1
|
Saadh MJ, Allela OQB, Kareem RA, Sanghvi G, Ballal S, Naidu KS, Bareja L, Chahar M, Gupta S, Sameer HN, Yaseen A, Athab ZH, Adil M. Exploring preventive and treatment strategies for oral cancer: Modulation of signaling pathways and microbiota by probiotics. Gene 2025; 952:149380. [PMID: 40089085 DOI: 10.1016/j.gene.2025.149380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 01/11/2025] [Accepted: 02/28/2025] [Indexed: 03/17/2025]
Abstract
The evidence suggests that the microbiome plays a crucial role in cancer development. The oral cavity has many microorganisms that can influence oral cancer progression. Understanding the mechanisms and signaling pathways of the oral, gum, and teeth microbiome in tumor progression can lead to new treatment strategies. Probiotics, which are friendly microorganisms, have shown potential as anti-cancer agents. These positive characteristics of probiotic strains make them suitable for cancer prevention or treatment. The oral-gut microbiome axis supports health and homeostasis, and imbalances in the oral microbiome can disrupt immune signaling pathways, epithelial barriers, cell cycles, apoptosis, genomic stability, angiogenesis, and metabolic processes. Changes in the oral microbiome in oral cancer may suggest using probiotics-based treatments for their direct or indirect positive roles in cancer development, progression, and metastasis, specifically oral squamous cell carcinoma (OSCC). Here, reported relationships between probiotics, oral microbiota, and oral cancer are summarized.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman 11831, Jordan
| | | | | | - Gaurav Sanghvi
- Marwadi University Research Center, Department of Microbiology, Faculty of Science, Marwadi University, Rajkot 360003 Gujarat, India
| | - Suhas Ballal
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - K Satyam Naidu
- Department of Chemistry, Raghu Engineering College, Visakhapatnam, Andhra Pradesh 531162, India
| | - Lakshay Bareja
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura 140401 Punjab, India
| | - Mamata Chahar
- Department of Chemistry, NIMS Institute of Engineering & Technology, NIMS University Rajasthan, Jaipur, India
| | - Sofia Gupta
- Department of Applied Sciences, Chandigarh Engineering College, Chandigarh Group of Colleges-Jhanjeri, Mohali 140307 Punjab, India
| | - Hayder Naji Sameer
- Collage of Pharmacy, National University of Science and Technology, Dhi Qar 64001, Iraq
| | | | - Zainab H Athab
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq
| | - Mohaned Adil
- Pharmacy college, Al-Farahidi University, Baghdad, Iraq
| |
Collapse
|
2
|
Arslan NP, Azad F, Orak T, Budak-Savas A, Ortucu S, Dawar P, Baltaci MO, Ozkan H, Esim N, Taskin M. A review on bacteria-derived antioxidant metabolites: their production, purification, characterization, potential applications, and limitations. Arch Pharm Res 2025:10.1007/s12272-025-01541-5. [PMID: 40208553 DOI: 10.1007/s12272-025-01541-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 04/02/2025] [Indexed: 04/11/2025]
Abstract
Antioxidants are organic molecules that scavenge reactive oxygen species (ROS) and reactive nitrogen species (RNS), thereby maintaining cellular redox balance in living organisms. The human body synthesizes endogenous antioxidants, whereas humans obtain exogenous antioxidants from other organisms such as plants, animals, fungi, and bacteria. This review primarily focuses on the antioxidant potential of natural metabolites and extracts from five major bacterial phyla, including the well-studied Actinobacteria and Cyanobacteria, as well as less-studied Bacteroides, Firmicutes, and Proteobacteria. The literature survey revealed that the metabolites and the extracts with antioxidant activity can be obtained from bacterial cells and their culture supernatants. The metabolites with antioxidant activity include pigments, phycobiliproteins, polysaccharides, mycosporins-like amino acids, peptides, phenolic compounds, and alkaloids. Both metabolites and extracts demonstrate in vitro antioxidant capacity through radical-scavenging, metal-reducing, and metal-chelating activity assays. In in vivo models, they can scavenge ROS and RNS directly and/or indirectly eliminate them by enhancing the activities of antioxidant enzymes, such as catalase, superoxide dismutase, and glutathione peroxidase. Due to their antioxidant activities, they may find applications in the cosmetic industry as anti-aging agents for the skin and in medicine as drugs or supplements for combating oxidative stress-related disorders, such as neurodegenerative diseases and diabetes. The literature survey also elucidated that some metabolites and extracts with antioxidant activity also exhibited strong antimicrobial properties. Therefore, we consider that they may have future applications in the treatment of infectious diseases, the preparation of pathogen-free healthy foods, and the extension of food shelf life.
Collapse
Affiliation(s)
| | - Fakhrul Azad
- Department of Biochemistry and Cell Biology, Chobanian and Avedisian School of Medicine, Boston University, Boston, MA, USA
| | - Tugba Orak
- Department of Molecular Biology and Genetics, Science Faculty, Ataturk University, 25240, Erzurum, Turkey
| | - Aysenur Budak-Savas
- Department of Medical Pharmacology, Faculty of Medicine, Ataturk University, Erzurum, Turkey
| | - Serkan Ortucu
- Department of Molecular Biology and Genetics, Science Faculty, Erzurum Technical University, Erzurum, Turkey
| | - Pranav Dawar
- Environmental Molecular Sciences Laboratory (EMSL), Pacific Northwest National Laboratory (PNNL), Richland, WA, USA
| | - Mustafa Ozkan Baltaci
- Department of Molecular Biology and Genetics, Science Faculty, Ataturk University, 25240, Erzurum, Turkey
| | - Hakan Ozkan
- Department of Molecular Biology and Genetics, Science Faculty, Ataturk University, 25240, Erzurum, Turkey
| | - Nevzat Esim
- Department of Molecular Biology and Genetics, Science and Art Faculty, Bingol University, Bingol, Turkey
| | - Mesut Taskin
- Department of Molecular Biology and Genetics, Science Faculty, Ataturk University, 25240, Erzurum, Turkey.
| |
Collapse
|
3
|
Jia L, Wang R, Huang Z, Sun N, Sun H, Wang H, Lu F, Liu Y. Phosphatidylcholine ameliorates lipid accumulation and liver injury in high-fat diet mice by modulating bile acid metabolism and gut microbiota. Int J Food Sci Nutr 2025; 76:165-178. [PMID: 39632393 DOI: 10.1080/09637486.2024.2437469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 11/16/2024] [Accepted: 11/28/2024] [Indexed: 12/07/2024]
Abstract
Phosphatidylcholine (PC) has garnered considerable attention due to its involvement in a wide array of crucial biological functions. However, there is still much to active explore regarding the precise mechanisms that underlie PC's actions in the context of high-fat diet. In this study, we found that both PC intervention and treatment significantly mitigated lipid accumulation, liver damage, and body weight gaining triggered by the high-fat diet. Untargeted and targeted metabolomic analyses uncovered substantial effects of PC on bile acid metabolism, especially led to a substantial reduction in elevated levels of free bile acids. 16S rRNA gene sequencing revealed that PC modulated the gut microbiota structures and compositions in high-fat diet mice, particularly exhibiting a positive association with Pseudoflavonifractor abundance, and a negative correlation with Olsenella, Parasutterella, and Allobaculum abundance. Our study suggested that PC held promise as a potential candidate for alleviating lipid metabolism injury, liver disease or obesity.
Collapse
Affiliation(s)
- Longgang Jia
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P. R. China
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, P. R. China
| | - Ruijia Wang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P. R. China
| | - Zhiqi Huang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P. R. China
| | - Nana Sun
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P. R. China
| | - Hui Sun
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P. R. China
| | - Hongbin Wang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P. R. China
| | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P. R. China
| | - Yihan Liu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P. R. China
| |
Collapse
|
4
|
Tang Y, Zhang Y, Chen C, Cao Y, Wang Q, Tang C. Gut microbiota: A new window for the prevention and treatment of neuropsychiatric disease. J Cent Nerv Syst Dis 2025; 17:11795735251322450. [PMID: 39989718 PMCID: PMC11846125 DOI: 10.1177/11795735251322450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/11/2024] [Accepted: 01/27/2025] [Indexed: 02/25/2025] Open
Abstract
Under normal physiological conditions, gut microbiota and host mutually coexist. They play key roles in maintaining intestinal barrier integrity, absorption, and metabolism, as well as promoting the development of the central nervous system (CNS) and emotional regulation. The dysregulation of gut microbiota homeostasis has attracted significant research interest, specifically in its impact on neurological and psychiatric disorders. Recent studies have highlighted the important role of the gut- brain axis in conditions including Alzheimer's Disease (AD), Parkinson's Disease (PD), and depression. This review aims to elucidate the regulatory mechanisms by which gut microbiota affect the progression of CNS disorders via the gut-brain axis. Additionally, we discuss the current research landscape, identify gaps, and propose future directions for microbial interventions against these diseases. Finally, we provide a theoretical reference for clinical treatment strategies and drug development for AD, PD, and depression.
Collapse
Affiliation(s)
- Yali Tang
- Department of Pharmacy, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Yizhu Zhang
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Chen Chen
- Department of Pharmacy, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Ying Cao
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, People’s Republic of China
| | - Qiaona Wang
- School of Ecology and Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, People’s Republic of China
| | - Chuanfeng Tang
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| |
Collapse
|
5
|
Edo GI, Mafe AN, Ali ABM, Akpoghelie PO, Yousif E, Apameio JI, Isoje EF, Igbuku UA, Garba Y, Essaghah AEA, Ahmed DS, Umar H, Ozsahin DU. Chitosan and its derivatives: A novel approach to gut microbiota modulation and immune system enhancement. Int J Biol Macromol 2025; 289:138633. [PMID: 39675606 DOI: 10.1016/j.ijbiomac.2024.138633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/06/2024] [Accepted: 12/09/2024] [Indexed: 12/17/2024]
Abstract
Chitosan, a biopolymer derived from the deacetylation of chitin found in crustacean shells and certain fungi, has attracted considerable attention for its promising health benefits, particularly in gut microbiota maintenance and immune system modulation. This review critically examines chitosan's multifaceted role in supporting gut health and enhancing immunity, beginning with a comprehensive overview of its sources, chemical structure, and its dual function as a dietary supplement and biomaterial. Chitosan's prebiotic effects are highlighted, with a focus on its ability to selectively stimulate beneficial gut bacteria, such as Bifidobacteria and Lactobacillus, while enhancing gut barrier integrity and inhibiting the growth of pathogenic microorganisms. The review delves deeply into chitosan's immunomodulatory mechanisms, including its impact on antigen-presenting cells, cytokine profiles, and systemic immune responses. A detailed comparative analysis assesses chitosan's efficacy relative to other prebiotics and immunomodulatory agents, examining challenges related to bioavailability and metabolic activity. Beyond its role in gut health, this review explores chitosan's potential as a dual-action agent that not only supports gut microbiota but also fortifies immune resilience. It introduces emerging research on novel chitosan derivatives, such as chitooligosaccharides, and evaluates their enhanced bioactivity for functional food applications. Special attention is given to sustainability, with an exploration of alternative, plant-based sources of chitosan and their implications for both health and environmental stewardship. Also, the review identifies new research avenues, such as the growing interest in chitosan's role in the gut-brain axis and its potential mental health benefits through microbial interactions. By addressing these innovative areas, the review aims to shift the focus from basic health effects to chitosan's broader impact on public health. The findings encourage further exploration, particularly through human trials, and emphasize chitosan's untapped potential in revolutionizing health and disease management.
Collapse
Affiliation(s)
- Great Iruoghene Edo
- Department of Chemistry, Faculty of Science, Delta State University of Science and Technology, Ozoro, Nigeria; Department of Chemistry, College of Sciences, Al-Nahrain University, Baghdad, Iraq.
| | - Alice Njolke Mafe
- Department of Biological Sciences, Faculty of Science, Taraba State University Jalingo, Taraba State, Nigeria
| | - Ali B M Ali
- Department of Air Conditioning Engineering, Faculty of Engineering, Warith Al-Anbiyaa University, Karbala, Iraq
| | - Patrick Othuke Akpoghelie
- Department of Food Science and Technology, Faculty of Science, Delta State University of Science and Technology, Ozoro, Delta State, Nigeria
| | - Emad Yousif
- Department of Chemistry, College of Sciences, Al-Nahrain University, Baghdad, Iraq
| | - Jesse Innocent Apameio
- Department of Biological Sciences, Faculty of Science, Taraba State University Jalingo, Taraba State, Nigeria
| | - Endurance Fegor Isoje
- Department of Science Laboratory Technology (Biochemistry Option), Faculty of Science, Delta State University of Science and Technology, Ozoro, Nigeria
| | - Ufuoma Augustina Igbuku
- Department of Chemistry, Faculty of Science, Delta State University of Science and Technology, Ozoro, Nigeria
| | - Yasal Garba
- Department of Information Engineering, College of Information Engineering, Al-Nahrain University, Baghdad, Iraq
| | - Arthur Efeoghene Athan Essaghah
- Department of Urban and Regional Planning, Faculty of Environmental Sciences, Delta State University of Science and Technology, Ozoro, Nigeria
| | - Dina S Ahmed
- Department of Chemical Industries, Institute of Technology-Baghdad, Middle Technical University, Baghdad, Iraq
| | - Huzaifa Umar
- Operational Research Centre in Healthcare, Near East University, Nicosia, Cyprus
| | - Dilber Uzun Ozsahin
- Operational Research Centre in Healthcare, Near East University, Nicosia, Cyprus; Department of Medical Diagnostic Imaging, College of Health Sciences, University of Sharjah, P.O. Box 27272, United Arab Emirates; Research Institute for Medical and Health Sciences, University of Sharjah, P.O. Box 27272, United Arab Emirates
| |
Collapse
|
6
|
Gorecka A, Schacht H, Fraser MK, Teriosina A, London JA, Barsukov IL, Powell AK, Cartmell A, Stachulski AV, Yates EA. Synthetic β-d-Glucuronides: Substrates for Exploring Glucuronide Degradation by Human Gut Bacteria. ACS OMEGA 2025; 10:1419-1428. [PMID: 39829562 PMCID: PMC11740244 DOI: 10.1021/acsomega.4c09036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/22/2024] [Accepted: 11/27/2024] [Indexed: 01/22/2025]
Abstract
The human gut microbiota (HGM) is a complex ecosystem subtly dependent on the interplay between hundreds of bacterial species and numerous metabolites. Dietary phenols, whether ingested (e.g., plant-derived guaiacol, mequinol, or resveratrol) or products of bacterial fermentation (e.g., p-cresol), have been attributed with influencing bacterial growth and host health. They are cleared by phase II metabolism, one form utilizing β-d-glucuronidation, but encounter bacterially derived glucuronidases capable of hydrolyzing them to release their phenolic and glucuronic acid moieties with potential effects on host cells or the surrounding bacterial population. Tools to enable the detailed study of their activity are currently lacking. Syntheses of β-d-glucuronides from methyl 1,2,3,4 tetra-acetyl β-d-glucopyranosyluronate by direct glycosylation with 2-, 3-, or 4-methoxy- and 4-fluorophenol acceptors employing trimethylsilyl triflate catalysis are reported. Yields (methoxy series) were modest. An improved route from methyl 1,2,3,4-tetra-acetyl β-d-glucopyranosyluronate via selective anomeric deprotection (N-methyl piperazine) and conversion to an α-trichloroacetimidate glycosyl donor was employed. Coupling with 2- and 3-methoxyphenol acceptors and deprotection provided 2- and 3-methoxyphenyl β-d-glucuronides in 2-fold improved overall yield. These naturally occurring methoxyphenyl glucuronides augment available model substrates of dietary glucuronides, which include 3- and 4'-linked resveratrol. The use of model glucuronides as substrates was illustrated in studies of β-d-glucuronidase activity employing cell lysates of 9 species of HGM (Bacteroidetes), revealing distinct outcomes. Contrasting effects on bacterial growth were also observed between the free phenolic components, their respective glucuronides, and glucuronic acid. The glucuronide of 4-fluorophenol provided sensitive and background-free detection of β-glucuronidase activity using 19F NMR.
Collapse
Affiliation(s)
- Aleksandra Gorecka
- Department
of Chemistry, University of Liverpool, Liverpool L69 7ZD, U.K.
| | - Heidi Schacht
- Department
of Biochemistry, Cell and Systems Biology, ISMIB, University of Liverpool, Crown Street, Liverpool L69 7ZB, U.K.
| | - Megan K. Fraser
- Department
of Chemistry, University of Liverpool, Liverpool L69 7ZD, U.K.
| | - Aleksandra Teriosina
- School
of Biological Sciences, University of Liverpool, Crown Street, Liverpool L69 7ZB, U.K.
| | - James A. London
- Department
of Chemistry, University of Liverpool, Liverpool L69 7ZD, U.K.
| | - Igor L. Barsukov
- Department
of Biochemistry, Cell and Systems Biology, ISMIB, University of Liverpool, Crown Street, Liverpool L69 7ZB, U.K.
| | - Andrew K. Powell
- School
of Pharmacy and Biomolecular Sciences, Liverpool
John Moores University, Byrom Street, Liverpool L3 3AF, U.K.
| | - Alan Cartmell
- Department
of Biology, University of York, Heslington, York YO10 5DD, U.K.
| | | | - Edwin A. Yates
- Department
of Biochemistry, Cell and Systems Biology, ISMIB, University of Liverpool, Crown Street, Liverpool L69 7ZB, U.K.
| |
Collapse
|
7
|
Gómez-Velázquez HDJ, González-Dávalos L, de los Ríos EA, Figueroa-Cárdenas JDD, Vázquez-Durán A, Méndez-Albores A, Shimada A, Mora O. Physicochemical characterization and 16S rRNA analysis of a direct-fed microbial from calf ruminal fluid and its protective effect on Sprague-Dawley rat gut barrier function. Transl Anim Sci 2025; 9:txaf003. [PMID: 40083360 PMCID: PMC11905223 DOI: 10.1093/tas/txaf003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 01/08/2025] [Indexed: 03/16/2025] Open
Abstract
This study aimed to characterize the physicochemical properties and microbiota composition of a direct-fed microbial (DFM) and evaluate its protective effect on intestinal permeability in Sprague-Dawley rats using fluorescein isothiocyanate dextran (FITC-d) as a biomarker. The DFM was further characterized using Fourier-transform infrared spectroscopy (FTIR), dynamic light scattering (DLS), environmental scanning electron microscopy (ESEM), energy-dispersive X-ray spectroscopy (EDS), and cell surface hydrophobicity (microbial adhesion to hexadecane [MATH] assay). The 16S rRNA gene was sequenced using short-read sequencing. In general, the DFM exhibited the characteristic FTIR bands associated with probiotic cells with a protein/carbohydrate ratio of 1.3:1. It was also found from the DLS analysis that the average particle size and surface electrical potential of the probiotic cells were 1,062 ± 77 nm and -32.6 ± 3.7 mV, respectively. ESEM studies confirmed the size of the cells (1,010 to 1,060 nm), showing a quasi-spherical cocci-type morphology, whereas EDS spectroscopy revealed a higher Nitrogen/Carbone ratio on the cell surface. Moreover, the MATH assay showed the hydrophobic character of the DFM (92% adhesion). Furthermore, based on the 16S rRNA gene analysis, the predominant genus in the DFM was Streptococcus (99%). Regarding the protective effect on the gut barrier, animals supplemented with 1011 CFU/mL exhibited a significantly reduced intestinal permeability compared with the control group. DFM supplementation also increased villi and crypt dimensions and Goblet cells (P < 0.05) in the ileum and cecum. These results demonstrate that the DFM presented adequate surface and colloidal properties that help maintain the functionality of the gut barrier.
Collapse
Affiliation(s)
- Haiku D J Gómez-Velázquez
- Laboratorio de Rumiología y Metabolismo Nutricional (RuMeN), Facultad de Estudios Superiores-Cuautitlán (FESC), Universidad Nacional Autónoma de México (UNAM), Querétaro, Querétaro, Mexico
| | - Laura González-Dávalos
- Laboratorio de Rumiología y Metabolismo Nutricional (RuMeN), Facultad de Estudios Superiores-Cuautitlán (FESC), Universidad Nacional Autónoma de México (UNAM), Querétaro, Querétaro, Mexico
| | - Erika A de los Ríos
- Unidad de Microscopía, Instituto de Neurobiología, UNAM, Querétaro, Querétaro, México
| | - Juan de Dios Figueroa-Cárdenas
- Materiales Bio-orgánicos, CINVESTAV-Unidad Querétaro, Libramiento Norponiente No. 2000, Fraccionamiento Real de Juriquilla, Querétaro, Querétaro, México
| | - Alma Vázquez-Durán
- Ciencia y Tecnología de Materiales, Unidad de Investigación Multidisciplinaria L14-A1 (Ciencia y Tecnología de Materiales), FESC, UNAM, Cuautitlán Izcalli, Estado de México, México
| | - Abraham Méndez-Albores
- Ciencia y Tecnología de Materiales, Unidad de Investigación Multidisciplinaria L14-A1 (Ciencia y Tecnología de Materiales), FESC, UNAM, Cuautitlán Izcalli, Estado de México, México
| | - Armando Shimada
- Laboratorio de Rumiología y Metabolismo Nutricional (RuMeN), Facultad de Estudios Superiores-Cuautitlán (FESC), Universidad Nacional Autónoma de México (UNAM), Querétaro, Querétaro, Mexico
| | - Ofelia Mora
- Laboratorio de Rumiología y Metabolismo Nutricional (RuMeN), Facultad de Estudios Superiores-Cuautitlán (FESC), Universidad Nacional Autónoma de México (UNAM), Querétaro, Querétaro, Mexico
| |
Collapse
|
8
|
Chamas A, Svensson CM, Maneira C, Sporniak M, Figge MT, Lackner G. Engineering Adhesion of the Probiotic Strain Escherichia coli Nissle to the Fungal Pathogen Candida albicans. ACS Synth Biol 2024; 13:4027-4039. [PMID: 39265099 DOI: 10.1021/acssynbio.4c00466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2024]
Abstract
Engineering live biotherapeutic products against fungal pathogens such as Candida albicans has been suggested as a means to tackle the increasing threat of fungal infections and the development of resistance to classical antifungal treatments. One important challenge in the design of live therapeutics is to control their localization inside the human body. The specific binding capability to target organisms or tissues would greatly increase their effectiveness by increasing the local concentration of effector molecules at the site of infection. In this study, we utilized surface display of carbohydrate binding domains to enable the probiotic E. coli Nissle 1917 to adhere specifically to the pathogenic yeast Candida albicans. Binding was quantified using a newly developed method based on the automated analysis of microscopic images. In addition to a rationally selected chitin binding domain, a synthetic peptide of identical length but distinct sequence also conferred binding. Efficient binding was specific to fungal hyphae, the invasive form of C. albicans, while the yeast form, as well as abiotic cellulose and PET particles, was only weakly recognized.
Collapse
Affiliation(s)
- Alexandre Chamas
- Junior Research Group Synthetic Microbiology, Leibniz-Institute for Natural Product Research and Infection Biology, Jena 07745, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena 07743, Germany
| | - Carl-Magnus Svensson
- Applied Systems Biology, Leibniz-Institute for Natural Product Research and Infection Biology, Jena 07745, Germany
| | - Carla Maneira
- Junior Research Group Synthetic Microbiology, Leibniz-Institute for Natural Product Research and Infection Biology, Jena 07745, Germany
- Institute of Microbiology, Faculty of Biological Sciences, Friedrich-Schiller University Jena, Jena 07743, Germany
- Chair of Biochemistry of Microorganisms, Faculty of Life Sciences: Food Nutrition and Health, University of Bayreuth, Bayreuth 95447, Germany
| | - Marta Sporniak
- Junior Research Group Synthetic Microbiology, Leibniz-Institute for Natural Product Research and Infection Biology, Jena 07745, Germany
| | - Marc Thilo Figge
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena 07743, Germany
- Applied Systems Biology, Leibniz-Institute for Natural Product Research and Infection Biology, Jena 07745, Germany
- Institute of Microbiology, Faculty of Biological Sciences, Friedrich-Schiller University Jena, Jena 07743, Germany
| | - Gerald Lackner
- Junior Research Group Synthetic Microbiology, Leibniz-Institute for Natural Product Research and Infection Biology, Jena 07745, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena 07743, Germany
- Chair of Biochemistry of Microorganisms, Faculty of Life Sciences: Food Nutrition and Health, University of Bayreuth, Bayreuth 95447, Germany
| |
Collapse
|
9
|
Baddouri L, Hannig M. Probiotics as an adjunctive therapy in periodontitis treatment-reality or illusion-a clinical perspective. NPJ Biofilms Microbiomes 2024; 10:148. [PMID: 39681550 DOI: 10.1038/s41522-024-00614-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 11/18/2024] [Indexed: 12/18/2024] Open
Abstract
Periodontitis, a prevalent oral health issue, involves various microorganisms and clinical effects. This review examines probiotics as adjunctive therapy for periodontitis by analyzing forty clinical studies. Findings showed mixed results due to differences in study design, probiotic types, and clinical parameters; however, probiotics improved outcomes in severe cases. Caution is advised when interpreting these results, as longer follow-up periods reveal variability and potential regression in effects.
Collapse
Affiliation(s)
- Lamyae Baddouri
- Clinic of Operative Dentistry, Periodontology and Preventive Dentistry, Saarland University, Homburg, Germany
- Pharmacy, Saarland University, Saarbrucken, Germany
| | - Matthias Hannig
- Clinic of Operative Dentistry, Periodontology and Preventive Dentistry, Saarland University, Homburg, Germany.
| |
Collapse
|
10
|
Wen NN, Sun LW, Geng Q, Zheng GH. Gut microbiota changes associated with frailty in older adults: A systematic review of observational studies. World J Clin Cases 2024; 12:6815-6825. [PMID: 39687638 PMCID: PMC11525918 DOI: 10.12998/wjcc.v12.i35.6815] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/04/2024] [Accepted: 09/25/2024] [Indexed: 10/24/2024] Open
Abstract
BACKGROUND Frailty is a complex aging-related syndrome characterized by a cumulative loss of physiological reserve and increased vulnerability to adverse clinical outcomes, including falls, disability, incapacity and death. While an increasing number of studies suggest that the gut microbiota may play a key role in the pathophysiology of frailty, direct evaluation of the association between gut microbiome alterations and frailty in older adults remains limited. AIM To gain insight into gut dysbiosis in frail older adults. METHODS Seven electronic databases (China National Knowledge Infrastructure, VIP, SinoMed, Wanfang, PubMed, Web of Science and EMBASE) were searched for articles published before October 31, 2023 to identify observational studies that compared the microbiomes of older adults with and without frailty. The diversity and composition of the gut microbiota were the main outcomes used to analyze the associations of changes in the gut microbiota with frailty in older adults. The quality of the included studies was assessed via the Newcastle-Ottawa Scale and the Agency for Healthcare Research and Quality. RESULTS Eleven observational studies with 912 older adults were included in this review. Consistent results revealed a significant difference in the gut microbiota composition between frail and non-frail older adults, with a significant decrease in α diversity and a significant increase in β diversity in frail older adults. The pooled results revealed that at the phylum level, four microbiota (Actinobacteria, Proteobacteria, Verrucomicrobia and Synergistetes) were significantly enriched, and two microbiota (Firmicutes and Fusobacteria) were significantly depleted in frail older adults. At the family level, the results consistently revealed that the abundances of 6 families, most of which belong to the Actinobacteria or Proteobacteria phylum, were greater in frail than in non-frail older adults. At the genus or species level, consistent results from more than two studies revealed that the abundances of the genera Prevotella, Faecalibacterium, and Roseburia were significantly lower in frail older adults; individual studies revealed that the abundances of some genera or species (e.g., Megamonas, Blautia, and Megasphaera) were significantly lower, whereas those of other genera or species (e.g., Bifidobacterium, Oscillospira, Ruminococcus and Pyramidobacter) were significantly greater in frail older adults. CONCLUSION This systematic review suggests that changes in the gut microbiota are associated with frailty in older adults, which is commonly reflected by a reduction in beneficial species and an increase in pathogenic species. However, further studies are needed to confirm these findings.
Collapse
Affiliation(s)
- Na-Na Wen
- College of Nursing and Health Management, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
- Graduate School, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Li-Wei Sun
- College of Nursing and Health Management, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
| | - Qian Geng
- College of Nursing and Health Management, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
| | - Guo-Hua Zheng
- College of Nursing and Health Management, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
| |
Collapse
|
11
|
Druszczynska M, Sadowska B, Kulesza J, Gąsienica-Gliwa N, Kulesza E, Fol M. The Intriguing Connection Between the Gut and Lung Microbiomes. Pathogens 2024; 13:1005. [PMID: 39599558 PMCID: PMC11597816 DOI: 10.3390/pathogens13111005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/07/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024] Open
Abstract
Recent advances in microbiome research have uncovered a dynamic and complex connection between the gut and lungs, known as the gut-lung axis. This bidirectional communication network plays a critical role in modulating immune responses and maintaining respiratory health. Mediated by immune interactions, metabolic byproducts, and microbial communities in both organs, this axis demonstrates how gut-derived signals, such as metabolites and immune modulators, can reach the lung tissue via systemic circulation, influencing respiratory function and disease susceptibility. To explore the implications of this connection, we conducted a systematic review of studies published between 2001 and 2024 (with as much as nearly 60% covering the period 2020-2024), using keywords such as "gut-lung axis", "microbiome", "respiratory disease", and "immune signaling". Studies were selected based on their relevance to gut-lung communication mechanisms, the impact of dysbiosis, and the role of the gut microbiota in respiratory diseases. This review provides a comprehensive overview of the gut-lung microbiome axis, emphasizing its importance in regulating inflammatory and immune responses linked to respiratory health. Understanding this intricate pathway opens new avenues for microbiota-targeted therapeutic strategies, which could offer promising interventions for respiratory diseases like asthma, chronic obstructive pulmonary disease, and even infections. The insights gained through this research underscore the potential of the gut-lung axis as a novel target for preventative and therapeutic approaches in respiratory medicine, with implications for enhancing both gut and lung health.
Collapse
Affiliation(s)
- Magdalena Druszczynska
- Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, Institute of Microbiology, Biotechnology and Immunology, University of Lodz, 90-237 Lodz, Poland; (B.S.); (N.G.-G.); (M.F.)
| | - Beata Sadowska
- Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, Institute of Microbiology, Biotechnology and Immunology, University of Lodz, 90-237 Lodz, Poland; (B.S.); (N.G.-G.); (M.F.)
| | - Jakub Kulesza
- Department of Internal Diseases and Clinical Pharmacology, Medical University of Lodz, 91-347 Lodz, Poland;
| | - Nikodem Gąsienica-Gliwa
- Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, Institute of Microbiology, Biotechnology and Immunology, University of Lodz, 90-237 Lodz, Poland; (B.S.); (N.G.-G.); (M.F.)
| | - Ewelina Kulesza
- Department of Rheumatology and Internal Diseases, Medical University of Lodz, 90-549 Lodz, Poland;
| | - Marek Fol
- Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, Institute of Microbiology, Biotechnology and Immunology, University of Lodz, 90-237 Lodz, Poland; (B.S.); (N.G.-G.); (M.F.)
| |
Collapse
|
12
|
de Oliveira DP, Todorov SD, Fabi JP. Exploring the Prebiotic Potentials of Hydrolyzed Pectins: Mechanisms of Action and Gut Microbiota Modulation. Nutrients 2024; 16:3689. [PMID: 39519522 PMCID: PMC11547739 DOI: 10.3390/nu16213689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/20/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
The intestinal microbiota is a complex ecosystem where the microbial community (including bacteria) can metabolize available substrates via metabolic pathways specific to each species, often related in symbiotic relations. As a consequence of using available substrates and microbial growth, specific beneficial metabolites can be produced. When this reflects the health benefits for the host, these substrates can be categorized as prebiotics. Given that most prebiotic candidates must have a low molecular weight to be further metabolized by the microbiota, the role in the preliminary biological pretreatment is crucial. To provide proper substrates to the intestinal microbiota, a strategy could be to decrease the complexity of polysaccharides and reduce the levels of polymerization to low molecular weight for the target molecules, driving better solubilization and the consequent metabolic use by intestinal bacteria. When high molecular weight pectin is degraded (partially depolymerized), its solubility increases, thereby improving its utilization by gut microbiota. With regards to application, prebiotics have well-documented advantages when applied as food additives, as they improve gut health and can enhance drug effects, all shown by in vitro, in vivo, and clinical trials. In this review, we aim to provide systematic evidence for the mechanisms of action and the modulation of gut microbiota by the pectin-derived oligosaccharides produced by decreasing overall molecular weight after physical and/or chemical treatments and to compare with other types of prebiotics.
Collapse
Affiliation(s)
- Débora Preceliano de Oliveira
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, SP, Brazil;
- Food Research Center (FoRC), CEPID-FAPESP (Research, Innovation and Dissemination Centers, São Paulo Research Foundation), São Paulo 05508-080, SP, Brazil;
| | - Svetoslav Dimitrov Todorov
- Food Research Center (FoRC), CEPID-FAPESP (Research, Innovation and Dissemination Centers, São Paulo Research Foundation), São Paulo 05508-080, SP, Brazil;
- ProBacLab, Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, SP, Brazil
- Food Research Center (FoRC), CEPIX-USP, University of São Paulo, São Paulo 05508-080, SP, Brazil
| | - João Paulo Fabi
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, SP, Brazil;
- Food Research Center (FoRC), CEPID-FAPESP (Research, Innovation and Dissemination Centers, São Paulo Research Foundation), São Paulo 05508-080, SP, Brazil;
| |
Collapse
|
13
|
Li IC, Lee YL, Li TJ, Tsai YS, Chen YL, Chen CC. Whole-Genome Sequencing of Three Lactiplantibacillus plantarum Strains Reveals Potential Metabolites for Boosting Host Immunity Safely. J Microbiol Biotechnol 2024; 34:2079-2090. [PMID: 39263794 PMCID: PMC11540610 DOI: 10.4014/jmb.2402.02013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 07/03/2024] [Accepted: 07/24/2024] [Indexed: 09/13/2024]
Abstract
In response to the growing demand for immune-related products, this study evaluated the safety and immune-modulating potential of three newly discovered Lactiplantibacillus plantarum strains (GKM3, GKK1, and GKD7) through toxicity tests and whole-genome sequencing. Safety evaluations, including the analysis of antimicrobial resistance genes, virulence factors, plasmids, and prophages, classified these strains as safe for human consumption. Acute oral toxicity tests further supported their safety. To evaluate their immune-modulating potential, dendritic cells were exposed to these strains, and the secretion of key cytokines (IFN-β and IL-12) was measured. Among the strains, GKK1 exhibited the highest enhancement of IFN-β and IL-12 production, suggesting its potential as an immune-stimulating probiotic. Bioinformatics analysis revealed potential metabolic pathways and secondary metabolites, including predicted bacteriocins, associated with immune modulation. The presence of a nitrate reductase region in the GKK1 strain indicated its ability to produce nitric oxide, a critical molecule involved in immune regulation and host defense. The presence of glucorhamnan-related gene clusters in GKK1 also suggested immune-enhancing effects. Nitrate reductase expression was confirmed using qPCR, with the highest levels detected in GKK1. Moreover, this study is the first to show an anti-inflammatory effect of plantaricin A, linked to its presence in strain GKM3 and its potential therapeutic applications due to sequence similarity to known anti-inflammatory peptides. Overall, these three L. plantarum strains demonstrated a safe profile and GKK1 showed potential as an immunity-enhancing probiotic. However, additional investigation is required to confirm the involvement of specific metabolic pathways, secondary metabolites, and bacteriocins in immune responses.
Collapse
Affiliation(s)
- I-Chen Li
- Biotech Research Institute, Grape King Bio Ltd, Taoyuan City 325, Taiwan
| | - Yueh-Lun Lee
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei City 110, Taiwan
| | - Tsung-Ju Li
- Biotech Research Institute, Grape King Bio Ltd, Taoyuan City 325, Taiwan
| | - You-Shan Tsai
- Biotech Research Institute, Grape King Bio Ltd, Taoyuan City 325, Taiwan
| | - Yen-Lien Chen
- Biotech Research Institute, Grape King Bio Ltd, Taoyuan City 325, Taiwan
| | - Chin-Chu Chen
- Biotech Research Institute, Grape King Bio Ltd, Taoyuan City 325, Taiwan
- Department of Food Science, Nutrition, and Nutraceutical Biotechnology, Shih Chien University, Taipei City 104, Taiwan
- Institute of Food Science and Technology, National Taiwan University, Taipei City 106, Taiwan
- Department of Bioscience Technology, Chung Yuan Christian University, Taoyuan City 320, Taiwan
| |
Collapse
|
14
|
Song HA, Jang SY, Park MJ, Kim SW, Kang CG, Lee JH, Kim HJ, Kim J, Lee JK, Chung KS, Lee KT. Immunostimulation Signaling via Toll-like Receptor 2 Activation: A Molecular Mechanism of Lactococcus lactis OTG1204 In Vitro and In Vivo. Nutrients 2024; 16:3629. [PMID: 39519462 PMCID: PMC11547582 DOI: 10.3390/nu16213629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/18/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
INTRODUCTION The immune system's defense against pathogens involves innate and adaptive responses, crucial in maintaining overall health. Immunosuppressed states render individuals more susceptible to potential diseases, indicating the need for effective strategies to bolster immune functions. OBJECTIVES Although the immunostimulatory effects of various probiotics have been studied, the specific effects and molecular mechanisms of Lactococcus lactis OTG1204 (OTG1204) remain unknown. In this study, the aim was to investigate the molecular mechanisms of OTG1204 in RAW 264.7 macrophages, the key effector cells of the innate immune system involved in host defense and inflammatory responses. Additionally, in this study, the effects of OTG1204 on cyclophosphamide (CTX)-induced immunosuppression states were investigated, thereby demonstrating its potential as an immune stimulant. METHODS To assess the macrophage activation ability and underlying mechanisms of OTG1204, RAW 264.7 cells were utilized with transfection, enzyme-linked immunosorbent assay, and quantitative real-time PCR analyses. Furthermore, to evaluate the immunostimulatory effects under immunosuppressed conditions, CTX-induced immunosuppression mice model was employed, and analyses were performed using hematoxylin and eosin staining, flow cytometry, and microbiota examination. RESULTS OTG1204 activated RAW 264.7 macrophages, leading to increased production of nitric oxide, prostaglandin E2, and cytokines. This immune activation was mediated through the upregulation of toll-like receptor 2, which subsequently activated the nuclear factor-κB (NF-kB) and mitogen-activated protein kinase (MAPK)/activator protein 1 (AP-1) pathways, thereby stimulating the immune response. In CTX-treated mice, OTG1204 recovered body weight, spleen, and mesenteric lymph node indices, and natural killer cell activity. It re-established populations of innate and adaptive immune cells and activated T cells to secrete cytokines. We also examined the gut barrier integrity and microbiota composition to assess OTG1204's impact on intestinal health, as these factors play a significant role in immune enhancement. OTG1204 enhanced gut barrier integrity by upregulating mucin 2 and tight junction proteins and modulated the gut microbiota by restoring the Firmicutes/Bacteroidetes balance and reducing the abundance of Actinobacteria and Tenericutes. CONCLUSION These results suggest that OTG1204 may serve as an effective probiotic for immune enhancement and gut health management by targeting the NF-κB and MAPK/AP-1 pathways, with minimal side effects.
Collapse
Affiliation(s)
- Hyeon-A Song
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea; (H.-A.S.); (S.-Y.J.); (M.-J.P.); (K.-S.C.)
- Department of Fundamental Pharmaceutical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea;
| | - Seo-Yun Jang
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea; (H.-A.S.); (S.-Y.J.); (M.-J.P.); (K.-S.C.)
- Department of Fundamental Pharmaceutical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea;
| | - Min-Ji Park
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea; (H.-A.S.); (S.-Y.J.); (M.-J.P.); (K.-S.C.)
- Department of Fundamental Pharmaceutical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea;
| | - Seung Wook Kim
- Ottogi Research Center, Anyang 14060, Republic of Korea; (S.W.K.); (C.G.K.); (J.H.L.); (H.-J.K.); (J.K.)
| | - Choon Gil Kang
- Ottogi Research Center, Anyang 14060, Republic of Korea; (S.W.K.); (C.G.K.); (J.H.L.); (H.-J.K.); (J.K.)
| | - Joo Hyun Lee
- Ottogi Research Center, Anyang 14060, Republic of Korea; (S.W.K.); (C.G.K.); (J.H.L.); (H.-J.K.); (J.K.)
| | - Hye-Jin Kim
- Ottogi Research Center, Anyang 14060, Republic of Korea; (S.W.K.); (C.G.K.); (J.H.L.); (H.-J.K.); (J.K.)
| | - Jiheon Kim
- Ottogi Research Center, Anyang 14060, Republic of Korea; (S.W.K.); (C.G.K.); (J.H.L.); (H.-J.K.); (J.K.)
| | - Jong Kil Lee
- Department of Fundamental Pharmaceutical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea;
| | - Kyung-Sook Chung
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea; (H.-A.S.); (S.-Y.J.); (M.-J.P.); (K.-S.C.)
| | - Kyung-Tae Lee
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea; (H.-A.S.); (S.-Y.J.); (M.-J.P.); (K.-S.C.)
- Department of Fundamental Pharmaceutical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea;
| |
Collapse
|
15
|
Abbas MO, Ahmed H, Hamid E, Padayachee D, Abdulbadia MT, Khalid S, Abuelhana A, Abdul Rasool BK. Pharmacists' Knowledge, Perception, and Prescribing Practice of Probiotics in the UAE: A Cross-Sectional Study. Antibiotics (Basel) 2024; 13:967. [PMID: 39452233 PMCID: PMC11505214 DOI: 10.3390/antibiotics13100967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/10/2024] [Accepted: 10/12/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND The human body is a complex and interconnected system where trillions of microorganisms, collectively known as the gut microbiota, coexist with these cells. Besides maintaining digestive health, this relationship also impacts well-being, including immune function, metabolism, and mental health. As frontline healthcare providers, pharmacists are pivotal in promoting the benefits of probiotics for immune support. This study explored pharmacists' knowledge, perception, and practice behavior in the UAE towards the implication of probiotic application beyond digestive health, such as cardiovascular and mental health impacts and their diverse dosage forms. METHOD An online self-administered survey was distributed among pharmacists in the UAE. Data were collected through personal visits to pharmacies, where pharmacists were approached and asked to complete the questionnaire. The sample size included 407 pharmacists, determined using the formula for proportions with a 95% confidence level and a 5% margin of error. Statistical analysis was performed using SPSS version 29. Descriptive statistics were used to summarize demographic characteristics and survey responses. The knowledge levels were categorized into poor, moderate, and good. Chi-square analysis was employed to investigate associations between demographic factors and knowledge levels, with a significance level set at p < 0.05, enhancing the robustness of the study's findings. RESULTS This study included 407 completed eligible responses. About 63.56% of participants were female, with 52.1% employed in pharmacy chains. While 91.2% of pharmacists recognized probiotics' role in immune support, only 30% were aware of their cardiovascular benefits. Moreover, chewing gum was the least known dosage form of probiotics, recognized by only 16.7% of respondents. Additionally, only 57% of the participants recognized liposomes as a dosage form. In practice, most pharmacists recommended storing probiotics at room temperature, accounting for 66.6%. The most prevalent misconception encountered in the pharmacy setting was the belief that probiotics are primarily intended for gastrointestinal tract problems, at 79.1% of the respondents. Regarding perception, the agreement was observed regarding the safety of probiotics for all ages. Perceived barriers included the high cost of probiotics, with the majority (86.5%) indicating this as a significant obstacle, while lack of demand was identified as the minor barrier by 64.6%. Additionally, an association was found at a significance level of p < 0.05 with knowledge, gender, educational level, type and location of pharmacy, and source of information. CONCLUSIONS The study highlights knowledge gaps in pharmacists' understanding of probiotic applications beyond digestive health, particularly cardiovascular health and depression. Targeted educational interventions are necessary to address these gaps. The findings underscore the importance of ongoing professional development for pharmacists, enhancing their role in patient education and the promotion of probiotics for overall health.
Collapse
Affiliation(s)
- Maram O. Abbas
- Institute of Public Health, College of Medicine & Health Sciences, UAE University, Al Ain 15551, United Arab Emirates;
- Pharmacy Practice Department, Dubai Pharmacy College for Girls, Dubai P.O. Box 19099, United Arab Emirates
| | - Hanan Ahmed
- Pharmaceutical Sciences Department, Dubai Pharmacy College for Girls, Dubai P.O. Box 19099, United Arab Emirates; (H.A.); (E.H.); (D.P.); (M.T.A.); (S.K.)
| | - Eisha Hamid
- Pharmaceutical Sciences Department, Dubai Pharmacy College for Girls, Dubai P.O. Box 19099, United Arab Emirates; (H.A.); (E.H.); (D.P.); (M.T.A.); (S.K.)
| | - Dyshania Padayachee
- Pharmaceutical Sciences Department, Dubai Pharmacy College for Girls, Dubai P.O. Box 19099, United Arab Emirates; (H.A.); (E.H.); (D.P.); (M.T.A.); (S.K.)
| | - Menah Talla Abdulbadia
- Pharmaceutical Sciences Department, Dubai Pharmacy College for Girls, Dubai P.O. Box 19099, United Arab Emirates; (H.A.); (E.H.); (D.P.); (M.T.A.); (S.K.)
| | - Sohila Khalid
- Pharmaceutical Sciences Department, Dubai Pharmacy College for Girls, Dubai P.O. Box 19099, United Arab Emirates; (H.A.); (E.H.); (D.P.); (M.T.A.); (S.K.)
| | - Ahmed Abuelhana
- School of Pharmacy and Pharmaceutical Sciences, Ulster University, Coleraine BT52 1SA, UK;
| | - Bazigha K. Abdul Rasool
- Pharmaceutical Sciences Department, Dubai Pharmacy College for Girls, Dubai P.O. Box 19099, United Arab Emirates; (H.A.); (E.H.); (D.P.); (M.T.A.); (S.K.)
| |
Collapse
|
16
|
Martínez A, Velázquez L, Díaz R, Huaiquipán R, Pérez I, Muñoz A, Valdés M, Sepúlveda N, Paz E, Quiñones J. Impact of Novel Foods on the Human Gut Microbiome: Current Status. Microorganisms 2024; 12:1750. [PMID: 39338424 PMCID: PMC11433882 DOI: 10.3390/microorganisms12091750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/30/2024] Open
Abstract
The microbiome is a complex ecosystem of microorganisms that inhabit a specific environment. It plays a significant role in human health, from food digestion to immune system strengthening. The "Novel Foods" refer to foods or ingredients that have not been consumed by humans in the European Union before 1997. Currently, there is growing interest in understanding how "Novel Foods" affect the microbiome and human health. The aim of this review was to assess the effects of "Novel Foods" on the human gut microbiome. Research was conducted using scientific databases, focusing on the literature published since 2000, with an emphasis on the past decade. In general, the benefits derived from this type of diet are due to the interaction between polyphenols, oligosaccharides, prebiotics, probiotics, fibre content, and the gut microbiome, which selectively promotes specific microbial species and increases microbial diversity. More research is being conducted on the consumption of novel foods to demonstrate how they affect the microbiome and, thus, human health. Consumption of novel foods with health-promoting properties should be further explored to maintain the diversity and functionality of the gut microbiome as a potential tool to prevent the onset and progression of chronic diseases.
Collapse
Affiliation(s)
- Ailín Martínez
- Doctoral Program in Science Major in Applied Cellular and Molecular Biology, Universidad de La Frontera, Av. Francisco Salazar 01145, Temuco 4800000, Chile;
- Meat Quality Innovation and Technology Centre (CTI-Carne), Universidad de La Frontera, Temuco 4780000, Chile; (L.V.); (R.D.); (R.H.); (I.P.); (A.M.); (M.V.)
| | - Lidiana Velázquez
- Meat Quality Innovation and Technology Centre (CTI-Carne), Universidad de La Frontera, Temuco 4780000, Chile; (L.V.); (R.D.); (R.H.); (I.P.); (A.M.); (M.V.)
- Faculty of Agricultural and Environmental Sciences, Universidad de La Frontera, Av. Francisco Salazar 01145, Temuco 4780000, Chile;
| | - Rommy Díaz
- Meat Quality Innovation and Technology Centre (CTI-Carne), Universidad de La Frontera, Temuco 4780000, Chile; (L.V.); (R.D.); (R.H.); (I.P.); (A.M.); (M.V.)
- Faculty of Agricultural and Environmental Sciences, Universidad de La Frontera, Av. Francisco Salazar 01145, Temuco 4780000, Chile;
| | - Rodrigo Huaiquipán
- Meat Quality Innovation and Technology Centre (CTI-Carne), Universidad de La Frontera, Temuco 4780000, Chile; (L.V.); (R.D.); (R.H.); (I.P.); (A.M.); (M.V.)
- Doctoral Program in Agrifood and Environment Sciences, Universidad de La Frontera, Temuco 4780000, Chile
| | - Isabela Pérez
- Meat Quality Innovation and Technology Centre (CTI-Carne), Universidad de La Frontera, Temuco 4780000, Chile; (L.V.); (R.D.); (R.H.); (I.P.); (A.M.); (M.V.)
- Doctoral Program in Agrifood and Environment Sciences, Universidad de La Frontera, Temuco 4780000, Chile
| | - Alex Muñoz
- Meat Quality Innovation and Technology Centre (CTI-Carne), Universidad de La Frontera, Temuco 4780000, Chile; (L.V.); (R.D.); (R.H.); (I.P.); (A.M.); (M.V.)
- Doctoral Program in Agrifood and Environment Sciences, Universidad de La Frontera, Temuco 4780000, Chile
| | - Marcos Valdés
- Meat Quality Innovation and Technology Centre (CTI-Carne), Universidad de La Frontera, Temuco 4780000, Chile; (L.V.); (R.D.); (R.H.); (I.P.); (A.M.); (M.V.)
- Doctoral Program in Agrifood and Environment Sciences, Universidad de La Frontera, Temuco 4780000, Chile
| | - Néstor Sepúlveda
- Faculty of Agricultural and Environmental Sciences, Universidad de La Frontera, Av. Francisco Salazar 01145, Temuco 4780000, Chile;
- Doctoral Program in Agrifood and Environment Sciences, Universidad de La Frontera, Temuco 4780000, Chile
| | - Erwin Paz
- UWA Institute of Agriculture, The University of Western Australia, Perth 6009, Australia;
| | - John Quiñones
- Meat Quality Innovation and Technology Centre (CTI-Carne), Universidad de La Frontera, Temuco 4780000, Chile; (L.V.); (R.D.); (R.H.); (I.P.); (A.M.); (M.V.)
- Faculty of Agricultural and Environmental Sciences, Universidad de La Frontera, Av. Francisco Salazar 01145, Temuco 4780000, Chile;
| |
Collapse
|
17
|
Anaya-Prado R, Cárdenas-Fregoso AP, Reyes-Perez AM, Ortiz-Hernandez DM, Quijano-Ortiz M, Delgado-Martinez MV, Pelayo-Romo AS, Anaya-Fernandez R, Anaya-Fernandez MM, Azcona-Ramirez CC, Garcia-Ramirez IF, Guerrero-Palomera MA, Gonzalez-Martinez D, Guerrero-Palomera CS, Paredes-Paredes K, Garcia-Perez C. The Biomolecular Basis of Gut Microbiome on Neurological Diseases. OBM NEUROBIOLOGY 2024; 08:1-40. [DOI: 10.21926/obm.neurobiol.2403232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
The human gastrointestinal (GI) tract harbors many microorganisms, including viruses, protozoa, archaea, fungi, and bacteria. Altogether, these microbes constitute what we know as the gut microbiome (GM). These commensal communities have important implications for human health. They influence physiological processes through different mechanisms, including synthesizing neurotransmitters, regulating enzymatic pathways, and releasing molecules responsible for different signal pathways. The interaction between GM and brain function has been associated with the development and pathogenesis of neuropsychiatric diseases. This review discusses current studies targeting the regulation and modulation of GM in nerve, neuroendocrine, and immune pathways. Thus, we analyze current evidence on transcription, changes in composition, and specific interactions between the gut and brain from a biomolecular perspective. Special attention is paid to mood disorders and neurodegenerative diseases.
Collapse
|
18
|
Li Y, Wang Y, Li Y, Yan S, Gao X, Li P, Zheng X, Gu Q. Dress me an outfit: advanced probiotics hybrid systems for intelligent IBD therapy. Crit Rev Food Sci Nutr 2024:1-24. [PMID: 39007752 DOI: 10.1080/10408398.2024.2359135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Inflammation bowel disease (IBD) has emerged as a public health challenge worldwide; with high incidence and rapid prevalence, it has troubled billions of people and further induced multitudinous systemic complications. Recent decade has witnessed the vigorous application of food-borne probiotics for IBD therapy; however, the complicated and changeable environments of digestive tract have forced probiotics to face multiple in vivo pressures, consequently causing unsatisfied prophylactic or therapeutic efficacy attributed to off-targeted arrival, damaged viability, insufficient colonization efficiency, etc. Fortunately, arisen hybrid technology has provided versatile breakthroughs for the targeted transplantation of probiotics. By ingeniously modifying probiotics to form probiotics hybrid systems (PHS), the biological behaviors of probiotics in vivo could be mediated, the interactions between probiotics with intestinal components can be facilitated, and diverse advanced probiotic-based therapies for IBD challenge can be developed, which attribute to the intelligent response to microenvironment of PHS, and intelligent design of PHS for multiple functions combination. In this review, various PHS were categorized and their intestinal behaviors were elucidated systematically, their therapeutic effects and intrinsic mechanism were further analyzed. Besides, shortages of present PHS and the corresponding solutions have been discussed, based on which the future perspectives of this field have also been proposed. The undeniable fact is that PHS show an incomparable future to bring the next generation of advanced food science.
Collapse
Affiliation(s)
- Yonglu Li
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, People's Republic of China
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China
| | - Yadi Wang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, People's Republic of China
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China
| | - Yapeng Li
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, People's Republic of China
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China
| | - Shihai Yan
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, People's Republic of China
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China
| | - Xin Gao
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, People's Republic of China
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China
| | - Ping Li
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, People's Republic of China
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China
| | - Xiaodong Zheng
- Department of Food Science and Nutrition; Zhejiang Key Laboratory for Agro-food Processing; Fuli Institute of Food Science; National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou, People's Republic of China
| | - Qing Gu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, People's Republic of China
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China
| |
Collapse
|
19
|
Fan Y, Wang Y, Xiao H, Sun H. Advancements in understanding the role of intestinal dysbacteriosis mediated mucosal immunity in IgA nephropathy. BMC Nephrol 2024; 25:203. [PMID: 38907188 PMCID: PMC11191200 DOI: 10.1186/s12882-024-03646-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 06/18/2024] [Indexed: 06/23/2024] Open
Abstract
IgA nephropathy, presently recognized as the foremost primary glomerular disorder, emerges as a principal contributor to renal failure globally, with its pathogenesis yet to be fully elucidated. Extensive research has highlighted the critical role of gut microbiome in the onset and progression of IgA nephropathy, underscoring its importance in accurately delineating the disease's etiology. For example, gut microbiome dysbacteriosis can lead to the production of nephritogenic IgA1 antibodies, which form immune complexes that deposit in the kidneys, causing inflammation and damage. The gut microbiome, a source of numerous bioactive compounds, interacts with the host and plays a regulatory role in gut-immune axis modulation, earning it the moniker of the "second brain." Recent investigations have particularly emphasized a significant correlation between IgA nephropathy and gut microbiome dysbacteriosis. This article offers a detailed overview of the pathogenic mechanisms of IgA nephropathy, specifically focusing on elucidating how alterations in the gut microbiome are associated with anomalies in the intestinal mucosal system in IgA nephropathy. Additionally, it describes the possible influence of gut microbiome on recurrent IgA nephropathy following kidney transplantation. Furthermore, it compiles potential therapeutic interventions, offering both theoretical and practical foundations for the management of IgA nephropathy. Lastly, the challenges currently faced in the therapeutic approaches to IgA nephropathy are discussed.
Collapse
Affiliation(s)
- Yitao Fan
- The Second Clinical Medical College of Lanzhou University, Lanzhou, 730030, Gansu, China
- Cuiying Biomedical Research Center, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
| | - Yan Wang
- The Second Clinical Medical College of Lanzhou University, Lanzhou, 730030, Gansu, China
- Cuiying Biomedical Research Center, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
| | - Han Xiao
- The Second Clinical Medical College of Lanzhou University, Lanzhou, 730030, Gansu, China
- Cuiying Biomedical Research Center, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
| | - Hui Sun
- The Second Clinical Medical College of Lanzhou University, Lanzhou, 730030, Gansu, China.
- Cuiying Biomedical Research Center, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China.
| |
Collapse
|
20
|
Li L, Zhao J, Wang J, Xiong Q, Lin X, Guo X, Peng F, Liang W, Zuo X, Ying C. The arsenic-lowering effect of inulin-type prebiotics in end-stage renal disease: a randomized crossover trial. Food Funct 2024; 15:355-371. [PMID: 38093628 DOI: 10.1039/d3fo01843a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Background: Circulatory imbalance of trace elements is frequent in end-stage renal disease (ESRD), leading to a deficiency of essential elements and excess of toxic elements. The present study aimed to investigate whether inulin-type fructans (ITFs) could ameliorate the circulatory imbalance by modulating gut microbiota and regulating the absorption and elimination of trace elements. Methods: Peritoneal dialysis patients were enrolled in a randomized crossover trial, undergoing interventions with ITFs (10 g d-1) and maltodextrin (placebo) over a 9-month period (with a 3-month washout). The primary outcomes included essential elements Mn, Fe, Co, Cu, Zn, Se, Sr, and Mo and potential toxic elements V, Cr, Ni, As, Cd, Ba, Tl, Pb, Th, and U in plasma. Secondary outcomes included the gut microbiome, short chain fatty acids (SCFAs), bile acids (BAs), and daily removal of trace elements through urine, dialysate and feces. Results: Among the 44 participants initially randomized, 29 completed the prebiotic, placebo or both interventions. The daily dietary intake of macronutrients and trace elements remained consistent throughout the study. The administration of 10 g d-1 ITFs significantly reduced plasma arsenic (As) by 1.03 μg L-1 (95%CI: -1.74, -0.33) (FDR-adjusted P = 0.045) down from the baseline of 3.54 μg L-1 (IQRs: 2.61-4.40) and increased the As clearance rate by urine and dialysis (P = 0.033). Positive changes in gut microbiota were also observed, including an increase in the Firmicutes/Bacteroidetes ratio (P = 0.050), a trend towards higher fecal SCFAs (P = 0.082), and elevated excretion of primary BAs (P = 0.035). However, there were no significant changes in plasma concentrations of other trace elements or their daily removal by urine, dialysis and feces. Conclusions: The daily administration of 10 g d-1 ITFs proved to be effective in reducing the circulating retention of As but demonstrated to be ineffective for other trace elements in ESRD. These sentences are ok to include but as "The clinical trial registry number is ChiCTR-INR-17013739 (https://www.chictr.org.cn/showproj.aspx?proj=21228)".
Collapse
Affiliation(s)
- Li Li
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Jing Zhao
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Jinxue Wang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Qianqian Xiong
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Xuechun Lin
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Xiaolei Guo
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Fan Peng
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Wangqun Liang
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xuezhi Zuo
- Department of Clinical Nutrition, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Chenjiang Ying
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
21
|
Ramadan Q, Hazaymeh R, Zourob M. Immunity-on-a-Chip: Integration of Immune Components into the Scheme of Organ-on-a-Chip Systems. Adv Biol (Weinh) 2023; 7:e2200312. [PMID: 36866511 DOI: 10.1002/adbi.202200312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/16/2023] [Indexed: 03/04/2023]
Abstract
Studying the immune system in vitro aims to understand how, when, and where the immune cells migrate/differentiate and respond to the various triggering events and the decision points along the immune response journey. It becomes evident that organ-on-a-chip (OOC) technology has a superior capability to recapitulate the cell-cell and tissue-tissue interaction in the body, with a great potential to provide tools for tracking the paracrine signaling with high spatial-temporal precision and implementing in situ real-time, non-destructive detection assays, therefore, enabling extraction of mechanistic information rather than phenotypic information. However, despite the rapid development in this technology, integration of the immune system into OOC devices stays among the least navigated tasks, with immune cells still the major missing components in the developed models. This is mainly due to the complexity of the immune system and the reductionist methodology of the OOC modules. Dedicated research in this field is demanded to establish the understanding of mechanism-based disease endotypes rather than phenotypes. Herein, we systemically present a synthesis of the state-of-the-art of immune-cantered OOC technology. We comprehensively outlined what is achieved and identified the technology gaps emphasizing the missing components required to establish immune-competent OOCs and bridge these gaps.
Collapse
Affiliation(s)
- Qasem Ramadan
- Alfaisal University, Riyadh, 11533, Kingdom of Saudi Arabia
| | - Rana Hazaymeh
- Almaarefa University, Diriyah, 13713, Kingdom of Saudi Arabia
| | | |
Collapse
|
22
|
Zheng Y, Bonfili L, Wei T, Eleuteri AM. Understanding the Gut-Brain Axis and Its Therapeutic Implications for Neurodegenerative Disorders. Nutrients 2023; 15:4631. [PMID: 37960284 PMCID: PMC10648099 DOI: 10.3390/nu15214631] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 10/25/2023] [Accepted: 10/28/2023] [Indexed: 11/15/2023] Open
Abstract
The gut-brain axis (GBA) is a complex bidirectional communication network connecting the gut and brain. It involves neural, immune, and endocrine communication pathways between the gastrointestinal (GI) tract and the central nervous system (CNS). Perturbations of the GBA have been reported in many neurodegenerative disorders (NDDs), such as Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS), among others, suggesting a possible role in disease pathogenesis. The gut microbiota is a pivotal component of the GBA, and alterations in its composition, known as gut dysbiosis, have been associated with GBA dysfunction and neurodegeneration. The gut microbiota might influence the homeostasis of the CNS by modulating the immune system and, more directly, regulating the production of molecules and metabolites that influence the nervous and endocrine systems, making it a potential therapeutic target. Preclinical trials manipulating microbial composition through dietary intervention, probiotic and prebiotic supplementation, and fecal microbial transplantation (FMT) have provided promising outcomes. However, its clear mechanism is not well understood, and the results are not always consistent. Here, we provide an overview of the major components and communication pathways of the GBA, as well as therapeutic approaches targeting the GBA to ameliorate NDDs.
Collapse
Affiliation(s)
- Yadong Zheng
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, MC, Italy; (Y.Z.); (L.B.)
- School of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| | - Laura Bonfili
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, MC, Italy; (Y.Z.); (L.B.)
| | - Tao Wei
- School of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| | - Anna Maria Eleuteri
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, MC, Italy; (Y.Z.); (L.B.)
| |
Collapse
|
23
|
Jang YJ, Min B, Lim JH, Kim BY. In Vitro Evaluation of Probiotic Properties of Two Novel Probiotic Mixtures, Consti-Biome and Sensi-Biome. J Microbiol Biotechnol 2023; 33:1149-1161. [PMID: 37386724 PMCID: PMC10580887 DOI: 10.4014/jmb.2303.03011] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/24/2023] [Accepted: 06/12/2023] [Indexed: 07/01/2023]
Abstract
Changes in the gut microbiome cause recolonization by pathogens and inflammatory responses, leading to the development of intestinal disorders. Probiotics administration has been proposed for many years to reverse the intestinal dysbiosis and to enhance intestinal health. This study aimed to evaluate the inhibitory effects of two newly designed probiotic mixtures, Consti-Biome and Sensi-Biome, on two enteric pathogens Staphylococcus aureus and Escherichia coli that may cause intestinal disorders. Additionally, the study was designed to evaluate whether Consti-Biome and Sensi-Biome could modulate the immune response, produce short-chain fatty acids (SCFAs), and reduce gas production. Consti-Biome and Sensi-Biome showed superior adhesion ratios to HT-29 cells and competitively suppressed pathogen adhesion. Moreover, the probiotic mixtures decreased the levels of pro-inflammatory cytokines, such as tumor necrosis factor-α, interleukin (IL)-6 and IL-1β. Cell-free supernatants (CFSs) were used to investigate the inhibitory effects of metabolites on growth and biofilms of pathogens. Consti-Biome and Sensi-Biome CFSs exhibited antimicrobial and anti-biofilm activity, where microscopic analysis confirmed an increase in the number of dead cells and the structural disruption of pathogens. Gas chromatographic analysis of the CFSs revealed their ability to produce SCFAs, including acetic, propionic, and butyric acid. SCFA secretion by probiotics may demonstrate their potential activities against pathogens and gut inflammation. In terms of intestinal symptoms regarding abdominal bloating and discomfort, Consti-Biome and Sensi-Biome also inhibited gas production. Thus, these two probiotic mixtures have great potential to be developed as dietary supplements to alleviate the intestinal disorders.
Collapse
Affiliation(s)
- You Jin Jang
- R&D Center, Chong Kun Dang Healthcare, Seoul 07249, Republic of Korea
| | - Bonggyu Min
- R&D Center, Chong Kun Dang Healthcare, Seoul 07249, Republic of Korea
| | - Jong Hyun Lim
- R&D Center, Chong Kun Dang Healthcare, Seoul 07249, Republic of Korea
| | - Byung-Yong Kim
- R&D Center, Chong Kun Dang Healthcare, Seoul 07249, Republic of Korea
| |
Collapse
|
24
|
Mendez-Sanchez N, Coronel-Castillo CE, Cordova-Gallardo J, Qi X. Antibiotics in Chronic Liver Disease and Their Effects on Gut Microbiota. Antibiotics (Basel) 2023; 12:1475. [PMID: 37887176 PMCID: PMC10603944 DOI: 10.3390/antibiotics12101475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/18/2023] [Accepted: 09/21/2023] [Indexed: 10/28/2023] Open
Abstract
Impairments in liver function lead to different complications. As chronic liver disease progresses (CLD), hypoalbuminemia and alterations in bile acid compositions lead to changes in gut microbiota and, therefore, in the host-microbiome interaction, leading to a proinflammatory state. Alterations in gut microbiota composition and permeability, known as gut dysbiosis, have important implications in CLD; alterations in the gut-liver axis are a consequence of liver disease, but also a cause of CLD. Furthermore, gut dysbiosis plays an important role in the progression of liver cirrhosis and decompensation, particularly with complications such as hepatic encephalopathy and spontaneous bacterial peritonitis. In relation to this, antibiotics play an important role in treating CLD. While certain antibiotics have specific indications, others have been subjected to continued study to determine whether or not they have a modulatory effect on gut microbiota. In contrast, the rational use of antibiotics is important, not only because of their disrupting effects on gut microbiota, but also in the context of multidrug-resistant organisms. The aim of this review is to illustrate the role of gut microbiota alterations in CLD, the use and impact of antibiotics in liver cirrhosis, and their harmful and beneficial effects.
Collapse
Affiliation(s)
- Nahum Mendez-Sanchez
- Unit Liver Research, Medica Sur Clinic & Foundation, Mexico City 14050, Mexico
- Faculty of Medicine, National Autonomous University of Mexico, Mexico City 04510, Mexico
| | | | - Jacqueline Cordova-Gallardo
- Department of Hepatology, Service of Surgery and Obesity Clinic, General Hospital “Dr. Manuel Gea González”, Mexico City 14080, Mexico
| | - Xingshun Qi
- Department of Gastroenterology, General Hospital of Northern Theater Command, Shenyang 110840, China
| |
Collapse
|
25
|
Ang WS, Law JWF, Letchumanan V, Hong KW, Wong SH, Ab Mutalib NS, Chan KG, Lee LH, Tan LTH. A Keystone Gut Bacterium Christensenella minuta-A Potential Biotherapeutic Agent for Obesity and Associated Metabolic Diseases. Foods 2023; 12:2485. [PMID: 37444223 DOI: 10.3390/foods12132485] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/22/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023] Open
Abstract
A new next-generation probiotic, Christensenella minuta was first discovered in 2012 from healthy human stool and described under the phylum Firmicutes. C. minuta is a subdominant commensal bacterium with highly heritable properties that exhibits mutual interactions with other heritable microbiomes, and its relative abundance is positively correlated with the lean host phenotype associated with a low BMI index. It has been the subject of numerous studies, owing to its potential health benefits. This article reviews the evidence from various studies of C. minuta interventions using animal models for managing metabolic diseases, such as obesity, inflammatory bowel disease, and type 2 diabetes, characterized by gut microbiota dysbiosis and disruption of host metabolism. Notably, more studies have presented the complex interaction between C. minuta and host metabolism when it comes to metabolic health. Therefore, C. minuta could be a potential candidate for innovative microbiome-based biotherapy via fecal microbiota transplantation or oral administration. However, the detailed underlying mechanism of action requires further investigation.
Collapse
Affiliation(s)
- Wei-Shan Ang
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia
| | - Jodi Woan-Fei Law
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia
- Next-Generation Precision Medicine and Therapeutics Research Group (NMeT), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia
| | - Vengadesh Letchumanan
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia
- Pathogen Resistome Virulome and Diagnostic Research Group (PathRiD), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia
| | - Kar Wai Hong
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia
| | - Sunny Hei Wong
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
| | - Nurul Syakima Ab Mutalib
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Kok-Gan Chan
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia
- International Genome Centre, Jiangsu University, Zhenjiang 212013, China
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Learn-Han Lee
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia
| | - Loh Teng-Hern Tan
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia
- Innovative Bioprospection Development Research Group (InBioD), Clinical School Johor Bahru, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Johor Bahru 80100, Malaysia
| |
Collapse
|
26
|
Thoda C, Touraki M. Immunomodulatory Properties of Probiotics and Their Derived Bioactive Compounds. APPLIED SCIENCES 2023; 13:4726. [DOI: 10.3390/app13084726] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Immune system modulation is an intriguing part of scientific research. It is well established that the immune system plays a crucial role in orchestrating cellular and molecular key mediators, thus establishing a powerful defense barrier against infectious pathogens. Gut microbiota represent a complex community of approximately a hundred trillion microorganisms that live in the mammalian gastrointestinal (GI) tract, contributing to the maintenance of gut homeostasis via regulation of the innate and adaptive immune responses. However, impairment in the crosstalk between intestinal immunity and gut microbiota may reflect on detrimental health issues. In this context, many studies have indicated that probiotics and their bioactive compounds, such as bacteriocins and short chain fatty acids (SCFAs), display distinct immunomodulatory properties through which they suppress inflammation and enhance the restoration of microbial diversity in pathological states. This review highlights the fundamental features of probiotics, bacteriocins, and SCFAs, which make them ideal therapeutic agents for the amelioration of inflammatory and autoimmune diseases. It also describes their underlying mechanisms on gut microbiota modulation and emphasizes how they influence the function of immune cells involved in regulating gut homeostasis. Finally, it discusses the future perspectives and challenges of their administration to individuals.
Collapse
Affiliation(s)
- Christina Thoda
- Laboratory of General Biology, Department of Genetics, Development and Molecular Biology, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, 54 124 Thessaloniki, Greece
| | - Maria Touraki
- Laboratory of General Biology, Department of Genetics, Development and Molecular Biology, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, 54 124 Thessaloniki, Greece
| |
Collapse
|
27
|
Kaewarsar E, Chaiyasut C, Lailerd N, Makhamrueang N, Peerajan S, Sirilun S. Optimization of Mixed Inulin, Fructooligosaccharides, and Galactooligosaccharides as Prebiotics for Stimulation of Probiotics Growth and Function. Foods 2023; 12:foods12081591. [PMID: 37107386 PMCID: PMC10137966 DOI: 10.3390/foods12081591] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/30/2023] [Accepted: 04/03/2023] [Indexed: 04/29/2023] Open
Abstract
Prebiotics have become an important functional food because of their potential for modulating the gut microbiota and metabolic activities. However, different prebiotics can stimulate the growth of different probiotics. The optimization of prebiotics was focused on in this study in order to stimulate the representative probiotics' growth (Lacticaseibacillus rhamnosus (previously Lactobacillus rhamnosus) and Bifidobacterium animalis subsp. lactis) and their function. The culture medium was supplemented with three prebiotics, including inulin (INU), fructooligosaccharides (FOS), and galactooligosaccharides (GOS). All prebiotics can clearly stimulate the growth of probiotic strains in both monoculture and co-culture. The specific growth rates of L. rhamnosus and B. animalis subsp. lactis were shown in GOS (0.019 h-1) and FOS (0.023 h-1), respectively. The prebiotic index (PI) scores of INU (1.03), FOS (0.86), and GOS (0.84) in co-culture at 48 h were significantly higher than the control (glucose). The mixture of prebiotics to achieve high quality was optimized using the Box-Behnken design. The optimum prebiotic ratios of INU, FOS, and GOS were 1.33, 2.00, and 2.67% w/v, respectively, with the highest stimulated growth of probiotic strains occurring with the highest PI score (1.03) and total short chain fatty acid concentration (85.55 µmol/mL). The suitable ratio of mixed prebiotics will function as a potential ingredient for functional foods or colonic foods.
Collapse
Affiliation(s)
- Ekkachai Kaewarsar
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Chaiyavat Chaiyasut
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
- Innovation Center for Holistic Health, Nutraceuticals and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Narissara Lailerd
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Netnapa Makhamrueang
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | | | - Sasithorn Sirilun
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
- Innovation Center for Holistic Health, Nutraceuticals and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
28
|
Hitache Z, Al-Dalali S, Pei H, Cao X. Review of the Health Benefits of Cereals and Pseudocereals on Human Gut Microbiota. FOOD BIOPROCESS TECH 2023. [DOI: 10.1007/s11947-023-03069-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
29
|
Ondee T, Pongpirul K, Udompornpitak K, Sukkummee W, Lertmongkolaksorn T, Senaprom S, Leelahavanichkul A. High Fructose Causes More Prominent Liver Steatohepatitis with Leaky Gut Similar to High Glucose Administration in Mice and Attenuation by Lactiplantibacillus plantarum dfa1. Nutrients 2023; 15:1462. [PMID: 36986190 PMCID: PMC10056651 DOI: 10.3390/nu15061462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/02/2023] [Accepted: 03/07/2023] [Indexed: 03/30/2023] Open
Abstract
High-sugar diet-induced prediabetes and obesity are a global current problem that can be the result of glucose or fructose. However, a head-to-head comparison between both sugars on health impact is still lacking, and Lactiplantibacillus plantarum dfa1 has never been tested, and has recently been isolated from healthy volunteers. The mice were administered with the high glucose or fructose preparation in standard mouse chaw with or without L. plantarum dfa1 gavage, on alternate days, and in vitro experiments were performed using enterocyte cell lines (Caco2) and hepatocytes (HepG2). After 12 weeks of experiments, both glucose and fructose induced a similar severity of obesity (weight gain, lipid profiles, and fat deposition at several sites) and prediabetes condition (fasting glucose, insulin, oral glucose tolerance test, and Homeostatic Model Assessment for Insulin Resistance (HOMA score)). However, fructose administration induced more severe liver damage (serum alanine transaminase, liver weight, histology score, fat components, and oxidative stress) than the glucose group, while glucose caused more prominent intestinal permeability damage (FITC-dextran assay) and serum cytokines (TNF-α, IL-6, and IL-10) compared to the fructose group. Interestingly, all of these parameters were attenuated by L. plantarum dfa1 administration. Because there was a subtle change in the analysis of the fecal microbiome of mice with glucose or fructose administration compared to control mice, the probiotics altered only some microbiome parameters (Chao1 and Lactobacilli abundance). For in vitro experiments, glucose induced more damage to high-dose lipopolysaccharide (LPS) (1 µg/mL) to enterocytes (Caco2 cell) than fructose, as indicated by transepithelial electrical resistance (TEER), supernatant cytokines (TNF-α and IL-8), and glycolysis capacity (by extracellular flux analysis). Meanwhile, both glucose and fructose similarly facilitated LPS injury in hepatocytes (HepG2 cell) as evaluated by supernatant cytokines (TNF-α, IL-6, and IL-10) and extracellular flux analysis. In conclusion, glucose possibly induced a more severe intestinal injury (perhaps due to LPS-glucose synergy) and fructose caused a more prominent liver injury (possibly due to liver fructose metabolism), despite a similar effect on obesity and prediabetes. Prevention of obesity and prediabetes with probiotics was encouraged.
Collapse
Affiliation(s)
- Thunnicha Ondee
- Department of Preventive and Social Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Krit Pongpirul
- Department of Preventive and Social Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- School of Global Health, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
- Clinical Research Center, Bumrungrad International Hospital, Bangkok 10110, Thailand
- Department of Infection Biology & Microbiomes, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 3GB, UK
| | - Kanyarat Udompornpitak
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Warumphon Sukkummee
- Center of Excellence in Clinical Pharmacokinetics and Pharmacogenomics, Department of Pharmacology, Faculty of Medicine Chulalongkorn University, Bangkok 10330, Thailand
| | - Thanapat Lertmongkolaksorn
- Research Management and Development Division, Office of the President, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Sayamon Senaprom
- Department of Preventive and Social Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Asada Leelahavanichkul
- Center of Excellence in Translational Research in Inflammation and Immunology Research Unit (CETRII), Department of Microbiology, Chulalongkorn University, Bangkok 10330, Thailand
- Nephrology Unit, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
30
|
Zhou J, Zhou B, Kou X, Jian T, Chen L, Lei X, Jia S, Xie X, Wu X. Effect of summer acupoint application treatment (SAAT) on gut microbiota in healthy Asian adults: A randomized controlled trial. Medicine (Baltimore) 2023; 102:e32951. [PMID: 36862868 PMCID: PMC9981433 DOI: 10.1097/md.0000000000032951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/04/2023] Open
Abstract
Acupoint application has served as an important complementary and adjunctive therapy in China. The purpose of this study is to explore the impact of summer acupoint application treatment (SAAT) on the abundance and biological structure of gut microbiota in healthy Asian adults. Based on the CONSORT guidelines, 72 healthy adults were included in this study, randomly divided into 2 groups, receiving either traditional (acupoint application within known relevant meridians, Group A) or sham (treated with placebo prepared by mixing the equal amount of starch and water, Group B) SAAT. SAAT stickers include extracts from Rhizoma Corydalis, Sinapis alba, Euphorbia kansui, Asari Herba, and the treatment group received 3 sessions of SAAT for 24 months, administered to BL13 (Feishu), BL17 (Geshu), BL20 (Pishu), and BL23 (Shenshu) acupoints. Fecal microbial analyses via ribosomal ribonucleic acid (rRNA) sequencing were performed on donor stool samples before and after 2 years of SAAT or placebo treatment to analyze the abundances, diversity, and structure of gut microbiota. No significant baseline differences were present between groups. At the phylum level, the baseline relative abundance of Firmicutes, Bacteroidetes, Proteobacteria, Actinobacteria, and Fusobacteria was identified in fecal samples collected from each group. After treatment, the relative abundance of Firmicutes was significantly increased in both groups (P < .05). Notably, a significant decrease in the relative abundance of Fusobacteria was observed in the SAAT treatment group (P < .001), while the abundance of Bacteroidetes was decreased significantly in the placebo group (P < .05). At the genus level, the relative abundance of Faecalibacterium and Subdoligranulum species in the 2 groups were all significantly increased (P < .05). In addition, a significant reduction in the relative abundance of Blautia, Bacteroides, and Dorea in Group A (P < .05) and Eubacterium hallii group and Anaerostipes (P < .05) in Group B was observed after treatment. Our findings indicated SAAT substantially influenced the bacterial community structure in the gut microbiota of healthy Asian adults, which might serve as potential therapeutic targets for related diseases, and provided a foundation for future studies aimed at elucidating the microbial mechanisms underlying SAAT for the treatment of various conditions such as obesity, insulin resistance, irritable bowel syndrome.
Collapse
Affiliation(s)
- Jie Zhou
- Department of Project Management Division, XinDu Hospital of Traditional Chinese Medicine, Chengdu, Sichuan, PR China
| | - Bangmin Zhou
- Department of Project Management Division, XinDu Hospital of Traditional Chinese Medicine, Chengdu, Sichuan, PR China
| | - Xiaoyue Kou
- Department of Preventive Treatment, XinDu Hospital of Traditional Chinese Medicine, Chengdu, Sichuan, PR China
| | - Tao Jian
- Department of Hepatobiliary Surgery, Jintang First People’s Hospital, Chengdu, Sichuan, PR China
| | - Limei Chen
- Department of Acupuncture Rehabilitation, XinDu Hospital of Traditional Chinese Medicine, Chengdu, Sichuan, PR China
| | - Xinghua Lei
- Department of Acupuncture Rehabilitation, XinDu Hospital of Traditional Chinese Medicine, Chengdu, Sichuan, PR China
| | - Shijian Jia
- Department of Acupuncture Rehabilitation, XinDu Hospital of Traditional Chinese Medicine, Chengdu, Sichuan, PR China
| | - Xiaoying Xie
- Department of Acupuncture Rehabilitation, XinDu Hospital of Traditional Chinese Medicine, Chengdu, Sichuan, PR China
| | - Xianbo Wu
- Department of Traditional Chinese Medicine, College of Sports Medicine and Health, Chengdu Sport University, Chengdu, Sichuan, PR China
| |
Collapse
|
31
|
A Taxonomy-Agnostic Approach to Targeted Microbiome Therapeutics-Leveraging Principles of Systems Biology. Pathogens 2023; 12:pathogens12020238. [PMID: 36839510 PMCID: PMC9959781 DOI: 10.3390/pathogens12020238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/18/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
The study of human microbiomes has yielded insights into basic science, and applied therapeutics are emerging. However, conflicting definitions of what microbiomes are and how they affect the health of the "host" are less understood. A major impediment towards systematic design, discovery, and implementation of targeted microbiome therapeutics is the continued reliance on taxonomic indicators to define microbiomes in health and disease. Such reliance often confounds analyses, potentially suggesting associations where there are none, and conversely failing to identify significant, causal relationships. This review article discusses recent discoveries pointing towards a molecular understanding of microbiome "dysbiosis" and away from a purely taxonomic approach. We highlight the growing role of systems biological principles in the complex interrelationships between the gut microbiome and host cells, and review current approaches commonly used in targeted microbiome therapeutics, including fecal microbial transplant, bacteriophage therapies, and the use of metabolic toxins to selectively eliminate specific taxa from dysbiotic microbiomes. These approaches, however, remain wholly or partially dependent on the bacterial taxa involved in dysbiosis, and therefore may not capitalize fully on many therapeutic opportunities presented at the bioactive molecular level. New technologies capable of addressing microbiome-associated diseases as molecular problems, if solved, will open possibilities of new classes and categories of targeted microbiome therapeutics aimed, in principle, at all dysbiosis-driven disorders.
Collapse
|
32
|
Gao Z, Song H, Dong H, Ji X, Lei Z, Tian Y, Wu Y, Zou H. Comparative analysis of intestinal flora between rare wild red-crowned crane and white-naped crane. Front Microbiol 2022; 13:1007884. [PMID: 36532425 PMCID: PMC9752901 DOI: 10.3389/fmicb.2022.1007884] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 11/14/2022] [Indexed: 10/17/2024] Open
Abstract
INTRODUCTION Animal intestines are extremely rich in microbial ecosystems. Numerous studies in different fields, such as epidemiology and histology, have revealed that gut microorganisms considerably mediate the survival and reproduction of animals. However, gut microbiology studies of homogeneously distributed wild cranes are still rare. This study aimed to understand the structural composition of the gut microbial community of wild cranes and elucidate the potential roles of the microorganisms. METHODS We used high-throughput sequencing to analyze the gut microbial community structure of wild cranes in the Zhalong Nature Reserve. RESULTS A total of 1,965,683 valid tags and 5248 OTUs were obtained from 32 fecal samples. Twenty-six bacteria phyla and 523 genera were annotated from the intestinal tract of the red-crowned crane. Twenty-five bacteria phyla and 625 genera were annotated from the intestine of the white-naped crane. Firmicutes, Proteobacteria, and Bacteroidetes are the dominant bacterial phyla in the intestinal tract of red-crowned cranes, while Catellicoccus, Lactobacillus, Neisseria, and Streptococcus were the dominant genera. The dominant bacterial phyla in the intestinal tract of white-naped cranes were Firmicutes, Proteobacteria, Bacteroidetes, Epsilonbacteraeota, Actinobacteria, and Fusobacteria. However, the dominant genera were Catellicoccus, Lactobacillus, Neisseria, Campylobacter, Streptococcus, Anaerobiospirillum, Romboutsia, Turicibacter, Haemophilus, and Lautropia. Firmicutes had significantly higher relative abundance in the intestine of the red-crowned than white-naped cranes (P < 0.05). However, the relative abundance of Actinobacteria and Bacteroidetes was significantly higher (P < 0.05) in the intestines of white-naped than red-crowned cranes. The diversity of the intestinal flora between the two crane species was significantly different (P < 0.05). Besides, the alpha diversity of the intestinal flora was higher for white-naped than red-crowned cranes. Eight of the 41 functional pathways differed in the gut of both crane species (P < 0.05). DISCUSSION Both species live in the same area and have similar feeding and behavioral characteristics. Therefore, host differences are possibly the main factors influencing the structural and functional differences in the composition of the gut microbial community. This study provides important reference data for constructing a crane gut microbial assessment system. The findings have implications for studying deeper relationships between crane gut microbes and genetics, nutrition, immunity, and disease.
Collapse
Affiliation(s)
- Zhongsi Gao
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Hongwei Song
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Haiyan Dong
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Xiaolong Ji
- Department of Genetics, College of Life Science, Northeast Forestry University, Harbin, China
| | - Zefeng Lei
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Ye Tian
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Yining Wu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Hongfei Zou
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| |
Collapse
|
33
|
Choroszy M, Litwinowicz K, Bednarz R, Roleder T, Lerman A, Toya T, Kamiński K, Sawicka-Śmiarowska E, Niemira M, Sobieszczańska B. Human Gut Microbiota in Coronary Artery Disease: A Systematic Review and Meta-Analysis. Metabolites 2022; 12:1165. [PMID: 36557203 PMCID: PMC9788186 DOI: 10.3390/metabo12121165] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/16/2022] [Accepted: 11/18/2022] [Indexed: 11/24/2022] Open
Abstract
In recent years, the importance of the gut microbiome in human health and disease has increased. Growing evidence suggests that gut dysbiosis might be a crucial risk factor for coronary artery disease (CAD). Therefore, we conducted a systematic review and meta-analysis to determine whether or not CAD is associated with specific changes in the gut microbiome. The V3-V4 regions of the 16S rDNA from fecal samples were analyzed to compare the gut microbiome composition between CAD patients and controls. Our search yielded 1181 articles, of which 21 met inclusion criteria for systematic review and 7 for meta-analysis. The alpha-diversity, including observed OTUs, Shannon and Simpson indices, was significantly decreased in CAD, indicating the reduced richness of the gut microbiome. The most consistent results in a systematic review and meta-analysis pointed out the reduced abundance of Bacteroidetes and Lachnospiraceae in CAD patients. Moreover, Enterobacteriaceae, Lactobacillus, and Streptococcus taxa demonstrated an increased trend in CAD patients. The alterations in the gut microbiota composition are associated with qualitative and quantitative changes in bacterial metabolites, many of which have pro-atherogenic effects on endothelial cells, increasing the risk of developing and progressing CAD.
Collapse
Affiliation(s)
- Marcin Choroszy
- Department of Microbiology, Wroclaw Medical University, 50-367 Wroclaw, Poland
| | - Kamil Litwinowicz
- Department of Biochemistry and Immunochemistry, Wroclaw Medical University, 50-367 Wroclaw, Poland
| | - Robert Bednarz
- Ninewells Hospital and Medical School, James Arrott Drive, Dundee DD1 9SY, UK
| | - Tomasz Roleder
- Research and Development Centre, Regional Specialist Hospital, 51-124 Wroclaw, Poland
| | - Amir Lerman
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Takumi Toya
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Division of Cardiology, National Defense Medical College, Tokorozawa 359-8513, Japan
| | - Karol Kamiński
- Department of Population Medicine and Lifestyle Diseases Prevention, Medical University of Bialystok, 15-269 Bialystok, Poland
| | - Emilia Sawicka-Śmiarowska
- Department of Population Medicine and Lifestyle Diseases Prevention, Medical University of Bialystok, 15-269 Bialystok, Poland
- Department of Cardiology, Medical University of Bialystok, 15-089 Bialystok, Poland
| | - Magdalena Niemira
- Clinical Research Centre, Medical University of Bialystok, 15-089 Bialystok, Poland
| | | |
Collapse
|
34
|
Application of ultrasound and microencapsulation on Limosilactobacillus reuteri DSM 17938 as a metabolic attenuation strategy for tomato juice probiotication. Heliyon 2022; 8:e10969. [PMID: 36254285 PMCID: PMC9568839 DOI: 10.1016/j.heliyon.2022.e10969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 08/03/2022] [Accepted: 09/30/2022] [Indexed: 11/05/2022] Open
Abstract
Counteracting probiotic-induced physicochemical and sensory changes is a challenge in the development of probiotic beverages. The aim of the study is to apply ultrasound and microencapsulation for the attenuation of Limosilactobacillus reuteri DSM 17938 to avoid change in a probiotic tomato juice. Preliminarily, six ultrasound treatments were applied. Probiotic survival in acid environment (pH 2.5) and bile salts (1.5 g/l) after ultrasound treatment was also studied. The probiotic was inoculated in tomato juice in four forms: free cells (PRO-TJ), sonicated-free cells (US-TJ), untreated-microencapsulated (PRO-MC-TJ) and sonicated-microencapsulated cells (US-MC-TJ). Probiotic viability and pH were monitored during 28 days of storage at 4 and 20 °C. Sensory analysis was performed for PRO-TJ and US-MC-TJ sample (4 °C). Ultrasound (57 W for 6 min) did not affect cell survival and transitorily modulated probiotic acidifying capacity; it reduced probiotic survival in acidic environment but increased probiotic survival in bile salts solution. Ultrasound was effective in maintain pH value of tomato juice but only at 4 °C. Instead, microencapsulation with sodium-alginate leads to a more stable probiotic juice, particularly at 20 °C. Finally, probiotication slightly modified some sensory attributes of the juice. This study shows the potential of ultrasound and microencapsulation as attenuation strategies and highlights the need for process optimization to increase ultrasound efficacy.
Collapse
|
35
|
Rubini E, Schenkelaars N, Rousian M, Sinclair KD, Wekema L, Faas MM, Steegers-Theunissen RPM, Schoenmakers S. Maternal obesity during pregnancy leads to derangements in one-carbon metabolism and the gut microbiota: implications for fetal development and offspring wellbeing. Am J Obstet Gynecol 2022; 227:392-400. [PMID: 35452650 DOI: 10.1016/j.ajog.2022.04.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 04/04/2022] [Accepted: 04/07/2022] [Indexed: 11/01/2022]
Abstract
A healthy diet before and during pregnancy is beneficial in acquiring essential B vitamins involved in 1-carbon metabolism, and in maintaining a healthy gut microbiota. Each play important roles in fetal development, immune-system remodeling, and pregnancy-nutrient acquisition. Evidence shows that there is a reciprocal interaction between the one-carbon metabolism and the gut microbiota given that dietary intake of B vitamins has been shown to influence the composition of the gut microbiota, and certain gut bacteria also synthesize B vitamins. This reciprocal interaction contributes to the individual's overall availability of B vitamins and, therefore, should be maintained in a healthy state during pregnancy. There is an emerging consensus that obese pregnant women often have derangements in 1-carbon metabolism and gut dysbiosis owing to high intake of nutritiously poor foods and a chronic systemic inflammatory state. For example, low folate and vitamin B12 in obese women coincide with the decreased presence of B vitamin-producing bacteria and increased presence of inflammatory-associated bacteria from approximately mid-pregnancy. These alterations are risk factors for adverse pregnancy outcomes, impaired fetal development, and disruption of fetal growth and microbiota formation, which may lead to potential long-term offspring metabolic and neurologic disorders. Therefore, preconceptional and pregnant obese women may benefit from dietary and lifestyle counseling to improve their dietary nutrient intake, and from monitoring their B vitamin levels and gut microbiome by blood tests and microbiota stool samples. In addition, there is evidence that some probiotic bacteria have folate biosynthetic capacity and could be used to treat gut dysbiosis. Thus, their use as an intervention strategy for obese women holds potential and should be further investigated. Currently, there are many knowledge gaps concerning the relationship between one-carbon metabolism and the gut microbiota, and future research should focus on intervention strategies to counteract B vitamin deficiencies and gut dysbiosis in obese pregnant women, commencing with the use of probiotic and prebiotic supplements.
Collapse
Affiliation(s)
- Eleonora Rubini
- Department of Obstetrics and Gynaecology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Nicole Schenkelaars
- Department of Obstetrics and Gynaecology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Melek Rousian
- Department of Obstetrics and Gynaecology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Kevin D Sinclair
- School of Biosciences, University of Nottingham, Nottingham, United Kingdom
| | - Lieske Wekema
- Division of Medical Biology, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Marijke M Faas
- Division of Medical Biology, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | | | - Sam Schoenmakers
- Department of Obstetrics and Gynaecology, Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
36
|
Zheng M, Pi X, Li H, Cheng S, Su Y, Zhang Y, Man C, Jiang Y. Ganoderma spp. polysaccharides are potential prebiotics: a review. Crit Rev Food Sci Nutr 2022; 64:909-927. [PMID: 35980144 DOI: 10.1080/10408398.2022.2110035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The gut microbiota (GM) is a complex ecosystem that is closely linked to host health. Ganoderma spp. polysaccharides (GPs), a major bioactive component of the fungal genus Ganoderma, can modulate the GM, exhibiting various health effects and prebiotic potential. This review comprehensively concluded the structural features and extraction method of GPs. The mechanism of GPs for anti-obesity, anti-diabetes, anti-inflammatory, and anti-cancer were further evaluated. The simulated gastrointestinal digestion of GPs and the utilization mechanism of host microorganisms were discussed. It was found that the physicochemical properties and biological activities of GPs depend on their structural characteristics (molecular weight, monosaccharide composition, glycosidic bonds, etc.). Their extraction method also affects the structure and bioactivities of polysaccharides. GPs supplementation could increase the relative abundance of beneficial bacteria (e.g. Bacteroides, Parabacteroides, Akkermansia, and Bifidobacterium), while reducing that of pathogenic bacteria (e.g. Aerococcus, Ruminococcus), thus promoting health. Moreover, GPs are resistant to digestion in the stomach and small intestine but are digested in the large intestine. Therefore, GPs can be considered as potential prebiotics. However, further studies should investigate how GPs as prebiotics regulate GM and improve host health.
Collapse
Affiliation(s)
- Miao Zheng
- Key Lab of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Xiaowen Pi
- Key Lab of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Hongxuan Li
- Key Lab of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Shasha Cheng
- Key Lab of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Yue Su
- Key Lab of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Yu Zhang
- Key Lab of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Chaoxin Man
- Key Lab of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Yujun Jiang
- Key Lab of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| |
Collapse
|
37
|
Potapova MV, Broyaka NA, Skvortsov KY, Konobeeva EV. Helicobacter pylori roles in haematology disease pathogenesis. СИБИРСКИЙ НАУЧНЫЙ МЕДИЦИНСКИЙ ЖУРНАЛ 2022; 42:18-35. [DOI: 10.18699/ssmj20220302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Affiliation(s)
- M. V. Potapova
- Saratov State Medical University n.a. V.I. Razumovsky of Minzdrav of Russia
| | - N. A. Broyaka
- Saratov State Medical University n.a. V.I. Razumovsky of Minzdrav of Russia
| | | | - E. V. Konobeeva
- Saratov State Medical University n.a. V.I. Razumovsky of Minzdrav of Russia
| |
Collapse
|
38
|
Li P, Li M, Song Y, Huang X, Wu T, Xu ZZ, Lu H. Green Banana Flour Contributes to Gut Microbiota Recovery and Improves Colonic Barrier Integrity in Mice Following Antibiotic Perturbation. Front Nutr 2022; 9:832848. [PMID: 35369097 PMCID: PMC8964434 DOI: 10.3389/fnut.2022.832848] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 02/07/2022] [Indexed: 12/12/2022] Open
Abstract
Green banana flour (GBF) is rich in resistant starch that has been used as a prebiotic to exert beneficial effects on gut microbiota. In this study, GBF was evaluated for its capacity to restore gut microbiota and intestinal barrier integrity from antibiotics (Abx) perturbation by comparing it to natural recovery (NR) treatment. C57B/L 6 J mice were exposed to 3 mg ciprofloxacin and 3.5 mg metronidazole once a day for 2 weeks to induce gut microbiota dysbiosis model. Then, GBF intervention at the dose of 400 mg/kg body weight was conducted for 2 weeks. The results showed that mice treated with Abx displayed increased gut permeability and intestinal barrier disruption, which were restored more quickly with GBF than NR treatment by increasing the secretion of mucin. Moreover, GBF treatment enriched beneficial Bacteroidales S24-7, Lachnospiraceae, Bacteroidaceae, and Porphyromonadaceae that accelerated the imbalanced gut microbiota restoration to its original state. This study puts forward novel insights into the application of GBF as a functional food ingredient to repair gut microbiota from Abx perturbation.
Collapse
Affiliation(s)
- Ping Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Ming Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Ying Song
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Xiaochang Huang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Tao Wu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Zhenjiang Zech Xu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Hui Lu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| |
Collapse
|
39
|
Bermúdez‐Quiñones G, Ochoa‐Martínez LA, Gallegos‐Infante JA, Rutiaga‐Quiñones OM, Lara‐Ceniceros TE, Delgado‐Licon E, González‐Herrera SM. Synbiotic microcapsules using agavins and inulin as wall materials for
Lactobacillus casei
and
Bifidobacterium breve
: Viability, physicochemical properties, and resistance to in vitro oro‐gastrointestinal transit. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.16106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Gabriela Bermúdez‐Quiñones
- Departamento de Ingenierías Química y Bioquímica Tecnológico Nacional de México/Instituto Tecnológico de Durango Durango México
| | - Luz Araceli Ochoa‐Martínez
- Departamento de Ingenierías Química y Bioquímica Tecnológico Nacional de México/Instituto Tecnológico de Durango Durango México
| | - José Alberto Gallegos‐Infante
- Departamento de Ingenierías Química y Bioquímica Tecnológico Nacional de México/Instituto Tecnológico de Durango Durango México
| | - Olga Miriam Rutiaga‐Quiñones
- Departamento de Ingenierías Química y Bioquímica Tecnológico Nacional de México/Instituto Tecnológico de Durango Durango México
| | - Tania Ernestina Lara‐Ceniceros
- Advanced Functional Materials and Nanotechnology Group Centro de Investigación en Materiales Avanzados S. C. (CIMAV – Unidad Monterrey) PIIT Apodaca México
| | - Efrén Delgado‐Licon
- Department of Family and Consumer Sciences New Mexico State University Las Cruces New Mexico USA
| | - Silvia Marina González‐Herrera
- Departamento de Ingenierías Química y Bioquímica Tecnológico Nacional de México/Instituto Tecnológico de Durango Durango México
| |
Collapse
|
40
|
Influence of Oat β-Glucan on the Survival and Proteolytic Activity of Lactobacillus rhamnosus GG in Milk Fermentation: Optimization by Response Surface. FERMENTATION-BASEL 2021. [DOI: 10.3390/fermentation7040210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
β-glucans come from cereals that have been located within compounds with prebiotic activity. They have presented several bioactivities that have determined their high functional value. The aim of this study was to identify the influence of oat β-glucan on the survival and proteolytic activity of Lactobacillus rhamnosus GG in a milk fermentation through an experimental design to optimize the process. For β-glucan extraction after dry milling of oats, two methods were applied: with and without enzymatic inactivation of the semolina. The highest extraction yield (45.25 g/L) was obtained with enzymatic inactivation. For the optimization of survival and proteolytic activity, a central design composed of axial points with two factors on three levels was used. Control factors were β-glucan and inoculum concentrations. According to response surface, the best survival growth rate of probiotic was observed with 4.38% of inoculum and 22.46 g/L of β-glucan, and the highest production of free amino groups was observed with 4.18% of inoculum and 22.71 g/L of β-glucan. Thus, β-glucan promotes the proteolytic activity of Lb. rhamnosus GG in milk fermentation.
Collapse
|
41
|
Liu J, Wu S, Cheng Y, Liu Q, Su L, Yang Y, Zhang X, Wu M, Choi JI, Tong H. Sargassum fusiforme Alginate Relieves Hyperglycemia and Modulates Intestinal Microbiota and Metabolites in Type 2 Diabetic Mice. Nutrients 2021; 13:2887. [PMID: 34445047 PMCID: PMC8398017 DOI: 10.3390/nu13082887] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/17/2021] [Accepted: 08/19/2021] [Indexed: 12/15/2022] Open
Abstract
Sargassum fusiforme alginate (SF-Alg) possess many pharmacological activities, including hypoglycemic and hypolipidemic. However, the hypoglycemic mechanisms of SF-Alg remain unclear due to its low bioavailability. In this study, we evaluated the therapeutic effect of SF-Alg on high-fat diet (HFD)/streptozotocin (STZ)-induced type 2 diabetes (T2D) mice. SF-Alg intervention was found to significantly reduce fasting blood glucose (FBG), triglycerides (TG), and total cholesterol (TC), while increasing high-density lipoprotein cholesterol (HDL-c) and improving glucose tolerance. In addition, administrating SF-Alg to diabetic mice moderately attenuated pathological changes in adipose, hepatic, and heart tissues as well as skeletal muscle, and diminished oxidative stress. To probe the underlying mechanisms, we further analyzed the gut microbiota using 16S rRNA amplicon sequencing, as well as metabolites by non-targeted metabolomics. Here, SF-Alg significantly increased some benign bacteria (Lactobacillus, Bacteroides, Akkermansia Alloprevotella, Weissella and Enterorhabdus), and significantly decreased harmful bacteria (Turicibacter and Helicobacter). Meanwhile, SF-Alg dramatically decreased branched-chain amino acids (BCAAs) and aromatic amino acids (AAAs) in the colon of T2D mice, suggesting a positive benefit of SF-Alg as an adjvant agent for T2D.
Collapse
Affiliation(s)
- Jian Liu
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; (J.L.); (S.W.); (Y.C.); (L.S.); (Y.Y.); (X.Z.); (M.W.)
- Department of Biotechnology and Bioengineering, Chonnam National University, Gwangju 500-757, Korea
| | - Siya Wu
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; (J.L.); (S.W.); (Y.C.); (L.S.); (Y.Y.); (X.Z.); (M.W.)
| | - Yang Cheng
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; (J.L.); (S.W.); (Y.C.); (L.S.); (Y.Y.); (X.Z.); (M.W.)
| | - Qiuhui Liu
- Bestchrom (Shanghai) Biosciences Co., Ltd., Shanghai 200120, China;
| | - Laijin Su
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; (J.L.); (S.W.); (Y.C.); (L.S.); (Y.Y.); (X.Z.); (M.W.)
| | - Yue Yang
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; (J.L.); (S.W.); (Y.C.); (L.S.); (Y.Y.); (X.Z.); (M.W.)
| | - Xu Zhang
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; (J.L.); (S.W.); (Y.C.); (L.S.); (Y.Y.); (X.Z.); (M.W.)
| | - Mingjiang Wu
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; (J.L.); (S.W.); (Y.C.); (L.S.); (Y.Y.); (X.Z.); (M.W.)
| | - Jong-il Choi
- Department of Biotechnology and Bioengineering, Chonnam National University, Gwangju 500-757, Korea
| | - Haibin Tong
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; (J.L.); (S.W.); (Y.C.); (L.S.); (Y.Y.); (X.Z.); (M.W.)
| |
Collapse
|