1
|
Rahbar N, Darvish S, Farrahi F, Kouchak M. Chitosan/carbomer nanoparticles- laden in situ gel for improved ocular delivery of timolol: in vitro, in vivo, and ex vivo study. Drug Deliv Transl Res 2025; 15:1210-1220. [PMID: 38976207 DOI: 10.1007/s13346-024-01663-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/29/2024] [Indexed: 07/09/2024]
Abstract
Due to the small capacity of the eye cavity and the rapid drainage of liquid into the nasolacrimal duct, patients must frequently administer the drops. Nanoparticles (NPs) and in situ gel systems have each proven their ability to achieve eye retention independently. In this study, timolol-loaded chitosan-carbomer NPs were prepared using the polyelectrolyte complexation method, and incorporated into a pH-responsive in situ gel system made of carbomer. The rheological behavior of NPs-laden in situ gel was examined at room and physiological conditions. Characteristics such as zeta potential, surface tension, refractive index, mucoadhesive properties, drug release, transcorneal permeability, and intra-ocular pressure (IOP) lowering activity were investigated on NPS and NPs-laden in situ gel formulations. The optimum gained NPs system had an encapsulation efficiency of about 69% with a particle size of 196 nm. The zeta potential of the NP and NPs-laden in situ gel were - 16 and + 11 mV respectively. NPs-laden in situ gel presented enhanced viscosity at physiological pH. All physicochemical properties were acceptable for both formulations. NPs and NPs-laden in situ gel systems proved to sustain drug release. They showed mucoadhesive properties which were greater for NPs-laden in situ gel. IOP reduction by NPs-laden in situ gel was significantly higher and more long-lasting than the timolol solution and NPs. In conclusion, the developed NPs-laden in situ gel is a promising carrier for ocular drug delivery due to the slow release of drug from nanoparticles, its mucoadhesive properties, and high viscosity acquisition in contact with precorneal film, which lead to improved therapeutic efficacy.
Collapse
Affiliation(s)
- Nadereh Rahbar
- Nanotechnology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Medicinal Chemistry, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Sarah Darvish
- Department of Pharmaceutics, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Fereydoun Farrahi
- Department of Ophthalmology, Imam Khomeini Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Maryam Kouchak
- Nanotechnology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
- Department of Pharmaceutics, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
2
|
Kshirsagar SM, Viswaroopan N, Ghosh M, Junaid MSA, Haque S, Khan J, Muzaffar S, Srivastava RK, Athar M, Banga AK. Development of 4-phenylbutyric acid microsponge gel formulations for the treatment of lewisite-mediated skin injury. Drug Deliv Transl Res 2025; 15:638-654. [PMID: 38802678 PMCID: PMC11599469 DOI: 10.1007/s13346-024-01620-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/01/2024] [Indexed: 05/29/2024]
Abstract
Lewisite, a chemical warfare agent, causes skin blisters, erythema, edema, and inflammation, requiring mitigation strategies in case of accidental or deliberate exposure. 4-phenyl butyric acid (4-PBA), a chemical chaperone, reduces endoplasmic reticulum stress and skin inflammation. The study aimed to encapsulate 4-PBA in microsponges for effective, sustained delivery against lewisite injury. Porous microsponges in a topical gel would potentially sustain delivery and improve residence time on the skin. Microsponges were developed using the quasi-emulsion solvent diffusion method with Eudragit RS100. Optimized formulation showed 10.58%w/w drug loading was incorporated in a carboxymethylcellulose (CMC) and Carbopol gel for in vitro release and permeation testing using dermatomed human skin. A sustained release was obtained from all vehicles in the release study, and IVPT results showed that compared to the control (41.52 ± 2.54 µg/sq.cm), a sustained permeation profile with a reduced delivery was observed for microsponges in PBS (14.16 ± 1.23 µg/sq.cm) along with Carbopol 980 gel (12.55 ± 1.41 µg/sq.cm), and CMC gel (10.09 ± 1.23 µg/sq.cm) at 24 h. Optimized formulation showed significant protection against lewisite surrogate phenyl arsine oxide (PAO) challenged skin injury in Ptch1+/-/SKH-1 hairless mice at gross and molecular levels. A reduction in Draize score by 29%, a reduction in skin bifold thickness by 8%, a significant reduction in levels of IL-1β, IL6, and GM-CSF by 54%, 30%, and 55%, respectively, and a reduction in apoptosis by 31% was observed. Thus, the translational feasibility of 4-PBA microsponges for effective, sustained delivery against lewisite skin injury is demonstrated.
Collapse
Affiliation(s)
- Sharvari M Kshirsagar
- Center for Drug Delivery Research, Department of Pharmaceutical Sciences, College of Pharmacy, 3001 Mercer University Drive, Atlanta, GA 30341, USA
| | - Nethra Viswaroopan
- Center for Drug Delivery Research, Department of Pharmaceutical Sciences, College of Pharmacy, 3001 Mercer University Drive, Atlanta, GA 30341, USA
| | - Meheli Ghosh
- Center for Drug Delivery Research, Department of Pharmaceutical Sciences, College of Pharmacy, 3001 Mercer University Drive, Atlanta, GA 30341, USA
| | - Mohammad Shajid Ashraf Junaid
- Center for Drug Delivery Research, Department of Pharmaceutical Sciences, College of Pharmacy, 3001 Mercer University Drive, Atlanta, GA 30341, USA
| | - Safiya Haque
- Department of Dermatology, University of Alabama at Birmingham, UAB Research Center of Excellence in Arsenicals, Birmingham, AL, USA
| | - Jasim Khan
- Department of Dermatology, University of Alabama at Birmingham, UAB Research Center of Excellence in Arsenicals, Birmingham, AL, USA
| | - Suhail Muzaffar
- Department of Dermatology, University of Alabama at Birmingham, UAB Research Center of Excellence in Arsenicals, Birmingham, AL, USA
| | - Ritesh K Srivastava
- Department of Dermatology, University of Alabama at Birmingham, UAB Research Center of Excellence in Arsenicals, Birmingham, AL, USA
| | - Mohammad Athar
- Department of Dermatology, University of Alabama at Birmingham, UAB Research Center of Excellence in Arsenicals, Birmingham, AL, USA
| | - Ajay K Banga
- Center for Drug Delivery Research, Department of Pharmaceutical Sciences, College of Pharmacy, 3001 Mercer University Drive, Atlanta, GA 30341, USA.
| |
Collapse
|
3
|
Gholamirad F, Sadati M, Taheri-Qazvini N. Microgel-Guided MXene Assembly for High-Performance, Low-Solid Content Conductive Inks. ACS APPLIED MATERIALS & INTERFACES 2025; 17:4022-4032. [PMID: 39743958 DOI: 10.1021/acsami.4c19700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Rapid evolution of smart devices necessitates high-performance, lightweight materials for effective electromagnetic interference (EMI) shielding. Ti3C2Tx MXene nanosheets are promising for such applications, yet the high solid content typically required for 3D-printable MXene inks limits their scalability and cost efficiency. In this study, we present an MXene-based ink with an ultralow solid content (0.1 vol %) and a high water content (up to 98 wt %) enabled by cross-linked poly(acrylic acid) Carbopol microgels. The microgels facilitate a jammed network, creating a percolated structure that allows MXene assembly at minimal concentrations and achieving the lowest reported solid content for MXene inks to date. The MXene/microgel hybrid ink demonstrates superior rheological properties, matching or surpassing existing formulations, and is readily extrudable for 3D printing complex structures and coatings. Following freeze-drying, the printed MXene aerogels exhibit an electrical conductivity of 360 S/m, an EMI shielding efficiency of 57 dB, and a compression modulus of 1750 kPa, all achieved at an ultralow density of 25 mg/cm3. This work provides a detailed analysis of the MXene/Carbopol ink's structure-processing-performance relationship, highlighting its transformative potential for scalable 3D printing of conductive, EMI shielding materials across diverse applications.
Collapse
Affiliation(s)
- Farivash Gholamirad
- Department of Chemical Engineering, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Monirosadat Sadati
- Department of Chemical Engineering, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Nader Taheri-Qazvini
- Department of Chemical Engineering, University of South Carolina, Columbia, South Carolina 29208, United States
- Department of Biomedical Engineering, University of South Carolina, Columbia, South Carolina 29208, United States
| |
Collapse
|
4
|
Issa MCA, Viana RMM, de Souza Mendes PR, Naccache MF, Varges PR, Castaño EPM, Palermo E. Analysis of Morphologic and Rheological Properties of Hyaluronic Acid Gel Fillers to Body Contouring and Its Clinical Correlation. Gels 2025; 11:65. [PMID: 39852036 PMCID: PMC11765361 DOI: 10.3390/gels11010065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/20/2024] [Accepted: 01/06/2025] [Indexed: 01/26/2025] Open
Abstract
The demand for minimally invasive body contouring procedures, particularly for gluteal augmentation, has grown significantly. This study evaluates the morphologic and rheological properties of four commercially available hyaluronic acid (HA) fillers used for body contouring and explores their clinical implications. Critical parameters such as storage modulus (G'), loss modulus (G″), complex modulus (G*), and damping factor (tan δ) were measured using oscillatory rheological tests to assess each filler's elasticity, viscosity, and viscoelastic profile. Scanning Electron Microscopy (SEM) was performed to analyze the microstructure of the fillers, providing insights into their microscopic architecture. The results showed differences in mechanical properties and viscoelastic behavior among the fillers. These variations suggest that the choice of filler may need to be tailored to specific body contouring requirements. Understanding these differences is crucial for achieving the best clinical results and patient satisfaction, helping professionals select the most suitable filler for each case.
Collapse
Affiliation(s)
- Maria Cláudia Almeida Issa
- Department of Internal Medicine (Dermatology), Universidade Federal Fluminense, Niterói 24033-900, RJ, Brazil
| | | | - Paulo R. de Souza Mendes
- Rheology Group, Department of Mechanical Engineering, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro 22451-900, RJ, Brazil; (P.R.d.S.M.); (M.F.N.); (P.R.V.); (E.P.M.C.)
| | - Mônica F. Naccache
- Rheology Group, Department of Mechanical Engineering, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro 22451-900, RJ, Brazil; (P.R.d.S.M.); (M.F.N.); (P.R.V.); (E.P.M.C.)
| | - Priscila R. Varges
- Rheology Group, Department of Mechanical Engineering, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro 22451-900, RJ, Brazil; (P.R.d.S.M.); (M.F.N.); (P.R.V.); (E.P.M.C.)
| | - Eliana P. Marín Castaño
- Rheology Group, Department of Mechanical Engineering, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro 22451-900, RJ, Brazil; (P.R.d.S.M.); (M.F.N.); (P.R.V.); (E.P.M.C.)
| | | |
Collapse
|
5
|
Guedes BN, Andreani T, Oliveira MBPP, Fathi F, Souto EB. Eco-Friendly Hydrogels Loading Polyphenols-Composed Biomimetic Micelles for Topical Administration of Resveratrol and Rutin. Biomimetics (Basel) 2024; 10:8. [PMID: 39851724 PMCID: PMC11762386 DOI: 10.3390/biomimetics10010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/18/2024] [Accepted: 12/25/2024] [Indexed: 01/26/2025] Open
Abstract
In this study, we describe the development of hydrogel formulations composed of micelles loading two natural antioxidants-resveratrol and rutin-and the evaluation of the effect of a by-product on the rheological and textural properties of the developed semi-solids. This approach aims to associate the advantages of hydrogels for topical administration of drugs and of lipid micelles that mimic skin composition for the delivery of poorly water-soluble compounds in combination therapy. Biomimetic micelles composed of L-α-phosphatidylcholine loaded with two distinct polyphenols (one non-flavonoid and one flavonoid) were produced using hot shear homogenisation followed by the ultrasonication method. All developed micelles were dispersed in a carbomer 940-based hydrogel to obtain three distinct semi-solid formulations, which were then characterised by analysing the thermal, rheological and textural properties. Olive pomace-based hydrogels were also produced to contain the same micelles as an alternative to respond to the needs of zero waste and circular economy. The thermograms showed no changes in the typical profiles of micelles when loaded into the hydrogels. The rheological analysis confirmed that the produced hydrogels achieved the ideal properties of a semi-solid product for topical administration. The viscosity values of the hydrogels loaded with olive pomace (hydrogels A) proved to be lower than the hydrogels without olive pomace (hydrogels B), with this ingredient having a considerable effect in reducing the viscosity of the final formulation, yet without compromising the firmness and cohesiveness of the gels. The texture analysis of both hydrogels A and B also exhibited the typical behaviour expected of a semi-solid system.
Collapse
Affiliation(s)
- Beatriz N. Guedes
- Laboratory of Pharmaceutical Technology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal;
| | - Tatiana Andreani
- GreenUPorto-Sustainable Agrifood Production Research Centre, INOV4AGRO, Biology Department, Faculty of Sciences of University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal;
- Chemistry Research Center (CIQUP), Institute of Molecular Sciences (IMS), Department of Chemistry and Biochemistry, Faculty of Sciences of the University of Porto (FCUP), Rua do Campo Alegre 687, 4169-007 Porto, Portugal
| | - M. Beatriz P. P. Oliveira
- REQUIMTE/LAQV, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 280, 4050-313 Porto, Portugal;
| | - Faezeh Fathi
- REQUIMTE/LAQV, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 280, 4050-313 Porto, Portugal;
| | - Eliana B. Souto
- Laboratory of Pharmaceutical Technology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal;
- UCD School of Chemical and Bioprocess Engineering, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland
| |
Collapse
|
6
|
Karnam S, Jindal AB, Paul AT. Quality by design-based optimization of teriflunomide and quercetin combinational topical transferosomes for the treatment of rheumatoid arthritis. Int J Pharm 2024; 666:124829. [PMID: 39406305 DOI: 10.1016/j.ijpharm.2024.124829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/24/2024] [Accepted: 10/11/2024] [Indexed: 10/19/2024]
Abstract
Rheumatoid arthritis (RA) is an immune-mediated inflammatory disease. Combination therapy is anticipated to surpass monotherapy by targeting multiple pathways involved in RA progression. The present aim is to develop a combination of Teriflunomide (TFD) and Quercetin (QCN) loaded transferosomal gel to enhance permeability and achieve localized delivery to joint tissues. TFD or QCN transferosomes were optimized employing a 3-level, 3-factorial design Box-Behnken design (BBD). The transferosomes exhibited sustained in-vitro drug release. The topical combination gel underwent thorough evaluation of rheology, and also ex-vivo studies showed enhanced permeability through rat skin. The synergistic combination of TFD and QCN effectively suppressed NO, TNF-α and IL-6 levels in in-vitro RAW 264.7 cells. The cytotoxicity in HaCaT cell lines indicates non-toxicity of the gel, further confirmed by skin irritation study conducted in rats. The in-vivo anti-arthritic activity was evaluated in complete freund's adjuvant induced rat paw edema model illustrates the effectiveness of the combination transferosomal gel compared to other treatment groups. In conclusion, the topical delivery of TFD and QCN combination transferosomal gel demonstrated anti-arthritic activity through localized delivery whichallows for dose reduction, thereby may reduce the systemic drug exposure and mitigate the side effects associated with oral administration of TFD.
Collapse
Affiliation(s)
- Sriravali Karnam
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-Pilani), Pilani Campus, Rajasthan 333031, India
| | - Anil B Jindal
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-Pilani), Pilani Campus, Rajasthan 333031, India
| | - Atish T Paul
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-Pilani), Pilani Campus, Rajasthan 333031, India.
| |
Collapse
|
7
|
Cassano R, Sole R, Siciliano C, Baldino N, Mileti O, Procopio D, Curcio F, Calviello G, Serini S, Trombino S, Di Gioia ML. Eutectogel-Based Drug Delivery: An Innovative Approach for Atenolol Administration. Pharmaceutics 2024; 16:1552. [PMID: 39771531 PMCID: PMC11728620 DOI: 10.3390/pharmaceutics16121552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/27/2024] [Accepted: 12/02/2024] [Indexed: 01/16/2025] Open
Abstract
Background: Hypertension affects 32% of adults worldwide, leading to a significant global consumption of cardiovascular medications. Atenolol, a β-adrenergic receptor blocker, is widely prescribed for cardiovascular diseases such as hypertension, angina pectoris, and myocardial infarction. According to the Biopharmaceutics Classification System (BCS), atenolol belongs to Class III, characterized by high solubility but low permeability. Currently, atenolol is commercially available in oral formulations. Increasing attention is being directed towards developing cost-effective transdermal delivery systems, due to their ease of use and better patient compliance. Eutectogels represent next-generation systems that are attracting great interest in the scientific community. Typically obtained from deep eutectic solvents (DESs) combined with gelling agents, these systems exhibit unique properties due to the intrinsic characteristics of DESs. Methods: In this study, a DES based on choline chloride as a hydrogen bond acceptor (HBA) and propylene glycol as a hydrogen bond donor (HBD) was explored to enhance the topical delivery of atenolol. The solubility of atenolol in the DES was evaluated using spectroscopic and thermodynamic measurements which confirmed the formation of hydrogen bonds between the drug and DES components. Additionally, the safety of the DES was assessed in a cell viability assay. Subsequently, we formulated eutectogels with different concentrations using animal gelatin and Tego Carbomer 140, and characterized these formulations through rheological measurements, swelling percentage, and permeation studies with Franz cells. Results: These novel eutectogels exhibit superior performance over conventional hydrogels, with a release rate of approximately 86% and 51% for Carbomer- and gelatin-based eutectogels, respectively. In contrast, comparable hydrogels released only about 27% and 35%. Conclusions: These findings underscore the promising potential of eutectogels for the transdermal delivery of atenolol.
Collapse
Affiliation(s)
- Roberta Cassano
- Dipartimento di Farmacia, Salute e Scienze della Nutrizione, Università della Calabria, Arcavacata di Rende, 87036 Cosenza, Italy; (R.C.); (R.S.); (C.S.); (D.P.); (F.C.)
| | - Roberta Sole
- Dipartimento di Farmacia, Salute e Scienze della Nutrizione, Università della Calabria, Arcavacata di Rende, 87036 Cosenza, Italy; (R.C.); (R.S.); (C.S.); (D.P.); (F.C.)
| | - Carlo Siciliano
- Dipartimento di Farmacia, Salute e Scienze della Nutrizione, Università della Calabria, Arcavacata di Rende, 87036 Cosenza, Italy; (R.C.); (R.S.); (C.S.); (D.P.); (F.C.)
| | - Noemi Baldino
- Dipartimento di Ingegneria Informatica, Modellistica, Elettronica e Sistemistica, Università della Calabria, Arcavacata di Rende, 87036 Cosenza, Italy; (N.B.); (O.M.)
| | - Olga Mileti
- Dipartimento di Ingegneria Informatica, Modellistica, Elettronica e Sistemistica, Università della Calabria, Arcavacata di Rende, 87036 Cosenza, Italy; (N.B.); (O.M.)
| | - Debora Procopio
- Dipartimento di Farmacia, Salute e Scienze della Nutrizione, Università della Calabria, Arcavacata di Rende, 87036 Cosenza, Italy; (R.C.); (R.S.); (C.S.); (D.P.); (F.C.)
| | - Federica Curcio
- Dipartimento di Farmacia, Salute e Scienze della Nutrizione, Università della Calabria, Arcavacata di Rende, 87036 Cosenza, Italy; (R.C.); (R.S.); (C.S.); (D.P.); (F.C.)
| | - Gabriella Calviello
- Dipartimento di Medicina e Chirurgia Traslazionale, Sezione di Patologia Generale, Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, Largo F. Vito, 00168 Roma, Italy; (G.C.); (S.S.)
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo F. Vito, 00168 Roma, Italy
| | - Simona Serini
- Dipartimento di Medicina e Chirurgia Traslazionale, Sezione di Patologia Generale, Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, Largo F. Vito, 00168 Roma, Italy; (G.C.); (S.S.)
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo F. Vito, 00168 Roma, Italy
| | - Sonia Trombino
- Dipartimento di Farmacia, Salute e Scienze della Nutrizione, Università della Calabria, Arcavacata di Rende, 87036 Cosenza, Italy; (R.C.); (R.S.); (C.S.); (D.P.); (F.C.)
| | - Maria Luisa Di Gioia
- Dipartimento di Farmacia, Salute e Scienze della Nutrizione, Università della Calabria, Arcavacata di Rende, 87036 Cosenza, Italy; (R.C.); (R.S.); (C.S.); (D.P.); (F.C.)
| |
Collapse
|
8
|
Pohjola J, Jokinen M, Soukka T, Stolt M. Polymer microsphere inks for semi-solid extrusion 3D printing at ambient conditions. J Mech Behav Biomed Mater 2024; 160:106783. [PMID: 39486301 DOI: 10.1016/j.jmbbm.2024.106783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/02/2024] [Accepted: 10/15/2024] [Indexed: 11/04/2024]
Abstract
Extrusion-based 3D printing methods have great potential for manufacturing of personalized polymer-based drug-releasing systems. However, traditional melt-based extrusion techniques are often unsuitable for processing thermally labile molecules. Consequently, methods that utilize the extrusion of semi-solid inks under mild conditions are frequently employed. The rheological properties of the semi-solid inks have a substantial impact on the 3D printability, making it necessary to evaluate and tailor these properties. Here, we report a novel semi-solid extrusion 3D printing method based on utilization of a Carbopol gel matrix containing various concentrations of polymeric microspheres. We also demonstrate the use of a solvent vapor-based post-processing method for enhancing the mechanical strength of the printed objects. As our approach enables room-temperature processing of polymers typically used in the pharmaceutical industry, it may also facilitate the broader application of 3D printing and microsphere technologies in preparation of personalized medicine.
Collapse
Affiliation(s)
- Juuso Pohjola
- Biotechnology, Department of Life Technologies, Faculty of Technology, University of Turku, FI-20014 Turku, Finland; Pharmaceutical Sciences, Bayer Oy, FI-20210 Turku, Finland.
| | | | - Tero Soukka
- Biotechnology, Department of Life Technologies, Faculty of Technology, University of Turku, FI-20014 Turku, Finland
| | - Mikael Stolt
- Pharmaceutical Sciences, Bayer Oy, FI-20210 Turku, Finland
| |
Collapse
|
9
|
Alzahrani M, Broadbent DA, Teh I, Al-Qaisieh B, Speight R. Assessing suitability and stability of materials for a head and neck anthropomorphic multimodality (MRI/CT) phantoms for radiotherapy. Phys Med Biol 2024; 69:215034. [PMID: 39419093 DOI: 10.1088/1361-6560/ad8830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 10/17/2024] [Indexed: 10/19/2024]
Abstract
Objective:This study aims to identify and evaluate suitable and stable materials for developing a head and neck anthropomorphic multimodality phantom for radiotherapy purposes. These materials must mimic human head and neck tissues in both computed tomography (CT) and magnetic resonance imaging (MRI) and maintain stable imaging properties over time and after radiation exposure, including the high levels associated with linear accelerator (linac) use.Approach:Various materials were assessed by measuring their CT numbers and T1 and T2 relaxation times. These measurements were compared to literature values to determine how closely the properties of the candidate materials resemble those of human tissues in the head and neck region. The stability of these properties was evaluated monthly over a year and after radiation exposure to doses up to 1000 Gy. Statistical analyzes were conducted to identify any significant changes over time and after radiation exposure.Main results:10% and 12.6% Polyvinyl alcohol cryogel (PVA-c) both exhibited T1 and T2 relaxation times and CT numbers within the range appropriate for brain grey matter. 14.3% PVA-c and some plastic-based materials matched the MRI properties of brain white matter, with CT numbers close to the clinical range. Additionally, some plastic-based materials showed T1 and T2 relaxation times consistent with MRI properties of fat, although their CT numbers were not suitable. Over time and after irradiation, 10% PVA-c maintained consistent properties for brain grey matter. 12.6% PVA-c's T1 relaxation time decreased beyond the range after the first month.Significance:This study identified 10% PVA-c as a substitute for brain grey matter, demonstrating stable imaging properties over a year and after radiation exposure up to 1000 Gy. However, the results highlight a need for further research to find additional materials to accurately simulate a wider range of human tissues.
Collapse
Affiliation(s)
- Meshal Alzahrani
- Department of Medical Physics and Engineering, Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom
- Biomedical Imaging Science Department, University of Leeds, Leeds, United Kingdom
- Department of Radiologic Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - David A Broadbent
- Department of Medical Physics and Engineering, Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom
- Biomedical Imaging Science Department, University of Leeds, Leeds, United Kingdom
| | - Irvin Teh
- Biomedical Imaging Science Department, University of Leeds, Leeds, United Kingdom
| | - Bashar Al-Qaisieh
- Department of Medical Physics and Engineering, Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom
| | - Richard Speight
- Department of Medical Physics and Engineering, Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom
- Biomedical Imaging Science Department, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
10
|
Stancu AI, Oprea E, Dițu LM, Ficai A, Ilie CI, Badea IA, Buleandra M, Brîncoveanu O, Ghica MV, Avram I, Pîrvu CED, Mititelu M. Development, Optimization, and Evaluation of New Gel Formulations with Cyclodextrin Complexes and Volatile Oils with Antimicrobial Activity. Gels 2024; 10:645. [PMID: 39451298 PMCID: PMC11506868 DOI: 10.3390/gels10100645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/03/2024] [Accepted: 10/08/2024] [Indexed: 10/26/2024] Open
Abstract
This study aimed to develop and evaluate hydrogels containing a cyclodextrin complex with clove essential oil and other free volatile oils with antimicrobial properties (tea tree and rosemary essential oils), focusing on their pharmaco-technical and rheological characteristics. The formulations varied in the Carbopol 940 (a hydrophilic polymer) and volatile oils' concentrations. Rheological analysis indicated that the gels displayed pseudoplastic behavior, with the flow index (n) values below 1, ensuring appropriate consistency and handling. The results showed that increasing the Carbopol concentration significantly enhanced the yield stress, consistency index, and viscosity, with gel B, containing 1% Carbopol, 1.5% tea tree essential oil, and 1.5% rosemary essential oil, demonstrating optimal stability and rheological properties. At the same time, the concentration of volatile oils was found to modulate the gels' flow parameters, but their effect was less pronounced than that of the gel-forming polymer. Antimicrobial testing revealed that both gel B and gel E (containing 1% Carbopol, 2% tea tree essential oil, and 2% rosemary essential oil) exhibited antimicrobial activity against Gram-positive, Gram-negative bacteria, and Candida spp., with gel E showing superior efficacy against Candida tropicalis. The antimicrobial effects were likely influenced by the higher concentrations of tea tree and rosemary essential oils in gel E. Overall, the study demonstrates that the concentration of Carbopol 940 primarily determines the gel's rheological behavior, while volatile oil concentration modulates antimicrobial effectiveness.
Collapse
Affiliation(s)
- Alina Ionela Stancu
- Department Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnology, National University of Science and Technology Politehnica Bucharest, 1–7 Polizu Street, 011061 Bucharest, Romania; (A.I.S.)
| | - Eliza Oprea
- Department of Botany and Microbiology, Faculty of Biology, University of Bucharest, Portocalilor 1-3, 060101 Bucharest, Romania;
| | - Lia Mara Dițu
- Department of Botany and Microbiology, Faculty of Biology, University of Bucharest, Portocalilor 1-3, 060101 Bucharest, Romania;
- MICROGEN Research Centre, Faculty of Biology, University of Bucharest, Portocalilor 1-3, 060101 Bucharest, Romania;
| | - Anton Ficai
- Department Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnology, National University of Science and Technology Politehnica Bucharest, 1–7 Polizu Street, 011061 Bucharest, Romania; (A.I.S.)
- Academy of Romanian Scientists, Ilfov Street 1-3, 050045 Bucharest, Romania
- National Centre for Micro and Nanomaterials and National Centre for Food Safety, National University of Science and Technology Politehnica Bucharest, 060042 Bucharest, Romania
| | - Cornelia-Ioana Ilie
- Department Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnology, National University of Science and Technology Politehnica Bucharest, 1–7 Polizu Street, 011061 Bucharest, Romania; (A.I.S.)
- National Centre for Micro and Nanomaterials and National Centre for Food Safety, National University of Science and Technology Politehnica Bucharest, 060042 Bucharest, Romania
| | - Irinel Adriana Badea
- Department of Analytical Chemistry and Physical Chemistry, Faculty of Chemistry, University of Bucharest, 90–92 Panduri Street, 050663 Bucharest, Romania; (I.A.B.); (M.B.)
| | - Mihaela Buleandra
- Department of Analytical Chemistry and Physical Chemistry, Faculty of Chemistry, University of Bucharest, 90–92 Panduri Street, 050663 Bucharest, Romania; (I.A.B.); (M.B.)
| | - Oana Brîncoveanu
- National Institute for Research and Development in Microtechnologies, 126A Erou Iancu Nicolae Street, 077190 Bucharest, Romania;
| | - Mihaela Violeta Ghica
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy Carol Davila, 6 Traian Vuia Street, 020956 Bucharest, Romania; (M.V.G.); (C.E.D.P.)
- Innovative Therapeutic Structures Research and Development Centre (InnoTher), University of Medicine and Pharmacy Carol Davila, 6 Traian Vuia Street, 020956 Bucharest, Romania
| | - Ionela Avram
- MICROGEN Research Centre, Faculty of Biology, University of Bucharest, Portocalilor 1-3, 060101 Bucharest, Romania;
- Department of Genetics, Faculty of Biology, University of Bucharest, Portocalilor 1-3, 060101 Bucharest, Romania
| | - Cristina Elena Dinu Pîrvu
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy Carol Davila, 6 Traian Vuia Street, 020956 Bucharest, Romania; (M.V.G.); (C.E.D.P.)
- Innovative Therapeutic Structures Research and Development Centre (InnoTher), University of Medicine and Pharmacy Carol Davila, 6 Traian Vuia Street, 020956 Bucharest, Romania
| | - Magdalena Mititelu
- Department of Clinical Laboratory and Food Safety, Faculty of Pharmacy, University of Medicine and Pharmacy Carol Davila, 6 Traian Vuia Street, 020956 Bucharest, Romania;
| |
Collapse
|
11
|
Lal DK, Kumar B, Kaushik V, Alhowyan A, Kalam MA. Molybdenum Disulfide Nanosheet-Based Nanocomposite for the Topical Delivery of Umbelliferone: Evaluation of Anti-inflammatory and Analgesic Potentials. ACS OMEGA 2024; 9:37105-37116. [PMID: 39246492 PMCID: PMC11375718 DOI: 10.1021/acsomega.4c04252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 09/10/2024]
Abstract
This study aimed to develop a nanocomposite formulation comprising umbelliferone (UMB) and molybdenum disulfide (MoS2) nanosheets as a carrier, termed as the UMB-MoS2 nanocomposite in gel for topical delivery. MoS2 nanosheets were successfully synthesized via a green-hydrothermal reaction of 10 mg of ammonium molybdate and 10 mg of thiourea in 80 mL of deionized water under predetermined conditions. The UMB-MoS2 nanocomposite was prepared by sonicating UMB and MoS2 nanosheets (each of 1 mg/mL) in dimethylformamide. Scanning electron microscopy revealed crumpled nanosheets with an open-ended structure and a nanocomposite as a layered structure. The X-ray diffraction pattern revealed the amorphous nature of UMB in the UMB-MoS2 nanocomposite. Fourier-transform infrared spectra of the UMB-MoS2 nanocomposite had modified bands of the functional group, which confirmed the formation of the nanocomposite. The size and polydispersity-index (435 nm and 0.415, respectively) of the nanocomposite were within the limit for an efficient topical application. Carbopol 934 (2%) was used to prepare the UMB-MoS2 nanocomposite gel (F1) and UMB-Carbopol gel (F2, for comparative evaluation). The pH, spreadability, and viscosity of F1 were found to be 5.56, 5.89 g·cm/s, and 32.5 Pa-sec, respectively, which were optimal for the topical application of gel-based formulations. In vitro release characteristics of both formulations were deemed to be suitable for topical application, where F1 exhibited a biphasic drug release profile and a superior release rate of 94.8% compared to 43.5% for F2 at 24 h. In the carrageenan-induced rat paw edema model, the animal group treated with F1 demonstrated the lowest increase in paw thickness of 26.6%, which was significantly lower as compared to the F2-treated group (52.9%) and the diclofenac sodium-treated group (32.2%). Similarly, in the tail immersion method, F1 exhibited the highest peak tail withdrawal latency of 10.9 s, significantly greater than F2 (8.9 s) and standard treatment (10 s), indicating the superior analgesic activity of F1. This pioneering work introduces a novel UMB-MoS2 nanocomposite with promising anti-inflammatory and analgesic potentials, paving the way for further research into the biomedical applications of MoS2-based nanocarriers.
Collapse
Affiliation(s)
- Diwya Kumar Lal
- Faculty of Pharmacy, DIT University, Dehradun 248009, Uttarakhand, India
| | - Bhavna Kumar
- Faculty of Pharmacy, DIT University, Dehradun 248009, Uttarakhand, India
| | - Vishakha Kaushik
- School of Physical Sciences, DIT University, Dehradun 248009, Uttarakhand, India
| | - Adel Alhowyan
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohd Abul Kalam
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
12
|
Zakzak K, Semenescu AD, Moacă EA, Predescu I, Drăghici G, Vlaia L, Vlaia V, Borcan F, Dehelean CA. Comprehensive Biosafety Profile of Carbomer-Based Hydrogel Formulations Incorporating Phosphorus Derivatives. Gels 2024; 10:477. [PMID: 39057500 PMCID: PMC11276259 DOI: 10.3390/gels10070477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Determining the safety of a newly developed experimental product is a crucial condition for its medical use, especially for clinical trials. In this regard, four hydrogel-type formulations were manufactured, all of which were based on carbomer (Blank-CP940) and encapsulated with caffeine (CAF-CP940), phosphorus derivatives (phenyl phosphinic (CAF-S1-CP940) and 2-carboxyethyl phenyl phosphinic acids (CAF-S2-CP940)). The main aim of this research was to provide a comprehensive outline of the biosafety profile of the above-mentioned hydrogels. The complex in vitro screening (cell viability, cytotoxicity, morphological changes in response to exposure, and changes in nuclei morphology) on two types of healthy skin cell lines (HaCaT-human keratinocytes and JB6 Cl 41-5a-murine epidermal cells) exhibited a good biosafety profile when both cell lines were treated for 24 h with 150 μg/mL of each hydrogel. A comprehensive analysis of the hydrogel's impact on the genetic profile of HaCaT cells sustains the in vitro experiments. The biosafety profile was completed with the in vivo and in ovo assays. The outcome revealed that the developed hydrogels exerted good biocompatibility after topical application on BALB/c nude mice's skin. It also revealed a lack of toxicity after exposure to the hen's chicken embryo. Further investigations are needed, regarding the in vitro and in vivo therapeutic efficacy and safety for long-term use and potential clinical translatability.
Collapse
Affiliation(s)
- Khaled Zakzak
- Department of Pharmaceutical Technology, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania; (K.Z.); (L.V.)
| | - Alexandra-Denisa Semenescu
- Department of Toxicology, Drug Industry, Management and Legislation, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania; (A.-D.S.); (I.P.); (G.D.); (C.-A.D.)
- Research Center for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania
| | - Elena-Alina Moacă
- Department of Toxicology, Drug Industry, Management and Legislation, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania; (A.-D.S.); (I.P.); (G.D.); (C.-A.D.)
- Research Center for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania
| | - Iasmina Predescu
- Department of Toxicology, Drug Industry, Management and Legislation, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania; (A.-D.S.); (I.P.); (G.D.); (C.-A.D.)
| | - George Drăghici
- Department of Toxicology, Drug Industry, Management and Legislation, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania; (A.-D.S.); (I.P.); (G.D.); (C.-A.D.)
- Research Center for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania
| | - Lavinia Vlaia
- Department of Pharmaceutical Technology, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania; (K.Z.); (L.V.)
- Formulation and Technology of Drugs Research Center, “Victor Babes” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania;
| | - Vicenţiu Vlaia
- Formulation and Technology of Drugs Research Center, “Victor Babes” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania;
- Department of Organic Chemistry, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania
| | - Florin Borcan
- Department of Analytical Chemistry, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania;
| | - Cristina-Adriana Dehelean
- Department of Toxicology, Drug Industry, Management and Legislation, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania; (A.-D.S.); (I.P.); (G.D.); (C.-A.D.)
- Research Center for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania
| |
Collapse
|
13
|
Pérez-González J, Muñoz-Castro Y, Rodríguez-González F, Marín-Santibáñez BM, Medina-Bañuelos EF. Influence of Sonication on the Molecular Characteristics of Carbopol ® and Its Rheological Behavior in Microgels. Gels 2024; 10:420. [PMID: 39057445 PMCID: PMC11276194 DOI: 10.3390/gels10070420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024] Open
Abstract
In this work, the effect of sonication on the molecular characteristics of polyacrylic acid (Carbopol® Ultrez 10), as well as on its rheological behavior in aqueous dispersions and microgels, was analyzed for the first time by rheometry, weight-average molecular weight (Mw) measurements via static light scattering (SLS), Fourier transform infrared (FTIR) spectroscopy and confocal microscopy. For this, the precursor dispersion and the microgels containing 0.25 wt.% of Ultrez 10 were sonicated in a commercial ultrasound bath at constant power and at different times. The main rheological properties of the microgel, namely, shear modulus, yield stress and viscosity, all decreased with increasing sonication time, while the microgel's Herschel-Bulkley (H-B) behavior, without thixotropy, was preserved. Also, Mw of Ultrez 10 decreased up to almost one-third (109,212 g/mol) of its original value (300,860 g/mol) after 180 min of sonication. These results evidence a softening of the gel microstructure, which results from the reduction in the Mw of polyacrylic acid with sonication time. Separately, FTIR measurements show that sonication produces scission in the C-C links of the Carbopol® backbone, which results in chains with the same chemistry but lower molecular weight. Finally, confocal microscopy observations revealed a diminution of the size of the microsponge domains and more free solvent with sonication time, which is reflected in a less compact and softer microstructure. The present results indicate that both the microstructure and the rheological behavior of Carbopol® microgels, in particular, and complex fluids, in general, may be manipulated or tailored by systematic high-power ultrasonication.
Collapse
Affiliation(s)
- José Pérez-González
- Laboratorio de Reología y Física de la Materia Blanda, Escuela Superior de Física y Matemáticas, Instituto Politécnico Nacional, U. P. Adolfo López Mateos, Ciudad de México C.P. 07738, Mexico;
| | - Yusef Muñoz-Castro
- Laboratorio de Reología y Física de la Materia Blanda, Escuela Superior de Física y Matemáticas, Instituto Politécnico Nacional, U. P. Adolfo López Mateos, Ciudad de México C.P. 07738, Mexico;
| | - Francisco Rodríguez-González
- Departamento de Biotecnología, Centro de Desarrollo de Productos Bióticos, Instituto Politécnico Nacional, Carretera Yautepec-Jojutla Km. 6, Calle CEPROBI No. 8, Col. San Isidro, Yautepec, Morelos C.P. 62731, Mexico;
| | - Benjamín M. Marín-Santibáñez
- Escuela Superior de Ingeniería Química e Industrias Extractivas, Instituto Politécnico Nacional, U. P. Adolfo López Mateos, Ciudad de México C.P. 07738, Mexico; (B.M.M.-S.); (E.F.M.-B.)
| | - Esteban F. Medina-Bañuelos
- Escuela Superior de Ingeniería Química e Industrias Extractivas, Instituto Politécnico Nacional, U. P. Adolfo López Mateos, Ciudad de México C.P. 07738, Mexico; (B.M.M.-S.); (E.F.M.-B.)
| |
Collapse
|
14
|
Aina M, Baillon F, Sescousse R, Sanchez-Ballester NM, Begu S, Soulairol I, Sauceau M. Evaluation of the printability of agar and hydroxypropyl methylcellulose gels as gummy formulations: Insights from rheological properties. Int J Pharm 2024; 654:123937. [PMID: 38401873 DOI: 10.1016/j.ijpharm.2024.123937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 02/26/2024]
Abstract
The trial-and-error method currently used to create formulations with excellent printability demands considerable time and resources, primarily due to the increasing number of variables involved. Rheology serves as a relatively rapid and highly beneficial method for assessing materials and evaluating their effectiveness as 3D constructs. However, the data obtained can be overwhelming, especially for users lacking experience in this field. This study examined the rheological properties of formulations of agar, hydroxypropyl methylcellulose, and the model drug caffeine, alongside exploring their printability as gummy formulations. The gels' rheological properties were characterized using oscillatory and rotational experiments. The correlation between these gels' rheological properties and their printability was established, and three clusters were formed based on the rheological properties and printability of the samples using principal component analysis. Furthermore, the printability was predicted using the sample's rheological property that correlated most with printability, the phase angle δ, and the regression models resulted in an accuracy of over 80%. Although these relationships merit confirmation in later studies, this study suggests a quantitative definition of the relationship between printability and one rheological property and can be used for the development of formulations destined for extrusion 3D printing.
Collapse
Affiliation(s)
- Morenikeji Aina
- RAPSODEE, IMT Mines Albi, CNRS, University of Toulouse, 81013 Albi, France.
| | - Fabien Baillon
- RAPSODEE, IMT Mines Albi, CNRS, University of Toulouse, 81013 Albi, France
| | - Romain Sescousse
- RAPSODEE, IMT Mines Albi, CNRS, University of Toulouse, 81013 Albi, France
| | - Noelia M Sanchez-Ballester
- ICGM, University of Montpellier, CNRS, ENSCM, Montpellier, France; Department of Pharmacy, Nîmes University Hospital, Nîmes, France
| | - Sylvie Begu
- ICGM, University of Montpellier, CNRS, ENSCM, Montpellier, France
| | - Ian Soulairol
- ICGM, University of Montpellier, CNRS, ENSCM, Montpellier, France; Department of Pharmacy, Nîmes University Hospital, Nîmes, France
| | - Martial Sauceau
- RAPSODEE, IMT Mines Albi, CNRS, University of Toulouse, 81013 Albi, France
| |
Collapse
|
15
|
Barreiro Carpio M, Gonzalez Martinez E, Dabaghi M, Ungureanu J, Arizpe Tafoya AV, Gonzalez Martinez DA, Hirota JA, Moran-Mirabal JM. High-Fidelity Extrusion Bioprinting of Low-Printability Polymers Using Carbopol as a Rheology Modifier. ACS APPLIED MATERIALS & INTERFACES 2023; 15:54234-54248. [PMID: 37964517 PMCID: PMC10695173 DOI: 10.1021/acsami.3c10092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 11/01/2023] [Accepted: 11/06/2023] [Indexed: 11/16/2023]
Abstract
Extrusion three-dimensional (3D) bioprinting is a promising technology with many applications in the biomedical and tissue engineering fields. One of the key limitations for the widespread use of this technology is the narrow window of printability that results from the need to have bioinks with rheological properties that allow the extrusion of continuous filaments while maintaining high cell viability within the materials during and after printing. In this work, we use Carbopol (CBP) as rheology modifier for extrusion printing of biomaterials that are typically nonextrudable or present low printability. We show that low concentrations of CBP can introduce the desired rheological properties for a wide range of formulations, allowing the use of polymers with different cross-linking mechanisms and the introduction of additives and cells. To explore the opportunities and limitations of CBP as a rheology modifier, we used ink formulations based on poly(ethylene glycol)diacrylate with extrusion 3D printing to produce soft, yet stable, hydrogels with tunable mechanical properties. Cell-laden constructs made with such inks presented high viability for cells seeded on top of cross-linked materials and cells incorporated within the bioink during printing, showing that the materials are noncytotoxic and the printed structures do not degrade for up to 14 days. To our knowledge, this is the first report of the use of CBP-containing bioinks to 3D-print complex cell-laden structures that are stable for days and present high cell viability. The use of CBP to obtain highly printable inks can accelerate the evolution of extrusion 3D bioprinting by guaranteeing the required rheological properties and expanding the number of materials that can be successfully printed. This will allow researchers to develop and optimize new bioinks focusing on the biochemical, cellular, and mechanical requirements of the targeted applications rather than the rheology needed to achieve good printability.
Collapse
Affiliation(s)
- Mabel Barreiro Carpio
- Department
of Chemistry and Chemical Biology, McMaster
University, Hamilton, Ontario L8S 4M1, Canada
| | - Eduardo Gonzalez Martinez
- Department
of Chemistry and Chemical Biology, McMaster
University, Hamilton, Ontario L8S 4M1, Canada
| | - Mohammadhossein Dabaghi
- Firestone
Institute for Respiratory Health, Division of Respirology, Department
of Medicine, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| | - Julia Ungureanu
- Department
of Chemistry and Chemical Biology, McMaster
University, Hamilton, Ontario L8S 4M1, Canada
| | | | | | - Jeremy Alexander Hirota
- Firestone
Institute for Respiratory Health, Division of Respirology, Department
of Medicine, McMaster University, Hamilton, Ontario L8S 4M1, Canada
- School
of Biomedical Engineering, McMaster University, Hamilton, Ontario L8S 4M1, Canada
- McMaster
Immunology Research Centre, Department of Pathology and Molecular
Medicine, McMaster University, Hamilton, Ontario L8S 4M1, Canada
- Division
of Respiratory Medicine, Department of Medicine, University of British Columbia, Vancouver, British Columbia V5Z 1M9, Canada
- Department
of Biology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Jose Manuel Moran-Mirabal
- Department
of Chemistry and Chemical Biology, McMaster
University, Hamilton, Ontario L8S 4M1, Canada
- School
of Biomedical Engineering, McMaster University, Hamilton, Ontario L8S 4M1, Canada
- Centre
for Advanced Light Microscopy, McMaster
University, Hamilton, Ontario L8S 4M1, Canada
- Brockhouse
Institute for Materials Research, McMaster
University, Hamilton, Ontario L8S 4M1, Canada
| |
Collapse
|
16
|
Ostróżka-Cieślik A, Wilczyński S, Dolińska B. Hydrogel Formulations for Topical Insulin Application: Preparation, Characterization and In Vitro Permeation across the Strat-M ® Membrane. Polymers (Basel) 2023; 15:3639. [PMID: 37688265 PMCID: PMC10489751 DOI: 10.3390/polym15173639] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/25/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023] Open
Abstract
Insulin has shown efficacy in the treatment of hard-to-heal wounds, which is mainly due to its role in regulating oxidative stress and inflammatory reactions. The aim of this study was to develop an insulin-hydrogel carrier based on Sepineo™ P 600 and Sepineo™ PHD 100 for application to lesional skin. Preformulation studies of the developed formulations were performed in terms of analysis of the pharmaceutical availability of insulin from the hydrogels through the Strat-M® membrane, and rheological and texture measurements. Insulin is released in a prolonged manner; after a time of 6.5 h, 4.01 IU/cm2 (53.36%) and 3.69 IU/cm2 (47.4%) of the hormone were released from the hydrogel based on Sepineo™ P 600 and Sepineo™ PHD 100, respectively. Rheological analysis showed that the hydrogels tested belong to non-Newtonian, shear-thinning systems with yield stress. The insulin-hydrogel based on Sepineo™ P 600 and Sepineo™ PHD 100 shows optimal application properties. The results obtained provide a basis for further preclinical and clinical studies.
Collapse
Affiliation(s)
- Aneta Ostróżka-Cieślik
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Kasztanowa Street 3, 41-200 Sosnowiec, Poland;
| | - Sławomir Wilczyński
- Department of Basic Biomedical Science, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Kasztanowa Street 3, 41-200 Sosnowiec, Poland;
| | - Barbara Dolińska
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Kasztanowa Street 3, 41-200 Sosnowiec, Poland;
| |
Collapse
|
17
|
Jin X, Alavi SE, Shafiee A, Leite-Silva VR, Khosrotehrani K, Mohammed Y. Metamorphosis of Topical Semisolid Products-Understanding the Role of Rheological Properties in Drug Permeation under the "in Use" Condition. Pharmaceutics 2023; 15:1707. [PMID: 37376155 DOI: 10.3390/pharmaceutics15061707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/08/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
When developing topical semisolid products, it is crucial to consider the metamorphosis of the formulation under the "in use" condition. Numerous critical quality characteristics, including rheological properties, thermodynamic activity, particle size, globule size, and the rate/extent of drug release/permeation, can be altered during this process. This study aimed to use lidocaine as a model drug to establish a connection between the evaporation and change of rheological properties and the permeation of active pharmaceutical ingredients (APIs) in topical semisolid products under the "in use" condition. The evaporation rate of the lidocaine cream formulation was calculated by measuring the weight loss and heat flow of the sample using DSC/TGA. Changes in rheological properties due to metamorphosis were assessed and predicted using the Carreau-Yasuda model. The impact of solvent evaporation on a drug's permeability was studied by in vitro permeation testing (IVPT) using occluded and unconcluded cells. Overall, it was found that the viscosity and elastic modulus of prepared lidocaine cream gradually increased with the time of evaporation as a result of the aggregation of carbopol micelles and the crystallization of API after application. Compared to occluded cells, the permeability of lidocaine for formulation F1 (2.5% lidocaine) in unoccluded cells decreased by 32.4%. This was believed to be the result of increasing viscosity and crystallization of lidocaine instead of depletion of API from the applied dose, which was confirmed by formulation F2 with a higher content of API (5% lidocaine) showing a similar pattern, i.e., a 49.7% reduction of permeability after 4 h of study. To the best of our knowledge, this is the first study to simultaneously demonstrate the rheological change of a topical semisolid formulation during volatile solvent evaporation, resulting in a concurrent decrease in the permeability of API, which provides mathematical modelers with the necessary background to build complex models that incorporate evaporation, viscosity, and drug permeation in the simulation once at a time.
Collapse
Affiliation(s)
- Xuping Jin
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4102, Australia
- School of Pharmacy, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Seyed Ebrahim Alavi
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Abbas Shafiee
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Vania Rodrigues Leite-Silva
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4102, Australia
- Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Departamento de Ciências Farmacêuticas, Universidade Federal de São Paulo, UNIFESP, Diadema 09913-030, Brazil
| | - Kiarash Khosrotehrani
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Yousuf Mohammed
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4102, Australia
- School of Pharmacy, The University of Queensland, Brisbane, QLD 4102, Australia
| |
Collapse
|
18
|
Rapalli VK, Tomar Y, Sharma S, Roy A, Singhvi G. Apremilast loaded lyotropic liquid crystalline nanoparticles embedded hydrogel for improved permeation and skin retention: An effective approach for psoriasis treatment. Biomed Pharmacother 2023; 162:114634. [PMID: 37018989 DOI: 10.1016/j.biopha.2023.114634] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 03/26/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023] Open
Abstract
The present work aimed to prepare and evaluate Apremilast loaded lyotropic liquid crystalline nanoparticles (LCNPs) formulation for skin delivery to enhance the efficacy with reduced adverse effects of the oral therapy in psoriasis treatment. The LCNPs were prepared using the emulsification using a high shear homogenizer for size reduction and optimized with Box Behnken design to achieve desired particle size and entrapment efficiency. The selected LCNPs formulation was evaluated for in-vitro release, in-vitro psoriasis efficacy, skin retention, dermatokinetic, in-vivo skin retention, and skin irritation study. The selected formulation exhibited 173.25 ± 2.192 nm (polydispersity 0.273 ± 0.008) particle size and 75.028 ± 0.235% entrapment efficiency. The in-vitro drug release showed the prolonged-release for 18 h. The ex-vivo studies revealed that LCNPs formulation exhibited drug retention up to 3.2 and 11.9-fold higher, in stratum corneum and viable epidermis compared to conventional gel preparation. In-vitro cell line studies performed on immortal keratinocyte cells (HaCaT cells) demonstrated non-toxicity of selected excipients used in designed LCNPs. The dermatokinetic study revealed the AUC0-24 of the LCNPs loaded gel was 8.4 fold higher in epidermis and 2.06 fold in dermis, respectively compared to plain gel. Further, in-vivo animal studies showed enhanced skin permeation and retention of Apremilast compared to conventional gel.
Collapse
Affiliation(s)
| | - Yashika Tomar
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani 333031, India
| | - Swati Sharma
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani 333031, India
| | - Aniruddha Roy
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani 333031, India
| | - Gautam Singhvi
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani 333031, India.
| |
Collapse
|
19
|
Ahmad Shariff SH, Daik R, Haris MS, Ismail MW. Hydrophobic Drug Carrier from Polycaprolactone- b-Poly(Ethylene Glycol) Star-Shaped Polymers Hydrogel Blend as Potential for Wound Healing Application. Polymers (Basel) 2023; 15:polym15092072. [PMID: 37177238 PMCID: PMC10181117 DOI: 10.3390/polym15092072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/14/2023] [Accepted: 04/19/2023] [Indexed: 05/15/2023] Open
Abstract
Blending hydrogel with an amphiphilic polymer can increase the hydrophobic drug loading and entrapment efficiency of hydrogel-based formulations. In this study, a hydrogel formulation with star-shaped polycaprolactone-b-poly(ethylene glycol) (PCL-b-PEG) as the hydrophobic drug cargo is produced. The 4-arm and 6-arm star-shaped PCL are synthesized with different molecular weights (5000, 10,000, 15,000 g/mol) via ROP and MPEG as the hydrophilic segment is attached via the Steglich esterification. FTIR and 1H-NMR analysis showed the presence of all functional groups for homopolymers and copolymers. Mn for all synthesized polymers is close to the theoretical value while GPC spectra showed a monomodal peak with narrow molecular weight distribution (PDI:1.01-1.25). The thermal degradation temperature and crystalline melting point of synthesized polymers increase with the increase in molecular weight and number of arms. All formulations possess high drug loading and entrapment efficiency (>99%) and increase with increasing molecular weight, number of arms, and amount of polymer in the formulations. All formulations showed a sustained drug release pattern with no initial burst, which follows the Korsmeyer-Peppas kinetic model. The polymer hydrogel formulations showed antibacterial activity against E. coli and S. aureus. The hydrogel containing 4-arm PCL15k-PEG is chosen as the best formulation due to its high drug release, good antimicrobial activity, and morphology.
Collapse
Affiliation(s)
- Siti Hajar Ahmad Shariff
- Department of Chemistry, Kulliyyah of Science, International Islamic University Malaysia, Kuantan 25200, Malaysia
| | - Rusli Daik
- Department of Chemical Sciences, Faculty of Science & Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
| | - Muhammad Salahuddin Haris
- Department of Pharmaceutical Technology, Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan 25200, Malaysia
- IKOP Pharma Sdn Bhd, Kuantan 25200, Malaysia
| | - Mohamad Wafiuddin Ismail
- Department of Chemistry, Kulliyyah of Science, International Islamic University Malaysia, Kuantan 25200, Malaysia
| |
Collapse
|
20
|
Slavkova M, Tzankov B, Popova T, Voycheva C. Gel Formulations for Topical Treatment of Skin Cancer: A Review. Gels 2023; 9:gels9050352. [PMID: 37232944 DOI: 10.3390/gels9050352] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/18/2023] [Accepted: 04/20/2023] [Indexed: 05/27/2023] Open
Abstract
Skin cancer, with all its variations, is the most common type of cancer worldwide. Chemotherapy by topical application is an attractive strategy because of the ease of application and non-invasiveness. At the same time, the delivery of antineoplastic agents through the skin is difficult because of their challenging physicochemical properties (solubility, ionization, molecular weight, melting point) and the barrier function of the stratum corneum. Various approaches have been applied in order to improve drug penetration, retention, and efficacy. This systematic review aims at identifying the most commonly used techniques for topical drug delivery by means of gel-based topical formulations in skin cancer treatment. The excipients used, the preparation approaches, and the methods characterizing gels are discussed in brief. The safety aspects are also highlighted. The combinatorial formulation of nanocarrier-loaded gels is also reviewed from the perspective of improving drug delivery characteristics. Some limitations and drawbacks in the identified strategies are also outlined and considered within the future scope of topical chemotherapy.
Collapse
Affiliation(s)
- Marta Slavkova
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria
| | - Borislav Tzankov
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria
| | - Teodora Popova
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria
| | - Christina Voycheva
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria
| |
Collapse
|
21
|
Upadhyay C, D'Souza A, Patel P, Verma V, Upadhayay KK, Bharkatiya M. Inclusion Complex of Ibuprofen-β-Cyclodextrin Incorporated in Gel for Mucosal Delivery: Optimization Using an Experimental Design. AAPS PharmSciTech 2023; 24:100. [PMID: 37029312 DOI: 10.1208/s12249-023-02534-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 02/12/2023] [Indexed: 04/09/2023] Open
Abstract
β-Cyclodextrin/ibuprofen inclusion complex was synthesized by freeze-drying method and characterized for phase solubility profiles, infrared spectra, thermal analysis, and X-ray powder diffractograms. The inclusion complex with HP-β-CD, as confirmed by molecular dynamics simulations, enhanced the aqueous solubility of ibuprofen by almost 30-fold compared to ibuprofen alone. Different grades of Carbopol (Carbopol 934P/Carbopol 974P/Carbopol 980 NF/Carbopol Ultrez 10 NF) and cellulose derivatives (HPMC K100M/HPMC K15M/HPMC K4M/HPMC E15LV/HPC) were evaluated for mucoadhesive gels incorporating the inclusion complex. The central composite design generated by Design-Expert was employed to optimize the mucoadhesive gel using two independent variables (a varying combination of two gelling agents) on three dependent variables (drug content and in vitro drug release at 6 h and 12 h). Except for the methylcellulose-based gels, most of the gels (0.5%, 0.75%, and 1% alone or as a mixture thereof) exhibited an extended-release of ibuprofen, ranging from 40 to 74% over 24 h and followed the Korsmeyer-Peppas kinetics model. Using this test design, 0.95% Carbopol 934P and 0.55% HPC-L formulations were optimized to increase ibuprofen release, enhance mucoadhesion, and be non-irritating in ex vivo chorioallantoic membrane studies. The present study successfully developed a mucoadhesive gel containing the ibuprofen-β-cyclodextrin inclusion complex with sustained release.
Collapse
Affiliation(s)
| | - Anisha D'Souza
- School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania, USA
| | - Pratikkumar Patel
- Department of Chemical Sciences, Bernal Institute, University of Limerick, Limerick, Ireland
| | - Vivek Verma
- Department of Chemical Sciences, Bernal Institute, University of Limerick, Limerick, Ireland
| | | | - Meenakshi Bharkatiya
- B.N Institute of Pharmaceutical Sciences, B. N. University, Udaipur, Rajasthan, India.
| |
Collapse
|
22
|
Wiglusz K, Dobrzynski M, Gutbier M, Wiglusz RJ. Nanofluorapatite Hydrogels in the Treatment of Dentin Hypersensitivity: A Study of Physiochemical Properties and Fluoride Release. Gels 2023; 9:gels9040271. [PMID: 37102883 PMCID: PMC10137577 DOI: 10.3390/gels9040271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
The aim of this work was to prepare a new hydrogel based on nanohydroxyapatite (nFAP, 10% w/w) and fluorides (4% w/w), both of which are used as sources of fluoride ions in the treatment of dentin hypersensitivity, and to characterize its physicochemical properties. The release of fluoride ions from 3 gels (G-F, G-F-nFAP, and G-nFAP gel) was controlled in Fusayama–Meyer artificial saliva at pH 4.5, 6.6, and 8.0. The properties of the formulations were determined by an analysis of viscosity, a shear rate test, a swelling study, and gel aging. Various methods, i.e., FT-IR spectroscopy, UV-VIS spectroscopy, and thermogravimetric, electrochemical, and rheological analysis, were used for the experiment. The profiles of fluoride release indicate that the amount of fluoride ions released increases with a decrease in the pH value. The low pH value facilitated water absorption by the hydrogel, which was also confirmed by the swelling test, and it promoted the exchange of ions with the surrounding environment. Under conditions similar to physiological conditions (at pH 6.6), the amounts of fluorides released into artificial saliva were approximately 250 µg/cm2 and 300 µg/cm2 for the G-F-nFAP hydrogel and G-F hydrogel, respectively. The aging study and properties of the gels showed a loosening of the gel network structure. The Casson rheological model was used to assess the rheological properties of the non-Newtonian fluids. Hydrogels consisting of nanohydroxyapatite and sodium fluoride are promising biomaterials in the prevention and management of the dentin hypersensitivity.
Collapse
|
23
|
Effect of Hydrogel Substrate Components on the Stability of Tetracycline Hydrochloride and Swelling Activity against Model Skin Sebum. Int J Mol Sci 2023; 24:ijms24032678. [PMID: 36768998 PMCID: PMC9916833 DOI: 10.3390/ijms24032678] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 02/01/2023] Open
Abstract
Due to its high instability and rapid degradation under adverse conditions, tetracycline hydrochloride (TC) can cause difficulties in the development of an effective but stable formulation for the topical treatment of acne. The aim of the following work was to propose a hydrogel formulation that would ensure the stability of the antibiotic contained in it. Additionally, an important property of the prepared formulations was the activity of the alcoholamines contained in them against the components of the model sebum. This feature may help effectively cleanse the hair follicles in the accumulated sebum layer. A series of formulations with varying proportions of anionic polymer and alcoholamine and containing different polymers have been developed. The stability of tetracycline hydrochloride contained in the hydrogels was evaluated for 28 days by HPLC analysis. Formulations containing a large excess of TRIS alcoholamine led to the rapid degradation of TC from an initial concentration of about 10 µg/mL to about 1 µg/mL after 28 days. At the same time, these formulations showed the highest activity against artificial sebum components. Thanks to appropriately selected proportions of the components, it was possible to develop a formulation that assured the stability of tetracycline for ca. one month, while maintaining formulation activity against the components of model sebum.
Collapse
|
24
|
Nanostructured Lipid Carriers (NLC)-Based Gel Formulations as Etodolac Delivery: From Gel Preparation to Permeation Study. Molecules 2022; 28:molecules28010235. [PMID: 36615429 PMCID: PMC9821982 DOI: 10.3390/molecules28010235] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022] Open
Abstract
Topical administration of drug is an attractive alternative to the oral administration as it provides a reduction in adverse reactions and an enhancement of therapeutic effects. The use of lipid carriers in hydrogel structures makes it possible to introduce lipophilic substances in a dissolved form. In this study, an NSAID from the BCS class II, etodolac (ETD), was used. The nanostructured lipid carriers (NLC) obtained with ETD were incorporated into semi-solid forms (gels). Hydrogels with the suspended drug and oleogel were also prepared for comparison purposes. The obtained gels were tested in terms of pH, viscosity, rheological, mechanical, and bioadhesive properties. The release and permeation through membranes were also studied. All tested formulations were characterized by a pH below 7, which ensured the physiological state of the skin. The viscosities of all gels decreased with increasing shear rate, indicating non-Newtonian behavior. The fastest ETD release was observed for NLC with a Carbopol base (formulation F1); a similar result was noticed in the permeation test. The developed gel formulations containing ETD-NLC dispersion and Carbopol or Poloxamer as gelling agents were stable and possessed beneficial pharmaceutical properties.
Collapse
|
25
|
Formulation and Physical Characterization of a Polysaccharidic Gel for the Vehiculation of an Insoluble Phytoextract for Mucosal Application. POLYSACCHARIDES 2022. [DOI: 10.3390/polysaccharides3040042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Maintaining insoluble plant-based ingredients in suspension and ensuring long-term physical stability is particularly challenging for formulators of green cosmetics. This study aimed to evaluate the structure and applicative properties of gel and gel-cream topical formulations suitable for delivering an insoluble phytocomplex on the vaginal mucosa and maintaining its integrity. For this purpose, we studied the compatibility of Perilla frutescens (L.) Britton phytocomplex (PFP), derived from in vitro plant cell cultures and presented as a powder finely dispersed in glycerin, with different classes of natural rheological modifiers (such as xanthan gum, sclerotium gum, succinoglycan, xyloglucan, diutan gum, hydroxypropyl guar gum derivative) in gel and gel-cream formulations, to meet the needs of the cosmetic market for naturalness and biodegradability. Through rheological and texture analyses, we studied the physico–mechanical properties of the samples, comparing the performances of the chosen polysaccharides to those of acrylic polymeric rheological modifiers, evaluating their contribution in terms of stability and applicative properties. Since a weak-gel rheological pattern proved to be the optimal one to keep the actives in suspension, the associations of tamarind seed polysaccharides with succinoglycan or scleroglucan were the most suitable for the formulation of mucoadhesive gels.
Collapse
|
26
|
Development of a new hydrogel for the prevention of allergic contact dermatitis. Int J Pharm 2022; 628:122265. [DOI: 10.1016/j.ijpharm.2022.122265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/30/2022] [Accepted: 10/01/2022] [Indexed: 11/23/2022]
|
27
|
Preparation of poly (acrylic acid) microgels by alcohol type cross-linkers and a comparison with other cross-linking methods. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-021-03878-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
28
|
Rompicherla NC, Joshi P, Shetty A, Sudhakar K, Amin HIM, Mishra Y, Mishra V, Albutti A, Alhumeed N. Design, Formulation, and Evaluation of Aloe vera Gel-Based Capsaicin Transemulgel for Osteoarthritis. Pharmaceutics 2022; 14:pharmaceutics14091812. [PMID: 36145560 PMCID: PMC9503439 DOI: 10.3390/pharmaceutics14091812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 08/08/2022] [Accepted: 08/21/2022] [Indexed: 11/19/2022] Open
Abstract
Topical treatments are a potential therapeutic option for the therapy of osteoarthritis, with significant data supporting the effectiveness and safety of topical formulation. Topical gel formulations may offer an alternative to oral formulations to relieve osteoarthritis (OA) pain while decreasing systemic exposure. Topical capsaicin transemulgel may represent an effective and safe alternative. The transemulgel was prepared from aqueous Aloe vera gel and Carbopol 934 with capsaicin in clove oil emulsion. The optimized transemulgel of capsaicin showed a pH of 6.1 ± 0.1 and viscosity of 15263–998 cps. Data from in vitro diffusion demonstrated improved permeability properties. The formulation caused no skin irritation when applied topically. The optimal transemulgel spreadability was found to be 20.23 g·cm/s. In vitro and ex vivo studies of the optimized formulation were performed. The skin irritant test was performed on rat skin with an optimized and marketed formulation. Both showed no irritation on the skin. The transemulgel of the capsaicin with Aloe vera gel was proven to be effective for osteoarthritis therapy.
Collapse
Affiliation(s)
- Narayana Charyulu Rompicherla
- Department of Pharmaceutics, NGSM Institute of Pharmaceutical Sciences, Nitte (Deemed to Be University), Mangaluru 575018, Karnataka, India
| | - Punam Joshi
- Department of Pharmaceutics, NGSM Institute of Pharmaceutical Sciences, Nitte (Deemed to Be University), Mangaluru 575018, Karnataka, India
| | - Amitha Shetty
- Department of Pharmaceutics, NGSM Institute of Pharmaceutical Sciences, Nitte (Deemed to Be University), Mangaluru 575018, Karnataka, India
| | - Kalvatala Sudhakar
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Hawraz Ibrahim M. Amin
- Department of Chemistry, College of Science, Salahaddin University-Erbil, Erbil 44001, Iraq
- Department of Medical Biochemical Analysis, Cihan University-Erbil, Erbil 44001, Iraq
| | - Yachana Mishra
- Department of Zoology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Vijay Mishra
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
- Correspondence: (V.M.); (A.A.)
| | - Aqel Albutti
- Department of Medical Biotechnology, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
- Correspondence: (V.M.); (A.A.)
| | - Naif Alhumeed
- Deputyship for Research and Innovation, Ministry of Education, Riyadh 11153, Saudi Arabia
| |
Collapse
|
29
|
The Potential of Pharmaceutical Hydrogels in the Formulation of Topical Administration Hormone Drugs. Polymers (Basel) 2022; 14:polym14163307. [PMID: 36015564 PMCID: PMC9413899 DOI: 10.3390/polym14163307] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/12/2022] [Accepted: 08/12/2022] [Indexed: 11/16/2022] Open
Abstract
Hormones have attracted considerable interest in recent years due to their potential use in treatment of many diseases. Their ability to have a multidirectional effect leads to searching for new and increasingly effective drugs and therapies. Limitations in formulating drug forms containing hormones are mainly due to their low enzymatic stability, short half-life and limited bioavailability. One of the solutions may be to develop a hydrogel as a potential hormone carrier, for epidermal and transdermal application. This review discusses the main research directions in developing this drug formulation. The factors determining the action of hormones as drugs are presented. An analysis of hydrogel substrates and permeation enhancers that have the potential to enhance the efficacy of hormones applied to the skin is reviewed.
Collapse
|
30
|
Venerus DC, Machabeli O, Bushiri D, Arzideh SM. Evidence for Chaotic Behavior during the Yielding of a Soft Particle Glass. PHYSICAL REVIEW LETTERS 2022; 129:068002. [PMID: 36018644 DOI: 10.1103/physrevlett.129.068002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
Materials comprised of deformable particles such as microgels and concentrated emulsions and foams display complex rheological behavior that includes a yielding transition from an elastic solid to viscous fluid. Most studies of this class of soft matter involve shear flows, and only a handful report both shear and normal stresses. We present measurements of the shear stress and two normal stress differences for a microgel subjected to constant shear rate flows. The shear stress evolves through the yield point in a manner indicative of simple yield stress fluid behavior. Prior to yielding, the normal stress differences are immeasurable; beyond the yield point, they evolve in a reproducibly chaotic manner.
Collapse
Affiliation(s)
- David C Venerus
- Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, USA
| | - Otar Machabeli
- Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, USA
| | - Daniela Bushiri
- Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, USA
| | - Seyed Mahmoud Arzideh
- Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, USA
| |
Collapse
|
31
|
Iron oxide nanoparticles-loaded hydrogels for effective topical photothermal treatment of skin cancer. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2022. [DOI: 10.1007/s40005-022-00593-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
32
|
Torres C, Moecke SE, Mafetano A, Cornélio LF, Di Nicoló R, Borges AB. Influence of Viscosity and Thickener on the Effects of Bleaching Gels. Oper Dent 2022; 47:E119-E130. [PMID: 35649221 DOI: 10.2341/20-309-l] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/06/2021] [Indexed: 11/23/2022]
Abstract
OBJECTIVE This study investigated the influence of the viscosity and kind of thickener of 35% hydrogen peroxide bleaching gels on the tooth (color change, demineralization of enamel, and permeation) and on the gel [reactive oxygen species (ROS), pH, and peroxide concentration]. METHODS AND MATERIALS Two hundred forty specimens were divided into groups of bleaching gels with different thickeners (CAR, carbomer; ASE, alkali swellable emulsion; MSA, modified sulfonic acid polymer; SSP, semisynthetic polysaccharide; PAC, particulate colloids) in three viscosities (low: 50,000 cP; medium: 250,000 cP; high: 1,000,000 cP). Color change (ΔEab), demineralization of enamel by Knoop microhardness (KHN) reduction analysis, and peroxide permeation (PP) were analyzed in the specimens, while pH, peroxide concentration (PC), and ROS were evaluated in the gels. Data were analyzed by two-way ANOVA (α=0.05). RESULTS The higher viscosity gels reduced ΔEab, PP, enamel softening, and ROS in relation to the lower viscosity gels. However, the drop in pH and PC were higher in the more viscous gels. Gels with MSA produced higher ΔEab compared with SSP and ASE. The PP was higher for PAC, and smaller for SSP and CAR. The KHN reduction was higher for CAR and smaller for PAC. The higher pH reduction was seen for ASE and CAR, and the smaller for SSP. The PC reduction was higher for SSP and smaller for CAR. More ROS were observed for MSA and fewer for ASE. CONCLUSIONS Increased gel viscosity was associated with reduced color change, permeation, demineralization of enamel, and ROS, and led to increased peroxide decomposition and pH alteration during the treatment. The kind of thickener significantly interfered with the treatment effects.
Collapse
Affiliation(s)
- Crg Torres
- *Carlos Rocha Gomes Torres, DDS, PhD, associate professor, Department of Restorative Dentistry, Institute of Science and Technology, Sao Paulo State University - UNESP, Sao Jose dos Campos, SP, Brazil
| | - S E Moecke
- Sabrina Elise Moecke, DDS, MS, Department of Restorative Dentistry, Institute of Science and Technology, Sao Paulo State University - UNESP, Sao Jose dos Campos, SP, Brazil
| | - Apvp Mafetano
- Ana Paula Valente Pinho Mafetano, DDS, MS, Department of Restorative Dentistry, Institute of Science and Technology, Sao Paulo State University - UNESP, Sao Jose dos Campos, SP, Brazil
| | - L F Cornélio
- Leticia Fernanda Cornélio, DDS, Department of Restorative Dentistry, Institute of Science and Technology, Sao Paulo State University - UNESP, Sao Jose dos Campos, SP, Brazil
| | | | - A B Borges
- Alessandra Bühler Borges, DDS, MS, PhD, associate professor, Department of Restorative Dentistry, Institute of Science and Technology, Sao Paulo State University - UNESP, Sao Jose dos Campos, SP, Brazil
| |
Collapse
|
33
|
Ahmad MZ, Ahmad J, Alasmary MY, Akhter S, Aslam M, Pathak K, Jamil P, Abdullah M. Nanoemulgel as an approach to improve the biopharmaceutical performance of lipophilic drugs: Contemporary research and application. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
34
|
Houlleberghs M, Verheyden L, Voorspoels F, Chandran CV, Duerinckx K, Radhakrishnan S, Martens JA, Breynaert E. Dispersing carbomers, mixing technology matters! RSC Adv 2022; 12:7830-7834. [PMID: 35424734 PMCID: PMC8982170 DOI: 10.1039/d2ra00176d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 02/25/2022] [Indexed: 11/21/2022] Open
Abstract
Mixing dry carbomer powder with water using magneto-hydrodynamic mixing yielded carbomer dispersions with higher viscosity and increased storage modulus as compared to conventional high shear mixing. 1H NMR spectroscopy demonstrated this to be induced by a different water distribution, accompanied by lower ionization and higher degradation of the polymer in case of high shear mixing. This investigation reveals 1H MAS NMR to provide suitable sensitivity and resolution to detect structural changes induced in organic polymers during their hydration. Magnetohydrodynamic mixing yields carbomer dispersions with higher viscosity and higher storage modulus as compared to high shear mixing. 1H NMR reveals molecular level differences in water distribution, polymer degradation and charge stabilization.![]()
Collapse
Affiliation(s)
- Maarten Houlleberghs
- Characterization and Application Team (COK-kat), KU Leuven 3001 Heverlee Belgium
| | - Loes Verheyden
- Characterization and Application Team (COK-kat), KU Leuven 3001 Heverlee Belgium
| | - Filip Voorspoels
- Master of Bioscience Engineering: Catalytic Technology KU Leuven Belgium
| | - C Vinod Chandran
- Characterization and Application Team (COK-kat), KU Leuven 3001 Heverlee Belgium .,NMR-Xray platform for Convergence Research (NMRCoRe), KU Leuven 3001 Heverlee Belgium
| | - Karel Duerinckx
- Characterization and Application Team (COK-kat), KU Leuven 3001 Heverlee Belgium .,NMR-Xray platform for Convergence Research (NMRCoRe), KU Leuven 3001 Heverlee Belgium
| | - Sambhu Radhakrishnan
- Characterization and Application Team (COK-kat), KU Leuven 3001 Heverlee Belgium .,NMR-Xray platform for Convergence Research (NMRCoRe), KU Leuven 3001 Heverlee Belgium
| | - Johan A Martens
- Characterization and Application Team (COK-kat), KU Leuven 3001 Heverlee Belgium .,NMR-Xray platform for Convergence Research (NMRCoRe), KU Leuven 3001 Heverlee Belgium
| | - Eric Breynaert
- Characterization and Application Team (COK-kat), KU Leuven 3001 Heverlee Belgium .,NMR-Xray platform for Convergence Research (NMRCoRe), KU Leuven 3001 Heverlee Belgium
| |
Collapse
|
35
|
Berardi A, Romano Perinelli D, Bisharat L, Sabbatini B, Bonacucina G, Tiboni M, Filippo Palmieri G, Cespi M. Factors affecting the rheological behaviour of carbomer dispersions in hydroalcoholic medium: towards the optimization of hand sanitiser gel formulations. Int J Pharm 2022; 616:121503. [PMID: 35085726 DOI: 10.1016/j.ijpharm.2022.121503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/14/2022] [Accepted: 01/19/2022] [Indexed: 10/19/2022]
Abstract
Hand sanitizers represent a primary measure for the prevention of transmissible infections, whose use has been greatly increased during CoViD-19 pandemic. Most of the commercially available products are hydrogels, employing carbomers as thickening agents. However, few information is still available regarding performances of carbomers in hydroalcoholic media containing a percentage of alcohols ≥60% v/v as recommended for disinfection. The aim of this study was to investigate the colloidal behaviour of carbomer 974 and carbomer 980 in hydroalcoholic media containing from 50 to 80% w/w of alcohol (ethanol or isopropanol) and neutralised with triethanolamine or aminomethyl propanol. Both carbomers provide transparent hydrogels in water, but carbomer 980 should be preferred for the formulation of hydrogel with a percentage of alcohol ≥ 50% w/w for its better solvation. The critical ethanol concentration (CAlC), above which polymer precipitation occurs, depends on the type of alcohol and base used. Carbomer dispersions with a higher content of alcohol can be prepared using aminomethyl propanol than triethanolamine. The choice of the more suitable components is fundamental for the isopropanol-based dispersions since the CAlC is closer to the recommended concentration for disinfection. Overall, these results provide helpful insights for the correct preparation of alcohol-based hand sanitizers using carbomers.
Collapse
Affiliation(s)
- Alberto Berardi
- Faculty of Pharmacy, Applied Science Private University, Amman 11931, Jordan
| | | | - Lorina Bisharat
- School of Pharmacy, The University of Jordan, Amman 11942, Jordan
| | | | - Giulia Bonacucina
- School of Pharmacy, University of Camerino, Camerino, MC 62032, Italy
| | - Mattia Tiboni
- Department of Biomolecular Sciences, School of Pharmacy, University of Urbino Carlo Bo, 61029, Urbino, PU, Italy
| | | | - Marco Cespi
- School of Pharmacy, University of Camerino, Camerino, MC 62032, Italy
| |
Collapse
|
36
|
Preparation and Evaluation of Polymer-Based Ultrasound Gel and Its Application in Ultrasonography. Gels 2022; 8:gels8010042. [PMID: 35049577 PMCID: PMC8774352 DOI: 10.3390/gels8010042] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/16/2021] [Accepted: 12/20/2021] [Indexed: 01/26/2023] Open
Abstract
Ultrasound imaging is a widely used technique in every health care center and hospital. Ultrasound gel is used as a coupling medium in all ultrasound procedures to replace air between the transducer and the patient’s skin, as ultrasound waves have trouble in traveling through air. This research was performed to formulate an inexpensive alternative to commercially available ultrasound gel as it is expensive and imported from other countries. Different formulations with different concentrations of carbopol 980 (CAR 980) and methylparaben were prepared with natural ingredients such as aloe vera gel and certain available chemicals that have no harmful effects on the skin. To justify the efficiency of the formulations; necessary physicochemical characteristics such as visual clarity, homogeneity, transparency, skin irritation, antibacterial activity, pH, stability, spreadability, conductivity, acoustic impedance, viscosity, and cost were evaluated. Moreover, a comparison study was also conducted with commercially available ultrasound gel that was utilized as a control. All samples showed excellent transparency and no microbial growth. S1 was the only formulation that met all of the requirements for commercial ultrasound gel and produced images that were similar to those produced by commercial ultrasound gel. So, this formulation could be used as an alternative to expensive commercial ultrasound gel for taking images in hospitals and medical centers.
Collapse
|
37
|
Optimization of pH-sensitive ingredients and characterization of raft-forming alginate-based oral suspensions as reflux suppressant. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
38
|
Aleanizy FS, Taha EI, Salem-Bekhit MM, Felimban AMJ, Al-Suwayeh SA, Al-Joufi FA, Muharram MM, Alqahtani FY, Shakeel F, Youssof AME, Bayomi M, Abouelela AEF. Formulation and in vitro and in vivo evaluation of surfactant-stabilized mucoadhesive nanogels for vaginal delivery of fluconazole. Drug Dev Ind Pharm 2021; 47:1935-1942. [PMID: 35537065 DOI: 10.1080/03639045.2022.2070760] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/30/2021] [Accepted: 04/22/2022] [Indexed: 10/18/2022]
Abstract
Surfactant-stabilized mucoadhesive nanogels (NGs) for vaginal delivery of fluconazole (FLZ) were studied and evaluated in this work. FLZ-NG formulations were prepared using two different types of mucoadhesive polymers, Carbopol 934 (Ca934) and Pluronic F-127 (PF127). A rheology study revealed a non-Newtonian pseudoplastic flow behavior (shear thinning) in the prepared NGs. The viscosity of Ca934 NG (0.47 Pa s) was much lower compared to the PF127 NG (6.10 Pa s). The rheology study results correlated well with the in vitro FLZ release profile from the NG formulations. A pH study (pH = 3.90-4.90) revealed that the formulations were physiologically suitable for vaginal application, to avoid the irritation of the vaginal mucosa. Finally, in vitro and in vivo antimicrobial tests were performed. FLZ incorporated into the Ca934 gel had the strongest antimicrobial effect, with a mean inhibition zone of 24 ± 1.6 mm. Based on these results, it was concluded that the mucoadhesive NG incorporating FLZ resulted in a sustained release and enhanced antimicrobial effect, which would enhance and prolong the therapeutic effects of vaginally delivered FLZ.
Collapse
Affiliation(s)
- Fadilah Sfouq Aleanizy
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ehab I Taha
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mounir M Salem-Bekhit
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
- Department of Microbiology & Immunology, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Alaa M J Felimban
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Saleh A Al-Suwayeh
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Fakhria A Al-Joufi
- Department of Pharmacology, College of Pharmacy, Jouf University, Aljouf, Saudi Arabia
| | - Magdy M Muharram
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
- Department of Microbiology, College of Science, Al-Azhar University, Nasr City, Cairo, Egypt
| | - Fulwah Y Alqahtani
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Faiyaz Shakeel
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Abdullah M E Youssof
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohsen Bayomi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Amal E F Abouelela
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
- Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| |
Collapse
|
39
|
Synthesis of transdermal patches loaded with greenly synthesized zinc oxide nanoparticles and their cytotoxic activity against triple negative breast cancer. APPLIED NANOSCIENCE 2021. [DOI: 10.1007/s13204-021-02166-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
40
|
Gurram S, Shah DS, Jha DK, Amin PD. Determination of Microstructural Impact on the Release of Drug from Hydroxypropyl Cellulose Gel by Validated In Vitro Release Test Method. Assay Drug Dev Technol 2021; 19:484-500. [PMID: 34757828 DOI: 10.1089/adt.2021.078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Microstructure of a semisolid system is greatly influenced by the formulation composition and the processing parameters. Different polymers exhibit different three-dimensional structure and these have a great impact on the drug release properties. The current research focuses on studying the impact of hydroxypropyl cellulose gel microstructure on the release properties of chlorhexidine gluconate (CHX G). The two main investigating methods of microstructure were used namely, rheology and texture analysis to determine the differences in the formulations studied. The CHX G drug release study was performed using a developed and validated in vitro release test method, which is reproducible, discriminative, and robust to detect the formulation differences. The drug release results showed that there was appreciable difference in the release rates of the different formulations. The rheology and texture analysis data correlated well with the difference in the release rates. The formulations differences were further confirmed by a statistical approach using analysis of variance.
Collapse
Affiliation(s)
- Sharda Gurram
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Matunga, India
| | - Devanshi S Shah
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Matunga, India
| | - Durgesh K Jha
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Matunga, India
| | - Purnima D Amin
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Matunga, India
| |
Collapse
|
41
|
Kolman M, Smith C, Chakrabarty D, Amin S. Rheological stability of carbomer in hydroalcoholic gels: Influence of alcohol type. Int J Cosmet Sci 2021; 43:748-763. [PMID: 34741768 DOI: 10.1111/ics.12750] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 10/09/2021] [Accepted: 11/05/2021] [Indexed: 11/27/2022]
Abstract
The emergence of the Covid-19 pandemic in recent times has seen an exceptionally high demand for the use of hand sanitizer gels as an effective strategy to combat this infectious disease. Hand sanitizers have played a significant role in providing effective disinfection thereby offering a pragmatic solution to prevent further spread of the deadly SARS CoV-2 virus. While addressing the exceptionally high demands of manufacturing posed during such times, an observation has been that such hydroalcoholic gels tend to exhibit viscosity variations when maintained unperturbed over an extended time. Such inherent viscosity variations would influence sensorial dimensions of consumer usage during application. Hence, it is only relevant that such a phenomenon of viscosity variations in unperturbed hydroalcoholic gels be under-stood in some degree of detail.
Collapse
Affiliation(s)
- Mackenzie Kolman
- Department of Chemical Engineering, Manhattan College, Riverdale
| | - Connor Smith
- Department of Chemical Engineering, Manhattan College, Riverdale
| | | | - Samiul Amin
- Department of Chemical Engineering, Manhattan College, Riverdale
| |
Collapse
|
42
|
Synthesis and Characterization of Antibacterial Carbopol/ZnO Hybrid Nanoparticles Gel. CRYSTALS 2021. [DOI: 10.3390/cryst11091092] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This study recommends Carbopol/zinc oxide (ZnO) hybrid nanoparticles gel as an efficient antibacterial agent against different bacterial species. To this end, ZnO nanoparticles were synthesized using chemical precipitation derived from a zinc acetate solution with ammonium hydroxide as its precipitating agent under the effect of ultrasonic radiation. The synthesized ZnO nanoparticles were stabilized simultaneously in a freshly prepared Carbopol gel at a pH of 7. The chemical composition, phase identification, particle size and shape, surface charge, pore size distribution, and the BET surface area of the ZnO nanoparticles, as well as the Carbopol/ZnO hybrid Nanoparticles gel, were by XRD, SEM, TEM, AFM, DLS, Zeta potential and BET instruments. The results revealed that the synthesized ZnO nanoparticles were well-dispersed in the Carbopol gel network, and have a wurtzite-crystalline phase of spherical shape. Moreover, the Carbopol/ZnO hybrid nanoparticles gel exhibited a particle size distribution between ~9 and ~93 nm, and a surface area of 54.26 m2/g. The synthesized Carbopol/ZnO hybrid nanoparticles gel underwent an antibacterial sensitivity test against gram-negative K. pneumonia (ATCC 13883), Bacillus subtilis (ATCC 6633), and gram-positive Staphylococcus aureus (ATCC 6538) bacterial strains, and were compared with ampicillin as a reference antibiotic agent. The obtained results demonstrated that the synthesized Carbopol/ZnO hybrid nanoparticles gel exhibited a compatible bioactivity against the different strains of bacteria.
Collapse
|
43
|
Salem HF, Kharshoum RM, Awad SM, Ahmed Mostafa M, Abou-Taleb HA. Tailoring of Retinyl Palmitate-Based Ethosomal Hydrogel as a Novel Nanoplatform for Acne Vulgaris Management: Fabrication, Optimization, and Clinical Evaluation Employing a Split-Face Comparative Study. Int J Nanomedicine 2021; 16:4251-4276. [PMID: 34211271 PMCID: PMC8239256 DOI: 10.2147/ijn.s301597] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 05/18/2021] [Indexed: 12/19/2022] Open
Abstract
AIM Retinyl palmitate (RP), the most stable vitamin A derivative, is used to treat photoaging and other skin disorders. The need to minimize the adverse effects of topical drug administration has led to an enhanced interest in loading RP on ethosomes for topical drug delivery. The aim of the current study was to prepare and compare the performance of RP decorated ethosomal hydrogel with tretinoin cream in the treatment of acne vulgaris as an approach to improve drug efficacy and decrease its side effects. METHODS RP-loaded ethosomes were prepared using the injection sonication technique. A Box-Behnken design using Design Expert® software was used for the optimization of formulation variables. Particle size, zeta potential (ZP), entrapment efficiency percent (EE%), % drug release, and permeation over 24 h of different formulations were determined. The optimal formulation was incorporated into a hydrogel. Finally, the efficacy and tolerability of the optimized RP ethosomal hydrogel were clinically evaluated for acne treatment using a split-face comparative clinical study. RESULTS The optimized ethosomal RP showed particle size of 195.8±5.45 nm, ZP of -62.1±2.85 mV, EE% of 92.63±4.33%, drug release % of 96.63±6.81%, and drug permeation % of 85.98 ±4.79%. Both the optimized RP ethosomal hydrogel and tretinoin effectively reduced all types of acne lesions (inflammatory, non-inflammatory, and total lesions). However, RP resulted in significantly lower non-inflammatory and total acne lesion count than the marketed tretinoin formulation. Besides, RP-loaded ethosomes showed significantly improved tolerability compared to marketed tretinoin with no or minimal skin irritation symptoms. CONCLUSION RP ethosomal hydrogel is considerably effective in controlling acne vulgaris with excellent skin tolerability. Therefore, it represents an interesting alternative to conventional marketed tretinoin formulation for topical acne treatment.
Collapse
Affiliation(s)
- Heba F Salem
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Rasha M Kharshoum
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Sara M Awad
- Department of Dermatology, Venereology and Andrology, Assiut University Hospital, Assiut, Egypt
| | - Mai Ahmed Mostafa
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Nahda University (NUB), Beni-Suef, Egypt
| | - Heba A Abou-Taleb
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Nahda University (NUB), Beni-Suef, Egypt
| |
Collapse
|
44
|
Mucoadhesive Delivery System: A Smart Way to Improve Bioavailability of Nutraceuticals. Foods 2021; 10:foods10061362. [PMID: 34208328 PMCID: PMC8231213 DOI: 10.3390/foods10061362] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/04/2021] [Accepted: 06/08/2021] [Indexed: 02/07/2023] Open
Abstract
The conventional oral administration of many nutraceuticals exhibits poor oral bioavailability due to the harsh gastric conditions and first-pass metabolism. Oral mucosa has been recognized as a potential site for the delivery of therapeutic compounds. The mucoadhesive formulation can adhere to the mucosal membrane through various interaction mechanisms and enhance the retention and permeability of bioactive compounds. Absorption of bioactive compounds from the mucosa can improve bioavailability, as this route bypasses the hepatic first-pass metabolism and transit through the gastrointestinal tract. The mucosal administration is convenient, simple to access, and reported for increasing the bioactive concentration in plasma. Many mucoadhesive polymers, emulsifiers, thickeners used for the pharmaceutical formulation are accepted in the food sector. Introducing mucoadhesive formulations specific to the nutraceutical sector will be a game-changer as we are still looking for different ways to improve the bioavailability of many bioactive compounds. This article describes the overview of buccal mucosa, the concept of mucoadhesion and related theories, and different techniques of mucoadhesive formulations. Finally, the classification of mucoadhesive polymers and the mucoadhesive systems designed for the effective delivery of bioactive compounds are presented.
Collapse
|
45
|
Solid lipid nanocarriers embedded hydrogel for topical delivery of apremilast: In-vitro, ex-vivo, dermatopharmacokinetic and anti-psoriatic evaluation. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102442] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
46
|
Abstract
Abstract
The review presents current research results for Carbopol-based microgels as yield-stress materials, covering three aspects: chemical, physical and rheological. Such a joint three-aspect study has no analog in the literature. The chemical aspects of Carbopol polymers are presented in terms of a cross-linking polymerization of acrylic acid, their molecular structure, microgel formulation, polyacid dissociation and neutralization, osmotic pressure and associated immense microgel swelling. The physical characterization is focused on models of the shear-induced solid-to-liquid transition of microgels, which are formed of mesoscopic particles typical for soft matter materials. Models that describe interparticle effects are presented to explain the energy states of microgel particles at the mesoscale of scrutiny. Typical representatives of the models utilize attributes of jamming dispersions, micromechanical and polyelectrolyte reactions. Selected relationships that result from the models, such as scaling rules and nondimensional flow characteristics are also presented. The rheological part presents the discussion of problems of yield stress in 2D and 3D deformations, appearance and magnitude of the wall slip. The theory and characteristics of Carbopol microgel deformation in rotational rheometers are presented with graphs for the steady-state measurements, stress-controlled oscillation and two types of transient shear deformation. The review is concluded with suggestions for future research.
Collapse
Affiliation(s)
- Zdzisław Jaworski
- Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology , Aleja Piastow 42 , 71-065 , Szczecin , Poland
| | - Tadeusz Spychaj
- Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology , Aleja Piastow 42 , 71-065 , Szczecin , Poland
| | - Anna Story
- Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology , Aleja Piastow 42 , 71-065 , Szczecin , Poland
| | - Grzegorz Story
- Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology , Aleja Piastow 42 , 71-065 , Szczecin , Poland
| |
Collapse
|
47
|
Sodium bicarbonate gels: a new promising strategy for the treatment of vulvovaginal candidosis. Eur J Pharm Sci 2021; 157:105621. [PMID: 33122009 DOI: 10.1016/j.ejps.2020.105621] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 10/07/2020] [Accepted: 10/21/2020] [Indexed: 12/18/2022]
Abstract
Vulvovaginal candidosis (VVC), caused mainly by the yeast Candida albicans, is the second most prevalent vaginal infection. It has been found to have a large impact on women's quality of life, self-esteem and routines. The prevalence of recurrent vulvovaginal candidosis (RVVC) remains high so the development of alternative treatments is needed. The main objective of this study was to develop and characterize sodium bicarbonate gels to treat VVC. We described key formulation characteristics and analyzed their influence on in vitro performance evaluations. The potential to inhibit Candida albicans's growth, the pH, osmolality, viscosity and rheological performance in contact with vaginal fluid simulant and the bioadhesion's profile (using a vaginal ex vivo porcine model) were studied for all formulations. Among the formulations, formulation C (5% sodium bicarbonate, 1% carbomer and 94% water) was the most effective in inhibiting the C. albicans' growth. This gel presented the same potential (the same MIC 2.5%) to inhibit other etiological agents of VVC (C. glabrata, C. krusei, C. tropicalis and C. parapsilosis) for all species tested. Additionally, sensorial characteristics of gel C were in accord with users' preferences. This gel exhibited physicochemical characteristics acceptable for short term treatments, suggesting good overall performance for the treatment of VVC. Furthermore, Gel C was biocompatible with the HeLa cell line (MTT assay) and was classified as a non-severe irritant in the HET-CAM assay (irritation score 4 ± 1). Overall, gel C was deemed the best performing of the set tested, and suitable for further development.
Collapse
|
48
|
Narayan OP, Mu X, Hasturk O, Kaplan DL. Dynamically tunable light responsive silk-elastin-like proteins. Acta Biomater 2021; 121:214-223. [PMID: 33326881 PMCID: PMC7856074 DOI: 10.1016/j.actbio.2020.12.018] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 12/03/2020] [Accepted: 12/08/2020] [Indexed: 12/12/2022]
Abstract
Dynamically tunable biomaterials are of particular interest in the field of biomedical engineering because of the potential utility for shape-change materials, drug and cell delivery and tissue regeneration. Stimuli-responsive proteins formed into hydrogels are potential candidates for such systems, due to the genetic tailorability and control over structure-function relationships. Here we report the synthesis of genetically engineered Silk-Elastin-Like Protein (SELP) photoresponsive hydrogels. Polymerization of the SELPs and monomeric adenosylcobalamin (AdoB12)-dependent photoreceptor C-terminal adenosylcobalamin binding domain (CarHC) was achieved using genetically encoded SpyTag-SpyCatcher peptide-protein pairs under mild physiological conditions. The hydrogels exhibited a partial collapse of the crosslinked molecular network with both decreased loss and storage moduli upon exposure to visible light. The materials were also evaluated for cytotoxicity and the encapsulation and release of L929 murine fibroblasts from 3D cultures. The design of these photo-responsible proteins provides new stimuli-responsive SELP-CarHC hydrogels for dynamically tunable protein-based materials.
Collapse
Affiliation(s)
- Om Prakash Narayan
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA
| | - Xuan Mu
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA
| | - Onur Hasturk
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA.
| |
Collapse
|
49
|
Nigro F, Cerqueira Pinto CDS, dos Santos EP, Mansur CRE. Niosome-based hydrogel as a potential drug delivery system for topical and transdermal applications. INT J POLYM MATER PO 2020. [DOI: 10.1080/00914037.2020.1848833] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Fiammetta Nigro
- Institute of Macromolecules "Professora Eloisa Mano"/Laboratory of Macromolecules and Colloids in the Oil Industry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | - Claudia Regina Elias Mansur
- Institute of Macromolecules "Professora Eloisa Mano"/Laboratory of Macromolecules and Colloids in the Oil Industry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
50
|
Campos JC, Cunha D, Ferreira DC, Reis S, Costa PJ. Oromucosal precursors of in loco hydrogels for wound-dressing and drug delivery in oral mucositis: Retain, resist, and release. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 118:111413. [PMID: 33255015 DOI: 10.1016/j.msec.2020.111413] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 08/02/2020] [Accepted: 08/15/2020] [Indexed: 12/31/2022]
Abstract
Oromucosal films and tablets were developed as multifunctional biomaterials for the treatment of oral mucositis. These are intended to function as a hybrid, performing as a controlled drug delivery system and as a wound-dressing device. The dosage forms are precursors for in loco hydrogels that are activated by the saliva. An anti-inflammatory and anesthetic activity is attained from budesonide tripartite polymeric nanoparticles and lidocaine, while the polymeric network allows the protection and cicatrization of the wound. Different biomaterials and blends were investigated, focusing on the capacity to retain and resist on-site, as well as achieve a long-lasting controlled release. As the limiting factor, the choice was made according to the films' results. A polymer mix of Methocel™ K100M and Carbopol® (974P, EDT 2020, or Ultrez 10) blends were used. Overall, regrading critical factors, Carbopol® increased films' elasticity and flexibility, mucoadhesion, and the strength of the hydrogels, while higher concentrations led to thicker, more opaque, and lower strain resistance products. Whereas 974P and Ultrez 10 performed similarly, EDT 2020 led to uniformity problems and weaker films, hydrogels and bioadhesion. The optimized products were enhanced with sodium hyaluronate and drug-loaded for further characterization. Concerning the dosage form, the films' hydrogels were more resilient, while the tablets had higher mucoadhesiveness and longer swelling. Although through different networks and mechanisms, both dosage forms and grades revealed similar release profiles. A Case II time-evolving stereoselectivity for the 22R and 22S budesonide epimers was found, and Fickian-diffusion for lidocaine. Ultimately, the developed formulations show great potential to be used in OM management. Both of the selected grades at 0.6% displayed excellent performance, while Ultrez 10 can be preferable for the films' production due to its lower viscosity before neutralization and higher after activation. Where the tablets are easier to produce and offer better adhesion, the films are more customizable post-production and have higher rheological performance for wound-dressing.
Collapse
Affiliation(s)
- João C Campos
- UCIBIO, REQUIMTE, MedTech - Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Portugal.
| | - Davide Cunha
- UCIBIO, REQUIMTE, MedTech - Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Portugal
| | - Domingos C Ferreira
- UCIBIO, REQUIMTE, MedTech - Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Portugal
| | - Salette Reis
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Portugal
| | - Paulo J Costa
- UCIBIO, REQUIMTE, MedTech - Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Portugal
| |
Collapse
|