1
|
Julaeha E, Mulyawan FE, Anwar FM, Akili AWR, Permadi N, Darwati, Kurnia D, Herlina T. Coumarins from Citrus aurantiifolia (Christm.) Swingle Peel with Potential Cytotoxic Activity Against MCF-7 Breast Cancer Cell Line: In Vitro and In Silico Studies. Onco Targets Ther 2025; 18:441-452. [PMID: 40183117 PMCID: PMC11967363 DOI: 10.2147/ott.s506978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 03/19/2025] [Indexed: 04/05/2025] Open
Abstract
Aim Breast cancer remains a prevalent and challenging health issue for women globally. In the pursuit of more effective and less harmful therapies, researchers have focused on natural compounds, especially phenolic compounds found in various plants and fruits. Purpose This study aims to explore the potency of coumarin compounds from Citrus aurantiifolia (Christm.) Swingle peel as alternative treatment for breast cancer through in vitro and in silico studies. Methods Three coumarins were isolated from C. aurantiifolia peel through multiple steps of column chromatograph. Their cytotoxic activities against the MCF-7 breast cancer cell line were evaluated using the MTT assay. Additionally, in silico studies, including molecular docking and molecular dynamics simulations, were conducted to evaluate the interactions of the most potent compound with estrogen receptor alpha (ERα). Results Chemical investigation of C. aurantiifolia peel led to the isolation of three compounds: 5-geranyloxy-7-methoxycoumarin (1), 5-geranyloxypsoralen (2), and 8-geranyloxypsoralen (3). Cytotoxic assays revealed that compound 2 exhibited the highest cytotoxic potency against MCF-7 breast cancer cell line with an IC50 of 138.51 ± 14.44 µg/mL, followed by compounds 1 and 3 with IC50 values of 204.69 ± 22.91 and 478.15 ± 34.85 µg/mL, respectively. Molecular docking studies against estrogen receptor alpha (ERα) showed that 5-geranyloxypsoralen (2) had a lower docking score (-10.63 kcal/mol) compared to estradiol (-9.99 kcal/mol). Molecular dynamics simulation revealed the binding stability ERα-Compound 2 complex as evidence from the root mean square deviation (RMSD) of 2.964 ± 0.460 Å. Furthermore, pharmacokinetic predictions suggested that 5-geranyloxypsoralen may possess favourable pharmacokinetic properties, highlighting its potential as a therapeutic agent. Conclusion The study highlights the potential of coumarin compounds from C. aurantiifolia peel as an alternative treatment for breast cancer, particularly 5-geranyloxypsoralen could be a promising therapeutic agent in breast cancer treatment, warranting further investigation.
Collapse
Affiliation(s)
- Euis Julaeha
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor, West Java, 45363, Indonesia
| | - Faryanti Eka Mulyawan
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor, West Java, 45363, Indonesia
| | - Feby Marlia Anwar
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor, West Java, 45363, Indonesia
| | - Abd Wahid Rizaldi Akili
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor, West Java, 45363, Indonesia
| | - Nandang Permadi
- Doctorate Program in Biotechnology, Graduate School, Universitas Padjadjaran, Bandung, West Java, 40132, Indonesia
| | - Darwati
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor, West Java, 45363, Indonesia
| | - Dikdik Kurnia
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor, West Java, 45363, Indonesia
| | - Tati Herlina
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor, West Java, 45363, Indonesia
| |
Collapse
|
2
|
Mitea G, Iancu IM, Schröder V, Roșca AC, Iancu V, Crețu RM, Mireșan H. Therapeutic Potential of Prunus Species in Gastrointestinal Oncology. Cancers (Basel) 2025; 17:938. [PMID: 40149274 PMCID: PMC11940452 DOI: 10.3390/cancers17060938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/01/2025] [Accepted: 03/06/2025] [Indexed: 03/29/2025] Open
Abstract
BACKGROUND Gastrointestinal tract cancers represent a significant worldwide health concern, accounting for almost one-third of cancer-related deaths. The existing chemotherapy drugs used in gastrointestinal cancers are ineffective, so prognosis is poor, recurrence and metastasis rates are high, and survival time remains short, necessitating the development of novel antitumor drugs that exhibit low toxicity and less potential for the development of drug resistance. This challenge is considerable, but evidence from the past decades supports the medicinal properties and functionalities of bioactive compounds such as flavonoids and acid phenolics with anticancer activities. Our purpose was to find data on the relationship between gastrointestinal cancer and bioactive compounds from Prunus species, focusing on their molecular mechanisms of action. RESULTS Studies highlight the potential of bioactive compounds from Prunus species to modulate the cancer cell signaling pathways involved in gastrointestinal tumorigenesis. CONCLUSIONS The studies reviewed suggest that polyphenols from Prunus species exhibit promising gastrointestinal anticancer activities and could represent an adjunctive therapeutic strategy in cancer treatment. Further studies are necessary to validate these compounds' therapeutic potential and their feasibility as cost-effective treatments for cancer.
Collapse
Affiliation(s)
- Gabriela Mitea
- Department of Pharmacology, Faculty of Pharmacy, Ovidius University of Constanta, 900470 Constanta, Romania;
| | - Irina Mihaela Iancu
- Department of Toxicology, Faculty of Pharmacy, Ovidius University of Constanta, 900470 Constanta, Romania;
| | - Verginica Schröder
- Department of Cellular and Molecular Biology, Faculty of Pharmacy, Ovidius University of Constanta, 900470 Constanta, Romania
| | - Adrian Cosmin Roșca
- Department of Analysis and Quality Control of Drugs, Faculty of Pharmacy, Ovidius University of Constanta, 900470 Constanta, Romania;
| | - Valeriu Iancu
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Ovidius University of Constanta, 900470 Constanta, Romania;
| | - Ruxandra-Mihaela Crețu
- National Institute of Research and Development for Biological Sciences, “Stejarul” Biological Research Centre, 060031 Bucharest, Romania;
| | - Horațiu Mireșan
- Department of Toxicology, Faculty of Pharmacy, Ovidius University of Constanta, 900470 Constanta, Romania;
| |
Collapse
|
3
|
Ahmad R, Alqathama A, Al-Maimani R, Al-Said HM, Ashgar SS, Althubiti M, Jalal NA, Khan M, Algarzai M. Exploring the Role of Phytochemical Classes in the Biological Activities of Fenugreek ( Trigonella feonum graecum): A Comprehensive Analysis Based on Statistical Evaluation. Foods 2025; 14:933. [PMID: 40231959 PMCID: PMC11940872 DOI: 10.3390/foods14060933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 02/23/2025] [Accepted: 02/25/2025] [Indexed: 04/16/2025] Open
Abstract
BACKGROUND This study encapsulates an in-depth correlation analysis for the biological activities (cytotoxicity, antimicrobial, and α-amylase inhibition) vs. the phytochemical classes (flavonoids "FV" and alkaloid "AL") present in fenugreek seed extract. METHODOLOGY Cell cultures for different cell lines were used to assess the cytotoxicity and selectivity (IC50 value), agar diffusion assay was used to determine the MIC and MBC for different bacteria and fungi, whereas α-amylase inhibition was studied to evaluate the antidiabetic potential for the forty-five different origins of fenugreek seed extracts. An in-house analysis for the phytochemical classes of flavonoids (rutin, RT; quercetin, QT; luteolin, LT; kaempferol, KF) and alkaloid (trigonelline, TG) was performed for the seed extracts. RESULTS A lower IC50 value (14.7 ± 1.46 µg/mL) was recorded for the IR3M extract against the HT29, MCF7 (13.03 ± 1.95 µg/mL), and MRC5 (14.58 ± 2.92 µg/mL) cell line. The extract with the lower IC50 value (8.17 ± 0.73 µg/mL) against HepG2 was IR2M. For the antimicrobial activity, a lower MIC value (6.3 mg/mL) was observed for E2C, E2M, E3C, and I3H extracts against SF and for the E1M, Y3C, IR2H, IR3H, and IR3C extracts against SA. The lowest MBC value (12.5 mg/mL) was seen for E2C, E2M, E3C, and I3H against SF as well as for the extracts E1M, Y3C, IR2H, IR3H, and IR3C against SA. The extracts of Q1H (49.07 ± 2.45 µg/mL) and Y3C (43.65 ± 2.97 µg/mL) exhibited IC50 values comparable to the standard drugs tested for α-amylase inhibition. The statistical models were of Pearson's correlation. Principal component analysis (PCA) and a paired t-test established a strong positive correlation for the FV (QT, KF, LT) and alkaloid (TG) (p < 0.05) in the biological activities (cytotoxicity, antimicrobial, and α-amylase inhibition), thereby suggesting a substantial role for these phytochemical classes in the traditional and medicinal uses of fenugreek seeds. CONCLUSIONS The FV and alkaloid are the key to impart the biological properties to the fenugreek seeds, hence their presence is utmost in the fenugreek seeds. This research work may be used as marker to help authenticate the fenugreek seeds for the quality variation in the major phytochemical classes.
Collapse
Affiliation(s)
- Rizwan Ahmad
- Department of Natural Products, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia; (M.K.); (M.A.)
| | - Aljawharah Alqathama
- Department of Pharmaceutical Sciences, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia;
| | - Riyad Al-Maimani
- Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University, Makkah 21955, Saudi Arabia; (R.A.-M.); (M.A.)
| | - Hamdi M. Al-Said
- Department of Microbiology and Parasitology, Faculty of Medicine, Umm Al-Qura University, Makkah 21955, Saudi Arabia; (H.M.A.-S.); (S.S.A.); (N.A.J.)
| | - Sami S. Ashgar
- Department of Microbiology and Parasitology, Faculty of Medicine, Umm Al-Qura University, Makkah 21955, Saudi Arabia; (H.M.A.-S.); (S.S.A.); (N.A.J.)
| | - Mohammad Althubiti
- Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University, Makkah 21955, Saudi Arabia; (R.A.-M.); (M.A.)
| | - Naif A. Jalal
- Department of Microbiology and Parasitology, Faculty of Medicine, Umm Al-Qura University, Makkah 21955, Saudi Arabia; (H.M.A.-S.); (S.S.A.); (N.A.J.)
| | - Majed Khan
- Department of Natural Products, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia; (M.K.); (M.A.)
| | - Mutaz Algarzai
- Department of Natural Products, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia; (M.K.); (M.A.)
| |
Collapse
|
4
|
Ferdous UT, Nurdin A, Ismail S, Shaari K, Norhana Balia Yusof Z. A comparative study on antioxidant properties, total phenolics, total flavonoid contents, and cytotoxic properties of marine green microalgae and diatoms. J Genet Eng Biotechnol 2025; 23:100456. [PMID: 40074430 PMCID: PMC11795137 DOI: 10.1016/j.jgeb.2024.100456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/10/2024] [Accepted: 12/23/2024] [Indexed: 03/14/2025]
Abstract
Despite having valuable and novel metabolites, the marine microalgae species are still not thoroughly investigated for their pharmaceutical and nutraceutical importance. Therefore, this study was focused on investigating the crude extracts of marine green microalgae species, Tetraselmis sp., Nannochloropsis sp., and diatoms Chaetoceros sp., and Thalassiosira sp., isolated from the Malaysian coastal region in terms of their antioxidant activity, total phenolics, total flavonoid contents and cytotoxicity against human breast cancer cells, MCF-7. Among twenty-eight crude extracts, Tetraselmis ethanol and ethyl acetate extract showed the highest amount of total phenolic (19.87 mg GAE/g), and total flavonoid content (38.58 mg QE/g of extract), respectively. From the antioxidant assays, methanol and ethyl acetate extract of Tetraselmis sp. exhibited significantly higher (p < 0.05) antioxidant activities, revealed through DPPH (54.41 ± 1.18 mg Trolox Equivalent Antioxidant Capacity or TEAC/g extract) and ABTS (41.57 ± 0.83 mg TEAC/g extract) radical scavenging activities, respectively than the rest. Ethyl acetate extract of Tetraselmis sp. also showed high ferric reducing power (113.46 ± 4.83 mg TEAC/g extract). On the contrary, methanol and ethyl acetate extract of Chaetoceros sp. showed the highest cytotoxicity towards MCF-7 and reduced the cell viability to 21.26 % and 21.56 %, respectively. The data suggest that marine diatom Chaetoceros sp. has a good cytotoxic effect on MCF-7, while marine green microalga Tetraselmis sp. has good radical scavenging and ferric reduction capabilities, warranting further investigation along with their metabolic profiling, cancer cell killing mechanism and extensive in vivo study.
Collapse
Affiliation(s)
- Umme Tamanna Ferdous
- Center for Biosystems and Machines (IRC-BSM), King Fahd University of Petroleum & Minerals, Dhahran, Saudi Arabia
| | - Armania Nurdin
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Laboratory of UPM-MAKNA Cancer Research (CANRES), Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Saila Ismail
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Khozirah Shaari
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Zetty Norhana Balia Yusof
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; Aquatic Animal Health and Therapeutics Laboratory (AquaHealth), Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; Bioprocessing and Biomanufacturing Research Complex, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| |
Collapse
|
5
|
Bashir S, Iram G, Rafique S, Bashir M, Ghani T, Tanveer A, Khan S, Aftab A, Shah Q, Hassan SMU, Saeed S. Encapsulation of Moringa oleifera aqueous extract in silver chitosan metallopolymer nanocomposites for anti-cancer activity. Int J Biol Macromol 2025; 297:139683. [PMID: 39793809 DOI: 10.1016/j.ijbiomac.2025.139683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 12/04/2024] [Accepted: 01/07/2025] [Indexed: 01/13/2025]
Abstract
The growing interest in plant-derived compounds and synthesis of metallopolymer nanocomposites (MPNCs) especially silver chitosan nanocomposites (AgCS-NCs) emerges as a useful platform to encapsulate and deliver plant-based anticancer drugs. This work presents the synthesis of AgCS-NCs by using Moringa oleifera aqueous leaf extract (MOAE) and the effect of concentration of MOAE on physicochemical properties of AgCS-NCs followed by its anticancer effect on MCF-7 cell line. The results of UV-visible spectroscopy (UV-Vis) and Scanning electron microscopy (SEM) showed successful formation of AgCS-NCs. The formation of AgCS-NCs was confirmed by Fourier transform infrared (FTIR) spectroscopy. The average percentage of encapsulation efficiency (% EE) was calculated to be 60 %. The hydrodynamic size of AgCS-NCs using the Dynamic light scattering (DLS) technique was found to be 308 nm with an average percentage encapsulation efficiency of 60 %. The loaded microcarriers have shown significant cell viability for normal HEK-293 and also showed robust cytotoxicity against breast cancer (MCF-7) cell line (p < 0.001). It is concluded that Ag-CS-NCs utilizing MOAE are very effective and have significant potential against cancer cells without harming normal cells.
Collapse
Affiliation(s)
- Shazia Bashir
- Department of Physics and Applied Mathematics, Pakistan Institute of Engineering and Applied Sciences (PIEAS), P. O. Nilore, 45650 Islamabad, Pakistan.
| | - Ghazala Iram
- Department of Chemistry, PIEAS, P. O. Nilore, 45650 Islamabad, Pakistan
| | - Saima Rafique
- Department of Physics, Air University, 44000 Islamabad, Pakistan
| | - Muhammad Bashir
- Department of Physics and Applied Mathematics, Pakistan Institute of Engineering and Applied Sciences (PIEAS), P. O. Nilore, 45650 Islamabad, Pakistan
| | - Tayyaba Ghani
- Department of Metallurgy and Material Engineering, PIEAS, 45650 Islamabad, Pakistan
| | - Afifa Tanveer
- The University of Azad Jammu & Kashmir, 13100 Muzaffarabad, Pakistan
| | - Samreen Khan
- Department of Physics and Applied Mathematics, Pakistan Institute of Engineering and Applied Sciences (PIEAS), P. O. Nilore, 45650 Islamabad, Pakistan
| | - Ayesha Aftab
- Department of Nanomedicine, Houston Methodist Resales Institute, Houston, TX 77030, USA
| | - Qasim Shah
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, 22020 Abbottabad, Pakistan
| | | | - Shaukat Saeed
- Department of Chemistry, PIEAS, P. O. Nilore, 45650 Islamabad, Pakistan
| |
Collapse
|
6
|
Yuksel A, Celayir DN, Yenilmez Tunoglu EN, Tutar L, Tutar Y. Metabolite-Induced Apoptosis by Gundelia tournefortii in A549 Lung Cancer Cells: A Cytotoxic and Gene Expression Study. Nutrients 2025; 17:374. [PMID: 39940232 PMCID: PMC11820080 DOI: 10.3390/nu17030374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/11/2025] [Accepted: 01/13/2025] [Indexed: 02/14/2025] Open
Abstract
BACKGROUND/OBJECTIVES Gundelia tournefortii (Kenger) is a traditional medicinal plant and exhibits potential anticancer properties. This study investigates the cytotoxic and apoptotic effects of its water extract on human lung carcinoma A549 cells. METHODS A lung cancer cell line was treated with Gundelia tournefortii extract. The metabolic content of the extract that plays key roles in anticancer was detected by high-performance liquid chromatography. Anticancer properties were further detected by a flow cytometer apoptosis assay, and signaling pathways were determined by a PCR array through hub gene expression alteration. Gene enrichment analysis and network pharmacology correlated metabolites and pathways that were involved in anticancer effects. RESULTS The metabolite content of G. tournefortii was analyzed, and gallic acid, clorogenic acid, hydroxybenzoic acid, caffeic acid, epicatechin, p-coumaric acid, salicylic acid, apigenin 7 glucoside, and cinnamic acid were detected as key compounds. Lung cancer cell line A549 was treated with the extract at increasing concentrations for 24, 48, and 72 h, and its effects on cell viability were determined by MTT analysis. A statistically significant difference was observed for IC50 concentrations depending on incubation times. It was also observed that the G. tournefortii water extract significantly increased apoptosis in A549 cells in comparison with the control group. G. tournefortii extract's effect on lung cancer cell line was measured using the signal pathway PCR array gene set. Gene enrichment analysis of the array expression data confirmed activation of apoptosis-related pathways, particularly the upregulation of BAX and downregulation of HSP90. CONCLUSIONS These findings suggest that G. tournefortii metabolites provide promising selective anticancer drug candidates and potential drug templates to prevent side effects and resistance of current clinical drug treatments.
Collapse
Affiliation(s)
- Aysun Yuksel
- Department of Nutrition and Dietetics, Medeniyet University, Istanbul 34720, Türkiye;
| | - Damla Nur Celayir
- Department of Nutrition and Dietetics, University of Health Sciences, Istanbul 34668, Türkiye
| | - Ezgi Nurdan Yenilmez Tunoglu
- Division of Medical Techniques and Services, Vocational School of Health Services, Demiroglu Science University, Istanbul 34394, Türkiye;
| | - Lütfi Tutar
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Kırşehir Ahi Evran University, Kırşehir 40100, Türkiye;
| | - Yusuf Tutar
- Division of Biochemistry, Faculty of Pharmacy, University of Health Sciences, Istanbul 34668, Türkiye
- Division of Biochemistry, Faculty of Medicine, Recep Tayyip Erdogan University, Rize 53100, Türkiye
| |
Collapse
|
7
|
Todorov SD, de Almeida BM, Lima EMF, Fabi JP, Lajolo FM, Hassimotto NMA. Phenolic Compounds and Bacteriocins: Mechanisms, Interactions, and Applications in Food Preservation and Safety. Mol Nutr Food Res 2025; 69:e202400723. [PMID: 39828980 DOI: 10.1002/mnfr.202400723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/27/2024] [Accepted: 12/02/2024] [Indexed: 01/22/2025]
Abstract
Beneficial properties of different natural antimicrobials are topics of scientific curiosity for improving safety and extending the shelf life of food commodities. In this regard, phenolic compounds, natural molecules known for their antioxidant, anti-inflammatory, and antimicrobial properties can be right choice. Moreover, bacteriocins, antimicrobial peptides produced by various microorganisms, capable of inhibiting the growth of other bacteria, particularly closely related species can be genuine alternative. Combining phenolic compounds with bacteriocins can enhance antimicrobial effects, extending the shelf-life of food products by combating spoilage and foodborne pathogens. Despite their potential, the chemical interactions between phenolic compounds and bacteriocins, including synergistic and antagonistic effects, are not well understood. Key areas needing further research include the following: the mechanisms of action against different bacterium types, interactions with cell membranes, enzyme activity, and gene expression; the effects of environmental factors like concentration, pH, temperature, and food matrix specificity on their interactions; and methods for incorporating these compounds into food products and packaging materials to improve food safety. Additionally, the safety, toxicity, allergenicity, sensory properties, nutritional value, regulatory approval, and consumer acceptance of using phenolic compounds and bacteriocins in food products require thorough investigation.
Collapse
Affiliation(s)
- Svetoslav Dimitrov Todorov
- ProBacLab, Laboratório de Microbiologia de Alimentos, Departamento de Alimentos e Nutrição Experimental, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, São Paulo, Brazil
- Food Research Center (FoRC), CEPIX-USP, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, São Paulo, Brazil
- CISAS - Center for Research and Development in Agrifood Systems and Sustainability, Instituto Politécnico de Viana do Castelo, Viana do Castelo, Portugal
| | - Beatriz Marinho de Almeida
- Food Research Center (FoRC), CEPIX-USP, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, São Paulo, Brazil
- Departamento de Alimentos e Nutrição Experimental, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Emília Maria França Lima
- ProBacLab, Laboratório de Microbiologia de Alimentos, Departamento de Alimentos e Nutrição Experimental, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, São Paulo, Brazil
- Food Research Center (FoRC), CEPIX-USP, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - João Paulo Fabi
- Food Research Center (FoRC), CEPIX-USP, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, São Paulo, Brazil
- Departamento de Alimentos e Nutrição Experimental, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Franco Maria Lajolo
- Food Research Center (FoRC), CEPIX-USP, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, São Paulo, Brazil
- Departamento de Alimentos e Nutrição Experimental, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Neuza Mariko Aymoto Hassimotto
- Food Research Center (FoRC), CEPIX-USP, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, São Paulo, Brazil
- Departamento de Alimentos e Nutrição Experimental, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| |
Collapse
|
8
|
Sathish Kumar K, Visnuvinayagam S, Teena G, Elavarasan K, Bindu J, Balange AK, Sivaranjani R, Narasimhamurthy L. Biochemical, Antioxidant, and Antimicrobial Profiling of Essential Oils of Indian Origin for Culinary Applications. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2024; 2024:9326683. [PMID: 39759801 PMCID: PMC11698606 DOI: 10.1155/ijfo/9326683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 11/06/2024] [Accepted: 11/28/2024] [Indexed: 01/07/2025]
Abstract
This study investigated the biochemical composition and tested the antioxidant and antimicrobial properties of four Indian-origin essential oils (EOs)-ginger, garlic, clove, and eucalyptus-to evaluate their potential for culinary applications. Gas chromatography-mass spectrometry (GC-MS) analysis was used to identify the chemical constituents of EOs. Antioxidant assays such as 2,2-diphenyl-1-picrylhydrazyl (DPPH) and ferric reducing antioxidant power (FRAP) and antimicrobial assays such as Agar well diffusion, minimum inhibitory concentration (MIC), and minimum bactericidal concentration (MBC) were carried out. In GC-MS analysis, α-zingiberene (28.01%), eugenol (70.12%), 1,8-cineole (52.95%), and allyl polysulfides and terpenes were the most dominant compounds in ginger, clove, eucalyptus, and garlic EOs, respectively, which are responsible for their antioxidant and antimicrobial properties. Based on the antioxidant assays, clove EO exhibited the strongest antioxidant activities in both DPPH (70.84 ± 3.95%) and FRAP (142.29 ± 1.05 μ mol Fe (II) g-1) even at 5% level, suggesting its potential to inhibit lipid peroxidation, a process linked to oxidative stress in food. The antimicrobial study demonstrated the potential of EOs against foodborne pathogens, particularly against methicillin-resistant S. aureus (MRSA), which reveals their potential against multidrug-resistant bacteria. Among them, clove EO demonstrated the most potent antimicrobial activity against both Gram-negative and Gram-positive bacteria, with notable activity against MRSA with an inhibition zone of 41.33 ± 0.57 mm. This strong antimicrobial activity of clove EO was directly correlated with its total phenolic content (375.91 ± 14.21 mg phenols 100 g-1 at 5% level). The results indicated that clove EO stands out for its strong antioxidant and antimicrobial properties, particularly against multidrug-resistant pathogens like MRSA. These findings suggest clove EO could be a promising natural alternative to synthetic preservatives and antibiotics in culinary applications, helping to preserve food and combat resistant bacteria.
Collapse
Affiliation(s)
- K. Sathish Kumar
- Fish Processing Division, ICAR-Central Institute of Fisheries Technology, Cochin, Kerala, India
- Fisheries Resources, Harvest & Post-Harvest Management Division, ICAR-Central Institute of Fisheries Education, Mumbai, Maharashtra, India
| | - S. Visnuvinayagam
- Microbiology, Fermentation and Biotechnology Division, ICAR-Central Institute of Fisheries Technology, Cochin, Kerala, India
| | - G. Teena
- Microbiology, Fermentation and Biotechnology Division, ICAR-Central Institute of Fisheries Technology, Cochin, Kerala, India
| | - K. Elavarasan
- Fish Processing Division, ICAR-Central Institute of Fisheries Technology, Cochin, Kerala, India
| | - J. Bindu
- Fish Processing Division, ICAR-Central Institute of Fisheries Technology, Cochin, Kerala, India
| | - Amjad K. Balange
- Fisheries Resources, Harvest & Post-Harvest Management Division, ICAR-Central Institute of Fisheries Education, Mumbai, Maharashtra, India
| | - R. Sivaranjani
- Crop Production and Post-Harvest Technology, ICAR-Indian Institute of Spices Research, Kozhikode, Kerala, India
| | | |
Collapse
|
9
|
Szymanowska U, Karaś M, Jakubczyk A, Kocki J, Szymanowski R, Kapusta IT. Raspberry Pomace as a Good Additive to Apple Freeze-Dried Fruit Bars: Biological Properties and Sensory Evaluation. Molecules 2024; 29:5690. [PMID: 39683849 DOI: 10.3390/molecules29235690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/19/2024] [Accepted: 11/29/2024] [Indexed: 12/18/2024] Open
Abstract
This study investigated the impact of adding raspberry pomace to the phenolic content and biological properties of freeze-dried apple/raspberry bars. The bars were prepared by replacing apple puree with raspberry pomace (5-50%), and their phenolic compounds were assessed using ethanol and buffer extracts. This work also explored the potential bioaccessibility of phenolic compounds in enriched bars through a simulated digestion process (digest). Antioxidant, anti-inflammatory (LOX, COX-2 inhibition), antihypertensive (ACE inhibition), and antiproliferative effects on AGS and HT-29 cancer cells were evaluated. The total polyphenol content was highest in the all bar variants post-digestion. The highest-904.26 ± 23.5 mg/100 g-was determined for the B50 sample In the enriched bars, the concentration of chlorogenic acid decreased from 6.99 ± 1.08 mg/L for BP5 to 2.75 ± 0.32 mg/L for BP50, but the ellagic acid concentration increased from 1.46 ± 0.02 mg/L for BP5 to 12.73 ± 0.09 mg/L for BP50. Among the tested extracts, the highest antioxidant and LOX, COX-2 inhibiting activity was determined for digest. The ability to neutralize free radicals increased with raspberry pomace addition from 3.63 ± 0.26 mM TE/100 g for BC to 5.58 ± 0.22 mM TE/100 g for the BP50 sample. ACE inhibition was quite similar for ethanolic and digest extracts, but much weaker for buffer extracts. The lowest EC50 value was 1.04 ± 0.03 mg/mL for the BP30 ethanolic sample. Analyzed extracts showed antiproliferative activity against both tested cell lines. The EC50 values for HT-29 cancer cells decreased from 0.354 ± 0.031 mg/mL for BC to 0.026 ± 0.006 mg/mL for the BP50 digest sample. It can be assumed that the BP30 bar best met the assumed criteria, and is optimal for both sensory quality (receiving an average score of 4.45) and health benefits.
Collapse
Affiliation(s)
- Urszula Szymanowska
- Department of Biochemistry and Food Chemistry, University of Life Sciences, 8 Skromna Str., 20-704 Lublin, Poland
| | - Monika Karaś
- Department of Biochemistry and Food Chemistry, University of Life Sciences, 8 Skromna Str., 20-704 Lublin, Poland
| | - Anna Jakubczyk
- Department of Biochemistry and Food Chemistry, University of Life Sciences, 8 Skromna Str., 20-704 Lublin, Poland
| | - Janusz Kocki
- Department of Clinical Genetics, Medical University of Lublin, 11 Radziwiłłowska Str., 20-080 Lublin, Poland
| | - Rafał Szymanowski
- Department of Clinical Genetics, Medical University of Lublin, 11 Radziwiłłowska Str., 20-080 Lublin, Poland
| | - Ireneusz Tomasz Kapusta
- Department Food Technology and Human Nutrition, Institute of Food Technology, College of Natural Science, University of Rzeszów, 4 Zelwerowicza Str., 35-601 Rzeszów, Poland
| |
Collapse
|
10
|
Oršolić N, Jazvinšćak Jembrek M. Potential Strategies for Overcoming Drug Resistance Pathways Using Propolis and Its Polyphenolic/Flavonoid Compounds in Combination with Chemotherapy and Radiotherapy. Nutrients 2024; 16:3741. [PMID: 39519572 PMCID: PMC11547968 DOI: 10.3390/nu16213741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 10/25/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
Conventional cancer treatments include surgical resection, chemotherapy, hyperthermia, immunotherapy, hormone therapy, and locally targeted therapies such as radiation therapy. Standard cancer therapies often require the use of multiple agents, which can activate nuclear factor kappa B (NF-κB) in tumor cells, leading to reduced cell death and increased drug resistance. Moreover, the use of multiple agents also contributes to added toxicity, resulting in poor treatment outcomes. Cancer cells gradually develop resistance to almost all chemotherapeutics through various mechanisms, such as drug efflux, alterations in drug metabolism and transport, changes in signal transduction pathways, enhanced DNA repair capacity, evasion of apoptosis, increased mutations, reactivation of drug targets, interaction with the cancer microenvironment, cancer cell-stroma interactions, epithelial-mesenchymal transition (EMT)-mediated chemoresistance, epigenetic modifications, metabolic alterations, and the effect of cancer stem cells (CSCs). Developing new strategies to improve chemotherapy sensitivity while minimizing side effects is essential for achieving better therapeutic outcomes and enhancing patients' quality of life. One promising approach involves combining conventional cancer treatments with propolis and its flavonoids. These natural compounds may enhance tumor response to treatment while reducing toxicity. Propolis and its components can sensitize cancer cells to chemotherapeutic agents, likely by inhibiting NF-κB activation, reprogramming tumor-associated macrophages (TAMs; an M2-like phenotype), and thereby reducing the release of matrix metalloproteinase (MMP)-9, cytokines, chemokines, and the vascular endothelial growth factor (VEGF). By reducing TAMs, propolis and its components may also overcome EMT-mediated chemoresistance, disrupt the crosstalk between macrophages and CSCs, inhibit the maintenance of stemness, and reverse acquired immunosuppression, thus promoting an antitumor response mediated by cytotoxic T-cells. This review highlights the potential of flavonoids to modulate the responsiveness of cancer to conventional treatment modalities. The evidence suggests that novel therapeutic strategies incorporating flavonoids could be developed to improve treatment outcomes. The positive effects of combining propolis with chemotherapeutics include reduced cytotoxicity to peripheral blood leukocytes, liver, and kidney cells. Therefore, polyphenolic/flavonoid components may hold potential for use in combination with chemotherapeutic agents in the clinical treatment of various types of cancers.
Collapse
Affiliation(s)
- Nada Oršolić
- Division of Animal Physiology, Faculty of Science, University of Zagreb, Rooseveltov trg 6, HR-10000 Zagreb, Croatia
| | - Maja Jazvinšćak Jembrek
- Division of Molecular Medicine, Laboratory for Protein Dynamics, Ruđer Bošković Institute, Bijenička cesta 54, HR-10000 Zagreb, Croatia;
- School of Medicine, Catholic University of Croatia, Ilica 244, HR-10000 Zagreb, Croatia
| |
Collapse
|
11
|
Rivera Antonio A, Padilla Martínez I, Márquez-Flores Y, Juárez Solano A, Torres Ramos M, Rosales Hernández M. Protective effect of (E)-(2,4-dihydroxy)-α-aminocinnamic acid, a hydroxy cinnamic acid derivative, in an ulcerative colitis model induced by TNBS. Biosci Rep 2024; 44:BSR20240797. [PMID: 39268608 PMCID: PMC11461179 DOI: 10.1042/bsr20240797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 09/02/2024] [Accepted: 09/10/2024] [Indexed: 09/17/2024] Open
Abstract
Ulcerative colitis (UC) is a multifactorial disease that causes long-lasting inflammation and ulcers in the digestive tract. UC is the most common form of inflammatory bowel disease (IBD). The current treatment for mild-to-moderate UC involves the use of 5-aminosalicylates (5-ASA), but much of this compound is unabsorbed and metabolized by N-acetylation. Several efforts have since been made to evaluate new molecules from synthetic or natural sources. Recently, it was reported that (E)-(5-chloro-2-hydroxy)-α-aminocinnamic acid (2c) and (E)-(2,4-dihydroxy)-α-aminocinnamic acid (2f) are as good or better myeloperoxidase (MPO) inhibitors and antioxidants than 5-ASA. Then, the present study aimed to evaluate the protective effects of 2c and 2f on a rat model of UC induced by 2,4,6-trinitrobenzene sulfonic acid (TNBS). The results showed that TNBS caused the induction of colonic ulcers, as well as a significant increase in MPO activity and malondialdehyde (MDA) and a decrease in glutathione (GSH) content. The administration of 2f, 2c and 5-ASA, decreased the ulcers presence, inhibited MPO peroxidation activity and MPO presence (as determined by immunofluorescence), and increased GSH and reduced MDA content. However, 2f was better than 2c and 5-ASA, then, the principal mechanism by which 2f presented a protective effect in a UC model induced by TNBS in rats is by inhibiting MPO activity and due to its antioxidant activity.
Collapse
Affiliation(s)
- Astrid Mayleth Rivera Antonio
- Laboratorio de Biofísica y Biocatálisis, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Salvador Díaz Mirón s/n, Casco de Santo Tomas, Ciudad de México 11340, México
| | - Itzia Irene Padilla Martínez
- Laboratorio de Química Supramolecular y Nanociencias, Unidad Profesional Interdisciplinaria de Biotecnología, Instituto Politécnico Nacional, Avenida Acueducto s/n, Barrio la Laguna Ticomán, Ciudad de México 07340, México
| | - Yazmín Karina Márquez-Flores
- Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Campus Zacatenco, Instituto Politécnico Nacional, Av. Wilfrido Massieu s/n Col. Zacatenco, C.P. 07738, Ciudad de México, México
| | - Alan Hipólito Juárez Solano
- Dirección de investigación del Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez. Av. Insurgentes sur #3877, col. La Fama. Tlalpan, Ciudad de México. C.P. 14269. México
| | - Mónica A. Torres Ramos
- Dirección de investigación del Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez. Av. Insurgentes sur #3877, col. La Fama. Tlalpan, Ciudad de México. C.P. 14269. México
| | - Martha Cecilia Rosales Hernández
- Laboratorio de Biofísica y Biocatálisis, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Salvador Díaz Mirón s/n, Casco de Santo Tomas, Ciudad de México 11340, México
| |
Collapse
|
12
|
Feunaing RT, Tamfu AN, Gbaweng AJY, Djoko CLT, Ntchapda F, Henoumont C, Laurent S, Talla E, Anouar EH, Zingue S, Dinica RM. 3,3'4-trimethoxy-4'-rutinosylellagic acid and its acetylated derivative: Antioxidant activity and antiproliferative effects on breast cancer cells and molecular docking study. Biomed Pharmacother 2024; 179:117370. [PMID: 39208664 DOI: 10.1016/j.biopha.2024.117370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 08/13/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024] Open
Abstract
Cancers account for many deaths worldwide and natural compounds and their derivatives are interesting chemotherapeutic agents for cancer drug development. In this study, a natural compound 3,3'4-trimethoxy-4'-rutinosylellagic acid (TR2) and its acetylated derivative 3,3'4-trimethoxy-4'-hexaacetylrutinosylellagic acid (TR22) were evaluated for their antioxidant and anticancer effects against estrogen sensitive (MCF-7) and estrogen non-sensitive (MDA-MB 231) breast adenocarcinoma. In the β-Carotene-linoleic acid assay, DPPH• radical scavenging and CUPRAC assay, the compound TR2 had better activity than the standard α-Tocopherol, while in the ABTS•+ assay, it was more active than both standards α- α-Tocopherol and BHA. Both compounds had good antioxidant effects with TR2 being more active than TR22. Both compounds inhibited growth of breast carcinoma cells when compared to the untreated controls after 72 h. Compound TR22 significantly (p < 0.001) inhibited proliferation of both MCF-7 and MDA-MB 231 breast carcinoma cell lines suggesting that acetylation reaction improves inhibition of breast cancer cells growth. On the contrary, TR2 exhibited better inhibitory effect of clone formation than TR22 suggesting that acetylation reduces the activity in this assay. Both compounds inhibited migration of the cancer cells when compared to the untreated control cells and compound TR2 exhibited greater cellular anti-migration effect than TR22 at the same concentration and after the same period of incubation. Molecular docking studies supplemented the results and revealed that TR2 and TR22 had appreciable interactions with tyrosine kinase with negative binding energies suggesting that they are potent receptor tyrosine kinase inhibitors which can impede on cancer progression.
Collapse
Affiliation(s)
- Romeo Toko Feunaing
- Department of Chemistry, Faculty of Sciences, University of Ngaoundere, P.O. Box 454, Ngaoundere, Cameroon
| | - Alfred Ngenge Tamfu
- Department of Chemical Engineering, School of Chemical Engineering and Mineral Industries, University of Ngaoundere, P.O. Box 454, Ngaoundere, Cameroon; Department of Chemistry, Physics and Environment, Faculty of Sciences and Environment, 'Dunarea de Jos University', 47 Domneasca Str., Galati 800008, Romania.
| | - Abel Joel Yaya Gbaweng
- Department of Chemistry, Faculty of Sciences, University of Ngaoundere, P.O. Box 454, Ngaoundere, Cameroon
| | | | - Fidele Ntchapda
- Department of Biological Sciences, Faculty of Science, University of Ngaoundere, P.O. Box 454, Ngaoundere, Cameroon
| | - Celine Henoumont
- Laboratory of NMR and Molecular Imaging, Department of General, Organic Chemistry and Biomedical, University of Mons, Mons B-7000, Belgium
| | - Sophie Laurent
- Laboratory of NMR and Molecular Imaging, Department of General, Organic Chemistry and Biomedical, University of Mons, Mons B-7000, Belgium
| | - Emmanuel Talla
- Department of Chemistry, Faculty of Sciences, University of Ngaoundere, P.O. Box 454, Ngaoundere, Cameroon; Department of Chemical Engineering, School of Chemical Engineering and Mineral Industries, University of Ngaoundere, P.O. Box 454, Ngaoundere, Cameroon
| | - El Hassane Anouar
- Department of Chemistry, College of Sciences and Humanities in Al-Kharj, Prince Sattam bin Ab-dulaziz University, P.O. Box 830 Al-Kharj, Saudi Arabia
| | - Stephane Zingue
- Department of Pharmacotoxicology and Pharmacokinetics, Faculty of Medicine and Biomedical Sciences, University of Yaounde 1, P.O. Box 1364, Yaounde, Cameroon
| | - Rodica Mihaela Dinica
- Department of Chemistry, Physics and Environment, Faculty of Sciences and Environment, 'Dunarea de Jos University', 47 Domneasca Str., Galati 800008, Romania.
| |
Collapse
|
13
|
Edo GI, Nwachukwu SC, Ali AB, Yousif E, Jikah AN, Zainulabdeen K, Ekokotu HA, Isoje EF, Igbuku UA, Opiti RA, Akpoghelie PO, Owheruo JO, Essaghah AEA. A review on the composition, extraction and applications of phenolic compounds. ECOLOGICAL FRONTIERS 2024. [DOI: 10.1016/j.ecofro.2024.09.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
14
|
Meneses-Sagrero SE, Rascón-Valenzuela LA, Arellano-García ME, Toledano-Magaña Y, García-Ramos JC. Natural compounds combined with imatinib as promising antileukemic therapy: An updated review. Fitoterapia 2024; 178:106185. [PMID: 39142530 DOI: 10.1016/j.fitote.2024.106185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/02/2024] [Accepted: 08/10/2024] [Indexed: 08/16/2024]
Abstract
Natural products (NP) have been an alternative therapy for several diseases for centuries, and they also serve as an essential source of bioactive molecules, enhancing our drug discovery capacity. Among these NP, some phytochemicals have shown multiple biological effects, including anticancer activity, with higher effectiveness and less toxicity than actual treatments, suggesting their possible use on resilient human malignancies such as leukemia. Imatinib mesylate (Im) is a selective tyrosine kinase inhibitor widely used as an anticancer drug, the gold standard to attend chronic myeloid leukemia (CML). Nevertheless, resistance to this drug in patients with CML renders it insufficient to eliminate cells with Philadelphia chromosome (BCR/ABL+). Moreover, recent studies show that imatinib can induce genotoxic and chromosomic damage in some in vitro and in vivo models. These facts urge finding new therapeutic alternatives to increase the effectiveness of antileukemic treatment. Recent research has shown that the combined effects of phytochemicals with imatinib can improve the cytotoxicity or resensitized the resistant cells to this drug in diverse leukemia cell lines. Independent mechanisms of action among phytochemicals and imatinib include BCR/ABL regulation, downregulation of transcription factors, inhibition of anti-apoptotic and activation of pro-apoptotic proteins, apoptosis induction dependent- and independent of ROS-overproduction, membrane functions disruption, induction of cell cycle arrest, and cell death. This review summarizes and discusses the synergic effect of some phytochemicals combined with imatinib on leukemia cells and the mechanism of action proposed for these combinations, looking to contribute to developing new effective alternatives for leukemia treatment.
Collapse
Affiliation(s)
| | - Luisa Alondra Rascón-Valenzuela
- Departamento de Ciencias Químico Biológicas, Universidad de Sonora, Blvd. Luis Encinas y Rosales S/N, Col. Centro, Hermosillo, Sonora, Mexico
| | - María Evarista Arellano-García
- Facultad de Ciencias, Universidad Autónoma de Baja California, Ctra. Transpeninsular No. 3917, Col. Playitas, Ensenada, Baja California, Mexico
| | - Yanis Toledano-Magaña
- Instituto Tecnológico de Ensenada, Tecnológico Nacional de México, Blvd. Tecnológico #150, Ex Ejido Chapultepec, Ensenada, Baja California, Mexico; Centro de Bachillerato Tecnológico Industrial y de Servicios No. 41. Dirección General de Educación Tecnológica Industrial y de Servicios, Carr. Transpeninsular km 115, Ex-Ejido Chapultepec, Ensenada, Baja California, Mexico.
| | - Juan Carlos García-Ramos
- Instituto Tecnológico de Ensenada, Tecnológico Nacional de México, Blvd. Tecnológico #150, Ex Ejido Chapultepec, Ensenada, Baja California, Mexico; Centro de Bachillerato Tecnológico Industrial y de Servicios No. 41. Dirección General de Educación Tecnológica Industrial y de Servicios, Carr. Transpeninsular km 115, Ex-Ejido Chapultepec, Ensenada, Baja California, Mexico.
| |
Collapse
|
15
|
Bourdakou MM, Melliou E, Magiatis P, Spyrou GM. Computational investigation of the functional landscape of the protective role that extra virgin olive oil consumption may have on chronic lymphocytic leukemia. J Transl Med 2024; 22:869. [PMID: 39334178 PMCID: PMC11428436 DOI: 10.1186/s12967-024-05672-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 09/04/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND The health benefits of the Mediterranean diet are partially attributed to the polyphenols present in extra virgin olive oil (EVOO), which have been shown to have anti-cancer properties. However, the possible effect that EVOO could have on Chronic Lymphocytic Leukemia (CLL) has not been fully explored. METHODS This study investigates the anti-CLL activity of EVOO through a computational multi-level data analysis procedure, focusing on the identification of shared biological functions between them. Specifically, publicly available data from genomics, transcriptomics and proteomics related to EVOO consumption and CLL were collected from several resources and analyzed through a computational pipeline, highlighting common molecular mechanisms and biological processes. Computational verification of a number of the highlighted functional terms associating CLL and EVOO has been performed as well. RESULTS Our investigation revealed four molecular pathways and three biological processes that overlap between mechanisms associated with CLL and those impacted by the consumption of EVOO. To further investigate the common biological functions, we focused on AKT1-related terms, aiming to investigate the potential importance of AKT1 in the anti- CLL effects associated with EVOO. CONCLUSIONS Overall, the results provide valuable insights into the potential beneficial effect of EVOO in CLL and highlight EVOO's bioactive compounds as promising candidates for future investigations.
Collapse
Affiliation(s)
- Marilena M Bourdakou
- Bioinformatics Department, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Eleni Melliou
- Laboratory of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Prokopios Magiatis
- Laboratory of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece.
| | - George M Spyrou
- Bioinformatics Department, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus.
| |
Collapse
|
16
|
Borsoi FT, da Silva GB, Manica D, Bagatini MD, Pastore GM, Arruda HS. Extract of Araçá-Boi and Its Major Phenolic Compound, Trans-Cinnamic Acid, Reduce Viability and Inhibit Migration of Human Metastatic Melanoma Cells. Nutrients 2024; 16:2929. [PMID: 39275245 PMCID: PMC11396791 DOI: 10.3390/nu16172929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/19/2024] [Accepted: 08/23/2024] [Indexed: 09/16/2024] Open
Abstract
Cutaneous melanoma is an aggressive type of skin cancer that is recognized for its high metastatic potential and the challenges it presents in its treatment. There has been increasing interest in plant extracts and their potential applications in melanoma. The present study aimed to investigate the content of individual phenolic compounds in araçá-boi extract, evaluate their antioxidant activity, and explore their effects on cell viability, migration properties, oxidative stress levels, and protein expression in the human metastatic melanoma cell line SK-MEL-28. HPLC-DAD analysis identified 11 phenolic compounds in the araçá-boi extract. Trans-cinnamic acid was the main phenolic compound identified; therefore, it was used alone to verify its contribution to antitumor activities. SK-MEL-28 melanoma cells were treated for 24 h with different concentrations of araçá-boi extract and trans-cinnamic acid (200, 400, 600, 800, and 1600 µg/mL). Both the araçá-boi extract and trans-cinnamic acid reduced cell viability, cell migration, and oxidative stress in melanoma cells. Additionally, they modulate proteins involved in apoptosis and inflammation. These findings suggest the therapeutic potential of araçá-boi extract and its phenolic compounds in the context of melanoma, especially in strategies focused on preventing metastasis. Additional studies, such as the analysis of specific signaling pathways, would be valuable in confirming and expanding these observations.
Collapse
Affiliation(s)
- Felipe Tecchio Borsoi
- Department of Food Science and Nutrition (DEPAN), School of Food Engineering (FEA), University of Campinas (UNICAMP), Monteiro Lobato Street 80, Campinas 13083-862, SP, Brazil
| | - Gilnei Bruno da Silva
- Multicentric Postgraduate Program in Biochemistry and Molecular Biology, State University of Santa Catarina (UDESC), Lages 88520-000, SC, Brazil
| | - Daiane Manica
- Postgraduate Program in Biochemistry, Federal University of Santa Catarina (UFSC), Florianópolis 88040-900, SC, Brazil
| | - Margarete Dulce Bagatini
- Postgraduate Program in Biomedical Sciences, Federal University of Fronteira Sul (UFFS), Chapecó 89815-899, SC, Brazil
| | - Glaucia Maria Pastore
- Department of Food Science and Nutrition (DEPAN), School of Food Engineering (FEA), University of Campinas (UNICAMP), Monteiro Lobato Street 80, Campinas 13083-862, SP, Brazil
| | - Henrique Silvano Arruda
- Department of Food Science and Nutrition (DEPAN), School of Food Engineering (FEA), University of Campinas (UNICAMP), Monteiro Lobato Street 80, Campinas 13083-862, SP, Brazil
| |
Collapse
|
17
|
Aanniz T, Zeouk I, Elouafy Y, Touhtouh J, Hassani R, Hammani K, Benali T, El-Shazly M, Khalid A, Abdalla AN, Aboulaghras S, Goh KW, Ming LC, Razi P, Bakrim S, Bouyahya A. Initial report on the multiple biological and pharmacological properties of hispolon: Exploring stochastic mechanisms. Biomed Pharmacother 2024; 177:117072. [PMID: 38991301 DOI: 10.1016/j.biopha.2024.117072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/15/2024] [Accepted: 06/29/2024] [Indexed: 07/13/2024] Open
Abstract
The development of natural substances derived from nature poses a significant challenge as technologies for the extraction and characterization of active principles advance. Hispolon has received a lot of attention in recent years, ascribable to its wide range of biological activities. It is a phenolic molecule that was extracted from several mushroom species such as Phellinus igniarius, Phellinus linteus, Phellinus lonicerinus, Phellinus merrillii, and Inonotus hispidus. To provide a comprehensive overview of the pharmacological activities of hispolon, this review highlights its anticancer, anti-inflammatory, antioxidant, antibacterial, and anti-diabetic activities. Several scientific research databases, including Google Scholar, Web of Science, PubMed, SciFinder, SpringerLink, Science Direct, Scopus, and, Wiley Online were used to gather the data on hispolon until May 2024. The in vitro and in vivo studies have revealed that hispolon exhibited significant anticancer properties through modifying several signaling pathways including cell apoptosis, cycle arrest, autophagy, and inhibition of angiogenesis and metastasis. Hispolon's antimicrobial activity was proven against many bacterial, fungal, and viral pathogens, highlighting its potential use as a novel antimicrobial agent. Additionally, hispolon displayed potent anti-inflammatory activity through the suppression of key inflammatory mediators, such as inducible NO synthase (iNOS), tumor necrosis factor-α (TNF-α), and cyclooxygenases-2 (COX-2), and the modulation of mitogen-activated protein kinases (MAPK) and nuclear factor kappa B (NF-κB) signaling pathways. The antioxidant potential of hispolon was attributed to its capacity to neutralize reactive oxygen species (ROS) and to increase the activity of antioxidant enzymes, indicating a possible involvement in the prevention of oxidative stress-related illnesses. Hispolon's antidiabetic activity was associated with the inhibition of aldose reductase and α-glucosidase. Studies on hispolon emphasized its potential use as a promising scaffold for the development of novel therapeutic agents targeting various diseases, including cancer, infectious diseases, inflammatory disorders, and diabetes.
Collapse
Affiliation(s)
- Tarik Aanniz
- Biotechnology Laboratory (MedBiotech), Bioinova Research Center, Rabat Medical and Pharmacy School, Mohammed V University, Rabat, Morocco
| | - Ikrame Zeouk
- Laboratoire de Pharmacologie, Toxicologie, Faculté de Médecine, de Pharmacie et de Médecine dentaire de Fès, Université Sidi Mohamed Ben Abdellah, Morocco
| | - Youssef Elouafy
- Laboratory of Materials, Nanotechnology and Environment LMNE, Faculty of Sciences, Mohammed V University in Rabat, Rabat BP 1014, Morocco
| | - Jihane Touhtouh
- Laboratory of Natural Resources and Environment, Polydisciplinary Faculty of Taza, Sidi Mohamed Ben Abdellah University of Fez, B.P. 1223 Taza-Gare, Taza, Morocco
| | - Rym Hassani
- Biology Department, University College AlDarb, Jazan University, Jazan 45142, Saudi Arabia
| | - Khalil Hammani
- Laboratory of Natural Resources and Environment, Polydisciplinary Faculty of Taza, Sidi Mohamed Ben Abdellah University of Fez, B.P. 1223 Taza-Gare, Taza, Morocco
| | - Taoufiq Benali
- Environment and Health Team, Polydisciplinary Faculty of Safi, Cadi Ayyad University, Safi 46030, Morocco
| | - Mohamed El-Shazly
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Cairo 11566, Egypt; Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, The German University in Cairo, Cairo 11432, Egypt
| | - Asaad Khalid
- Substance Abuse and Toxicology Research Center, Jazan University, P.O. Box: 114, Jazan 45142, Saudi Arabia; Medicinal and Aromatic Plants and Traditional Medicine Research Institute, National Center for Research, P. O. Box 2404, Khartoum, Sudan.
| | - Ashraf N Abdalla
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Sara Aboulaghras
- Laboratory of Human Pathologies Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10106, Morocco
| | - Khang Wen Goh
- Faculty of Data Science and Information Technology, INTI International University, Nilai, Malaysia
| | - Long Chiau Ming
- School of Medical and Life Sciences, Sunway University, Sunway City, Malaysia
| | - Pakhrur Razi
- Center of Disaster Monitoring and Earth Observation, Universitas Negeri Padang, Padang, Indonesia.
| | - Saad Bakrim
- Geo-Bio-Environment Engineering and Innovation Laboratory, Molecular Engineering, Biotechnology and Innovation Team, Polydisciplinary Faculty of Taroudant, Ibn Zohr University, Agadir 80000, Morocco
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10106, Morocco.
| |
Collapse
|
18
|
Situmorang PC, Ilyas S, Nugraha SE, Syahputra RA, Nik Abd Rahman NMA. Prospects of compounds of herbal plants as anticancer agents: a comprehensive review from molecular pathways. Front Pharmacol 2024; 15:1387866. [PMID: 39104398 PMCID: PMC11298448 DOI: 10.3389/fphar.2024.1387866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 06/17/2024] [Indexed: 08/07/2024] Open
Abstract
Cancer refers to the proliferation and multiplication of aberrant cells inside the human body, characterized by their capacity to proliferate and infiltrate various anatomical regions. Numerous biochemical pathways and signaling molecules have an impact on the cancer auto biogenesis process. The regulation of crucial cellular processes necessary for cell survival and proliferation, which are triggered by phytochemicals, is significantly influenced by signaling pathways. These pathways or components are regulated by phytochemicals. Medicinal plants are a significant reservoir of diverse anticancer medications employed in chemotherapy. The anticancer effects of phytochemicals are mediated by several methods, including induction of apoptosis, cessation of the cell cycle, inhibition of kinases, and prevention of carcinogenic substances. This paper analyzes the phytochemistry of seven prominent plant constituents, namely, alkaloids, tannins, flavonoids, phenols, steroids, terpenoids, and saponins, focusing on the involvement of the MAPK/ERK pathway, TNF signaling, death receptors, p53, p38, and actin dynamics. Hence, this review has examined a range of phytochemicals, encompassing their structural characteristics and potential anticancer mechanisms. It has underscored the significance of plant-derived bioactive compounds in the prevention of cancer, utilizing diverse molecular pathways. In addition, this endeavor also seeks to incentivize scientists to carry out clinical trials on anticancer medications derived from plants.
Collapse
Affiliation(s)
- Putri Cahaya Situmorang
- Study Program of Biology, Faculty of Mathematics and Natural Sciences, Universitas Sumatera Utara, Medan, Indonesia
| | - Syafruddin Ilyas
- Study Program of Biology, Faculty of Mathematics and Natural Sciences, Universitas Sumatera Utara, Medan, Indonesia
| | - Sony Eka Nugraha
- Department of Pharmaceutical Biology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| | - Rony Abdi Syahputra
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| | - Nik Mohd Afizan Nik Abd Rahman
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| |
Collapse
|
19
|
Iranpanah A, Majnooni MB, Biganeh H, Amirian R, Rastegari-Pouyani M, Filosa R, Cheang WS, Fakhri S, Khan H. Exploiting new strategies in combating head and neck carcinoma: A comprehensive review on phytochemical approaches passing through PI3K/Akt/mTOR signaling pathway. Phytother Res 2024; 38:3736-3762. [PMID: 38776136 DOI: 10.1002/ptr.8228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 04/02/2024] [Accepted: 04/20/2024] [Indexed: 07/12/2024]
Abstract
Recently, malignant neoplasms have growingly caused human morbidity and mortality. Head and neck cancer (HNC) constitutes a substantial group of malignancies occurring in various anatomical regions of the head and neck, including lips, mouth, throat, larynx, nose, sinuses, oropharynx, hypopharynx, nasopharynx, and salivary glands. The present study addresses the phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) pathway as a possible therapeutic target in cancer therapy. Finding new multitargeting agents capable of modulating PI3K/Akt/mTOR and cross-linked mediators could be viewed as an effective strategy in combating HNC. Recent studies have introduced phytochemicals as multitargeting agents and rich sources for finding and developing new therapeutic agents. Phytochemicals have exhibited immense anticancer effects, including targeting different stages of HNC through the modulation of several signaling pathways. Moreover, phenolic/polyphenolic compounds, alkaloids, terpenes/terpenoids, and other secondary metabolites have demonstrated promising anticancer activities because of their diverse pharmacological and biological properties like antiproliferative, antineoplastic, antioxidant, and anti-inflammatory activities. The current review is mainly focused on new therapeutic strategies for HNC passing through the PI3K/Akt/mTOR pathway as new strategies in combating HNC.
Collapse
Affiliation(s)
- Amin Iranpanah
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | | | - Hossein Biganeh
- Department of Pharmacognosy, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Roshanak Amirian
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
- USERN Office, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohsen Rastegari-Pouyani
- Department of Immunology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Rosanna Filosa
- Department of Science and Technology, University of Sannio, Benevento, Italy
| | - Wai San Cheang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan, Pakistan
| |
Collapse
|
20
|
Zhang Y, Xie J. Induction of ferroptosis by natural phenols: A promising strategy for cancer therapy. Phytother Res 2024; 38:2041-2076. [PMID: 38391022 DOI: 10.1002/ptr.8149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/19/2023] [Accepted: 01/19/2024] [Indexed: 02/24/2024]
Abstract
In recent years, heightened interest surrounds the exploration of natural phenols as potential agents for cancer therapy, specifically by inducing ferroptosis, a unique form of regulated cell death characterized by iron-dependent lipid peroxidation. This review delves into the roles of key natural phenols, flavonoids, phenolic acids, curcumin, and stilbenes, in modulating ferroptosis and their underlying mechanisms. Emphasizing the significance of amino acid, lipid, and iron metabolism, the study elucidates the diverse pathways through which these phenols regulate ferroptosis. Notably, curcumin, a well-known polyphenol, exhibits multifaceted interactions with cellular components involved in ferroptosis regulation, providing a distinctive therapeutic avenue. Stilbenes, another phenolic class, demonstrate promising potential in influencing lipid metabolism and iron-dependent processes, contributing to ferroptotic cell death. Understanding the intricate interplay between these natural phenols and ferroptosis not only illuminates complex cellular regulatory networks but also unveils potential avenues for novel cancer therapies. Exploring these compounds as inducers of ferroptosis presents a promising strategy for targeted cancer treatment, capitalizing on the delicate balance between cellular metabolism and regulated cell death mechanisms. This article synthesizes current knowledge, aiming to stimulate further research into the therapeutic potential of natural phenols in the context of ferroptosis-mediated cancer therapy.
Collapse
Affiliation(s)
- Yiping Zhang
- School of Life Sciences, Fudan University, Shanghai, China
- Wanchuanhui (Shanghai) Medical Technology Co., Ltd, Shanghai, China
| | - Jun Xie
- School of Life Sciences, Fudan University, Shanghai, China
- Wanchuanhui (Shanghai) Medical Technology Co., Ltd, Shanghai, China
| |
Collapse
|
21
|
Raptania CN, Zakia S, Fahira AI, Amalia R. Article review: Brazilin as potential anticancer agent. Front Pharmacol 2024; 15:1355533. [PMID: 38515856 PMCID: PMC10955326 DOI: 10.3389/fphar.2024.1355533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 02/14/2024] [Indexed: 03/23/2024] Open
Abstract
Brazilin is the main compound in Caesalpinia sappan and Haematoxylum braziletto, which is identified as a homoisoflavonoid based on its molecular structure. These plants are traditionally used as an anti-inflammatory to treat fever, hemorrhage, rheumatism, skin problems, diabetes, and cardiovascular diseases. Recently, brazilin has increased its interest in cancer studies. Several findings have shown that brazilin has cytotoxic effects on colorectal cancer, breast cancer, lung cancer, multiple myeloma, osteosarcoma, cervical cancer, bladder carcinoma, also other cancers, along with numerous facts about its possible mechanisms that will be discussed. Besides its flavonoid content, brazilin is able to chelate metal ions. A study has proved that brazilin could be used as an antituberculosis agent based on its ability to chelate iron. This possible iron-chelating of brazilin and all the studies discussed in this review will lead us to the statement that, in the future, brazilin has the potency to be a chemo-preventive and anticancer agent. The article review aimed to determine the brazilin mechanism and pathogenesis of cancer.
Collapse
Affiliation(s)
- Callista Najla Raptania
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Bandung, Indonesia
| | - Syifa Zakia
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Bandung, Indonesia
| | - Alistia Ilmiah Fahira
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Bandung, Indonesia
- Laboratory of Cell and Molecular Biology, Faculty of Pharmacy, Universitas Padjadjaran, Bandung, Indonesia
| | - Riezki Amalia
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Bandung, Indonesia
- Laboratory of Cell and Molecular Biology, Faculty of Pharmacy, Universitas Padjadjaran, Bandung, Indonesia
- Center of Excellence in Pharmaceutical Care Innovation, Universitas Padjadjaran, Bandung, Indonesia
| |
Collapse
|
22
|
Baranowska-Wójcik E, Winiarska-Mieczan A, Olcha P, Kwiecień M, Jachimowicz-Rogowska K, Nowakowski Ł, Miturski A, Gałczyński K. Polyphenols Influence the Development of Endometrial Cancer by Modulating the Gut Microbiota. Nutrients 2024; 16:681. [PMID: 38474808 DOI: 10.3390/nu16050681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/22/2024] [Accepted: 02/25/2024] [Indexed: 03/14/2024] Open
Abstract
Dysbiosis of the microbiota in the gastrointestinal tract can induce the development of gynaecological tumours, particularly in postmenopausal women, by causing DNA damage and alterations in metabolite metabolism. Dysbiosis also complicates cancer treatment by influencing the body's immune response and disrupting the sensitivity to chemotherapy drugs. Therefore, it is crucial to maintain homeostasis in the gut microbiota through the effective use of food components that affect its structure. Recent studies have shown that polyphenols, which are likely to be the most important secondary metabolites produced by plants, exhibit prebiotic properties. They affect the structure of the gut microbiota and the synthesis of metabolites. In this review, we summarise the current state of knowledge, focusing on the impact of polyphenols on the development of gynaecological tumours, particularly endometrial cancer, and emphasising that polyphenol consumption leads to beneficial modifications in the structure of the gut microbiota.
Collapse
Affiliation(s)
- Ewa Baranowska-Wójcik
- Department of Biotechnology, Microbiology and Human Nutrition, University of Life Sciences, Skromna Street 8, 20-704 Lublin, Poland
| | - Anna Winiarska-Mieczan
- Institute of Animal Nutrition and Bromatology, Department of Bromatology and Nutrition Physiology, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland
| | - Piotr Olcha
- Department of Gynecology and Gynecological Endocrinology, Medical University of Lublin, Aleje Racławickie 23, 20-049 Lublin, Poland
| | - Małgorzata Kwiecień
- Institute of Animal Nutrition and Bromatology, Department of Bromatology and Nutrition Physiology, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland
| | - Karolina Jachimowicz-Rogowska
- Institute of Animal Nutrition and Bromatology, Department of Bromatology and Nutrition Physiology, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland
| | - Łukasz Nowakowski
- Department of Gynecology, 1st Clinical Military Hospital in Lublin, Al. Raclawickie 23, 20-049 Lublin, Poland
| | - Andrzej Miturski
- Department of Gynecology, 1st Clinical Military Hospital in Lublin, Al. Raclawickie 23, 20-049 Lublin, Poland
| | - Krzysztof Gałczyński
- Faculty of Medical Sciences and Health Sciences, Siedlce University of Natural Sciences and Humanities, Konarskiego 2, 08-110 Siedlce, Poland
| |
Collapse
|
23
|
Ge A, He Q, Zhao D, Li Y, Chen J, Deng Y, Xiang W, Fan H, Wu S, Li Y, Liu L, Wang Y. Mechanism of ferroptosis in breast cancer and research progress of natural compounds regulating ferroptosis. J Cell Mol Med 2024; 28:e18044. [PMID: 38140764 PMCID: PMC10805512 DOI: 10.1111/jcmm.18044] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/15/2023] [Accepted: 10/18/2023] [Indexed: 12/24/2023] Open
Abstract
Breast cancer is the most prevalent cancer worldwide and its incidence increases with age, posing a significant threat to women's health globally. Due to the clinical heterogeneity of breast cancer, the majority of patients develop drug resistance and metastasis following treatment. Ferroptosis, a form of programmed cell death dependent on iron, is characterized by the accumulation of lipid peroxides, elevated levels of iron ions and lipid peroxidation. The underlying mechanisms and signalling pathways associated with ferroptosis are intricate and interconnected, involving various proteins and enzymes such as the cystine/glutamate antiporter, glutathione peroxidase 4, ferroptosis inhibitor 1 and dihydroorotate dehydrogenase. Consequently, emerging research suggests that ferroptosis may offer a novel target for breast cancer treatment; however, the mechanisms of ferroptosis in breast cancer urgently require resolution. Additionally, certain natural compounds have been reported to induce ferroptosis, thereby interfering with breast cancer. Therefore, this review not only discusses the molecular mechanisms of multiple signalling pathways that mediate ferroptosis in breast cancer (including metastasis, invasion and proliferation) but also elaborates on the mechanisms by which natural compounds induce ferroptosis in breast cancer. Furthermore, this review summarizes potential compound types that may serve as ferroptosis inducers in future tumour cells, providing lead compounds for the development of ferroptosis-inducing agents. Last, this review proposes the potential synergy of combining natural compounds with traditional breast cancer drugs in the treatment of breast cancer, thereby suggesting future directions and offering new insights.
Collapse
Affiliation(s)
- Anqi Ge
- The First Hospital of Hunan University of Chinese MedicineChangshaChina
| | - Qi He
- People's Hospital of Ningxiang CityNingxiangChina
| | - Da Zhao
- The First Hospital of Hunan University of Chinese MedicineChangshaChina
- Hunan University of Chinese MedicineChangshaChina
| | - Yuwei Li
- Hunan University of Science and TechnologyXiangtanChina
| | - Junpeng Chen
- Hunan University of Science and TechnologyXiangtanChina
| | - Ying Deng
- People's Hospital of Ningxiang CityNingxiangChina
| | - Wang Xiang
- The First People's Hospital Changde CityChangdeChina
| | - Hongqiao Fan
- The First Hospital of Hunan University of Chinese MedicineChangshaChina
| | - Shiting Wu
- The First Hospital of Hunan University of Chinese MedicineChangshaChina
| | - Yan Li
- People's Hospital of Ningxiang CityNingxiangChina
| | - Lifang Liu
- The First Hospital of Hunan University of Chinese MedicineChangshaChina
| | - Yue Wang
- The First Hospital of Hunan University of Chinese MedicineChangshaChina
| |
Collapse
|
24
|
Bailon-Moscoso N, Coronel-Hidalgo J, Duarte-Casar R, Guamán-Ortiz LM, Figueroa JG, Romero-Benavides JC. Exploring the Antioxidant Potential of Tragia volubilis L.: Mitigating Chemotherapeutic Effects of Doxorubicin on Tumor Cells. Antioxidants (Basel) 2023; 12:2003. [PMID: 38001856 PMCID: PMC10669231 DOI: 10.3390/antiox12112003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/20/2023] [Accepted: 10/30/2023] [Indexed: 11/26/2023] Open
Abstract
Several plants of the genus Tragia L. have shown antibacterial, fungicidal, and antiproliferative activity, among other types of activities; however, most species of the genus have not been investigated. Tragia volubilis L. is native to tropical America and Africa, and although it has been reported as medicinal in the literature, it has not been thoroughly investigated. In this study, the phytochemical screening, isolation, and identification of compounds and the determination of the antioxidant activity of the aqueous extract of Tragia volubilis L. and its partitions were carried out. Ethyl acetate and n-butanol partitions of the extract present high antioxidant activity according to the Antioxidant Activity Index. Due to their activity, these partitions were tested on RKO cells as a representative model, both individually and in combination with Doxorubicin. It was found that the partitions significantly reduced the effect of Doxorubicin, as well as the expression of proteins involved in DNA damage and cell death. While the reduction of the chemotherapeutic effect of Doxorubicin on tumor cells may not be a desired outcome in therapeutic settings, the findings of the study are valuable in revealing the antioxidant potential of Tragia volubilis L. and its partitions. This highlights the importance of carefully regulating the application of antioxidants, especially in the context of cancer chemotherapy.
Collapse
Affiliation(s)
- Natalia Bailon-Moscoso
- Departamento de Ciencias de la Salud, Facultad de Ciencias de la Salud, Universidad Técnica Particular de Loja, Loja 1101608, Ecuador; (J.C.-H.); (L.M.G.-O.)
| | - José Coronel-Hidalgo
- Departamento de Ciencias de la Salud, Facultad de Ciencias de la Salud, Universidad Técnica Particular de Loja, Loja 1101608, Ecuador; (J.C.-H.); (L.M.G.-O.)
- Carrera de Bioquímica y Farmacia, Facultad de Ciencias Exactas y Naturales, Universidad Técnica Particular de Loja, Loja 1101608, Ecuador
| | - Rodrigo Duarte-Casar
- Maestría en Química Aplicada, Facultad de Ciencias Exactas y Naturales, Universidad Técnica Particular de Loja, Loja 1101608, Ecuador;
- Tecnología Superior en Gestión Culinaria, Pontificia Universidad Católica del Ecuador—Sede Manabí, Portoviejo 130103, Ecuador
| | - Luis Miguel Guamán-Ortiz
- Departamento de Ciencias de la Salud, Facultad de Ciencias de la Salud, Universidad Técnica Particular de Loja, Loja 1101608, Ecuador; (J.C.-H.); (L.M.G.-O.)
| | - Jorge G. Figueroa
- Departamento de Química, Facultad de Ciencias Exactas y Naturales, Universidad Técnica Particular de Loja, Loja 1101608, Ecuador; (J.G.F.); (J.C.R.-B.)
| | - Juan Carlos Romero-Benavides
- Departamento de Química, Facultad de Ciencias Exactas y Naturales, Universidad Técnica Particular de Loja, Loja 1101608, Ecuador; (J.G.F.); (J.C.R.-B.)
| |
Collapse
|
25
|
Assaggaf H, El Hachlafi N, El fadili M, Elbouzidi A, Ouassou H, Jeddi M, Alnasser SM, Qasem A, Attar A, AL-Farga A, Alghamdi OA, Mehana EE, Mrabti HN. GC/MS Profiling, In Vitro Antidiabetic Efficacy of Origanum compactum Benth. Essential Oil and In Silico Molecular Docking of Its Major Bioactive Compounds. Catalysts 2023; 13:1429. [DOI: 10.3390/catal13111429] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025] Open
Abstract
Diabetes is a global health concern with significant implications for individuals and healthcare systems. Finding effective and safe antidiabetic agents is crucial for the management of this chronic disease. Natural products have emerged as potential alternatives to allopathic drugs, offering a vast source of bioactive compounds. In this study, we conducted an assessment of the antidiabetic potential of Origanum compactum essential oil, employing a two-pronged approach, i.e., experimental investigation and computational docking analysis. The results of gas chromatography–mass spectrometry (GC-MS) showed that thymol (54.6%), carvacrol (23.18%), and p-cymene (7.12%) were the major compounds. Experimental assessments revealed higher IC50 values (150 µg/mL for α-amylase; 120 µg/mL for α-glucosidase) of O. compactum oil, compared to the control drug acarbose. In silico analysis revealed the best binding affinity of the oil components (carvacrol and thymol) with human NADPH oxidase, while the lysosomal acid-α-glucosidase and salivary amylase also demonstrated good binding affinity towards carvacrol and thymol. Our findings highlight the translational potential of O. compactum oil-based treatment for diabetes mellitus and provide a basis for further studies on the modulation of NADPH oxidase, amylase inhibition, and α-glucosidase by antidiabetic natural products. However, further in vivo investigations are strongly required to confirm the results of in vitro antidiabetic effect of O. compactum EO.
Collapse
Affiliation(s)
- Hamza Assaggaf
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Naoufal El Hachlafi
- Laboratory of Microbial Biotechnology and Bioactive Molecules, Faculty of Sciences and Technologies, Sidi Mohamed Ben Abdellah University, Imouzzer Road, Fez 30000, Morocco
| | - Mohamed El fadili
- LIMAS Laboratory, Faculty of Sciences Dhar El Mehraz, Sidi Mohammed Ben Abdellah University, BP 1796 Atlas, Fez 30000, Morocco
| | - Amine Elbouzidi
- Laboratoire d’Amélioration des Productions Agricoles, Biotechnologie et Environnement (LA-PABE), Faculté des Sciences, Université Mohammed Premier, Oujda 60000, Morocco
| | - Hayat Ouassou
- Higher Institute of Nursing Professions and Health Techniques, Oujda 60000, Morocco
| | - Mohamed Jeddi
- Laboratory of Microbial Biotechnology and Bioactive Molecules, Faculty of Sciences and Technologies, Sidi Mohamed Ben Abdellah University, Imouzzer Road, Fez 30000, Morocco
| | - Sulaiman Mohammed Alnasser
- Department of Pharmacology and Toxicology, Unaizah College of Pharmacy, Qassim University, Buraidah 51452, Saudi Arabia
| | - Ahmed Qasem
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Ammar Attar
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Ammar AL-Farga
- Department Biological Sciences, College of Science, University of Jeddah, Jeddah 80203, Saudi Arabia
| | - Othman A. Alghamdi
- Department Biological Sciences, College of Science, University of Jeddah, Jeddah 80203, Saudi Arabia
| | - Elsayed Eldeeb Mehana
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, Alexandria 5424041, Egypt
| | - Hanae Naceiri Mrabti
- Center of Data Science and Sustainable Technologies, INTI International University, Nilai 71800, Malaysia
| |
Collapse
|
26
|
Al-Mijalli SH, El Hachlafi N, Jeddi M, Abdallah EM, Assaggaf H, Qasem A, Lee LH, Law JWF, Aladhadh M, Alnasser SM, Bouyahya A, Mrabti HN. Unveiling the volatile compounds and antibacterial mechanisms of action of Cupressus sempervirens L., against Bacillus subtilis and Pseudomonas aeruginosa. Biomed Pharmacother 2023; 167:115609. [PMID: 37801906 DOI: 10.1016/j.biopha.2023.115609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/15/2023] [Accepted: 09/27/2023] [Indexed: 10/08/2023] Open
Abstract
Cupressus sempervirens is a known traditional plant used to manage various ailments, including cancer, inflammatory and infectious diseases. In this investigation, we aimed to explore the chemical profile of Cupressus sempervirens essential oil (CSEO) as well as their antibacterial mode of action. The volatile components were characterized using gas chromatography coupled to a mass spectrometer (GC-MS). The results revealed remarkable antibacterial properties of EO derived from C. sempervirens. GC-MS analysis indicated that C. sempervirens EO characterized by δ-3-carene (47.72%), D-limonene (5.44%), β-pinene (4.36%), β-myrcene (4.02%). The oil exhibited significant inhibitory effects against a range of bacteria, including Staphylococcus aureus ATCC 29213, Bacillus subtilis ATCC 13048, Bacillus cereus (Clinical isolate), Pseudomonas aeruginosa ATCC 27853, and Escherichia coli ATCC 25922. These inhibitory effects surpassed those of conventional antibiotics. Furthermore, the EO demonstrated low minimum inhibitory concentrations (MICs) and minimum bactericidal concentrations (MBCs), indicating its bactericidal nature (MBC/MIC < 4.0). Time-kill kinetics analysis showed that CSEO was particularly effective at 2 × MIC doses, rapidly reduced viable count of B. subtilis and P. aeruginosa within 8 h. This suggests that the oil acts quickly and efficiently. The cell membrane permeability test further demonstrated the impact of CSEO on the relative conductivity of B. subtilis and P. aeruginosa, both at 2 × MIC concentrations. These observations suggest that EO disrupts the bacterial membrane, thereby influencing their growth and viability. Additionally, the cell membrane integrity test indicated that the addition of CSEO to bacterial cultures resulted in the significant release of proteins from the bacterial cells. This suggests that EO affects the structural integrity of the bacterial cells. Furthermore, the anti-biofilm assay confirmed the efficacy of CSEO as a potent anti-biofilm agent. It demonstrated the oil's ability to inhibit quorum sensing, a crucial mechanism for biofilm formation, and its competitive performance compared to the tested antibiotics.
Collapse
Affiliation(s)
- Samiah Hamad Al-Mijalli
- Department of Biology, College of Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia.
| | - Naoufal El Hachlafi
- Laboratory of Microbial Biotechnology and Bioactive Molecules, Sciences and Technologies Faculty, Sidi Mohamed Ben Abdellah University, Imouzzer Road, P.O. Box 2202, Fez, Morocco.
| | - Mohamed Jeddi
- Laboratory of Microbial Biotechnology and Bioactive Molecules, Sciences and Technologies Faculty, Sidi Mohamed Ben Abdellah University, Imouzzer Road, P.O. Box 2202, Fez, Morocco.
| | - Emad M Abdallah
- Department of Science Laboratories, College of Science and Arts, Qassim University, Ar Rass 51921, Saudi Arabia.
| | - Hamza Assaggaf
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah 21955, Saudi Arabia.
| | - Ahmed Qasem
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah 21955, Saudi Arabia.
| | - Learn-Han Lee
- Sunway Microbiome Centre, School of Medical and Life Sciences, Sunway University, Sunway City 47500, Selangor Darul Ehsan, Malaysia; Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Selangor Darul Ehsan, Malaysia; Next-Generation Precision Medicine and Therapeutics Research Group (NMeT), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Selangor Darul Ehsan, Malaysia.
| | - Jodi Woan-Fei Law
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Selangor Darul Ehsan, Malaysia; Next-Generation Precision Medicine and Therapeutics Research Group (NMeT), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Selangor Darul Ehsan, Malaysia.
| | - Mohammed Aladhadh
- Department of Food Science and Human Nutrition, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 51452, Saudi Arabia.
| | - Sulaiman Mohammed Alnasser
- Department of Pharmacology and Toxicology, Unaizah College of Pharmacy, Qassim University, Buraidah 51452, Saudi Arabia.
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat 10106, Morocco.
| | - Hanae Naceiri Mrabti
- Laboratory of Microbial Biotechnology and Bioactive Molecules, Sciences and Technologies Faculty, Sidi Mohamed Ben Abdellah University, Imouzzer Road, P.O. Box 2202, Fez, Morocco; High Institute of Nursing Professions and Health Techniques Casablanca, Casablanca 20250, Morocco.
| |
Collapse
|
27
|
Priyadarshini SK, Murugesan M, Michael RD, Aiya Subramani P, Rajendran P. Oral administration of terpenoids and phenol fraction of Padina gymnospora stimulates the nonspecific immune response and expression of immune genes, and protects the common carp (Cyprinus carpio) from experimental Aeromonas hydrophila infection. FISH & SHELLFISH IMMUNOLOGY 2023; 142:109141. [PMID: 37802262 DOI: 10.1016/j.fsi.2023.109141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 10/01/2023] [Accepted: 10/03/2023] [Indexed: 10/08/2023]
Abstract
Common carp (Cyprinus carpio), a valuable aquaculture species susceptible to various infections, requires effective immune enhancement strategies. This study investigates the immunomodulatory effects of orally administered terpenoids and phenol fraction (TPF) from Padina gymnospora in C. carpio, focusing on stimulation of nonspecific immune response, immune gene expression, and protection against experimental infection. P. gymnospora is a brown seaweed species known for its bioactive compounds and medicinal properties. TPF was extracted using the Harborne fractionation method, and the presence of terpenoids and phenol compounds was confirmed by qualitative analysis and high-performance thin layer chromatography (HPTLC). TPF was administered orally in different doses to carp. Nonspecific immune responses were evaluated by measuring cellular ROS, RNI, and peroxidase production. The expression of immune genes (lysozyme and interleukin-1β) was assessed by reverse transcriptase PCR. Furthermore, the protective efficacy of TPF was determined by infecting carp with a virulent pathogen, Aeromonas hydrophila, and monitoring mortality rates and disease symptoms. The results demonstrate that oral TPF administration significantly enhances nonspecific immune responses, with increased ROS, RNI, and peroxidase production, indicating improved immune function. Expression levels of lysozyme and interleukin-1β were upregulated, suggesting immune system activation. Moreover, TPF exhibited significant protection against experimental infection, with lower mortality rates compared to the control group. These findings highlight TPF's potential as an effective immunostimulatory agent, enhancing immune responses and providing infection protection in carp. In conclusion, oral TPF administration stimulates nonspecific immune responses, modulates immune gene expression, and confers protection against experimental infection in carp, displaying its potential for enhancing immune responses and disease resistance in aquaculture species, and contributing to sustainable fish health management.
Collapse
Affiliation(s)
| | - Monica Murugesan
- Department of Zoology and Research Centre, Lady Doak College, Madurai, Tamil Nadu, 625002, India
| | - R Dinakaran Michael
- Centre for Fish Immunology, Vels Institute of Science, Technology, and Advanced Studies, Chennai, Tamil Nadu, 600117, India
| | - Parasuraman Aiya Subramani
- Department of Fisheries Ecology, Johann Heinrich von Thünen-Institut, Herwigstraße 31, 27572, Bremerhaven, Germany.
| | - Priyatharsini Rajendran
- Department of Zoology and Research Centre, Lady Doak College, Madurai, Tamil Nadu, 625002, India.
| |
Collapse
|
28
|
Chmielewska-Kassassir M, Sobierajska K, Ciszewski WM, Kryczka J, Zieleniak A, Wozniak LA. Evening Primrose Extract Modulates TYMS Expression via SP1 Transcription Factor in Malignant Pleural Mesothelioma. Cancers (Basel) 2023; 15:5003. [PMID: 37894370 PMCID: PMC10605291 DOI: 10.3390/cancers15205003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
PURPOSE To determine the mechanism of EPE in downregulating TYMS in MPM cancer. METHODS The TYMS mRNA expression with epithelial-to-mesenchymal transition biomarkers and nuclear factor SP1 was assessed using the GEO database in a data set of MPM patients (GSE51024). Invasive MPM cell lines were in vitro models for the investigation of TYMS expression after EPE treatment. The tyms promoter SP1 binding sequences were determined using Genomatix v 3.4 software Electrophoretic mobility shift and dual-luciferase reporter assays revealed specific SP1 motifs in the interaction of EPE and reference compounds. Chromatin immunoprecipitation and Re-ChIP were used for the co-occupancy study. RESULTS In MPM patients, a positive correlation of overexpressed TYMS with mesenchymal TWIST1, FN1 and N-cadherin was observed. EPE and its major components, gallic and ellagic acid (GA and EA, respectively), downregulated TYMS in invasive MPM cells by interacting with particular SP1 motifs on the tyms promoter. The luciferase constructs confirmed the occupation of two SP1 regulatory regions critical for the promotion of TYMS expression. Both EPE and reference standards influenced SP1 translocation into the nucleus. CONCLUSION EPE components reduced TYMS expression by occupation of SP1 motifs on the tyms promoter and reversed the EMT phenotype of invasive MPM cells. Further in-depth analysis of the molecular docking of polyphenol compounds with SP1 regulatory motifs is required.
Collapse
Affiliation(s)
| | - Katarzyna Sobierajska
- Department of Molecular Cell Mechanisms, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland; (K.S.); (W.M.C.)
| | - Wojciech M. Ciszewski
- Department of Molecular Cell Mechanisms, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland; (K.S.); (W.M.C.)
| | - Jakub Kryczka
- Institute of Medical Biology, Polish Academy of Sciences, Lodowa 106, 93-232 Lodz, Poland;
| | - Andrzej Zieleniak
- Department of Structural Biology, Medical University of Lodz, Żeligowskiego 7/9, 90-752 Lodz, Poland; (M.C.-K.); (A.Z.)
| | - Lucyna A. Wozniak
- Department of Structural Biology, Medical University of Lodz, Żeligowskiego 7/9, 90-752 Lodz, Poland; (M.C.-K.); (A.Z.)
| |
Collapse
|
29
|
Al-Mijalli SH, Jeddi M, El Hachlafi N, M. Abdallah E, Assaggaf H, Qasem A, S. Rajab B, Lee LH, Bouyahya A, Goh KW, Ming LC, Mrabti HN. Combination of sweet orange, lentisk and lemon eucalyptus essential oils: Optimization of a new complete antimicrobial formulation using a mixture design methodology. Heliyon 2023; 9:e19814. [PMID: 37809691 PMCID: PMC10559161 DOI: 10.1016/j.heliyon.2023.e19814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 09/01/2023] [Accepted: 09/01/2023] [Indexed: 10/10/2023] Open
Abstract
Sweet orange (Citrus × sinensis (L.) Osbeck), lentisk (Pistacia lentiscus L.) and lemon eucalyptus (Eucalyptus citriodora Hook) are medicinal plants known by its culinary virtues. Their volatile oils have demonstrated promising antimicrobial activity against a panel of microbial strains, including those implicated in food deterioration. In this exploratory investigation, we aimed to determine the antimicrobial formulation of sweet orange, lentisk and lemon eucalyptus essential oils (EOs) using the simplex-centroid mixture design approach coupled with a broth microdilution method. EOs were first extracted by hydrodistillation, and then their phytochemical profile was characterized using Gas chromatography-mass spectrometry (GC-MS). GC-MS analysis identified d-limonene (14.27%), careen-3 (14.11%), β-myrcene (12.53%) as main components of lentisk EOs, while lemon eucalyptus was dominated by citronellal (39.40%), β-citronellol (16.39%) and 1,8-cineole (9.22%). For sweet orange EOs, d-limonene (87.22%) was the principal compound. The three EOs exhibited promising antimicrobial potential against various microorganisms. Lemon eucalyptus and sweet orange EO showed high activity against most tested microorganisms, while lentisk EO exerted important effect against some microbes but only moderate activity against others. The optimization formulations of antimicrobial potential showed interesting synergistic effects between three EOs. The best combinations predicted on C. albicans, S. aureus, E. coli, S. enterica and B. cereus correspond to 44%/55%/0%, 54%/16%/28%, 43%/22%/33%, 45%/17%/36% and 36%/30%/32% of Citrus sinensis, Pistacia lentiscus and Eucalyptus citriodora EOs, respectively. These findings suggest that the combination of EOs could be used as natural food preservatives and antimicrobial agents. However, further studies are needed to determine the mechanisms of action and efficacy of these EOs against different microorganisms.
Collapse
Affiliation(s)
- Samiah Hamad Al-Mijalli
- Department of Biology, College of Sciences, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Mohamed Jeddi
- Laboratory of Microbial Biotechnology and Bioactive Molecules, Faculty of Sciences and Technologies Faculty, Sidi Mohamed Ben Abdellah University, P.O. Box 2202, Imouzzer Road, Fez, Morocco
| | - Naoufal El Hachlafi
- Laboratory of Microbial Biotechnology and Bioactive Molecules, Faculty of Sciences and Technologies Faculty, Sidi Mohamed Ben Abdellah University, P.O. Box 2202, Imouzzer Road, Fez, Morocco
| | - Emad M. Abdallah
- Department of Science Laboratories, College of Science and Arts, Qassim University, Ar Rass 51921, Saudi Arabia
| | - Hamza Assaggaf
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Ahmed Qasem
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Bodour S. Rajab
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Learn-Han Lee
- Sunway Microbiomics Centre, School of Medical and Life Sciences, Sunway University, Sunway City 47500, Malaysia
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Sunway City, Malaysia
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, 10106, Morocco
| | - Khang Wen Goh
- Faculty of Data Science and Information Technology, INTI International University, 71800 Nilai, Malaysia
| | - Long Chiau Ming
- School of Medical and Life Sciences, Sunway University, Sunway City 47500, Malaysia
| | - Hanae Naceiri Mrabti
- Laboratory of Pharmacology and Toxicology, Bio Pharmaceutical and Toxicological Analysis Research Team, Faculty of Medicine and Pharmacy, Mohammed V University, Rabat, Morocco
- High Institute of Nursing Professions and Health Techniques of Casablanca, Casablanca, Morocco
| |
Collapse
|
30
|
Kurt-Celep İ, Zengin G, Uba AI, Caprioli G, Mustafa AM, Angeloni S, Cakilcioglu U, Guler O, Kaplan A, Sharmeen J, Mahomoodally MF. Unraveling the chemical profile, antioxidant, enzyme inhibitory, cytotoxic potential of different extracts from Astragalus caraganae. Arch Pharm (Weinheim) 2023; 356:e2300263. [PMID: 37434089 DOI: 10.1002/ardp.202300263] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 07/13/2023]
Abstract
Six extracts (water, ethanol, ethanol-water, ethyl acetate, dichloromethane, and n-hexane) of Astragalus caraganae were studied for their biological activities and bioactive contents. Based on high-performance liquid chromatography-mass spectrometry (HPLC-MS), the ethanol-water extract yielded the highest total bioactive content (4242.90 µg g-1 ), followed by the ethanol and water extracts (3721.24 and 3661.37 µg g-1 , respectively), while the least total bioactive content was yielded by the hexane extract, followed by the dichloromethane and ethyl acetate extracts (47.44, 274.68, and 688.89 µg g-1 , respectively). Rutin, p-coumaric, chlorogenic, isoquercitrin, and delphindin-3,5-diglucoside were among the major components. Unlike the dichloromethane extracts, all the other extracts showed radical scavenging ability in the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay (8.73-52.11 mg Trolox equivalent [TE]/g), while all extracts displayed scavenging property in the 2,2-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) radical scavenging assay (16.18-282.74 mg TE/g). The extracts showed antiacetylcholinesterase (1.27-2.73 mg galantamine equivalent [GALAE]/g), antibutyrylcholinesterase (0.20-5.57 mg GALAE/g) and antityrosinase (9.37-63.56 mg kojic acid equivalent [KAE]/g) effects. The molecular mechanism of the H2 O2 -induced oxidative stress pathway was aimed to be elucidated by applying ethanol, ethanol/water and water extracts at 200 µg/mL concentration to human dermal cells (HDFs). A. caraganae in HDF cells had neither a cytotoxic nor genotoxic effect but could have a cytostatic effect in increasing concentrations. The findings have allowed a better insight into the pharmacological potential of the plant, with respect to their chemical entities and bioactive contents, as well as extraction solvents and their polarity.
Collapse
Affiliation(s)
- İnci Kurt-Celep
- Faculty of Pharmacy, Department of Pharmacognosy, Ataşehir, Acıbadem Mehmet Ali Aydınlar University, İstanbul, Turkey
| | - Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk University, Konya, Turkey
| | - Abdullahi I Uba
- Department of Molecular Biology and Genetics, Istanbul AREL University, Istanbul, Turkey
| | | | | | | | - Ugur Cakilcioglu
- Pertek Sakine Genç Vocational School, Munzur University, Pertek, Turkey
| | - Osman Guler
- Pertek Sakine Genç Vocational School, Munzur University, Pertek, Turkey
| | - Alevcan Kaplan
- Sason Vocational School, Batman University, Batman, Turkey
| | - Jugreet Sharmeen
- Department of Health Sciences, Faculty of Medicine and Health Sciences, University of Mauritius, Reduit, Mauritius
| | - Mohamad F Mahomoodally
- Department of Health Sciences, Faculty of Medicine and Health Sciences, University of Mauritius, Reduit, Mauritius
- Department of Pharmacology, Center for Transdisciplinary Research, Saveetha Dental College, Saveetha Institute of Medical and Technical Science, Saveetha University, Chennai, India
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa
| |
Collapse
|
31
|
El Omari N, Bakrim S, Khalid A, Abdalla AN, Almalki WH, Lee LH, Ardianto C, Ming LC, Bouyahya A. Molecular mechanisms underlying the clinical efficacy of panobinostat involve Stochasticity of epigenetic signaling, sensitization to anticancer drugs, and induction of cellular cell death related to cellular stresses. Biomed Pharmacother 2023; 164:114886. [PMID: 37224752 DOI: 10.1016/j.biopha.2023.114886] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/04/2023] [Accepted: 05/12/2023] [Indexed: 05/26/2023] Open
Abstract
Panobinostat, also known as Farydak®, LBH589, PNB, or panobinostat lactate, is a hydroxamic acid that has been approved by the Food and Drug Administration (FDA) for its anti-cancer properties. This orally bioavailable drug is classified as a non-selective histone deacetylase inhibitor (pan-HDACi) that inhibits class I, II, and IV HDACs at nanomolar levels due to its significant histone modifications and epigenetic mechanisms. A mismatch between histone acetyltransferases (HATs) and HDACs can negatively affect the regulation of the genes concerned, which in turn can contribute to tumorigenesis. Indeed, panobinostat inhibits HDACs, potentially leading to acetylated histone accumulation, re-establishing normal gene expression in cancer cells, and helping to drive multiple signaling pathways. These pathways include induction of histone acetylation and cytotoxicity for the majority of tested cancer cell lines, increased levels of p21 cell cycle proteins, enhanced amounts of pro-apoptotic factors (such as caspase-3/7 activity and cleaved poly (ADP-ribose) polymerase (PARP)) associated with decreased levels of anti-apoptotic factors [B-cell lymphoma 2 (Bcl-2) and B-cell lymphoma-extra-large (Bcl-XL)], as well as regulation of immune response [upregulated programmed death-ligand 1 (PD-L1) and interferon gamma receptor 1 (IFN-γR1) expression] and other events. The therapeutic outcome of panobinostat is therefore mediated by sub-pathways involving proteasome and/or aggresome degradation, endoplasmic reticulum, cell cycle arrest, promotion of extrinsic and intrinsic processes of apoptosis, tumor microenvironment remodeling, and angiogenesis inhibition. In this investigation, we aimed to pinpoint the precise molecular mechanism underlying panobinostat's HDAC inhibitory effect. A more thorough understanding of these mechanisms will greatly advance our knowledge of cancer cell aberrations and, as a result, provide an opportunity for the discovery of significant new therapeutic perspectives through cancer therapeutics.
Collapse
Affiliation(s)
- Nasreddine El Omari
- Laboratory of Histology, Embryology, and Cytogenetic, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat 10100, Morocco
| | - Saad Bakrim
- Geo-Bio-Environment Engineering and Innovation Laboratory, Molecular Engineering, Biotechnology and Innovation Team, Polydisciplinary Faculty of Taroudant, Ibn Zohr University, Agadir 80000, Morocco
| | - Asaad Khalid
- Substance Abuse and Toxicology Research Center, Jazan University, P.O. Box: 114, Jazan 45142, Saudi Arabia; Medicinal and Aromatic Plants and Traditional Medicine Research Institute, National Center for Research, P. O. Box 2404, Khartoum, Sudan
| | - Ashraf N Abdalla
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia.
| | - Waleed Hassan Almalki
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Learn-Han Lee
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University, Malaysia.
| | - Chrismawan Ardianto
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia.
| | - Long Chiau Ming
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia; PAP Rashidah Sa'adatul Bolkiah Institute of Health Sciences, Universiti Brunei Darussalam, Gadong, Brunei Darussalam; School of Medical and Life Sciences, Sunway University, Sunway City 47500, Malaysia
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10106, Morocco.
| |
Collapse
|
32
|
Shoeibi A, Karimi E, Zareian M, Oskoueian E. Enhancing Healthcare Outcomes and Modulating Apoptosis- and Antioxidant-Related Genes through the Nano-Phytosomal Delivery of Phenolics Extracted from Allium ampeloprasum. Genes (Basel) 2023; 14:1547. [PMID: 37628599 PMCID: PMC10454362 DOI: 10.3390/genes14081547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/17/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023] Open
Abstract
The application of nano drug delivery systems, particularly those utilizing natural bioactive compounds with anticancer properties, has gained significant attention. In this study, a novel nano-phytosome-loaded phenolic rich fraction (PRF) derived from Allium ampeloprasum L. was developed. The antitumor activity of the formulation was evaluated in BALB/c mice with TUBO colon carcinoma. The PRF-loaded nano-phytosome (PRF-NPs) exhibited a sphere-shaped structure (226 nm) and contained a diverse range of phenolic compounds. Animal trials conducted on TUBO tumor-bearing mice demonstrated that treatment with PRF-NPs at a dosage of 50 mg TPC/Kg/BW resulted in significant improvements in body weight and food intake, while reducing liver enzymes and lipid peroxidation. The expression of apoptosis-related genes, such as Bax and caspase-3, was upregulated, whereas Bcl2 was significantly downregulated (p < 0.05). Furthermore, the expression of GPx and SOD genes in the liver was notably increased compared to the control group. The findings suggest that the phytosomal encapsulation of the phenolic rich fraction derived from Allium ampeloprasum L. can enhance the bioavailability of natural phytochemicals and improve their antitumor properties. The development of PRF-NPs as a nano drug delivery system holds promise for effective breast cancer treatment.
Collapse
Affiliation(s)
- Ali Shoeibi
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Ehsan Karimi
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Mohsen Zareian
- Department of Life Sciences, Chalmers University of Technology, Göteborg, Sweden
| | - Ehsan Oskoueian
- Industrial and Mineral Research Center, Arka Industrial Cluster, Mashhad, Iran
| |
Collapse
|
33
|
Farhan M, El Oirdi M, Aatif M, Nahvi I, Muteeb G, Alam MW. Soy Isoflavones Induce Cell Death by Copper-Mediated Mechanism: Understanding Its Anticancer Properties. Molecules 2023; 28:molecules28072925. [PMID: 37049690 PMCID: PMC10095714 DOI: 10.3390/molecules28072925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/11/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023] Open
Abstract
Cancer incidence varies around the globe, implying a relationship between food and cancer risk. Plant polyphenols are a class of secondary metabolites that have recently attracted attention as possible anticancer agents. The subclass of polyphenols, known as isoflavones, includes genistein and daidzein, which are present in soybeans and are regarded as potent chemopreventive agents. According to epidemiological studies, those who eat soy have a lower risk of developing certain cancers. Several mechanisms for the anticancer effects of isoflavones have been proposed, but none are conclusive. We show that isoflavones suppress prostate cancer cell growth by mobilizing endogenous copper. The copper-specific chelator neocuproine decreases the apoptotic potential of isoflavones, whereas the iron and zinc chelators desferroxamine mesylate and histidine do not, confirming the role of copper. Reactive oxygen species (ROS) scavengers reduce isoflavone-induced apoptosis in these cells, implying that ROS are cell death effectors. Our research also clearly shows that isoflavones interfere with the expression of the two copper transporter genes, CTR1 and ATP7A, in cancerous cells. Copper levels are widely known to be significantly raised in all malignancies, and we confirm that isoflavones can target endogenous copper, causing prooxidant signaling and, eventually, cell death. These results highlight the importance of copper dynamics within cancer cells and provide new insight into the potential of isoflavones as cancer-fighting nutraceuticals.
Collapse
Affiliation(s)
- Mohd Farhan
- Department of Basic Sciences, Preparatory Year Deanship, King Faisal University, Al Ahsa 31982, Saudi Arabia
- Correspondence: (M.F.); (M.E.O.)
| | - Mohamed El Oirdi
- Department of Basic Sciences, Preparatory Year Deanship, King Faisal University, Al Ahsa 31982, Saudi Arabia
- Correspondence: (M.F.); (M.E.O.)
| | - Mohammad Aatif
- Department of Public Health, College of Applied Medical Sciences, King Faisal University, Al Ahsa 31982, Saudi Arabia
| | - Insha Nahvi
- Department of Basic Sciences, Preparatory Year Deanship, King Faisal University, Al Ahsa 31982, Saudi Arabia
| | - Ghazala Muteeb
- Department of Nursing, College of Applied Medical Sciences, King Faisal University, Al Ahsa 31982, Saudi Arabia
| | - Mir Waqas Alam
- Department of Physics, College of Science, King Faisal University, Al Ahsa 31982, Saudi Arabia
| |
Collapse
|
34
|
Mirza Z, Karim S. Structure-Based Profiling of Potential Phytomolecules with AKT1 a Key Cancer Drug Target. Molecules 2023; 28:molecules28062597. [PMID: 36985568 PMCID: PMC10051420 DOI: 10.3390/molecules28062597] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/07/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023] Open
Abstract
Identifying cancer biomarkers is imperative, as upregulated genes offer a better microenvironment for the tumor; hence, targeted inhibition is preferred. The theme of our study is to predict molecular interactions between cancer biomarker proteins and selected natural compounds. We identified an overexpressed potential molecular target (AKT1) and computationally evaluated its inhibition by four dietary ligands (isoliquiritigenin, shogaol, tehranolide, and theophylline). The three-dimensional structures of protein and phytochemicals were retrieved from the RCSB PDB database (4EKL) and NCBI’s PubChem, respectively. Rational structure-based docking studies were performed using AutoDock. Results were analyzed based primarily on the estimated free binding energy (kcal/mol), hydrogen bonds, and inhibition constant, Ki, to identify the most effective anti-cancer phytomolecule. Toxicity and drug-likeliness prediction were performed using OSIRIS and SwissADME. Amongst the four phytocompounds, tehranolide has better potential to suppress the expression of AKT1 and could be used for anti-cancer drug development, as inhibition of AKT1 is directly associated with the inhibition of growth, progression, and metastasis of the tumor. Docking analyses reveal that tehranolide has the most efficiency in inhibiting AKT1 and has the potential to be used for the therapeutic management of cancer. Natural compounds targeting cancer biomarkers offer less rejection, minimal toxicity, and fewer side effects.
Collapse
Affiliation(s)
- Zeenat Mirza
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Correspondence: or
| | - Sajjad Karim
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|