1
|
Elmenawi S, Fawzy M. 15 Years Old ALK Gene from Birth to Adolescence; Where to in NBL. Curr Oncol Rep 2025; 27:431-445. [PMID: 40064818 PMCID: PMC11976753 DOI: 10.1007/s11912-025-01650-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/03/2025] [Indexed: 04/09/2025]
Abstract
PURPOSE OF REVIEW This review provides a comprehensive understanding of the ALK gene, encompassing its prevalence, genetic alterations, and significance in neuroblastoma diagnosis, outcome prediction, and targeted therapy utilization. The insights presented aim to inform future research directions and clinical practices in this field. RECENT FINDINGS High risk neuroblastoma, comprising approximately 50% of all cases, presents a particularly poor prognosis. In 2008, the discovery of ALK aberrations in neuroblastoma marked a significant breakthrough, leading to the recognition of ALK as a target for tumors with activating ALK alterations. This discovery has paved the way for the development of various ALK inhibitors, which have shown promising clinical efficacy. ALK amplification, often observed alongside MYCN amplification, has been associated with unfavorable outcomes in patients. Activating mutations in the kinase domain of ALK, particularly at hotspot positions F1174, R1275, and F1245, have been identified. These mutations can occur at clonal or subclonal levels, posing challenges for early detection and potentially influencing disease progression and therapy resistance. The availability of ALK inhibitors, initially developed for adult cancers, has expedited the translation of this knowledge into targeted therapies for neuroblastoma. However, resistance to ALK inhibitors can emerge as a result of treatment or preexist as subclones within the tumor prior to therapy. Future trials should focus on identifying additional targets complementing ALK inhibition to enhance treatment efficacy and overcome acquired resistance. Furthermore, the utilization of circulating tumor DNA as a non-invasive approach for longitudinal monitoring of ALK-positive neuroblastoma patients, in combination with radiographic evaluation of treatment response, holds promise for understanding dynamic tumor changes over time.
Collapse
Affiliation(s)
- Salma Elmenawi
- Clinical Research Department, Children's Cancer Hospital Egypt, 57357, 1-Sekket Elemam-Sayeda Zeinab, Cairo, Egypt.
| | - Mohamed Fawzy
- Pediatric Oncology Department, Children's Cancer Hospital Egypt, 57357, 1-Sekket Elemam-Sayeda Zeinab, Cairo, Egypt
- Pediatric Oncology Department, National Cancer Institute, Cairo, Egypt
| |
Collapse
|
2
|
DuBois SG, Ogawa C, Moreno L, Mossé YP, Fischer M, Ryan AL, Vo KT, De Wilde B, Rubio-San-Simon A, Macy ME, Howell L, Shusterman S, Corradini N, Luksch R, Aerts I, Foster JH, Weiss BD, Karthik CP, Yuen E, Avsar E, Park JR, Marachelian A. A phase 1 dose-escalation study of LY3295668 erbumine as monotherapy and in combination with topotecan and cyclophosphamide in children with relapsed/refractory neuroblastoma. Cancer 2025; 131:e35751. [PMID: 39932800 DOI: 10.1002/cncr.35751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 12/05/2024] [Accepted: 12/06/2024] [Indexed: 02/13/2025]
Abstract
BACKGROUND This study evaluated the safety, pharmacokinetics, and antitumor activity of LY3295668 erbumine as monotherapy and combination therapy in children with relapsed/refractory neuroblastoma. METHODS Patients aged 2-21 years who had relapsed/refractory neuroblastoma were enrolled. LY3295668 erbumine was evaluated at two dose levels (12 and 15 mg/m2) and administered orally twice daily continuously as monotherapy and in combination with intravenous topotecan and cyclophosphamide in 28-day cycles. RESULTS Twenty-five patients were treated. No dose-limiting toxicity occurred in monotherapy; one patient had dose-limiting toxicities in the combination therapy cohort (grade 3 mucositis and grade 4 neutropenia). The recommended phase 2 dose for both monotherapy and combination therapy was 15 mg/m2. Twenty-two patients (88%) had one or more treatment-related adverse event(s) (TRAEs), and 18 (72%) experienced grade ≥3 TRAEs. Myelosuppression was the most common high-grade TRAE observed in the combination therapy cohort. At both dose levels, steady-state plasma concentrations exceeded xenograft 90% inhibitory concentration levels. In the monotherapy cohort, one patient had a minor response, and one patient had stable disease, both continuing for >12 months. In the combination therapy cohort, two patients had a partial response, two had a minor response, and six had stable disease. Overall, the response rate, according to New Approaches to Neuroblastoma Therapy version 2.0 criteria, was 8%, and the disease control rate was 52%. CONCLUSIONS LY3295668 erbumine had a manageable safety profile as monotherapy and in combination therapy. Although proof-of-concept clinical responses were observed, future studies with biomarker-selected populations and/or novel combinations may yield higher response rates with Aurora kinase A inhibition.
Collapse
Affiliation(s)
- Steven G DuBois
- Department of Pediatric Hematology/Oncology, Dana-Farber/Boston Children's Cancer and Blood Disorders Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Chitose Ogawa
- Department of Pediatric Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Lucas Moreno
- Pediatric Oncology and Hematology, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona/Vall d'Hebron University Hospital, Barcelona, Spain
| | - Yaël P Mossé
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Matthias Fischer
- Department of Experimental Pediatric Oncology, Children's Hospital and Center for Molecular Medicine Cologne, Medical Faculty, University of Cologne, Cologne, Germany
| | - Anne L Ryan
- Department of Hematology and Oncology, Perth Children's Hospital, Nedlands, West Australia, Australia
| | - Kieuhoa T Vo
- Department of Pediatrics, University of California, San Francisco Benioff Children's Hospital and San Francisco School of Medicine, San Francisco, California, USA
| | - Bram De Wilde
- Pediatric Hematology and Oncology, Ghent University Hospital, Ghent, Belgium
| | - Alba Rubio-San-Simon
- Pediatric Hematology-Oncology Department, Children's University Hospital Niño Jesús, Madrid, Spain
| | - Margaret E Macy
- Pediatric Hematology, Oncology, and Bone Marrow Transplant, Children's Hospital Colorado/University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Lisa Howell
- Alder Hey Children's National Health Service Foundation Trust, Liverpool, UK
| | - Suzanne Shusterman
- Department of Pediatric Hematology/Oncology, Dana-Farber/Boston Children's Cancer and Blood Disorders Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Nadège Corradini
- Pediatric Hematology and Oncology Institute, Léon Bérard Center, Lyon, France
| | - Roberto Luksch
- Pediatric Oncology Unit, Department of Medical Oncology and Hematology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Isabelle Aerts
- SIREDO Oncology Center (Care, Innovation, and Research for Children and Adolescents and Young Adults with Cancer), Institut Curie, Paris Sciences et Lettres Research University, Paris, France
| | - Jennifer H Foster
- Department of Pediatric Oncology, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas, USA
| | - Brian D Weiss
- Division of Hematology-Oncology/Stem Cell Transplant, Department of Pediatrics, Indiana University School of Medicine, Riley Children's Health, Indianapolis, Indiana, USA
| | | | | | | | - Julie R Park
- Department of Oncology, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Araz Marachelian
- Division of Hematology, Oncology, and Blood and Marrow Transplantation, Children's Hospital Los Angeles/Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
3
|
Singh J, Peters NJ, Avti P, Trehan A, Mahajan JK, Menon P, Bansal D, Kanojia RP. The Role of Liquid Biopsy in Neuroblastoma: A Scoping Review. J Pediatr Surg 2025; 60:161887. [PMID: 39294087 DOI: 10.1016/j.jpedsurg.2024.161887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/16/2024] [Accepted: 08/27/2024] [Indexed: 09/20/2024]
Abstract
BACKGROUND Neuroblastoma (NBL), is the most common, non-CNS solid tumor of childhood. This disease presents with unique biological and clinical challenges necessitating accurate diagnosis, prognosis assessment, treatment, and vigilant monitoring. Liquid biopsy is an upcoming, innovative, and non-invasive diagnostic modality. It has the potential to detect tumors and perform therapeutic monitoring through the analysis of circulating biomarkers in blood, urine, saliva, and other bodily fluids. METHODOLOGY This scoping review offers an in-depth exploration, of the current landscape of liquid biopsy-based biomarkers in NBL. The review looks at the clinical implications, prevalent challenges, and future outlook of their clinical applications in NBL. The scoping review adhered to the guidelines of the PRISMA extension for scoping reviews, known as PRISMA-ScR, as the skeletal framework. The review involved comprehensive searches for liquid biopsy-based biomarkers in NBL across multiple databases, including PUBMED, EMBASE, SCOPUS, and WEB of Science, without restrictions. RESULTS The scoping review process uncovered a significant body of literature (n = 201) that underwent meticulous scrutiny, ultimately leading to the final selection of studies (n = 15). The liquid biopsy biomarkers included circulating tumor cells (CTCs), circulating tumor DNA (ctDNA), exosomes, and other entities in bodily fluids. Their evaluation focused on associations with clinical outcomes such as overall survival, event-free survival, and risk stratification in NBL. CONCLUSION Our findings highlight the potential of liquid biopsy biomarkers to revolutionize NBL diagnosis and therapeutic monitoring. This rapidly evolving frontier in pediatric oncology suggests significant advancements in precision medicine for the management of NBL.
Collapse
Affiliation(s)
- Jitender Singh
- Department of Pediatric Surgery, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Nitin J Peters
- Department of Pediatric Surgery, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India.
| | - Pramod Avti
- Department of Biophysics, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Amita Trehan
- Pediatric Oncology Unit, Department of Paediatrics, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - J K Mahajan
- Department of Pediatric Surgery, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Prema Menon
- Department of Pediatric Surgery, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Deepak Bansal
- Pediatric Oncology Unit, Department of Paediatrics, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Ravi Prakash Kanojia
- Department of Pediatric Surgery, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| |
Collapse
|
4
|
Yamamoto Y, Yoneda A, Miyazaki O, Matsumoto K, Yamagishi S, Ichinose A, Hirokawa T, Fujiogi M, Ishimaru T, Shimojima N. Impact of the relationship between renal pedicles and tumors on surgical outcomes for non-high-risk abdominal neuroblastoma. Pediatr Surg Int 2024; 41:47. [PMID: 39725722 DOI: 10.1007/s00383-024-05956-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/18/2024] [Indexed: 12/28/2024]
Abstract
PURPOSE To assess the impact of the relationship between renal pedicles and tumors on surgical outcomes in patients with non-high-risk abdominal neuroblastoma. METHODS We retrospectively analyzed cases of neuroblastoma without metastasis treated at our hospital between March 2002 and December 2023. Cases in which surgical resection was performed were divided into three groups according to imaging findings at the time of diagnosis and before surgery: Group E (tumor encasing renal pedicles), Group C (tumor in contact with renal pedicles), and Group S (tumor separated from renal pedicles). RESULTS Among 256 neuroblastoma cases diagnosed during the study period, 27 non-high-risk cases that underwent surgery for partial abdominal tumor resection or greater were included. The numbers of cases in the S group, C group, and E group, respectively, were 7, 9, and 11 at diagnosis, and 8, 14, and 5 before surgery. Renal complications (combined concurrent renal resection and post-operative renal atrophy) were seen in five E group cases at the time of diagnosis, and two C group cases and three E group cases preoperatively. CONCLUSION In non-high-risk abdominal neuroblastomas, tumors encased in the renal pedicles have the highest risk of renal complications, followed by tumors in contact with the renal pedicles.
Collapse
Affiliation(s)
- Yuki Yamamoto
- Division of Surgery, National Center for Child Health and Development, Tokyo, Japan.
| | - Akihiro Yoneda
- Division of Surgery, National Center for Child Health and Development, Tokyo, Japan
- Children's Cancer Center, National Center for Child Health and Development, Tokyo, Japan
| | - Osamu Miyazaki
- Division of Radiology, National Center for Child Health and Development, Tokyo, Japan
| | - Kimikazu Matsumoto
- Children's Cancer Center, National Center for Child Health and Development, Tokyo, Japan
| | - Satoko Yamagishi
- Division of Surgery, National Center for Child Health and Development, Tokyo, Japan
| | - Akinori Ichinose
- Division of Surgery, National Center for Child Health and Development, Tokyo, Japan
| | - Tomoya Hirokawa
- Division of Surgery, National Center for Child Health and Development, Tokyo, Japan
| | - Michimasa Fujiogi
- Division of Surgery, National Center for Child Health and Development, Tokyo, Japan
| | - Tetsuya Ishimaru
- Division of Surgery, National Center for Child Health and Development, Tokyo, Japan
| | - Naoki Shimojima
- Division of Surgery, National Center for Child Health and Development, Tokyo, Japan
| |
Collapse
|
5
|
Bruinsma RS, Lekkerkerker CWM, Fiocco M, Dierselhuis MP, Langenberg KPS, Tytgat GAM, van Noesel MM, Wijnen MHWA, van der Steeg AFW, de Krijger RR. Prognostic Value of Molecular Aberrations in Low- or Intermediate-Risk Neuroblastomas: A Systematic Review. Cancers (Basel) 2024; 17:13. [PMID: 39796644 PMCID: PMC11718975 DOI: 10.3390/cancers17010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/16/2024] [Accepted: 12/18/2024] [Indexed: 01/13/2025] Open
Abstract
BACKGROUND The 5-year prognosis of non-high-risk neuroblastomas is generally good (>90%). However, a proportion of patients show progression and succumb to their disease. We aimed to identify molecular aberrations (not incorporated in the current risk stratification) associated with overall survival (OS) and/or event-free survival (EFS) in patients diagnosed with non-high-risk neuroblastoma. METHODS We conducted a systematic search in PubMed, Embase, Cochrane and Google Scholar. Two reviewers independently and blindly screened titles/abstracts, references of protocols/reviews and full texts. Risk of bias was assessed using a customized Quality in Prognostic Studies tool. Applicability was assessed using a tool designed by the researchers. GRADE criteria were used to determine quality of evidence. RESULTS Sixteen studies (4718 patients) were included. A segmental chromosomal aberration (SCA) profile was associated with lower survival. 1p loss of heterozygosity (LOH) and 17q gain were associated with lower OS and EFS. 1p deletion and 2p gain were associated with lower OS, but this was not the same for EFS. 3p deletion was not associated with worse outcome. Quality of evidence was downgraded because of imprecision and publication bias and upgraded because of moderate/large effect, resulting in a moderate quality of evidence. CONCLUSION The association of 1p LOH, 1p deletion, 2p gain and 17q gain with OS and EFS suggests that these SCAs may be added to the risk stratification to identify non-high-risk neuroblastomas with worse prognosis.
Collapse
Affiliation(s)
- Rixt S. Bruinsma
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands
| | | | - Marta Fiocco
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands
- Department of Medical Statistics and Bioinformatics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
- Mathematical Institute, Leiden University, 2333 CC Leiden, The Netherlands
| | | | | | | | - Max M. van Noesel
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands
- Division Imaging & Cancer, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | | | | | - Ronald R. de Krijger
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands
- Department of Pathology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| |
Collapse
|
6
|
Stocchero M, Corallo D, Bresolin S, Pantile M, Pirillo P, Bortolozzi R, Menegazzo S, Boso D, Viola G, Baraldi E, Biffi A, Giordano G, Aveic S. A Multi-Omics Approach Reveals Enrichment in Metabolites Involved in the Regulation of the Glutathione Pathway in LIN28B-Dependent Cancer Cells. Int J Mol Sci 2024; 25:1602. [PMID: 38338881 PMCID: PMC10855783 DOI: 10.3390/ijms25031602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/19/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
The RNA-binding protein LIN28B, identified as an independent risk factor in high-risk neuroblastoma patients, is implicated in adverse treatment outcomes linked to metastasis and chemoresistance. Despite its clinical significance, the impact of LIN28B on neuroblastoma cell metabolism remains unexplored. This study employs a multi-omics approach, integrating transcriptome and metabolome data, to elucidate the global metabolic program associated with varying LIN28B expression levels over time. Our findings reveal that escalating LIN28B expression induces a significant metabolic rewiring in neuroblastoma cells. Specifically, LIN28B prompts a time-dependent increase in the release rate of metabolites related to the glutathione and aminoacyl-tRNA biosynthetic pathways, concomitant with a reduction in glucose uptake. These results underscore the pivotal role of LIN28B in governing neuroblastoma cell metabolism and suggest a potential disruption in the redox balance of LIN28B-bearing cells. This study offers valuable insights into the molecular mechanisms underlying LIN28B-associated adverse outcomes in neuroblastoma, paving the way for targeted therapeutic interventions.
Collapse
Affiliation(s)
- Matteo Stocchero
- Department of Women and Children’s Health, University of Padova, 35128 Padova, Italy; (S.B.); (P.P.); (R.B.); (S.M.); (G.V.); (A.B.); (G.G.)
- Laboratory Mass Spectrometry and Metabolomics, Istituto di Ricerca Pediatrica (IRP), Fondazione Città della Speranza, 35127 Padova, Italy
| | - Diana Corallo
- Laboratory of Target Discovery and Biology of Neuroblastoma, Istituto di Ricerca Pediatrica (IRP), Fondazione Città della Speranza, 35127 Padova, Italy; (M.P.); (D.B.); (S.A.)
| | - Silvia Bresolin
- Department of Women and Children’s Health, University of Padova, 35128 Padova, Italy; (S.B.); (P.P.); (R.B.); (S.M.); (G.V.); (A.B.); (G.G.)
| | - Marcella Pantile
- Laboratory of Target Discovery and Biology of Neuroblastoma, Istituto di Ricerca Pediatrica (IRP), Fondazione Città della Speranza, 35127 Padova, Italy; (M.P.); (D.B.); (S.A.)
| | - Paola Pirillo
- Department of Women and Children’s Health, University of Padova, 35128 Padova, Italy; (S.B.); (P.P.); (R.B.); (S.M.); (G.V.); (A.B.); (G.G.)
- Laboratory Mass Spectrometry and Metabolomics, Istituto di Ricerca Pediatrica (IRP), Fondazione Città della Speranza, 35127 Padova, Italy
| | - Roberta Bortolozzi
- Department of Women and Children’s Health, University of Padova, 35128 Padova, Italy; (S.B.); (P.P.); (R.B.); (S.M.); (G.V.); (A.B.); (G.G.)
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35128 Padova, Italy
| | - Sara Menegazzo
- Department of Women and Children’s Health, University of Padova, 35128 Padova, Italy; (S.B.); (P.P.); (R.B.); (S.M.); (G.V.); (A.B.); (G.G.)
- Laboratory of Target Discovery and Biology of Neuroblastoma, Istituto di Ricerca Pediatrica (IRP), Fondazione Città della Speranza, 35127 Padova, Italy; (M.P.); (D.B.); (S.A.)
| | - Daniele Boso
- Laboratory of Target Discovery and Biology of Neuroblastoma, Istituto di Ricerca Pediatrica (IRP), Fondazione Città della Speranza, 35127 Padova, Italy; (M.P.); (D.B.); (S.A.)
| | - Giampietro Viola
- Department of Women and Children’s Health, University of Padova, 35128 Padova, Italy; (S.B.); (P.P.); (R.B.); (S.M.); (G.V.); (A.B.); (G.G.)
| | - Eugenio Baraldi
- Department of Women and Children’s Health, University of Padova, 35128 Padova, Italy; (S.B.); (P.P.); (R.B.); (S.M.); (G.V.); (A.B.); (G.G.)
- Laboratory Mass Spectrometry and Metabolomics, Istituto di Ricerca Pediatrica (IRP), Fondazione Città della Speranza, 35127 Padova, Italy
| | - Alessandra Biffi
- Department of Women and Children’s Health, University of Padova, 35128 Padova, Italy; (S.B.); (P.P.); (R.B.); (S.M.); (G.V.); (A.B.); (G.G.)
| | - Giuseppe Giordano
- Department of Women and Children’s Health, University of Padova, 35128 Padova, Italy; (S.B.); (P.P.); (R.B.); (S.M.); (G.V.); (A.B.); (G.G.)
- Laboratory Mass Spectrometry and Metabolomics, Istituto di Ricerca Pediatrica (IRP), Fondazione Città della Speranza, 35127 Padova, Italy
| | - Sanja Aveic
- Laboratory of Target Discovery and Biology of Neuroblastoma, Istituto di Ricerca Pediatrica (IRP), Fondazione Città della Speranza, 35127 Padova, Italy; (M.P.); (D.B.); (S.A.)
- Department of Dental Materials and Biomaterials Research, RWTH Aachen University Hospital, 52074 Aachen, Germany
| |
Collapse
|
7
|
Alhashim M, Anan N, Tamal M, Altarrah H, Alshaibani S, Hill R. A review on optimization of Wilms tumour management using radiomics. BJR Open 2024; 6:tzae034. [PMID: 39483333 PMCID: PMC11525052 DOI: 10.1093/bjro/tzae034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 08/26/2024] [Accepted: 10/03/2024] [Indexed: 11/03/2024] Open
Abstract
Background Wilms tumour, a common paediatric cancer, is difficult to treat in low- and middle-income countries due to limited access to imaging. Artificial intelligence (AI) has been introduced for staging, detecting, and classifying tumours, aiding physicians in decision-making. However, challenges include algorithm accuracy, translation into conventional diagnosis, reproducibility, and reliability. As AI technology advances, radiomics, an AI tool, emerges to extract tumour morphology and stage information. Objectives This review explores the application of radiomics in Wilms tumour management, including its potential in diagnosis, prognosis, and treatment. Additionally, it discusses the future prospects of AI in this field and potential directions for automation-aided Wilms tumour treatment. Methods The review analyses various research studies and articles on the use of radiomics in Wilms tumour management. This includes studies on automated deep learning-based classification, interobserver variability in histopathological analysis, and the application of AI in staging, detecting, and classifying Wilms tumours. Results The review finds that radiomics offers several promising applications in Wilms tumour management, including improved diagnosis: it helps in classifying Wilms tumours from other paediatric kidney tumours, prognosis prediction: radiomic features can be used to predict both staging and response to preoperative chemotherapy, Treatment response assessment: Radiomics can be used to monitor the response of Wilms and to predict the feasibility of nephron-sparing surgery. Conclusions This review concludes that radiomics has the potential to significantly improve the diagnosis, prognosis, and treatment of Wilms tumours. Despite some challenges, such as the need for further research and validation, AI integration in Wilms tumour management offers promising opportunities for improved patient care. Advances in knowledge This review provides a comprehensive overview of the potential applications of radiomics in Wilms tumour management and highlights the significant role AI can play in improving patient outcomes. It contributes to the growing body of knowledge on AI-assisted diagnosis and treatment of paediatric cancers.
Collapse
Affiliation(s)
- Maryam Alhashim
- Radiology Department, College of Medicine, Imam Abdulrahman Bin Faisal University, King Faisal Ibn Abd Al Aziz Rd, Dammam 34212, Saudi Arabia
- Medical Imaging Services Center, King Fahad Specialist Hospital Dammam, Dammam 32253, Saudi Arabia
| | - Noushin Anan
- Department of Biomedical Imaging, Advanced Medical and Dental Institute, Universiti Sains Malaysia, SAINS@BERTAM, 13200, Kepala Batas, Pulau Pinang, Malaysia
| | - Mahbubunnabi Tamal
- College of Engineering, Imam Abdulrahman Bin Faisal University, Dammam 31451, Saudi Arabia
| | - Hibah Altarrah
- Oncology center, King Fahad Specialist Hospital Dammam, Dammam 32253, Saudi Arabia
| | - Sarah Alshaibani
- Medical Imaging Services Center, King Fahad Specialist Hospital Dammam, Dammam 32253, Saudi Arabia
| | - Robin Hill
- Department of Radiation Oncology, Chris O'Brien Lifehouse, Sydney 2050, Australia
| |
Collapse
|
8
|
Lee M, Condit P, Lee-Miller C, Tiedt K. Constipation and Abdominal Distention in a 5-Week-Old Male. Clin Pediatr (Phila) 2023; 62:1603-1606. [PMID: 37038756 DOI: 10.1177/00099228231164992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
Affiliation(s)
- Michelle Lee
- University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Paige Condit
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Cathy Lee-Miller
- Division of Hematology, Oncology & Bone Marrow Transplant, Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Kristin Tiedt
- Division of Pediatric Hospital Medicine, Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| |
Collapse
|
9
|
Zhang T, Zhou C, Guo J, Chang J, Wu H, He J. RTEL1 gene polymorphisms and neuroblastoma risk in Chinese children. BMC Cancer 2023; 23:1145. [PMID: 38001404 PMCID: PMC10675872 DOI: 10.1186/s12885-023-11642-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
BACKGROUND Neuroblastoma, a neuroendocrine tumor originating from the sympathetic ganglia, is one of the most common malignancies in childhood. RTEL1 is critical in many fundamental cellular processes, such as DNA replication, DNA damage repair, genomic integrity, and telomere stability. Single nucleotide polymorphisms (SNPs) in the RTEL1 gene have been reported to confer susceptibility to multiple cancers, but their contributing roles in neuroblastoma remain unclear. METHODS We conducted a study on 402 neuroblastoma cases and 473 controls to assess the association between four RTEL1 SNPs (rs3761124 T>C, rs3848672 T>C, rs3208008 A>C and rs2297441 G>A) and neuroblastoma susceptibility. RESULTS Our results show that rs3848672 T>C is significantly associated with an increased risk of neuroblastoma [CC vs. TT/TC: adjusted odds ratio (OR)=1.39, 95% confidence interval (CI)=1.02-1.90, P=0.038]. The stratified analysis further indicated that boy carriers of the rs3848672 CC genotype had a higher risk of neuroblastoma, and all carriers had an increased risk of developing neuroblastoma of mediastinum origin. Moreover, the rs2297441 AA genotype increased neuroblastoma risk in girls and predisposed children to neuroblastoma arising from retroperitoneal. CONCLUSION Our study indicated that the rs3848672 CC and rs2297441 AA genotypes of the RTEL1 gene are significantly associated with an increased risk of neuroblastoma in Chinese children in a gender- and site-specific manner.
Collapse
Affiliation(s)
- Ting Zhang
- Department of Clinical Laboratory, The Affiliated Wenling Hospital of Wenzhou Medical University, Taizhou, 317500, Zhejiang, China
| | - Chunlei Zhou
- Department of Pathology, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, Jiangsu, China
| | - Jiejie Guo
- Department of Clinical Laboratory, The Affiliated Wenling Hospital of Wenzhou Medical University, Taizhou, 317500, Zhejiang, China
| | - Jiamin Chang
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, 9 Jinsui Road, Guangzhou, 510623, Guangdong, China
| | - Haiyan Wu
- Department of Pathology, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, Jiangsu, China.
| | - Jing He
- Department of Clinical Laboratory, The Affiliated Wenling Hospital of Wenzhou Medical University, Taizhou, 317500, Zhejiang, China.
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, 9 Jinsui Road, Guangzhou, 510623, Guangdong, China.
| |
Collapse
|
10
|
Mangó K, Fekete F, Kiss ÁF, Erdős R, Fekete JT, Bűdi T, Bruckner E, Garami M, Micsik T, Monostory K. Association between CYP2B6 genetic variability and cyclophosphamide therapy in pediatric patients with neuroblastoma. Sci Rep 2023; 13:11770. [PMID: 37479763 PMCID: PMC10361978 DOI: 10.1038/s41598-023-38983-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 07/18/2023] [Indexed: 07/23/2023] Open
Abstract
Cyclophosphamide, an oxazaphosphorine prodrug is frequently used in treatment of neuroblastoma, which is one of the most prevalent solid organ malignancies in infants and young children. Cytochrome P450 2B6 (CYP2B6) is the major catalyst and CYP2C19 is the minor enzyme in bioactivation and inactivation pathways of cyclophosphamide. CYP-mediated metabolism may contribute to the variable pharmacokinetics of cyclophosphamide and its toxic byproducts leading to insufficient response to the therapy and development of clinically significant side effects. The aim of the study was to reveal the contribution of pharmacogenetic variability in CYP2B6 and CYP2C19 to the treatment efficacy and cyclophosphamide-induced side effects in pediatric neuroblastoma patients under cyclophosphamide therapy (N = 50). Cyclophosphamide-induced hematologic toxicities were pivotal in all patients, whereas only moderate hepatorenal toxicity was developed. The patients' CYP2B6 metabolizer phenotypes were associated with the occurrence of lymphopenia, thrombocytopenia, and monocytopenia as well as of liver injury, but not with kidney or urinary bladder (hemorrhagic cystitis) toxicities. Furthermore, the patients' age (< 1.5 years, P = 0.03) and female gender (P ≤ 0.02), but not CYP2B6 or CYP2C19 metabolizer phenotypes appeared as significant prognostic factors in treatment outcomes. Our results may contribute to a better understanding of the impact of CYP2B6 variability on cyclophosphamide-induced side effects.
Collapse
Affiliation(s)
- Katalin Mangó
- Institute of Enzymology, Research Centre for Natural Sciences, Magyar Tudósok 2, 1117, Budapest, Hungary
- Doctoral School of Pharmaceutical Sciences, Semmelweis University, Üllői 26, 1085, Budapest, Hungary
| | - Ferenc Fekete
- Institute of Enzymology, Research Centre for Natural Sciences, Magyar Tudósok 2, 1117, Budapest, Hungary
| | - Ádám Ferenc Kiss
- Institute of Enzymology, Research Centre for Natural Sciences, Magyar Tudósok 2, 1117, Budapest, Hungary
| | - Réka Erdős
- Institute of Enzymology, Research Centre for Natural Sciences, Magyar Tudósok 2, 1117, Budapest, Hungary
| | - János Tibor Fekete
- Institute of Enzymology, Research Centre for Natural Sciences, Magyar Tudósok 2, 1117, Budapest, Hungary
- Department of Bioinformatics, Semmelweis University, Tűzoltó 7-9, 1094, Budapest, Hungary
| | - Tamás Bűdi
- Center of Pediatrics, Semmelweis University, Tűzoltó 7-9, 1094, Budapest, Hungary
| | - Edit Bruckner
- Center of Pediatrics, Semmelweis University, Tűzoltó 7-9, 1094, Budapest, Hungary
| | - Miklós Garami
- Center of Pediatrics, Semmelweis University, Tűzoltó 7-9, 1094, Budapest, Hungary
| | - Tamás Micsik
- Fejér County Saint George University Teaching Hospital, Seregélyesi 3, 8000, Székesfehérvár, Hungary
| | - Katalin Monostory
- Institute of Enzymology, Research Centre for Natural Sciences, Magyar Tudósok 2, 1117, Budapest, Hungary.
| |
Collapse
|
11
|
Bacchus MK, Anderson DS, Berko ER, States LJ, Bagatell R, Hopkins SE, Batra V. Neuroblastic Tumor Recurrence Associated With Opsoclonus Myoclonus Ataxia Syndrome Relapse a Decade After Initial Resection and Treatments. J Pediatr Hematol Oncol 2023; 45:152-154. [PMID: 36897628 DOI: 10.1097/mph.0000000000002643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 01/18/2023] [Indexed: 03/11/2023]
Abstract
Opsoclonus myoclonus ataxia syndrome (OMAS) is a rare disorder that causes significant neurodevelopmental sequelae in children. Approximately half of pediatric OMAS cases are paraneoplastic, typically associated with localized neuroblastic tumors. Since early persistence or relapse of OMAS symptoms is common even after tumor resection, OMAS relapses may not routinely prompt reevaluation for recurrent tumors. We report a 12-year-old girl with neuroblastic tumor recurrence associated with OMAS relapse a decade after initial treatment. Providers should be aware of tumor recurrence as a trigger for distant OMAS relapse, raising intriguing questions about the role of immune surveillance and control of neuroblastic tumors.
Collapse
Affiliation(s)
| | - David S Anderson
- Division of Oncology, Children's Hospital of Philadelphia
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Esther R Berko
- Division of Oncology, Children's Hospital of Philadelphia
- Schneider Children's Medical Center of Israel, Petach Tikvah, Israel
| | - Lisa J States
- Division of Oncology, Children's Hospital of Philadelphia
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Rochelle Bagatell
- Division of Oncology, Children's Hospital of Philadelphia
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Sarah E Hopkins
- Division of Neurology
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Vandana Batra
- Division of Oncology, Children's Hospital of Philadelphia
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
12
|
Krstic A, Konietzny A, Halasz M, Cain P, Oppermann U, Kolch W, Duffy DJ. A Chemo-Genomic Approach Identifies Diverse Epigenetic Therapeutic Vulnerabilities in MYCN-Amplified Neuroblastoma. Front Cell Dev Biol 2021; 9:612518. [PMID: 33968920 PMCID: PMC8097097 DOI: 10.3389/fcell.2021.612518] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 03/25/2021] [Indexed: 11/13/2022] Open
Abstract
Although a rare disease, neuroblastoma accounts for the highest proportion of childhood cancer deaths. There is a lack of recurrent somatic mutations in neuroblastoma embryonal tumours, suggesting a possible role for epigenetic alterations in driving this cancer. While an increasing number of reports suggest an association of MYCN with epigenetic machinery, the mechanisms of these interactions are poorly understood in the neuroblastoma setting. Utilising chemo-genomic approaches we revealed global MYCN-epigenetic interactions and identified numerous epigenetic proteins as MYCN targets. The epigenetic regulators HDAC2, CBX8 and CBP (CREBBP) were all MYCN target genes and also putative MYCN interactors. MYCN-related epigenetic genes included SMARCs, HDACs, SMYDs, BRDs and CREBBP. Expression levels of the majority of MYCN-related epigenetic genes showed predictive ability for neuroblastoma patient outcome. Furthermore, a compound library screen targeting epigenetic proteins revealed broad susceptibility of neuroblastoma cells to all classes of epigenetic regulators, belonging to families of bromodomains, HDACs, HATs, histone methyltransferases, DNA methyltransferases and lysin demethylases. Ninety-six percent of the compounds reduced MYCN-amplified neuroblastoma cell viability. We show that the C646 (CBP-bromodomain targeting compound) exhibits switch-like temporal and dose response behaviour and is effective at reducing neuroblastoma viability. Responsiveness correlates with MYCN expression, with MYCN-amplified cells being more susceptible to C646 treatment. Thus, exploiting the broad vulnerability of neuroblastoma cells to epigenetic targeting compounds represents an exciting strategy in neuroblastoma treatment, particularly for high-risk MYCN-amplified tumours.
Collapse
Affiliation(s)
- Aleksandar Krstic
- Systems Biology Ireland and Precision Oncology Ireland, School of Medicine, University College Dublin, Dublin, Ireland
| | - Anja Konietzny
- Systems Biology Ireland and Precision Oncology Ireland, School of Medicine, University College Dublin, Dublin, Ireland.,Centre for Molecular Neurobiology Hamburg (ZMNH), Emmy-Noether Group "Neuronal Protein Transport", University Medical Centre Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Melinda Halasz
- Systems Biology Ireland and Precision Oncology Ireland, School of Medicine, University College Dublin, Dublin, Ireland
| | - Peter Cain
- Botnar Research Centre, NIHR Oxford Biomedical Research Unit, Institute of Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom.,Centre for Medicines Discovery, University of Oxford, Oxford, United Kingdom
| | - Udo Oppermann
- Botnar Research Centre, NIHR Oxford Biomedical Research Unit, Institute of Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom.,Centre for Medicines Discovery, University of Oxford, Oxford, United Kingdom
| | - Walter Kolch
- Systems Biology Ireland and Precision Oncology Ireland, School of Medicine, University College Dublin, Dublin, Ireland.,Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Dublin, Ireland
| | - David J Duffy
- Systems Biology Ireland and Precision Oncology Ireland, School of Medicine, University College Dublin, Dublin, Ireland.,The Whitney Laboratory for Marine Bioscience and Sea Turtle Hospital, University of Florida, St. Augustine, FL, United States.,Department of Biology, University of Florida, Gainesville, FL, United States
| |
Collapse
|
13
|
Hanemaaijer ES, Margaritis T, Sanders K, Bos FL, Candelli T, Al-Saati H, van Noesel MM, Meyer-Wentrup FAG, van de Wetering M, Holstege FCP, Clevers H. Single-cell atlas of developing murine adrenal gland reveals relation of Schwann cell precursor signature to neuroblastoma phenotype. Proc Natl Acad Sci U S A 2021; 118:e2022350118. [PMID: 33500353 PMCID: PMC7865168 DOI: 10.1073/pnas.2022350118] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Neuroblastoma is the most common extracranial solid tumor and accounts for ∼10% of pediatric cancer-related deaths. The exact cell of origin has yet to be elucidated, but it is generally accepted that neuroblastoma derives from the neural crest and should thus be considered an embryonal malignancy. About 50% of primary neuroblastoma tumors arise in the adrenal gland. Here, we present an atlas of the developing mouse adrenal gland at a single-cell level. Five main cell cluster groups (medulla, cortex, endothelial, stroma, and immune) make up the mouse adrenal gland during fetal development. The medulla group, which is of neural crest origin, is further divided into seven clusters. Of interest is the Schwann cell precursor ("SCP") and the "neuroblast" cluster, a highly cycling cluster that shares markers with sympathoblasts. The signature of the medullary SCP cluster differentiates neuroblastoma patients based on disease phenotype: The SCP signature score anticorrelates with ALK and MYCN expression, two indicators of poor prognosis. Furthermore, a high SCP signature score is associated with better overall survival rates. This study provides an insight into the developing adrenal gland and introduces the SCP gene signature as being of interest for further research in understanding neuroblastoma phenotype.
Collapse
Affiliation(s)
- Evelyn S Hanemaaijer
- Oncode Institute, Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands
| | - Thanasis Margaritis
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands
| | - Karin Sanders
- Oncode Institute, Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, The Netherlands
| | - Frank L Bos
- Oncode Institute, Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands
| | - Tito Candelli
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands
| | - Hanin Al-Saati
- Oncode Institute, Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands
| | - Max M van Noesel
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands
| | | | - Marc van de Wetering
- Oncode Institute, Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands
| | - Frank C P Holstege
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands
| | - Hans Clevers
- Oncode Institute, Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands;
- Oncode Institute, Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center, 3584 CT Utrecht, The Netherlands
| |
Collapse
|
14
|
Zafar A, Wang W, Liu G, Wang X, Xian W, McKeon F, Foster J, Zhou J, Zhang R. Molecular targeting therapies for neuroblastoma: Progress and challenges. Med Res Rev 2020; 41:961-1021. [PMID: 33155698 PMCID: PMC7906923 DOI: 10.1002/med.21750] [Citation(s) in RCA: 212] [Impact Index Per Article: 42.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/25/2020] [Accepted: 10/28/2020] [Indexed: 01/09/2023]
Abstract
There is an urgent need to identify novel therapies for childhood cancers. Neuroblastoma is the most common pediatric solid tumor, and accounts for ~15% of childhood cancer‐related mortality. Neuroblastomas exhibit genetic, morphological and clinical heterogeneity, which limits the efficacy of existing treatment modalities. Gaining detailed knowledge of the molecular signatures and genetic variations involved in the pathogenesis of neuroblastoma is necessary to develop safer and more effective treatments for this devastating disease. Recent studies with advanced high‐throughput “omics” techniques have revealed numerous genetic/genomic alterations and dysfunctional pathways that drive the onset, growth, progression, and resistance of neuroblastoma to therapy. A variety of molecular signatures are being evaluated to better understand the disease, with many of them being used as targets to develop new treatments for neuroblastoma patients. In this review, we have summarized the contemporary understanding of the molecular pathways and genetic aberrations, such as those in MYCN, BIRC5, PHOX2B, and LIN28B, involved in the pathogenesis of neuroblastoma, and provide a comprehensive overview of the molecular targeted therapies under preclinical and clinical investigations, particularly those targeting ALK signaling, MDM2, PI3K/Akt/mTOR and RAS‐MAPK pathways, as well as epigenetic regulators. We also give insights on the use of combination therapies involving novel agents that target various pathways. Further, we discuss the future directions that would help identify novel targets and therapeutics and improve the currently available therapies, enhancing the treatment outcomes and survival of patients with neuroblastoma.
Collapse
Affiliation(s)
- Atif Zafar
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas, USA
| | - Wei Wang
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas, USA.,Drug Discovery Institute, University of Houston, Houston, Texas, USA
| | - Gang Liu
- Department of Pharmacology and Toxicology, Chemical Biology Program, University of Texas Medical Branch, Galveston, Texas, USA
| | - Xinjie Wang
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas, USA
| | - Wa Xian
- Department of Biology and Biochemistry, Stem Cell Center, University of Houston, Houston, Texas, USA
| | - Frank McKeon
- Department of Biology and Biochemistry, Stem Cell Center, University of Houston, Houston, Texas, USA
| | - Jennifer Foster
- Department of Pediatrics, Texas Children's Hospital, Section of Hematology-Oncology Baylor College of Medicine, Houston, Texas, USA
| | - Jia Zhou
- Department of Pharmacology and Toxicology, Chemical Biology Program, University of Texas Medical Branch, Galveston, Texas, USA
| | - Ruiwen Zhang
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas, USA.,Drug Discovery Institute, University of Houston, Houston, Texas, USA
| |
Collapse
|
15
|
Cangelosi D, Morini M, Zanardi N, Sementa AR, Muselli M, Conte M, Garaventa A, Pfeffer U, Bosco MC, Varesio L, Eva A. Hypoxia Predicts Poor Prognosis in Neuroblastoma Patients and Associates with Biological Mechanisms Involved in Telomerase Activation and Tumor Microenvironment Reprogramming. Cancers (Basel) 2020; 12:E2343. [PMID: 32825087 PMCID: PMC7563184 DOI: 10.3390/cancers12092343] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/09/2020] [Accepted: 08/17/2020] [Indexed: 12/23/2022] Open
Abstract
The biological and clinical heterogeneity of neuroblastoma (NB) demands novel biomarkers and therapeutic targets in order to drive the most appropriate treatment for each patient. Hypoxia is a condition of low-oxygen tension occurring in poorly vascularized tumor tissues. In this study, we aimed to assess the role of hypoxia in the pathogenesis of NB and at developing a new clinically relevant hypoxia-based predictor of outcome. We analyzed the gene expression profiles of 1882 untreated NB primary tumors collected at diagnosis and belonging to four existing data sets. Analyses took advantage of machine learning methods. We identified NB-hop, a seven-gene hypoxia biomarker, as a predictor of NB patient prognosis, which is able to discriminate between two populations of patients with unfavorable or favorable outcome on a molecular basis. NB-hop retained its prognostic value in a multivariate model adjusted for established risk factors and was able to additionally stratify clinically relevant groups of patients. Tumors with an unfavorable NB-hop expression showed a significant association with telomerase activation and a hypoxic, immunosuppressive, poorly differentiated, and apoptosis-resistant tumor microenvironment. NB-hop defines a new population of NB patients with hypoxic tumors and unfavorable prognosis and it represents a critical factor for the stratification and treatment of NB patients.
Collapse
Affiliation(s)
- Davide Cangelosi
- Laboratory of Molecular Biology, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy; (M.M.); (N.Z.); (L.V.); (A.E.)
| | - Martina Morini
- Laboratory of Molecular Biology, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy; (M.M.); (N.Z.); (L.V.); (A.E.)
| | - Nicolò Zanardi
- Laboratory of Molecular Biology, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy; (M.M.); (N.Z.); (L.V.); (A.E.)
| | - Angela Rita Sementa
- Laboratory of Pathology, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy;
| | - Marco Muselli
- Institute of Electronics, Computer and Telecommunication Engineering, Italian National Research Council, 16149 Genova, Italy;
| | - Massimo Conte
- Pediatric Oncology Unit, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy; (M.C.); (A.G.)
| | - Alberto Garaventa
- Pediatric Oncology Unit, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy; (M.C.); (A.G.)
| | - Ulrich Pfeffer
- Integrated Oncology Therapies Department, Molecular Pathology, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy;
| | - Maria Carla Bosco
- Laboratory of Molecular Biology, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy; (M.M.); (N.Z.); (L.V.); (A.E.)
| | - Luigi Varesio
- Laboratory of Molecular Biology, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy; (M.M.); (N.Z.); (L.V.); (A.E.)
| | - Alessandra Eva
- Laboratory of Molecular Biology, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy; (M.M.); (N.Z.); (L.V.); (A.E.)
| |
Collapse
|
16
|
Bian J, Zhuo Z, Zhu J, Yang Z, Jiao Z, Li Y, Cheng J, Zhou H, Li S, Li L, He J, Liu Y. Association between METTL3 gene polymorphisms and neuroblastoma susceptibility: A nine-centre case-control study. J Cell Mol Med 2020; 24:9280-9286. [PMID: 32615646 PMCID: PMC7417682 DOI: 10.1111/jcmm.15576] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 06/04/2020] [Accepted: 06/10/2020] [Indexed: 02/05/2023] Open
Abstract
Neuroblastoma ranks as the most commonly seen and deadly solid tumour in infancy. The aberrant activity of m6 A-RNA methyltransferase METTL3 is involved in human cancers. Therefore, functional genetic variants in the METTL3 gene may contribute to neuroblastoma risk. In the current nine-centre case-control study, we aimed to analyse the association between the METTL3 gene single nucleotide polymorphisms (SNPs) and neuroblastoma susceptibility. We genotyped four METTL3 gene SNPs (rs1061026 T>G, rs1061027 C>A, rs1139130 A>G, and rs1263801 G>C) in 968 neuroblastoma patients and 1814 controls in China. We found significant associations between these SNPs and neuroblastoma risk in neither single-locus nor combined analyses. Interestingly, in the stratified analysis, we observed a significant risk association with rs1061027 AA in subgroups of children ≤ 18 months of age (adjusted OR = 1.87, 95% CI = 1.03-3.41, P = .040) and females (adjusted OR = 1.86, 95% CI = 1.07-3.24, P = .028). Overall, we identified a significant association between METTL3 gene rs1061027 C>A polymorphism and neuroblastoma risk in children ≤18 months of age and females. Our findings provide novel insights into the genetic determinants of neuroblastoma.
Collapse
Affiliation(s)
- Jun Bian
- Department of General SurgeryXi'an Children’s HospitalXi'an Jiaotong University Affiliated Children's HospitalXi'anChina
| | - Zhenjian Zhuo
- Department of Pediatric SurgeryGuangzhou Institute of PediatricsGuangdong Provincial Key Laboratory of Research in Structural Birth Defect DiseaseGuangzhou Women and Children’s Medical CenterGuangzhou Medical UniversityGuangzhouChina
| | - Jinhong Zhu
- Department of Clinical LaboratoryBiobank, Harbin Medical University Cancer HospitalHarbinChina
| | - Zhonghua Yang
- Department of Pediatric SurgeryShengjing Hospital of China Medical UniversityShenyangChina
| | - Zhang Jiao
- Department of Pediatric SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Yong Li
- Department of Pediatric SurgeryHunan Children’s HospitalChangshaChina
| | - Jiwen Cheng
- Department of Pediatric SurgeryThe Second Affiliated Hospital of Xi’an Jiaotong UniversityXi’anChina
| | - Haixia Zhou
- Department of HematologyThe Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Suhong Li
- Department of PathologyChildren Hospital and Women Health Center of ShanxiTaiyuanChina
| | - Li Li
- Kunming Key Laboratory of Children Infection and Immunity, Yunnan Key Laboratory of Children’s Major Disease ResearchYunnan Institute of Pediatrics ResearchYunnan Medical Center for Pediatric DiseasesKunming Children’s HospitalKunmingChina
| | - Jing He
- Department of Pediatric SurgeryGuangzhou Institute of PediatricsGuangdong Provincial Key Laboratory of Research in Structural Birth Defect DiseaseGuangzhou Women and Children’s Medical CenterGuangzhou Medical UniversityGuangzhouChina
| | - Yanfei Liu
- Department of General SurgeryXi'an Children’s HospitalXi'an Jiaotong University Affiliated Children's HospitalXi'anChina
| |
Collapse
|
17
|
Jnah AJ, Evans SK, Sewell K, Trembath A. Neuroblastoma in a Neonate: A Case Report. Neonatal Netw 2020; 38:341-347. [PMID: 31712398 DOI: 10.1891/0730-0832.38.6.341] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/12/2019] [Indexed: 11/25/2022]
Abstract
Neuroblastoma represents approximately 6 to 10 percent of childhood cancers, yet is one of the most common solid tumors observed in neonates; approximately 700 cases are reported in the United States each year. Neuroblastoma occurs secondary to oncogene mutations that cause abnormal proliferation of neural crest cells and tumor formation anywhere along the spinal cord. Visible manifestations include a blueberry rash and subcutaneous skin nodules. Common histologic findings include multifocal, small, round, blue cell tumors. Cytogenetics testing differentiates aggressive versus nonaggressive forms of neuroblastoma. Treatment ranges from supportive care to surgery and chemotherapy; targeted molecular therapies and immunotherapy offer opportunity to individualize treatment. Morbidity and mortality are contingent upon age at diagnosis and genetic abnormalities. Neonatal clinicians must establish and maintain active knowledge of the current science pertaining to this neoplasm to assist in early identification and timely initiation of medical management. This article presents a case report and comprehensive discussion of the state of the science on metastatic familial (congenital) neuroblastoma.
Collapse
|
18
|
Hua R, Zhuo Z, Ge L, Zhu J, Yuan L, Chen C, Liu J, Cheng J, Zhou H, Zhang J, Xia H, Zhang X, He J. LIN28A gene polymorphisms modify neuroblastoma susceptibility: A four-centre case-control study. J Cell Mol Med 2020; 24:1059-1066. [PMID: 31747721 PMCID: PMC6933387 DOI: 10.1111/jcmm.14827] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/15/2019] [Accepted: 10/28/2019] [Indexed: 02/05/2023] Open
Abstract
Neuroblastoma ranks the most common seen solid tumour in childhood. Overexpression of LIN28A gene has been linked to the development of multiple human malignancies, but the relationship between LIN28A single nucleotide polymorphisms (SNPs) and neuroblastoma susceptibility is still under debate. Herein, we evaluated the correlation of four potentially functional LIN28A SNPs (rs3811464 G>A, rs3811463 T>C, rs34787247 G>A, and rs11247957 G>A) and neuroblastoma susceptibility in 505 neuroblastoma patients and 1070 controls from four independent hospitals in China. The correlation strengths were determined by using odds ratios (ORs) and corresponding 95% confidence intervals (CIs). Among these SNPs, rs34787247 G>A exhibited a significant association with increased susceptibility in neuroblastoma (GA vs GG: adjusted OR = 1.30, 95% CI = 1.03-1.64; AA vs GG: adjusted OR = 2.51, 95% CI = 1.36-4.64, AA/GA vs GG: adjusted OR = 1.42, 95% CI = 1.12-1.80, AA vs GG/GA: adjusted OR = 2.39, 95% CI = 1.29-4.42). Furthermore, the combined analysis of risk genotypes revealed that subjects carrying three risk genotypes (adjusted OR = 1.64, 95% CI = 1.02-2.63) are more inclined to develop neuroblastoma than those without risk genotype, and so do carriers of 1-4 risk genotypes (adjusted OR = 1.26, 95% CI = 1.01-1.56). Stratification analysis further revealed risk effect of rs3811464 G>A, rs34787247 G>A and 1-4 risk genotypes in some subgroups. Haplotype analysis of these four SNPs yields two haplotypes significantly correlated with increased neuroblastoma susceptibility. Overall, our finding indicated that LIN28A SNPs, especially rs34787247 G>A, may increase neuroblastoma risk.
Collapse
Affiliation(s)
- Rui‐Xi Hua
- Department of Pediatric SurgeryGuangzhou Institute of PediatricsGuangdong Provincial Key Laboratory of Research in Structural Birth Defect DiseaseGuangzhou Women and Children's Medical CenterGuangzhou Medical UniversityGuangzhouChina
- Department of OncologyThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouChina
| | - Zhenjian Zhuo
- Department of Pediatric SurgeryGuangzhou Institute of PediatricsGuangdong Provincial Key Laboratory of Research in Structural Birth Defect DiseaseGuangzhou Women and Children's Medical CenterGuangzhou Medical UniversityGuangzhouChina
| | - Lili Ge
- Henan Provincial Key Laboratory of Children's Genetics and Metabolic DiseasesChildren's Hospital Affiliated to Zhengzhou UniversityHenan Children's HospitalZhengzhou Children's HospitalZhengzhouChina
| | - Jinhong Zhu
- Department of Pediatric SurgeryGuangzhou Institute of PediatricsGuangdong Provincial Key Laboratory of Research in Structural Birth Defect DiseaseGuangzhou Women and Children's Medical CenterGuangzhou Medical UniversityGuangzhouChina
- Department of Clinical LaboratoryBiobankHarbin Medical University Cancer HospitalHarbinChina
| | - Li Yuan
- Department of Pediatric SurgeryGuangzhou Institute of PediatricsGuangdong Provincial Key Laboratory of Research in Structural Birth Defect DiseaseGuangzhou Women and Children's Medical CenterGuangzhou Medical UniversityGuangzhouChina
| | - Chongfen Chen
- Henan Provincial Key Laboratory of Children's Genetics and Metabolic DiseasesChildren's Hospital Affiliated to Zhengzhou UniversityHenan Children's HospitalZhengzhou Children's HospitalZhengzhouChina
| | - Jing Liu
- Henan Provincial Key Laboratory of Children's Genetics and Metabolic DiseasesChildren's Hospital Affiliated to Zhengzhou UniversityHenan Children's HospitalZhengzhou Children's HospitalZhengzhouChina
| | - Jiwen Cheng
- Department of Pediatric SurgeryThe Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Haixia Zhou
- Department of HematologyThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Jiao Zhang
- Department of Pediatric SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Huimin Xia
- Department of Pediatric SurgeryGuangzhou Institute of PediatricsGuangdong Provincial Key Laboratory of Research in Structural Birth Defect DiseaseGuangzhou Women and Children's Medical CenterGuangzhou Medical UniversityGuangzhouChina
| | - Xianwei Zhang
- Department of Pediatric Oncologic SurgeryChildren's Hospital Affiliated to Zhengzhou UniversityHenan Children's HospitalZhengzhou Children's HospitalZhengzhouChina
| | - Jing He
- Department of Pediatric SurgeryGuangzhou Institute of PediatricsGuangdong Provincial Key Laboratory of Research in Structural Birth Defect DiseaseGuangzhou Women and Children's Medical CenterGuangzhou Medical UniversityGuangzhouChina
| |
Collapse
|