1
|
Zhang H, Wang R, Wang Y, Wang Y, Wang T, Chu C, Cai S, Yi J, Liu Z. Effect of Glycosidase Production by Rhodotorula mucilaginosa on the Release of Flavor Compounds in Fermented White Radish. Foods 2025; 14:1263. [PMID: 40238525 PMCID: PMC11988347 DOI: 10.3390/foods14071263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 04/01/2025] [Accepted: 04/01/2025] [Indexed: 04/18/2025] Open
Abstract
Fermented vegetables are highly valued by consumers for their distinct flavors and rich nutritional content. Microbial fermentation imparts distinct flavors to these vegetables, with red yeast being a common microorganism involved in the fermentation process. However, studies on the impact of red yeast on flavor development in fermented vegetables remain scarce. This study employed multi-omics to analyze the effect of glycosidase produced by Rhodotorula mucilaginosa on the release of bound flavor compounds in vegetables. The results indicate that the yeast possesses multiple glycosidase-encoding genes, with the activities of α-galactosidase, β-glucosidase, and α-mannosidase being detected. Following the inoculation of yeast into fermented vegetable juice, a significant increase was observed in the expression of the β-glucosidase gene (bglX) and the α-glucosidase maltase gene (malL), alongside an increase in the content of flavor compounds correlated with the enzymatic activity detected. The application of commercial glycosidase to vegetable juice resulted in increased levels of cis-2-pentenol, hyacinthin, geranylacetone, and 1-dodecanol, consistent with findings from yeast-fermented vegetable juice. Thus, Rhodotorula mucilaginosa can secrete glycosidases that hydrolyze and release endogenous bound flavor compounds in vegetables, thereby enhancing the flavor quality of the final product.
Collapse
Affiliation(s)
- Huixin Zhang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; (H.Z.); (R.W.); (Y.W.); (T.W.); (C.C.); (S.C.); (J.Y.)
- Yunnan Key Laboratory of Plateau Food Advanced Manufacturing, Kunming 650500, China
- International Green Food Processing Research and Development Center of Kunming City, Kunming 650500, China
| | - Rui Wang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; (H.Z.); (R.W.); (Y.W.); (T.W.); (C.C.); (S.C.); (J.Y.)
- Yunnan Key Laboratory of Plateau Food Advanced Manufacturing, Kunming 650500, China
- International Green Food Processing Research and Development Center of Kunming City, Kunming 650500, China
| | - Yaoying Wang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; (H.Z.); (R.W.); (Y.W.); (T.W.); (C.C.); (S.C.); (J.Y.)
- Yunnan Key Laboratory of Plateau Food Advanced Manufacturing, Kunming 650500, China
- International Green Food Processing Research and Development Center of Kunming City, Kunming 650500, China
| | - Yanfei Wang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; (H.Z.); (R.W.); (Y.W.); (T.W.); (C.C.); (S.C.); (J.Y.)
- Yunnan Key Laboratory of Plateau Food Advanced Manufacturing, Kunming 650500, China
- International Green Food Processing Research and Development Center of Kunming City, Kunming 650500, China
| | - Tao Wang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; (H.Z.); (R.W.); (Y.W.); (T.W.); (C.C.); (S.C.); (J.Y.)
- Yunnan Key Laboratory of Plateau Food Advanced Manufacturing, Kunming 650500, China
- International Green Food Processing Research and Development Center of Kunming City, Kunming 650500, China
| | - Chuanqi Chu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; (H.Z.); (R.W.); (Y.W.); (T.W.); (C.C.); (S.C.); (J.Y.)
- Yunnan Key Laboratory of Plateau Food Advanced Manufacturing, Kunming 650500, China
- International Green Food Processing Research and Development Center of Kunming City, Kunming 650500, China
| | - Shengbao Cai
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; (H.Z.); (R.W.); (Y.W.); (T.W.); (C.C.); (S.C.); (J.Y.)
- Yunnan Key Laboratory of Plateau Food Advanced Manufacturing, Kunming 650500, China
- International Green Food Processing Research and Development Center of Kunming City, Kunming 650500, China
| | - Junjie Yi
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; (H.Z.); (R.W.); (Y.W.); (T.W.); (C.C.); (S.C.); (J.Y.)
- Yunnan Key Laboratory of Plateau Food Advanced Manufacturing, Kunming 650500, China
- International Green Food Processing Research and Development Center of Kunming City, Kunming 650500, China
| | - Zhijia Liu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; (H.Z.); (R.W.); (Y.W.); (T.W.); (C.C.); (S.C.); (J.Y.)
- Yunnan Key Laboratory of Plateau Food Advanced Manufacturing, Kunming 650500, China
- International Green Food Processing Research and Development Center of Kunming City, Kunming 650500, China
| |
Collapse
|
2
|
Vasquez R, Song JH, Park YS, Paik HD, Kang DK. Application of probiotic bacteria in ginsenoside bioconversion and enhancing its health-promoting benefits: a review. Food Sci Biotechnol 2025; 34:1631-1659. [PMID: 40160953 PMCID: PMC11936870 DOI: 10.1007/s10068-024-01734-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/26/2024] [Accepted: 10/10/2024] [Indexed: 04/02/2025] Open
Abstract
Ginseng (Panax) is a perennial herb with medicinal properties found in Asia and North America. Ginseng extracts contain several compounds, such as ginsenosides, which have therapeutic properties and have been extensively studied. Because of their deglycosylated nature, minor ginsenosides exhibit more potent bioactive properties than their parent ginsenosides. However, untreated ginseng extracts contain low levels of bioactive minor ginsenosides. Thus, converting major ginsenosides to minor ginsenosides using various methods, including microbial bioconversion, is required. Probiotic bacteria such as lactic acid bacteria and bifidobacteria are safe and excellent agents for bioconverting ginsenosides. Numerous studies have demonstrated the application of probiotic bacteria to produce minor ginsenosides; however, a comprehensive discussion focusing on using probiotics in ginsenoside bioconversion has been lacking. Therefore, this review investigates the application of probiotic bacteria to produce minor ginsenosides. Moreover, improving the health-promoting properties of ginseng with the help of probiotics is also reviewed.
Collapse
Affiliation(s)
- Robie Vasquez
- Department of Animal Biotechnology, Dankook University, 119 Dandae-Ro, Cheonan, 31116 Republic of Korea
| | - Ji Hoon Song
- Department of Animal Biotechnology, Dankook University, 119 Dandae-Ro, Cheonan, 31116 Republic of Korea
| | - Young-Seo Park
- Department of Food Science and Biotechnology, Gachon University, Seongnam, 13120 Republic of Korea
| | - Hyun-Dong Paik
- Department of Food Science and Biotechnology of Animal Resource, Konkuk University, Seoul, 05029 Republic of Korea
| | - Dae-Kyung Kang
- Department of Animal Biotechnology, Dankook University, 119 Dandae-Ro, Cheonan, 31116 Republic of Korea
| |
Collapse
|
3
|
Lu Y, Jiang Q, Dong Y, Ji R, Xiao Y, Zhu D, Gao B. Characterization of a GH43 Bifunctional Glycosidase from Endophytic Chaetomium globosum and Its Potential Application in the Biotransformation of Ginsenosides. BIOTECH 2025; 14:18. [PMID: 40227340 PMCID: PMC11940195 DOI: 10.3390/biotech14010018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/03/2025] [Accepted: 03/07/2025] [Indexed: 04/15/2025] Open
Abstract
The GH43 family of glycosidases represents an important class of industrial enzymes that are widely utilized across the food, pharmaceutical, and various other sectors. In this study, we identified a GH43 family glycoside hydrolytic enzyme, Xyaf313, derived from the plant endophytic fungus Chaetomium globosum DX-THS3, which is capable of transforming several common ginsenosides. The enzyme function analysis reveals that Xyaf313 exhibits dual functionality, displaying both α-L-arabinofuranosidase and β-D-xylosidase activity. When acting as an α-L-arabinofuranosidase, Xyaf313 achieves optimal enzyme activity of 23.96 U/mg at a temperature of 50 °C and a pH of 7. In contrast, its β-D-xylosidase activity results in a slight reduction in enzyme activity to 23.24 U/mg, with similar optimal temperature and pH conditions to those observed for the α-L-arabinofuranosidase activity. Furthermore, Xyaf313 demonstrates considerable resistance to most metal ions and common chemical reagents. Notably, while the maximum enzyme activity of Xyaf313 occurs at 50 °C, it maintains high activity at room temperature (30 °C), with relative enzyme activity exceeding 90%. Measurements of ginsenoside transformation show that Xyaf313 can convert common ginsenosides Rc, Rb1, Rb2, and Rb3 into Rd, underscoring its potential for pharmaceutical applications. Overall, our findings contribute to the identification of a new class of bifunctional GH43 glycoside hydrolases, highlight the significance of plant endophytic fungi as a promising resource for the screening of carbohydrate-decomposing enzymes, and present new candidate enzymes for the biotransformation of ginsenosides.
Collapse
Affiliation(s)
- Yao Lu
- Key Laboratory of Natural Microbial Medicine Research of Jiangxi Province, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - Qiang Jiang
- Key Laboratory of Natural Microbial Medicine Research of Jiangxi Province, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - Yamin Dong
- Key Laboratory of Natural Microbial Medicine Research of Jiangxi Province, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - Runzhen Ji
- Key Laboratory of Natural Microbial Medicine Research of Jiangxi Province, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - Yiwen Xiao
- Key Laboratory of Natural Microbial Medicine Research of Jiangxi Province, Jiangxi Science and Technology Normal University, Nanchang 330013, China
- Key Laboratory of Microbial Resources and Metabolism of Nanchang City, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - Du Zhu
- Key Laboratory of Natural Microbial Medicine Research of Jiangxi Province, Jiangxi Science and Technology Normal University, Nanchang 330013, China
- Key Laboratory of Microbial Resources and Metabolism of Nanchang City, Jiangxi Science and Technology Normal University, Nanchang 330013, China
- Jiangxi Province Key Laboratory of Biodiversity Conservation and Bioresource Utilization, Nanchang 330022, China
| | - Boliang Gao
- Key Laboratory of Natural Microbial Medicine Research of Jiangxi Province, Jiangxi Science and Technology Normal University, Nanchang 330013, China
- Key Laboratory of Microbial Resources and Metabolism of Nanchang City, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| |
Collapse
|
4
|
Li F, Zhang R, Lin D, Yang J, Yang Y, Cui X, Yang X. Comparison of the Transformation Ability of the Major Saponins in Panax notoginseng by Penicillum fimorum Enzyme and Commercial β-glucosidase. Microorganisms 2025; 13:495. [PMID: 40142388 PMCID: PMC11944306 DOI: 10.3390/microorganisms13030495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 02/17/2025] [Accepted: 02/21/2025] [Indexed: 03/28/2025] Open
Abstract
Ginsenosides with less sugar groups, which are called minor ginsenosides, might have a greater pharmacological activity and better adsorptive ability, but their content in nature is extremely low. In this study, a strain of Penicillium fimorum with a strong saponin transformation ability was isolated from fresh Gastrodia elata. A comparative biotransformation experiment of the major saponins from Panax notoginseng root were conducted using crude enzymes from P. fimorum and commercial β-glucosidase to produce minor ginsenosides. Specifically, the crude enzyme from P. fimorum was able to transform the major saponins from P. notoginseng root into 13 minor saponins in 72 h, while commercial β-glucosidase was able to transform the same major saponins into 15 minor saponins in 72 h. The most significant difference between these two enzymes is their ability to transform Rb1. To the best of our knowledge, the biotransformation ability of crude enzymes from P. fimorum is reported here for the first time. These two enzymes have the potential to improve the economic value of P. notoginseng root and expand the methods for preparing minor saponins by transforming major saponins in the total saponins of P. notoginseng root.
Collapse
Affiliation(s)
- Feixing Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; (F.L.); (R.Z.); (D.L.); (J.Y.); (Y.Y.); (X.C.)
| | - Ruixue Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; (F.L.); (R.Z.); (D.L.); (J.Y.); (Y.Y.); (X.C.)
| | - Dongmei Lin
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; (F.L.); (R.Z.); (D.L.); (J.Y.); (Y.Y.); (X.C.)
| | - Jin Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; (F.L.); (R.Z.); (D.L.); (J.Y.); (Y.Y.); (X.C.)
| | - Ye Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; (F.L.); (R.Z.); (D.L.); (J.Y.); (Y.Y.); (X.C.)
- Yunnan Key Laboratory of Sustainable Utilization of Panax Notoginseng, Kunming 650500, China
| | - Xiuming Cui
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; (F.L.); (R.Z.); (D.L.); (J.Y.); (Y.Y.); (X.C.)
- Yunnan Key Laboratory of Sustainable Utilization of Panax Notoginseng, Kunming 650500, China
| | - Xiaoyan Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; (F.L.); (R.Z.); (D.L.); (J.Y.); (Y.Y.); (X.C.)
- Yunnan Key Laboratory of Sustainable Utilization of Panax Notoginseng, Kunming 650500, China
| |
Collapse
|
5
|
Wang Z, Wang S, Yang H. Understanding the Pathogenesis, Biocontrol Mechanisms, and Factors Influencing Biocontrol Effectiveness for Soil-Borne Diseases in Panax Plants. Microorganisms 2024; 12:2278. [PMID: 39597667 PMCID: PMC11596276 DOI: 10.3390/microorganisms12112278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/05/2024] [Accepted: 11/07/2024] [Indexed: 11/29/2024] Open
Abstract
Panax plants are known for their significant medicinal and economic value. Being perennial, they are prone to soil-borne diseases during cultivation. However, there has been limited research on the pathogenesis of soil-borne diseases and the diversity of pathogens. While biological control has gained attention for its efficacy and environmental benefits, the factors affecting its efficiency still need thorough evaluation. This review summarizes the influence of biotic factors, such as pathogens and hosts, and environmental factors on the occurrence of soil-borne diseases and pathogen diversity. Additionally, we synthesized bacterial, actinobacterial, and fungal diversity for the biocontrol of soil-borne diseases and their functional mechanisms. Moreover, the review delves into the factors influencing the efficacy of biocontrol, including microbial species, the inoculation method and inoculation volume, and inoculant composition. This article serves as a valuable resource for enhancing the efficiency of biological control and optimizing strategies for managing soil-borne diseases in Panax cultivation in the future.
Collapse
Affiliation(s)
| | | | - Hongyan Yang
- College of Life Sciences, Northeast Forestry University, Harbin 150040, China; (Z.W.); (S.W.)
| |
Collapse
|
6
|
Zhang X, Wang Y, Zhang T, Yuan Z, Wei Y. Efficient Biotransformation of Icariin to Baohuoside I Using Two Novel GH1 β-Glucosidases. Molecules 2024; 29:5280. [PMID: 39598669 PMCID: PMC11596834 DOI: 10.3390/molecules29225280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 10/31/2024] [Accepted: 11/06/2024] [Indexed: 11/29/2024] Open
Abstract
Epimedium Folium (EF) is a traditional Chinese herbal medicine, and its primary bioactive ingredients, such as icariin, are flavonoid glycosides. A rare EF flavonoid, baohuoside I, exhibits superior bioactivities and enhanced bioavailability compared to its metabolic precursor icariin. The biotransformation of icariin to baohuoside I can be effectively and specifically achieved by β-glucosidases. In this study, 33 candidate full-length β-glucosidase genes were screened from a previously built carbohydrate active enzyme (CAZyme) gene dataset derived from cow fecal microbiota. Thirteen of them exhibited β-glucosidase activity, with DCF-bgl-26 and DCF-bgl-27 showing relatively high expression levels and β-glucosidase activity. The maximum β-glucosidase activity of DCF-bgl-26 and DCF-bgl-27 was achieved at 45 °C and pH 6.0, with DCF-bgl-26 demonstrating better thermostability and pH tolerance compared to DCF-bgl-27. The activities of DCF-bgl-26 and DCF-bgl-27 were 123.2 U/mg protein and 157.9 U/mg protein, respectively, both of which are higher than those of many bacterial β-glucosidases. Structure analysis suggested that both β-glucosidases possess canonical (β/α)8-TIM barrel fold structure of GH1 family β-glucosidases. Thin-layer chromatography results showed that both enzymes could efficiently convert icariin to baohuoside I in 30 min, indicating they have potential application in the production of high value rare baohuoside I.
Collapse
Affiliation(s)
- Xiaoling Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
- State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 450001, China
- Food Laboratory of Zhongyuan, Zhengzhou University, Zhengzhou 450001, China
| | - Yitong Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Tiantian Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Ziqiao Yuan
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yongjun Wei
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
- State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 450001, China
- Food Laboratory of Zhongyuan, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
7
|
Huang J, Hou Q, Yang Y. Replacing Hydrolyzed Soybean Meal with Recombinant β-Glucosidase Enhances Resistance to Clostridium perfringens in Broilers Through Immune Modulation. Int J Mol Sci 2024; 25:11700. [PMID: 39519252 PMCID: PMC11547137 DOI: 10.3390/ijms252111700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/09/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024] Open
Abstract
Aglycone soy isoflavones have notable immune-regulatory bioactivity, while glycosidic forms in soybean meal pose challenges for absorption. β-Glucosidase (EC 3.2.1.21) catalyzes the non-reducing terminal β-d-glucosidic bonds, releasing β-d-glucan and aglycones. This study evaluated the impact of enzymatically hydrolyzed soybean meal (ESM) using recombinant β-glucosidase from Aspergillus niger on the growth performance and intestinal immune function of broilers under Clostridium perfringens infection. Prior to the feeding trial, soybean meal was enzymatically digested with recombinant β-glucosidase, ensuring almost complete conversion of glycosides to aglycones. After a week of pre-feeding, a total 180 healthy AA broilers were randomly assigned to three groups-control, semi-replacement of ESM (50% ESM), and full-replacement of ESM (100% ESM)-with 6 replicates of 10 chickens, and the trial lasted 28 days. On the 36th day, broilers were challenged with 1 mL of 1 × 1010 CFU/mL Clostridium perfringens (Cp) via gavage for 3 days. The results showed that the substitution of ESM had no effect on the body weight gain of broilers but significantly reduced the feed consumption and feed-to-gain ratio (p < 0.01). The study revealed that Cp significantly disrupted jejunal morphology, while ESM significantly mitigated this damage (p < 0.05). Real-time PCR results demonstrated that compared to the Cp group, ESM restored Cp-induced intestinal barrier impairments (e.g., Occludin, Claudin-1, Muc2), normalized aberrant cellular proliferation (PCNA) and apoptosis (Caspase-1 and Caspase-3), and upregulated the expression of anti-inflammatory factor Il-10 while suppressing pro-inflammatory cytokines (Il-1β, Il-6, and Il-8) (p < 0.05). Moreover, flow cytometry analyses demonstrated that ESM promoted Treg cell-derived Il-10, which alleviated macrophage-derived inflammation. Substituting conventional soybean meal with β-glucosidase, enzymatically treated, significantly reduced feed consumption and alleviated the intestinal damage and immune dysfunctions induced by Clostridium perfringens infection in broilers.
Collapse
Affiliation(s)
- Jingxi Huang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science & Technology, China Agricultural University, Beijing 100193, China;
| | - Qihang Hou
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China;
| | - Ying Yang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science & Technology, China Agricultural University, Beijing 100193, China;
| |
Collapse
|
8
|
Ji H, Guo L, Yu D, Du X. Application of microorganisms in Panax ginseng: cultivation of plants, and biotransformation and bioactivity of key component ginsenosides. Arch Microbiol 2024; 206:433. [PMID: 39412649 DOI: 10.1007/s00203-024-04144-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/20/2024] [Accepted: 09/24/2024] [Indexed: 11/10/2024]
Abstract
Panax ginseng is a precious Chinese medicinal plant with a long growth cycle and high medicinal value. Therefore, it is of great significance to explore effective ways to increase its yield and main active substance content to reduce the cost of ginseng, which is widely used in food and clinical applications. Here, we review the key roles of microorganisms in the biological control of ginseng diseases, enhancement of ginseng yield, biotransformation of ginsenosides, and augmentation of ginsenoside bioactivity. The application of microorganisms in P. ginseng faces multiple challenges, including the need for further exploration of efficient microbial strain resources used in the cultivation of ginseng and biotransformation of ginsenosides, lack of microbial application in large-scale field cultivation of ginseng, and unclear mechanism of microbial transformation of ginsenosides. This review provides a deeper understanding of the applications of microorganisms in P. ginseng.
Collapse
Affiliation(s)
- Hongyu Ji
- College of Pharmacy, Heilongjiang University of Chinese Medicine, No. 24 Heping Road, Harbin, Heilongjiang Province, 150040, China
| | - Lidong Guo
- College of Pharmacy, Heilongjiang University of Chinese Medicine, No. 24 Heping Road, Harbin, Heilongjiang Province, 150040, China
| | - Dan Yu
- College of Pharmacy, Heilongjiang University of Chinese Medicine, No. 24 Heping Road, Harbin, Heilongjiang Province, 150040, China
| | - Xiaowei Du
- College of Pharmacy, Heilongjiang University of Chinese Medicine, No. 24 Heping Road, Harbin, Heilongjiang Province, 150040, China.
| |
Collapse
|
9
|
Arsov A, Tsigoriyna L, Batovska D, Armenova N, Mu W, Zhang W, Petrov K, Petrova P. Bacterial Degradation of Antinutrients in Foods: The Genomic Insight. Foods 2024; 13:2408. [PMID: 39123599 PMCID: PMC11311503 DOI: 10.3390/foods13152408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/22/2024] [Accepted: 07/27/2024] [Indexed: 08/12/2024] Open
Abstract
Antinutrients, also known as anti-nutritional factors (ANFs), are compounds found in many plant-based foods that can limit the bioavailability of nutrients or can act as precursors to toxic substances. ANFs have controversial effects on human health, depending mainly on their concentration. While the positive effects of these compounds are well documented, the dangers they pose and the approaches to avoid them have not been discussed to the same extent. There is no dispute that many ANFs negatively alter the absorption of vitamins, minerals, and proteins in addition to inhibiting some enzyme activities, thus negatively affecting the bioavailability of nutrients in the human body. This review discusses the chemical properties, plant bioavailability, and deleterious effects of anti-minerals (phytates and oxalates), glycosides (cyanogenic glycosides and saponins), polyphenols (tannins), and proteinaceous ANFs (enzyme inhibitors and lectins). The focus of this study is on the possibility of controlling the amount of ANF in food through fermentation. An overview of the most common biochemical pathways for their microbial reduction is provided, showing the genetic basis of these phenomena, including the active enzymes, the optimal conditions of action, and some data on the regulation of their synthesis.
Collapse
Affiliation(s)
- Alexander Arsov
- Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria;
| | - Lidia Tsigoriyna
- Institute of Chemical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (L.T.); (D.B.); (N.A.); (K.P.)
| | - Daniela Batovska
- Institute of Chemical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (L.T.); (D.B.); (N.A.); (K.P.)
| | - Nadya Armenova
- Institute of Chemical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (L.T.); (D.B.); (N.A.); (K.P.)
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (W.M.); (W.Z.)
| | - Wenli Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (W.M.); (W.Z.)
| | - Kaloyan Petrov
- Institute of Chemical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (L.T.); (D.B.); (N.A.); (K.P.)
| | - Penka Petrova
- Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria;
| |
Collapse
|
10
|
Abedi A, Tafvizi F, Jafari P, Akbari N. The inhibition effects of Lentilactobacillus buchneri-derived membrane vesicles on AGS and HT-29 cancer cells by inducing cell apoptosis. Sci Rep 2024; 14:3100. [PMID: 38326490 PMCID: PMC10850327 DOI: 10.1038/s41598-024-53773-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 02/05/2024] [Indexed: 02/09/2024] Open
Abstract
In recent years, probiotics and their derivatives have been recognized as important therapeutic agents in the fight against cancer. Therefore, this study aimed to investigate the anticancer effects of membrane vesicles (MVs) from Lentilactobacillus buchneri strain HBUM07105 probiotic isolated from conventional and unprocessed yogurt in Arak province, Iran, against gastric and colon cancer cell lines. The MVs were prepared from the cell-free supernatant (CFS) of L. buchneri and characterized using field-emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM) and SPS-PAGE techniques. The anticancer activity of MVs was evaluated using MTT, flow cytometry, qRT-PCR techniques, and a scratch assay. The study investigated the anti-adenocarcinoma effect of MVs isolated from L. buchneri on a human gastric adenocarcinoma cell line (AGS) and a human colorectal adenocarcinoma cell line (HT-29) at 24, 48, and 72-h time intervals. The results demonstrated that all prepared concentrations (12.5, 25, 50, 100, and 200 µg/mL) of MVs reduced the viability of both types of human adenocarcinoma cells after 24, 48, and 72 h of treatment. The analysis of the apoptosis results revealed that the percentage of AGS and HT-29 cancer cells in the early and late stages of apoptosis was significantly higher after 24, 48, and 72 h of treatment compared to the untreated cancer cells. After treating both AGS and HT-29 cells with the MVs, the cells were arrested in the G0/G1 phase. These microvesicles demonstrate apoptotic activity by increasing the expression of pro-apoptotic genes (BAX, CASP3, and CASP9). According to the scratch test, MVs can significantly decrease the migration of HT-29 and AGS cancer cells after 24, 48, and 72 h of incubation compared to the control groups. The MVs of L. buchneri can also be considered a potential option for inhibiting cancer cell activities.
Collapse
Affiliation(s)
- Adel Abedi
- Microbiology Department, Faculty of Science, Arak Branch, Islamic Azad University, Arak, Iran
| | - Farzaneh Tafvizi
- Department of Biology, Parand Branch, Islamic Azad University, Parand, Iran.
| | - Parvaneh Jafari
- Microbiology Department, Faculty of Science, Arak Branch, Islamic Azad University, Arak, Iran.
| | - Neda Akbari
- Microbiology Department, Faculty of Science, Arak Branch, Islamic Azad University, Arak, Iran
| |
Collapse
|
11
|
Wang P, Gao Y, Yang G, Zhao Y, Zhao Z, Gao G, Zhao L, Li S. Enhancing the inhibition of cell proliferation and induction of apoptosis in H22 hepatoma cells through biotransformation of notoginsenoside R1 by Lactiplantibacillus plantarum S165 into 20( S/ R)-notoginsenoside R2. RSC Adv 2023; 13:29773-29783. [PMID: 37829710 PMCID: PMC10565556 DOI: 10.1039/d3ra06029b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 10/02/2023] [Indexed: 10/14/2023] Open
Abstract
Notoginsenoside R2 is a crucial active saponin in Panax notoginseng (Burk.) F. H. Chen, but its natural content is relatively low. In this study, we investigated the biotransformation of notoginsenoside R1 to 20(S/R)-notoginsenoside R2 using Lactiplantibacillus plantarum S165, compared the inhibitory effects on cancer cell proliferation and conducted a mechanistic study. Notoginsenoside R1 was transformed using Lactiplantibacillus plantarum S165 at 37 °C for 21 days. The fermentation products were identified using a combination of HPLC, UPLC-MS/MS, and 13C-NMR methods. The inhibition effects of 20(S/R)-notoginsenoside R2 on H22 hepatoma cells were assessed by CCK-8 and TUNEL assays, and the underlying mechanism was investigated by Western blotting. Lactiplantibacillus plantarum S165 could effectively transform notoginsenoside R1 to 20(S/R)-notoginsenoside R2 with a conversion yield of 82.85%. Our results showed that 20(S/R)-notoginsenoside R2 inhibited H22 hepatoma cells proliferation and promoted apoptosis. The apoptosis of H22 hepatoma cells was promoted by 20(S/R)-notoginsenoside R2 through the blockade of the PI3K/AKT/mTOR signaling pathway. The biotransformation method used in this study resulted in the production of 20(S)-notoginsenoside R2 and 20(R)-notoginsenoside R2 from notoginsenoside R1, and the anti-tumor activity of the transformed substance markedly improved.
Collapse
Affiliation(s)
- Penghui Wang
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine Changchun 130117 P. R. China
| | - Yansong Gao
- Institute of Agro-Food Technology, Jilin Academy of Agricultural Sciences Changchun 130033 P. R. China +86 431 87063075 +86 431 87063289
| | - Ge Yang
- Institute of Agro-Food Technology, Jilin Academy of Agricultural Sciences Changchun 130033 P. R. China +86 431 87063075 +86 431 87063289
| | - Yujuan Zhao
- Institute of Agro-Food Technology, Jilin Academy of Agricultural Sciences Changchun 130033 P. R. China +86 431 87063075 +86 431 87063289
| | - Zijian Zhao
- Institute of Agro-Food Technology, Jilin Academy of Agricultural Sciences Changchun 130033 P. R. China +86 431 87063075 +86 431 87063289
| | - Ge Gao
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine Changchun 130117 P. R. China
| | - Lei Zhao
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine Changchun 130117 P. R. China
| | - Shengyu Li
- Institute of Agro-Food Technology, Jilin Academy of Agricultural Sciences Changchun 130033 P. R. China +86 431 87063075 +86 431 87063289
| |
Collapse
|
12
|
Tran TNA, Son JS, Awais M, Ko JH, Yang DC, Jung SK. β-Glucosidase and Its Application in Bioconversion of Ginsenosides in Panax ginseng. Bioengineering (Basel) 2023; 10:bioengineering10040484. [PMID: 37106671 PMCID: PMC10136122 DOI: 10.3390/bioengineering10040484] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/13/2023] [Accepted: 04/15/2023] [Indexed: 04/29/2023] Open
Abstract
Ginsenosides are a group of bioactive compounds isolated from Panax ginseng. Conventional major ginsenosides have a long history of use in traditional medicine for both illness prevention and therapy. Bioconversion processes have the potential to create new and valuable products in pharmaceutical and biological activities, making them both critical for research and highly economic to implement. This has led to an increase in the number of studies that use major ginsenosides as a precursor to generate minor ones using β-glucosidase. Minor ginsenosides may also have useful properties but are difficult to isolate from raw ginseng because of their scarcity. Bioconversion processes have the potential to create novel minor ginsenosides from the more abundant major ginsenoside precursors in a cost-effective manner. While numerous bioconversion techniques have been developed, an increasing number of studies have reported that β-glucosidase can effectively and specifically generate minor ginsenosides. This paper summarizes the probable bioconversion mechanisms of two protopanaxadiol (PPD) and protopanaxatriol (PPT) types. Other high-efficiency and high-value bioconversion processes using complete proteins isolated from bacterial biomass or recombinant enzymes are also discussed in this article. This paper also discusses the various conversion and analysis methods and their potential applications. Overall, this paper offers theoretical and technical foundations for future studies that will be both scientifically and economically significant.
Collapse
Affiliation(s)
- Thi Ngoc Anh Tran
- Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Yongin 17104, Republic of Korea
- Department of Plant & Environmental New Resources, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Jin-Sung Son
- Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Muhammad Awais
- Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Jae-Heung Ko
- Department of Plant & Environmental New Resources, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Deok Chun Yang
- Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Seok-Kyu Jung
- Department of Horticulture, Kongju National University, Yesan 32439, Republic of Korea
| |
Collapse
|
13
|
Comprehensive in silico analysis of the probiotics, and preparation of compound probiotics-Polygonatum sibiricum saponin with hypoglycemic properties. Food Chem 2023; 404:134569. [DOI: 10.1016/j.foodchem.2022.134569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 09/22/2022] [Accepted: 10/08/2022] [Indexed: 11/05/2022]
|
14
|
Zhu H, Zhang R, Huang Z, Zhou J. Progress in the Conversion of Ginsenoside Rb1 into Minor Ginsenosides Using β-Glucosidases. Foods 2023; 12:foods12020397. [PMID: 36673490 PMCID: PMC9858181 DOI: 10.3390/foods12020397] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 01/18/2023] Open
Abstract
In recent years, minor ginsenosides have received increasing attention due to their outstanding biological activities, yet they are of extremely low content in wild ginseng. Ginsenoside Rb1, which accounts for 20% of the total ginsenosides, is commonly used as a precursor to produce minor ginsenosides via β-glucosidases. To date, many research groups have used different approaches to obtain β-glucosidases that can hydrolyze ginsenoside Rb1. This paper provides a compilation and analysis of relevant literature published mainly in the last decade, focusing on enzymatic hydrolysis pathways, enzymatic characteristics and molecular mechanisms of ginsenoside Rb1 hydrolysis by β-glucosidases. Based on this, it can be concluded that: (1) The β-glucosidases that convert ginsenoside Rb1 are mainly derived from bacteria and fungi and are classified as glycoside hydrolase (GH) families 1 and 3, which hydrolyze ginsenoside Rb1 mainly through the six pathways. (2) Almost all of these β-glucosidases are acidic and neutral enzymes with molecular masses ranging from 44-230 kDa. Furthermore, the different enzymes vary widely in terms of their optimal temperature, degradation products and kinetics. (3) In contrast to the GH1 β-glucosidases, the GH3 β-glucosidases that convert Rb1 show close sequence-function relationships. Mutations affecting the substrate binding site might alter the catalytic efficiency of enzymes and yield different prosapogenins. Further studies should focus on elucidating molecular mechanisms and improving overall performances of β-glucosidases for better application in food and pharmaceutical industries.
Collapse
Affiliation(s)
- Hongrong Zhu
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming 650500, China
- College of Life Sciences, Yunnan Normal University, Kunming 650500, China
- Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Kunming 650500, China
- Key Laboratory of Yunnan Provincial Education, Department for Plateau Characteristic Food Enzymes, Yunnan Normal University, Kunming 650500, China
| | - Rui Zhang
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming 650500, China
- College of Life Sciences, Yunnan Normal University, Kunming 650500, China
- Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Kunming 650500, China
- Key Laboratory of Yunnan Provincial Education, Department for Plateau Characteristic Food Enzymes, Yunnan Normal University, Kunming 650500, China
| | - Zunxi Huang
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming 650500, China
- College of Life Sciences, Yunnan Normal University, Kunming 650500, China
- Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Kunming 650500, China
- Key Laboratory of Yunnan Provincial Education, Department for Plateau Characteristic Food Enzymes, Yunnan Normal University, Kunming 650500, China
| | - Junpei Zhou
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming 650500, China
- College of Life Sciences, Yunnan Normal University, Kunming 650500, China
- Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Kunming 650500, China
- Key Laboratory of Yunnan Provincial Education, Department for Plateau Characteristic Food Enzymes, Yunnan Normal University, Kunming 650500, China
- Correspondence: ; Tel.: +86-871-6592-0830; Fax: +86-871-6592-0952
| |
Collapse
|
15
|
Chen Y, Wang Y, Zhu A, Zhang L, Zhang X, Zhang J, Zhang C. UPLC-TOF/MS-based metabolomics reveals the chemical changes and in vitro biological effects in fermentation of white ginseng by four probiotics. Front Microbiol 2022; 13:1022200. [PMID: 36504795 PMCID: PMC9729340 DOI: 10.3389/fmicb.2022.1022200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 11/07/2022] [Indexed: 11/25/2022] Open
Abstract
Microbial fermentation is a useful method for improving the biological activity of Chinese herbal medicine. Herein, we revealed the effects of solid-state fermentation by Lactiplantibacillus plantarum, Bacillus licheniformis, Saccharomyces cerevisiae, Eurotium cristatum and multiple strains on total flavonoid content, total phenol content, as well as antioxidants, α-amylase inhibitory activities and α-glucosidase inhibitory activities in white ginseng (WG). Metabolite differences between non-fermented and fermented WG by different probiotics were comprehensively investigated using ultra-performance liquid chromatography time-of-flight mass spectrometry (UPLC-TOF-MS). Results showed that the total flavonoid content, ferric reducing antioxidant power, scavenging activities of DPPH radical and ABTS radical, α-amylase inhibitory activities and α-glucosidase inhibitory activities of WG were considerably enhanced after processing by solid-state fermentation in all strains. The total phenol content was increased by E. cristatum and B. licheniformis fermentation, but decreased by L. plantarum, S. cerevisiae and multi-strain fermentation. Additionally, E. cristatum exhibited stronger biotransformation activity on WG compared to other strains. Significant differential metabolites were mainly annotated as prenol lipids, carboxylic acids and derivatives, flavonoids, polyphenols, coumarins and derivatives. Correlation analysis further showed that changes of these metabolites were closely related to antioxidant and hypoglycemic effects. Our results confirmed that fermentation of WG by different probiotics has distinct effects on biological activities and metabolite composition, and indicating fermentation as an important novel strategy to promote components and bioactivities of WG.
Collapse
|