1
|
Losso A, Gauthey A, Mayr S, Choat B. Foliar Water Uptake Supports Water Potential Recovery but Does Not Affect Xylem Sap Composition in Two Salt-Secreting Mangroves. PLANT, CELL & ENVIRONMENT 2025; 48:3027-3037. [PMID: 39679830 PMCID: PMC11963484 DOI: 10.1111/pce.15332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 11/05/2024] [Accepted: 12/02/2024] [Indexed: 12/17/2024]
Abstract
Mangroves are highly salt-tolerant species, which live in saline intertidal environments, but rely on alternative, less saline water to maintain hydraulic integrity and plant productivity. Foliar water uptake (FWU) is thought to assist in hydration of mangroves, particularly during periods of acute water deficit. We investigated the dynamics of FWU in Avicennia marina and Aegiceras corniculatum by submerging and spraying excised branches and measuring leaf water potential (Ψ) at different time intervals. Daily changes in xylem sap composition (ionic concentrations, pH and surface tension) were monitored during 2 days characterised by the presence of morning dew and difference in tides. In both species, FWU occurred over relatively short times, with leaf Ψ recovering from -4.5 MPa to about -1.5 MPa in 120-150 min. At predawn, Ψ was higher (-1.5 MPa) than sea water Ψ, indicating that leaves had been partially rehydrated by absorbed dew. Tides did not affect Ψ, but high tides increased the overall ionic content of xylem sap. The results indicated mangroves are extremely efficient in absorbing non-saline water via the leaves and restoring the water balance to Ψ higher than seawater. Changes in xylem sap composition, which were strongly influenced by tides, were not affected by observed FWU.
Collapse
Affiliation(s)
- Adriano Losso
- Hawkesbury Institute for the EnvironmentWestern Sydney UniversityPenrithNew South WalesAustralia
- Department of BotanyUniversität Innsbruck/University of InnsbruckInnsbruckAustria
| | - Alice Gauthey
- Hawkesbury Institute for the EnvironmentWestern Sydney UniversityPenrithNew South WalesAustralia
- Birmingham Institute of Forest ResearchUniversity of BirminghamEdgbastonUK
| | - Stefan Mayr
- Department of BotanyUniversität Innsbruck/University of InnsbruckInnsbruckAustria
| | - Brendan Choat
- Hawkesbury Institute for the EnvironmentWestern Sydney UniversityPenrithNew South WalesAustralia
| |
Collapse
|
2
|
Chin ARO, Guzmán-Delgado P, Görlich A, HilleRisLambers J. Towards multivariate functional trait syndromes: Predicting foliar water uptake in trees. Ecology 2023; 104:e4112. [PMID: 37252804 DOI: 10.1002/ecy.4112] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/10/2023] [Accepted: 05/18/2023] [Indexed: 06/01/2023]
Abstract
Analysis of functional traits is a cornerstone of ecology, yet individual traits seldom explain useful amounts of variation in species distribution or climatic tolerance, and their functional significance is rarely validated experimentally. Multivariate suites of interacting traits could build an understanding of ecological processes and improve our ability to make sound predictions of species success in our rapidly changing world. We use foliar water uptake capacity as a case study because it is increasingly considered to be a key functional trait in plant ecology due to its importance for stress-tolerance physiology. However, the traits behind the trait, that is, the features of leaves that determine variation in foliar water uptake rates, have not been assembled into a widely applicable framework for uptake prediction. Focusing on trees, we investigated relationships among 25 structural traits, leaf osmotic potential (a source of free energy to draw water into leaves), and foliar water uptake in 10 diverse angiosperm and conifer species. We identified consistent, multitrait "uptake syndromes" for both angiosperm and conifer trees, with differences in key traits revealing suspected differences in the water entry route between these two clades and an evolutionarily significant divergence in the function of homologous structures. A literature review of uptake-associated functional traits, which largely documents similar univariate relationships, provides additional support for our proposed "uptake syndrome." Importantly, more than half of shared traits had opposite-direction influences on the capacity of leaves to absorb water in angiosperms and conifers. Taxonomically targeted multivariate trait syndromes provide a useful tool for trait selection in ecological research, while highlighting the importance of micro-traits and the physiological verification of their function for advancing trait-based ecology.
Collapse
Affiliation(s)
- Alana R O Chin
- Plant Ecology Group, Institute of Integrative Biology, ETH-Zürich, Zürich, Switzerland
| | - Paula Guzmán-Delgado
- Department of Plant Sciences, University of California, Davis, Davis, California, USA
| | - Anna Görlich
- Plant Ecology Group, Institute of Integrative Biology, ETH-Zürich, Zürich, Switzerland
| | | |
Collapse
|
3
|
Losso A, Dämon B, Hacke U, Mayr S. High potential for foliar water uptake in early stages of leaf development of three woody angiosperms. PHYSIOLOGIA PLANTARUM 2023; 175:e13961. [PMID: 37341178 PMCID: PMC10953411 DOI: 10.1111/ppl.13961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/06/2023] [Accepted: 06/16/2023] [Indexed: 06/22/2023]
Abstract
Foliar water uptake (FWU) is a widespread mechanism that may help plants cope with drought stress in a wide range of ecosystems. FWU can be affected by various leaf traits, which change during leaf development. We exposed cut and dehydrated leaves to rainwater and measured FWU, changes in leaf water potential after 19 h of FWU (ΔΨ), minimum leaf conductance (gmin ), and leaf wettability (abaxial and adaxial) of leaves of Acer platanoides, Fagus sylvatica, and Sambucus nigra at three developmental stages: unfolding (2-5-day-old), young (1.5-week-old) and mature leaves (8-week-old). FWU and gmin were higher in younger leaves. ΔΨ corresponded to FWU and gmin in all cases but mature leaves of F. sylvatica, where ΔΨ was highest. Most leaves were highly wettable, and at least one leaf surface (adaxial or abaxial) showed a decrease in wettability from unfolding to mature leaves. Young leaves of all studied species showed FWU (unfolding leaves: 14.8 ± 1.1 μmol m-2 s-1 ), which may improve plant water status and thus counterbalance spring transpirational losses due to high gmin . The high wettability of young leaves probably supported FWU. We observed particularly high FWU and respective high ΔΨ in older leaves of F. sylvatica, possibly aided by trichomes.
Collapse
Affiliation(s)
- Adriano Losso
- Department of BotanyUniversity of InnsbruckInnsbruckAustria
| | - Birgit Dämon
- Department of BotanyUniversity of InnsbruckInnsbruckAustria
| | - Uwe Hacke
- Department of Renewable ResourcesUniversity of AlbertaEdmontonAlbertaCanada
| | - Stefan Mayr
- Department of BotanyUniversity of InnsbruckInnsbruckAustria
| |
Collapse
|
4
|
Schreel JDM, Brodersen C, De Schryver T, Dierick M, Rubinstein A, Dewettinck K, Boone MN, Van Hoorebeke L, Steppe K. Foliar water uptake does not contribute to embolism repair in beech (Fagus sylvatica L.). ANNALS OF BOTANY 2022; 129:555-566. [PMID: 35141741 PMCID: PMC9007097 DOI: 10.1093/aob/mcac016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 02/02/2022] [Indexed: 05/21/2023]
Abstract
BACKGROUND AND AIMS Foliar water uptake has recently been suggested as a possible mechanism for the restoration of hydraulically dysfunctional xylem vessels. In this paper we used a combination of ecophysiological measurements, X-ray microcomputed tomography and cryo-scanning electron microscopy during a drought treatment to fully evaluate this hypothesis. KEY RESULTS Based on an assessment of these methods in beech (Fagus sylvatica L.) seedlings we were able to (1) confirm an increase in the amount of hydraulically redistributed water absorbed by leaves when the soil water potential decreased, and (2) locate this redistributed water in hydraulically active vessels in the stem. However, (3) no embolism repair was observed irrespective of the organ under investigation (i.e. stem, petiole or leaf) or the intensity of drought. CONCLUSIONS Our data provide evidence for a hydraulic pathway from the leaf surface to the stem xylem following a water potential gradient, but this pathway exists only in functional vessels and does not play a role in embolism repair for beech.
Collapse
Affiliation(s)
- Jeroen D M Schreel
- Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000 Gent, Belgium
- Institute of Environment, Department of Biological Sciences, Florida International University, Miami, FL, USA
- For correspondence. E-mail
| | - Craig Brodersen
- School of the Environment, Yale University, New Haven, CT, USA
| | - Thomas De Schryver
- UGent Centre for X-ray Tomography (UGCT) – Radiation Physics Group, Department of Physics & Astronomy, Ghent University, Proeftuinstraat 86, 9000 Gent, Belgium
| | - Manuel Dierick
- UGent Centre for X-ray Tomography (UGCT) – Radiation Physics Group, Department of Physics & Astronomy, Ghent University, Proeftuinstraat 86, 9000 Gent, Belgium
| | | | - Koen Dewettinck
- Food Structure & Function Research Group, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000 Gent, Belgium
| | - Matthieu N Boone
- UGent Centre for X-ray Tomography (UGCT) – Radiation Physics Group, Department of Physics & Astronomy, Ghent University, Proeftuinstraat 86, 9000 Gent, Belgium
| | - Luc Van Hoorebeke
- UGent Centre for X-ray Tomography (UGCT) – Radiation Physics Group, Department of Physics & Astronomy, Ghent University, Proeftuinstraat 86, 9000 Gent, Belgium
| | - Kathy Steppe
- Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000 Gent, Belgium
| |
Collapse
|
5
|
Chin ARO, Guzmán‐Delgado P, Sillett SC, Orozco J, Kramer RD, Kerhoulas LP, Moore ZJ, Reed M, Zwieniecki MA. Shoot dimorphism enables Sequoia sempervirens to separate requirements for foliar water uptake and photosynthesis. AMERICAN JOURNAL OF BOTANY 2022; 109:564-579. [PMID: 35274309 PMCID: PMC9322557 DOI: 10.1002/ajb2.1841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/04/2022] [Accepted: 03/04/2022] [Indexed: 05/11/2023]
Abstract
PREMISE Trees in wet forests often have features that prevent water films from covering stomata and inhibiting gas exchange, while many trees in drier environments use foliar water uptake to reduce water stress. In forests with both wet and dry seasons, evergreen trees would benefit from producing leaves capable of balancing rainy-season photosynthesis with summertime water absorption. METHODS Using samples collected from across the vertical gradient in tall redwood (Sequoia sempervirens) crowns, we estimated tree-level foliar water uptake and employed physics-based causative modeling to identify key functional traits that determine uptake potential by setting hydraulic resistance. RESULTS We showed that Sequoia has two functionally distinct shoot morphotypes. While most shoots specialize in photosynthesis, the axial shoot type is capable of much greater foliar water uptake, and its within-crown distribution varies with latitude. A suite of leaf surface traits cause hydraulic resistance, leading to variation in uptake capacity among samples. CONCLUSIONS Shoot dimorphism gives tall Sequoia trees the capacity to absorb up to 48 kg H2 O h-1 during the first hour of leaf wetting, ameliorating water stress while presumably maintaining high photosynthetic capacity year round. Geographic variation in shoot dimorphism suggests that plasticity in shoot-type distribution and leaf surface traits helps Sequoia maintain a dominate presence in both wet and dry forests.
Collapse
Affiliation(s)
- Alana R. O. Chin
- Plant Sciences DepartmentUniversity of California DavisDavisCA95616USA
- Present address:
Alana R. O. Chin, D‐USYS, ETHZürich8092Switzerland
| | | | - Stephen C. Sillett
- Department of Forestry and Wildland ResourcesHumboldt State UniversityArcataCA95521USA
| | - Jessica Orozco
- Plant Sciences DepartmentUniversity of California DavisDavisCA95616USA
| | | | - Lucy P. Kerhoulas
- Department of Forestry and Wildland ResourcesHumboldt State UniversityArcataCA95521USA
| | - Zane J. Moore
- Plant Sciences DepartmentUniversity of California DavisDavisCA95616USA
| | - Marty Reed
- Department of Biological SciencesHumboldt State UniversityArcataCA95521USA
| | | |
Collapse
|
6
|
Bryant C, Fuenzalida TI, Zavafer A, Nguyen HT, Brothers N, Harris RJ, Beckett HAA, Holmlund HI, Binks O, Ball MC. Foliar water uptake via cork warts in mangroves of the Sonneratia genus. PLANT, CELL & ENVIRONMENT 2021; 44:2925-2937. [PMID: 34118083 DOI: 10.1111/pce.14129] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 06/07/2021] [Accepted: 06/09/2021] [Indexed: 06/12/2023]
Abstract
Foliar water uptake (FWU) occurs in plants of diverse ecosystems; however, the diversity of pathways and their associated FWU kinetics remain poorly resolved. We characterized a novel FWU pathway in two mangrove species of the Sonneratia genus, S. alba and S. caseolaris. Further, we assessed the influence of leaf wetting duration, wet-dry seasonality and leaf dehydration on leaf conductance to surface water (Ksurf ). The symplastic tracer dye, disodium fluorescein, revealed living cells subtending and encircling leaf epidermal structures known as cork warts as a pathway of FWU entry into the leaf. Rehydration kinetics experiments revealed a novel mode of FWU, with slow and steady rates of water uptake persistent over a duration of 12 hr. Ksurf increased with longer durations of leaf wetting and was greater in leaves with more negative water potentials at the initiation of leaf wetting. Ksurf declined by 68% between wet and dry seasons. Our results suggest that FWU via cork warts in Sonneratia sp. may be rate limited and under active regulation. We conclude that FWU pathways in halophytes may require ion exclusion to avoid uptake of salt when inundated, paralleling the capacity of halophyte roots for ion selectivity during water acquisition.
Collapse
Affiliation(s)
- Callum Bryant
- Plant Science Division, Research School of Biology, Australian National University, Canberra, ACT 2601, Australia
| | - Tomas I Fuenzalida
- Plant Science Division, Research School of Biology, Australian National University, Canberra, ACT 2601, Australia
| | - Alonso Zavafer
- Plant Science Division, Research School of Biology, Australian National University, Canberra, ACT 2601, Australia
| | - Hoa T Nguyen
- Plant Science Division, Research School of Biology, Australian National University, Canberra, ACT 2601, Australia
- Vietnam National University of Agriculture, Trau Quy, Gia Lam, Ha Noi, Vietnam
| | - Nigel Brothers
- Plant Science Division, Research School of Biology, Australian National University, Canberra, ACT 2601, Australia
| | - Rosalie J Harris
- Plant Science Division, Research School of Biology, Australian National University, Canberra, ACT 2601, Australia
| | - Holly A A Beckett
- Plant Science Division, Research School of Biology, Australian National University, Canberra, ACT 2601, Australia
| | - Helen I Holmlund
- Plant Science Division, Research School of Biology, Australian National University, Canberra, ACT 2601, Australia
- Pepperdine University, Natural Science Division, Malibu, CA, 90263, USA
| | - Oliver Binks
- Plant Science Division, Research School of Biology, Australian National University, Canberra, ACT 2601, Australia
| | - Marilyn C Ball
- Plant Science Division, Research School of Biology, Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
7
|
Losada JM, Díaz M, Holbrook NM. Idioblasts and peltate hairs as distribution networks for water absorbed by xerophilous leaves. PLANT, CELL & ENVIRONMENT 2021; 44:1346-1360. [PMID: 33347627 DOI: 10.1111/pce.13985] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/11/2020] [Accepted: 12/11/2020] [Indexed: 06/12/2023]
Abstract
Capparis odoratissima is a tree species native to semi-arid environments of South America where low soil water availability coexists with frequent night-time fog. A previous study showed that water applied to leaf surfaces enhanced leaf hydration, photosynthesis and growth, but the mechanisms of foliar water uptake are unknown. Here, we combine detailed anatomical evaluations with water and dye uptake experiments in the laboratory, and use immunolocalization of pectin and arabinogalactan protein epitopes to characterize water uptake pathways in leaves. Abaxially, the leaves of C. odoratissima are covered with peltate hairs, while the adaxial surfaces are glabrous. Both surfaces are able to absorb condensed water, but the abaxial surface has higher rates of water uptake. Thousands of idioblasts per cm2 , a higher density than stomata, connect the adaxial leaf surface and the abaxial peltate hairs, both of which contain hygroscopic substances such as arabinogalactan proteins and pectins. The highly specialized anatomy of the leaves of C odoratissima fulfils the dual function of minimizing water loss when stomata are closed, while maintaining the ability to absorb liquid water. Cell-wall related hygroscopic compounds in the peltate hairs and idioblasts create a network of microchannels that maintain leaf hydration and promote water uptake.
Collapse
Affiliation(s)
- Juan M Losada
- Instituto de Hortofruticultura Subtropical y Mediterránea La Mayora, Málaga, Spain
- Department of Organismic and Evolutionary Biology, Cambridge, Massachusetts, USA
- Arnold Arboretum of Harvard University, Boston, Massachusetts, USA
| | - Miriam Díaz
- Centro de Investigaciones en Ecología y Zonas Áridas (CIEZA), Universidad Nacional Experimental Francisco de Miranda, Coro, Venezuela
| | - N Michele Holbrook
- Department of Organismic and Evolutionary Biology, Cambridge, Massachusetts, USA
- Arnold Arboretum of Harvard University, Boston, Massachusetts, USA
| |
Collapse
|
8
|
Kangur O, Steppe K, Schreel JDM, von der Crone JS, Sellin A. Variation in nocturnal stomatal conductance and development of predawn disequilibrium between soil and leaf water potentials in nine temperate deciduous tree species. FUNCTIONAL PLANT BIOLOGY : FPB 2021; 48:483-492. [PMID: 33453751 DOI: 10.1071/fp20091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 12/07/2020] [Indexed: 06/12/2023]
Abstract
It is widely acknowledged that many plant species can keep stomata open during night. We examined how nocturnal stomatal conductance differs among potted saplings of nine temperate tree species from diverse native habitats in wet and dry soil conditions, and how it affects plant predawn water status. Nocturnal stomatal conductance in dry soil conditions was low in all the species (with a maximum value of 14.6 mmol m-2 s-1); in wet conditions, it was the highest in Populus tremula L., a fast-growing and anisohydric pioneer species, and the lowest in Quercus robur L., a late-successional and isohydric species. Relatively high nocturnal stomatal conductance in wet conditions in P. tremula compared with the other species resulted in the highest difference in water potential values between the leaves and soil at predawn. As drought progressed, different species tended to keep stomata almost closed at night, and the observed differences between anisohydric and isohydric species disappeared. At an ample soil water supply, nocturnal stomatal behaviour was species dependent and varied according to both the water-use and the life strategies of the species. Keeping that in mind, one should therefore be careful when using predawn leaf water potential as a proxy for soil water potential, sampling different species.
Collapse
Affiliation(s)
- Ott Kangur
- Laboratory of Ecophysiology, Institute of Ecology and Earth Sciences, University of Tartu, Lai 40, 51005 Tartu, Estonia; and Corresponding author.
| | - Kathy Steppe
- Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000 Gent, Belgium
| | - Jeroen D M Schreel
- Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000 Gent, Belgium
| | - Jonas S von der Crone
- Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000 Gent, Belgium
| | - Arne Sellin
- Laboratory of Ecophysiology, Institute of Ecology and Earth Sciences, University of Tartu, Lai 40, 51005 Tartu, Estonia
| |
Collapse
|
9
|
Khan R, Ma X, Shah S, Wu X, Shaheen A, Xiao L, Wu Y, Wang S. Drought-hardening improves drought tolerance in Nicotiana tabacum at physiological, biochemical, and molecular levels. BMC PLANT BIOLOGY 2020; 20:486. [PMID: 33097005 PMCID: PMC7584104 DOI: 10.1186/s12870-020-02688-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 10/07/2020] [Indexed: 05/04/2023]
Abstract
BACKGROUND Drought stress is the most harmful one among other abiotic stresses with negative impacts on crop growth and development. Drought-hardening is a feasible and widely used method in tobacco seedlings cultivation. It has gained extensive interests due to its role in improving drought tolerance. This research aimed to investigate the role of drought-hardening and to unravel the multiple mechanisms underlying tobacco drought tolerance and adaptation. RESULTS This study was designed in which various drought-hardening treatments (CK (no drought-hardening), T1 (drought-hardening for 24 h), T2 (drought-hardening for 48 h), and T3 (drought-hardening for 72 h)) were applied to two tobacco varieties namely HongHuaDaJinYuan (H) and Yun Yan-100 (Y). The findings presented a complete framework of drought-hardening effect at physiological, biochemical, and gene expression levels of the two tobacco varieties under drought stress. The results showed that T2 and T3 significantly reduced the growth of the two varieties under drought stress. Similarly, among the various drought-hardening treatments, T3 improved both the enzymatic (POD, CAT, APX) and non-enzymatic (AsA) defense systems along with the elevated levels of proline and soluble sugar to mitigate the negative effects of oxidative damage and bringing osmoregulation in tobacco plants. Finally, the various drought-hardening treatments (T1, T2, and T3) showed differential regulation of genes expressed in the two varieties, while, particularly T3 drought-hardening treatment-induced drought tolerance via the expression of various stress-responsive genes by triggering the biosynthesis pathways of proline (P5CS1), polyamines (ADC2), ABA-dependent (SnRK2, AREB1), and independent pathways (DREB2B), and antioxidant defense-related genes (CAT, APX1, GR2) in response to drought stress. CONCLUSIONS Drought-hardening made significant contributions to drought tolerance and adaptation in two tobacco variety seedlings by reducing its growth and, on the other hand, by activating various defense mechanisms at biochemical and molecular levels. The findings of the study pointed out that drought-hardening is a fruitful strategy for conferring drought tolerance and adaptations in tobacco. It will be served as a useful method in the future to understand the drought tolerance and adaptation mechanisms of other plant species. Drought-hardening improved drought tolerance and adaptation of the two tobacco varieties. T1 indicates drought-hardening for 24 h, T2 indicates drought-hardening for 48 h, T3 indicates drought-hardening for 72 h.
Collapse
Affiliation(s)
- Rayyan Khan
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture, Qingdao, 266101 China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Xinghua Ma
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture, Qingdao, 266101 China
| | - Shahen Shah
- Department of Agronomy, The University of Agriculture Peshawar, Peshawar, 25130 Pakistan
| | - Xiaoying Wu
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture, Qingdao, 266101 China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Aaqib Shaheen
- Key Laboratory of Plant Stress Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004 China
| | - Lixia Xiao
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture, Qingdao, 266101 China
| | - Yuanhua Wu
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture, Qingdao, 266101 China
| | - Shusheng Wang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture, Qingdao, 266101 China
| |
Collapse
|
10
|
Schreel JDM, Leroux O, Goossens W, Brodersen C, Rubinstein A, Steppe K. Identifying the pathways for foliar water uptake in beech (Fagus sylvatica L.): a major role for trichomes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:769-780. [PMID: 32279362 DOI: 10.1111/tpj.14770] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/20/2020] [Accepted: 03/27/2020] [Indexed: 05/27/2023]
Abstract
Foliar water uptake (FWU), the direct uptake of water into leaves, is a global phenomenon, having been observed in an increasing number of plant species. Despite the growing recognition of its functional relevance, our understanding of how FWU occurs and which foliar surface structures are implicated, is limited. In the present study, fluorescent and ionic tracers, as well as microcomputed tomography, were used to assess potential pathways for water entry in leaves of beech, a widely distributed tree species from European temperate regions. Although none of the tracers entered the leaf through the stomatal pores, small amounts of silver precipitation were observed in some epidermal cells, indicating moderate cuticular uptake. Trichomes, however, were shown to absorb and redistribute considerable amounts of ionic and fluorescent tracers. Moreover, microcomputed tomography indicated that 72% of empty trichomes refilled during leaf surface wetting and microscopic investigations revealed that trichomes do not have a cuticle but are covered with a pectin-rich cell wall layer. Taken together, our findings demonstrate that foliar trichomes, which exhibit strong hygroscopic properties as a result of their structural and chemical design, constitute a major FWU pathway in beech.
Collapse
Affiliation(s)
- Jeroen D M Schreel
- Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000, Ghent, Belgium
| | - Olivier Leroux
- Department of Biology, Faculty of Sciences, Ghent University, K.L. Ledeganckstraat 35, 9000, Ghent, Belgium
| | - Willem Goossens
- Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000, Ghent, Belgium
| | - Craig Brodersen
- School of Forestry and Environmental Studies, Yale University, New Haven, CT, 06511, USA
| | - Adriana Rubinstein
- School of Forestry and Environmental Studies, Yale University, New Haven, CT, 06511, USA
| | - Kathy Steppe
- Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000, Ghent, Belgium
| |
Collapse
|
11
|
Schreel JDM, Steppe K. Foliar Water Uptake in Trees: Negligible or Necessary? TRENDS IN PLANT SCIENCE 2020; 25:590-603. [PMID: 32407698 DOI: 10.1016/j.tplants.2020.01.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 01/06/2020] [Accepted: 01/15/2020] [Indexed: 06/11/2023]
Abstract
Foliar water uptake (FWU) has been identified as a mechanism commonly used by trees and other plants originating from various biomes. However, many questions regarding the pathways and the implications of FWU remain, including its ability to mitigate climate change-driven drought. Therefore, answering these questions is of primary importance to adequately address and comprehend drought stress responses and associated growth. In this review, we discuss the occurrence, pathways, and consequences of FWU, with a focus predominantly on tree species. Subsequently, we highlight the tight coupling between FWU and foliar fertilizer applications, discuss FWU in a changing climate, and conclude with the importance of including FWU in mechanistic vegetation models.
Collapse
Affiliation(s)
- Jeroen D M Schreel
- Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000 Gent, Belgium.
| | - Kathy Steppe
- Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000 Gent, Belgium.
| |
Collapse
|