the progressive loss of stem cell populations or to missing signals that limit the damaged tissues from efficiently activating a regenerative program. It is, therefore, plausible that the loss of control over these cells’ fate might lead to pathological cell differentiation, limiting the ability of a pathological muscle to sustain an efficient regenerative process. This Special Issue aims to bring together a collection of original research and review articles addressing the intriguing field of the cellular and molecular players involved in muscle homeostasis and regeneration and to suggest potential therapeutic approaches for degenerating muscle disease.
Collapse
Affiliation(s)
- Antonio Musarò
- Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, DAHFMO-Unit of Histology and Medical Embryology, Sapienza University of Rome, Via Antonio Scarpa, 14, 00161 Rome, Italy
| |
Collapse
|
31
|
Jensen SM, Bechshøft CJL, Heisterberg MF, Schjerling P, Andersen JL, Kjaer M, Mackey AL. Macrophage Subpopulations and the Acute Inflammatory Response of Elderly Human Skeletal Muscle to Physiological Resistance Exercise. Front Physiol 2020; 11:811. [PMID: 32792975 PMCID: PMC7393256 DOI: 10.3389/fphys.2020.00811] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 06/18/2020] [Indexed: 12/13/2022] Open
Abstract
The current model for repair of damaged tissue includes immune cells, mediating the progression from a pro-inflammatory to an anti-inflammatory environment. How this process changes with aging in human skeletal muscle under conditions of physiological exercise loading remains unclear. To investigate this, 25 elderly males (mean age 70 ± SD 7 years), as well as 12 young (23 ± 3 years) and 12 elderly (74 ± 3 years) females, performed a unilateral bout of heavy resistance leg extension exercise. Biopsies were collected from the vastus lateralis muscle of the rested (control) leg, and post exercise from the exercised leg at 4.5 h, and on days 1, 4, and 7 for the male participants, or on day 5 for the female participants. Total macrophages (CD68+) as well as pro- (CD11b+) and anti-inflammatory (CD163+, CD206+) subpopulations were identified on sections by immunohistochemistry. Gene expression levels of COL1A1, TNF-a, CD68, myostatin, TCF7L2, IL-1B, IL-1R, IL-10, and Ki67 were determined by real-time RT-PCR. At rest, the muscle tissue from the elderly vs. young females was characterized by higher gene expression levels of CD68, IL-10, lower myostatin mRNA, and trends for a greater number of macrophages, while COL1A1 mRNA post exercise values were greater in the elderly vs young. For the male participants, mRNA levels of the inflammatory cytokines IL-1B, IL-1R were elevated in the early phase following exercise, followed by increases in COL1A1 and Ki67 on days 4 and 7. In general, exercise induced increases in all types of macrophages counted in the elderly, but not in young, individuals. Cells expressing CD68, CD11b, and CD206 simultaneously were the most frequently observed cell type, which raises the possibility that pure pro- and anti-inflammatory macrophages populations do not exist in healthy human skeletal muscle within the spectrum of tissue remodeling induced by physiological exercise designed to induce hypertrophy. Together these data provide insight into the time course of macrophage activity and associated molecular targets in human skeletal muscle in the context of aging and exercise.
Collapse
Affiliation(s)
- Simon M. Jensen
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery M, Bispebjerg Hospital, Copenhagen, Denmark
| | - Cecilie J. L. Bechshøft
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery M, Bispebjerg Hospital, Copenhagen, Denmark
- Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mette F. Heisterberg
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery M, Bispebjerg Hospital, Copenhagen, Denmark
- Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Peter Schjerling
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery M, Bispebjerg Hospital, Copenhagen, Denmark
- Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jesper L. Andersen
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery M, Bispebjerg Hospital, Copenhagen, Denmark
- Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Michael Kjaer
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery M, Bispebjerg Hospital, Copenhagen, Denmark
- Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Abigail L. Mackey
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery M, Bispebjerg Hospital, Copenhagen, Denmark
- Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Xlab, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|