1
|
Singh JK, Devi PB, Rani PU, Rajapuram DR, Kavitake D, Reddy GB, Shetty PH. Purification and characterization of a bacteriocin produced by the probiotic Lactiplantibacillus plantarum subsp. argentoratensis strain I1B. 3 Biotech 2025; 15:137. [PMID: 40271203 PMCID: PMC12011686 DOI: 10.1007/s13205-025-04279-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 03/18/2025] [Indexed: 04/25/2025] Open
Abstract
This study is aimed to characterize a broad-spectrum bacteriocin produced by Lactiplantibacillus plantarum subsp. argentoratensis strain I1B of fermented food origin and also to evaluate the in vitro probiotic properties of this strain. Cell supernatant of this strain showed broad-spectrum antibacterial activity against five prominent foodborne pathogens viz. Salmonella typhi 950, Escherichia coli 728, Yersinia enterocolitica 861, Listeria monocytogenes 657, and Klebsiella pneumoniae 618 with the strongest activity against the S. typhi 950. Cell supernatant also exhibited stability to proteolytic enzyme treatment, pH, and temperature. Optimum bacteriocin production was at 20-24 h of incubation in MRS broth at 37 °C with pH 6.0. The bacteriocin activity was retained in the 70% ammonium sulfate precipitate fraction, which was further purified using gel filtration chromatography (Sephadex G25 column) to the level of a single band on the SDS-PAGE and the activity was confirmed by zymogram. The molecular mass of the bacteriocin was found to be 22,199 Daltons. The pure molecule was identified using LC-MS/MS and was found to be an Adherence Protein with a sequence of chitin-binding domain consisting of 201 amino acid residues. The isolated strain exhibited potential probiotic activity within the established regulations and did not raise any possible safety concerns. This work reports a potent bacteriocin produced by a listed probiotic organism with latent postbiotic activity which could be used as a potential biopreservatives. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-025-04279-5.
Collapse
Affiliation(s)
- Jahnavi Kumari Singh
- Department of Food Science and Technology, Pondicherry University, Puducherry, 605014 India
| | | | - Potunuru Uma Rani
- Department of Food Science and Technology, Pondicherry University, Puducherry, 605014 India
| | | | - Digambar Kavitake
- Biochemistry Division, ICMR–National Institute of Nutrition, Hyderabad, 500007 India
| | - G. Bhanuprakash Reddy
- Biochemistry Division, ICMR–National Institute of Nutrition, Hyderabad, 500007 India
| | | |
Collapse
|
2
|
Scauro A, Rocchetti MT, Soccio M, la Gatta B, Liberatore MT, De Simone N, Spano G, Fiocco D, Russo P. Postbiotic Potential of Newly Isolated Riboflavin-Overproducing Lactiplantibacillus plantarum Strains. Probiotics Antimicrob Proteins 2025:10.1007/s12602-025-10538-x. [PMID: 40268810 DOI: 10.1007/s12602-025-10538-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2025] [Indexed: 04/25/2025]
Abstract
Lactic acid bacteria (LAB) are food-grade microorganisms able to produce and release bioactive compounds of interest to human health. Some LAB strains can synthesize vitamin B2, i.e., riboflavin, a micronutrient essential for cellular metabolism. In this work, six Lactiplantibacillus plantarum isolated from fruits of the Mediterranean area were exposed to the selective pressure of roseoflavin in order to select spontaneous riboflavin-overproducing phenotypes. The best strains, as determined by the level of riboflavin produced, were characterized for some basic probiotic features, including antibacterial activity, production of organic acids, antibiotic resistance, and survival under digestive stresses using an in vitro gut model. The strain L. plantarum Lp 187_B2, which produced the highest riboflavin level (6 mg/L), exhibited good resistance to gastro-intestinal stress and a relevant capacity to antagonize undesired bacteria, was selected for additional investigations to assess its capacity to protect intestinal homeostasis. When used as a postbiotic, Lp 187_B2 significantly increased trans-epithelial electrical resistance (TEER) in Caco-2 cell monolayers, an in vitro model of the intestinal barrier. Moreover, in a Caco-2/THP-1 co-culture system, mimicking the inflamed bowel, Lp 187_B2 postbiotics significantly inhibited the release of TNF-α by macrophages, thus pointing to gut-barrier strengthening and potential anti-inflammatory properties. Though a validation in vivo is required, our preliminary results indicate that L. plantarum Lp 187_B2 could be successfully applied as both probiotic and postbiotic formulations for improving human health.
Collapse
Affiliation(s)
- Angela Scauro
- Department of Sciences of Agriculture, Food, Natural Resources and Engineering (DAFNE), University of Foggia, Foggia, Italy.
| | | | - Mario Soccio
- Department of Sciences of Agriculture, Food, Natural Resources and Engineering (DAFNE), University of Foggia, Foggia, Italy
| | - Barbara la Gatta
- Department of Sciences of Agriculture, Food, Natural Resources and Engineering (DAFNE), University of Foggia, Foggia, Italy
| | - Maria Teresa Liberatore
- Department of Sciences of Agriculture, Food, Natural Resources and Engineering (DAFNE), University of Foggia, Foggia, Italy
| | - Nicola De Simone
- Institute of Sciences of Food Production, National Research Council (CNR) of Italy, C/O CS-DAT, Foggia, Italy
| | - Giuseppe Spano
- Department of Sciences of Agriculture, Food, Natural Resources and Engineering (DAFNE), University of Foggia, Foggia, Italy
| | - Daniela Fiocco
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy.
| | - Pasquale Russo
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Milan, Italy
| |
Collapse
|
3
|
Singh B, Kumar N, Yadav A, Rohan, Bhandari K. Harnessing the Power of Bacteriocins: A Comprehensive Review on Sources, Mechanisms, and Applications in Food Preservation and Safety. Curr Microbiol 2025; 82:174. [PMID: 40053112 DOI: 10.1007/s00284-025-04155-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 02/24/2025] [Indexed: 03/20/2025]
Abstract
The Sustainable Development Goals (SDGs) emphasize the importance of food safety, prolonged shelf life, and reduced food waste, all of which rely on effective food preservation methods. Bacteriocins, natural antimicrobial substances produced by lactic acid bacteria (LAB), have potential applications in food preservation. This review highlights the role of LAB-derived bacteriocins in preserving food. Bacteriocins are highly effective against foodborne infections because they target cell membranes, break down enzymes, and interfere with cellular activities. The following study used molecular docking to understand the interaction of bacteriocins and their mode of action. With their natural origin and specific action, bacteriocins offer a promising strategy for preventing foodborne diseases and extending shelf life without impacting sensory characteristics. However, challenges such as stable manufacturing, regulatory hurdles, and cost effectiveness hinder the wide adoption of bacteriocins. Nevertheless, LAB-derived bacteriocins offer a safe and efficient approach to improving food preservation, enhancing food safety, and reducing reliance on artificial preservatives. Moreover, immobilized bacteriocins have the potential to be integrated into antimicrobial packaging films, providing a targeted way to reduce the risk of foodborne pathogen contamination and improve food safety. Exploring novel bacteriocins presents exciting opportunities for advancing food preservation and safety. The present study also highlights recent advancements in food preservation through bacteriocins.
Collapse
Affiliation(s)
- Bharmjeet Singh
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
- Department of Biotechnology, Delhi Technological University, New Delhi, India
| | - Nishant Kumar
- Department of Biotechnology, Delhi Technological University, New Delhi, India
| | - Aman Yadav
- Department of Biotechnology, Delhi Technological University, New Delhi, India
| | - Rohan
- Department of Biotechnology, Delhi Technological University, New Delhi, India
| | - Kriti Bhandari
- Department of Biotechnology, Delhi Technological University, New Delhi, India.
| |
Collapse
|
4
|
Erriah P, Puan SL, Yahaya NM, Wan Ahmad Kamil WNI, Amin Nordin S, Muhamad A, Sabri S. Harnessing bacterial antimicrobial peptides: a comprehensive review on properties, mechanisms, applications, and challenges in combating antimicrobial resistance. J Appl Microbiol 2025; 136:lxae290. [PMID: 40036746 DOI: 10.1093/jambio/lxae290] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 10/12/2024] [Accepted: 11/15/2024] [Indexed: 03/06/2025]
Abstract
Antimicrobial resistance (AMR) is a significant global health concern due to the persistence of pathogens and the emergence of resistance in bacterial infections. Bacterial-derived antimicrobial peptides (BAMPs) have emerged as a promising strategy to combat these challenges. Known for their diversity and multifaceted nature, BAMPs are notable bioactive agents that exhibit potent antimicrobial activities against various pathogens. This review explores the intricate properties and underlying mechanisms of BAMPs, emphasizing their diverse applications in addressing AMR. Additionally, the review investigates the mechanisms, analyses the challenges in utilizing BAMPs effectively, and examines their potential applications and associated deployment challenges providing comprehensive insights into how BAMPs can be harnessed to combat AMR across different domains. The significance of this review lies in highlighting the potential of BAMPs as transformative agents in combating AMR, offering sustainable and eco-friendly solutions to this pressing global health challenge.
Collapse
Affiliation(s)
- Pirasannah Erriah
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), 43400 Serdang, Selangor, Malaysia
| | - Sheau Ling Puan
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), 43400 Serdang, Selangor, Malaysia
| | - Normi Mohd Yahaya
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), 43400 Serdang, Selangor, Malaysia
| | - Wan Nur Ismah Wan Ahmad Kamil
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), 43400 Serdang, Selangor, Malaysia
| | - Syafinaz Amin Nordin
- Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), 43400 Serdang, Selangor, Malaysia
| | - Azira Muhamad
- National Institutes of Biotechnology Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Suriana Sabri
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), 43400 Serdang, Selangor, Malaysia
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), 43400 Serdang, Selangor, Malaysia
| |
Collapse
|
5
|
Purnamasari L, dela Cruz JF, Cho DY, Lee KH, Cho SM, Chung SS, Choi YJ, Yi JK, Hwang SG. Effect of Lactococcus lactis JNU 534 Supplementation on the Performance, Blood Parameters and Meat Characteristics of Salmonella enteritidis Inoculated Broilers. Microorganisms 2025; 13:525. [PMID: 40142418 PMCID: PMC11944292 DOI: 10.3390/microorganisms13030525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 02/22/2025] [Accepted: 02/25/2025] [Indexed: 03/28/2025] Open
Abstract
Salmonellosis in broilers is a disease with considerable economic implications for the poultry industry. As a foodborne illness, it also poses a public health risk due to potential cross-contamination. Probiotics have been proposed as alternative feed additives aiming to enhance growth, livestock productivity, and overall health. This study investigated the dietary impact of Lactococcus lactis JNU 534 on growth performance, blood characteristics, internal organ weight, and meat quality in broilers inoculated with Salmonella enteritidis (SE). A total of 96 one-day-old Arbor Acres broiler chickens, comprising both sexes, were challenged with SE and randomly assigned into two treatment groups and housed in eight pens (four pens per each treatment, with 12 birds per pen). They were fed a commercial broiler diet for 35 days. The two dietary treatment groups consisted of a control group receiving commercial feed, and a treatment group receiving commercial feed supplemented with 0.3% L. lactis JNU 534. Probiotic supplementation significantly improved average body weight gain, feed efficiency, and carcass yield compared to the control group (p < 0.05). Notably, the abdominal fat pad was significantly reduced in the probiotics group (p < 0.05). Meat quality assessments revealed no significant differences between the groups in terms of meat pH, cooking loss, drip loss, and water-holding capacity. These findings suggest that L. lactis JNU 534 is a promising candidate to mitigate the negative effects of Salmonella on growth performance in commercial broiler farms, without adversely affecting health. Extending the research to other types of livestock could help confirm its wider use as an alternative to antibiotics.
Collapse
Affiliation(s)
- Listya Purnamasari
- School of Animal Life Convergence Science, Hankyong National University, Anseong 17579, Republic of Korea; (L.P.)
- Department of Animal Husbandry, Faculty of Agriculture, University of Jember, Jember 68121, Indonesia
| | - Joseph F. dela Cruz
- Department of Basic Veterinary Sciences, College of Veterinary Medicine, University of the Philippines Los Baños, Laguna 4031, Philippines;
| | - Dae-Yeon Cho
- Elimland Co., Ltd., Namyangju 12106, Republic of Korea
| | - Kwang-Ho Lee
- Elimland Co., Ltd., Namyangju 12106, Republic of Korea
| | - Sung-Min Cho
- Elimland Co., Ltd., Namyangju 12106, Republic of Korea
| | | | - Yong-Jun Choi
- School of Animal Life Convergence Science, Hankyong National University, Anseong 17579, Republic of Korea; (L.P.)
| | - Jun-Koo Yi
- School of Animal Life Convergence Science, Hankyong National University, Anseong 17579, Republic of Korea; (L.P.)
| | - Seong-Gu Hwang
- School of Animal Life Convergence Science, Hankyong National University, Anseong 17579, Republic of Korea; (L.P.)
| |
Collapse
|
6
|
Todorov SD, de Almeida BM, Lima EMF, Fabi JP, Lajolo FM, Hassimotto NMA. Phenolic Compounds and Bacteriocins: Mechanisms, Interactions, and Applications in Food Preservation and Safety. Mol Nutr Food Res 2025; 69:e202400723. [PMID: 39828980 DOI: 10.1002/mnfr.202400723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/27/2024] [Accepted: 12/02/2024] [Indexed: 01/22/2025]
Abstract
Beneficial properties of different natural antimicrobials are topics of scientific curiosity for improving safety and extending the shelf life of food commodities. In this regard, phenolic compounds, natural molecules known for their antioxidant, anti-inflammatory, and antimicrobial properties can be right choice. Moreover, bacteriocins, antimicrobial peptides produced by various microorganisms, capable of inhibiting the growth of other bacteria, particularly closely related species can be genuine alternative. Combining phenolic compounds with bacteriocins can enhance antimicrobial effects, extending the shelf-life of food products by combating spoilage and foodborne pathogens. Despite their potential, the chemical interactions between phenolic compounds and bacteriocins, including synergistic and antagonistic effects, are not well understood. Key areas needing further research include the following: the mechanisms of action against different bacterium types, interactions with cell membranes, enzyme activity, and gene expression; the effects of environmental factors like concentration, pH, temperature, and food matrix specificity on their interactions; and methods for incorporating these compounds into food products and packaging materials to improve food safety. Additionally, the safety, toxicity, allergenicity, sensory properties, nutritional value, regulatory approval, and consumer acceptance of using phenolic compounds and bacteriocins in food products require thorough investigation.
Collapse
Affiliation(s)
- Svetoslav Dimitrov Todorov
- ProBacLab, Laboratório de Microbiologia de Alimentos, Departamento de Alimentos e Nutrição Experimental, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, São Paulo, Brazil
- Food Research Center (FoRC), CEPIX-USP, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, São Paulo, Brazil
- CISAS - Center for Research and Development in Agrifood Systems and Sustainability, Instituto Politécnico de Viana do Castelo, Viana do Castelo, Portugal
| | - Beatriz Marinho de Almeida
- Food Research Center (FoRC), CEPIX-USP, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, São Paulo, Brazil
- Departamento de Alimentos e Nutrição Experimental, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Emília Maria França Lima
- ProBacLab, Laboratório de Microbiologia de Alimentos, Departamento de Alimentos e Nutrição Experimental, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, São Paulo, Brazil
- Food Research Center (FoRC), CEPIX-USP, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - João Paulo Fabi
- Food Research Center (FoRC), CEPIX-USP, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, São Paulo, Brazil
- Departamento de Alimentos e Nutrição Experimental, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Franco Maria Lajolo
- Food Research Center (FoRC), CEPIX-USP, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, São Paulo, Brazil
- Departamento de Alimentos e Nutrição Experimental, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Neuza Mariko Aymoto Hassimotto
- Food Research Center (FoRC), CEPIX-USP, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, São Paulo, Brazil
- Departamento de Alimentos e Nutrição Experimental, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| |
Collapse
|
7
|
Elnar AG, Jang YJ, Eum BG, Kang MH, Hwang GW, Kil DY, Kim GB. Distinct phenotypes of salivaricin-producing Ligilactobacillus salivarius isolated from the gastrointestinal tract of broiler chickens and laying hens. Poult Sci 2025; 104:104537. [PMID: 39571198 PMCID: PMC11617682 DOI: 10.1016/j.psj.2024.104537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 11/06/2024] [Accepted: 11/07/2024] [Indexed: 12/08/2024] Open
Abstract
Ligilactobacillus salivarius harbors bacteriocin genes in its repA-type megaplasmid, specifically salivaricin P (salP), a class IIb bacteriocin. This study aimed to differentiate 25 salP-positive Lig. salivarius strains isolated from the gastrointestinal tract (GIT) of broilers and laying hens. Results showed that 12 isolates were classified as Type A, with active bacteriocins, while the rest were Type B, with no active bacteriocins. In vitro and in silico characterization of salP bacteriocins revealed narrow-spectrum antibacterial activity against Listeria monocytogenes and Enterococcus faecalis. SalP bacteriocins were predicted as positively charged, hydrophobic, small molecular weight (α, 4.097 kDa; ß, 4.285 kDa) bacteriocins with characteristic GXXXG motif. Investigation of the salP gene cluster based on genomic data revealed that Type B strains lacked the lanT and hlyD genes that encode export proteins dedicated to the modification and extracellular transport of mature salP peptides. However, two Type B strains (B4311 and B5258) showed inhibitory activity against L. monocytogenes ATCC19114. Multiplex PCR analysis and synteny mapping analysis revealed that B4311 and B5258 strains harbored the lanT gene, highlighting the importance of LanT protein in the cleavage of leader peptide and excretion of mature peptides. Further analysis revealed that the resistance of Type B strains to salP was attributable to the presence of a dedicated immunity protein, blurring the evolutionary significance of producing active bacteriocins for competitive advantage. Additionally, the loss of export proteins occurred in a polyphyletic manner, consistent with the genetic plasticity of the repA-type megaplasmid. This suggests that the loss of lanT and hlyD is likely in the presence of limited nutritional competitors. In conclusion, the observed differences in salivaricin production of Lig. salivarius exist independent of isolation host and that Type A and Type B strains can coexist in the same environment. Finally, the functional characterization of active salP allows for a better understanding of its potential to control specific bacteria in human food and animal production.
Collapse
Affiliation(s)
- A G Elnar
- Department of Animal Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi-do 17546, Republic of Korea
| | - Y J Jang
- Department of Animal Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi-do 17546, Republic of Korea
| | - B G Eum
- Department of Animal Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi-do 17546, Republic of Korea
| | - M H Kang
- Department of Animal Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi-do 17546, Republic of Korea
| | - G W Hwang
- Department of Animal Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi-do 17546, Republic of Korea
| | - D Y Kil
- Department of Animal Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi-do 17546, Republic of Korea
| | - G B Kim
- Department of Animal Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi-do 17546, Republic of Korea.
| |
Collapse
|
8
|
Cohen DG, Heidenreich TM, Schorey JW, Ross JN, Hammers DE, Vu HM, Moran TE, Winski CJ, Stuckey PV, Ross RL, Yee EA, Santiago-Tirado FH, Lee SW. Minimal domain peptides derived from enterocins exhibit potent antifungal activity. FRONTIERS IN FUNGAL BIOLOGY 2024; 5:1506315. [PMID: 39749139 PMCID: PMC11693670 DOI: 10.3389/ffunb.2024.1506315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 11/21/2024] [Indexed: 01/04/2025]
Abstract
The antimicrobial peptide (AMP) circularized bacteriocin enterocin AS-48 produced by Enterococcus sp. exhibits broad-spectrum antibacterial activity via dimer insertion into the plasma membrane to form membrane pore structures, compromising membrane integrity and leading to bactericidal activity. A specific alpha-helical region of enterocin AS-48 has been shown to be responsible for the membrane-penetrating activity of the peptide. The canon syn-enterocin peptide library, generated using rational design techniques to have ninety-five synthetic peptide variants from the truncated, linearized, membrane-interacting domain of enterocin AS-48, was screened against three clinically relevant fungal strains: Cryptococcus neoformans, Candida albicans, and Candida auris for potential antifungal activity. Twelve peptides exhibited antifungal activity against C. neoformans, and two peptides exhibited activity against C. albicans. The fourteen active antifungal peptides were minimally cytotoxic to an immortalized human keratinocyte cell line (HaCats). Four select peptides were identified with minimum inhibitory concentrations (MICs) below 8 µM against C. neoformans. In 36-hour cell growth tests with these fungicidal peptides, fungicidal peptide no. 32 displayed inhibitory properties comparable to the leading antifungal medication fluconazole against C. neoformans. Screening of peptide no. 32 against a deletion library of C. neoformans mutants revealed that the mechanism of action of peptide no. 32 may relate to multivesicular bodies (MVBs) or polysaccharide capsule targeting. These findings importantly demonstrate that naturally derived AMPs produced by bacteria can be sourced, engineered, and modified to exhibit potent antifungal activity. Our results will contribute to the development of broad treatment alternatives to fungal infections and lend themselves to direct implications for possible treatment options for C. neoformans infections.
Collapse
Affiliation(s)
- Dorrian G. Cohen
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States
| | - Theresa M. Heidenreich
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States
| | | | - Jessica N. Ross
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States
| | - Daniel E. Hammers
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States
| | - Henry M. Vu
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States
| | - Thomas E. Moran
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States
| | - Christopher J. Winski
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States
| | - Peter V. Stuckey
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States
| | - Robbi L. Ross
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States
| | | | - Felipe H. Santiago-Tirado
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States
- Eck Institute for Global Health, Notre Dame, IN, United States
| | - Shaun W. Lee
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States
| |
Collapse
|
9
|
Anumudu CK, Miri T, Onyeaka H. Multifunctional Applications of Lactic Acid Bacteria: Enhancing Safety, Quality, and Nutritional Value in Foods and Fermented Beverages. Foods 2024; 13:3714. [PMID: 39682785 DOI: 10.3390/foods13233714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/18/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024] Open
Abstract
Lactic Acid Bacteria (LAB) have garnered significant attention in the food and beverage industry for their significant roles in enhancing safety, quality, and nutritional value. As starter cultures, probiotics, and bacteriocin producers, LAB contributes to the production of high-quality foods and beverages that meet the growing consumer demand for minimally processed functional and health-promoting food products. Industrial food processing, especially in the fresh produce and beverage sector, is shifting to the use of more natural bioproducts in food production, prioritizing not only preservation but also the enhancement of functional characteristics in the final product. Starter cultures, essential to this approach, are carefully selected for their robust adaptation to the food environment. These cultures, often combined with probiotics, contribute beyond their basic fermentation roles by improving the safety, nutritional value, and health-promoting properties of foods. Thus, their selection is critical in preserving the integrity, quality, and nutrition of foods, especially in fresh produce and fruits and vegetable beverages, which have a dynamic microbiome. In addition to reducing the risk of foodborne illnesses and spoilage through the metabolites, including bacteriocins they produce, the use of LAB in these products can contribute essential amino acids, lactic acids, and other bioproducts that directly impact food quality. As a result, LAB can significantly alter the organoleptic and nutritional quality of foods while extending their shelf life. This review is aimed at highlighting the diverse applications of LAB in enhancing safety, quality, and nutritional value across a range of food products and fermented beverages, with a specific focus on essential metabolites in fruit and vegetable beverages and their critical contributions as starter cultures, probiotics, and bacteriocin producers.
Collapse
Affiliation(s)
| | - Taghi Miri
- School of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, UK
| | - Helen Onyeaka
- School of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
10
|
Yuan L, Wu S, Tian K, Wang S, Wu H, Qiao J. Nisin-relevant antimicrobial peptides: synthesis strategies and applications. Food Funct 2024; 15:9662-9677. [PMID: 39246095 DOI: 10.1039/d3fo05619h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
Small pentacyclic peptides, represented by nisin, have been successfully utilized as preservatives in the food industry and have evolved into a paradigm for understanding the genetic structure, expression, and control of genes created by lantibiotics. Due to the ever-increasing antibiotic resistance, nisin-relevant antimicrobial peptides have received much attention, which calls for a summarization of their synthesis, modification and applications. In this review, we first provided a timeline of select highlights in nisin biosynthesis and engineering. Then, we outlined the current developments in nisin synthesis. We also provided an overview of the engineering, screening, and production of nisin-relevant antimicrobial peptides based on enzyme alteration, substrate modification, and sequence mining. Furthermore, an updated summary of applications of nisin-relevant antimicrobial peptides has been developed for food applications. Finally, this study offers insights into emerging technologies, limitations and the future development of nisin-relevant antimicrobial peptides for pathogen inhibition, food preservatives, and improved health.
Collapse
Affiliation(s)
- Lin Yuan
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Tianjin Agricultural University, Tianjin 300072, China
| | - Shengbo Wu
- Zhejiang Research Institute of Tianjin University (Shaoxing), Shaoxing, 312300, China.
- School of Life Sciences, Tianjin University, Tianjin 300072, China
| | - Kairen Tian
- Zhejiang Research Institute of Tianjin University (Shaoxing), Shaoxing, 312300, China.
- School of Life Sciences, Tianjin University, Tianjin 300072, China
| | - Shengli Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Hao Wu
- Zhejiang Research Institute of Tianjin University (Shaoxing), Shaoxing, 312300, China.
- School of Life Sciences, Tianjin University, Tianjin 300072, China
| | - Jianjun Qiao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Zhejiang Research Institute of Tianjin University (Shaoxing), Shaoxing, 312300, China.
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
| |
Collapse
|
11
|
González-Gragera E, García-López JD, Teso-Pérez C, Jiménez-Hernández I, Peralta-Sánchez JM, Valdivia E, Montalban-Lopez M, Martín-Platero AM, Baños A, Martínez-Bueno M. Genomic Characterization of Piscicolin CM22 Produced by Carnobacterium maltaromaticum CM22 Strain Isolated from Salmon (Salmo salar). Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10316-1. [PMID: 38958914 DOI: 10.1007/s12602-024-10316-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/23/2024] [Indexed: 07/04/2024]
Abstract
Carnobacterium maltaromaticum is a species of lactic acid bacteria (LAB) that has been isolated from various natural environments. It is well-known for producing a diverse spectrum of bacteriocins with potential biotechnological applications. In the present study, a new psychrotolerant strain of C. maltaromaticum CM22 is reported, isolated from a salmon gut sample and producing a variant of the bacteriocin piscicolin 126 that has been named piscicolin CM22. After identification by 16S rRNA gene, this strain has been genomically characterized by sequencing and assembling its complete genome. Moreover, its bacteriocin was purified and characterized. In vitro tests demonstrated that both the strain and its bacteriocin possess antimicrobial activity against several Gram-positive bacteria of interest in human and animal health, such as Listeria monocytogenes, Clostridium perfringens, or Enterococcus faecalis. However, this bacteriocin did not produce any antimicrobial effect on Gram-negative species. The study of its genome showed the genetic structure of the gene cluster that encodes the bacteriocin, showing a high degree of homology to the gene cluster of piscicolin 126 described in other C. maltaromaticum. Although more studies are necessary concerning its functional properties, this new psychrotolerant strain C. maltaromaticum CM22 and its bacteriocin could be considered an interesting candidate with potential application in agri-food industry.
Collapse
Affiliation(s)
- Elías González-Gragera
- Department of Microbiology, University of Granada, Avda. Fuentenueva, S/N, 18071, Granada, Spain
| | - J David García-López
- Department of Microbiology, University of Granada, Avda. Fuentenueva, S/N, 18071, Granada, Spain
| | - Claudia Teso-Pérez
- Department of Microbiology, University of Granada, Avda. Fuentenueva, S/N, 18071, Granada, Spain
| | - Irene Jiménez-Hernández
- Department of Microbiology, University of Granada, Avda. Fuentenueva, S/N, 18071, Granada, Spain
| | | | - Eva Valdivia
- Department of Microbiology, University of Granada, Avda. Fuentenueva, S/N, 18071, Granada, Spain
- Institute of Biotechnology, University of Granada, 18071, Granada, Spain
| | - Manuel Montalban-Lopez
- Department of Microbiology, University of Granada, Avda. Fuentenueva, S/N, 18071, Granada, Spain
- Institute of Biotechnology, University of Granada, 18071, Granada, Spain
| | - Antonio M Martín-Platero
- Department of Microbiology, University of Granada, Avda. Fuentenueva, S/N, 18071, Granada, Spain
- Institute of Biotechnology, University of Granada, 18071, Granada, Spain
| | - Alberto Baños
- Department of Microbiology, University of Granada, Avda. Fuentenueva, S/N, 18071, Granada, Spain
| | - Manuel Martínez-Bueno
- Department of Microbiology, University of Granada, Avda. Fuentenueva, S/N, 18071, Granada, Spain.
- Institute of Biotechnology, University of Granada, 18071, Granada, Spain.
| |
Collapse
|
12
|
Amenu D, Bacha K. Bio-Preservation Potential and Antimicrobial Activity of Bacteriocin-Producing Lactic Acid Bacteria Isolated from Ethiopian Traditional Fermented Dairy Products. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10272-w. [PMID: 38856908 DOI: 10.1007/s12602-024-10272-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2024] [Indexed: 06/11/2024]
Abstract
This study aimed to assess the antibacterial activity and bio-preservation capability of bacteriocin-producing LAB isolated from Ethiopian traditional fermented dairy products in raw milk from Jimma town. Bacteriocin-producing LAB were tested for their antimicrobial activity against various foodborne pathogens, including Staphylococcus aureus, Escherichia coli, Listeria monocytogenes, and Salmonella typhimurium. The results showed that probiotic LAB isolates inhibited foodborne pathogens (E. coli, S. aureus, and L. monocytogenes), with inhibition zones ranging from 22.00 ± 0.57 to 34.13 ± 0.57. Enterococcus faecium and Lactococcus lactis demonstrated possible antagonistic effects against E. coli, while Pediococcus pentosaceus had a 34.13 ± 0.57 mm inhibitory zone against Pseudomonas aeruginosa. The isolates also showed co-aggregation potential with the pathogens, with Lactococcus lactis isolates and their combinations demonstrating the best co-aggregation capabilities against the investigated pathogens. The bio-preservative assay showed that putative probiotic isolates (L. lactis JULABE35, E. faecium JULABE 23, and P. pentosaceus JULABE05) were efficient in decreasing Listeria monocytogenes in raw milk. After 7-8 days, milk samples diagnosed with these isolates showed complete reduction of Listeria monocytogenes. The bio-preservation capability of bacteriocin-producing LAB on raw milk extended the shelf life of milk at 4 °C storage for ten days, compared to six days for milk samples without probiotic LAB. The milk samples preserved with probiotic and bacteriocin-producing isolates showed good proximate analysis, showing significant variation with milk kept without bacteriocin-producing isolates. The isolated chemicals employed in this study can be used as food additives or food preservatives, indicating potential applications in Ethiopian traditional fermented dairy products.
Collapse
Affiliation(s)
- Desalegn Amenu
- Department of Biology, College of Natural and Computational Sciences, Wollega University, P.O. Box 395, Nekemte, Oromia, Ethiopia.
- Department of Biology, College of Natural Sciences, Jimma University, P.O. Box 378, Jimma, Ethiopia.
| | - Ketema Bacha
- Department of Biology, College of Natural and Computational Sciences, Wollega University, P.O. Box 395, Nekemte, Oromia, Ethiopia
| |
Collapse
|
13
|
Kenneally C, Murphy CP, Sleator RD, Culligan EP. Turbidimetric bioassays: A solution to antimicrobial activity detection in asymptomatic bacteriuria isolates against uropathogenic Escherichia coli. Microbiologyopen 2024; 13:e1411. [PMID: 38706434 PMCID: PMC11070844 DOI: 10.1002/mbo3.1411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/10/2024] [Accepted: 04/18/2024] [Indexed: 05/07/2024] Open
Abstract
Traditional bacteriocin screening methods often face limitations due to diffusion-related challenges in agar matrices, which can prevent the peptides from reaching their target organism. Turbidimetric techniques offer a solution to these issues, eliminating diffusion-related problems and providing an initial quantification of bacteriocin efficacy in producer organisms. This study involved screening the cell-free supernatant (CFS) from eight uncharacterized asymptomatic bacteriuria (ABU) isolates and Escherichia coli 83972 for antimicrobial activity against clinical uropathogenic E. coli (UPEC) strains using turbidimetric growth methods. ABU isolates exhibiting activity against five or more UPEC strains were further characterized (PUTS 37, PUTS 58, PUTS 59, S-07-4, and SK-106-1). The inhibition of the CFS by proteinase K suggested that the antimicrobial activity was proteinaceous in nature, potentially bacteriocins. The activity of E. coli PUTS 58 and SK-106-1 was enhanced in an artificial urine medium, with both inhibiting all eight UPECs. A putative microcin H47 operon was identified in E. coli SK-106-1, along with a previously identified microcin V and colicin E7 in E. coli PUTS 37 and PUTS 58, respectively. These findings indicate that ABU bacteriocin-producers could serve as viable prophylactics and therapeutics in the face of increasing antibiotic resistance among uropathogens.
Collapse
Affiliation(s)
- Ciara Kenneally
- Department of Biological SciencesMunster Technological University, BishopstownCorkIreland
| | - Craig P. Murphy
- Department of Biological SciencesMunster Technological University, BishopstownCorkIreland
| | - Roy D. Sleator
- Department of Biological SciencesMunster Technological University, BishopstownCorkIreland
| | - Eamonn P. Culligan
- Department of Biological SciencesMunster Technological University, BishopstownCorkIreland
| |
Collapse
|
14
|
Elnar AG, Kim GB. In Vitro and In Silico Characterization of N-Formylated Two-Peptide Bacteriocin from Enterococcus faecalis CAUM157 with Anti-Listeria Activity. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10265-9. [PMID: 38743207 DOI: 10.1007/s12602-024-10265-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2024] [Indexed: 05/16/2024]
Abstract
Enterococcus faecalis CAUM157 (KACC 81148BP), a Gram-positive bacteria isolated from raw cow's milk, was studied for its bacteriocin production. The antimicrobial activity of CAUM157 was attributed to a two-peptide class IIb bacteriocin with potent activity against food-borne pathogen Listeria monocytogenes and periodontal disease-causing pathogens (Prevotella intermedia KCTC 15693 T and Fusobacterium nucleatum KCTC 2488 T). M157 bacteriocins exhibit high temperature and pH stability and resist hydrolytic enzyme degradation and detergent denaturation, potentially due to their structural conformation. Based on amino acid sequence, M157A and M157B were predicted to be 5.176 kDa and 5.182 kDa in size, respectively. However, purified bacteriocins and chemically synthesized N-formylated M157 peptides both showed 5.204 kDa (M157A) and 5.209 kDa (M157B) molecular mass, confirming the formylation of the N-terminal methionine of both peptides produced by strain CAUM157. Furthermore, the strain demonstrated favorable growth and fermentation with minimal bacteriocin production when cultured in whey-based media, whereas a 1.0% tryptone or soytone supplementation resulted in higher bacteriocin production. Although Ent. faecalis CAUM157 innately harbors genes for virulence factors and antimicrobial resistance (e.g., tetracycline and erythromycin), its bacteriocin production is valuable in circumventing the need for live microorganisms, particularly in food applications for pathogen control.
Collapse
Affiliation(s)
- Arxel G Elnar
- Department of Animal Science and Technology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Geun-Bae Kim
- Department of Animal Science and Technology, Chung-Ang University, Anseong, 17546, Republic of Korea.
| |
Collapse
|
15
|
Reuben RC, Torres C. Bacteriocins: potentials and prospects in health and agrifood systems. Arch Microbiol 2024; 206:233. [PMID: 38662051 PMCID: PMC11045635 DOI: 10.1007/s00203-024-03948-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/26/2024]
Abstract
Bacteriocins are highly diverse, abundant, and heterogeneous antimicrobial peptides that are ribosomally synthesized by bacteria and archaea. Since their discovery about a century ago, there has been a growing interest in bacteriocin research and applications. This is mainly due to their high antimicrobial properties, narrow or broad spectrum of activity, specificity, low cytotoxicity, and stability. Though initially used to improve food quality and safety, bacteriocins are now globally exploited for innovative applications in human, animal, and food systems as sustainable alternatives to antibiotics. Bacteriocins have the potential to beneficially modulate microbiota, providing viable microbiome-based solutions for the treatment, management, and non-invasive bio-diagnosis of infectious and non-infectious diseases. The use of bacteriocins holds great promise in the modulation of food microbiomes, antimicrobial food packaging, bio-sanitizers and antibiofilm, pre/post-harvest biocontrol, functional food, growth promotion, and sustainable aquaculture. This can undoubtedly improve food security, safety, and quality globally. This review highlights the current trends in bacteriocin research, especially the increasing research outputs and funding, which we believe may proportionate the soaring global interest in bacteriocins. The use of cutting-edge technologies, such as bioengineering, can further enhance the exploitation of bacteriocins for innovative applications in human, animal, and food systems.
Collapse
Affiliation(s)
- Rine Christopher Reuben
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, 26006, Logroño, Spain.
| | - Carmen Torres
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, 26006, Logroño, Spain
| |
Collapse
|
16
|
Choi GH, Fugaban JII, Dioso CM, Bucheli JEV, Holzapfel WH, Todorov SD. Safety and Beneficial Properties of Bacteriocinogenic Lactococcus lactis and Pediococcus pentosaceus Strains, and Their Effect Versus Oral Cavity Related and Antibiotic-Resistant Pathogens. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10245-z. [PMID: 38564170 DOI: 10.1007/s12602-024-10245-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/11/2024] [Indexed: 04/04/2024]
Abstract
Pediococcus pentosaceus 732, Lactococcus lactis subsp. lactis 431, and Lactococcus lactis 808, bacteriocinogenic strains previously isolated from kimchi and banana, were investigated for their safety, beneficial properties and in vitro inhibition of pathogens such as Listeria monocytogenes ATCC 15313 and Staphylococcus simulans KACC 13241 and Staphylococcus auricularis KACC 13252. The results of performed physiological, biochemical, and biomolecular tests suggest that these strains can be deemed safe, as no virulence genes were detected in their DNA. Notably, only the gad gene associated with GABA production was identified in the DNA isolated of Lc. lactis 808 and Lc. lactis subsp. lactis 431 strains. All tested LAB strains exhibited γ-hemolysins and were non-producers of gelatinase and biogenic amines, which suggested their safety potential. Additionally, they were relatively susceptible to antibiotics except for streptomycin, tobramycin, and vancomycin for Pd. pentosaceus 732. The growth of Pd. pentosaceus 732, Lc. lactis subsp. lactis 431, and Lc. lactis 808 and their survival were minimally affected by up to 3% ox bile and low pH (except pH 2.0 and 4.0). Moreover, these LAB strains were not inhibited by various commercial extracts as well as most of the tested medications tested in the study. They did not produce proteolytic enzymes but exhibited production of D/L-lactic acid and β-galactosidase. They were also hydrophilic. Furthermore, their survival in artificial saliva, gastric simulation, and enteric passage was measured followed by a challenge test to assess their ability to inhibit the selected oral pathogens in an oral saliva model conditions.
Collapse
Affiliation(s)
- Gee Hyeun Choi
- ProBacLab, Department of Advanced Convergence, Handong Global University, 37554, Pohang, Gyeongbuk, Republic of Korea
| | - Joanna Ivy Irorita Fugaban
- ProBacLab, Department of Advanced Convergence, Handong Global University, 37554, Pohang, Gyeongbuk, Republic of Korea
- National Food Institute, Technical University of Denmark, Building 202, Rm. 3.234, Kongens Lyngby, 2800, Kemitorvet, Denmark
| | - Clarizza May Dioso
- HEM Laboratory, Department of Advanced Convergence, Handong Global University, 37554, Pohang, Gyeongbuk, Republic of Korea
| | - Jorge Enrique Vazquez Bucheli
- ProBacLab, Department of Advanced Convergence, Handong Global University, 37554, Pohang, Gyeongbuk, Republic of Korea
- HEM Laboratory, Department of Advanced Convergence, Handong Global University, 37554, Pohang, Gyeongbuk, Republic of Korea
| | - Wilhelm Heinrich Holzapfel
- HEM Laboratory, Department of Advanced Convergence, Handong Global University, 37554, Pohang, Gyeongbuk, Republic of Korea
| | - Svetoslav Dimitrov Todorov
- ProBacLab, Department of Advanced Convergence, Handong Global University, 37554, Pohang, Gyeongbuk, Republic of Korea.
- ProBacLab, Laboratório de Microbiologia de Alimentos, Departamento de Alimentos e Nutrição Experimental, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, SP, 05508-000, Brazil.
- CISAS - Center for Research and Development in Agrifood Systems and Sustainability, Instituto Politécnico de Viana do Castelo, 4900-347, Viana Do Castelo, Portugal.
| |
Collapse
|
17
|
Todorov SD, Wachsman M, Tomé E, Vaz-Velho M, Ivanova IV. Plasmid-Associated Bacteriocin Produced by Pediococcus pentosaceus Isolated from Smoked Salmon: Partial Characterization and Some Aspects of his Mode of Action. Probiotics Antimicrob Proteins 2024; 16:394-412. [PMID: 36928486 DOI: 10.1007/s12602-023-10059-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/03/2023] [Indexed: 03/18/2023]
Abstract
Strain ST3Ha, isolated from commercially available smoked salmon, was identified as Pediococcus pentosaceus based on biochemical and physiological tests and 16S rRNA sequencing. Strain ST3Ha produces a class IIa bacteriocin active against lactic acid bacteria, Listeria monocytogenes and Enterococcus faecalis. The antimicrobial peptide was inactivated by proteolytic enzymes, confirming his proteinaceous nature, but was not affected when treated with α-amylase, SDS, Tween 20, Tween 80, urea, and EDTA. No change in activity was recorded after 2 h at pH values between 2.0 and 9.0 and after treatment at 100 °C for 120 min or 121 °C for 15 min. The mode of action against Listeria ivanovii subsp. ivanovii ATCC 19119 and E. faecalis ATCC 19443 was bactericidal, resulting in cell lyses and enzyme leakage. The highest level of activity (1.6 × 106 AU/mL) was recorded when cells were grown at 37 °C or 30 °C in MRS broth (pH 6.5). Antimicrobial peptide ST3Ha adsorbs at high levels to the sensitive test organisms on strain-specific manner and depending on incubation temperature, environmental pH, and presence of supplemented chemicals. Based on PCR analysis, P. pentosaceus ST3Ha harbor a 1044-bp plasmid-associated fragment corresponding in size to that recorded for pediocin PA-1. Sequencing of the fragment revealed a gene identical to pedB, reported for pediocin PA-1. The combined application of the low levels (below MIC) of ciprofloxacin and bacteriocin ST3Ha results in the synergetic effect in the inhibition of L. ivanovii subsp. ivanovii ATCC 19119. Expressed by P. pentosaceus ST3Ha, bacteriocin was characterized as low cytotoxic, a characteristic relevant for its application in food industry and/or in human and veterinary medical practices.
Collapse
Affiliation(s)
- Svetoslav Dimitrov Todorov
- ProBacLab, Advanced Convergence, Handong Global University, Pohang, Gyeongbuk, 37554, Republic of Korea.
- ProBacLab, Laboratório de Microbiologia de Alimentos, Faculdade de Ciências Farmacêuticas, Departamento de Alimentos e Nutrição Experimental, Universidade de São Paulo, SP, São Paulo, Brazil.
- CISAS-Center for Research and Development in Agrifood Systems and Sustainability, Escola Superior de Tecnologia E Gestão, Instituto Politécnico de Viana Do Castelo, Viana Do Castelo, Portugal.
- Faculty of Biology, Department of General and Applied Microbiology, Sofia University St. Kliment Ohridski, 8 Dragan Tzankov Blvd, 1164, Sofia, Bulgaria.
| | - Monica Wachsman
- Laboratorio de Virología, Facultad de Ciencias Exactas Y Naturales, Departamento de Química Biológica, Universidad de Buenos Aires, Ciudad Universitaria, Pabellon 2, Piso 4, C1428EGA, Buenos Aires, Argentina
| | - Elisabetta Tomé
- Tecnologia de Alimentos, Universidad Metropolitana, Caracas, Venezuela
| | - Manuela Vaz-Velho
- CISAS-Center for Research and Development in Agrifood Systems and Sustainability, Escola Superior de Tecnologia E Gestão, Instituto Politécnico de Viana Do Castelo, Viana Do Castelo, Portugal
| | - Iskra Vitanova Ivanova
- Faculty of Biology, Department of General and Applied Microbiology, Sofia University St. Kliment Ohridski, 8 Dragan Tzankov Blvd, 1164, Sofia, Bulgaria
| |
Collapse
|
18
|
Maldonado-Ruiz K, Pedroza-Islas R, Pedraza-Segura L. Blue Biotechnology: Marine Bacteria Bioproducts. Microorganisms 2024; 12:697. [PMID: 38674641 PMCID: PMC11051736 DOI: 10.3390/microorganisms12040697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 04/28/2024] Open
Abstract
The ocean is the habitat of a great number of organisms with different characteristics. Compared to terrestrial microorganisms, marine microorganisms also represent a vast and largely unexplored reservoir of bioactive compounds with diverse industrial applications like terrestrial microorganisms. This review examines the properties and potential applications of products derived from marine microorganisms, including bacteriocins, enzymes, exopolysaccharides, and pigments, juxtaposing them in some cases against their terrestrial counterparts. We discuss the distinct characteristics that set marine-derived products apart, including enhanced stability and unique structural features such as the amount of uronic acid and sulfate groups in exopolysaccharides. Further, we explore the uses of these marine-derived compounds across various industries, ranging from food and pharmaceuticals to cosmetics and biotechnology. This review also presents a broad description of biotechnologically important compounds produced by bacteria isolated from marine environments, some of them with different qualities compared to their terrestrial counterparts.
Collapse
Affiliation(s)
| | - Ruth Pedroza-Islas
- Department of Chemical, Industrial and Food Engineering, Universidad Iberoamericana, Prol. Paseo de la Reforma 880, Lomas de Santa Fe, Mexico City 01210, Mexico; (K.M.-R.); (L.P.-S.)
| | | |
Collapse
|
19
|
de Oliveira TF, Kuniyoshi TM, Frota EG, Bermúdez-Puga S, Sakaue LN, Cassiano LL, Tachibana L, Piccoli RAM, Converti A, Oliveira RPDS. Anti-Listerial Activity of Bacteriocin-like Inhibitory Substance Produced by Enterococcus lactis LBM BT2 Using Alternative Medium with Sugarcane Molasses. Antibiotics (Basel) 2024; 13:210. [PMID: 38534645 PMCID: PMC10967575 DOI: 10.3390/antibiotics13030210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/17/2024] [Accepted: 02/20/2024] [Indexed: 03/28/2024] Open
Abstract
Listeria monocytogenes is a foodborne pathogen that contaminates food-processing environments and persists within biofilms on equipment, thus reaching final products by cross-contamination. With the growing demand for clean-label products, the search for natural antimicrobials as biopreservants, such as bacteriocins, has shown promising potential. In this context, this study aimed to evaluate the anti-listerial action of bacteriocins produced by Enterococcus lactis LBM BT2 in an alternative medium containing sugarcane molasses (SCM). Molecular analyses were carried out to characterize the strain, including the presence of bacteriocin-related genes. In the kinetic study on SCM medium E. lactis, LBM BT2 showed biomass and bacteriocin productions similar to those observed on a sucrose-based medium (control), highlighting the potential of the sugarcane molasses as a low-cost substrate. Stability tests revealed that the molecule remained active in wide ranges of pH (4-10) and temperature (60-100 °C). Furthermore, the proteolytic treatment reduced the biomolecule's antimicrobial activity, highlighting its proteinaceous nature. After primary purification by salting out and tangential flow filtration, the bacteriocin-like inhibitory substance (BLIS) showed bacteriostatic activity on suspended L. monocytogenes cells and against biofilm formation at a concentration of 0.625 mg/mL. These results demonstrate the potential of the produced BLIS as a biopreservative in the food industry.
Collapse
Affiliation(s)
- Taciana Freire de Oliveira
- Laboratory of Microbial Biomolecules, School of Pharmaceutical Sciences, University of São Paulo, Rua do Lago, 250, São Paulo 05508-000, Brazil; (T.F.d.O.); (T.M.K.); (E.G.F.); (S.B.-P.); (L.N.S.)
| | - Taís Mayumi Kuniyoshi
- Laboratory of Microbial Biomolecules, School of Pharmaceutical Sciences, University of São Paulo, Rua do Lago, 250, São Paulo 05508-000, Brazil; (T.F.d.O.); (T.M.K.); (E.G.F.); (S.B.-P.); (L.N.S.)
| | - Elionio Galvão Frota
- Laboratory of Microbial Biomolecules, School of Pharmaceutical Sciences, University of São Paulo, Rua do Lago, 250, São Paulo 05508-000, Brazil; (T.F.d.O.); (T.M.K.); (E.G.F.); (S.B.-P.); (L.N.S.)
| | - Sebastián Bermúdez-Puga
- Laboratory of Microbial Biomolecules, School of Pharmaceutical Sciences, University of São Paulo, Rua do Lago, 250, São Paulo 05508-000, Brazil; (T.F.d.O.); (T.M.K.); (E.G.F.); (S.B.-P.); (L.N.S.)
| | - Letícia Naomy Sakaue
- Laboratory of Microbial Biomolecules, School of Pharmaceutical Sciences, University of São Paulo, Rua do Lago, 250, São Paulo 05508-000, Brazil; (T.F.d.O.); (T.M.K.); (E.G.F.); (S.B.-P.); (L.N.S.)
| | - Luara Lucena Cassiano
- Aquaculture Research Center, Scientific Research of Fisheries Institute, APTA, SAA, Av. Conselheiro Rodrigues Alves, 1252, São Paulo 04014-002, Brazil; (L.L.C.); (L.T.)
| | - Leonardo Tachibana
- Aquaculture Research Center, Scientific Research of Fisheries Institute, APTA, SAA, Av. Conselheiro Rodrigues Alves, 1252, São Paulo 04014-002, Brazil; (L.L.C.); (L.T.)
| | - Rosane Aparecida Moniz Piccoli
- Bionanomanufacturing Nucleus, Institute for Technological Research (IPT), Av. Prof. Almeida Prado, 532, São Paulo 05508-901, Brazil;
| | - Attilio Converti
- Department of Civil, Chemical and Environmental Engineering, Pole of Chemical Engineering, University of Genoa, Via Opera Pia 15, 16145 Genoa, Italy;
| | - Ricardo Pinheiro de Souza Oliveira
- Laboratory of Microbial Biomolecules, School of Pharmaceutical Sciences, University of São Paulo, Rua do Lago, 250, São Paulo 05508-000, Brazil; (T.F.d.O.); (T.M.K.); (E.G.F.); (S.B.-P.); (L.N.S.)
| |
Collapse
|
20
|
Gao Y, Li D. Antibacterial mode of action of garviecin LG34 against Gram-negative bacterium Salmonella typhimurium. FEMS Microbiol Lett 2024; 371:fnae066. [PMID: 39138064 DOI: 10.1093/femsle/fnae066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/30/2024] [Accepted: 08/13/2024] [Indexed: 08/15/2024] Open
Abstract
Garviecin LG34 produced by Lactococcus garvieae LG34 exhibits wide-spectrum antibacterial activity against both Gram-positive and Gram-negative bacteria. This work aimed at clarifying the antibacterial mode of action of garviecin LG34 against Gram-negative bacterium Salmonella typhimurium. To determine the concentration for the bacteriocin antimicrobial mode experiments, the minimum inhibitory concentration of garviecin LG34 against S. typhimurium CICC21484 was determined as 0.25 mg/ml. Garviecin LG34 decreased the viable count of S. typhimurium CICC21484 and its antibacterial activity was the dose and time dependant. Garviecin LG34 led to the dissipation of transmembrane potential, the rise in the extracellular conductivity, UV-absorbing material at 260 nm, and LDH level of S. typhimurium CICC21484. Scanning electron micrographs results shown that garviecin LG34 cause dramatic deformation and fragmentation including the flagellum shedding, pores formation in surface, and even completely breakage of S. typhimurium cell. Moreover, garviecin LG34 decreased the intracellular ATP level. The results of this study demonstrated that garviecin LG34 can destroy cell structure, increase membrane permeability of S. typhimurium, thereby might be used as biopreservative for treating food borne and salmonellosis resulting from Gram-negative bacterium S. typhimurium.
Collapse
Affiliation(s)
- Yurong Gao
- School of Biological and Environmental Engineering, Chaohu University, Bantang Road No.1, Chaohu Economic Development Zone, Hefei 238024, China
- Chaohu Regional Collaborative Technology Service Center for Rural Revitalization, Bantang Road No.1, Chaohu Economic Development Zone, Hefei 238024, China
| | - Dapeng Li
- School of Biological and Environmental Engineering, Chaohu University, Bantang Road No.1, Chaohu Economic Development Zone, Hefei 238024, China
- Chaohu Regional Collaborative Technology Service Center for Rural Revitalization, Bantang Road No.1, Chaohu Economic Development Zone, Hefei 238024, China
| |
Collapse
|
21
|
Mohanty D, Suar M, Panda SK. Nanotechnological interventions in bacteriocin formulations - advances, and scope for challenging food spoilage bacteria and drug-resistant foodborne pathogens. Crit Rev Food Sci Nutr 2023; 65:1126-1143. [PMID: 38069682 DOI: 10.1080/10408398.2023.2289184] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2025]
Abstract
Food spoilage bacteria (FSB) and multidrug-resistant (MDR) foodborne pathogens have emerged as one of the principal public health concerns in the twenty first century. The harmful effects of FSB lead to economic losses for the food industries. Similarly, MDR foodborne pathogens are accountable for multiple illnesses and pose a threat to consumers. Therefore, there is an urgent need to establish effective formulations for successful application against such microorganisms. In this context, the fusion of knowledge from biotechnology and nanotechnology can explore endless possibilities in the development of innovative formulations against FSB and foodborne pathogens. The current review critically examines the application of bacteriocins in the food industry and the use of nanomaterials to enhance the antimicrobial activity, stability, and precision in the target delivery of bacteriocins. This review also explores the technologies involved in the development of bacteriocin-based nanoformulations and their action against FSB and MDR foodborne pathogens, offering new possibilities in preservation technologies and addressing food safety issues in the food industry. The review highlights the challenges in the commercialization and technoeconomical feasibility of nanobacteriocin. Overall, it provides essential information and interpretation about nanotechnological advancements in bacteriocin formulation action against FSB and foodborne pathogens and future scopes.
Collapse
Affiliation(s)
- Debapriya Mohanty
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed to be University, Bhubaneswar, Odisha, India
| | - Mrutyunjay Suar
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed to be University, Bhubaneswar, Odisha, India
| | - Sandeep Kumar Panda
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed to be University, Bhubaneswar, Odisha, India
| |
Collapse
|
22
|
Brandelli A, Lopes NA, Pinilla CMB. Nanostructured Antimicrobials for Quality and Safety Improvement in Dairy Products. Foods 2023; 12:2549. [PMID: 37444286 DOI: 10.3390/foods12132549] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/26/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
In the food sector, one of the most important economic activities is the dairy industry, which has been facing many challenges in order to meet the increasing demand by consumers for natural and minimally processed products with high quality. In this sense, the application of innovative and emerging technologies can be an interesting alternative, for example, the use of nanotechnology in packaging and as delivery systems. This technology has the potential to improve the quality and safety of dairy products, representing an interesting approach for delivering food preservatives and improving the mechanical, barrier and functional properties of packaging. Several applications and promising results of nanostructures for dairy product preservation can be found throughout this review, including the use of metallic and polymeric nanoparticles, lipid-based nanostructures, nanofibers, nanofilms and nanocoatings. In addition, some relevant examples of the direct application of nanostructured natural antimicrobials in milk and cheese are presented and discussed, as well as the use of milk agar as a model for a preliminary test. Despite their high cost and the difficulties for scale-up, interesting results of these technologies in dairy foods and packaging materials have promoted a growing interest of the dairy industry.
Collapse
Affiliation(s)
- Adriano Brandelli
- Laboratory of Nanobiotechnology and Applied Microbiology, Department of Food Science, Federal University of Rio Grande do Sul, Porto Alegre 91501-970, Brazil
| | - Nathalie Almeida Lopes
- Laboratory of Nanobiotechnology and Applied Microbiology, Department of Food Science, Federal University of Rio Grande do Sul, Porto Alegre 91501-970, Brazil
| | - Cristian Mauricio Barreto Pinilla
- Laboratory of Nanobiotechnology and Applied Microbiology, Department of Food Science, Federal University of Rio Grande do Sul, Porto Alegre 91501-970, Brazil
- Dairy Technology Center, Institute of Food Technology, Campinas 13083-015, Brazil
| |
Collapse
|
23
|
García-López JD, Teso-Pérez C, Martín-Platero AM, Peralta-Sánchez JM, Fonollá-Joya J, Martínez-Bueno M, Baños A. Lactiplantibacillus paraplantarum BPF2 and Pediococcus acidilactici ST6, Two Bacteriocinogenic Isolated Strains from Andalusian Spontaneous Fermented Sausages. Foods 2023; 12:2445. [PMID: 37444181 DOI: 10.3390/foods12132445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/12/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Traditional spontaneously fermented foods are well known for their sensory and safety properties, which is mainly due to their indigenous microflora. Within this group of food, Mediterranean dry-cured sausages stand out as a significant source of lactic-acid bacterial strains (LAB) with biotechnological properties, such as their antimicrobial activity. The aim of this study was to investigate the biodiversity of antagonistic LAB strains from different Andalusian traditional sausages, such as salchichón and chorizo. First, a screening was carried out focusing on the antimicrobial activity against foodborne pathogens, such as Listeria monocytogenes, Escherichia coli, Clostridium perfringens, and Staphylococcus aureus, selecting two strains due to their higher antibiosis properties, both in agar and liquid media. These bacteria were identified as Lactiplantibacillus paraplantarum BPF2 and Pediococcus acidilactici ST6. In addition, genomic studies confirmed the presence of certain structural genes related to the production of bacteriocins. Finally, the culture supernatants of both strains were purified and analyzed by LC-MS/MS, obtaining the relative molecular mass and the amino acid sequence and identifying the peptides as the bacteriocins Pediocin-PA and Leucocin K. In conclusion, genomes and antimicrobial substances of P. acidilactici ST6, a Pediocin-PA producer, and Lpb. paraplantarum BPF2, a Leucocin K producer, isolated from Andalusian salchichón and chorizo, respectively, are presented in this work. Although further studies are required, these strains could be used alone or in combination as starters or protective cultures for the food industry.
Collapse
Affiliation(s)
- José David García-López
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Granada, Campus de Fuentenueva s/n, 18071 Granada, Spain
| | - Claudia Teso-Pérez
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Granada, Campus de Fuentenueva s/n, 18071 Granada, Spain
| | - Antonio Manuel Martín-Platero
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Granada, Campus de Fuentenueva s/n, 18071 Granada, Spain
| | - Juan Manuel Peralta-Sánchez
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Granada, Campus de Fuentenueva s/n, 18071 Granada, Spain
- Departamento de Zoología, Facultad de Biología, Universidad de Sevilla, Avenida de la Reina Mercedes 6, 41012 Seville, Spain
| | - Juristo Fonollá-Joya
- Departamento de Nutrición y Bromatología, Facultad de Farmacia, Universidad de Granada, Campus Universitario de Cartuja s/n, 18071 Granada, Spain
| | - Manuel Martínez-Bueno
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Granada, Campus de Fuentenueva s/n, 18071 Granada, Spain
- Instituto de Biotecnología, Universidad de Granada, 18071 Granada, Spain
| | - Alberto Baños
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Granada, Campus de Fuentenueva s/n, 18071 Granada, Spain
| |
Collapse
|
24
|
Field D, Fernandez de Ullivarri M, Ross RP, Hill C. After a century of nisin research - where are we now? FEMS Microbiol Rev 2023; 47:fuad023. [PMID: 37300874 PMCID: PMC10257480 DOI: 10.1093/femsre/fuad023] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/08/2023] [Accepted: 05/10/2023] [Indexed: 05/13/2023] Open
Abstract
It is almost a century since nisin was discovered in fermented milk cultures, coincidentally in the same year that penicillin was first described. Over the last 100 years this small, highly modified pentacyclic peptide has not only found success in the food industry as a preservative but has also served as the paradigm for our understanding of the genetic organization, expression, and regulation of genes involved in lantibiotic biosynthesis-one of the few cases of extensive post-translation modification in prokaryotes. Recent developments in understanding the complex biosynthesis of nisin have shed light on the cellular location of the modification and transport machinery and the co-ordinated series of spatio-temporal events required to produce active nisin and provide resistance and immunity. The continued unearthing of new natural variants from within human and animal gastrointestinal tracts has sparked interest in the potential application of nisin to influence the microbiome, given the growing recognition of the role the gastrointestinal microbiota plays in health and disease. Moreover, interdisciplinary approaches have taken advantage of biotechnological advancements to bioengineer nisin to produce novel variants and expand nisin functionality for applications in the biomedical field. This review will discuss the latest progress in these aspects of nisin research.
Collapse
Affiliation(s)
- Des Field
- APC Microbiome Ireland, University College Cork,Western Road, Cork T12 YN60, Ireland
- School of Microbiology, University College Cork, College Road, Cork T12 YT20, Ireland
| | | | - R Paul Ross
- APC Microbiome Ireland, University College Cork,Western Road, Cork T12 YN60, Ireland
- School of Microbiology, University College Cork, College Road, Cork T12 YT20, Ireland
| | - Colin Hill
- APC Microbiome Ireland, University College Cork,Western Road, Cork T12 YN60, Ireland
- School of Microbiology, University College Cork, College Road, Cork T12 YT20, Ireland
| |
Collapse
|
25
|
Thoda C, Touraki M. Immunomodulatory Properties of Probiotics and Their Derived Bioactive Compounds. APPLIED SCIENCES 2023; 13:4726. [DOI: 10.3390/app13084726] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Immune system modulation is an intriguing part of scientific research. It is well established that the immune system plays a crucial role in orchestrating cellular and molecular key mediators, thus establishing a powerful defense barrier against infectious pathogens. Gut microbiota represent a complex community of approximately a hundred trillion microorganisms that live in the mammalian gastrointestinal (GI) tract, contributing to the maintenance of gut homeostasis via regulation of the innate and adaptive immune responses. However, impairment in the crosstalk between intestinal immunity and gut microbiota may reflect on detrimental health issues. In this context, many studies have indicated that probiotics and their bioactive compounds, such as bacteriocins and short chain fatty acids (SCFAs), display distinct immunomodulatory properties through which they suppress inflammation and enhance the restoration of microbial diversity in pathological states. This review highlights the fundamental features of probiotics, bacteriocins, and SCFAs, which make them ideal therapeutic agents for the amelioration of inflammatory and autoimmune diseases. It also describes their underlying mechanisms on gut microbiota modulation and emphasizes how they influence the function of immune cells involved in regulating gut homeostasis. Finally, it discusses the future perspectives and challenges of their administration to individuals.
Collapse
Affiliation(s)
- Christina Thoda
- Laboratory of General Biology, Department of Genetics, Development and Molecular Biology, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, 54 124 Thessaloniki, Greece
| | - Maria Touraki
- Laboratory of General Biology, Department of Genetics, Development and Molecular Biology, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, 54 124 Thessaloniki, Greece
| |
Collapse
|
26
|
Design of Lactococcus lactis Strains Producing Garvicin A and/or Garvicin Q, Either Alone or Together with Nisin A or Nisin Z and High Antimicrobial Activity against Lactococcus garvieae. Foods 2023; 12:foods12051063. [PMID: 36900581 PMCID: PMC10000435 DOI: 10.3390/foods12051063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/20/2023] [Accepted: 02/24/2023] [Indexed: 03/06/2023] Open
Abstract
Lactococcus garvieae is a main ichthyopathogen in rainbow trout (Oncorhynchus mykiss, Walbaum) farming, although bacteriocinogenic L. garvieae with antimicrobial activity against virulent strains of this species have also been identified. Some of the bacteriocins characterized, such as garvicin A (GarA) and garvicin Q (GarQ), may show potential for the control of the virulent L. garvieae in food, feed and other biotechnological applications. In this study, we report on the design of Lactococcus lactis strains that produce the bacteriocins GarA and/or GarQ, either alone or together with nisin A (NisA) or nisin Z (NisZ). Synthetic genes encoding the signal peptide of the lactococcal protein Usp45 (SPusp45), fused to mature GarA (lgnA) and/or mature GarQ (garQ) and their associated immunity genes (lgnI and garI, respectively), were cloned into the protein expression vectors pMG36c, which contains the P32 constitutive promoter, and pNZ8048c, which contains the inducible PnisA promoter. The transformation of recombinant vectors into lactococcal cells allowed for the production of GarA and/or GarQ by L. lactis subsp. cremoris NZ9000 and their co-production with NisA by Lactococcus lactis subsp. lactis DPC5598 and L. lactis subsp. lactis BB24. The strains L. lactis subsp. cremoris WA2-67 (pJFQI), a producer of GarQ and NisZ, and L. lactis subsp. cremoris WA2-67 (pJFQIAI), a producer of GarA, GarQ and NisZ, demonstrated the highest antimicrobial activity (5.1- to 10.7-fold and 17.3- to 68.2-fold, respectively) against virulent L. garvieae strains.
Collapse
|
27
|
Peng Z, Xu X, Fan P, Qiao B, Xie M, Huang T, Xiong T. Identification and characterization of a novel pH and heat stable bacteriocin-like substance lactococcin036019 with food preserving potential. Food Control 2023. [DOI: 10.1016/j.foodcont.2023.109682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
28
|
Biochemical and Genomic Characterization of Two New Strains of Lacticaseibacillus paracasei Isolated from the Traditional Corn-Based Beverage of South Africa, Mahewu, and Their Comparison with Strains Isolated from Kefir Grains. Foods 2023; 12:foods12010223. [PMID: 36613437 PMCID: PMC9818903 DOI: 10.3390/foods12010223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/27/2022] [Accepted: 12/30/2022] [Indexed: 01/05/2023] Open
Abstract
Lacticaseibacillus paracasei (formerly Lactobacillus paracasei) is a nomadic lactic acid bacterium (LAB) that inhabits a wide variety of ecological niches, from fermented foodstuffs to host-associated microenvironments. Many of the isolated L. paracasei strains have been used as single-strain probiotics or as part of a symbiotic consortium within formulations. The present study contributes to the exploration of different strains of L. paracasei derived from non-conventional isolation sources-the South African traditional fermented drink mahewu (strains MA2 and MA3) and kefir grains (strains KF1 and ABK). The performed microbiological, biochemical and genomic comparative analyses of the studied strains demonstrated correlation between properties of the strains and their isolation source, which suggests the presence of at least partial strain adaptation to the isolation environments. Additionally, for the studied strains, antagonistic activities against common pathogens and against each other were observed, and the ability to release bioactive peptides with antioxidant and angiotensin I-converting enzyme inhibitory (ACE-I) properties during milk fermentation was investigated. The obtained results may be useful for a deeper understanding of the nomadic lifestyle of L. paracasei and for the development of new starter cultures and probiotic preparations based on this LAB in the future.
Collapse
|