1
|
Cruz-García K, Ortiz-Hernández YD, Acevedo-Ortiz MA, Aquino-Bolaños T, Aquino-López T, Lugo-Espinosa G, Ortiz-Hernández FE. Edible Insects: Global Research Trends, Biosafety Challenges, and Market Insights in the Mexican Context. Foods 2025; 14:663. [PMID: 40002106 PMCID: PMC11854334 DOI: 10.3390/foods14040663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 02/12/2025] [Accepted: 02/13/2025] [Indexed: 02/27/2025] Open
Abstract
The growing global interest in edible insects as a sustainable protein source has positioned them as a promising solution to food security challenges. In Mexico, entomophagy is deeply embedded in cultural traditions, particularly in Oaxaca, where grasshoppers, leafcutter ants, and red agave worms form an integral part of the region's intangible heritage. This study conducted a bibliometric analysis of global research on edible insects (2009-2023) using Scopus and tools such as VOSviewer and Bibliometrix to analyze 218 publications. The analysis highlighted research trends, influential authors, and key themes, including nutrition, biosafety, and sustainability. To complement the bibliometric study, an exploratory analysis of edible insect commercialization in Oaxaca was conducted, focusing on virtual platforms and local markets. The findings reveal consistent global growth in edible insect research, with Mexico contributing six publications between 2020 and 2023. Despite advancements in safety standards and regulatory frameworks globally, Mexico still lacks formal sanitary controls and regulations for insect-based products. Nevertheless, its diverse commercialization efforts and rich cultural heritage, particularly in Oaxaca, showcase its potential to bridge tradition and innovation. This study highlights the urgent need for regulatory frameworks and research capacity to ensure safety, preserve cultural identity, and sustainably expand Mexico's edible insect market.
Collapse
Affiliation(s)
- Keyla Cruz-García
- Instituto Politécnico Nacional, CIIDIR Unidad Oaxaca, Santa Cruz Xoxocotlán 71230, Oaxaca, Mexico; (K.C.-G.); (T.A.-B.); (T.A.-L.)
| | - Yolanda Donají Ortiz-Hernández
- Instituto Politécnico Nacional, CIIDIR Unidad Oaxaca, Santa Cruz Xoxocotlán 71230, Oaxaca, Mexico; (K.C.-G.); (T.A.-B.); (T.A.-L.)
| | - Marco Aurelio Acevedo-Ortiz
- Secretaría de Ciencias, Humanidades, Tecnología e Innovación (SECIHTI), Instituto Politécnico Nacional, CIIDIR Unidad Oaxaca, Santa Cruz Xoxocotlán 71230, Oaxaca, Mexico;
| | - Teodulfo Aquino-Bolaños
- Instituto Politécnico Nacional, CIIDIR Unidad Oaxaca, Santa Cruz Xoxocotlán 71230, Oaxaca, Mexico; (K.C.-G.); (T.A.-B.); (T.A.-L.)
| | - Tlacaelel Aquino-López
- Instituto Politécnico Nacional, CIIDIR Unidad Oaxaca, Santa Cruz Xoxocotlán 71230, Oaxaca, Mexico; (K.C.-G.); (T.A.-B.); (T.A.-L.)
| | - Gema Lugo-Espinosa
- Secretaría de Ciencias, Humanidades, Tecnología e Innovación (SECIHTI), Instituto Politécnico Nacional, CIIDIR Unidad Oaxaca, Santa Cruz Xoxocotlán 71230, Oaxaca, Mexico;
| | | |
Collapse
|
2
|
Alagappan S, Dong A, Hoffman L, Cozzolino D, Mantilla SO, James P, Yarger O, Mikkelsen D. Microbial safety of black soldier fly larvae (Hermetia illucens) reared on food waste streams. WASTE MANAGEMENT (NEW YORK, N.Y.) 2025; 194:221-227. [PMID: 39823855 DOI: 10.1016/j.wasman.2025.01.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/24/2024] [Accepted: 01/11/2025] [Indexed: 01/20/2025]
Abstract
Black soldier fly larvae (BSFL) can valorise different organic matter and yield a product of high nutritional value. The lack of knowledge about the microbial safety of BSFL grown on different organic waste streams influences the commercialisation of BSFL as stockfeed ingredient. This study evaluates the microbial safety of BSFL grown on five different commercial food waste streams collected from two commercial production facilities. The effect of larval instar and post-harvest treatments (blanching and drying) on the microbial quality of the larvae was also investigated. The results of this study showed that spore forming bacteria including B. cereus and C. perfringens appeared in higher concentration (1.3 log CFU/g - 6.6 log CFU/g) compared to yeast and moulds (1.3 log CFU/g - 4.4 log CFU/g) depending on the waste utilised. The microbial counts for the different pathogens that tested positive were higher for larvae reared with simpler homogenous waste streams (SW and BV diets). The results also showed that blanching reduced the counts of Y&M and C. perfringens compared to those observed in the unprocessed larvae. The thermal processing methods could ensure that BSFL met the microbial safety criteria determined for animal feeds by regulatory bodies. Overall, the results of this study revealed that BSFL reared on commercial waste streams can be safe against several pathogenic microbes including Listeria monocytogenes, Salmonella, Escherichia coli and Staphylococcus aureus. The 6th instar larvae (pre-pupae) have lower microbial counts than the 5th instar BSFL, attributed to the antimicrobial effect of some fatty acids present in the larvae. The outcomes of this study will assist in the development of guidelines for good manufacturing practices for commercial BSFL manufacturers, thereby promoting the quality and commercialisation of the product.
Collapse
Affiliation(s)
- Shanmugam Alagappan
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Brisbane, Queensland 4072, Australia; End Food Waste Cooperative Research Centre, Wine Innovation Central Building Level 1, Waite Campus, Urrbrae, SA 5064, Australia
| | - Anran Dong
- School of Agriculture and Food Sustainability, Faculty of Science, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Louwrens Hoffman
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Brisbane, Queensland 4072, Australia; End Food Waste Cooperative Research Centre, Wine Innovation Central Building Level 1, Waite Campus, Urrbrae, SA 5064, Australia
| | - Daniel Cozzolino
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Brisbane, Queensland 4072, Australia.
| | - Sandra Olarte Mantilla
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Peter James
- Centre for Animal Science, Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Olympia Yarger
- Goterra, 14 Arnott Street, Hume, Australian Capital Territory, 2620, Australia
| | - Deirdre Mikkelsen
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Brisbane, Queensland 4072, Australia; School of Agriculture and Food Sustainability, Faculty of Science, University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
3
|
Zhang H, Sun H, Liu L, Liao Y, Lu Y, Xia Q. Antioxidant response fail to rescue growth of Hermetia illucens L. larvae induced by copper accumulated during long-term exposure. Comp Biochem Physiol C Toxicol Pharmacol 2025; 287:110074. [PMID: 39522854 DOI: 10.1016/j.cbpc.2024.110074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/16/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
Antioxidant indices and hemocytes apoptosis in the 6th instar larvae of Hermetia illucens., and their correlation with larval growth were evaluated by exposing larvae to different concentrations of Cu2+ for 1, 3 and 5 generations. Cu2+ accumulated in larval hemolymph showed significant dose-dependent relationship with Cu2+ concentrations in diets within a generation. Larval growth was only promoted after low concentrations of Cu2+ exposure for 1 generation, while seriously affected after high concentrations of Cu2+ exposure. Though total antioxidant capacity activity in larval hemolymph in treatment groups was all higher than that in control, it was increased at lower levels of Cu2+, while decreased with increasing Cu2+ concentrations at higher levels of Cu2+ exposure. The catalase (CAT) activity and metallothioneins (MTs) levels were also characterized as improved at lower levels of Cu2+, and inhibited at higher levels of Cu2+ exposure. However, CAT activity and MTs levels at higher Cu2+ treatments were significantly lower than that in control. Apoptosis rate of hemocytes was increased with increasing Cu2+ concentrations. Annexin V - fluorescein isothiocyanate (FITC)/ propidium iodide (PI) staining was in accordance with the results exhibited in flow cytometer. Results from transmission electron microscope and comet assay further confirmed that membrane blebbing, nuclear condensation, and DNA fragmentation were gradually apparent with increasing Cu2+ concentration. All parameters in different generation had similar dose-dependent trends, but the effects were strongest in the fifth generation. This study indicated that at some extent growth of H. illucens were associated with antioxidant responses and apoptosis induced by Cu2+.
Collapse
Affiliation(s)
- Huijie Zhang
- Department of Immunology, School of Basic Medicine, Zunyi Medical University, Zhuhai Campus, Zhuhai, China
| | - Hongxia Sun
- Department of Immunology, School of Basic Medicine, Zunyi Medical University, Zhuhai Campus, Zhuhai, China
| | - Lin Liu
- Department of Immunology, School of Basic Medicine, Zunyi Medical University, Zhuhai Campus, Zhuhai, China
| | - Ye Liao
- Department of Immunology, School of Basic Medicine, Zunyi Medical University, Zhuhai Campus, Zhuhai, China
| | - Yanxin Lu
- Department of Immunology, School of Basic Medicine, Zunyi Medical University, Zhuhai Campus, Zhuhai, China
| | - Qiang Xia
- Department of Immunology, School of Basic Medicine, Zunyi Medical University, Zhuhai Campus, Zhuhai, China.
| |
Collapse
|
4
|
Rugji J, Erol Z, Taşçı F, Musa L, Hamadani A, Gündemir MG, Karalliu E, Siddiqui SA. Utilization of AI - reshaping the future of food safety, agriculture and food security - a critical review. Crit Rev Food Sci Nutr 2024:1-45. [PMID: 39644464 DOI: 10.1080/10408398.2024.2430749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2024]
Abstract
Artificial intelligence is an emerging technology which harbors a suite of mechanisms that have the potential to be leveraged for reaping value across multiple domains. Lately, there is an increased interest in embracing applications associated with Artificial Intelligence to positively contribute to food safety. These applications such as machine learning, computer vision, predictive analytics algorithms, sensor networks, robotic inspection systems, and supply chain optimization tools have been established to contribute to several domains of food safety such as early warning of outbreaks, risk prediction, detection and identification of food associated pathogens. Simultaneously, the ambition toward establishing a sustainable food system has motivated the adoption of cutting-edge technologies such as Artificial Intelligence to strengthen food security. Given the myriad challenges confronting stakeholders in their endeavors to safeguard food security, Artificial Intelligence emerges as a promising tool capable of crafting holistic management strategies for food security. This entails maximizing crop yields, mitigating losses, and trimming operational expenses. AI models present notable benefits in efficiency, precision, uniformity, automation, pattern identification, accessibility, and scalability for food security endeavors. The escalation in the global trend for adopting alternative protein sources such as edible insects and microalgae as a sustainable food source reflects a growing recognition of the need for sustainable and resilient food systems to address the challenges of population growth, environmental degradation, and food insecurity. Artificial Intelligence offers a range of capabilities to enhance food safety in the production and consumption of alternative proteins like microalgae and edible insects, contributing to a sustainable and secure food system.
Collapse
Affiliation(s)
- Jerina Rugji
- Department of Food Hygiene and Technology, Burdur Mehmet Akif Ersoy University, Burdur, Turkey
- Department of Food Science, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Zeki Erol
- Department of Food Hygiene and Technology, Necmettin Erbakan University, Ereğli, Konya, Turkey
| | - Fulya Taşçı
- Department of Food Hygiene and Technology, Burdur Mehmet Akif Ersoy University, Burdur, Turkey
| | - Laura Musa
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Milan, Italy
| | - Ambreen Hamadani
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | | | - Esa Karalliu
- Department of Infectious Diseases and Public Health, City University of Hong Kong, Hong Kong
| | | |
Collapse
|
5
|
Khan S, Shi X, Cai R, Zhao S, Li X, Khan IM, Yin Z, Lu H, Hilal MG, Yi R, Wu Y, Guo J. Assessing the performance, egg quality, serum analysis, heavy metals and essential trace metals accumulation in laying hen eggs and tissues fed black soldier fly (Hermetia illucens) larvae meal. Poult Sci 2024; 103:104315. [PMID: 39316985 PMCID: PMC11462471 DOI: 10.1016/j.psj.2024.104315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/31/2024] [Accepted: 09/05/2024] [Indexed: 09/26/2024] Open
Abstract
Black soldier fly (BSF) larvae convert wastes into protein, playing a vital role in addressing the challenge of sustainable poultry production. These larvae accumulate toxic substances, posing a risk to feed and food safety. This study investigates the effects of substituting soybean meal with different levels of BSF larvae meal on laying performance, egg quality, serum analysis, and the deposition of various metals in eggs, meat, and excreta. A total of 1,008 Lohmann hens (age 48 wk) were randomly assigned to 4 treatments. The treatments consisted of corn-soybean meal (CK) diet replaced with 7% (BSF7), 14% (BSF14), and 21% (BSF21) BSF larvae meal. Each treatment consisted of 6 replicates with 42 hens each and the trial lasted for 8 wk. Dietary BSF larvae meal treatments increased (linear, P < 0.05) the laying rate (1.52 to 1.95%) and decreased (linear, P < 0.01) the feed intake (3.64-3.86 g) during the entire experiment. During 48 to 52 wk, egg weight was decreased (P < 0.001) 0.93 g for the BSF21 group compared to CK group, however, during 52-56 wk, no differences in egg weight were observed among treatments. The addition of BSF larvae meal enhanced the eggshell strength (linear, P < 0.05), with no effect on the albumen height and yolk weight (P > 0.05). Low transfer of arsenic, lead, and cadmium concentration was observed in the egg yolk and egg white across different treatments (P > 0.05). Conversely, the concentrations of these metals and iron showed an increase, while Zinc exhibited a decrease in excreta as the dietary intake of BSF larvae meal increased. The chromium and iron increased linearly (P < 0.001) in the egg white with the inclusion of BSF larvae meal. Egg white iron and chromium showed a strong positive correlation with the dietary zinc and copper. Taken together, BSF larvae can replace soybean meal completely in laying diet, however, careful attention requires to elevated metal levels in diet and excreta.
Collapse
Affiliation(s)
- Samiullah Khan
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University; Guiyang, 550025, PR China
| | - Xiaoli Shi
- College of Animal Science, Guizhou University, Guiyang, 550025, PR China
| | - Renlian Cai
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University; Guiyang, 550025, PR China
| | - Shuai Zhao
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University; Guiyang, 550025, PR China
| | - Xialin Li
- College of Resource and Environment Engineering, Guizhou University, Guiyang, 550025, PR China
| | - Ibrar Muhammad Khan
- School of Life Science, Anhui Agricultural University, Hefei, 230036, Anhui, PR China
| | - Zhiyong Yin
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University; Guiyang, 550025, PR China
| | - Hongpei Lu
- College of Resource and Environment Engineering, Guizhou University, Guiyang, 550025, PR China
| | - Mian Gul Hilal
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Key Laboratory of Biohazard Monitoring and Green Prevention and Control in Artificial Grassland, Ministry of Agriculture and Rural Affairs, Hohhot, PR China
| | - Ren Yi
- North Alabama International College of Engineering and Technology, Guiyang 550025, PR China
| | - Yonggui Wu
- College of Resource and Environment Engineering, Guizhou University, Guiyang, 550025, PR China
| | - Jianjun Guo
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University; Guiyang, 550025, PR China.
| |
Collapse
|
6
|
Cesar CGL, Marchi PH, Amaral AR, Príncipe LDA, do Carmo AA, Zafalon RVA, Miyamoto NN, Garcia NACR, Balieiro JCDC, Vendramini THA. An Assessment of the Impact of Insect Meal in Dry Food on a Dog with a Food Allergy: A Case Report. Animals (Basel) 2024; 14:2859. [PMID: 39409808 PMCID: PMC11476448 DOI: 10.3390/ani14192859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
Food allergy triggers an immune response to dietary proteins, resulting in food rejection and dermatological and gastrointestinal manifestations. The preferred therapies include diets with hydrolyzed proteins or unusual single-source proteins, with insect protein emerging as a promising option, with no reported allergic reactions in dogs with a food allergy. In this case study, the effects of including black soldier fly larva (BSFL) meal were observed in a 5-year-old spayed beagle previously diagnosed with a food allergy. The objective was to assess the potential of BSFL meal as an adjunct in treating a food allergy. As part of the protocol, two nutritionally very similar diets were used, differing only in the protein source: the control diet, with poultry by-product meal; and the BSFL diet, which completely replaced the poultry by-product meal. After a 12-day adaptation period to the BSFL diet, the dog showed no gastrointestinal changes, maintaining an adequate fecal score and no clinical signs of the disease. A challenge test with the control diet resulted in episodic gastrointestinal symptoms, which were reversed within two days by reintroducing the BSFL diet. The BSFL protein-based diet was effective in controlling the dog's clinical signs.
Collapse
Affiliation(s)
- Cinthia Gonçalves Lenz Cesar
- Pet Nutrology Research Center (CEPEN Pet), Department of Animal Nutrition and Production, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Pirassununga 13635-000, Brazil; (C.G.L.C.); (P.H.M.); (L.d.A.P.); (A.A.d.C.); (R.V.A.Z.); (J.C.d.C.B.)
| | - Pedro Henrique Marchi
- Pet Nutrology Research Center (CEPEN Pet), Department of Animal Nutrition and Production, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Pirassununga 13635-000, Brazil; (C.G.L.C.); (P.H.M.); (L.d.A.P.); (A.A.d.C.); (R.V.A.Z.); (J.C.d.C.B.)
| | - Andressa Rodrigues Amaral
- Veterinary Nutrology Service, Veterinary University Hospital, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo 05508-270, Brazil;
| | - Leonardo de Andrade Príncipe
- Pet Nutrology Research Center (CEPEN Pet), Department of Animal Nutrition and Production, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Pirassununga 13635-000, Brazil; (C.G.L.C.); (P.H.M.); (L.d.A.P.); (A.A.d.C.); (R.V.A.Z.); (J.C.d.C.B.)
| | - Adrielly Aparecida do Carmo
- Pet Nutrology Research Center (CEPEN Pet), Department of Animal Nutrition and Production, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Pirassununga 13635-000, Brazil; (C.G.L.C.); (P.H.M.); (L.d.A.P.); (A.A.d.C.); (R.V.A.Z.); (J.C.d.C.B.)
| | - Rafael Vessecchi Amorim Zafalon
- Pet Nutrology Research Center (CEPEN Pet), Department of Animal Nutrition and Production, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Pirassununga 13635-000, Brazil; (C.G.L.C.); (P.H.M.); (L.d.A.P.); (A.A.d.C.); (R.V.A.Z.); (J.C.d.C.B.)
| | | | | | - Júlio Cesar de Carvalho Balieiro
- Pet Nutrology Research Center (CEPEN Pet), Department of Animal Nutrition and Production, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Pirassununga 13635-000, Brazil; (C.G.L.C.); (P.H.M.); (L.d.A.P.); (A.A.d.C.); (R.V.A.Z.); (J.C.d.C.B.)
- Veterinary Nutrology Service, Veterinary University Hospital, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo 05508-270, Brazil;
| | - Thiago Henrique Annibale Vendramini
- Pet Nutrology Research Center (CEPEN Pet), Department of Animal Nutrition and Production, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Pirassununga 13635-000, Brazil; (C.G.L.C.); (P.H.M.); (L.d.A.P.); (A.A.d.C.); (R.V.A.Z.); (J.C.d.C.B.)
- Veterinary Nutrology Service, Veterinary University Hospital, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo 05508-270, Brazil;
| |
Collapse
|
7
|
Awasthi MK, Dregulo AM, Yadav A, Kumar V, Solanki MK, Garg VK, Sindhu R. Hormesis of black soldier fly larva: Influence and interactions in livestock manure recycling. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 369:122352. [PMID: 39232324 DOI: 10.1016/j.jenvman.2024.122352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 07/20/2024] [Accepted: 08/30/2024] [Indexed: 09/06/2024]
Abstract
Black soldier fly larvae (BSFL) are considered important organisms, utilized as tools to transform waste including manure into valuable products. The growth and cultivation of BSFL are influenced by various factors, such as the presence of toxic substances in the feed and parasites. These factors play a crucial role in hormesis, and contributing to regulate these contaminants hermetic doses to get sustainable byproducts. This review aims to understand the effects on BSFL growth and activities in the presence of compounds like organic and inorganic pollutants. It also assesses the impact of microbes on BSFL growth and explores the bioaccumulation of pharmaceutical compounds, specifically focusing on heavy metals, pesticides, pharmaceuticals, indigenous bacteria, insects, and nematodes. The review concludes by addressing knowledge gaps, proposing future biorefineries, and offering recommendations for further research.
Collapse
Affiliation(s)
- Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China.
| | - Andrei Mikhailovich Dregulo
- National Research University Higher School of Economics, 17 Promyshlennaya str, 198095, Saint-Petersburg, Russia
| | - Anoop Yadav
- Department of Environmental Studies, Central University of Haryana, Mahendergarh, Haryana, 123031, India
| | - Vinay Kumar
- Biomaterials & Tissue Engineering (BITE) Laboratory, Department of Community Medicine, Saveetha Medical College and Hospital Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Thandalam-602105, India
| | - Manoj Kumar Solanki
- Department of Life Sciences and Biological Sciences, IES University, Bhopal, Madhya Pradesh, India; Plant Cytogenetics and Molecular Biology Group, Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, 40-032, Katowice, Poland
| | - Vinod Kumar Garg
- Department of Environmental Science and Technology, Central University of Punjab, Bathinda, 151001, India
| | - Raveendran Sindhu
- Department of Food Technology, TKM Institute of Technology, Kollam, 691505, Kerala, India
| |
Collapse
|
8
|
Oh JH, Karadeniz F, Yang J, Lee H, Choi MN, Jeon S, Park G, Kim J, Park K, Kong CS. Antioxidant, anti-inflammatory, anti-adipogenesis activities and proximate composition of Hermetia illucens larvae reared on food waste enriched with different wastes. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2024; 66:1034-1048. [PMID: 39398304 PMCID: PMC11466730 DOI: 10.5187/jast.2023.e87] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 07/06/2023] [Accepted: 08/10/2023] [Indexed: 10/15/2024]
Abstract
The use of insects as a food source is not a new idea, but it has gained momentum in recent years due to the need for sustainable protein source in livestock feedstuffs and for more environmentally friendly organic waste treatment. In the case of black soldier fly larvae, Hermetia illucens, research has focused on their ability to convert organic waste into usable nutrients and their potential as a protein source for animal and human consumption. In this study, black soldier fly larvae were reared on raw food waste (FW) mixed with garlic peel waste (G) and hydronic growth media waste (H) and the proximate composition and bioactive potential of black soldier fly larvae extract (SFL) were compared. Analysis showed that protein content of SFL fed with G was 4.21% higher and lipid content was 9.93% lower than FW. Similar results were obtained for SFL fed with H. Antioxidant activity of SFL-G was higher than that of SFL-FW and SFL-H. SFL-G treatment exhibited enhanced anti-inflammatory and anti-adipogenesis activities as well compared to SFL-FW. Current results suggested that feeding black soldier fly larvae with food waste added with garlic peel and hydroponic growth media waste resulted in increased nutritional value, polyphenol content and bioactivity for SFLs. In this context, garlic peel waste-added food waste was suggested a promising substrate for black soldier fly larvae to obtain high-quality protein source with enhanced antioxidant, anti-inflammatory and anti-adipogenic potential.
Collapse
Affiliation(s)
- Jung Hwan Oh
- Nutritional Education, Graduate School of
Education, Silla University, Busan 46958, Korea
- Marine Biotechnology Center for
Pharmaceuticals and Foods, College of Medical and Life Sciences, Silla
University, Busan 46958, Korea
| | - Fatih Karadeniz
- Marine Biotechnology Center for
Pharmaceuticals and Foods, College of Medical and Life Sciences, Silla
University, Busan 46958, Korea
| | - Jiho Yang
- Department of Food and Nutrition, College
of Medical and Life Sciences, Silla University, Busan 46958,
Korea
| | - Hyunjung Lee
- Department of Food and Nutrition, College
of Medical and Life Sciences, Silla University, Busan 46958,
Korea
| | - Mi-Na Choi
- Department of Food and Nutrition, College
of Medical and Life Sciences, Silla University, Busan 46958,
Korea
| | - Seongeun Jeon
- Department of Food and Nutrition, College
of Medical and Life Sciences, Silla University, Busan 46958,
Korea
| | | | - Jongju Kim
- Daum Agricultural Co., Ltd.,
Hadong, 52353, Korea
| | - Kwanho Park
- Department of Agricultural Biology,
National Institute of Agricultural Sciences, Wanju 55365,
Korea
| | - Chang-Suk Kong
- Marine Biotechnology Center for
Pharmaceuticals and Foods, College of Medical and Life Sciences, Silla
University, Busan 46958, Korea
- Department of Food and Nutrition, College
of Medical and Life Sciences, Silla University, Busan 46958,
Korea
| |
Collapse
|
9
|
Karnaneedi S, Johnston EB, Bose U, Juhász A, Broadbent JA, Ruethers T, Jerry EM, Kamath SD, Limviphuvadh V, Stockwell S, Byrne K, Clarke D, Colgrave ML, Maurer-Stroh S, Lopata AL. The Allergen Profile of Two Edible Insect Species-Acheta domesticus and Hermetia illucens. Mol Nutr Food Res 2024; 68:e2300811. [PMID: 39022859 DOI: 10.1002/mnfr.202300811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 05/31/2024] [Indexed: 07/20/2024]
Abstract
SCOPE Edible insect proteins are increasingly introduced as an alternative sustainable food source to address the world's need to feed the growing population. Tropomyosin is the main insect allergen; however, additional potential allergens are not well characterized and the impact of extraction procedures on immunological reactivity is unknown. METHODS AND RESULTS Proteins from different commercial food products derived from cricket (Acheta domesticus) and black soldier fly (BSF) (Hermetia illucens) are extracted using five different extraction buffers. The proteins are analyzed by SDS-PAGE and immunoblotting using allergen-specific antibodies and crustacean allergic patient sera. IgE binding bands are analyzed by mass spectrometry as well as the complete allergen profile of all 30 extracts. Urea-based buffers are most efficient in extracting insect allergens. Shrimp-specific antibody cross-reactivity to tropomyosin from cricket and BSF indicates high sequence and structural similarity between shrimp and insects. Additional unique allergens are identified in both species, including hemocyanin, vitellogenin, HSP20, apolipophorin-III, and chitin-binding protein. CONCLUSIONS Identifying potential allergenic proteins and their isoforms in cricket and BSF requires specific extraction approaches using urea-based methods. While tropomyosin is the most abundant and immunoreactive allergen, seven unique allergens are identified, highlighting the need for insect species-specific allergen detection in food products.
Collapse
Affiliation(s)
- Shaymaviswanathan Karnaneedi
- Molecular Allergy Research Laboratory, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, 4811, Australia
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Queensland, 4811, Australia
- Centre for Food and Allergy Research, Murdoch Children's Research Institute, Melbourne, Victoria, 3052, Australia
| | - Elecia B Johnston
- Molecular Allergy Research Laboratory, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, 4811, Australia
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Queensland, 4811, Australia
- Centre for Food and Allergy Research, Murdoch Children's Research Institute, Melbourne, Victoria, 3052, Australia
| | - Utpal Bose
- CSIRO Agriculture and Food, 306 Carmody Rd, St Lucia, Queensland, 4067, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, School of Science, Edith Cowan University, Joondalup, Western Australia, 6027, Australia
| | - Angéla Juhász
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, School of Science, Edith Cowan University, Joondalup, Western Australia, 6027, Australia
| | - James A Broadbent
- CSIRO Agriculture and Food, 306 Carmody Rd, St Lucia, Queensland, 4067, Australia
| | - Thimo Ruethers
- Molecular Allergy Research Laboratory, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, 4811, Australia
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Queensland, 4811, Australia
- Centre for Food and Allergy Research, Murdoch Children's Research Institute, Melbourne, Victoria, 3052, Australia
- Tropical Futures Institute, James Cook University Singapore, 149 Sims Drive, Singapore, 387380, Singapore
| | - Emily M Jerry
- Molecular Allergy Research Laboratory, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, 4811, Australia
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Queensland, 4811, Australia
- Centre for Food and Allergy Research, Murdoch Children's Research Institute, Melbourne, Victoria, 3052, Australia
| | - Sandip D Kamath
- Molecular Allergy Research Laboratory, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, 4811, Australia
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Queensland, 4811, Australia
- Centre for Food and Allergy Research, Murdoch Children's Research Institute, Melbourne, Victoria, 3052, Australia
| | - Vachiranee Limviphuvadh
- Biomolecular Function Discovery Division, Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore, 138671, Singapore
- IFCS Programme, Singapore Institute for Food and Biotechnology Innovation, Agency for Science, Technology and Research (A*STAR), Singapore, 138669, Singapore
| | - Sally Stockwell
- CSIRO Agriculture and Food, 306 Carmody Rd, St Lucia, Queensland, 4067, Australia
| | - Keren Byrne
- CSIRO Agriculture and Food, 306 Carmody Rd, St Lucia, Queensland, 4067, Australia
| | - Dean Clarke
- National Measurement Institute, Melbourne, Victoria, 3207, Australia
| | - Michelle L Colgrave
- CSIRO Agriculture and Food, 306 Carmody Rd, St Lucia, Queensland, 4067, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, School of Science, Edith Cowan University, Joondalup, Western Australia, 6027, Australia
| | - Sebastian Maurer-Stroh
- Biomolecular Function Discovery Division, Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore, 138671, Singapore
- IFCS Programme, Singapore Institute for Food and Biotechnology Innovation, Agency for Science, Technology and Research (A*STAR), Singapore, 138669, Singapore
- YLL School of Medicine and Department of Biological Sciences, National University of Singapore, Singapore, 117597, Singapore
| | - Andreas L Lopata
- Molecular Allergy Research Laboratory, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, 4811, Australia
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Queensland, 4811, Australia
- Centre for Food and Allergy Research, Murdoch Children's Research Institute, Melbourne, Victoria, 3052, Australia
- Tropical Futures Institute, James Cook University Singapore, 149 Sims Drive, Singapore, 387380, Singapore
| |
Collapse
|
10
|
Holowaty Y, Leufroy A, Mazurais C, Beauchemin D, Jitaru P. Multi-Elemental Analysis of Edible Insects, Scorpions, and Tarantulas from French (Online) Market and Human Health Risk Assessment Due to Their Consumption: A Pilot Study. Foods 2024; 13:2353. [PMID: 39123545 PMCID: PMC11311618 DOI: 10.3390/foods13152353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/24/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
Edible insects are becoming increasingly popular as protein alternatives to traditional animal-based products. As such, information on their elemental composition is important to ensure they are safe for human consumption. This article describes the development and validation of a rapid, reliable method for the simultaneous determination of 19 elements (Al, As, B, Ba, Ca, Cd, Co, Cr, Cu, Fe, K, Mg, Mn, Mo, Na, Pb, Se, Sr, and Zn) in edible insects by inductively coupled plasma mass spectrometry (ICP-MS) following closed vessel microwave digestion. The method was validated using three insect certified reference materials, namely black soldier fly larvae meal (BFLY-1), cricket flour (KRIK-1), and mealworm powder (VORM-1). The method was applied to analyze twelve different (whole) insect species. The maximum amount of each sample was calculated for As, Cd, and Pb with respect to their provisional tolerable daily intake values established by the Food and Agricultural Organization/World Health Organization. Most of the samples, except for scorpions and tarantulas, were safe to consume at large doses (1000-10,000 insects per day). Furthermore, most of the samples contained high levels of Fe, K, Na, and Zn, providing a preliminary overview of the nutritional profile of these novel protein alternatives.
Collapse
Affiliation(s)
- Yulianna Holowaty
- Department of Chemistry, Queen’s University, 90 Bader Lane, Kingston, ON K7L 3N6, Canada; (Y.H.); (D.B.)
| | - Axelle Leufroy
- Laboratory for Food Safety, University Paris East Creteil, Anses, F-94700 Maisons-Alfort, France; (A.L.); (C.M.)
| | - Clément Mazurais
- Laboratory for Food Safety, University Paris East Creteil, Anses, F-94700 Maisons-Alfort, France; (A.L.); (C.M.)
| | - Diane Beauchemin
- Department of Chemistry, Queen’s University, 90 Bader Lane, Kingston, ON K7L 3N6, Canada; (Y.H.); (D.B.)
| | - Petru Jitaru
- Laboratory for Food Safety, University Paris East Creteil, Anses, F-94700 Maisons-Alfort, France; (A.L.); (C.M.)
| |
Collapse
|
11
|
Kofroňová J, Melliti A, Vurm R. Biogas Digestate and Sewage Sludge as Suitable Feeds for Black Soldier Fly ( Hermetia illucens) Larvae. TOXICS 2024; 12:414. [PMID: 38922094 PMCID: PMC11209106 DOI: 10.3390/toxics12060414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/27/2024]
Abstract
Hermetia illucens larvae can use organic wastes as a substrate, which makes them an interesting potential feed. However, waste may contain heavy metals, which are limited in feed. Here, we investigated the ability of H. illucens to grow on organic wastes and measured their heavy metal bioaccumulation. The larvae were fed with food waste, biogas digestates, and sewage sludge. When the first adult fly was visible, the tests were stopped and the larvae immediately processed. The samples (wastes before use, larvae after feeding) were analysed for mineral nutrient and heavy metal content using AAS and ICP-OES, respectively. The results show that the weight of the larvae fed with food waste increased sevenfold, which was broadly in line with expectations. Those fed with sewage sludge and digestate from biogas station increased threefold. While the larvae fed with sewage sludge exceeded the limits for heavy metals, particularly Cd and Pb, in feedstock, those fed with biogas digestate and food waste did not. These findings add to the literature showing the suitability of different wastes as H. illucens feed, and the importance of excluding waste contaminated with heavy metals from larvae intended for use as animal feed, or else diverting these larvae to non-feed uses.
Collapse
Affiliation(s)
- Jana Kofroňová
- Department of Environmental Chemistry, Faculty of Environmental Technology, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic; (A.M.); (R.V.)
| | | | | |
Collapse
|
12
|
Lai‐Foenander AS, Kuppusamy G, Manogoran J, Xu T, Chen Y, Tang SY, Ser H, Yow Y, Goh KW, Ming LC, Chuah L, Yap W, Goh B. Black soldier fly ( Hermetia illucens L.): A potential small mighty giant in the field of cosmeceuticals. Health Sci Rep 2024; 7:e2120. [PMID: 38831777 PMCID: PMC11144625 DOI: 10.1002/hsr2.2120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 04/04/2024] [Accepted: 04/27/2024] [Indexed: 06/05/2024] Open
Abstract
Background and Aims Natural products are widely used in the pharmaceutical and cosmetics industries due to their high-value bioactive compounds, which make for "greener" and more environmentally friendly ingredients. These natural compounds are also considered a safer alternative to antibiotics, which may result in antibiotic resistance as well as unfavorable side effects. The development of cosmeceuticals, which combine the cosmetic and pharmaceutical fields to create skincare products with therapeutic value, has increased the demand for unique natural resources. The objective of this review is to discuss the biological properties of extracts derived from larvae of the black soldier fly (BSF; Hermetia illucens), the appropriate extraction methods, and the potential of this insect as a novel active ingredient in the formulation of new cosmeceutical products. This review also addresses the biological actions of compounds originating from the BSF, and the possible association between the diets of BSF larvae and their subsequent bioactive composition. Methods A literature search was conducted using PubMed and Google Scholar to identify and evaluate the various biological properties of the BSF. Results One such natural resource that may be useful in the cosmeceutical field is the BSF, a versatile insect with numerous potential applications due to its nutrient content and scavenging behavior. Previous research has also shown that the BSF has several biological properties, including antimicrobial, antioxidant, anti-inflammatory, and wound healing effects. Conclusion Given the range of biological activities and metabolites possessed by the BSF, this insect may have the cosmeceutical potential to treat a number of skin pathologies.
Collapse
Affiliation(s)
- Ashley Sean Lai‐Foenander
- Biofunctional Molecule Exploratory Research Group, School of PharmacyMonash University MalaysiaBandar SunwayMalaysia
| | - Giva Kuppusamy
- Laboratory of Molecular Biology, Department of Research and DevelopmentGK Aqua Sdn Bhd, Port DicksonNegeri SembilanMalaysia
| | - Janaranjani Manogoran
- Laboratory of Molecular Biology, Department of Research and DevelopmentGK Aqua Sdn Bhd, Port DicksonNegeri SembilanMalaysia
| | - Tengfei Xu
- College of Pharmaceutical SciencesZhejiang UniversityHangzhouChina
| | - Yong Chen
- College of Pharmaceutical SciencesZhejiang UniversityHangzhouChina
| | - Siah Ying Tang
- Chemical Engineering Discipline, School of EngineeringMonash University Malaysia, Bandar SunwaySelangor Darul EhsanMalaysia
| | - Hooi‐Leng Ser
- Department of Biological SciencesSchool of Medical and Life Sciences, Sunway UniversityBandar SunwayMalaysia
| | - Yoon‐Yen Yow
- Department of Biological SciencesSchool of Medical and Life Sciences, Sunway UniversityBandar SunwayMalaysia
| | - Khang Wen Goh
- Faculty of Data Science and Information TechnologyINTI International UniversityNilaiMalaysia
| | - Long Chiau Ming
- Department of Medical SciencesSchool of Medical and Life Sciences, Sunway UniversityBandar SunwayMalaysia
| | - Lay‐Hong Chuah
- Biofunctional Molecule Exploratory Research Group, School of PharmacyMonash University MalaysiaBandar SunwayMalaysia
| | - Wei‐Hsum Yap
- School of BiosciencesTaylor's University, Subang JayaSelangorMalaysia
- Centre for Drug Discovery and Molecular Pharmacology (CDDMP)Faculty of Health and Medical Sciences (FHMS), Taylor's University, Subang JayaSelangorMalaysia
| | - Bey‐Hing Goh
- Biofunctional Molecule Exploratory Research Group, School of PharmacyMonash University MalaysiaBandar SunwayMalaysia
- College of Pharmaceutical SciencesZhejiang UniversityHangzhouChina
- Sunway Biofunctional Molecules Discovery Centre (SBMDC)School of Medical and Life Sciences, Sunway UniversitySunwayMalaysia
- Faculty of Health, Australian Research Centre in Complementary and Integrative MedicineUniversity of Technology SydneyUltimoNSWAustralia
| |
Collapse
|
13
|
Shelomi M. Mitigation Strategies against Food Safety Contaminant Transmission from Black Soldier Fly Larva Bioconversion. Animals (Basel) 2024; 14:1590. [PMID: 38891637 PMCID: PMC11171339 DOI: 10.3390/ani14111590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/16/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
The black soldier fly larva, Hermetia illucens, can efficiently convert organic waste into biomatter for use in animal feed. This circularity comes with a risk of contaminating downstream consumers of the larval products with microbes, heavy metals, and other hazards potentially present in the initial substrate. This review examines research on mitigation techniques to manage these contaminants, from pretreatment of the substrate to post-treatment of the larvae. While much research has been done on such techniques, little of it focused on their effects on food safety contaminants. Cheap and low-technology heat treatment can reduce substrate and larval microbial load. Emptying the larval gut through starvation is understudied but promising. Black soldier fly larvae accumulate certain heavy metals like cadmium, and their ability to process certain hazards is unknown, which is why some government authorities are erring on the side of caution regarding how larval bioconversion can be used within feed production. Different substrates have different risks and some mitigation strategies may affect larval rearing performance and the final products negatively, so different producers will need to choose the right strategy for their system to balance cost-effectiveness with sustainability and safety.
Collapse
Affiliation(s)
- Matan Shelomi
- Department of Entomology, National Taiwan University, 106319 Taipei, Taiwan
| |
Collapse
|
14
|
Brulé L, Misery B, Baudouin G, Yan X, Guidou C, Trespeuch C, Foltyn C, Anthoine V, Moriceau N, Federighi M, Boué G. Evaluation of the Microbial Quality of Hermetia illucens Larvae for Animal Feed and Human Consumption: Study of Different Type of Rearing Substrates. Foods 2024; 13:1587. [PMID: 38790886 PMCID: PMC11120926 DOI: 10.3390/foods13101587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/17/2024] [Accepted: 04/25/2024] [Indexed: 05/26/2024] Open
Abstract
In the context of climate change and depletion of natural resources, meeting the growing demand for animal feed and human food through sufficient, nutritious, safe, and affordable sources of protein is becoming a priority. The use of Hermetia illucens, the black soldier fly (BSF), has emerged as a strategy to enhance the circularity of the agri-food chain, but its microbiological safety remains a concern. The aim of the present study was to systematically review available data on the microbiological quality of BSF and to investigate the impact of using four different rearing substrates including classic options allowed by the EU regulation (cereals, fruits, vegetables) and options not allowed by EU regulations regarding vegetable agri-food (co-products, food at shelf life, and meat). A total of 13 studies were collected and synthesized, including 910 sample results, while 102 new sample results were collected from the present experiments in three farms. Both datasets combined revealed a high level of contamination of larvae, potentially transmitted through the substrate. The main pathogenic bacteria identified were Bacillus cereus, Clostridium perfringens, Cronobacter spp., Escherichia coli, Salmonella spp., and Staphylococcus aureus coagulase-positive, while Campylobacter spp. and Listeria monocytogenes were not detected. Any of these four substrates were excluded for their use in insect rearing; however, safety concerns were confirmed and must be managed by the operators of the sector using microbial inactivation treatment after the harvest of the larvae in order to propose safe products for the market. The results obtained will guide the definition of the control criteria and optimize the following manufacturing steps.
Collapse
Affiliation(s)
- Lenaïg Brulé
- Oniris, Institut National de Recherche Pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), SECurité des ALIments et Microbiologie (SECALIM), 44300 Nantes, France; (L.B.); (B.M.); (X.Y.); (C.F.); (V.A.); (N.M.)
| | - Boris Misery
- Oniris, Institut National de Recherche Pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), SECurité des ALIments et Microbiologie (SECALIM), 44300 Nantes, France; (L.B.); (B.M.); (X.Y.); (C.F.); (V.A.); (N.M.)
| | - Guillaume Baudouin
- Cycle Farms, 6 Boulevard des Entrepreneurs, 49250 Beaufort en Anjou, France;
| | - Xin Yan
- Oniris, Institut National de Recherche Pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), SECurité des ALIments et Microbiologie (SECALIM), 44300 Nantes, France; (L.B.); (B.M.); (X.Y.); (C.F.); (V.A.); (N.M.)
| | - Côme Guidou
- MUTATEC—1998, Chemin du Mitan, 84300 Cavaillon, France; (C.G.); (C.T.)
| | | | - Camille Foltyn
- Oniris, Institut National de Recherche Pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), SECurité des ALIments et Microbiologie (SECALIM), 44300 Nantes, France; (L.B.); (B.M.); (X.Y.); (C.F.); (V.A.); (N.M.)
| | - Valérie Anthoine
- Oniris, Institut National de Recherche Pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), SECurité des ALIments et Microbiologie (SECALIM), 44300 Nantes, France; (L.B.); (B.M.); (X.Y.); (C.F.); (V.A.); (N.M.)
| | - Nicolas Moriceau
- Oniris, Institut National de Recherche Pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), SECurité des ALIments et Microbiologie (SECALIM), 44300 Nantes, France; (L.B.); (B.M.); (X.Y.); (C.F.); (V.A.); (N.M.)
| | - Michel Federighi
- EnvA/Anses, Laboratoire de Sécurité des Aliments, 94700 Maisons-Alfort, France;
| | - Géraldine Boué
- Oniris, Institut National de Recherche Pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), SECurité des ALIments et Microbiologie (SECALIM), 44300 Nantes, France; (L.B.); (B.M.); (X.Y.); (C.F.); (V.A.); (N.M.)
| |
Collapse
|
15
|
Bogusz R, Bryś J, Onopiuk A, Rybak K, Witrowa-Rajchert D, Nowacka M. Effect of Pulsed Electric Field Technology on the Composition and Bioactive Compounds of Black Soldier Fly Larvae Dried with Convective and Infrared-Convective Methods. Molecules 2023; 28:8121. [PMID: 38138608 PMCID: PMC10745468 DOI: 10.3390/molecules28248121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/11/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
In recent years, an increasing interest has been shown in alternative food sources. Many studies are focused on the use of insects. The aim of this study was to investigate the changes in the chemical and thermal properties of black soldier fly larvae influenced by the pulsed electric field (PEF) and convective (CD) or infrared-convective (IR-CD) drying techniques. Examinations of the basic chemical composition, properties of extracted fat (fatty acid composition, acid and peroxide values, and oxidative stability), total polyphenol content, antioxidant activity, allergen content, and thermogravimetric analysis (TGA) were performed. Generally, the results showed that dried black soldier fly larvae are a good source of protein and fat, up to 33% and 44%, respectively. The fat extracted from the dried insects consisted mainly of saturated fatty acids (above 75%), in particular lauric acid (C12:0). A good oxidative stability of the fat was also observed, especially from samples dried with the IR-CD method. The convective drying technique allowed for better preservation of protein content compared to samples dried with the IR-CD method. Nevertheless, samples treated with PEF were characterized by significantly lower protein content. The samples after PEF pretreatment, with an intensity of 20 and 40 kJ/kg and dried with the IR-CD method, were represented by a significantly higher total polyphenol content and antioxidant activity. Furthermore, in most cases, the convectively dried samples were characterized by a higher allergen content, both crustaceans and mollusks. Taking into account all of the investigated properties, it can be stated that the samples without treatment and those that were PEF-treated with an intensity of 40 kJ/kg and dried with the infrared-convective method (IR-CD) were the most rewarding from the nutritional point of view.
Collapse
Affiliation(s)
- Radosław Bogusz
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences—SGGW, Nowoursynowska 159c, 02-776 Warsaw, Poland; (R.B.); (K.R.)
| | - Joanna Bryś
- Department of Chemistry, Institute of Food Sciences, Warsaw University of Life Sciences—SGGW, Nowoursynowska 159c, 02-776 Warsaw, Poland;
| | - Anna Onopiuk
- Department of Technique and Food Development, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences—SGGW, Nowoursynowska 159c, 02-776 Warsaw, Poland;
| | - Katarzyna Rybak
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences—SGGW, Nowoursynowska 159c, 02-776 Warsaw, Poland; (R.B.); (K.R.)
| | - Dorota Witrowa-Rajchert
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences—SGGW, Nowoursynowska 159c, 02-776 Warsaw, Poland; (R.B.); (K.R.)
| | - Małgorzata Nowacka
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences—SGGW, Nowoursynowska 159c, 02-776 Warsaw, Poland; (R.B.); (K.R.)
| |
Collapse
|
16
|
Xu JH, Xiao S, Wang JH, Wang B, Cai YX, Hu WF. Comparative study of the effects of ultrasound-assisted alkaline extraction on black soldier fly (Hermetia illucens) larvae protein: Nutritional, structural, and functional properties. ULTRASONICS SONOCHEMISTRY 2023; 101:106662. [PMID: 37918292 PMCID: PMC10638069 DOI: 10.1016/j.ultsonch.2023.106662] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 10/12/2023] [Accepted: 10/26/2023] [Indexed: 11/04/2023]
Abstract
In this study, we developed an ultrasound-assisted alkaline method for extracting black soldier fly larvae protein (BSFLP). The effects of ultrasound-assisted extraction on the nutritional value, structural characteristics, and techno-functional properties of BSFLP were compared with those using the conventional hot alkali method. The results showed that ultrasound-assisted extraction significantly increased the extraction ratio of BSFLP from 55.40% to 80.37%, but reduced the purity from 84.19% to 80.75%. The BSFLP extracted by ultrasound-assisted extraction met the amino acid requirements for humans proposed by the Food and Agriculture Organization in 2013, and ultrasound-assisted extraction did not alter the limiting amino acids of the BSFLP. The ultrasound-assisted extraction increased the in vitro protein digestibility from 82.97% to 99.79%. Moreover, ultrasound-assisted extraction obtained BSFLP with a more ordered secondary structure and more loosely porous surface morphology, without breaking the peptide bonds. By contrast, the conventional hot alkaline method hydrolyzed BSFLP into smaller fragments. The effect of ultrasound-assisted extraction on the structure of BSFLP improved the solubility and emulsion capacity of BSFLP, but reduced its foaming properties. In conclusion, the results of this study suggest that ultrasound-assisted alkaline extraction could be a suitable method for extracting BSFLP and improving its nutritional value, and structural and functional properties. The findings obtained in this study could promote the wider application of BSFLP in food industry.
Collapse
Affiliation(s)
- Jia-Hao Xu
- School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, China; College of Food Science, South China Agricultural University, Guangzhou, 523006, China
| | - Shan Xiao
- School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, China; Engineering Research Center of Health Food Design & Nutrition Regulation, Dongguan University of Technology, Dongguan 523808, China.
| | - Ji-Hui Wang
- School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, China; Engineering Research Center of Health Food Design & Nutrition Regulation, Dongguan University of Technology, Dongguan 523808, China
| | - Bo Wang
- School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, China; Engineering Research Center of Health Food Design & Nutrition Regulation, Dongguan University of Technology, Dongguan 523808, China
| | - Yan-Xue Cai
- School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, China; Engineering Research Center of Health Food Design & Nutrition Regulation, Dongguan University of Technology, Dongguan 523808, China
| | - Wen-Feng Hu
- College of Food Science, South China Agricultural University, Guangzhou, 523006, China
| |
Collapse
|
17
|
Siddiqui SA, Tettey E, Yunusa BM, Ngah N, Debrah SK, Yang X, Fernando I, Povetkin SN, Shah MA. Legal situation and consumer acceptance of insects being eaten as human food in different nations across the world-A comprehensive review. Compr Rev Food Sci Food Saf 2023; 22:4786-4830. [PMID: 37823805 DOI: 10.1111/1541-4337.13243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 08/06/2023] [Accepted: 08/28/2023] [Indexed: 10/13/2023]
Abstract
Insect consumption is a traditional practice in many countries. Currently, the urgent need for ensuring food sustainability and the high pressure from degrading environment are urging food scientists to rethink the possibility of introducing edible insects as a promising food type. However, due to the lack of the standardized legislative rules and the adequate scientific data that demonstrate the safety of edible insects, many countries still consider it a grey area to introduce edible insects into food supply chains. In this review, we comprehensively reviewed the legal situation, consumer willingness, acceptance, and the knowledge on edible insect harvesting, processing as well as their safety concerns. We found that, despite the great advantage of introducing edible insects in food supply chains, the legal situation and consumer acceptance for edible insects are still unsatisfactory and vary considerably in different countries, which mostly depend on geographical locations and cultural backgrounds involving psychological, social, religious, and anthropological factors. Besides, the safety concern of edible insect consumption is still a major issue hurdling the promotion of edible insects, which is particularly concerning for countries with no practice in consuming insects. Fortunately, the situation is improving. So far, some commercial insect products like energy bars, burgers, and snack foods have emerged in the market. Furthermore, the European Union has also recently issued a specific item for regulating new foods, which is believed to establish an authorized procedure to promote insect-based foods and should be an important step for marketizing edible insects in the near future.
Collapse
Affiliation(s)
- Shahida Anusha Siddiqui
- Technical University of Munich, Campus Straubing for Biotechnology and Sustainability, Straubing, Germany
- German Institute of Food Technologies (DIL e.V.), D-Quakenbrück, Germany
| | - Elizabeth Tettey
- Council for Scientific and Industrial Research - Oil Palm Research Institute, Sekondi, Takoradi W/R, Ghana
| | | | - Norhayati Ngah
- Faculty of Bioresources and Food Industry, Universiti Sultan Zainal Abidin, Besut, Terengganu, Malaysia
| | - Shadrack Kwaku Debrah
- Department of Horticulture and Crop Production, University of Energy and Natural Resources, Sunyani, Ghana
| | - Xi Yang
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, Minato-ku, Tokyo, Japan
| | - Ito Fernando
- Department of Plant Pest and Diseases, Faculty of Agriculture, Universitas Brawijaya, Malang, East Java, Indonesia
| | | | - Mohd Asif Shah
- Department of Economics, Kabridahar University, Kabridahar, Somali, Ethiopia
- School of Business, Woxsen University, Hyderabad, India
- Division of Research and Development, Lovely Professional University, Phagwara, Punjab, India
- Research Fellow, INTI International University, Nilai, Negeri Sembilan, Malaysia
| |
Collapse
|
18
|
Seyedalmoosavi MM, Mielenz M, Schleifer K, Görs S, Wolf P, Tränckner J, Hüther L, Dänicke S, Daş G, Metges CC. Upcycling of recycled minerals from sewage sludge through black soldier fly larvae (Hermetia illucens): Impact on growth and mineral accumulation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 344:118695. [PMID: 37542865 DOI: 10.1016/j.jenvman.2023.118695] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/15/2023] [Accepted: 07/25/2023] [Indexed: 08/07/2023]
Abstract
Phosphorous (P) resources are finite. Sewage sludge recyclates (SSR) are not only of interest as plant fertilizer but also as potential source of minerals in animal nutrition. However, besides P and calcium (Ca), SSR contain heavy metals. Under EU legislation, the use of SSR derivatives in animal feed is not permitted, but given the need to improve nutrient recycling, it could be an environmentally sound future mineral source. Black soldier fly larvae (BSFL) convert low-grade biomass into valuable proteins and lipids, and accumulate minerals in their body. It was hypothesized that BSFL modify and increase their mineral content in response to feeding on SSR containing substrates. The objective was to evaluate the upcycling of minerals from SSR into agri-food nutrient cycles through BSFL. Growth, nutrient and mineral composition were compared in BSFL reared either on a modified Gainesville fly diet (FD) or on FD supplemented with either 4% of biochar (FD + BCH) or 3.6% of single-superphosphate (FD + SSP) recyclate (n = 6 BSFL rearing units/group). Larval mass, mineral and nutrient concentrations and yields were determined, and the bioaccumulation factor (BAF) was calculated. The FD + SSP substrate decreased specific growth rate and crude fat of BSFL (P < 0.05) compared to FD. The FD + SSP larvae had higher Ca and P contents and yields but the BAF for Ca was lowest. The FD + BCH larvae increased Ca, iron, cadmium and lead contents compared to FD. Larvae produced on FD + SSP showed lower lead and higher arsenic concentration than on FD + BCH. Frass of FD + BCH had higher heavy metal concentration than FD + SSP and FD (P < 0.05). Except for cadmium and manganese, the larval heavy metal concentration was below the legally permitted upper concentrations for feed. In conclusion, the SSR used could enrich BSFL with Ca and P but at the expense of growth. Due to the accumulation of Cd and Mn, BSFL or products thereof can only be a component of farmed animal feed whereas in BSFL frass heavy metal concentrations remained below the upper limit authorized by EU.
Collapse
Affiliation(s)
- Mohammad M Seyedalmoosavi
- Research Institute for Farm Animal Biology (FBN), Institute of Nutritional Physiology, Dummerstorf, Germany
| | - Manfred Mielenz
- Research Institute for Farm Animal Biology (FBN), Institute of Nutritional Physiology, Dummerstorf, Germany
| | - Kai Schleifer
- Research Institute for Farm Animal Biology (FBN), Institute of Nutritional Physiology, Dummerstorf, Germany
| | - Solvig Görs
- Research Institute for Farm Animal Biology (FBN), Institute of Nutritional Physiology, Dummerstorf, Germany
| | - Petra Wolf
- University of Rostock, Nutritional Physiology and Animal Nutrition, Faculty of Agricultural and Environmental Sciences, Rostock, Germany
| | - Jens Tränckner
- University of Rostock, Water Management, Faculty of Agricultural and Environmental Sciences, Rostock, Germany
| | - Liane Hüther
- Federal Research Institute for Animal Health, Institute of Animal Nutrition, Braunschweig, Germany
| | - Sven Dänicke
- Federal Research Institute for Animal Health, Institute of Animal Nutrition, Braunschweig, Germany
| | - Gürbüz Daş
- Research Institute for Farm Animal Biology (FBN), Institute of Nutritional Physiology, Dummerstorf, Germany
| | - Cornelia C Metges
- Research Institute for Farm Animal Biology (FBN), Institute of Nutritional Physiology, Dummerstorf, Germany.
| |
Collapse
|
19
|
Alagappan S, Dong A, Mikkelsen D, Hoffman LC, Mantilla SMO, James P, Yarger O, Cozzolino D. Near Infrared Spectroscopy for Prediction of Yeast and Mould Counts in Black Soldier Fly Larvae, Feed and Frass: A Proof of Concept. SENSORS (BASEL, SWITZERLAND) 2023; 23:6946. [PMID: 37571729 PMCID: PMC10422329 DOI: 10.3390/s23156946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023]
Abstract
The use of black soldier fly larvae (BSFL) grown on different organic waste streams as a source of feed ingredient is becoming very popular in several regions across the globe. However, information about the easy-to-use methods to monitor the safety of BSFL is a major step limiting the commercialization of this source of protein. This study investigated the ability of near infrared (NIR) spectroscopy combined with chemometrics to predict yeast and mould counts (YMC) in the feed, larvae, and the residual frass. Partial least squares (PLS) regression was employed to predict the YMC in the feed, frass, and BSFL samples analyzed using NIR spectroscopy. The coefficient of determination in cross validation (R2CV) and the standard error in cross validation (SECV) obtained for the prediction of YMC for feed were (R2cv: 0.98 and SECV: 0.20), frass (R2cv: 0.81 and SECV: 0.90), larvae (R2cv: 0.91 and SECV: 0.27), and the combined set (R2cv: 0.74 and SECV: 0.82). However, the standard error of prediction (SEP) was considered moderate (range from 0.45 to 1.03). This study suggested that NIR spectroscopy could be utilized in commercial BSFL production facilities to monitor YMC in the feed and assist in the selection of suitable processing methods and control systems for either feed or larvae quality control.
Collapse
Affiliation(s)
- Shanmugam Alagappan
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Brisbane, QLD 4072, Australia
- Fight Food Waste Cooperative Research Centre, Wine Innovation Central Building Level 1, Waite Campus, Urrbrae, SA 5064, Australia
| | - Anran Dong
- School of Agriculture and Food Sustainability, Faculty of Science, University of Queensland, Brisbane, QLD 4072, Australia
| | - Deirdre Mikkelsen
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Brisbane, QLD 4072, Australia
- School of Agriculture and Food Sustainability, Faculty of Science, University of Queensland, Brisbane, QLD 4072, Australia
| | - Louwrens C. Hoffman
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Brisbane, QLD 4072, Australia
- Fight Food Waste Cooperative Research Centre, Wine Innovation Central Building Level 1, Waite Campus, Urrbrae, SA 5064, Australia
- Department of Animal Sciences, University of Stellenbosch, Private Bag X1, Matieland, Stellenbosch 7602, South Africa
| | - Sandra Milena Olarte Mantilla
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Peter James
- Centre for Animal Science, Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Olympia Yarger
- Goterra, 14 Arnott Street, Hume, Canberra, ACT 2620, Australia
| | - Daniel Cozzolino
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
20
|
Affiliation(s)
- K DiGiacomo
- School of Agriculture and Food, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
21
|
Bucea-Manea-Țoniș R, Martins OMD, Urdeș L, Coelho AS, Simion VE. Nudging Consumer Behavior with Social Marketing in Portugal: Can Perception Have an Influence over Trying Insect-Based Food? INSECTS 2023; 14:547. [PMID: 37367363 PMCID: PMC10299086 DOI: 10.3390/insects14060547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/07/2023] [Accepted: 06/08/2023] [Indexed: 06/28/2023]
Abstract
Social marketing campaigns are widely used to inform, educate, communicate, and promote healthy behaviors that add benefits to the individual, but also to society and the environment. Considering the low cost and high quality of insect-based food, this research aims to identify the main factors which can be used by social marketing campaigns to help people to try new foods, such as insect-based food. Although it is considered an important alternative to protein, there are a few countries that have not experienced it. In many Western countries, insect-based food is perceived as being disgusting. Neophobia is also a barrier to trying these foods. The main goal is to analyze if social marketing campaigns might influence perception (familiarity, preparation, visual, and information). Our model proves this assumption because we obtained high path coefficients, indicating that perception influences social beliefs, individual beliefs, and consumption intention. Thus, they will increase the consumption intention.
Collapse
Affiliation(s)
| | - Oliva M. D. Martins
- Instituto Politécnico de Bragança (IPB), Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (O.M.D.M.); (A.S.C.)
| | - Laura Urdeș
- Faculty of Veterinary Medicine, Spiru Haret University, 030352 Bucharest, Romania;
| | - Ana Sofia Coelho
- Instituto Politécnico de Bragança (IPB), Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (O.M.D.M.); (A.S.C.)
- GOVCOPP-UA, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Violeta-Elena Simion
- Faculty of Veterinary Medicine, Spiru Haret University, 030352 Bucharest, Romania;
| |
Collapse
|
22
|
Moyet M, Morrill H, Espinal DL, Bernard E, Alyokhin A. Early Growth Patterns of Bacillus cereus on Potato Substrate in the Presence of Low Densities of Black Soldier Fly Larvae. Microorganisms 2023; 11:1284. [PMID: 37317258 DOI: 10.3390/microorganisms11051284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/26/2023] [Accepted: 05/09/2023] [Indexed: 06/16/2023] Open
Abstract
Bacillus cereus is a common and ubiquitous bacterium that can cause foodborne illnesses in humans and other animals. Common methods of contact between foodborne pathogens and their victims include exposure through contaminated food or food containment products. Using larvae of black soldier flies, Hermetia illucens, for biological conversion of wastes into components of animal feeds is a rapidly growing technology. However, contamination of larval biomass with pathogenic microorganisms may challenge its use on an industrial scale. We conducted laboratory experiments to test the effects of the black soldier fly larvae developing on simulated potato waste substrate on B. cereus abundance. We observed a general increase in the number of colony-forming units and concentration of hblD - gene when the larvae were present in the substrate, although the effect was modulated by larval densities and time since inoculation. It is possible that starch breakdown by black soldier fly larvae may provide a beneficial environment for B. cereus. Our results differ from the suppression in the presence by black soldier fly larvae reported for several other bacterial species and highlight the importance of taking proper food safety measures when using this technology.
Collapse
Affiliation(s)
- Matthew Moyet
- School of Biology and Ecology, University of Maine, Orono, ME 04469, USA
| | - Hailey Morrill
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME 04469, USA
| | - Daniella Leal Espinal
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME 04469, USA
| | - Edward Bernard
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME 04469, USA
| | - Andrei Alyokhin
- School of Biology and Ecology, University of Maine, Orono, ME 04469, USA
| |
Collapse
|
23
|
Chen Y, Zhuang Z, Liu J, Wang Z, Guo Y, Chen A, Chen B, Zhao W, Niu J. Effects of Hermetia illucens larvae meal on the Pacific white shrimp (Litopenaeus vannamei) revealed by innate immunity and 16S rRNA gene sequencing analysis. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2023; 46:101080. [PMID: 37141643 DOI: 10.1016/j.cbd.2023.101080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/30/2023] [Accepted: 04/20/2023] [Indexed: 05/06/2023]
Abstract
The larvae of the black soldier fly, Hermetia illucens, are now attracting attention and becoming promising sources for aquafeed ingredient due to the nutritious substance. However, the introduction of a novel ingredient into the recipe may have unpredictable effects on the innate immune function and gut bacteria composition of crustaceans. Therefore, the present study aimed to evaluate how dietary black soldier fly larvae meal (BSFLM) affected the antioxidant ability, innate immunity and gut microbiome of shrimp (Litopenaeus vannamei) fed with a practical diet, including the gene expression of Toll and immunodeficiency (IMD) pathways. Six experimental diets were formulated by replacing gradient levels of fish meal (0 %, 10 %, 20 %, 30 %, 40 % and 50 %) based on a commercial shrimp diet. Four replicates of shrimp were fed different diets three times daily for 60 days. Growth performance linearly decreased with increasing BSFLM inclusion. Results of antioxidative enzyme activities and gene expression suggested that low dietary BSFLM levels activated the antioxidant capacity of shrimp, while dietary BSFLM levels up to 100 g/kg may induce oxidative stress and inhibit glutathione peroxidase activity. Although traf6, toll1, dorsal and relish were significantly upregulated in different BSFLM groups, the expression of tak1 was significantly downregulated in groups containing BSFLM, implying the immune susceptibility may be weakened. Gut flora analysis indicated dietary BSFLM altered both beneficial and opportunistic pathogenic bacterial abundance, with low levels of dietary BSFLM increased the abundance of bacteria that may contribute to carbohydrate utilization, while high levels of dietary BSFLM may cause intestinal disease and low intestinal immune response. To conclude, 60-80 g/kg of dietary BSFLM showed no adverse effects on the growth, antioxidant capacity and gut flora of shrimp, which was the adequate level in shrimp diet. While 100 g/kg dietary BSFLM may induce oxidative stress and potentially weaken the innate immunity of shrimp.
Collapse
Affiliation(s)
- Yongkang Chen
- State key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, Guangdong Province, PR China
| | - Zhenxiao Zhuang
- State key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, Guangdong Province, PR China
| | - Jieping Liu
- State key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, Guangdong Province, PR China
| | - Ziqiao Wang
- State key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, Guangdong Province, PR China
| | - Yucai Guo
- State key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, Guangdong Province, PR China
| | - Anqi Chen
- State key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, Guangdong Province, PR China
| | - Baoyang Chen
- State key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, Guangdong Province, PR China
| | - Wei Zhao
- State key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, Guangdong Province, PR China.
| | - Jin Niu
- State key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, Guangdong Province, PR China.
| |
Collapse
|
24
|
Son J, Park SH, Jung HJ, You SJ, Kim BG. Effects of Drying Methods and Blanching on Nutrient Utilization in Black Soldier Fly Larva Meals Based on In Vitro Assays for Pigs. Animals (Basel) 2023; 13:ani13050858. [PMID: 36899715 PMCID: PMC10000218 DOI: 10.3390/ani13050858] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/13/2023] [Accepted: 02/24/2023] [Indexed: 03/03/2023] Open
Abstract
The objective was to determine the effects of drying and blanching methods on the nutrient utilization of black soldier fly larva (BSFL; Hermetia illucens) meal by pigs using in vitro assays. Two-step and three-step in vitro assays were employed to simulate the gastrointestinal tract of pigs. Four BSFL meals were prepared using the following pretreatment methods: (1) microwave drying at 80 °C for 32 min, (2) hot-air drying at 60 °C for 17 h, (3) blanching for 5 min in boiling water and hot-air drying at 60 °C for 17 h, and (4) 2% citric acid solution blanching for 5 min in boiling solution and hot-air drying at 60 °C for 17 h. After the drying process, each BSFL was defatted and ground to obtain BSFL meals. The nitrogen (N) concentration in the test ingredients ranged from 8.5 to 9.4%, and the ether extract ranged from 6.9 to 11.5% on an as-is basis. The amino acid (AA) concentration in the BSFL meals ranged from 2.80 to 3.24% for Lys and 0.71 to 0.89% for Met on an as-is basis. Hot-air-dried BSFL meal had a greater in vitro ileal disappearance (IVID) of N compared with microwave-dried BSFL meal (p < 0.05). However, blanched BSFL meals in water or 2% citric acid solution before hot-air drying had a lower (p < 0.05) IVID of N compared with microwave-dried or hot-air-dried BSFL meal. Blanched BSFL meals in water or 2% citric acid solution before hot-air drying showed a lower (p < 0.05) in vitro total tract disappearance of dry matter and organic matter compared with microwave-dried or hot-air-dried BSFL meal. Microwave-dried BSFL meal had a lower (p < 0.05) IVID of indispensable AA, except for His, Lys, Met, and Phe, compared with hot-air-dried BSFL meals. However, blanched BSFL meals in water or 2% citric acid solution before hot-air drying showed a lower (p < 0.05) IVID of indispensable AA compared with microwave-dried or hot-air-dried BSFL meal. In conclusion, hot-air-dried BSFL meal presented greater nutrient utilization compared with microwave-dried BSFL meal for pigs. However, blanching in water or citric acid solution negatively affected the nutrient digestibility of BSFL meal based on in vitro assays.
Collapse
Affiliation(s)
- Jeonghyeon Son
- Department of Animal Science, Konkuk University, Seoul 05029, Republic of Korea
| | - Seol Hwa Park
- Animal Nutrition and Physiology Division, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Republic of Korea
| | - Hyun Jung Jung
- Animal Nutrition and Physiology Division, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Republic of Korea
| | - Sun Jong You
- Feed R&D, CJ Feed & Care, Seoul 04548, Republic of Korea
| | - Beob Gyun Kim
- Department of Animal Science, Konkuk University, Seoul 05029, Republic of Korea
- Correspondence: ; Tel.: +82-2-2049-6255
| |
Collapse
|
25
|
Rehman KU, Hollah C, Wiesotzki K, Rehman RU, Rehman AU, Zhang J, Zheng L, Nienaber T, Heinz V, Aganovic K. Black soldier fly, Hermetia illucens as a potential innovative and environmentally friendly tool for organic waste management: A mini-review. WASTE MANAGEMENT & RESEARCH : THE JOURNAL OF THE INTERNATIONAL SOLID WASTES AND PUBLIC CLEANSING ASSOCIATION, ISWA 2023; 41:81-97. [PMID: 35730793 PMCID: PMC9925914 DOI: 10.1177/0734242x221105441] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Indexed: 05/24/2023]
Abstract
The application of black soldier fly (BSF), Hermetia illucens based technology to process organic wastes presents a practical option for organic waste management by producing feed materials (protein, fat), biodiesel, chitin and biofertilizer. Therefore, BSF organic wastes recycling is a sustainable and cost-effective process that promotes resource recovery, and generates valuable products, thereby creating new economic opportunities for the industrial sector and entrepreneurs. Specifically, we discussed the significance of BSF larvae (BSFL) in the recycling of biowaste. Despite the fact that BSFL may consume a variety of wastes materials, whereas, certain lignocellulosic wastes, such as dairy manure, are deficient in nutrients, which might slow BSFL development. The nutritional value of larval feeding substrates may be improved by mixing in nutrient-rich substrates like chicken manure or soybean curd residue, for instance. Similarly, microbial fermentation may be used to digest lignocellulosic waste, releasing nutrients that are needed for the BSFL. In this mini-review, a thorough discussion has been conducted on the various waste biodegraded by the BSFL, their co-digestion and microbial fermentation of BSFL substrate, as well as the prospective applications and safety of the possible by-products that may be generated at the completion of the treatment process. Furthermore, this study examines the present gaps and challenges on the direction to the efficient application of BSF for waste management and the commercialization of its by-products.
Collapse
Affiliation(s)
- Kashif ur Rehman
- Department of Microbiology,
Faculty of Veterinary and Animal Sciences, Th Islamia University of
Bahawalpur, Pakistan
- Poultry Research Institute
Rawalpindi, Livestock and Dairy Development Department, Punjab,
Pakistan
- State Key Laboratory of
Agricultural Microbiology, National Engineering Research Center of Microbial
Pesticides, College of Life Science and Technology, Huazhong Agricultural
University, Wuhan, PR China
| | - Clemens Hollah
- DIL Deutsches Institut für
Lebensmitteltechnik e. V. – German Institute of Food Technologies,
Quakenbruck, Germany
| | - Karin Wiesotzki
- DIL Deutsches Institut für
Lebensmitteltechnik e. V. – German Institute of Food Technologies,
Quakenbruck, Germany
| | - Rashid ur Rehman
- Khwaja Fareed University of
Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | | | - Jibin Zhang
- State Key Laboratory of
Agricultural Microbiology, National Engineering Research Center of Microbial
Pesticides, College of Life Science and Technology, Huazhong Agricultural
University, Wuhan, PR China
| | - Longyu Zheng
- State Key Laboratory of
Agricultural Microbiology, National Engineering Research Center of Microbial
Pesticides, College of Life Science and Technology, Huazhong Agricultural
University, Wuhan, PR China
| | - Theresa Nienaber
- DIL Deutsches Institut für
Lebensmitteltechnik e. V. – German Institute of Food Technologies,
Quakenbruck, Germany
| | - Volker Heinz
- DIL Deutsches Institut für
Lebensmitteltechnik e. V. – German Institute of Food Technologies,
Quakenbruck, Germany
| | - Kemal Aganovic
- DIL Deutsches Institut für
Lebensmitteltechnik e. V. – German Institute of Food Technologies,
Quakenbruck, Germany
| |
Collapse
|
26
|
Kaczor M, Bulak P, Proc-Pietrycha K, Kirichenko-Babko M, Bieganowski A. The Variety of Applications of Hermetia illucens in Industrial and Agricultural Areas-Review. BIOLOGY 2022; 12:25. [PMID: 36671718 PMCID: PMC9855018 DOI: 10.3390/biology12010025] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/14/2022] [Accepted: 12/16/2022] [Indexed: 12/25/2022]
Abstract
Hermetia illucens (Diptera: Stratiomyidae, Linnaeus, 1978), commonly known as the black soldier fly (BSF), is a saprophytic insect, which in recent years has attracted significant attention from both the scientific community and industry. The unrestrained appetite of the larvae, the ability to forage on various organic waste, and the rapid growth and low environmental impact of its breeding has made it one of the insect species bred on an industrial scale, in the hope of producing fodder or other ingredients for various animals. The variety of research related to this insect has shown that feed production is not the only benefit of its use. H. illucens has many features and properties that could be of interest from the point of view of many other industries. Biomass utilization, chitin and chitosan source, biogas, and biodiesel production, entomoremediation, the antimicrobial properties of its peptides, and the fertilizer potential of its wastes, are just some of its potential uses. This review brings together the work of four years of study into H. illucens. It summarizes the current state of knowledge and introduces the characteristics of this insect that may be helpful in managing its breeding, as well as its use in agro-industrial fields. Knowledge gaps and under-studied areas were also highlighted, which could help identify future research directions.
Collapse
Affiliation(s)
- Monika Kaczor
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland
| | - Piotr Bulak
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland
| | - Kinga Proc-Pietrycha
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland
| | - Marina Kirichenko-Babko
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland
- Schmalhausen Institute of Zoology, National Academy of Sciences of Ukraine, B. Khmelnitsky 15, 01030 Kyiv, Ukraine
| | - Andrzej Bieganowski
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland
| |
Collapse
|
27
|
Pederiva S, Avolio R, Marchis D, Abete MC, Squadrone S. Preliminary Data on Essential and Non-essential Element Occurrence in Processed Animal Proteins from Insects. Biol Trace Elem Res 2022:10.1007/s12011-022-03462-6. [PMID: 36352299 DOI: 10.1007/s12011-022-03462-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 10/25/2022] [Indexed: 11/11/2022]
Abstract
Insects represent a valuable and environmentally friendly protein alternative in food and feed. The Farm to Fork strategy encouraged the reintroduction of animal by-products in feed production to optimise recycling and to valorise under-used resources. In order to grant safe and valuable feed products, this study investigated the black soldier fly (BSF) (Hermetia illucens) chemical risk. Samples collected in different steps of production (8 samples of substrate for culturing, 7 samples of larvae, 15 samples of protein meal, 18 samples of spent substrate) were analysed for microessential elements (chromium, copper, iron, nickel, selenium and zinc) and inorganic contaminants (aluminium, arsenic, cadmium, lead, tin and vanadium) by Inductively Coupled Plasma Mass Spectrometer (ICP-MS). Microessential elements were found in the following order: Fe > Zn > Cu > Ni > Se > Cr (mg kg-1). Non-essential element concentrations were found lower than the set limits according to the European Union Regulations. The growing demand for alternative protein sources for feed production could be partially compensated by black soldier fly (BSF) (Hermetia illucens) meal, as it appears a good source for high-quality proteins and microessential elements which play a pivotal role in animal growth. In the foreseeable future the current legislation and the official monitoring plans may be implemented and broaden, to focus and assess limits for upcoming matrices, and to ensure feed and food safety.
Collapse
Affiliation(s)
- Sabina Pederiva
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria E Valle d'Aosta, Via Bologna 148, 10154, Turin, Italy
- Italian National Reference Laboratory of Animal Proteins in Feed, Turin, Italy
| | - Rosa Avolio
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria E Valle d'Aosta, Via Bologna 148, 10154, Turin, Italy.
| | - Daniela Marchis
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria E Valle d'Aosta, Via Bologna 148, 10154, Turin, Italy
- Italian National Reference Laboratory of Animal Proteins in Feed, Turin, Italy
| | - Maria Cesarina Abete
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria E Valle d'Aosta, Via Bologna 148, 10154, Turin, Italy
| | - Stefania Squadrone
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria E Valle d'Aosta, Via Bologna 148, 10154, Turin, Italy
| |
Collapse
|
28
|
Chang CT, Negi S, Rani A, Hu AH, Pan SY, Kumar S. Food waste and soybean curd residue composting by black soldier fly. ENVIRONMENTAL RESEARCH 2022; 214:113792. [PMID: 35780849 DOI: 10.1016/j.envres.2022.113792] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 05/31/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
This study attempted to manage the food waste and soybean curd residue generated in Taiwan's National Ilan University by black soldier fly-aided co-composting. The food waste and soybean curd residue were co-composted with rice husk as a bulking agent in 4:1 ratio and 0.42 mg BSF/g waste. The higher organic matter degradation of 31.9% was found in Container B (black soldier flies aided food waste and rice husk co-composting) with a rate constant of 0.14 d-1. In Container D (black soldier flies aided soybean curd residue and rice husk co-composting), the organic matter degradation of 29.4% was found with a rate constant of 0.29 d-1. The matured compost of 6.02 kg was obtained from 20 kg of food waste, while 5.83 kg of matured compost was generated from 20 kg of soybean curd residue. The physico-chemical parameters of the final matured compost were in the favorable range of Taiwan's compost standards. The germination index was 188.6% and 194.78% in Containers B and D, respectively. The present study will expand the application of BSF at the institutional level which prove to be a feasible solution for rapid, clean, and efficient composting of post-consumer food wastes.
Collapse
Affiliation(s)
| | - Suraj Negi
- National Taiwan University, Taipei City, 10617, Taiwan, ROC; National Taipei University of Technology, Taipei City, 10608, Taiwan, ROC
| | - Aishwarya Rani
- National I-Lan University, Yilan County, 260, Taiwan, ROC; National Taiwan University, Taipei City, 10617, Taiwan, ROC
| | - Allen H Hu
- National Taipei University of Technology, Taipei City, 10608, Taiwan, ROC
| | - Shu-Yuan Pan
- National Taiwan University, Taipei City, 10617, Taiwan, ROC
| | - Sunil Kumar
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440 020, Maharashtra, India.
| |
Collapse
|
29
|
Suppression of Methicillin-Resistant Staphylococcus aureus and Reduction of Other Bacteria by Black Soldier Fly Larvae Reared on Potato Substrate. Microbiol Spectr 2022; 10:e0232122. [PMID: 36197291 PMCID: PMC9602475 DOI: 10.1128/spectrum.02321-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Larvae of black soldier flies, Hermetia illucens, are increasingly used for biological conversion of animal and plant wastes into ingredients of animal feeds on an industrial scale. The presence of pathogenic microorganisms in harvested larvae may be a serious problem for wide-scale adoption of this technology. Fortunately, black soldier fly larvae may have some antimicrobial properties. Methicillin-resistant Staphylococcus aureus (MRSA) is a bacterium associated with various environments that can be pathogenic to humans and farmed animals. We tested whether black soldier fly larvae suppress MRSA on potato substrate. Autoclaved potatoes containing black soldier fly larvae (P+BSFL), potatoes inoculated with MRSA and containing black soldier fly larvae (P+MRSA+BSFL), and potatoes inoculated with MRSA (P+MRSA) were incubated in glass jars. Substrate samples were taken after 3 and 7 days of incubation and plated on Trypticase soy agar (TSA) and Staphylococcus medium 110 agar (SA) to quantify total bacteria and MRSA, respectively. DNA was extracted from potato substrates on both days and sequenced to assess bacterial and fungal diversity using 515F/806R and internal transcribed spacer (ITS) 1/2 primers, respectively, and QIIME 2.0 software. Both total bacterial and MRSA-specific CFU were reduced in the presence of black soldier fly larvae, with a larger reduction for the latter. Twenty-five bacterial genera and 3 fungal genera were detected. Twenty bacterial genera were shared among the treatments and the days, but their relative abundances often varied. Among the most abundant genera, only Enterococcus and Lactococcus were universally present. Our findings confirm antimicrobial properties of black soldier fly larvae. IMPORTANCE Larvae of black soldier flies, Hermetia illucens, may be used to provide an environmentally sustainable and economically viable method for biological conversion of animal and plant wastes into ingredients of animal feeds on an industrial scale. However, contamination of harvested larvae by pathogenic microorganisms inhabiting decaying substrates may be a serious problem for wide-scale adoption of this technology. Fortunately, black soldier fly larvae may have some antimicrobial properties, including suppression of several common pathogens. Our study showed that such a suppression applies to methicillin-resistant Staphylococcus aureus, which is a ubiquitous bacterium pathogenic to animals (including humans).
Collapse
|
30
|
Kępińska-Pacelik J, Biel W. Insects in Pet Food Industry-Hope or Threat? Animals (Basel) 2022; 12:1515. [PMID: 35739851 PMCID: PMC9219536 DOI: 10.3390/ani12121515] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 06/01/2022] [Accepted: 06/08/2022] [Indexed: 11/17/2022] Open
Abstract
Due to the increasing global population, the world cannot currently support the well-known techniques of food production due to their harmful effects on land use, water consumption, and greenhouse gas emissions. The key answer is a solution based on the use of edible insects. They have always been present in the diet of animals. They are characterized by a very good nutritional value (e.g., high protein content and contents of essential amino acids and fatty acids, including lauric acid), and products with them receive positive results in palatability tests. Despite the existing literature data on the benefits of the use of insects as a protein source, their acceptance by consumers and animal caregivers remains problematic. In spite of the many advantages of using insects in pet food, it is necessary to analyze the risk of adverse food reactions, including allergic reactions that may be caused by insect consumption. Other hazards relate to the contamination of insects. For example, they can be contaminated with anthropogenic factors during breeding, packaging, cooking, or feeding. These contaminants include the presence of bacteria, mold fungi, mycotoxins, and heavy metals. However, insects can be used in the pet food industry. This is supported by the evolutionary adaptation of their wild ancestors to the eating of insects in the natural environment. The chemical composition of insects also corresponds to the nutritional requirements of dogs. It should be borne in mind that diets containing insect and their effects on animals require careful analysis. The aim of this article is to discuss the nutritional value of insects and their possible applications in the nutrition of companion animals, especially dogs.
Collapse
Affiliation(s)
| | - Wioletta Biel
- Department of Monogastric Animal Sciences, Division of Animal Nutrition and Food, West Pomeranian University of Technology in Szczecin, Klemensa Janickiego 29, 71-270 Szczecin, Poland;
| |
Collapse
|
31
|
A Review of Organic Waste Treatment Using Black Soldier Fly (Hermetia illucens). SUSTAINABILITY 2022. [DOI: 10.3390/su14084565] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The increase in solid waste generation is caused primarily by the global population growth that resulted in urban sprawl, economic development, and consumerism. Poor waste management has adverse impacts on the environment and human health. The recent years have seen increasing interest in using black soldier fly (BSF), Hermetia illucens, as an organic waste converter. Black soldier fly larvae (BSFL) feed voraciously on various types of organic waste, including food wastes, agro-industrial by-products, and chicken and dairy manure, and reduce the initial weight of the organic waste by about 50% in a shorter period than conventional composting. The main components of the BSFL system are the larvero, where the larvae feed and grow, and the fly house, where the adults BSF live and reproduce. It is essential to have a rearing facility that maintains the healthy adult and larval BSF to provide a sufficient and continuous supply of offspring for organic waste treatment. The BSF organic waste processing facility consists of waste pre-processing, BSFL biowaste treatment, the separation of BSFL from the process residue, and larvae and residue refinement into marketable products. BSFL digest the nutrients in the wastes and convert them into beneficial proteins and fats used to produce animal feed, and BSFL residue can be used as an organic fertilizer. This review summarizes the BSFL treatment process to provide an in-depth understanding of the value of its by-products as animal feed and organic fertilizer.
Collapse
|
32
|
The Effect of Rearing Scale and Density on the Growth and Nutrient Composition of Hermetia illucens (L.) (Diptera: Stratiomyidae) Larvae. SUSTAINABILITY 2022. [DOI: 10.3390/su14031772] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
With the worldwide industrialization of black soldier fly (BSF) production, it is necessary to better understand how the rearing scale and larvae density influence the performance of larvae and the quality of the final product. In this study, a factorial experiment was conducted to test the effect of rearing scale and density on the growth and composition of the BSF larvae. The larvae were grown in four different scales (box sizes), keeping the area and feed provided to each larva constant and in two different densities. The results reveal significant differences in the larval growth depending on the scale and density, which could be attributed to the higher temperatures achieved in the bigger scales with a temperature difference of more than 5 °C between the smallest and the biggest scale. Both the scale and the density influenced the composition of the larvae. The crude protein levels were higher on the smallest scale, and the lower density (ranging from 32.5% to 36.5%), and crude fat concentrations were the opposite (ranging from 31.7% to 20.1%). The density also influenced the concentrations of S, Mg, K, P, Fe, Zn, Cu, Al, B, and Co, in addition to the analyzed free amino acids PPS, ALA, CIT, and ANS. Furthermore, the rearing scale influenced the concentration of S, Zn, Cu, and Mo. The results provide further insight into the optimization of BSF production processes and the transfer of lab-scale results into big-scale production.
Collapse
|