1
|
Streif S, Baeumner AJ. Advances in Surrogate Neutralization Tests for High-Throughput Screening and the Point-of-Care. Anal Chem 2025; 97:5407-5423. [PMID: 40035475 PMCID: PMC11923957 DOI: 10.1021/acs.analchem.5c00666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Affiliation(s)
- Simon Streif
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, Universitaetsstrasse 31, 93053 Regensburg, Germany
| | - Antje J Baeumner
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, Universitaetsstrasse 31, 93053 Regensburg, Germany
| |
Collapse
|
2
|
Fanshawe TR, Tonner S, Turner PJ, Cogdale J, Glogowska M, de Lusignan S, Okusi C, Perera R, Sebastianpillai P, Williams A, Zambon M, Nicholson BD, Hobbs FDR, Hayward GN. Diagnostic accuracy of a point-of-care antigen test for SARS-CoV-2 and influenza in a primary care population (RAPTOR-C19). Clin Microbiol Infect 2024; 30:380-386. [PMID: 38103638 DOI: 10.1016/j.cmi.2023.12.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/20/2023] [Accepted: 12/08/2023] [Indexed: 12/19/2023]
Abstract
OBJECTIVES Limited evidence exists for the diagnostic performance of point-of-care tests for SARS-CoV-2 and influenza in community healthcare. We carried out a prospective diagnostic accuracy study of the LumiraDx™ SARS-CoV-2 and influenza A or B assay in primary care. METHODS Total of 913 adults and children with symptoms of current SARS-CoV-2 infection were recruited from 18 UK primary care practices during a period when Omicron was the predominant COVID variant of concern (June 2022 to December 2022). Trained health care staff performed the index test, with diagnostic accuracy parameters estimated for SARS-CoV-2 and influenza against real-time reverse-transcription PCR (rtRT-PCR). RESULTS 151/887 participants were SARS-CoV-2 rtRT-PCR positive, 109 positive for Influenza A, 6 for Influenza B. Index test sensitivity for SARS-CoV-2 was 80.8% (122 of the 151, 95% CI, 73.6-86.7%) and specificity 98.9% (728 of the 736, 95% CI, 97.9-99.5%). For influenza A, sensitivity was 61.5% (67 of the 109, 95% CI, 51.7-70.6%) and specificity 99.4% (771 of the 776, 95% CI, 98.5-99.8%). Sensitivity to detect SARS-CoV-2 and influenza dropped sharply at rtRT-PCR cycle thresholds (Ct) > 30. DISCUSSIONS The LumiraDx™ SARS-CoV-2 and influenza A/B assay had moderate sensitivity for SARS-CoV-2 in symptomatic patients in primary care, with lower performance with high rtRT-PCR Ct. Negative results in this patient group cannot definitively rule out SARS-CoV-2 or influenza.
Collapse
Affiliation(s)
- Thomas R Fanshawe
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK.
| | - Sharon Tonner
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
| | - Philip J Turner
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
| | - Jade Cogdale
- Virus Reference Department, Respiratory Virus Unit, UK Health Security Agency, UK
| | - Margaret Glogowska
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
| | - Simon de Lusignan
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
| | - Cecilia Okusi
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
| | - Rafael Perera
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
| | - Praveen Sebastianpillai
- Immunization and Vaccine Preventable Diseases Division and Public Health Programmes, UK Health Security Agency, UK
| | - Alice Williams
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
| | - Maria Zambon
- Influenza and Respiratory Virology and Polio Reference Service, UK Health Security Agency, UK; NIHR Health Protection Research Unit, Imperial College London, UK
| | - Brian D Nicholson
- Virus Reference Department, Respiratory Virus Unit, UK Health Security Agency, UK
| | - F D Richard Hobbs
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK; Virus Reference Department, Respiratory Virus Unit, UK Health Security Agency, UK
| | - Gail N Hayward
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK; Virus Reference Department, Respiratory Virus Unit, UK Health Security Agency, UK
| |
Collapse
|
3
|
Peterhoff D, Wiegrebe S, Einhauser S, Patt AJ, Beileke S, Günther F, Steininger P, Niller HH, Burkhardt R, Küchenhoff H, Gefeller O, Überla K, Heid IM, Wagner R. Population-based study of the durability of humoral immunity after SARS-CoV-2 infection. Front Immunol 2023; 14:1242536. [PMID: 37868969 PMCID: PMC10585261 DOI: 10.3389/fimmu.2023.1242536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 09/19/2023] [Indexed: 10/24/2023] Open
Abstract
SARS-CoV-2 antibody quantity and quality are key markers of humoral immunity. However, there is substantial uncertainty about their durability. We investigated levels and temporal change of SARS-CoV-2 antibody quantity and quality. We analyzed sera (8 binding, 4 avidity assays for spike-(S-)protein and nucleocapsid-(N-)protein; neutralization) from 211 seropositive unvaccinated participants, from the population-based longitudinal TiKoCo study, at three time points within one year after infection with the ancestral SARS-CoV-2 virus. We found a significant decline of neutralization titers and binding antibody levels in most assays (linear mixed regression model, p<0.01). S-specific serum avidity increased markedly over time, in contrast to N-specific. Binding antibody levels were higher in older versus younger participants - a difference that disappeared for the asymptomatic-infected. We found stronger antibody decline in men versus women and lower binding and avidity levels in current versus never-smokers. Our comprehensive longitudinal analyses across 13 antibody assays suggest decreased neutralization-based protection and prolonged affinity maturation within one year after infection.
Collapse
Affiliation(s)
- David Peterhoff
- Institute of Medical Microbiology and Hygiene, Molecular Microbiology (Virology), University of Regensburg, Regensburg, Germany
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Regensburg, Germany
| | - Simon Wiegrebe
- Department of Genetic Epidemiology, University of Regensburg, Regensburg, Germany
- Statistical Consulting Unit StaBLab, Department of Statistics, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
| | - Sebastian Einhauser
- Institute of Medical Microbiology and Hygiene, Molecular Microbiology (Virology), University of Regensburg, Regensburg, Germany
| | - Arisha J. Patt
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Regensburg, Germany
| | - Stephanie Beileke
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Felix Günther
- Department of Genetic Epidemiology, University of Regensburg, Regensburg, Germany
- Statistical Consulting Unit StaBLab, Department of Statistics, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
| | - Philipp Steininger
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Hans H. Niller
- Institute of Medical Microbiology and Hygiene, Molecular Microbiology (Virology), University of Regensburg, Regensburg, Germany
| | - Ralph Burkhardt
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Regensburg, Germany
| | - Helmut Küchenhoff
- Statistical Consulting Unit StaBLab, Department of Statistics, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
| | - Olaf Gefeller
- Department of Medical Informatics, Biometry and Epidemiology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Klaus Überla
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Iris M. Heid
- Department of Genetic Epidemiology, University of Regensburg, Regensburg, Germany
| | - Ralf Wagner
- Institute of Medical Microbiology and Hygiene, Molecular Microbiology (Virology), University of Regensburg, Regensburg, Germany
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
4
|
Nicholson BD, Turner PJ, Fanshawe TR, Williams AJ, Amirthalingam G, Tonner S, Zambon M, Body R, Davies K, Perera R, de Lusignan S, Hayward GN, Hobbs FR, on behalf of the RAPTOR-C19 Study Group and the CONDOR Steering Committee. Evaluation of the diagnostic accuracy of two point-of-care tests for COVID-19 when used in symptomatic patients in community settings in the UK primary care COVID diagnostic accuracy platform trial (RAPTOR-C19). PLoS One 2023; 18:e0288612. [PMID: 37478103 PMCID: PMC10361479 DOI: 10.1371/journal.pone.0288612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 07/02/2023] [Indexed: 07/23/2023] Open
Abstract
BACKGROUND AND OBJECTIVE Point-of-care lateral flow device antigen testing has been used extensively to identify individuals with active SARS-CoV-2 infection in the community. This study aimed to evaluate the diagnostic accuracy of two point-of-care tests (POCTs) for SARS-CoV-2 in routine community care. METHODS Adults and children with symptoms consistent with suspected current COVID-19 infection were prospectively recruited from 19 UK general practices and two COVID-19 testing centres between October 2020 and October 2021. Participants were tested by trained healthcare workers using at least one of two index POCTs (Roche-branded SD Biosensor Standard™ Q SARS-CoV-2 Rapid Antigen Test and/or BD Veritor™ System for Rapid Detection of SARS-CoV-2). The reference standard was laboratory triplex reverse transcription quantitative PCR (RT-PCR) using a combined nasal/oropharyngeal swab. Diagnostic accuracy parameters were estimated, with 95% confidence intervals (CIs), overall, in relation to RT-PCR cycle threshold and in pre-specified subgroups. RESULTS Of 663 participants included in the primary analysis, 39.2% (260/663, 95% CI 35.5% to 43.0%) had a positive RT-PCR result. The SD Biosensor POCT had sensitivity 84.0% (178/212, 78.3% to 88.6%) and specificity 98.5% (328/333, 96.5% to 99.5%), and the BD Veritor POCT had sensitivity 76.5% (127/166, 69.3% to 82.7%) and specificity 98.8% (249/252, 96.6% to 99.8%) compared with RT-PCR. Sensitivity of both devices dropped substantially at cycle thresholds ≥30 and in participants more than 7 days after onset of symptoms. CONCLUSIONS Both POCTs assessed exceed the Medicines and Healthcare products Regulatory Agency target product profile's minimum acceptable specificity of 95%. Confidence intervals for both tests include the minimum acceptable sensitivity of 80%. In symptomatic patients, negative results on these two POCTs do not preclude the possibility of infection. Tests should not be expected to reliably detect disease more than a week after symptom onset, when viral load may be reduced. REGISTRATION ISRCTN142269.
Collapse
Affiliation(s)
- Brian D. Nicholson
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, United Kingdom
| | - Philip J. Turner
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, United Kingdom
| | - Thomas R. Fanshawe
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, United Kingdom
| | - Alice J. Williams
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, United Kingdom
| | - Gayatri Amirthalingam
- Immunisation and Vaccine Preventable Diseases Division and Public Health Programmes, UK Health Security Agency, London, United Kingdom
| | - Sharon Tonner
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, United Kingdom
| | - Maria Zambon
- Influenza and Respiratory Virology & Polio Reference Service, UK Health Security Agency, London, United Kingdom
- NIHR Health Protection Research Unit, Imperial College London, London, United Kingdom
| | - Richard Body
- Division of Cardiovascular Science, University of Manchester, Manchester, United Kingdom
- Emergency Department, Manchester Royal Infirmary, Manchester University NHS Foundation Trust, Manchester, United Kingdom
- Manchester Academic Health Science Centre, & Healthcare Sciences Department, Manchester Metropolitan University, Manchester, United Kingdom
| | - Kerrie Davies
- Healthcare Associated Infections Research Group, Leeds Teaching Hospitals NHS trust and University of Leeds, Leeds, United Kingdom
- NIHR Leeds MedTech In vitro Diagnostic Co-operative, Leeds Teaching Hospitals NHS Trust and University of Leeds, Leeds, United Kingdom
| | - Rafael Perera
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, United Kingdom
| | - Simon de Lusignan
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, United Kingdom
| | - Gail N. Hayward
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, United Kingdom
| | - F.D. Richard Hobbs
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, United Kingdom
| | | |
Collapse
|
5
|
Tassi MF, le Meur N, Stéfic K, Grammatico-Guillon L. Performance of French medico-administrative databases in epidemiology of infectious diseases: a scoping review. Front Public Health 2023; 11:1161550. [PMID: 37250067 PMCID: PMC10213695 DOI: 10.3389/fpubh.2023.1161550] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 04/17/2023] [Indexed: 05/31/2023] Open
Abstract
The development of medico-administrative databases over the last few decades has led to an evolution and to a significant production of epidemiological studies on infectious diseases based on retrospective medical data and consumption of care. This new form of epidemiological research faces numerous methodological challenges, among which the assessment of the validity of targeting algorithm. We conducted a scoping review of studies that undertook an estimation of the completeness and validity of French medico-administrative databases for infectious disease epidemiological research. Nineteen validation studies and nine capture-recapture studies were identified. These studies covered 20 infectious diseases and were mostly based on the evaluation of hospital claimed data. The evaluation of their methodological qualities highlighted the difficulties associated with these types of research, particularly those linked to the assessment of their underlying hypotheses. We recall several recommendations relating to the problems addressed, which should contribute to the quality of future evaluation studies based on medico-administrative data and consequently to the quality of the epidemiological indicators produced from these information systems.
Collapse
Affiliation(s)
| | - Nolwenn le Meur
- Univ Rennes, EHESP, CNRS, Inserm, Arènes-UMR 6051, RSMS-U 1309, Rennes, France
| | - Karl Stéfic
- INSERM U1259, Université de Tours, Tours, France
- Laboratoire de virologie et CNR VIH-Laboratoire associé, CHRU de Tours, Tours, France
| | - Leslie Grammatico-Guillon
- INSERM U1259, Université de Tours, Tours, France
- Service d'Information Médicale d'Epidémiologie et d'Economie de la Santé, CHRU de Tours, Tours, France
| |
Collapse
|
6
|
Streif S, Neckermann P, Spitzenberg C, Weiss K, Hoecherl K, Kulikowski K, Hahner S, Noelting C, Einhauser S, Peterhoff D, Asam C, Wagner R, Baeumner AJ. Liposome-based high-throughput and point-of-care assays toward the quick, simple, and sensitive detection of neutralizing antibodies against SARS-CoV-2 in patient sera. Anal Bioanal Chem 2023; 415:1421-1435. [PMID: 36754874 PMCID: PMC9909147 DOI: 10.1007/s00216-023-04548-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/21/2022] [Accepted: 01/16/2023] [Indexed: 02/10/2023]
Abstract
The emergence of severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) in 2019 caused an increased interest in neutralizing antibody tests to determine the immune status of the population. Standard live-virus-based neutralization assays such as plaque-reduction assays or pseudovirus neutralization tests cannot be adapted to the point-of-care (POC). Accordingly, tests quantifying competitive binding inhibition of the angiotensin-converting enzyme 2 (ACE2) receptor to the receptor-binding domain (RBD) of SARS-CoV-2 by neutralizing antibodies have been developed. Here, we present a new platform using sulforhodamine B encapsulating liposomes decorated with RBD as foundation for the development of both a fluorescent, highly feasible high-throughput (HTS) and a POC-ready neutralizing antibody assay. RBD-conjugated liposomes are incubated with serum and subsequently immobilized in an ACE2-coated plate or mixed with biotinylated ACE2 and used in test strip with streptavidin test line, respectively. Polyclonal neutralizing human antibodies were shown to cause complete binding inhibition, while S309 and CR3022 human monoclonal antibodies only caused partial inhibition, proving the functionality of the assay. Both formats, the HTS and POC assay, were then tested using 20 sera containing varying titers of neutralizing antibodies, and a control panel of sera including prepandemic sera and reconvalescent sera from respiratory infections other than SARS-CoV-2. Both assays correlated well with a standard pseudovirus neutralization test (r = 0.847 for HTS and r = 0.614 for POC format). Furthermore, excellent correlation (r = 0.868) between HTS and POC formats was observed. The flexibility afforded by liposomes as signaling agents using different dyes and sizes can hence be utilized in the future for a broad range of multianalyte neutralizing antibody diagnostics.
Collapse
Affiliation(s)
- Simon Streif
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, Universitaetsstr. 31, 93053, Regensburg, Germany
| | - Patrick Neckermann
- Institute of Medical Microbiology & Hygiene, Molecular Microbiology (Virology), University of Regensburg, Universitaetsstr. 31, 93053, Regensburg, Germany
| | - Clemens Spitzenberg
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, Universitaetsstr. 31, 93053, Regensburg, Germany
| | - Katharina Weiss
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, Universitaetsstr. 31, 93053, Regensburg, Germany
| | - Kilian Hoecherl
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, Universitaetsstr. 31, 93053, Regensburg, Germany
| | - Kacper Kulikowski
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, Universitaetsstr. 31, 93053, Regensburg, Germany
| | - Sonja Hahner
- Mikrogen GmbH, Floriansbogen 2-4, 82061, Neuried, Germany
| | | | - Sebastian Einhauser
- Institute of Medical Microbiology & Hygiene, Molecular Microbiology (Virology), University of Regensburg, Universitaetsstr. 31, 93053, Regensburg, Germany
| | - David Peterhoff
- Institute of Medical Microbiology & Hygiene, Molecular Microbiology (Virology), University of Regensburg, Universitaetsstr. 31, 93053, Regensburg, Germany
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Regensburg, Germany
| | - Claudia Asam
- Institute of Medical Microbiology & Hygiene, Molecular Microbiology (Virology), University of Regensburg, Universitaetsstr. 31, 93053, Regensburg, Germany
| | - Ralf Wagner
- Institute of Medical Microbiology & Hygiene, Molecular Microbiology (Virology), University of Regensburg, Universitaetsstr. 31, 93053, Regensburg, Germany
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Regensburg, Germany
| | - Antje J Baeumner
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, Universitaetsstr. 31, 93053, Regensburg, Germany.
| |
Collapse
|
7
|
Aijaz J, Kanani F, Naseer F. Utility of Roche Elecsys anti-SARS-CoV-2 S in ascertaining post-vaccine neutralizing antibodies. JOURNAL OF CLINICAL VIROLOGY PLUS 2023; 3:100137. [PMID: 36644775 PMCID: PMC9832685 DOI: 10.1016/j.jcvp.2023.100137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 12/18/2022] [Accepted: 01/10/2023] [Indexed: 01/13/2023] Open
Abstract
With widespread global COVID-19 vaccine coverage, a scalable, cost-effective, and standardized tool to ascertain post-vaccine immunity is a dire need. Neither clinical evaluations of vaccine efficacy, nor live virus antibody neutralization assays fulfill these criteria. Commercially available anti-S binding immunological assays have the potential to fill this gap, but need to be systematically evaluated for their utility to serve as surrogates for the aforementioned, widely accepted tools of determining vaccine efficacy. In this study, we evaluated an anti-S binding immunological assay (Roche Elecsys Anti-SARS-CoV-2 S) by utilizing two hundred and fifty-five archived serum specimens, either pre-pandemic, or those exposed to natural infections or vaccines with their neutralizing titers pre-determined through a live virus, pseudotyped antibody neutralization assay. Roche Elecsys Anti-SARS-CoV-2 S demonstrated good sensitivity (98%) and specificity (99%), just as has been reported in some other previously conducted studies using this assay. Only a mild correlation, however, with the live virus pseudotyped lentivirus antibody neutralization assay (Spearman's r = 0.26) was observed. We conclude that, as such, Elecsys Anti-SARS-CoV-2 S has a high sensitivity and specificity for detecting anti-SARS-CoV-2 S proteins, though the assay does not always correlate well with live virus assays for quantitative outcomes.
Collapse
Affiliation(s)
- Javeria Aijaz
- Molecular Biology Section, Pathology Department, Indus Hospital and Health Network, Plot C-76, Sector 31/5, Opposite، Crossing، Darussalam Society Sector 39 Korangi, Karachi, Sindh, Pakistan,Corresponding author
| | - Fatima Kanani
- Chemical Pathology Section, Pathology Department, Indus Hospital & Health Network, Karachi, Pakistan
| | - Fouzia Naseer
- Molecular Biology Section, Pathology Department, Indus Hospital and Health Network, Plot C-76, Sector 31/5, Opposite، Crossing، Darussalam Society Sector 39 Korangi, Karachi, Sindh, Pakistan
| |
Collapse
|
8
|
Stanzick KJ, Simon J, Zimmermann ME, Schachtner M, Peterhoff D, Niller HH, Überla K, Wagner R, Heid IM, Stark KJ. DNA extraction from clotted blood in genotyping quality. Biotechniques 2023; 74:23-29. [PMID: 36597257 PMCID: PMC9887531 DOI: 10.2144/btn-2022-0061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
DNA extraction from frozen blood clots is challenging. Here, the authors applied QIAGEN Clotspin Baskets and the Gentra Puregene Blood Kit for DNA extraction to cellular fraction of 5.5 ml whole blood without anticoagulating additives. The amount and quality of extracted DNA were assessed via spectrophotometer and gel electrophoresis. Results from array-based genotyping were analyzed. All steps were compared with DNA isolated from anticoagulated blood samples from a separate study. The quality and concentration of DNA extracted from clotted blood were comparable to those of DNA extracted from anticoagulated blood. DNA yield was on average 27 μg per ml clotted blood, with an average purity of 1.87 (A260/A280). Genotyping quality was similar for both DNA sources (call rate: 99.56% from clotted vs 99.49% from anticoagulated blood).
Collapse
Affiliation(s)
- Kira J Stanzick
- Department of Genetic Epidemiology, University of Regensburg, Franz-Josef-Strauß-Allee 11, Regensburg, 93053, Germany
| | - Josef Simon
- Department of Genetic Epidemiology, University of Regensburg, Franz-Josef-Strauß-Allee 11, Regensburg, 93053, Germany
| | - Martina E Zimmermann
- Department of Genetic Epidemiology, University of Regensburg, Franz-Josef-Strauß-Allee 11, Regensburg, 93053, Germany
| | - Michael Schachtner
- Institute of Medical Microbiology & Hygiene, Molecular Microbiology (Virology), University of Regensburg, Franz-Josef-Strauß-Allee 11, Regensburg, 93053, Germany
| | - David Peterhoff
- Institute of Medical Microbiology & Hygiene, Molecular Microbiology (Virology), University of Regensburg, Franz-Josef-Strauß-Allee 11, Regensburg, 93053, Germany,Institute of Clinical Microbiology & Hygiene, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, Regensburg, 93053, Germany
| | - Hans-Helmut Niller
- Institute of Medical Microbiology & Hygiene, Molecular Microbiology (Virology), University of Regensburg, Franz-Josef-Strauß-Allee 11, Regensburg, 93053, Germany
| | - Klaus Überla
- Institute of Clinical & Molecular Virology, University Hospital Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Schlossgarten 4, Erlangen, 91054, Germany
| | - Ralf Wagner
- Institute of Medical Microbiology & Hygiene, Molecular Microbiology (Virology), University of Regensburg, Franz-Josef-Strauß-Allee 11, Regensburg, 93053, Germany,Institute of Clinical Microbiology & Hygiene, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, Regensburg, 93053, Germany
| | - Iris M Heid
- Department of Genetic Epidemiology, University of Regensburg, Franz-Josef-Strauß-Allee 11, Regensburg, 93053, Germany
| | - Klaus J Stark
- Department of Genetic Epidemiology, University of Regensburg, Franz-Josef-Strauß-Allee 11, Regensburg, 93053, Germany,Author for correspondence: Tel.: +49 941 944 5214;
| |
Collapse
|
9
|
Günther F, Einhauser S, Peterhoff D, Wiegrebe S, Niller HH, Beileke S, Steininger P, Burkhardt R, Küchenhoff H, Gefeller O, Überla K, Heid IM, Wagner R. Higher Infection Risk among Health Care Workers and Lower Risk among Smokers Persistent across SARS-CoV-2 Waves-Longitudinal Results from the Population-Based TiKoCo Seroprevalence Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:16996. [PMID: 36554876 PMCID: PMC9779618 DOI: 10.3390/ijerph192416996] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/09/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
SARS-CoV-2 seroprevalence was reported as substantially increased in medical personnel and decreased in smokers after the first wave in spring 2020, including in our population-based Tirschenreuth Study (TiKoCo). However, it is unclear whether these associations were limited to the early pandemic and whether the decrease in smokers was due to reduced infection or antibody response. We evaluated the association of occupation and smoking with period-specific seropositivity: for the first wave until July 2020 (baseline, BL), the low infection period in summer (follow-up 1, FU1, November 2020), and the second/third wave (FU2, April 2021). We measured binding antibodies directed to SARS-CoV-2 nucleoprotein (N), viral spike protein (S), and neutralizing antibodies at BL, FU1, and FU2. Previous infection, vaccination, smoking, and occupation were assessed by questionnaires. The 4181 participants (3513/3374 at FU1/FU2) included 6.5% medical personnel and 20.4% current smokers. At all three timepoints, new seropositivity was higher in medical personnel with ORs = 1.99 (95%-CI = 1.36-2.93), 1.41 (0.29-6.80), and 3.17 (1.92-5.24) at BL, FU1, and FU2, respectively, and nearly halved among current smokers with ORs = 0.47 (95%-CI = 0.33-0.66), 0.40 (0.09-1.81), and 0.56 (0.33-0.94). Current smokers compared to never-smokers had similar antibody levels after infection or vaccination and reduced odds of a positive SARS-CoV-2 result among tested. Our data suggest that decreased seroprevalence among smokers results from fewer infections rather than reduced antibody response. The persistently higher infection risk of medical staff across infection waves, despite improved means of protection over time, underscores the burden for health care personnel.
Collapse
Affiliation(s)
- Felix Günther
- Department of Mathematics, Stockholm University, Albanovägen 28, 11419 Stockholm, Sweden
| | - Sebastian Einhauser
- Institute of Medical Microbiology and Hygiene, Molecular Microbiology (Virology), University of Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany
| | - David Peterhoff
- Institute of Medical Microbiology and Hygiene, Molecular Microbiology (Virology), University of Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany
| | - Simon Wiegrebe
- Department of Genetic Epidemiology, University of Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany
- Statistical Consulting Unit StaBLab, Department of Statistics, LMU Munich, Geschwister-Scholl-Platz 1, 80539 Munich, Germany
| | - Hans Helmut Niller
- Institute of Medical Microbiology and Hygiene, Molecular Microbiology (Virology), University of Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany
| | - Stephanie Beileke
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Schlossgarten 4, 91054 Erlangen, Germany
| | - Philipp Steininger
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Schlossgarten 4, 91054 Erlangen, Germany
| | - Ralph Burkhardt
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany
| | - Helmut Küchenhoff
- Statistical Consulting Unit StaBLab, Department of Statistics, LMU Munich, Geschwister-Scholl-Platz 1, 80539 Munich, Germany
| | - Olaf Gefeller
- Department of Medical Informatics, Biometry and Epidemiology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Waldstr. 6, 91054 Erlangen, Germany
| | - Klaus Überla
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Schlossgarten 4, 91054 Erlangen, Germany
| | - Iris M. Heid
- Department of Genetic Epidemiology, University of Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany
| | - Ralf Wagner
- Institute of Medical Microbiology and Hygiene, Molecular Microbiology (Virology), University of Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany
| |
Collapse
|
10
|
Ma X, Li Z, Whelan MG, Kim D, Cao C, Yanes-Lane M, Yan T, Jaenisch T, Chu M, Clifton DA, Subissi L, Bobrovitz N, Arora RK. Serology Assays Used in SARS-CoV-2 Seroprevalence Surveys Worldwide: A Systematic Review and Meta-Analysis of Assay Features, Testing Algorithms, and Performance. Vaccines (Basel) 2022; 10:2000. [PMID: 36560415 PMCID: PMC9783516 DOI: 10.3390/vaccines10122000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/21/2022] [Accepted: 11/21/2022] [Indexed: 11/26/2022] Open
Abstract
Background: Many serological assays to detect SARS-CoV-2 antibodies were developed during the COVID-19 pandemic. Differences in the detection mechanism of SARS-CoV-2 serological assays limited the comparability of seroprevalence estimates for populations being tested. Methods: We conducted a systematic review and meta-analysis of serological assays used in SARS-CoV-2 population seroprevalence surveys, searching for published articles, preprints, institutional sources, and grey literature between 1 January 2020, and 19 November 2021. We described features of all identified assays and mapped performance metrics by the manufacturers, third-party head-to-head, and independent group evaluations. We compared the reported assay performance by evaluation source with a mixed-effect beta regression model. A simulation was run to quantify how biased assay performance affects population seroprevalence estimates with test adjustment. Results: Among 1807 included serosurveys, 192 distinctive commercial assays and 380 self-developed assays were identified. According to manufacturers, 28.6% of all commercial assays met WHO criteria for emergency use (sensitivity [Sn.] >= 90.0%, specificity [Sp.] >= 97.0%). However, manufacturers overstated the absolute values of Sn. of commercial assays by 1.0% [0.1, 1.4%] and 3.3% [2.7, 3.4%], and Sp. by 0.9% [0.9, 0.9%] and 0.2% [−0.1, 0.4%] compared to third-party and independent evaluations, respectively. Reported performance data was not sufficient to support a similar analysis for self-developed assays. Simulations indicate that inaccurate Sn. and Sp. can bias seroprevalence estimates adjusted for assay performance; the error level changes with the background seroprevalence. Conclusions: The Sn. and Sp. of the serological assay are not fixed properties, but varying features depending on the testing population. To achieve precise population estimates and to ensure the comparability of seroprevalence, serosurveys should select assays with high performance validated not only by their manufacturers and adjust seroprevalence estimates based on assured performance data. More investigation should be directed to consolidating the performance of self-developed assays.
Collapse
Affiliation(s)
- Xiaomeng Ma
- Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Institute of Health Policy Management and Evaluation, University of Toronto, Toronto, ON M5T 3M6, Canada
| | - Zihan Li
- Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Wyss Institute for Biologically Inspired Engineering, University of California Berkeley, Berkeley, CA 02115, USA
| | - Mairead G. Whelan
- Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Dayoung Kim
- Faculty of Science, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Christian Cao
- Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Mercedes Yanes-Lane
- COVID-19 Immunity Task Force, McGill University, Montreal, QC H3A 0G4, Canada
| | - Tingting Yan
- Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Thomas Jaenisch
- Department of Epidemiology & Center for Global Health, Colorado School of Public Health, Aurora, CO 80045, USA
| | - May Chu
- Department of Epidemiology & Center for Global Health, Colorado School of Public Health, Aurora, CO 80045, USA
| | - David A. Clifton
- Institute of Biomedical Engineering, University of Oxford, Oxford OX3 7DQ, UK
| | | | - Niklas Bobrovitz
- Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Critical Care Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Rahul K. Arora
- Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Institute of Biomedical Engineering, University of Oxford, Oxford OX3 7DQ, UK
| |
Collapse
|
11
|
Association between Adverse Reactions and Humoral Immune Response No Longer Detectable after BNT162b2 Booster Vaccination. Vaccines (Basel) 2022; 10:vaccines10101608. [PMID: 36298473 PMCID: PMC9611233 DOI: 10.3390/vaccines10101608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/21/2022] [Accepted: 09/23/2022] [Indexed: 11/25/2022] Open
Abstract
In a previous study, we described a highly significant association between reactogenicity and SARS-CoV-2 RBD IgG titers and wild-type neutralization capacity in males after basic vaccination with BNT162b2. The objective of this study was to assess whether this benefit was long lasting and also evident after BNT162b2 booster vaccination. Reactogenicity was classified into three groups: no or minor injection site symptoms, moderate (not further classified) and severe adverse reactions (defined as any symptom(s) resulting in sick leave). We initially compared 76 non-immunocompromised individuals who reported either no or minor injection site symptoms or severe adverse reactions after second vaccination. In total, 65 of them took part in another blood sampling and 47 were evaluated after booster vaccination. 26 weeks after second vaccination, men who reported severe adverse reactions after second vaccination had 1.7-fold higher SARS-CoV-2 RBD IgG titers (p = 0.025) and a 2.5-fold better neutralization capacity (p = 0.006) than men with no or only minor injection site symptoms. Again, no association was found in women. Reactogenicity of BNT162b2 booster vaccination was different from second vaccination according to our classification and was no longer associated with SARS-CoV-2 RBD IgG titers or wild-type neutralization capacity. To conclude, after BNT162b2 basic vaccination, the association between reactogenicity and humoral immune response in men persisted over time but was no longer detectable after BNT162b2 booster vaccination.
Collapse
|
12
|
Einhauser S, Peterhoff D, Beileke S, Günther F, Niller HH, Steininger P, Knöll A, Korn K, Berr M, Schütz A, Wiegrebe S, Stark KJ, Gessner A, Burkhardt R, Kabesch M, Schedl H, Küchenhoff H, Pfahlberg AB, Heid IM, Gefeller O, Überla K, Wagner R. Time Trend in SARS-CoV-2 Seropositivity, Surveillance Detection- and Infection Fatality Ratio until Spring 2021 in the Tirschenreuth County-Results from a Population-Based Longitudinal Study in Germany. Viruses 2022; 14:v14061168. [PMID: 35746640 PMCID: PMC9228731 DOI: 10.3390/v14061168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/20/2022] [Accepted: 05/24/2022] [Indexed: 12/02/2022] Open
Abstract
Herein, we provide results from a prospective population-based longitudinal follow-up (FU) SARS-CoV-2 serosurveillance study in Tirschenreuth, the county which was hit hardest in Germany in spring 2020 and early 2021. Of 4203 individuals aged 14 years or older enrolled at baseline (BL, June 2020), 3546 participated at FU1 (November 2020) and 3391 at FU2 (April 2021). Key metrics comprising standardized seroprevalence, surveillance detection ratio (SDR), infection fatality ratio (IFR) and success of the vaccination campaign were derived using the Roche N- and S-Elecsys anti-SARS-CoV-2 test together with a self-administered questionnaire. N-seropositivity at BL was 9.2% (1st wave). While we observed a low new seropositivity between BL and FU1 (0.9%), the combined 2nd and 3rd wave accounted for 6.1% new N-seropositives between FU1 and FU2 (ever seropositives at FU2: 15.4%). The SDR decreased from 5.4 (BL) to 1.1 (FU2) highlighting the success of massively increased testing in the population. The IFR based on a combination of serology and registration data resulted in 3.3% between November 2020 and April 2021 compared to 2.3% until June 2020. Although IFRs were consistently higher at FU2 compared to BL across age-groups, highest among individuals aged 70+ (18.3% versus 10.7%, respectively), observed differences were within statistical uncertainty bounds. While municipalities with senior care homes showed a higher IFR at BL (3.0% with senior care home vs. 0.7% w/o), this effect diminished at FU2 (3.4% vs. 2.9%). In April 2021 (FU2), vaccination rate in the elderly was high (>77.4%, age-group 80+).
Collapse
Affiliation(s)
- Sebastian Einhauser
- Institute of Medical Microbiology and Hygiene, Molecular Microbiology (Virology), University of Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany; (S.E.); (D.P.); (H.-H.N.); (M.B.); (A.S.); (A.G.)
| | - David Peterhoff
- Institute of Medical Microbiology and Hygiene, Molecular Microbiology (Virology), University of Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany; (S.E.); (D.P.); (H.-H.N.); (M.B.); (A.S.); (A.G.)
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany
| | - Stephanie Beileke
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Schlossgarten 4, 91054 Erlangen, Germany; (S.B.); (P.S.); (A.K.); (K.K.)
| | - Felix Günther
- Department of Mathematics, Stockholm University, Kräftriket 6, 106 91 Stockholm, Sweden;
- Department of Genetic Epidemiology, University of Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany; (S.W.); (K.J.S.); (I.M.H.)
| | - Hans-Helmut Niller
- Institute of Medical Microbiology and Hygiene, Molecular Microbiology (Virology), University of Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany; (S.E.); (D.P.); (H.-H.N.); (M.B.); (A.S.); (A.G.)
| | - Philipp Steininger
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Schlossgarten 4, 91054 Erlangen, Germany; (S.B.); (P.S.); (A.K.); (K.K.)
| | - Antje Knöll
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Schlossgarten 4, 91054 Erlangen, Germany; (S.B.); (P.S.); (A.K.); (K.K.)
| | - Klaus Korn
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Schlossgarten 4, 91054 Erlangen, Germany; (S.B.); (P.S.); (A.K.); (K.K.)
| | - Melanie Berr
- Institute of Medical Microbiology and Hygiene, Molecular Microbiology (Virology), University of Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany; (S.E.); (D.P.); (H.-H.N.); (M.B.); (A.S.); (A.G.)
| | - Anja Schütz
- Institute of Medical Microbiology and Hygiene, Molecular Microbiology (Virology), University of Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany; (S.E.); (D.P.); (H.-H.N.); (M.B.); (A.S.); (A.G.)
| | - Simon Wiegrebe
- Department of Genetic Epidemiology, University of Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany; (S.W.); (K.J.S.); (I.M.H.)
| | - Klaus J. Stark
- Department of Genetic Epidemiology, University of Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany; (S.W.); (K.J.S.); (I.M.H.)
| | - André Gessner
- Institute of Medical Microbiology and Hygiene, Molecular Microbiology (Virology), University of Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany; (S.E.); (D.P.); (H.-H.N.); (M.B.); (A.S.); (A.G.)
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany
| | - Ralph Burkhardt
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany;
| | - Michael Kabesch
- University Children’s Hospital Regensburg (KUNO) at the Hospital St. Hedwig of the Order of St. John, University of Regensburg, Steinmetzstraße 1-3, 93049 Regensburg, Germany;
| | - Holger Schedl
- Bayerisches Rotes Kreuz, Kreisverband Tirschenreuth, Egerstraße 21, 95643 Tirschenreuth, Germany;
| | - Helmut Küchenhoff
- Statistical Consulting Unit StaBLab, Department of Statistics, LMU Munich, Geschwister-Scholl-Platz 1, 80539 Munich, Germany;
| | - Annette B. Pfahlberg
- Department of Medical Informatics, Biometry and Epidemiology, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Waldstr. 6, 91054 Erlangen, Germany; (A.B.P.); (O.G.)
| | - Iris M. Heid
- Department of Genetic Epidemiology, University of Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany; (S.W.); (K.J.S.); (I.M.H.)
| | - Olaf Gefeller
- Department of Medical Informatics, Biometry and Epidemiology, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Waldstr. 6, 91054 Erlangen, Germany; (A.B.P.); (O.G.)
| | - Klaus Überla
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Schlossgarten 4, 91054 Erlangen, Germany; (S.B.); (P.S.); (A.K.); (K.K.)
- Correspondence: (K.Ü.); (R.W.); Tel.: +49-9131-85-23563 (K.Ü.); +49-941-944-6452 (R.W.)
| | - Ralf Wagner
- Institute of Medical Microbiology and Hygiene, Molecular Microbiology (Virology), University of Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany; (S.E.); (D.P.); (H.-H.N.); (M.B.); (A.S.); (A.G.)
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany
- Correspondence: (K.Ü.); (R.W.); Tel.: +49-9131-85-23563 (K.Ü.); +49-941-944-6452 (R.W.)
| |
Collapse
|
13
|
Humoral immunity in dually vaccinated SARS-CoV-2-naïve individuals and in booster-vaccinated COVID-19-convalescent subjects. Infection 2022; 50:1475-1481. [PMID: 35403960 PMCID: PMC8995884 DOI: 10.1007/s15010-022-01817-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 03/26/2022] [Indexed: 12/20/2022]
Abstract
Abstract
Background
The immune response to COVID-19-vaccination differs between naïve vaccinees and those who were previously infected with SARS-CoV-2. Longitudinal quantitative and qualitative serological differences in these two distinct immunological subgroups in response to vaccination are currently not well studied.
Methods
We investigate a cohort of SARS-CoV-2-naïve and COVID-19-convalescent individuals immediately after vaccination and 6 months later. We use different enzyme-linked immunosorbent assay (ELISA) variants and a surrogate virus neutralization test (sVNT) to measure IgG serum titers, IgA serum reactivity, IgG serum avidity and neutralization capacity by ACE2 receptor competition.
Results
Anti-receptor-binding domain (RBD) antibody titers decline over time in dually vaccinated COVID-19 naïves whereas titers in single dose vaccinated COVID-19 convalescents are higher and more durable. Similarly, antibody avidity is considerably higher among boosted COVID-19 convalescent subjects as compared to dually vaccinated COVID-19-naïve subjects. Furthermore, sera from boosted convalescents inhibited the binding of spike-protein to ACE2 more efficiently than sera from dually vaccinated COVID-19-naïve subjects.
Conclusions
Long-term humoral immunity differs substantially between dually vaccinated SARS-CoV-2-naïve and COVID-19-convalescent individuals. Booster vaccination after COVID-19 induces a more durable humoral immune response in terms of magnitude and quality as compared to two-dose vaccination in a SARS-CoV-2-naïve background.
Collapse
|
14
|
Peterhoff D, Einhauser S, Beileke S, Niller HH, Günther F, Schachtner M, Asbach B, Steininger P, Tenbusch M, Peter AS, Gessner A, Burkhardt R, Heid IM, Wagner R, Überla K. Comparative Immunogenicity of COVID-19 Vaccines in a Population-Based Cohort Study with SARS-CoV-2-Infected and Uninfected Participants. Vaccines (Basel) 2022; 10:324. [PMID: 35214782 PMCID: PMC8875516 DOI: 10.3390/vaccines10020324] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/09/2022] [Accepted: 02/15/2022] [Indexed: 11/16/2022] Open
Abstract
To assess vaccine immunogenicity in non-infected and previously infected individuals in a real-world scenario, SARS-CoV-2 antibody responses were determined during follow-up 2 (April 2021) of the population-based Tirschenreuth COVID-19 cohort study comprising 3378 inhabitants of the Tirschenreuth county aged 14 years or older. Seronegative participants vaccinated once with Vaxzevria, Comirnaty, or Spikevax had median neutralizing antibody titers ranging from ID50 = 25 to 75. Individuals with two immunizations with Comirnaty or Spikevax had higher median ID50s (of 253 and 554, respectively). Regression analysis indicated that both increased age and increased time since vaccination independently decreased RBD binding and neutralizing antibody levels. Unvaccinated participants with detectable N-antibodies at baseline (June 2020) revealed a median ID50 of 72 at the April 2021 follow-up. Previously infected participants that received one dose of Vaxzevria or Comirnaty had median ID50 to 929 and 2502, respectively. Individuals with a second dose of Comirnaty given in a three-week interval after the first dose did not have higher median antibody levels than individuals with one dose. Prior infection also primed for high systemic IgA levels in response to one dose of Comirnaty that exceeded IgA levels observed after two doses of Comirnaty in previously uninfected participants. Neutralizing antibody levels targeting the spike protein of Beta and Delta variants were diminished compared to the wild type in vaccinated and infected participants.
Collapse
Affiliation(s)
- David Peterhoff
- Institute of Medical Microbiology and Hygiene, Molecular Microbiology (Virology), University of Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany; (D.P.); (S.E.); (H.-H.N.); (M.S.); (A.G.)
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany
| | - Sebastian Einhauser
- Institute of Medical Microbiology and Hygiene, Molecular Microbiology (Virology), University of Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany; (D.P.); (S.E.); (H.-H.N.); (M.S.); (A.G.)
| | - Stephanie Beileke
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Schlossgarten 4, 91054 Erlangen, Germany; (S.B.); (P.S.); (M.T.); (A.S.P.)
| | - Hans-Helmut Niller
- Institute of Medical Microbiology and Hygiene, Molecular Microbiology (Virology), University of Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany; (D.P.); (S.E.); (H.-H.N.); (M.S.); (A.G.)
| | - Felix Günther
- Department of Mathematics, Stockholm University, Kräftriket 6, 106 91 Stockholm, Sweden;
- Department of Genetic Epidemiology, University of Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany;
| | - Michael Schachtner
- Institute of Medical Microbiology and Hygiene, Molecular Microbiology (Virology), University of Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany; (D.P.); (S.E.); (H.-H.N.); (M.S.); (A.G.)
| | - Benedikt Asbach
- Institute of Medical Microbiology and Hygiene, Molecular Microbiology (Virology), University of Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany; (D.P.); (S.E.); (H.-H.N.); (M.S.); (A.G.)
| | - Philipp Steininger
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Schlossgarten 4, 91054 Erlangen, Germany; (S.B.); (P.S.); (M.T.); (A.S.P.)
| | - Matthias Tenbusch
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Schlossgarten 4, 91054 Erlangen, Germany; (S.B.); (P.S.); (M.T.); (A.S.P.)
| | - Antonia S. Peter
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Schlossgarten 4, 91054 Erlangen, Germany; (S.B.); (P.S.); (M.T.); (A.S.P.)
| | - Andre Gessner
- Institute of Medical Microbiology and Hygiene, Molecular Microbiology (Virology), University of Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany; (D.P.); (S.E.); (H.-H.N.); (M.S.); (A.G.)
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany
| | - Ralph Burkhardt
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany;
| | - Iris M. Heid
- Department of Genetic Epidemiology, University of Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany;
| | - Ralf Wagner
- Institute of Medical Microbiology and Hygiene, Molecular Microbiology (Virology), University of Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany; (D.P.); (S.E.); (H.-H.N.); (M.S.); (A.G.)
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany
| | - Klaus Überla
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Schlossgarten 4, 91054 Erlangen, Germany; (S.B.); (P.S.); (M.T.); (A.S.P.)
| |
Collapse
|