1
|
Akter F, Krishnan L, Mestres G, Gustafsson J, Ralph PJ, Kuzhiumparambil U. Physicochemical characterization and evaluation of the antioxidant potential of water-soluble polysaccharides from red microalgae, Rhodomonas salina. Int J Biol Macromol 2025; 310:143417. [PMID: 40268034 DOI: 10.1016/j.ijbiomac.2025.143417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 04/04/2025] [Accepted: 04/20/2025] [Indexed: 04/25/2025]
Abstract
Rhodomonas salina is a red microalgal species belonging to the class cryptophyceae, which holds huge commercial value due to its rich biochemical composition, including proteins, fatty acids and pigments. However, detailed characterization on the chemical and physical properties of carbohydrates from R. salina are limited. The main objective of this study is to isolate water-soluble polysaccharides from Rhodomonas salina and investigate their physicochemical properties and in-vitro antioxidant activity. Investigation using chromatographic and spectroscopic techniques revealed that the major polysaccharide in R. salina is a α-glucan having (1 → 4) linked-d-Glucopyranose linkages. It is a semi-crystalline polysaccharide having thermal stability up to 245 °C and exhibits Newtonian fluid behaviour in an aqueous solution. The polysaccharide also exhibits moderate scavenging activities against DPPH free radicals and hydroxyl radicals. The findings provide a strong foundation for understanding the functional potential and scope of applications of this novel polysaccharide. Being a α-glucan, R. salina polysaccharide holds potential to be explored as a feedstock of bioethanol production in biotechnology and biorefinery industries.
Collapse
Affiliation(s)
- Farjana Akter
- Climate Change Cluster, University of Technology Sydney, NSW, Australia.
| | - Lakshmi Krishnan
- Faculty of Engineering and IT, University of Technology Sydney, NSW, Australia.
| | | | | | - Peter J Ralph
- Climate Change Cluster, University of Technology Sydney, NSW, Australia.
| | | |
Collapse
|
2
|
Wang G, Ma P, Mo S, Liu W, Chen T, Huang Z, Xie J. Chemical characterization, antioxidant activity and activation of macrophages RAW264.7 via MAPK signaling pathway of the exopolysaccharide from Penicillium EF-2. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025. [PMID: 39912408 DOI: 10.1002/jsfa.14171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 12/16/2024] [Accepted: 01/18/2025] [Indexed: 02/07/2025]
Abstract
BACKGROUND Microbial exopolysaccharides represent a significant source of polysaccharides, with their production unconstrained by temporal or spatial limitations. Penicillium, a filamentous fungus widely recognized for its medicinal food applications, is known to produce exopolysaccharides that exhibit cancer-inhibitory properties. RESULTS In the present study, exopolysaccharides from Penicillium EF-2 (EPS) were extracted and structurally characterized using ion chromatograph, infrared spectroscopy and NMR. The in vitro antioxidant and immunomodulatory activities were also investigated. EPS has a molecular weight of 111.47 kDa, is primarily composed of mannose, glucose and galactose, possesses a crystalline region, and exhibits excellent thermal properties. In free radical scavenging assays, EPS demonstrated robust in vitro antioxidant activity. Furthermore, EPS activated the mitogen-activated protein kinase pathway, enhancing the immunomodulatory capacity of macrophages. CONCLUSION EPS has excellent antioxidant and biological activities. The present study provides a theoretical basis for the utilization of EPS and offers new ideas for active sources of Penicillium fermented foods. © 2025 Society of Chemical Industry.
Collapse
Affiliation(s)
- Gang Wang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
| | - Ping Ma
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
| | - Shiru Mo
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
| | - Wendong Liu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
| | - Ting Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
| | - Zhibing Huang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, China
| | - Jianhua Xie
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
| |
Collapse
|
3
|
Xu B, He Q, Sun D, Li X, Fan J, Yan X, Ruan R, Wang N, Cheng P. Inhibition mechanism of leukemia cells HL-60 by exopolysaccharides from Botryococcus braunii in response to high-concentration cobalt. Int J Biol Macromol 2025; 290:139092. [PMID: 39716694 DOI: 10.1016/j.ijbiomac.2024.139092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 12/16/2024] [Accepted: 12/20/2024] [Indexed: 12/25/2024]
Abstract
The influence of metal elements on the biomedical activity of microalgal exopolysaccharides (EPS) remains underexplored. This study examined the antitumor properties of Botryococcus braunii EPS under high cobalt conditions and the role of exogenous 3-indole acetic acid (IAA) in enhancing its activity. Results showed that IAA mitigated cobalt-induced inhibition of B. braunii growth and improved its antioxidant capacity. Notably, EPS obtained from B. braunii treated with IAA under high cobalt conditions (HC-IAA-EPS) exhibited a 98.06 % inhibition of human promyelocytic leukemia cells (HL-60), significantly higher than the control (83.86 %). HC-IAA-EPS induced mitochondrial damage in HL-60 cells, evidenced by a decrease in mitochondrial transmembrane potential (observed via fluorescence microscopy) and a 1.5-fold increase in reactive oxygen species (ROS) levels compared to the control, ultimately triggering endogenous apoptosis. Proteomic analysis revealed that HC-IAA-EPS caused significant changes in apoptosis and cell cycle-related protein changes in HL-60. Gene Ontology (GO) analysis indicated enrichment in pathways such as neutrophil degranulation, Toll-like receptor (TLR) signaling, and vesicle binding complexes. This study concludes that HC-IAA-EPS inhibits HL-60 cell proliferation by inducing mitochondrial dysfunction, reducing transmembrane potential, and increasing ROS production, providing valuable insights into the antitumor potential of microalgal EPS under metal stress conditions.
Collapse
Affiliation(s)
- Baoyu Xu
- College of Food Science and Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Qilin He
- College of Food Science and Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Danni Sun
- College of Food Science and Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Xiaohui Li
- College of Food Science and Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Jianhua Fan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xiaojun Yan
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Roger Ruan
- Center for Biorefining, and Department of Bioproducts and Biosystems Engineering, University of Minnesota-Twin Cities, Saint Paul, MN 55108, USA.
| | - Ning Wang
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, Zhejiang 315211, China.
| | - Pengfei Cheng
- College of Food Science and Engineering, Ningbo University, Ningbo, Zhejiang 315211, China.
| |
Collapse
|
4
|
Madacussengua O, Mendes AR, Almeida AM, Lordelo M. Effects of using microalgae in poultry diets on the production and quality of meat and eggs: a review. Br Poult Sci 2025:1-17. [PMID: 39813074 DOI: 10.1080/00071668.2024.2420330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 10/09/2024] [Indexed: 01/16/2025]
Abstract
1. This review was conducted to examine the nutritional composition of microalgae and their effects as a feed ingredient in poultry diets, delving into their influence on the production and quality of meat and eggs. Data collection focused on peer-reviewed scientific articles, with no limitation on the temporal horizon.2. Regarding nutritional composition, the collected papers indicated that certain microalgae species have a rich nutritional composition, with approximately 50% of their biomass composed of proteins. They contain a high concentration of EPA and DHA, important fatty acids that are found in low concentrations in conventional feedstuffs, and the presence of carotenoids such as beta-carotene.3. Incorporating microalgae into the diet of poultry can improve performance variables, such as mortality, live weight and feed conversion rate. It promotes benefits in meat and egg quality, with reduced cholesterol, increased EPA and DHA, intensified colour and higher concentration of carotenoids.
Collapse
Affiliation(s)
| | | | - A M Almeida
- LEAF- Linking Landscape, Environment, Agriculture and Food Research Center, Associate Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, Lisboa, Portugal
| | | |
Collapse
|
5
|
Sarkar P, Bandyopadhyay TK, Gopikrishna K, Nath Tiwari O, Bhunia B, Muthuraj M. Algal carbohydrates: Sources, biosynthetic pathway, production, and applications. BIORESOURCE TECHNOLOGY 2024; 413:131489. [PMID: 39278363 DOI: 10.1016/j.biortech.2024.131489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/07/2024] [Accepted: 09/12/2024] [Indexed: 09/18/2024]
Abstract
Algae play a significant role in the global carbon cycle by utilizing photosynthesis to efficiently convert solar energy and atmospheric carbon dioxide into various chemical compounds, notably carbohydrates, pigments, lipids, and released oxygen, making them a unique sustainable cellular factory. Algae mostly consist of carbohydrates, which include a broad variety of structures that contribute to their distinct physical and chemical properties such as degree of polymerization, side chain, branching, degree of sulfation, hydrogen bond etc., these features play a crucial role in regulating many biological activity, nutritional and pharmaceutical properties. Algal carbohydrates have not received enough attention in spite of their distinctive structural traits linked to certain biological and physicochemical properties. Nevertheless, it is anticipated that there will be a significant increase in the near future due to increasing demand, sustainable source, biofuel generation and their bioactivity. This is facilitated by the abundance of easily accessible information on the structural data and distinctive characteristics of these biopolymers. This review delves into the different types of saccharides such as agar, alginate, fucoidan, carrageenan, ulvan, EPS and glucans synthesized by various macroalgal and microalgal systems, which include intracellular, extracellular and cell wall saccharides. Their structure, biosynthetic pathway, sources, production strategies and their applications in various field such as nutraceuticals, pharmaceuticals, biomedicine, food and feed, cosmetics, and bioenergy are also elaborately discussed. Algal polysaccharide has huge a scope for exploitation in future due to their application in food and pharmaceutical industry and it can become a huge source of capital and income.
Collapse
Affiliation(s)
- Pradip Sarkar
- Bioproducts Processing Research Laboratory (BPRL), Department of Bioengineering, National Institute of Technology, Agartala 799046, India
| | | | - Konga Gopikrishna
- SEED Division, Department of Science and Technology, Government of India, New Delhi 110 016, India.
| | - Onkar Nath Tiwari
- Centre for Conservation and Utilization of Blue Green Algae, Division of Microbiology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India.
| | - Biswanath Bhunia
- Bioproducts Processing Research Laboratory (BPRL), Department of Bioengineering, National Institute of Technology, Agartala 799046, India.
| | - Muthusivaramapandian Muthuraj
- Bioproducts Processing Research Laboratory (BPRL), Department of Bioengineering, National Institute of Technology, Agartala 799046, India.
| |
Collapse
|
6
|
Wang N, Qin J, Chen Z, Wu J, Xiang W. Optimization of Ultrasonic-Assisted Extraction, Characterization and Antioxidant and Immunoregulatory Activities of Arthrospira platensis Polysaccharides. Molecules 2024; 29:4645. [PMID: 39407575 PMCID: PMC11477882 DOI: 10.3390/molecules29194645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/25/2024] [Accepted: 09/28/2024] [Indexed: 10/20/2024] Open
Abstract
This study aimed to enhance the ultrasonic-assisted extraction (UAE) yield of seawater Arthrospira platensis polysaccharides (APPs) and investigate its structural characteristics and bioactivities. The optimization of UAE achieved a maximum crude polysaccharides yield of 14.78%. The optimal extraction conditions were a liquid-solid ratio of 30.00 mL/g, extraction temperature of 81 °C, ultrasonic power at 92 W and extraction time at 30 min. After purification through cellulose DEAE-52 and Sephadex G-100 columns, two polysaccharide elutions (APP-1 and APP-2) were obtained. APP-2 had stronger antioxidant and immunoregulatory activities than APP-1, thus the characterization of APP-2 was conducted. APP-2 was an acidic polysaccharide consisting of rhamnose, glucose, mannose and glucuronic acid at a ratio of 1.00:24.21:7.63:1.53. It possessed a molecular weight of 72.48 kDa. Additionally, APP-2 had linear and irregular spherical particles and amorphous structures, which contained pyranoid polysaccharides with alpha/beta glycosidic bonds. These findings offered the foundation for APP-2 as an antioxidant and immunomodulator applied in the food, pharmaceutical and cosmetic industries.
Collapse
Affiliation(s)
- Na Wang
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang 421001, China
- Institute of Cytology and Genetics, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Jingyi Qin
- Institute of Cytology and Genetics, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Zishuo Chen
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Institution of South China Sea Ecology and Environmental Engineering, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiayi Wu
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Institution of South China Sea Ecology and Environmental Engineering, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- Greater Bay Area Institute of Precision Medicine (Guangzhou), Guangzhou 511466, China
| | - Wenzhou Xiang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Institution of South China Sea Ecology and Environmental Engineering, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| |
Collapse
|
7
|
Debnath S, Muthuraj M, Bandyopadhyay TK, Bobby MN, Vanitha K, Tiwari ON, Bhunia B. Engineering strategies and applications of cyanobacterial exopolysaccharides: A review on past achievements and recent perspectives. Carbohydr Polym 2024; 328:121686. [PMID: 38220318 DOI: 10.1016/j.carbpol.2023.121686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 11/08/2023] [Accepted: 12/08/2023] [Indexed: 01/16/2024]
Abstract
Cyanobacteria are ideally suited for developing sustainable biological products but are underdeveloped due to a lack of genetic tools. Exopolysaccharide (EPS) is one of the essential bioproducts with widespread industrial applications. Despite their unique structural characteristics associated with distinct biological and physicochemical aspects, EPS from cyanobacteria has been underexplored. However, it is expected to accelerate in the near future due to the utilization of low-cost cyanobacterial platforms and readily available information on the structural data and specific features of these biopolymers. In recent years, cyanobacterial EPSs have attracted growing scientific attention due to their simple renewability, rheological characteristics, massive production, and potential uses in several biotechnology domains. This review focuses on the most recent research on potential new EPS producers and their distinct compositions responsible for novel biological activities. Additionally, nutritional and process parameters discovered recently for enhancing EPS production and engineering strategies applied currently to control the biosynthetic pathway for enhanced EPS production are critically highlighted. The process intensification of previously developed EPS extraction and purification processes from cyanobacterial biomass is also extensively explained. Furthermore, the newly reported biotechnological applications of cyanobacterial exopolysaccharides are also discussed.
Collapse
Affiliation(s)
- Shubhankar Debnath
- Bioproducts Processing Research Laboratory (BPRL), Department of Bio Engineering, National Institute of Technology, Agartala 799046, India
| | - Muthusivaramapandian Muthuraj
- Bioproducts Processing Research Laboratory (BPRL), Department of Bio Engineering, National Institute of Technology, Agartala 799046, India.
| | | | - Md Nazneen Bobby
- Department of Biotechnology, Vignan's Foundation for Science Technology and Research, Guntur 522213, Andhra Pradesh, India
| | - Kondi Vanitha
- Department of Pharmaceutics, Vishnu Institute of Pharmaceutical Education and Research, Narsapur, Medak, Telangana, India
| | - Onkar Nath Tiwari
- Centre for Conservation and Utilization of Blue Green Algae, Division of Microbiology, Indian Agricultural Research Institute (ICAR), New Delhi 110012, India.
| | - Biswanath Bhunia
- Bioproducts Processing Research Laboratory (BPRL), Department of Bio Engineering, National Institute of Technology, Agartala 799046, India.
| |
Collapse
|
8
|
Domozych DS, LoRicco JG. The extracellular matrix of green algae. PLANT PHYSIOLOGY 2023; 194:15-32. [PMID: 37399237 PMCID: PMC10762512 DOI: 10.1093/plphys/kiad384] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/25/2023] [Accepted: 05/30/2023] [Indexed: 07/05/2023]
Abstract
Green algae display a wide range of extracellular matrix (ECM) components that include various types of cell walls (CW), scales, crystalline glycoprotein coverings, hydrophobic compounds, and complex gels or mucilage. Recently, new information derived from genomic/transcriptomic screening, advanced biochemical analyses, immunocytochemical studies, and ecophysiology has significantly enhanced and refined our understanding of the green algal ECM. In the later diverging charophyte group of green algae, the CW and other ECM components provide insight into the evolution of plants and the ways the ECM modulates during environmental stress. Chlorophytes produce diverse ECM components, many of which have been exploited for various uses in medicine, food, and biofuel production. This review highlights major advances in ECM studies of green algae.
Collapse
Affiliation(s)
- David S Domozych
- Department of Biology, Skidmore College, Saratoga Springs, NY 12866, USA
| | | |
Collapse
|
9
|
Hazaimeh M. Phycoremediation of heavy metals and production of biofuel from generated algal biomass: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:109955-109972. [PMID: 37801245 DOI: 10.1007/s11356-023-30190-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 09/26/2023] [Indexed: 10/07/2023]
Abstract
Due to human activity and natural processes, heavy metal contamination frequently affects the earth's water resources. The pollution can be categorized as resistant and persistent since it poses a significant risk to terrestrial and marine biological systems and human health. Because of this, several appeals and demands have been made worldwide to try and clean up these contaminants. Through bioremediation, algal cells are frequently employed to adsorb and eliminate heavy metals from the environment. Bioremediation is seen as a desirable strategy with few adverse effects and low cost. Activities and procedures for bioremediation involving algal cells depend on various environmental factors, including salinity, pH, temperature, the concentration of heavy metals, the amount of alga biomass, and food availability. Additionally, the effectiveness of removing heavy metals from the environment by assessing how environmental circumstances affect algal activities. The main issues discussed are (1) heavy metal pollution of water bodies, the role of algal cells in heavy metal removal, the methods by which algae cells take up and store heavy metals, and the process of turning the algae biomass produced into biofuel. (2) To overcome the environmental factors and improve heavy metals bioremediation, many strategies are applied, such as immobilizing the cells, consortium culture, and using dry mass rather than living cells. (3) The processes for converting produced algal biomass into biofuels like biodiesel and biomethanol. The present study discusses the life cycle assessment and the limitations of biofuel products from algae biomass.
Collapse
Affiliation(s)
- Mohammad Hazaimeh
- Department of Biology, College of Science in Zulfi, Majmaah University, Majmaah, ah-11952, Saudi Arabia.
| |
Collapse
|
10
|
Preparation and Characterization of Intracellular and Exopolysaccharides during Cycle Cultivation of Spirulina platensis. Foods 2023; 12:foods12051067. [PMID: 36900580 PMCID: PMC10000700 DOI: 10.3390/foods12051067] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/23/2023] [Accepted: 01/30/2023] [Indexed: 03/06/2023] Open
Abstract
The dried cell weight (DCW) of Spirulina platensis gradually decreased from 1.52 g/L to 1.18 g/L after five cultivation cycles. Intracellular polysaccharide (IPS) and exopolysaccharide (EPS) content both increased with increased cycle number and duration. IPS content was higher than EPS content. Maximum IPS yield (60.61 mg/g) using thermal high-pressure homogenization was achieved after three homogenization cycles at 60 MPa and an S/I ratio of 1:30. IPS showed a more fibrous, porous, and looser structure, and had a higher glucose content and Mw (272.85 kDa) compared with EPS, which may be indicative of IPS's higher viscosity and water holding capacity. Although both carbohydrates were acidic, EPS had stronger acidity and thermal stability than IPS; this was accompanied by differences in monosaccharide. IPS exhibited the highest DPPH (EC50 = 1.77 mg/mL) and ABTS (EC50 = 0.12 mg/mL) radical scavenging capacity, in line with IPS's higher total phenol content, while simultaneously showing the lowest HO• scavenging and ferrous ion chelating capacities; thus characterizing IPS as a superior antioxidant and EPS as a stronger metal ion chelator.
Collapse
|
11
|
Mansour GH, Razzak LA, Suvik A, Wahid MEA. Stimulating immunoglobulin response by intramuscular delivery of exopolysaccharides-adjuvanted mannheimiosis vaccine in goats. Vet World 2022; 15:2945-2952. [PMID: 36718330 PMCID: PMC9880838 DOI: 10.14202/vetworld.2022.2945-2952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 11/09/2022] [Indexed: 12/29/2022] Open
Abstract
Background and Aim Pneumonic mannheimiosis (PM) is a common respiratory bacterial disease among small ruminants. Despite numerous management methods, vaccination remains a suitable strategy to combat or reduce PM in goats and sheep. Thus, a study was conducted in Malaysia to evaluate the immunogenicity of exopolysaccharide-adjuvanted Mannheimia haemolytica A2 vaccine (EPS-MHA2) under laboratory and field conditions for its potential use as an efficient vaccine against PM. Materials and Methods This study induced immunoglobulin (Ig) responses following intramuscular (IM) delivery of the EPS-MHA2 vaccine on 12 goats for about 7 months. Goats were divided into three groups, with three goats per group, and they were vaccinated intramuscularly as follows: Group 1 was vaccinated with an adjuvanted vaccine prepared from formalin-killed M. haemolytica serotypes A2 and EPS excipient; Group 2 was vaccinated with formalin-killed M. haemolytica seed only, whereas Group 3 was injected with phosphate-buffered saline (PBS) as the negative control. Measures of specific immunity included serum IgM, IgG, and IgA as well as bronchoalveolar lavage fluid secretory IgA and the size and number of the bronchus-associated lymphoid tissue (BALT). Results From the 1st day of vaccination, Groups 1 and 2 showed a significant (p < 0.05) increase in serum IgM, IgG, and IgA levels. However, the antibodies started to decline 5-week post-vaccination, indicating that the booster dose was necessary. On the second exposure to the same vaccine (booster), the level of antibodies showed a significant increase (p < 0.05), particularly IgG. All groups were challenged intratracheally by virulent MHA2 2 weeks after the decline of second antibodies on the administration of booster. All goats were euthanatized and necropsied 4-week post-challenge. The number and size of the BALT in Group 1 goats significantly increased compared with those in Group 2 and the unvaccinated control. Bacteriological parameters were evaluated, in which MHA2 was reisolated successfully from lung samples in Group 3. The IgA level produced by the group vaccinated with EPS-MHA2 was significantly (p < 0.001) higher than that the MHA2 vaccine and PBS groups. All data obtained were analyzed statistically using a one-way analysis of variance. The results indicate that IM injection of EPS-MHA2 vaccine significantly enhanced the immune response against MHA2. Conclusion Therefore, the addition of EPS to MHA2 (EPS-MHA2 vaccine) can effectively protect goats from lethal mannheimiosis infection. Factors such as the ideal concentration of EPS should be further studied to verify its application potential as a vaccine adjuvant, and the extraction of EPS from different microalgae species should be further investigated. This study showed a novel and exciting set of data and a vaccination system, in which the suppressive effects of mannheimiosis may be further investigated.
Collapse
Affiliation(s)
- Ghaith Hussein Mansour
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, 21030 Terengganu, Malaysia
| | - Laith Abdul Razzak
- Faculty of Fisheries and Food Sciences, Universiti Malaysia Terengganu, 21030 Terengganu, Malaysia
| | - A. Suvik
- Faculty of Science and Marine Environment Universiti Malaysia Terengganu, 21030 Terengganu, Malaysia
| | - Mohd Effendy Abd. Wahid
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, 21030 Terengganu, Malaysia,Faculty of Fisheries and Food Sciences, Universiti Malaysia Terengganu, 21030 Terengganu, Malaysia,Corresponding author: Mohd Effendy Abd. Wahid, e-mail: Co-authors: GHM: , LAR: , AS:
| |
Collapse
|
12
|
Yu Z, Hong Y, Xie K, Fan Q. Research Progresses on the Physiological and Pharmacological Benefits of Microalgae-Derived Biomolecules. Foods 2022; 11:2806. [PMID: 36140934 PMCID: PMC9498144 DOI: 10.3390/foods11182806] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/30/2022] [Accepted: 08/31/2022] [Indexed: 11/17/2022] Open
Abstract
Microalgae are a kind of photoautotrophic microorganism, which are small, fast in their growth rate, and widely distributed in seawater and freshwater. They have strong adaptability to diverse environmental conditions and contain various nutrients. Many scholars have suggested that microalgae can be considered as a new food source, which should be developed extensively. More importantly, in addition to containing nutrients, microalgae are able to produce a great number of active compounds such as long-chain unsaturated fatty acids, pigments, alkaloids, astaxanthin, fucoidan, etc. Many of these compounds have been proven to possess very important physiological functions such as anti-oxidation, anti-inflammation, anti-tumor functions, regulation of the metabolism, etc. This article aimed to review the physiological functions and benefits of the main microalgae-derived bioactive molecules with their physiological effects.
Collapse
Affiliation(s)
- Zhou Yu
- Functional Food Research Center, Sino German Joint Research Institute, Nanchang University, Nanchang 330006, China
| | - Yan Hong
- Pharmacological Research Laboratory, Jiangxi Institution for Drug Control, Nanchang 330006, China
| | - Kun Xie
- Medical College, Nanchang Institution of Technology, Nanchang 330006, China
| | - Qingsheng Fan
- Functional Food Research Center, Sino German Joint Research Institute, Nanchang University, Nanchang 330006, China
| |
Collapse
|
13
|
Microalgae Strain Porphyridium purpureum for Nutrient Reduction in Dairy Wastewaters. SUSTAINABILITY 2022. [DOI: 10.3390/su14148545] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
This paper has approached the study of dairy wastewater treatment and the simultaneous biocompound production by Porphyridium purpureum under continuous light and under a day–night cycle. The main goals were to achieve a reduction in the lactose content of the cheese wastewater that was tested and, at the same time, to obtain added value from the produced compounds, so as to increase the economic value of the process. The results show that biomass production increases proportionally with the concentration of lactose for both of the illumination options. The lactose concentration in the waste stream was reduced over 90% in just 7 days. The exopolysaccharide concentration in the growth medium increased with lactose availability. For the samples that were under constant light stress, the concentration of phycobiliproteins was highest when there was small amounts of lactose in the medium. The content of pigments was higher in the case of the day–night cycle of illumination; these being affected by stress factors such as continuous light and high lactose concentration. The results that were obtained prove that dairy wastewaters that are rich in lactose can be used efficiently for the growth of Porphyridium purpureum, achieving an increase in the biomass concentration and a large reduction of the lactose from this waste stream while obtaining a microalgae biomass that is rich in valuable compounds.
Collapse
|
14
|
Mousavian Z, Safavi M, Azizmohseni F, Hadizadeh M, Mirdamadi S. Characterization, antioxidant and anticoagulant properties of exopolysaccharide from marine microalgae. AMB Express 2022; 12:27. [PMID: 35239029 PMCID: PMC8894541 DOI: 10.1186/s13568-022-01365-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 02/17/2022] [Indexed: 12/02/2022] Open
Abstract
The sulfated exopolysaccharide extracted from marine microalgae attracted considerable attention from both the nutraceutical and pharmaceutical industries. In the present study biomass of five marine microalgae were screened to find strains with high capacity for the production of sulfated exopolysaccharides. The anticoagulant and antioxidant activities of extracted sulfated polysaccharides were evaluated using activated partial thromboplastin time (aPTT), prothrombin time (PT), DPPH and ABTS assays, respectively. The sulfated polysaccharides extracted from Picochlorum sp. showed a strong DPPH scavenging effect with 85% antioxidant activity. The sulfated polysaccharides of Chlorella sorokiniana, Chlorella sp. (L2) and Chlorella sp. (D1) scavenged more than 90% of the ABTS radicals. However, the sulfated polysaccharide extracted from Chlorella sorokiniana, and Chlorella sp. (N4) showed anticoagulant properties. The dual anticoagulant-antioxidant activities in Chlorella sorokiniana could be explained by the combination of various factors including sulfate content and their binding site, monosaccharide residue and glycoside bond which are involved in the polysaccharide’s bioactivity. Sulfated exopolysaccharides (sPS) were extracted from marine green microalgae by the heated acid extraction method. sPS with the higher sulfate/sugar ratio presented potent ABTS radical scavenging activity. Some of the sPS revealed anticoagulant effects in activated partial thromboplastin time (aPTT) and prothrombin time (PT) assays.
Collapse
|