1
|
Zhang WY, Liao JS, Qi JR. Citrus endogenous components as prebiotics: Advances in extraction, digestion, mechanisms, and delivery. Food Res Int 2025; 208:116141. [PMID: 40263823 DOI: 10.1016/j.foodres.2025.116141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 02/13/2025] [Accepted: 03/05/2025] [Indexed: 04/24/2025]
Abstract
The large number of by-products during the processing of citrus fruits exert significant pressure on the environment. Citrus by-products contain a variety of bioactive compounds that promote gut health and maintain microbial homeostasis. Therefore, recycling and reuse of these by-products is considered an excellent way to reduce environmental pressure. The purification and characterization methods of bioactive compounds (such as pectin, dietary fiber, polyphenols, essential oils, and limonin) extracted from citrus by-products in recent years are summarised. Subsequently, we summarize the digestive behavior (digestion, absorption, metabolism, and excretion) of these components, focusing on the mechanisms of action through which they exert prebiotic activity. This highlights the interactions between citrus by-product bioactives and gut microbiota, as well as the health effects on the host gut. Additionally, we provide a brief overview of the delivery systems for the active ingredients based on pectin from citrus sources. The results show that extraction methods can significantly affect the composition and structure of citrus by-products, which in turn affects digestive properties and eventually leads to differences in prebiotic activity. Notably, gut microbiota plays a key role in the metabolism and bioactivity of citrus actives. Besides, the innovative embedding methods can markedly enhance their prebiotic potential. Therefore, a comprehensive understanding of the relationship between the extraction, structure, and prebiotic activity of citrus by-products, as well as their delivery methods, is essential to advancing the use of citrus by-products in human health.
Collapse
Affiliation(s)
- Wei-Yun Zhang
- Research and Development Center of Food Proteins, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, PR China
| | - Jin-Song Liao
- School of Life Sciences, South China Normal University, Guangzhou 510640, PR China; Lemon (Guangzhou City) Biotechnology Co. Ltd, Guangzhou 510640, PR China
| | - Jun-Ru Qi
- Research and Development Center of Food Proteins, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, PR China.
| |
Collapse
|
2
|
Nardo F, Piras A, Bullitta S, Ledda L, Serralutzu F. NP-bioTech: a circular economy approach to catalyst-based biostabilization of citrus processing waste. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:3776-3786. [PMID: 39865918 DOI: 10.1002/jsfa.14128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 12/11/2024] [Accepted: 01/03/2025] [Indexed: 01/28/2025]
Abstract
BACKGROUND Biowaste accounts for about 40% of total waste. Food-industry waste is one major biowaste stream. The available technological approaches to biowaste treatment are expensive, not circular, unsustainable, and they require pre-treatments such as dehydration, extraction of inhibitors, pH correction, or the addition of other organic matrices. The NP-bioTech process uses a biocatalyst adsorbed onto an inert material enabling accelerated fermentation of critical biomass without pre-treatments, transforming it into biostabilized and pasteurized material, and converting waste into new usable products rapidly. Biocatalysts consist of naturally fortified selections of microbial colonies, enzymes, and fungi that are resistant to the action of d-limonene and other fermentation inhibitors. RESULTS The NP-bioTech process was able to activate vigorous fermentation of citrus waste without any of the pre-treatments required by other available biowaste-treatment technologies. The horticultural use of the biostabilized output of such process for greenhouse crops was verified. The addition of such output to the growth media was beneficial for plants and did not show negative effects on quality and yield of tomatoes (Lycopersicon esculentum L.). The concentration of Ca, K, Zn, Fe, and polyphenol increased; the average number of berries per plant was improved; the concentration of Pb and Cd contaminants decreased. CONCLUSION The NP-bioTech process emits no odors or pollutants. It does not generate leachate, and its output can be used in agriculture. It is capable of reconciling compliance with strict environmental restrictions, industrial feasibility, and economic sustainability. Its potential impact thus aligns well with the circular economy model. © 2025 Society of Chemical Industry.
Collapse
Affiliation(s)
| | - Andrea Piras
- Dipartimento di Agraria, Università di Sassari, Sassari, Italy
| | | | - Luigi Ledda
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università Politecnica delle Marche, Ancona, Italy
| | | |
Collapse
|
3
|
Patil P, Kumar P. Exploring kudzu: Extraction, quantification, and health impacts of bioactive compounds. Fitoterapia 2025; 182:106453. [PMID: 40020789 DOI: 10.1016/j.fitote.2025.106453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 02/13/2025] [Accepted: 02/21/2025] [Indexed: 03/03/2025]
Abstract
Kudzu (Pueraria species) is a perennial plant within the Fabaceae family, native to China, Japan, and India. It is known for its therapeutic properties, mainly due to its high content of isoflavones, including puerarin, daidzein, daidzin, genistein, and genistin. These isoflavones are found throughout the plant and are important in developing pharmaceutical drugs. This review comprehensively analyzes naturally occurring isoflavones in Kudzu, focusing on advanced and green techniques for their extraction, purification, and identification. Additionally, it highlights their health benefits and the growing demand in the global food and pharmaceutical industries. Due to their superior efficiency, scalability, and cost-effectiveness, contemporary eco-friendly extraction methods like ultrasound, microwave, enzyme-assisted, and supercritical fluid extraction are gaining prominence in this endeavor. They are crucial in optimizing the extraction process, driving innovation within industries, and harnessing natural sources, ultimately boosting global economies. Scientific studies confirm that Kudzu isoflavones have various anti-diabetic, neuroprotective, anti-cancer, antioxidant, alcohol detoxification, and cardiovascular protective effects. This review encourages further exploration of Kudzu isoflavones as a nutritional food source. It also highlights advancements in extraction methods within pharmaceuticals and natural products, underscoring the superiority of modern techniques over conventional ones. Additionally, critical analysis of the trends, limitations, and scope of Kudzu-extracted isoflavones for novel food applications can further advance scientific understanding.
Collapse
Affiliation(s)
- Poonam Patil
- Department of Food Engineering and Technology, Sant Longowal Institute of Engineering and Technology, Longowal 148106, Punjab, India.
| | - Pradyuman Kumar
- Department of Food Engineering and Technology, Sant Longowal Institute of Engineering and Technology, Longowal 148106, Punjab, India.
| |
Collapse
|
4
|
Huang YS, An YL, Zheng YY, Zhao WJ, Song CQ, Zhang LJ, Chen JT, Tang ZJ, Feng L, Li ZW, Liu XK, Zhang DD, Guo DA. A holistic strategy for the in-depth discrimination and authentication of 16 citrus herbs and associated commercial products based on machine learning techniques and non-targeted metabolomics. J Chromatogr A 2025; 1745:465747. [PMID: 39908954 DOI: 10.1016/j.chroma.2025.465747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 01/22/2025] [Accepted: 01/30/2025] [Indexed: 02/07/2025]
Abstract
Citrus-derived raw medicinal materials are frequently used for health care, flavoring, and therapeutic purposes. However, Due to similarities in origin or appearance, citrus herbs are often misused in the market, necessitating effective differentiation methods. For the first time, this study constructed automated discrimination models for 16 citrus species (239 batches) while previous studies focused on a limited number of species. Seven machine learning models -Tree, Discriminant, Support Vector Machine, K-Nearest Neighbor, Ensemble, Neural Network, and Partial least squares discriminant analysis-were compared, with the Ensemble model achieving 100% accuracy in the test set. 16 Orthogonal partial least squares discriminant analysis models were constructed to screen and identify 53 differential markers. These markers were successfully utilized to determine the absence or presence of specified components in the 20 citrus products. This study provides a comprehensive solution for the quality control of citrus herbs, enabling the differentiation of raw herbs and processed slices, as well as the identification of complex systems such as Chinese patent medicines.
Collapse
Affiliation(s)
- Yu-Shi Huang
- Department of Pharmaceutics, School of Pharmacy, Guangdong Pharmaceutical University, East of Outer Ring Road #280, Guangdong 510006, China; Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
| | - Ya-Ling An
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
| | - Yue-Yuan Zheng
- Department of Pharmaceutics, School of Pharmacy, Guangdong Pharmaceutical University, East of Outer Ring Road #280, Guangdong 510006, China
| | - Wen-Jie Zhao
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
| | - Chun-Qian Song
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
| | - Li-Jie Zhang
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
| | - Jie-Ting Chen
- Department of Pharmaceutics, School of Pharmacy, Guangdong Pharmaceutical University, East of Outer Ring Road #280, Guangdong 510006, China
| | - Zi-Jun Tang
- Department of Pharmaceutics, School of Pharmacy, Guangdong Pharmaceutical University, East of Outer Ring Road #280, Guangdong 510006, China
| | - Lin Feng
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
| | - Zhen-Wei Li
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
| | - Xiao-Kang Liu
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
| | - Dai-di Zhang
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
| | - De-An Guo
- Department of Pharmaceutics, School of Pharmacy, Guangdong Pharmaceutical University, East of Outer Ring Road #280, Guangdong 510006, China; Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China; Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| |
Collapse
|
5
|
Castagna A, Aboudia A, Guendouz A, Scieuzo C, Falabella P, Matthes J, Schmid M, Drissner D, Allais F, Chadni M, Cravotto C, Senge J, Krupitzer C, Canesi I, Spinelli D, Drira F, Ben Hlima H, Abdelkafi S, Konstantinou I, Albanis T, Yfanti P, Lekka ME, Lazzeri A, Aliotta L, Gigante V, Coltelli MB. Transforming Agricultural Waste from Mediterranean Fruits into Renewable Materials and Products with a Circular and Digital Approach. MATERIALS (BASEL, SWITZERLAND) 2025; 18:1464. [PMID: 40271629 PMCID: PMC11989941 DOI: 10.3390/ma18071464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 03/11/2025] [Accepted: 03/19/2025] [Indexed: 04/25/2025]
Abstract
The Mediterranean area is one of the major global producers of agricultural food. However, along the entire supply chain-from farming to food distribution and consumption-food waste represents a significant fraction. Additionally, plant waste residues generated during the cultivation of specific fruits and vegetables must also be considered. This heterogeneous biomass is a valuable source of bioactive compounds and materials that can be transformed into high-performance functional products. By analyzing technical and scientific literature, this review identifies extraction, composite production, and bioconversion as the main strategies for valorizing agricultural by-products and waste. The advantages of these approaches as well as efficiency gains through digitalization are discussed, along with their potential applications in the Mediterranean region to support new research activities and bioeconomic initiatives. Moreover, the review highlights the challenges and disadvantages associated with waste valorization, providing a critical comparison of different studies to offer a comprehensive perspective on the topic. The objective of this review is to evaluate the potential of agricultural waste valorization, identifying effective strategies while also considering their limitations, to contribute to the development of sustainable and innovative solutions in Mediterranean bioeconomy.
Collapse
Affiliation(s)
- Antonella Castagna
- Department of Agriculture, Food and Environment, University of Pisa, 56126 Pisa, Italy;
| | - Aouatif Aboudia
- Bioresources and Food Safety Laboratory, Faculty of Science and Technology of Marrakech, Cadi Ayyad University, P.O. Box 549, Marrakech 40000, Morocco;
| | - Amine Guendouz
- Agrobiotechnology and Bioengineering Center, CNRST-Labeled Research Unit (Agro Biotech-URL-CNRST-05 Center), Faculty of Science and Technology, Cadi Ayyad University, P.O. Box 549, Marrakech 40000, Morocco;
| | - Carmen Scieuzo
- Department of Basic and Applied Sciences, University of Basilicata, 85100 Potenza, Italy; (C.S.); (P.F.)
| | - Patrizia Falabella
- Department of Basic and Applied Sciences, University of Basilicata, 85100 Potenza, Italy; (C.S.); (P.F.)
| | - Julia Matthes
- Sustainable Packaging Institute SPI, Faculty of Life Sciences, Albstadt-Sigmaringen University, Anthon-Günther-Straße 51, 72488 Sigmaringen, Germany; (J.M.); (M.S.); (D.D.)
| | - Markus Schmid
- Sustainable Packaging Institute SPI, Faculty of Life Sciences, Albstadt-Sigmaringen University, Anthon-Günther-Straße 51, 72488 Sigmaringen, Germany; (J.M.); (M.S.); (D.D.)
| | - David Drissner
- Sustainable Packaging Institute SPI, Faculty of Life Sciences, Albstadt-Sigmaringen University, Anthon-Günther-Straße 51, 72488 Sigmaringen, Germany; (J.M.); (M.S.); (D.D.)
| | - Florent Allais
- URD Agro-Biotechnologie Industrielles, CEBB, AgroParisTech, 51110 Pomacle, France; (F.A.); (M.C.); (C.C.)
| | - Morad Chadni
- URD Agro-Biotechnologie Industrielles, CEBB, AgroParisTech, 51110 Pomacle, France; (F.A.); (M.C.); (C.C.)
| | - Christian Cravotto
- URD Agro-Biotechnologie Industrielles, CEBB, AgroParisTech, 51110 Pomacle, France; (F.A.); (M.C.); (C.C.)
| | - Julia Senge
- Department of Food Informatics and Computational Science Hub, University of Hohenheim, 70599 Stuttgart, Germany; (J.S.); (C.K.)
| | - Christian Krupitzer
- Department of Food Informatics and Computational Science Hub, University of Hohenheim, 70599 Stuttgart, Germany; (J.S.); (C.K.)
| | - Ilaria Canesi
- Next Technology Tecnotessile Società Nazionale di Ricerca R.L., 59100 Prato, Italy; (I.C.); (D.S.)
| | - Daniele Spinelli
- Next Technology Tecnotessile Società Nazionale di Ricerca R.L., 59100 Prato, Italy; (I.C.); (D.S.)
| | - Fadoua Drira
- Ecole Nationale d’Ingénieurs de Sfax, Université de Sfax, Sfax 3038, Tunisia; (F.D.); (H.B.H.); (S.A.)
| | - Hajer Ben Hlima
- Ecole Nationale d’Ingénieurs de Sfax, Université de Sfax, Sfax 3038, Tunisia; (F.D.); (H.B.H.); (S.A.)
| | - Slim Abdelkafi
- Ecole Nationale d’Ingénieurs de Sfax, Université de Sfax, Sfax 3038, Tunisia; (F.D.); (H.B.H.); (S.A.)
| | - Ioannis Konstantinou
- Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece; (I.K.); (T.A.); (P.Y.); (M.E.L.)
| | - Triantafyllos Albanis
- Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece; (I.K.); (T.A.); (P.Y.); (M.E.L.)
| | - Paraskevi Yfanti
- Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece; (I.K.); (T.A.); (P.Y.); (M.E.L.)
| | - Marilena E. Lekka
- Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece; (I.K.); (T.A.); (P.Y.); (M.E.L.)
| | - Andrea Lazzeri
- Department of Civil and Industrial Engineering, University of Pisa, 56122 Pisa, Italy; (A.L.); (L.A.)
| | - Laura Aliotta
- Department of Civil and Industrial Engineering, University of Pisa, 56122 Pisa, Italy; (A.L.); (L.A.)
| | - Vito Gigante
- Department of Civil and Industrial Engineering, University of Pisa, 56122 Pisa, Italy; (A.L.); (L.A.)
| | - Maria-Beatrice Coltelli
- Department of Civil and Industrial Engineering, University of Pisa, 56122 Pisa, Italy; (A.L.); (L.A.)
| |
Collapse
|
6
|
Tarek K, Farid A, Safwat G. Extraction of grape seeds by different solvents affects the activities of the resultant extract. AMB Express 2025; 15:51. [PMID: 40108052 PMCID: PMC11923327 DOI: 10.1186/s13568-025-01851-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 02/18/2025] [Indexed: 03/22/2025] Open
Abstract
Phenolic compounds are concentrated in grape seeds; 60-70% of the extractable grape phenols are found in the seeds. The focus of this research was to isolate the phytochemicals from grape seed and to determine their ability to prevent haemolysis, their antioxidant and microbiological activities. By using the extraction procedure, three solvents were used (distilled water, ethanol and methanol). A high-performance liquid chromatographic (HPLC) test was performed to analyse the phenolic compounds and flavonoids content that were used to determine the efficiency of the various solvents used in the extraction process. All the variables under study, namely yield percentage, phenolic component concentration, and flavonoid content got significantly affected by the choice of the solvent used. The flavonoid content of the extracts was in the order methanolic extract > ethanolic extract > water extract. The methanolic extract of the grape seeds exhibited the most powerful antioxidant and hemolysis inhibitory effects among the three extracts, followed by the ethanolic and water extracts. The antibacterial activity of methanolic extract was found to be higher as compared to the ethanolic extract against Staphylococcus aureus. The antibacterial activity of the ethanolic and methanolic extracts against Salmonella enteritidis, Bacillus subtilis, Aspergillus niger and Escherichia coli were found to be equivalent. In conclusion, grape seeds contained several bioactive compounds that exerted an antioxidant, hemolysis inhibition and anti-microbial activities. These activities depends on the concentration of phenolic compounds and flavonoids in the grape seed extracts. Methanol was the superior solvent in the extraction process followed by ethanol.
Collapse
Affiliation(s)
- Kareem Tarek
- Biotechnology Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Alyaa Farid
- Biotechnology Department, Faculty of Science, Cairo University, Giza, Egypt.
| | - Gehan Safwat
- Faculty of Biotechnology, October University for Modern Sciences and Arts, Giza, Egypt
| |
Collapse
|
7
|
Kato-Noguchi H, Kato M. Pesticidal Activity of Citrus Fruits for the Development of Sustainable Fruit-Processing Waste Management and Agricultural Production. PLANTS (BASEL, SWITZERLAND) 2025; 14:754. [PMID: 40094710 PMCID: PMC11901522 DOI: 10.3390/plants14050754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 02/18/2025] [Accepted: 02/21/2025] [Indexed: 03/19/2025]
Abstract
The annual global production of citrus fruits is over 150 million tons, and 40-50% of the citrus fruits are processed into juices and other products. The processing generates a large amount of waste and causes environmental issues. In order to reduce the environmental impacts, several approaches for the waste management of citrus fruits were proposed. The citrus fruit waste contains several functional compounds, but the extraction of these functional compounds requires adequate production facilities. The waste is not suitable to carry for long distances due to the high percent of water content and its heavy weight, and it is not suitable to store for a long time due to the occurrence of fermentation. Some of the approaches target the use of waste in the proximity of the processing factories. The application of citrus fruit waste for crop production in the agricultural fields close to the faculties is one of the possible management options. The evidence of citrus fruit waste as herbicidal, nematocidal, insecticidal, and anti-fungal materials has been accumulated in the literature over three decades. Several compounds involved in these functions have also been identified in the citrus fruits. However, there has been no review article focusing on the pesticidal activity of citrus fruits against weeds, herbivore insects, parasitic nematodes, and pathogenic fungi. This is the first review article providing an overview of such activities and compounds involved in the functions of citrus fruits.
Collapse
Affiliation(s)
- Hisashi Kato-Noguchi
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki, Kagawa 761-0795, Japan
| | | |
Collapse
|
8
|
Zannini D, Monteforte M, Gargiulo L, Marino T, Gomez d’Ayala G, Santagata G, Dal Poggetto G. Citrus Wastes as Source of Pectin and Bioactive Compounds Extracted via One-Pot Microwave Process: An In Situ Path to Modulated Property Control. Polymers (Basel) 2025; 17:659. [PMID: 40076159 PMCID: PMC11902335 DOI: 10.3390/polym17050659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 02/26/2025] [Accepted: 02/27/2025] [Indexed: 03/14/2025] Open
Abstract
In this paper, citrus pomace was used as a source of pectin and polyphenols extracted in one pot solution by microwave-assisted extraction (MAE) and conventional extraction (CE) methods. MAE parameters were optimized to maximize yield and adjust in situ final physicochemical properties of extracted pectins, such as the methylation degree (DM), significantly influencing pectin functionality and application. Citric acid (CA) and acetic acid (Hac) were employed as solvents to mitigate pectin degradation. Extracted pectins were structurally (GPC and FTIR-ATR), morphologically (SEM), and thermally (TGA) characterized. From the reaction batch, the bioactive compounds (AOs) were separated and recovered, and their yield and antioxidant activities were evaluated with a DPPH assay. Moreover, by strategically selecting pH and solvents, this research enabled precise control over the final properties of pectin. The various characterization techniques employed show that the extraction conditions significantly influence the physicochemical and morphological properties of the material. Molecular weight (Mw) values range from 218 kDa to 567 kDa, surface morphology varies from compact/aggregated structures to three-dimensional network-like formations, and the DM spans from 34% (low DM) to 83% (high DM). This highlights a novel approach for predicting and tailoring in situ characteristics of extracted pectin to meet specific application requirements.
Collapse
Affiliation(s)
- Domenico Zannini
- Institute of Chemical Sciences and Technologies “G. Natta” (SCITEC), National Council of Research, Via De Marini 6, 16149 Genova, Italy;
| | - Martina Monteforte
- Institute for Polymers, Composites and Biomaterials (IPCB), National Council of Research, Via C. Flegrei 34, 80078 Pozzuoli, Italy; (M.M.); (L.G.); (T.M.); (G.G.d.); (G.D.P.)
| | - Luca Gargiulo
- Institute for Polymers, Composites and Biomaterials (IPCB), National Council of Research, Via C. Flegrei 34, 80078 Pozzuoli, Italy; (M.M.); (L.G.); (T.M.); (G.G.d.); (G.D.P.)
| | - Tiziana Marino
- Institute for Polymers, Composites and Biomaterials (IPCB), National Council of Research, Via C. Flegrei 34, 80078 Pozzuoli, Italy; (M.M.); (L.G.); (T.M.); (G.G.d.); (G.D.P.)
| | - Giovanna Gomez d’Ayala
- Institute for Polymers, Composites and Biomaterials (IPCB), National Council of Research, Via C. Flegrei 34, 80078 Pozzuoli, Italy; (M.M.); (L.G.); (T.M.); (G.G.d.); (G.D.P.)
| | - Gabriella Santagata
- Institute for Polymers, Composites and Biomaterials (IPCB), National Council of Research, Via C. Flegrei 34, 80078 Pozzuoli, Italy; (M.M.); (L.G.); (T.M.); (G.G.d.); (G.D.P.)
| | - Giovanni Dal Poggetto
- Institute for Polymers, Composites and Biomaterials (IPCB), National Council of Research, Via C. Flegrei 34, 80078 Pozzuoli, Italy; (M.M.); (L.G.); (T.M.); (G.G.d.); (G.D.P.)
| |
Collapse
|
9
|
Penteado PS, Leal MCBDM, Carosio MGA, dos Santos A, Segatto ML, Pavarini DP, da Silva DF, Amaral JC, da Silva MFDGF, Zuin Zeidler VG, Ferreira AG. Green Extraction and NMR Analysis of Bioactives from Orange Juice Waste. Foods 2025; 14:642. [PMID: 40002087 PMCID: PMC11854020 DOI: 10.3390/foods14040642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/08/2025] [Accepted: 02/11/2025] [Indexed: 02/27/2025] Open
Abstract
Brazil is a global leader in the orange industry, producing approximately one-fourth of the world's oranges and generating over 50% of the associated waste. These by-products are rich in bioactive compounds; however, their improper disposal poses environmental risks. This study employs an eco-friendly approach-microwave-assisted extraction-to recover valuable compounds from orange juice production waste. The extracted compounds were analyzed using nuclear magnetic resonance (NMR) and gas chromatography-mass spectrometry (GC-MS). Key bioactives, including D-limonene, valencene, hesperidin, and carbohydrates, were successfully identified. NMR effectively traces and semi-quantifies these compounds, while microwave-assisted extraction enables the sustainable recovery of high-purity hesperidin, confirmed by NMR (87.66%) and HPLC (84.30%) analyses.
Collapse
Affiliation(s)
- Paula Scarabotto Penteado
- Department of Chemistry, Federal University of São Carlos, São Carlos 13565-905, SP, Brazil (A.G.F.)
| | | | | | - Alef dos Santos
- Department of Chemistry, Federal University of São Carlos, São Carlos 13565-905, SP, Brazil (A.G.F.)
| | - Mateus Lodi Segatto
- Department of Chemistry, Federal University of São Carlos, São Carlos 13565-905, SP, Brazil (A.G.F.)
| | | | | | - Jéssica Cristina Amaral
- Department of Chemistry, Federal University of São Carlos, São Carlos 13565-905, SP, Brazil (A.G.F.)
| | | | - Vânia G. Zuin Zeidler
- Institute of Sustainable Chemistry, Leuphana University Lüneburg, 21335 Lüneburg, Germany
| | - Antonio G. Ferreira
- Department of Chemistry, Federal University of São Carlos, São Carlos 13565-905, SP, Brazil (A.G.F.)
| |
Collapse
|
10
|
Yang DD, Li WJ, Lei SJ, Liu HY, Ouyang NF, Zhu JD. Effects of fermentation on the structures of yellow compounds in citrus pomace. Prep Biochem Biotechnol 2025; 55:67-74. [PMID: 38856714 DOI: 10.1080/10826068.2024.2362794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
To enhance the stability and light resistance of the yellow compounds in citrus pomace, our study successfully isolated and purified five compounds using ultrasonic-assisted extraction and column chromatography. The identified compounds include methyl linoleate, (2-ethyl)hexyl phthalate, 1,3-distearoyl-2-oleoylglycerol, 6,6-ditetradecyl-6,7-dihydroxazepin-2(3H)-one, and n-octadeca-17-enoic acid. The monomers extracted from fresh pomace, compounds 1 and 2, exhibit structural similarities to flavonoids and carotenoids. In contrast, the polymers isolated from fermented pomace, compounds 3, 4, and 5, share structural units with the fresh pomace compounds, indicating the transformation to stable polymeric forms. This suggests that the microbial fermentation process not only enhances the value of citrus pomace, but also provides a promising pathway for the synthesis of natural antioxidant yellow pigments with far-reaching theoretical and practical significance.
Collapse
Affiliation(s)
- Dan-Dan Yang
- College of Biological and Pharmaceutical, China Three Gorges University, Yichang, China
| | - Wen-Jie Li
- School of International Education, HeNan University of Technology, Zhengzhou, China
| | - Sheng-Jiao Lei
- College of Biological and Pharmaceutical, China Three Gorges University, Yichang, China
- Hubei Key Laboratory of Natural Products Research and Development, China Three Gorges University, Yichang, China
| | - Hai-Yan Liu
- College of Biological and Pharmaceutical, China Three Gorges University, Yichang, China
| | - Nong-Fei Ouyang
- College of Biological and Pharmaceutical, China Three Gorges University, Yichang, China
| | - Jun-Dong Zhu
- College of Biological and Pharmaceutical, China Three Gorges University, Yichang, China
| |
Collapse
|
11
|
Colatorti N, Porfido C, Vona D, Mazziotta G, Loffredo E. Untreated plant waste of the Mediterranean region as bioadsorbent of persistent organic pollutants. Heliyon 2024; 10:e40740. [PMID: 39717595 PMCID: PMC11665343 DOI: 10.1016/j.heliyon.2024.e40740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/15/2024] [Accepted: 11/26/2024] [Indexed: 12/25/2024] Open
Abstract
The excessive and/or improper use of plant protection products (PPPs) can generate alarming levels of residues in the environment, compromising both soil fertility and food safety. Various organic wastes released in large amounts by agro-industrial activity are currently studied and applied as bioadsorbents for water and soil decontamination. This study explored the capacity of untreated orange peel, olive stones and pistachio shells to adsorb the PPPs oxyfluorfen (OXY), metribuzin (MET) and imidacloprid (IMI), and the xenoestrogen bisphenol A (BPA) from water. The physicochemical, microstructural, and spectroscopic characteristics of the adsorbents were first evaluated using TXRF, SEM and FTIR-ATR techniques. Adsorption kinetics showed that each pollutant was rapidly (∼24 h) retained by all adsorbents according to a pseudo-second order model, which suggested a prevalent chemisorption. Interpretation of the sorption isotherm data with various theoretical equations showed that all molecules on all adsorbents preferentially followed the Freundlich model. Among the materials, olive stones showed the highest adsorbent capacity with KF values equal to 713, 317, 359 and 736 mg kg-1 for OXY, MET, IMI, and BPA, respectively. The desorption of each compound from all materials was hysteretic. Based on the overall results obtained, it appears that all three materials tested may have interesting applications for the retention of organic pollutants, especially very hydrophobic ones. This paves the way for further investigations into natural adsorbents as sustainable tools for environmental remediation.
Collapse
Affiliation(s)
- Nicola Colatorti
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, Università degli Studi di Bari Aldo Moro, Via Amendola 165/A, 70126, Bari, Italy
| | - Carlo Porfido
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, Università degli Studi di Bari Aldo Moro, Via Amendola 165/A, 70126, Bari, Italy
| | - Danilo Vona
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, Università degli Studi di Bari Aldo Moro, Via Amendola 165/A, 70126, Bari, Italy
| | - Giorgio Mazziotta
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, Università degli Studi di Bari Aldo Moro, Via Amendola 165/A, 70126, Bari, Italy
| | - Elisabetta Loffredo
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, Università degli Studi di Bari Aldo Moro, Via Amendola 165/A, 70126, Bari, Italy
| |
Collapse
|
12
|
Gressler LT, Centenaro JR, Braz PH, Costa SZR, Battisti EK, Gressler LT, Finamor IA, Sutili FJ. Influence of dietary bitter orange peel powder on growth, body composition, blood parameters, gut morphometry, and thermal tolerance of Nile tilapia (Oreochromis niloticus). FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:2179-2190. [PMID: 39031275 DOI: 10.1007/s10695-024-01383-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 07/14/2024] [Indexed: 07/22/2024]
Abstract
The potential of bitter orange peel powder (BOPP) as a nutritional strategy for fish was investigated in Nile tilapia. A total of 120 juveniles with an average initial weight of 9.8 ± 0.7 g were divided into four groups, replicated three times, resulting in 12 experimental units (60 L each) at a stocking density of 1.63 g of fish per liter. Productive parameters, whole-body composition, blood biochemistry, erythroid morphometry, intestinal histology, and heat tolerance were assessed in the juveniles subjected to one of the following treatments: non-supplemented basal diet (control group); basal diet with BOPP at 10 g/kg (BOPP10 group); basal diet with BOPP at 20 g/kg (BOPP20 group); and basal diet with BOPP at 40 g/kg (BOPP40 group). The BOPP additive had a positive influence on Nile tilapia growth, as final weight and weight gain were greater in all BOPP-treated fish, despite the reduction in crude protein in BOPP10 and BOPP20 groups. Fish receiving BOPP40 had an increase in total lipids and showed the highest levels of triglycerides and total cholesterol. Villi development was greater in the tilapia given BOPP10. It may be concluded that BOPP presented the most promising results for Nile tilapia juveniles when used at 10 g/kg diet. Regarding the erythroid morphometry, there was a general increase in nuclear and cytoplasmic areas in BOPP-fed tilapia; this seems to be the first report on the direct impact of the inclusion of functional additives in fish diet upon such parameters. As concerns the thermal tolerance evaluated at the end of the feeding trial, no differences were registered among the experimental groups. Thus, BOPP represents a feasible alternative ingredient to be explored in fish nutrition, since orange peel is a natural low-cost source of essential nutrients and valuable bioactive compounds.
Collapse
Affiliation(s)
- Luciane Tourem Gressler
- ELOAQUA Consulting, Research and Solutions in Aquaculture, Linha Faguense S/N, Frederico Westphalen, Rio Grande do Sul, 98400-000, Brazil.
| | - João Rogério Centenaro
- Federal Institute of Education, Science and Technology Farroupilha, Frederico Westphalen, Rio Grande do Sul, 98400-000, Brazil
| | | | - Samay Zillmann Rocha Costa
- Federal Institute of Education, Science and Technology Farroupilha, Frederico Westphalen, Rio Grande do Sul, 98400-000, Brazil
| | - Eduardo Kelm Battisti
- ELOAQUA Consulting, Research and Solutions in Aquaculture, Linha Faguense S/N, Frederico Westphalen, Rio Grande do Sul, 98400-000, Brazil
| | - Leticia Trevisan Gressler
- Federal Institute of Education, Science and Technology Farroupilha, Frederico Westphalen, Rio Grande do Sul, 98400-000, Brazil
| | - Isabela Andres Finamor
- Department of Physiology and Pharmacology, Federal University of Santa Maria, Santa Maria, Rio Grande do Sul, 97105-900, Brazil
| | - Fernando Jonas Sutili
- ELOAQUA Consulting, Research and Solutions in Aquaculture, Linha Faguense S/N, Frederico Westphalen, Rio Grande do Sul, 98400-000, Brazil.
| |
Collapse
|
13
|
Shahina Z, Dahms TES. A Comparative Review of Eugenol and Citral Anticandidal Mechanisms: Partners in Crimes Against Fungi. Molecules 2024; 29:5536. [PMID: 39683696 DOI: 10.3390/molecules29235536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/19/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
Candida albicans is an emerging multidrug-resistant opportunistic pathogen that causes candidiasis, superficial infections on the mucosa, nails or skin, and life-threatening candidemia in deep tissue when disseminated through the bloodstream. Recently, there has been a sharp rise in resistant strains, posing a considerable clinical challenge for the treatment of candidiasis. There has been a resurged interest in the pharmacological properties of essential oils and their active components, for example, monoterpenes with alcohol (-OH) and aldehyde (-CHO) groups. Eugenol and citral have shown promising in vitro and in vivo activity against Candida species. Although there is substantial research on the efficacy of these essential oil components against C. albicans, a detailed knowledge of their mycological mechanisms is lacking. To explore the broad-spectrum effects of EOs, it is more meaningful and rational to study the whole essential oil, along with some of its major components. This review provides a comprehensive overview of eugenol and citral anticandidal and antivirulence activity, alone and together, along with the associated mechanisms and limitations of our current knowledge.
Collapse
Affiliation(s)
- Zinnat Shahina
- Department of Chemistry and Biochemistry, University of Regina, 3737 Wascana Parkway, Regina, SK S4S 0A2, Canada
| | - Tanya E S Dahms
- Department of Chemistry and Biochemistry, University of Regina, 3737 Wascana Parkway, Regina, SK S4S 0A2, Canada
| |
Collapse
|
14
|
Mondal S, Das M, Debnath S, Sarkar BK, Babu G. An overview of extraction, isolation and characterization techniques of phytocompounds from medicinal plants. Nat Prod Res 2024:1-23. [PMID: 39560050 DOI: 10.1080/14786419.2024.2426059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 10/05/2024] [Accepted: 10/28/2024] [Indexed: 11/20/2024]
Abstract
Medicinal plants have been used since time immemorial for the treatment of many types of diseases along with epidemics. They show many biological activities like anti-inflammatory, antioxidant, anti-insecticidal, antibiotic, anti-parasitic, anti-hemolytic properties etc. Different types of bioactive compounds, present in the medicinal plants, play a key role in prevention of diseases and also used for manufacturing medicines. Thus, phytochemicals have an immense value to communities worldwide. The present review focused on the extraction, purification and characterisation method for isolation of phytocompounds. Both the conventional like maceration, percolation, digestion, infusion a decoction, soxhlet and reflux, hydro distillation and steam distillation method and modern technique of extraction like ASE, microwave- and ultrasound-assisted extraction, supercritical fluid extraction, enzyme-assisted fluid extraction, pressurised hot water extraction are elaborately explained in the present review. The methodology of purification by LLF & LLP, recrystallization, different chromatographic techniques like TLC, prep-TLC, column chromatography, flash column chromatography, SEC, counter current chromatography, HPLC & prep-GC are also included in the present review. Structure elucidation by UV-Vis spectroscopy, FTIR, NMR spectroscopy, mass spectroscopy and X-ray crystallography are also discussed here.
Collapse
Affiliation(s)
- Susmita Mondal
- Central Ayurveda Research Institute, CCRAS, Ministry of Ayush, Kolkata, India
| | - Manosi Das
- Central Ayurveda Research Institute, CCRAS, Ministry of Ayush, Kolkata, India
| | - Sudipto Debnath
- Central Ayurveda Research Institute, CCRAS, Ministry of Ayush, Kolkata, India
| | - Biresh Kumar Sarkar
- Central Ayurveda Research Institute, CCRAS, Ministry of Ayush, Kolkata, India
| | - Gajji Babu
- Central Ayurveda Research Institute, CCRAS, Ministry of Ayush, Kolkata, India
| |
Collapse
|
15
|
Vasquez-Gomez KL, Mori-Mestanza D, Caetano AC, Idrogo-Vasquez G, Culqui-Arce C, Auquiñivin-Silva EA, Castro-Alayo EM, Cruz-Lacerna R, Perez-Ramos HA, Balcázar-Zumaeta CR, Torrejón-Valqui L, Yoplac-Collantes C, Yoplac I, Chavez SG. Exploring chemical properties of essential oils from citrus peels using green solvent. Heliyon 2024; 10:e40088. [PMID: 39559244 PMCID: PMC11570516 DOI: 10.1016/j.heliyon.2024.e40088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 10/24/2024] [Accepted: 11/01/2024] [Indexed: 11/20/2024] Open
Abstract
The research explored the chemical characteristics of essential oils (EOs) extracted from the peels of four citrus fruits grown in northeastern Peru (lime, sweet lemon, mandarin and orange). The essential oils were extracted by hydrodistillation using a green solvent, and subsequently, their physicochemical profile, bioactive, heat capacity, and RAMAN mapping were determined; in addition, the volatile composition was determined by gas chromatography (GC-MS), and the main phenols by liquid chromatography (UHPLC). The results evidenced that sweet lemon and mandarin essential oils had higher antioxidant activity (1592.38 and 1216.13 μmol TE/g) and total phenolic content (680.78 and 420.28 mg GAE/g). In contrast, sweet lemon peel essential oil had the highest total flavonoid content (23.18 mg QE/g). D-limonene was the most abundant aromatic compound in orange (>67 %), mandarin (>70 %), and sweet lemon (>72 %) EOs; however, in the lime, it was the lowest (37 %). The most abundant component was the cyclobutane, 1,2-bis(1-methylethylethylenyl)-, trans- (32 %).
Collapse
Affiliation(s)
- Katheryn L. Vasquez-Gomez
- Instituto de Investigación, Innovación y Desarrollo para el Sector Agrario y Agroindustrial (IIDAA), Facultad de Ingeniería y Ciencias Agrarias, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas, 01001, Peru
| | - Diner Mori-Mestanza
- Instituto de Investigación, Innovación y Desarrollo para el Sector Agrario y Agroindustrial (IIDAA), Facultad de Ingeniería y Ciencias Agrarias, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas, 01001, Peru
| | - Aline C. Caetano
- Instituto de Investigación para el Desarrollo Sustentable de Ceja de Selva (INDES-CES), Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas, 01001, Peru
| | - Guillermo Idrogo-Vasquez
- Instituto de Investigación, Innovación y Desarrollo para el Sector Agrario y Agroindustrial (IIDAA), Facultad de Ingeniería y Ciencias Agrarias, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas, 01001, Peru
| | - Carlos Culqui-Arce
- Instituto de Investigación, Innovación y Desarrollo para el Sector Agrario y Agroindustrial (IIDAA), Facultad de Ingeniería y Ciencias Agrarias, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas, 01001, Peru
| | - Erick A. Auquiñivin-Silva
- Instituto de Investigación, Innovación y Desarrollo para el Sector Agrario y Agroindustrial (IIDAA), Facultad de Ingeniería y Ciencias Agrarias, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas, 01001, Peru
| | - Efraín M. Castro-Alayo
- Instituto de Investigación, Innovación y Desarrollo para el Sector Agrario y Agroindustrial (IIDAA), Facultad de Ingeniería y Ciencias Agrarias, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas, 01001, Peru
| | - Rosita Cruz-Lacerna
- Instituto de Investigación, Innovación y Desarrollo para el Sector Agrario y Agroindustrial (IIDAA), Facultad de Ingeniería y Ciencias Agrarias, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas, 01001, Peru
| | - Harvey A. Perez-Ramos
- Instituto de Investigación, Innovación y Desarrollo para el Sector Agrario y Agroindustrial (IIDAA), Facultad de Ingeniería y Ciencias Agrarias, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas, 01001, Peru
| | - César R. Balcázar-Zumaeta
- Instituto de Investigación, Innovación y Desarrollo para el Sector Agrario y Agroindustrial (IIDAA), Facultad de Ingeniería y Ciencias Agrarias, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas, 01001, Peru
| | - Llisela Torrejón-Valqui
- Instituto de Investigación, Innovación y Desarrollo para el Sector Agrario y Agroindustrial (IIDAA), Facultad de Ingeniería y Ciencias Agrarias, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas, 01001, Peru
| | - Cindy Yoplac-Collantes
- Instituto de Investigación, Innovación y Desarrollo para el Sector Agrario y Agroindustrial (IIDAA), Facultad de Ingeniería y Ciencias Agrarias, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas, 01001, Peru
| | - Ives Yoplac
- Laboratorio de Nutrición Animal y Bromatología de alimentos, Facultad de Ingeniería Zootecnista, Agronegocios y Biotecnología, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas, 01001, Peru
| | - Segundo G. Chavez
- Instituto de Investigación, Innovación y Desarrollo para el Sector Agrario y Agroindustrial (IIDAA), Facultad de Ingeniería y Ciencias Agrarias, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas, 01001, Peru
| |
Collapse
|
16
|
Mwaheb MA, Reda NM, El-Wetidy MS, Sheded AH, Al-Otibi F, Al-Hamoud GA, Said MA, Aidy EA. Versatile properties of Opuntia ficus-indica (L.) Mill. flowers: In vitro exploration of antioxidant, antimicrobial, and anticancer activities, network pharmacology analysis, and In-silico molecular docking simulation. PLoS One 2024; 19:e0313064. [PMID: 39495776 PMCID: PMC11534206 DOI: 10.1371/journal.pone.0313064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 10/15/2024] [Indexed: 11/06/2024] Open
Abstract
Opuntia ficus-indica (L.) Mill. has been used in folk medicine against several diseases. The objectives of the present study were to investigate the chemical composition of the methanolic extract of O. ficus-indica (L.) Mill. flowers and their antioxidant, antimicrobial, and anticancer properties. Besides, network pharmacology and molecular docking were used to explore the potential antitumor effect of active metabolites of O. ficus-indica (L.) Mill. against breast and liver cancer. The results revealed many bioactive components known for their antimicrobial and anticancer properties. Furthermore, scavenging activity was obtained, which indicated strong antioxidant properties. The plant extract exhibited antimicrobial activities against Aspergillus brasiliensis (MIC of 0.625 mg/mL), Candida albicans, Saccharomyces cerevisiae, Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa at MICs of 1.25 mg/mL. The results revealed proapoptotic activities of the O. ficus-indica (L.) Mill. extract against MCF7, MDA-MB-231, and HepG2 cell lines, where it induced significant early apoptosis and cell cycle arrest at sub-G1 phases, besides increasing the expression levels of p53, cyclin D1, and caspase 3 (p <0.005). The network pharmacology and molecular docking analysis revealed that the anticancer components of O. ficus-indica (L.) Mill. flower extract targets the PI3K-Akt pathway. More investigations might be required to test the mechanistic pathways by which O. ficus-indica (L.) Mill. might exhibit its biological activities in vivo.
Collapse
Affiliation(s)
- Mai Ali Mwaheb
- Botany Department, Faculty of Science, Fayoum University, Fayoum, Egypt
| | - Nashwa Mohamed Reda
- Clinical and Chemical Pathology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | | | - Asmaa H. Sheded
- Organic Chemistry Department, Faculty of Science, Ain-Shams University, Cairo, Egypt
| | - Fatimah Al-Otibi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Gadah A. Al-Hamoud
- Department of Pharmacology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed A. Said
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City, Cairo, Egypt
| | - Esraa A. Aidy
- Cancer Biology Department, Medical Biochemistry and Molecular Biology Unit, National Cancer Institute, Cairo University, Cairo, Egypt
| |
Collapse
|
17
|
Liu Y, Yan N, Chen Q, Dong L, Li Y, Weng P, Wu Z, Pan D, Liu L, Farag MA, Wang L, Liu L. Research advances in citrus polyphenols: green extraction technologies, gut homeostasis regulation, and nano-targeted delivery system application. Crit Rev Food Sci Nutr 2024; 64:11493-11509. [PMID: 37552798 DOI: 10.1080/10408398.2023.2239350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Citrus polyphenols can modulate gut microbiota and such bi-directional interaction that can yield metabolites such as short-chain fatty acids (SCFAs) to aid in gut homeostasis. Such interaction provides citrus polyphenols with powerful prebiotic potential, contributing to guts' health status and metabolic regulation. Citrus polyphenols encompass unique polymethoxy flavonoids imparting non-polar nature that improve their bioactivities and ability to penetrate the blood-brain barrier. Green extraction technology targeting recovery of these polyphenols has received increasing attention due to its advantages of high extraction yield, short extraction time, low solvent consumption, and environmental friendliness. However, the low bioavailability of citrus polyphenols limits their applications in extraction from citrus by-products. Meanwhile, nano-encapsulation technology may serve as a promising approach to improve citrus polyphenols' bioavailability. As citrus polyphenols encompass multiple hydroxyl groups, they are potential to interact with bio-macromolecules such as proteins and polysaccharides in nano-encapsulated systems that can improve their bioavailability. This multifaceted review provides a research basis for the green and efficient extraction techniques of citrus polyphenols, as well as integrated mechanisms for its anti-inflammation, alleviating metabolic syndrome, and regulating gut homeostasis, which is more capitalized upon using nano-delivery systems as discussed in that review to maximize their health and food applications.
Collapse
Affiliation(s)
- Yahui Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Ning Yan
- Plant Functional Component Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Laoshan District, Qingdao, China
| | - Qin Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Lezhen Dong
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Ying Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Peifang Weng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Zufang Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Daodong Pan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Lingyi Liu
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Mohamed A Farag
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Lei Wang
- School of Liquor and Food Engineering, Guizhou University, Guiyang, Guizhou, China
| | - Lianliang Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
18
|
Mir-Cerdà A, Granados M, Saurina J, Sentellas S. Olive tree leaves as a great source of phenolic compounds: Comprehensive profiling of NaDES extracts. Food Chem 2024; 456:140042. [PMID: 38876070 DOI: 10.1016/j.foodchem.2024.140042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/23/2024] [Accepted: 06/07/2024] [Indexed: 06/16/2024]
Abstract
Waste from the olive industry is a noticeable source of antioxidant compounds that can be extracted and reused to produce raw materials related to the chemical, cosmetic, food and pharmaceutical sectors. This work studies the phenolic composition of olive leaf samples using liquid chromatography with ultraviolet detection coupled to mass spectrometry (LC-UV-MS). Olive leaf waste samples have been crushed, homogenized, and subjected to a solid-liquid extraction treatment with mechanical shaking at 80 °C for 2 h using Natural Deep Eutectic Solvents (NaDES). The phenolic compound identification in the resulting extracts has been carried out by high-resolution mass spectrometry (HRMS) using data-dependent acquisition mode using an Orbitrap HRMS instrument. >60 different phenolic compounds have been annotated tentatively, of which about 20 have been confirmed from the corresponding standards. Some of the most noticeable compounds are oleuropein and its aglycone and glucoside form, luteolin-7-O-glucoside, 3-hydroxytyrosol, and verbascoside.
Collapse
Affiliation(s)
- Aina Mir-Cerdà
- Department of Chemical Engineering and Analytical Chemistry, Universitat de Barcelona, E08028 Barcelona, Spain.; Research Institute in Food Nutrition and Food Safety, Universitat de Barcelona, E08921 Santa Coloma de Gramenet, Spain..
| | - Mercè Granados
- Department of Chemical Engineering and Analytical Chemistry, Universitat de Barcelona, E08028 Barcelona, Spain.; Research Institute in Food Nutrition and Food Safety, Universitat de Barcelona, E08921 Santa Coloma de Gramenet, Spain..
| | - Javier Saurina
- Department of Chemical Engineering and Analytical Chemistry, Universitat de Barcelona, E08028 Barcelona, Spain.; Research Institute in Food Nutrition and Food Safety, Universitat de Barcelona, E08921 Santa Coloma de Gramenet, Spain..
| | - Sonia Sentellas
- Department of Chemical Engineering and Analytical Chemistry, Universitat de Barcelona, E08028 Barcelona, Spain.; Research Institute in Food Nutrition and Food Safety, Universitat de Barcelona, E08921 Santa Coloma de Gramenet, Spain.; Serra Húnter Fellow, Departament de Recerca i Universitats, Generalitat de Catalunya, E08003 Barcelona, Spain..
| |
Collapse
|
19
|
Du S, Wang Y, Tao W, Lu S. Differential effects of enzymatically modified Ougan (Citrus Suavissima Hort. ex Tanaka) peel pectins extracted with different methods on inhibiting the proliferation of Hela cells. Int J Biol Macromol 2024; 278:134463. [PMID: 39102920 DOI: 10.1016/j.ijbiomac.2024.134463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/24/2024] [Accepted: 08/01/2024] [Indexed: 08/07/2024]
Abstract
Previous studies have shown that modified citrus pectin (MCP) is an anti-tumor material of food grade. In this study, two enzymatically modified Ougan (Citrus Suavissima Hort. ex Tanaka) peel pectins (EMP1 and EMP2, the ones extracted by alkali and enzymatic methods) were used to investigate their differential effects on viability and physiology of Hela cells. The results showed that EMP1 and EMP2 had 88.00 % and 81.01 % galacturonic acid, 21.31 % and 20.25 % esterification degree, 10,417 g/mol and 6416 g/mol molecular weight (Mw), 82.86 % and 50.62 % RG-I, and 8.91 % and 15.70 % HG, respectively. EMP2 had higher intensities of absorption peaks than EMP1. They were irregularly shaped, with more holes on EMP1 but more wrinkles on EMP2. Both could inhibit the growth, proliferation, migration, and invasion of HeLa cells in a concentration-dependent manner, with better efficiency in EMP2. Meanwhile, EMP2 was more efficient than EMP1 in blocking the cell cycle in S phase, resulting in apoptosis. In conclusion, the variations caused by extraction resulted in differences in anti-tumor activity of MCP and EMP2 with lower Mw and higher HG exhibited better anti-tumor effects. This study would provide an experimental basis and reference for the research and development of anti-tumor supplements from citrus pectin.
Collapse
Affiliation(s)
- Shuangning Du
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Ministry of Agriculture and Rural Affairs Key Laboratory of Post-Harvest Handling of Fruits, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Yangguang Wang
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China.
| | - Wenyang Tao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Ministry of Agriculture and Rural Affairs Key Laboratory of Post-Harvest Handling of Fruits, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Shengmin Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Ministry of Agriculture and Rural Affairs Key Laboratory of Post-Harvest Handling of Fruits, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China.
| |
Collapse
|
20
|
Tan J, Xu Y, Deng Q, Li Y, Yin Y, Liang X, Luo Y. Agricultural waste to environmental purifier: Application and mechanism of aminated pomelo peel for adsorption of anionic dyes and Cr(VI). INDUSTRIAL CROPS AND PRODUCTS 2024; 218:118960. [DOI: 10.1016/j.indcrop.2024.118960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
21
|
Chuang KC, Chiang YC, Chang YJ, Lee YC, Chiang PY. Evaluation of Antioxidant and Anti-Glycemic Characteristics of Aged Lemon Peel Induced by Three Thermal Browning Models: Hot-Air Drying, High Temperature and Humidity, and Steam-Drying Cycle. Foods 2024; 13:3053. [PMID: 39410088 PMCID: PMC11475740 DOI: 10.3390/foods13193053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 09/19/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
This study evaluated the antioxidant and anti-glycemic properties of black lemon Chenpi (BLC) (Citrus limon (L.) Burm. f. cv. Eureka), processed using three thermal browning models-hot-air drying (HAL), high temperature and humidity, and steam-drying cycle (SCL)-and compared them to fresh lemon peel and commercial Chenpi. The moisture-assisted aging technology (MAAT) is an environmentally friendly process for inducing browning reactions in the lemon peel, enhancing its functional properties. Our results demonstrated significant increases in sucrose, total flavonoid content, and antioxidant capacities (2,2-diphenylpicrylhydrazyl: 12.86 Trolox/g dry weight; ferric reducing antioxidant power: 14.92 mg Trolox/g dry weight) with the MAAT-HAL model. The MAAT-SCL model significantly improved the browning degree, fructose, total polyphenol content, narirutin, and 5-hydroxymethylfurfural synthesis (p < 0.05). Additionally, aged lemon peel exhibited potential α-glucosidase inhibitory activity (28.28%), suggesting its role in blood sugar regulation after meals. The multivariate analysis (principal component and heatmap analyses) indicated that BLC processed using the MAAT-SCL model exhibited similarities to commercial Chenpi, indicating its potential for functional food development. Our results indicate that MAAT-SCL can enhance the economic value of lemon by-products, offering a sustainable and functional alternative to traditional Chenpi.
Collapse
Affiliation(s)
| | | | | | | | - Po-Yuan Chiang
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung 40227, Taiwan
| |
Collapse
|
22
|
Golowczyc M, Gomez-Zavaglia A. Food Additives Derived from Fruits and Vegetables for Sustainable Animal Production and Their Impact in Latin America: An Alternative to the Use of Antibiotics. Foods 2024; 13:2921. [PMID: 39335850 PMCID: PMC11431016 DOI: 10.3390/foods13182921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 09/12/2024] [Accepted: 09/14/2024] [Indexed: 09/30/2024] Open
Abstract
The production of healthy animal-derived food entails the effective control of foodborne pathogens and strategies to mitigate microbial threats during rearing. Antibiotics have been traditionally employed in animal farming to manage bacterial infections. However, the prohibition of antibiotic growth promoters in livestock farming has brought significant changes in animal production practices. Although antibiotics are now restricted to treating and preventing bacterial infections, their overuse has caused serious public health issues, including antibiotic resistance and the presence of antibiotic residues in food and wastewater. Therefore, sustainable animal production is crucial in reducing the spread of antibiotic-resistant bacteria. Annually, 40-50% of fruit and vegetable production is discarded worldwide. These discards present significant potential for extracting value-added ingredients, which can reduce costs, decrease waste, and enhance the food economy. This review highlights the negative impacts of antibiotic use in livestock farming and stresses the importance of analyzing the challenges and safety concerns of extracting value-added ingredients from fruit and vegetable co-products at an industrial scale. It also explores the current trends in reducing antibiotic use in livestock, with a focus on Latin American contexts. Finally, the suitability of using value-added ingredients derived from fruit and vegetable co-products for animal feeds is also discussed.
Collapse
Affiliation(s)
| | - Andrea Gomez-Zavaglia
- Center for Research and Development in Food Cryotechnology (CIDCA), CCT-CONICET La Plata, La Plata RA1900, Argentina;
| |
Collapse
|
23
|
Wei C, Zhang M, Cheng J, Tian J, Yang G, Jin Y. Plant-derived exosome-like nanoparticles - from Laboratory to factory, a landscape of application, challenges and prospects. Crit Rev Food Sci Nutr 2024:1-19. [PMID: 39127967 DOI: 10.1080/10408398.2024.2388888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2024]
Abstract
Recent decades have witnessed substantial interest in extracellular vesicles (EVs) due to their crucial role in intercellular communication across various biological processes. Among these, plant-derived exosome-like Nanoparticles (ELNs) have rapidly gained recognition as highly promising candidates. ELNs, characterized by diverse sources, cost-effective production, and straightforward isolation, present a viable option for preventing and treating numerous diseases. Furthermore, ELNs hold significant potential as carriers for natural or engineered drugs, enhancing their attractiveness and drawing considerable attention in science and medicine. However, translating ELNs into clinical applications poses several challenges. This study explores these challenges and offers critical insights into potential research directions. Additionally, it provides a forward-looking analysis of the industrial prospects for ELNs. With their broad applications and remarkable potential, ELNs stand at the forefront of biomedical innovation, poised to revolutionize disease management and drug delivery paradigms in the coming years.
Collapse
Affiliation(s)
- Chaozhi Wei
- Biomanufacturing Research Institute of Xianghu Laboratory, Hangzhou, China
| | - Mengyu Zhang
- Biomanufacturing Research Institute of Xianghu Laboratory, Hangzhou, China
| | - Jintao Cheng
- Biomanufacturing Research Institute of Xianghu Laboratory, Hangzhou, China
| | - Jinzhong Tian
- Biomanufacturing Research Institute of Xianghu Laboratory, Hangzhou, China
| | - Guiling Yang
- Biomanufacturing Research Institute of Xianghu Laboratory, Hangzhou, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yuanxiang Jin
- Biomanufacturing Research Institute of Xianghu Laboratory, Hangzhou, China
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
24
|
Bas TG. Bioactivity and Bioavailability of Carotenoids Applied in Human Health: Technological Advances and Innovation. Int J Mol Sci 2024; 25:7603. [PMID: 39062844 PMCID: PMC11277215 DOI: 10.3390/ijms25147603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/28/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
This article presents a groundbreaking perspective on carotenoids, focusing on their innovative applications and transformative potential in human health and medicine. Research jointly delves deeper into the bioactivity and bioavailability of carotenoids, revealing therapeutic uses and technological advances that have the potential to revolutionize medical treatments. We explore pioneering therapeutic applications in which carotenoids are used to treat chronic diseases such as cancer, cardiovascular disease, and age-related macular degeneration, offering novel protective mechanisms and innovative therapeutic benefits. Our study also shows cutting-edge technological innovations in carotenoid extraction and bioavailability, including the development of supramolecular carriers and advanced nanotechnology, which dramatically improve the absorption and efficacy of these compounds. These technological advances not only ensure consistent quality but also tailor carotenoid therapies to each patient's health needs, paving the way for personalized medicine. By integrating the latest scientific discoveries and innovative techniques, this research provides a prospective perspective on the clinical applications of carotenoids, establishing a new benchmark for future studies in this field. Our findings underscore the importance of optimizing carotenoid extraction, administration, bioactivity, and bioavailability methods to develop more effective, targeted, and personalized treatments, thus offering visionary insight into their potential in modern medical practices.
Collapse
Affiliation(s)
- Tomas Gabriel Bas
- Escuela de Ciencias Empresariales, Universidad Catolica del Norte, Coquimbo 1780000, Chile
| |
Collapse
|
25
|
Cirrincione F, Ferranti P, Ferrara A, Romano A. A critical evaluation on the valorization strategies to reduce and reuse orange waste in bakery industry. Food Res Int 2024; 187:114422. [PMID: 38763672 DOI: 10.1016/j.foodres.2024.114422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/21/2024] [Accepted: 04/22/2024] [Indexed: 05/21/2024]
Abstract
Tons of orange by-products (OBPs) are generated during industrial orange processing. Currently, OBPs management is challenging due to their high amounts, physico-chemical characteristics (high water content, low pH, presence of essential oils) and seasonal nature of the production. Whereas agro-industrial OBPs can be highly valuable due to their abundant sources of bioactive compounds, which can add value to novel bakery products (e.g. bread, biscuits, cakes). This review covers the most recent research issues linked to the use of OBPs in bakery products, with a focus on available stabilization methods and on the main challenges to designing improved products. The application of OBPs improved the nutritional quality of bakery products, offering interesting sustainability benefits but also critical challenges. The valorization of OBPs may open new routes for the development of new natural ingredients for the food industry and lower food processing waste.
Collapse
Affiliation(s)
- Federica Cirrincione
- Department of Agricultural Sciences, University of Naples Federico II, Piazza Carlo di Borbone, 80055 Portici (Naples), Italy
| | - Pasquale Ferranti
- Department of Agricultural Sciences, University of Naples Federico II, Piazza Carlo di Borbone, 80055 Portici (Naples), Italy
| | - Alessandra Ferrara
- Department of Agricultural Sciences, University of Naples Federico II, Piazza Carlo di Borbone, 80055 Portici (Naples), Italy
| | - Annalisa Romano
- Department of Agricultural Sciences, University of Naples Federico II, Piazza Carlo di Borbone, 80055 Portici (Naples), Italy.
| |
Collapse
|
26
|
Liu X, Wang B, Tang S, Yue Y, Xi W, Tan X, Li G, Bai J, Huang L. Modification, biological activity, applications, and future trends of citrus fiber as a functional component: A comprehensive review. Int J Biol Macromol 2024; 269:131798. [PMID: 38677689 DOI: 10.1016/j.ijbiomac.2024.131798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 03/06/2024] [Accepted: 03/26/2024] [Indexed: 04/29/2024]
Abstract
Citrus fiber, a by-product of citrus processing that has significant nutritional and bioactive properties, has gained attention as a promising raw material with extensive developmental potential in the food, pharmaceutical, and feed industries. However, the lack of in-depth understanding regarding citrus fiber, including its structure, modification, mechanism of action, and potential applications is holding back its development and utilization in functional foods and drugs. This review explores the status of extraction methods and modifications applied to citrus fiber to augment its health benefits. With the aim of introducing readers to the potential health benefits of citrus fibers, we have placed special emphasis on their regulatory mechanisms in the context of various conditions, including type 2 diabetes mellitus, cardiovascular disease, obesity, and cancer. Furthermore, this review highlights the applications and prospects of citrus fiber, aiming to provide a theoretical basis for the utilization and exploration of this valuable resource.
Collapse
Affiliation(s)
- Xin Liu
- Citrus Research Institute, Southwest University, Chongqing 400700, China; National Citrus Engineering Research Center, Chongqing 400700, China
| | - Botao Wang
- Bloomage Biotechnology CO, LTD., Jinan 250000, China
| | - Sheng Tang
- Citrus Research Institute, Southwest University, Chongqing 400700, China; National Citrus Engineering Research Center, Chongqing 400700, China
| | - Yuanyuan Yue
- Citrus Research Institute, Southwest University, Chongqing 400700, China; School of Food Science and Technology, Shihezi University, Shihezi 832000, China
| | - Wenxia Xi
- Citrus Research Institute, Southwest University, Chongqing 400700, China; School of Food Science and Technology, Shihezi University, Shihezi 832000, China
| | - Xiang Tan
- Citrus Research Institute, Southwest University, Chongqing 400700, China; National Citrus Engineering Research Center, Chongqing 400700, China
| | - Guijie Li
- Citrus Research Institute, Southwest University, Chongqing 400700, China; National Citrus Engineering Research Center, Chongqing 400700, China
| | - Junying Bai
- Citrus Research Institute, Southwest University, Chongqing 400700, China; National Citrus Engineering Research Center, Chongqing 400700, China.
| | - Linhua Huang
- Citrus Research Institute, Southwest University, Chongqing 400700, China; National Citrus Engineering Research Center, Chongqing 400700, China.
| |
Collapse
|
27
|
Psakis G, Lia F, Valdramidis VP, Gatt R. Exploring hydrodynamic cavitation for citrus waste valorisation in Malta: from beverage enhancement to potato sprouting suppression and water remediation. Front Chem 2024; 12:1411727. [PMID: 38860238 PMCID: PMC11163080 DOI: 10.3389/fchem.2024.1411727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 05/13/2024] [Indexed: 06/12/2024] Open
Abstract
Introduction: The endorsement of circular economy, zero-waste, and sustainable development by the EU and UN has promoted non-thermal technologies in agro-food and health industries. While northern European countries rapidly integrate these technologies, their implementation in Mediterranean food-supply chains remains uncertain. Aims: We evaluated the usefulness of hydrodynamic cavitation (HC) for valorizing orange peel waste in the fresh orange juice supply chain of the Maltese Islands. Method: We assessed: a) the effectiveness of HC in extracting bioactive compounds from orange peels (Citrus sinensis) in water (35°C) and 70% (v/v) ethanol (-10°C) over time, compared to conventional maceration, and b) the potato sprouting-suppression and biosorbent potential of the processed peel for copper, nitrate, and nitrite binding. Results: Prolonged HC-assisted extractions in water (high cavitation numbers), damaged and/or oxidized bioactive compounds, with flavonoids and ascorbic acid being more sensitive, whereas cold ethanolic extractions preserved the compounds involved in radical scavenging. HC-processing adequately modified the peel, enabling its use as a potato suppressant and biosorbent for copper, nitrate, and nitrite. Conclusion: Coupling HC-assisted bioactive compound extractions with using leftover peel for potato-sprouting prevention and as biosorbent for water pollutant removal offers a straightforward approach to promoting circular economic practices and sustainable agriculture in Malta.
Collapse
Affiliation(s)
- Georgios Psakis
- Institute of Applied Sciences (IAS), The Malta College of Arts, Science and Technology (MCAST), Paola, Malta
- Metamaterials Unit, Faculty of Science, University of Malta (UM), Msida, Malta
| | - Frederick Lia
- Institute of Applied Sciences (IAS), The Malta College of Arts, Science and Technology (MCAST), Paola, Malta
- Metamaterials Unit, Faculty of Science, University of Malta (UM), Msida, Malta
| | - Vasilis P. Valdramidis
- Laboratory of Food Chemistry, Department of Chemistry, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | - Ruben Gatt
- Metamaterials Unit, Faculty of Science, University of Malta (UM), Msida, Malta
- Centre for Molecular Medicine and Biobanking, University of Malta (UM), Msida, Malta
| |
Collapse
|
28
|
Munir H, Yaqoob S, Awan KA, Imtiaz A, Naveed H, Ahmad N, Naeem M, Sultan W, Ma Y. Unveiling the Chemistry of Citrus Peel: Insights into Nutraceutical Potential and Therapeutic Applications. Foods 2024; 13:1681. [PMID: 38890908 PMCID: PMC11172398 DOI: 10.3390/foods13111681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/18/2024] [Accepted: 05/22/2024] [Indexed: 06/20/2024] Open
Abstract
The recent millennium has witnessed a notable shift in consumer focus towards natural products for addressing lifestyle-related disorders, driven by their safety and cost-effectiveness. Nutraceuticals and functional foods play an imperative role by meeting nutritional needs and offering medicinal benefits. With increased scientific knowledge and awareness, the significance of a healthy lifestyle, including diet, in reducing disease risk is widely acknowledged, facilitating access to a diverse and safer diet for longevity. Plant-based foods rich in phytochemicals are increasingly popular and effectively utilized in disease management. Agricultural waste from plant-based foods is being recognized as a valuable source of nutraceuticals for dietary interventions. Citrus peels, known for their diverse flavonoids, are emerging as a promising health-promoting ingredient. Globally, citrus production yields approximately 15 million tons of by-products annually, highlighting the substantial potential for utilizing citrus waste in phyto-therapeutic and nutraceutical applications. Citrus peels are a rich source of flavonoids, with concentrations ranging from 2.5 to 5.5 g/100 g dry weight, depending on the citrus variety. The most abundant flavonoids in citrus peel include hesperidin and naringin, as well as essential oils rich in monoterpenes like limonene. The peel extracts exhibit high antioxidant capacity, with DPPH radical scavenging activities ranging from 70 to 90%, comparable to synthetic antioxidants like BHA and BHT. Additionally, the flavonoids present in citrus peel have been found to have antioxidant properties, which can help reduce oxidative stress by 30% and cardiovascular disease by 25%. Potent anti-inflammatory effects have also been demonstrated, reducing inflammatory markers such as IL-6 and TNF-α by up to 40% in cell culture studies. These findings highlight the potential of citrus peel as a valuable source of nutraceuticals in diet-based therapies.
Collapse
Affiliation(s)
- Hussan Munir
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (H.M.); (S.Y.)
- University Institute of Food Science and Technology, University of Lahore, Lahore 54590, Pakistan
| | - Sanabil Yaqoob
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (H.M.); (S.Y.)
- Department of Food Science and Technology, Faculty of Science and Technology, University of Central Punjab, Lahore 54000, Pakistan; (K.A.A.); (H.N.); (W.S.)
| | - Kanza Aziz Awan
- Department of Food Science and Technology, Faculty of Science and Technology, University of Central Punjab, Lahore 54000, Pakistan; (K.A.A.); (H.N.); (W.S.)
| | - Aysha Imtiaz
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 03802, Pakistan;
| | - Hiba Naveed
- Department of Food Science and Technology, Faculty of Science and Technology, University of Central Punjab, Lahore 54000, Pakistan; (K.A.A.); (H.N.); (W.S.)
| | - Naveed Ahmad
- Joint Center for Single Cell Biology, Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China;
| | - Muhammad Naeem
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China;
| | - Waleed Sultan
- Department of Food Science and Technology, Faculty of Science and Technology, University of Central Punjab, Lahore 54000, Pakistan; (K.A.A.); (H.N.); (W.S.)
| | - Yongkun Ma
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (H.M.); (S.Y.)
| |
Collapse
|
29
|
Nova P, Gomes AM, Costa-Pinto AR. It comes from the sea: macroalgae-derived bioactive compounds with anti-cancer potential. Crit Rev Biotechnol 2024; 44:462-476. [PMID: 36842998 DOI: 10.1080/07388551.2023.2174068] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 01/14/2023] [Indexed: 02/28/2023]
Abstract
Nature derived compounds represent a valuable source of bioactive molecules with enormous potential. The sea is one of the richest environments, full of skilled organisms, where algae stand out due to their unique characteristics. Marine macroalgae adapt their phenotypic characteristics, such as chemical composition, depending on the environmental conditions where they live. The compounds produced by these organisms show tremendous potential to be used in the biomedical field, due to their antioxidant, anti-inflammatory, immunomodulatory, and anti-cancer properties.Cancer is one of the deadliest diseases in the world, and the lack of effective treatments highlights the urgent need for the development of new therapeutic strategies. This review provides an overview of the current advances regarding the anti-cancer activity of the three major groups of marine macroalgae, i.e., red algae (Rhodophyta), brown algae (Phaeophyceae), and green algae (Chlorophyta) on pancreatic, lung, breast, cervical, colorectal, liver, and gastric cancers as well as leukemia and melanoma. In addition, future perspectives, and limitations regarding this field of work are also discussed.
Collapse
Affiliation(s)
- Paulo Nova
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina Laboratório Associado, Escola Superior de Biotecnologia, Porto, Portugal
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Ana Maria Gomes
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina Laboratório Associado, Escola Superior de Biotecnologia, Porto, Portugal
| | - Ana R Costa-Pinto
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IPATIMUP - Instituto de Patologia Molecular e Imunologia da Universidade do Porto, Porto, Portugal
| |
Collapse
|
30
|
Sadeghi A, Rajabiyan A, Nabizade N, Meygoli Nezhad N, Zarei-Ahmady A. Seaweed-derived phenolic compounds as diverse bioactive molecules: A review on identification, application, extraction and purification strategies. Int J Biol Macromol 2024; 266:131147. [PMID: 38537857 DOI: 10.1016/j.ijbiomac.2024.131147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/22/2024] [Accepted: 03/24/2024] [Indexed: 04/08/2024]
Abstract
Seaweed, a diverse group of marine macroalgae, has emerged as a rich source of bioactive compounds with numerous health-promoting properties. Among these, phenolic compounds have garnered significant attention for their diverse therapeutic applications. This review examines the methodologies employed in the extraction and purification of phenolic compounds from seaweed, emphasizing their importance in unlocking the full potential of these oceanic treasures. The article provides a comprehensive overview of the structural diversity and biological activities of seaweed-derived phenolics, elucidating their antioxidant, anti-inflammatory, and anticancer properties. Furthermore, it explores the impact of extraction techniques, including conventional methods and modern green technologies, on the yield and quality of phenolic extracts. The purification strategies for isolating specific phenolic compounds are also discussed, shedding light on the challenges and advancements in this field. Additionally, the review highlights the potential applications of seaweed-derived phenolics in various industries, such as pharmaceuticals, cosmetics, and functional foods, underscoring the economic value of these compounds. Finally, future perspectives and research directions are proposed to encourage continued exploration of seaweed phenolics, fostering a deeper understanding of their therapeutic potential and promoting sustainable practices in the extraction and purification processes. This comprehensive review serves as a valuable resource for researchers, industry professionals, and policymakers interested in harnessing the untapped potential of phenolic compounds from seaweed for the betterment of human health and environmental sustainability.
Collapse
Affiliation(s)
- Abbas Sadeghi
- Department of Basic Science, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
| | - Ali Rajabiyan
- Marine Pharmaceutical Science Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Nafise Nabizade
- Department of Medicinal Chemistry, Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Najme Meygoli Nezhad
- Marine Pharmaceutical Science Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Amanollah Zarei-Ahmady
- Marine Pharmaceutical Science Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Department of Medicinal Chemistry, Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
31
|
Jin H, Zhao H, Shi R, Fan F, Cheng W. Unlocking the Therapeutic Potential of a Manila Clam-Derived Antioxidant Peptide: Insights into Mechanisms of Action and Cytoprotective Effects against Oxidative Stress. Foods 2024; 13:1160. [PMID: 38672836 PMCID: PMC11049014 DOI: 10.3390/foods13081160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/23/2024] [Accepted: 04/06/2024] [Indexed: 04/28/2024] Open
Abstract
Reactive oxygen species (ROS) are implicated in various pathological conditions due to their ability to induce oxidative damage to cellular components. In this study, we investigated the antioxidant properties of a peptide isolated from the hydrolysate of Manila clam (Ruditapes philippinarum) muscle. Purification steps yielded RPTE2-2-4, exhibiting potent scavenging activities against DPPH•, HO•, and O2•-, akin to Vitamin C. Structural analysis showed that the isolated peptide, LFKKNLLTL, exhibited characteristics associated with antioxidant activity, including a short peptide length and the presence of aromatic and hydrophobic amino acid residues. Moreover, our study demonstrated the cytoprotective effects of the peptide against H2O2-induced oxidative stress in HepG2 cells. Pretreatment with the peptide resulted in a dose-dependent reduction in intracellular ROS levels and elevation of glutathione (GSH) levels, indicating its ability to modulate cellular defense mechanisms against oxidative damage. Furthermore, the peptide stimulated the expression of the cytoprotective enzyme heme oxygenase-1 (HO-1), further reinforcing its antioxidant properties. Overall, our findings highlight the potential of the Manila clam-derived peptide as a natural antioxidant agent with therapeutic implications for oxidative stress-related diseases. Further investigation into its mechanisms of action and in vivo efficacy is warranted to validate its therapeutic potential.
Collapse
Affiliation(s)
- Hong Jin
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (H.J.); (H.Z.)
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Huishuang Zhao
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (H.J.); (H.Z.)
| | - Rui Shi
- ChiBi Public Inspection and Testing Center, Xianning 437300, China;
| | - Fengjiao Fan
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China
| | - Wenjian Cheng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (H.J.); (H.Z.)
| |
Collapse
|
32
|
Jamtsho T, Yeshi K, Perry MJ, Loukas A, Wangchuk P. Approaches, Strategies and Procedures for Identifying Anti-Inflammatory Drug Lead Molecules from Natural Products. Pharmaceuticals (Basel) 2024; 17:283. [PMID: 38543070 PMCID: PMC10974486 DOI: 10.3390/ph17030283] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 02/17/2024] [Accepted: 02/20/2024] [Indexed: 04/28/2025] Open
Abstract
Natural products (NPs) have played a vital role in human survival for millennia, particularly for their medicinal properties. Many traditional medicine practices continue to utilise crude plants and animal products for treating various diseases, including inflammation. In contrast, contemporary medicine focuses more on isolating drug-lead compounds from NPs to develop new and better treatment drugs for treating inflammatory disorders such as inflammatory bowel diseases. There is an ongoing search for new drug leads as there is still no cure for many inflammatory conditions. Various approaches and technologies are used in drug discoveries from NPs. This review comprehensively focuses on anti-inflammatory small molecules and describes the key strategies in identifying, extracting, fractionating and isolating small-molecule drug leads. This review also discusses the (i) most used approaches and recently available techniques, including artificial intelligence (AI), (ii) machine learning, and computational approaches in drug discovery; (iii) provides various animal models and cell lines used in in-vitro and in-vivo assessment of the anti-inflammatory potential of NPs.
Collapse
Affiliation(s)
- Tenzin Jamtsho
- College of Public Health, Medical, and Veterinary Sciences (CPHMVS), Cairns Campus, James Cook University, Cairns, QLD 4878, Australia; (K.Y.); (M.J.P.)
- Australian Institute of Tropical Health, and Medicine (AITHM), Cairns Campus, James Cook University, Cairns, QLD 4878, Australia;
| | - Karma Yeshi
- College of Public Health, Medical, and Veterinary Sciences (CPHMVS), Cairns Campus, James Cook University, Cairns, QLD 4878, Australia; (K.Y.); (M.J.P.)
- Australian Institute of Tropical Health, and Medicine (AITHM), Cairns Campus, James Cook University, Cairns, QLD 4878, Australia;
| | - Matthew J. Perry
- College of Public Health, Medical, and Veterinary Sciences (CPHMVS), Cairns Campus, James Cook University, Cairns, QLD 4878, Australia; (K.Y.); (M.J.P.)
- Australian Institute of Tropical Health, and Medicine (AITHM), Cairns Campus, James Cook University, Cairns, QLD 4878, Australia;
| | - Alex Loukas
- Australian Institute of Tropical Health, and Medicine (AITHM), Cairns Campus, James Cook University, Cairns, QLD 4878, Australia;
| | - Phurpa Wangchuk
- College of Public Health, Medical, and Veterinary Sciences (CPHMVS), Cairns Campus, James Cook University, Cairns, QLD 4878, Australia; (K.Y.); (M.J.P.)
- Australian Institute of Tropical Health, and Medicine (AITHM), Cairns Campus, James Cook University, Cairns, QLD 4878, Australia;
| |
Collapse
|
33
|
Rodrigues CV, Pintado M. Hesperidin from Orange Peel as a Promising Skincare Bioactive: An Overview. Int J Mol Sci 2024; 25:1890. [PMID: 38339165 PMCID: PMC10856249 DOI: 10.3390/ijms25031890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/28/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024] Open
Abstract
The pursuit for better skin health, driven by collective and individual perceptions, has led to the demand for sustainable skincare products. Environmental factors and lifestyle choices can accelerate skin aging, causing issues like inflammation, wrinkles, elasticity loss, hyperpigmentation, and dryness. The skincare industry is innovating to meet consumers' requests for cleaner and natural options. Simultaneously, environmental issues concerning waste generation have been leading to sustainable strategies based on the circular economy. A noteworthy solution consists of citrus by-product valorization, as such by-products can be used as a source of bioactive molecules. Citrus processing, particularly, generates substantial waste amounts (around 50% of the whole fruit), causing unprecedented environmental burdens. Hesperidin, a flavonoid abundant in orange peels, is considered to hold immense potential for clean skin health product applications due to its antioxidant, anti-inflammatory, and anticarcinogenic properties. This review explores hesperidin extraction and purification methodologies as well as key skincare application areas: (i) antiaging and skin barrier enhancement, (ii) UV radiation-induced damage, (iii) hyperpigmentation and depigmentation conditions, (iv) wound healing, and (v) skin cancer and other cutaneous diseases. This work's novelty lies in the comprehensive coverage of hesperidin's promising skincare applications while also demonstrating its potential as a sustainable ingredient from a circular economy approach.
Collapse
Affiliation(s)
| | - Manuela Pintado
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal;
| |
Collapse
|
34
|
Aiello F, Caputo P, Oliviero Rossi C, Restuccia D, Spizzirri UG. Formulation of Antioxidant Gummies Based on Gelatin Enriched with Citrus Fruit Peels Extract. Foods 2024; 13:320. [PMID: 38275689 PMCID: PMC10815181 DOI: 10.3390/foods13020320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/17/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
In this work, the peels of red and blonde oranges as well as lemons were efficiently (5.75-9.65% yield) extracted by hydroalcoholic solution with ultrasound assistance and employed as active molecule sources in the preparation of functional gummies. Antioxidant performances of the hydroalcoholic extracts were characterized by colorimetric assays, whereas LC-HRMS analyses identified the main bioactive compounds (phenolic acids and flavonoids). The highest scavenging activity was recorded for lemon extract in an aqueous environment (IC50 = 0.081 mg mL-1). An ecofriendly grafting procedure was performed to anchor polyphenols to gelatin chains, providing macromolecular systems characterized by thermal analysis and antioxidant properties. Scavenger abilities (IC50 = 0.201-0.454 mg mL-1) allowed the employment of the conjugates as functional ingredients in the preparation of gummies with remarkable antioxidant and rheological properties over time (14 days). These findings confirmed the possible employment of highly polluting wastes as valuable sources of bioactive compounds for functional gummies preparation.
Collapse
Affiliation(s)
- Francesca Aiello
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (F.A.); (D.R.)
| | - Paolino Caputo
- Department of Chemistry and Chemical Technologies & UdR INSTM, University of Calabria, 87036 Rende, Italy; (P.C.); (C.O.R.)
| | - Cesare Oliviero Rossi
- Department of Chemistry and Chemical Technologies & UdR INSTM, University of Calabria, 87036 Rende, Italy; (P.C.); (C.O.R.)
| | - Donatella Restuccia
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (F.A.); (D.R.)
| | | |
Collapse
|
35
|
Hasan MM, Islam MR, Haque AR, Kabir MR, Khushe KJ, Hasan SMK. Trends and challenges of fruit by-products utilization: insights into safety, sensory, and benefits of the use for the development of innovative healthy food: a review. BIORESOUR BIOPROCESS 2024; 11:10. [PMID: 38647952 PMCID: PMC10991904 DOI: 10.1186/s40643-023-00722-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/21/2023] [Indexed: 04/25/2024] Open
Abstract
A significant portion of the human diet is comprised of fruits, which are consumed globally either raw or after being processed. A huge amount of waste and by-products such as skins, seeds, cores, rags, rinds, pomace, etc. are being generated in our homes and agro-processing industries every day. According to previous statistics, nearly half of the fruits are lost or discarded during the entire processing chain. The concern arises when those wastes and by-products damage the environment and simultaneously cause economic losses. There is a lot of potential in these by-products for reuse in a variety of applications, including the isolation of valuable bioactive ingredients and their application in developing healthy and functional foods. The development of novel techniques for the transformation of these materials into marketable commodities may offer a workable solution to this waste issue while also promoting sustainable economic growth from the bio-economic viewpoint. This approach can manage waste as well as add value to enterprises. The goal of this study is twofold based on this scenario. The first is to present a brief overview of the most significant bioactive substances found in those by-products. The second is to review the current status of their valorization including the trends and techniques, safety assessments, sensory attributes, and challenges. Moreover, specific attention is drawn to the future perspective, and some solutions are discussed in this report.
Collapse
Affiliation(s)
- Md Mehedi Hasan
- Department of Food Processing and Preservation, Hajee Mohammad Danesh Science and Technology University (HSTU), Dinajpur, 5200, Bangladesh
| | - Md Rakibul Islam
- Department of Food Processing and Preservation, Hajee Mohammad Danesh Science and Technology University (HSTU), Dinajpur, 5200, Bangladesh
| | - Ahmed Redwan Haque
- Department of Food Processing and Preservation, Hajee Mohammad Danesh Science and Technology University (HSTU), Dinajpur, 5200, Bangladesh
| | - Md Raihan Kabir
- Department of Food Processing and Preservation, Hajee Mohammad Danesh Science and Technology University (HSTU), Dinajpur, 5200, Bangladesh
| | - Khursheda Jahan Khushe
- Department of Food Science and Nutrition, Hajee Mohammad Danesh Science and Technology University (HSTU), Dinajpur, 5200, Bangladesh
| | - S M Kamrul Hasan
- Department of Food Processing and Preservation, Hajee Mohammad Danesh Science and Technology University (HSTU), Dinajpur, 5200, Bangladesh.
| |
Collapse
|
36
|
Zia M, Parveen S, Shafiq N, Rashid M, Farooq A, Dauelbait M, Shahab M, Salamatullah AM, Brogi S, Bourhia M. Exploring Citrus sinensis Phytochemicals as Potential Inhibitors for Breast Cancer Genes BRCA1 and BRCA2 Using Pharmacophore Modeling, Molecular Docking, MD Simulations, and DFT Analysis. ACS OMEGA 2024; 9:2161-2182. [PMID: 38250382 PMCID: PMC10795055 DOI: 10.1021/acsomega.3c05098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 12/12/2023] [Accepted: 12/19/2023] [Indexed: 01/23/2024]
Abstract
BACKGROUND Structure-activity relationship (SAR) is considered to be an effective in silico approach when discovering potential antagonists for breast cancer due to gene mutation. Major challenges are faced by conventional SAR in predicting novel antagonists due to the discovery of diverse antagonistic compounds. Methodologyand Results: In predicting breast cancer antagonists, a multistep screening of phytochemicals isolated from the seeds of the Citrus sinensis plant was applied using feasible complementary methodologies. A three-dimensional quantitative structure-activity relationship (3D-QSAR) model was developed through the Flare project, in which conformational analysis, pharmacophore generation, and compound alignment were done. Ten hit compounds were obtained through the development of the 3D-QSAR model. For exploring the mechanism of action of active compounds against cocrystal inhibitors, molecular docking analysis was done through Molegro software (MVD) to identify lead compounds. Three new proteins, namely, 1T15, 3EU7, and 1T29, displayed the best Moldock scores. The quality of the docking study was assessed by a molecular dynamics simulation. Based on binding affinities to the receptor in the docking studies, three lead compounds (stigmasterol P8, epoxybergamottin P28, and nobiletin P29) were obtained, and they passed through absorption, distribution, metabolism, and excretion (ADME) studies via the SwissADME online service, which proved that P28 and P29 were the most active allosteric inhibitors with the lowest toxicity level against breast cancer. Then, density functional theory (DFT) studies were performed to measure the active compound's reactivity, hardness, and softness with the help of Gaussian 09 software. CONCLUSIONS This multistep screening of phytochemicals revealed high-reliability antagonists of breast cancer by 3D-QSAR using flare, docking analysis, and DFT studies. The present study helps in providing a proper guideline for the development of novel inhibitors of BRCA1 and BRCA2.
Collapse
Affiliation(s)
- Mehreen Zia
- Synthetic
and Natural Products Discovery (SNPD) Laboratory, Department of Chemistry, Government College Women University, Faisalabad 38000, Pakistan
| | - Shagufta Parveen
- Synthetic
and Natural Products Discovery (SNPD) Laboratory, Department of Chemistry, Government College Women University, Faisalabad 38000, Pakistan
| | - Nusrat Shafiq
- Synthetic
and Natural Products Discovery (SNPD) Laboratory, Department of Chemistry, Government College Women University, Faisalabad 38000, Pakistan
| | - Maryam Rashid
- Synthetic
and Natural Products Discovery (SNPD) Laboratory, Department of Chemistry, Government College Women University, Faisalabad 38000, Pakistan
| | - Ariba Farooq
- Department
of Chemistry, University of Lahore, Lahore 54000, Pakistan
| | - Musaab Dauelbait
- Department
of Scientific Translation, Faculty of Translation, University of Bahri, Khartoum 11111, Sudan
| | - Muhammad Shahab
- State
Key Laboratories of Chemical Resources Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Ahmad Mohammad Salamatullah
- Department
of Food Science & Nutrition, College of Food and Agricultural
Sciences, King Saud University, 11 P.O. Box 2460, Riyadh 11451, Saudi Arabia
| | - Simone Brogi
- Department
of Pharmacy, Pisa University, Pisa 56124, Italy
| | - Mohammed Bourhia
- Department
of Chemistry and Biochemistry, Faculty of Medicine and Pharmacy, Ibn Zohr University, Laayoune 70000, Morocco
- Laboratory
of Chemistry-Biochemistry, Environment, Nutrition, and Health, Faculty
of Medicine and Pharmacy, University Hassan
II, B. P. 5696, Casablanca, Morocco
| |
Collapse
|
37
|
Pulparambil A, Rasane P, Singh J, Kaur S, Bakshi M, Mahato DK, Kaur J, Gunjal M, Bhadariya V. Bioactive Compounds from Kinnow Processing Waste and their Associated Benefits: A Review. RECENT ADVANCES IN FOOD, NUTRITION & AGRICULTURE 2024; 15:103-114. [PMID: 38305311 DOI: 10.2174/012772574x271785231230174607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/27/2023] [Accepted: 11/03/2023] [Indexed: 02/03/2024]
Abstract
We have explored the expansive possibilities of kinnow peel, a frequently ignored by-product of the fruit processing industry, in this thorough analysis. The production of kinnow generates a significant amount of waste, including peel, seeds, and pulp. The disposal of this waste is a major environmental issue, as it can lead to pollution and greenhouse gas emissions. Due to the presence of bioactive substances that may be used in a variety of sectors, kinnow processing waste has the potential to provide a number of advantages. In the culinary, pharmaceutical, and cosmetic industries, the peel, seeds, and pulp from kinnow can be used as natural sources of antioxidants, aromatics, pectin, and dietary fibre. Utilizing kinnow waste promotes eco-innovation, increases sustainability, and aids in waste reduction. The development of a circular economy can be sped up with more study and commercialization of kinnow waste products. This analysis emphasises how important it is to understand and utilise the unrealized potential of agricultural byproducts, like kinnow peel.
Collapse
Affiliation(s)
- Adethi Pulparambil
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab, India, 144411
| | - Prasad Rasane
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab, India, 144411
| | - Jyoti Singh
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab, India, 144411
| | - Sawinder Kaur
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab, India, 144411
| | - Manish Bakshi
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab, India, 144411
| | - Dipendra Kumar Mahato
- CASS Food Research Centre, School of Exercise and Nutrition Science, Deakin University, Burwood VIC 3125, Australia
| | - Jaspreet Kaur
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab, India, 144411
| | - Mahendra Gunjal
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab, India, 144411
| | - Vishesh Bhadariya
- School of Chemical Engineering, Oklahoma State University, Stillwater, OK-74078, USA
| |
Collapse
|
38
|
Morshedy SA, Zahran SM, Sabir SA, El-Gindy YM. Effects of increasing levels of orange peel extract on kit growth, feed utilization, and some blood metabolites in the doe rabbits under heat stress conditions. Anim Biotechnol 2023; 34:1532-1543. [PMID: 35176970 DOI: 10.1080/10495398.2022.2038615] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
One of the most severe consequences of climate change on the rabbit production sector is heat stress. Dietary supplementation of phytochemicals could alleviate the negative impact of heat stress on rabbits. Thirty-six V-line rabbit does with average live body weight (LBW) of 2.672 ± 0.031 kg were randomly allocated into three experimental groups as follows: the control group (OPE0) and the OPE2.5 and OPE5 groups were orally administered orange peel extract (OPE) at doses of 2.5 and 5 mL/doe. The increasing OPE levels significantly improved LBW at partum (p = 0.002) and weaning (p = 0.004), daily and total feed intake from pregnancy until weaning (p = 0.007), daily milk yield per doe at 7th and 14th days (p ≤ 0.05), and milk efficiency (p = 0.001). Litter size at 1st-28th days, litter weight gain, survival rate, and kit weight gain at 21st-28th days of heat-stressed doe rabbits were significantly improved with OPE treatments. The treatment of OPE5 significantly decreased serum glucose, triglycerides, and very-low-density lipoprotein-cholesterol levels of rabbits. The increasing OPE levels decreased significantly total lipid and low-density lipoprotein-cholesterol levels and increased (p = 0.001) high-density lipoprotein-cholesterol concentration in heat-stressed rabbits. In conclusion, the treatment of OPE improved feed utilization, milk efficiency, and reproductive performance and alleviated the drastic impacts of heat stress on rabbits.
Collapse
Affiliation(s)
- Sabrin Abdelrahman Morshedy
- Fish and Animal Production Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, Egypt
| | - Soliman Mohamed Zahran
- Fish and Animal Production Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, Egypt
| | - Salem Abdulnabi Sabir
- Animal Production Department, Faculty of Agriculture, Omer Al-Mukhtar University, Bieda, Libya
| | - Yassmine Moemen El-Gindy
- Fish and Animal Production Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, Egypt
| |
Collapse
|
39
|
Sobhy M, Ali SS, Cui H, Lin L, El-Sapagh S. Exploring the potential of 1,8-cineole from cardamom oil against food-borne pathogens: Antibacterial mechanisms and its application in meat preservation. Microb Pathog 2023; 184:106375. [PMID: 37774989 DOI: 10.1016/j.micpath.2023.106375] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/13/2023] [Accepted: 09/27/2023] [Indexed: 10/01/2023]
Abstract
Food-borne pathogenic bacteria are a major public health concern globally. Traditional control methods using antibiotics have limitations, leading to the exploration of alternative strategies. Essential oils such as cardamom possess antimicrobial properties and have shown efficacy against food-borne pathogenic bacteria. The utilization of essential oils and their bioactive constituents in food preservation is a viable strategy to prolong the shelf-life of food products while ensuring their quality and safety. To the best of our knowledge, there are no studies that have utilized 1,8-cineole (the main active constituent of cardamom essential oil) as a preservative in meat, so this study might be the first to utilize 1,8-cineole as an antibacterial agent in meat preservation. The application of 1,8-cineole had a significant suppressive impact on the growth rate of Listeria monocytogenes, Staphylococcus aureus, Escherichia coli, and Salmonella Typhimurium in meat samples stored for 7 days at 4 °C. Additionally, the surface color of the meat samples was not negatively impacted by the application of 1,8-cineole. The minimum inhibitory concentration was 12.5-25 mg/ml, and the minimum bactericidal concentration was 25-50.0 mg/ml. The bacterial cell membrane may be the target of cardamom, causing leakage of intracellular proteins, ATP, and DNA. The obtained data in this study may pave a new avenue for using 1,8-cineole as a new perspective for dealing with this problem of food-borne pathogens and food preservation, such as meat.
Collapse
Affiliation(s)
- Mabrouk Sobhy
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China; Food Science and Technology Department, Faculty of Agriculture, Alexandria University, 21545, El-Shatby, Alexandria, Egypt
| | - Sameh S Ali
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China; Botany Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| | - Haiying Cui
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China.
| | - Lin Lin
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China.
| | - Shimaa El-Sapagh
- Botany Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| |
Collapse
|
40
|
Ashfaq R, Rasul A, Asghar S, Kovács A, Berkó S, Budai-Szűcs M. Lipid Nanoparticles: An Effective Tool to Improve the Bioavailability of Nutraceuticals. Int J Mol Sci 2023; 24:15764. [PMID: 37958750 PMCID: PMC10648376 DOI: 10.3390/ijms242115764] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 10/26/2023] [Accepted: 10/28/2023] [Indexed: 11/15/2023] Open
Abstract
Nano-range bioactive colloidal carrier systems are envisaged to overcome the challenges associated with treatments of numerous diseases. Lipid nanoparticles (LNPs), one of the extensively investigated drug delivery systems, not only improve pharmacokinetic parameters, transportation, and chemical stability of encapsulated compounds but also provide efficient targeting and reduce the risk of toxicity. Over the last decades, nature-derived polyphenols, vitamins, antioxidants, dietary supplements, and herbs have received more attention due to their remarkable biological and pharmacological health and medical benefits. However, their poor aqueous solubility, compromised stability, insufficient absorption, and accelerated elimination impede research in the nutraceutical sector. Owing to the possibilities offered by various LNPs, their ability to accommodate both hydrophilic and hydrophobic molecules and the availability of various preparation methods suitable for sensitive molecules, loading natural fragile molecules into LNPs offers a promising solution. The primary objective of this work is to explore the synergy between nature and nanotechnology, encompassing a wide range of research aimed at encapsulating natural therapeutic molecules within LNPs.
Collapse
Affiliation(s)
- Rabia Ashfaq
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary; (R.A.)
| | - Akhtar Rasul
- Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan; (A.R.); (S.A.)
| | - Sajid Asghar
- Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan; (A.R.); (S.A.)
| | - Anita Kovács
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary; (R.A.)
| | - Szilvia Berkó
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary; (R.A.)
| | - Mária Budai-Szűcs
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary; (R.A.)
| |
Collapse
|
41
|
Taghavi S, Abbasi Montazeri E, Zekavati R, Roomiani L, Saffarian P. Identification of a New Compound (4-Fluoro-2-Trifluoromethyl Imidazole) Extracted from a New Halophilic Bacillus aquimaris Strain Persiangulf TA2 Isolated from the Northern Persian Gulf with Broad-Spectrum Antimicrobial Effect. IRANIAN JOURNAL OF BIOTECHNOLOGY 2023; 21:e3359. [PMID: 38269196 PMCID: PMC10804065 DOI: 10.30498/ijb.2023.338788.3359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 05/18/2023] [Indexed: 01/26/2024]
Abstract
Background The unique ecosystem of the Persian Gulf has made it a rich source of natural antimicrobial compounds produced by various microorganisms, especially bacteria, which can be used in the treatment of infectious diseases, especially those of drug-resistant microbes. Objectives This study aimed to identify antimicrobial compounds in the bacteria isolated from the northern region of the Persian Gulf in Abadan (Chavibdeh port), Iran, for the first time. Materials and Methods Sampling was performed in the fall on November 15, 2019, from 10 different stations (water and sediment samples). The secondary metabolites of all isolates were extracted, and their antimicrobial effects were investigated. 16S ribosomal ribonucleic acid sequencing was used for the identification of the strains that showed the best inhibition against selected pathogens, and growth conditions were optimized for them. A fermentation medium in a volume of 5000 mL was prepared to produce the antimicrobial compound by the superior strain. The extracted antimicrobial compounds were identified using the gas chromatography-mass spectrometry technique. Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were determined for the superior strain. The effects of salinity, pH, and temperature on the production of antimicrobial compounds were determined by measuring the inhibitory region (mm) of methicillin-resistant Staphylococcus aureus (MRSA). Results Four new strains with antimicrobial properties (i.e., Halomonas sp. strain Persiangulf TA1, Bacillus aquimaris strain Persiangulf TA2, Salinicoccus roseus strain Persiangulf TA4, and Exiguobacterium profundum strain Persiangulf TA9) were identified. The optimum growth temperatures were determined at 37-30, 37, and 40 °C for TA1 and TA2, TA4, and TA9 strains, respectively. The optimum pH values for the four strains were 7, 6-7, 7.5, and 6.5-7.5, respectively. The optimal salt concentrations for the four strains were 15%, 2.5-5%, 7.5%, and 5%, respectively. The ethyl acetate extract of strain Persiangulf TA2 showed extensive antimicrobial activity against human pathogens (75%) and MRSA. The most abundant compound identified in TA2 extract was the new compound 4-fluoro-2-trifluoromethyl imidazole. The MBC and MIC for the ethyl acetate extract of strain TA2 were 20 and 5 mg. mL-1 (Staphylococcus aureus), 40 and 20 mg. mL-1 (MRSA, Escherichia coli, and Enterococcus faecalis), 40 and 10 mg. mL-1 Acinetobacter baumannii), and 80 and 40 mg. mL-1 (Staphylococcus epidermidis, Shigella sp., Bacillus cereus, and Klebsiella pneumoniae), respectively. The optimal conditions for antibiotic production by TA2 strain were 5% salt concentration, pH of 7, and temperature of 35 °C. Conclusion Newly detected natural compounds in TA2 strain due to superior antimicrobial activity even against MRSA strain can be clinically valuable in pharmacy and treatment.
Collapse
Affiliation(s)
- Sara Taghavi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Effat Abbasi Montazeri
- Department of Microbiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Roya Zekavati
- Department of Biology, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran
| | - laleh Roomiani
- Department of Fisheries, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran
| | - Parvaneh Saffarian
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
42
|
Nie J, Feng D, Shang J, Nasen B, Jiang T, Liu Y, Hou S. Green composite aerogel based on citrus peel/chitosan/bentonite for sustainable removal Cu(II) from water matrices. Sci Rep 2023; 13:15443. [PMID: 37723182 PMCID: PMC10507072 DOI: 10.1038/s41598-023-42409-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 09/10/2023] [Indexed: 09/20/2023] Open
Abstract
Here, we propose a green and sustainable 3D porous aerogel based on citrus peel (CP), chitosan (CS), and bentonite (BT). This aerogel is prepared through a simple sol-gel and freeze-drying process and is designed for efficient capture of Cu(II) ions from water matrices. CCBA-2, with its abundance of active binding sites, exhibits an impressive Cu(II) adsorption yield of 861.58 mg/g. The adsorption isotherm and kinetics follow the Freundlich and pseudo-second-order models, respectively. In the presence of coexisting mixed-metal ions, CCBA-2 demonstrates a significantly higher selectivity coefficient (KdCu = 1138.5) for removing Cu(II) ions compared to other toxic metal ions. Furthermore, the adsorption of Cu(II) ions by CCBA-2 is not significantly affected by coexisting cations/anions, ionic strength, organic matter, or different water matrices. Dynamic fixed-bed column experiments show that the adsorption capacity of Cu(II) ions reaches 377.4 mg/g, and the Yoon-Nelson model accurately describes the adsorption process and breakthrough curve. Through experiments, FTIR, and XPS analyses, we propose a reasonable binding mechanism between CCBA-2 and metal cations, involving electrostatic attraction and chemical chelation between Cu(II) and the functional groups of the aerogel. CCBA-2 saturated with Cu(II) ions can be successfully regenerated by elution with 1 M HNO3, with only a slight decrease in adsorption efficiency (5.3%) after 5 adsorption-desorption cycles. Therefore, CCBA-2 offers a cost-effective and environmentally friendly material that can be considered as a viable alternative for the green and efficient removal of toxic Cu(II) ions from wastewater.
Collapse
Affiliation(s)
- Jing Nie
- Key Laboratory of Pollutant Chemistry and Environmental Treatment, College of Resources and Environment, Yili Normal University, Yining, 835000, China.
| | - Dan Feng
- Key Laboratory of Pollutant Chemistry and Environmental Treatment, College of Resources and Environment, Yili Normal University, Yining, 835000, China
| | - Jiangwei Shang
- Key Laboratory of Pollutant Chemistry and Environmental Treatment, College of Resources and Environment, Yili Normal University, Yining, 835000, China
| | - Bate Nasen
- College of Chemistry and Chemical Engineering, Yili Normal University, Yining, 835000, China
| | - Tong Jiang
- Key Laboratory of Pollutant Chemistry and Environmental Treatment, College of Resources and Environment, Yili Normal University, Yining, 835000, China
| | - Yumeng Liu
- Key Laboratory of Pollutant Chemistry and Environmental Treatment, College of Resources and Environment, Yili Normal University, Yining, 835000, China
| | - Siyi Hou
- Key Laboratory of Pollutant Chemistry and Environmental Treatment, College of Resources and Environment, Yili Normal University, Yining, 835000, China
| |
Collapse
|
43
|
García-Martín JF, Feng CH, Domínguez-Fernández NM, Álvarez-Mateos P. Microwave-Assisted Extraction of Polyphenols from Bitter Orange Industrial Waste and Identification of the Main Compounds. Life (Basel) 2023; 13:1864. [PMID: 37763268 PMCID: PMC10532689 DOI: 10.3390/life13091864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
In this work, the extraction of phenolic compounds from orange waste (OW) obtained after the industrial extraction of neohesperidin from bitter oranges (Seville oranges) was assayed by microwave-assisted extraction (MAE) and Soxhlet extraction (SE). The extraction agents were ethanol and acetone. For SE, aqueous solutions of both extraction agents were used at 50%, 75%, and 100% (v/v). For MAE, a design of experiments was applied to determine the conditions that maximize the extraction yield. The independent variables were temperature (from 20 to 75 °C), process time (between 10 and 20 min), and percentage of extraction agent (v/v) in the extraction solution (50%, 75%, and 100%). Following that, the extracts were analyzed by ultra-high-performance liquid chromatography to identify the main phenolic compounds extracted. Results showed that 50% (v/v) ethanol or acetone was the extraction agent concentration that maximized the extraction yield for both SE and MAE, with the yields of MAE being higher than those of SE. Thus, the highest extraction yields on a dry basis achieved for MAE were 16.7 g/100 OW for 50% acetone, 75 °C, and 15 min, and 20.2 g/100 OW for 50% ethanol, 75 °C, and 10.8 min, respectively. Finally, the main phenolic compounds found in the orange waste were naringin, hesperidin, neohesperidin, and naringenin (i.e., flavonoids).
Collapse
Affiliation(s)
- Juan F. García-Martín
- Departamento de Ingeniería Química, Facultad de Química, Universidad de Sevilla, C/Profesor García González, 1, 41012 Seville, Spain (P.Á.-M.)
| | - Chao-Hui Feng
- School of Regional Innovation and Social Design Engineering, Faculty of Engineering, Kitami Institute of Technology, 165 Koen-cho, Kitami 090-8507, Japan;
- RIKEN Centre for Advanced Photonics, RIKEN, 519-1399 Aramaki-Aoba, Sendai 980-0845, Japan
| | - Nelson-Manuel Domínguez-Fernández
- Departamento de Ingeniería Química, Facultad de Química, Universidad de Sevilla, C/Profesor García González, 1, 41012 Seville, Spain (P.Á.-M.)
| | - Paloma Álvarez-Mateos
- Departamento de Ingeniería Química, Facultad de Química, Universidad de Sevilla, C/Profesor García González, 1, 41012 Seville, Spain (P.Á.-M.)
| |
Collapse
|
44
|
Šafranko S, Šubarić D, Jerković I, Jokić S. Citrus By-Products as a Valuable Source of Biologically Active Compounds with Promising Pharmaceutical, Biological and Biomedical Potential. Pharmaceuticals (Basel) 2023; 16:1081. [PMID: 37630996 PMCID: PMC10458533 DOI: 10.3390/ph16081081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023] Open
Abstract
Citrus fruits processing results in the generation of huge amounts of citrus by-products, mainly peels, pulp, membranes, and seeds. Although they represent a major concern from both economical and environmental aspects, it is very important to emphasize that these by-products contain a rich source of value-added bioactive compounds with a wide spectrum of applications in the food, cosmetic, and pharmaceutical industries. The primary aim of this review is to highlight the great potential of isolated phytochemicals and extracts of individual citrus by-products with bioactive properties (e.g., antitumor, antimicrobial, antiviral, antidiabetic, antioxidant, and other beneficial activities with health-promoting abilities) and their potential in pharmaceutical, biomedical, and biological applications. This review on citrus by-products contains the following parts: structural and chemical characteristics; the utilization of citrus by-products; bioactivities of the present waxes and carotenoids, essential oils, pectins, and phenolic compounds; and citrus by-product formulations with enhanced biocactivities. A summary of the recent developments in applying citrus by-products for the treatment of different diseases and the protection of human health is also provided, emphasizing innovative methods for bioaccessibility enhancements (e.g., extract/component encapsulation, synthesis of biomass-derived nanoparticles, nanocarriers, or biofilm preparation). Based on the representative phytochemical groups, an evaluation of the recent studies of the past six years (from 2018 to 2023) reporting specific biological and health-promoting activities of citrus-based by-products is also provided. Finally, this review discusses advanced and modern approaches in pharmaceutical/biological formulations and drug delivery (e.g., carbon precursors for the preparation of nanoparticles with promising antimicrobial activity, the production of fluorescent nanoparticles with potential application as antitumor agents, and in cellular imaging). The recent studies implementing nanotechnology in food science and biotechnology could bring about new insights into providing innovative solutions for new pharmaceutical and medical discoveries.
Collapse
Affiliation(s)
- Silvija Šafranko
- Faculty of Food Technology Osijek, University of Osijek, Franje Kuhača 18, 31000 Osijek, Croatia; (S.Š.); (D.Š.)
| | - Drago Šubarić
- Faculty of Food Technology Osijek, University of Osijek, Franje Kuhača 18, 31000 Osijek, Croatia; (S.Š.); (D.Š.)
| | - Igor Jerković
- Department of Organic Chemistry, Faculty of Chemistry and Technology, University of Split, Ruđera Boškovića 35, 21000 Split, Croatia
| | - Stela Jokić
- Faculty of Food Technology Osijek, University of Osijek, Franje Kuhača 18, 31000 Osijek, Croatia; (S.Š.); (D.Š.)
| |
Collapse
|
45
|
Soares Mateus AR, Barros S, Pena A, Sanches-Silva A. The potential of citrus by-products in the development of functional food and active packaging. ADVANCES IN FOOD AND NUTRITION RESEARCH 2023; 107:41-90. [PMID: 37898542 DOI: 10.1016/bs.afnr.2023.06.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2023]
Abstract
Food by-product valorization has become an important research area for promoting the sustainability of the food chain. Citrus fruits are among the most widely cultivated fruit crops worldwide. Citrus by-products, including pomace, seeds, and peels (flavedo and albedo), are produced in large amounts each year. Those by-products have an important economic value due to the high content on bioactive compounds, namely phenolic compounds and carotenoids, and are considered a valuable bio-resource for potential applications in the food industry. However, green extraction techniques are required to ensure their sustainability. This chapter addresses the main components of citrus by-products and their recent applications in food products and active food packaging, towards a circular economy. In addition, the concern regarding citrus by-products contamination (e.g. with pesticides residues and mycotoxins) is also discussed.
Collapse
Affiliation(s)
- Ana Rita Soares Mateus
- National Institute of Agrarian and Veterinary Research (INIAV), I.P., Rua dos Lagidos, Lugar da Madalena, Vairão, Vila do Conde, Portugal; University of Coimbra, Pharmacy Faculty, Polo III, Azinhaga de Stª Comba, Coimbra, Portugal; LAQV, REQUIMTE, Food Science and Pharmacology Laboratory, University of Coimbra, Pharmacy Faculty, Polo III, Azinhaga de Stª Comba, Coimbra, Portugal; Animal Science Studies Centre (CECA), ICETA, University of Porto, Apartado, Porto, Portugal
| | - Silvia Barros
- National Institute of Agrarian and Veterinary Research (INIAV), I.P., Rua dos Lagidos, Lugar da Madalena, Vairão, Vila do Conde, Portugal
| | - Angelina Pena
- National Institute of Agrarian and Veterinary Research (INIAV), I.P., Rua dos Lagidos, Lugar da Madalena, Vairão, Vila do Conde, Portugal; LAQV, REQUIMTE, Food Science and Pharmacology Laboratory, University of Coimbra, Pharmacy Faculty, Polo III, Azinhaga de Stª Comba, Coimbra, Portugal
| | - Ana Sanches-Silva
- National Institute of Agrarian and Veterinary Research (INIAV), I.P., Rua dos Lagidos, Lugar da Madalena, Vairão, Vila do Conde, Portugal; University of Coimbra, Pharmacy Faculty, Polo III, Azinhaga de Stª Comba, Coimbra, Portugal; Animal Science Studies Centre (CECA), ICETA, University of Porto, Apartado, Porto, Portugal.
| |
Collapse
|
46
|
Bano A, Gupta A, Rai S, Sharma S, Upadhyay TK, Al-Keridis LA, Alshammari N, Pathak N, Iriti M, Saeed M. Bioactive Compounds, Antioxidant, and Antibacterial Activity Against MDR and Food-Borne Pathogenic Bacteria of Psidium guajava. L Fruit During Ripening. Mol Biotechnol 2023:10.1007/s12033-023-00779-y. [PMID: 37316612 DOI: 10.1007/s12033-023-00779-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 05/23/2023] [Indexed: 06/16/2023]
Abstract
Psidium guajava fruits are highly appreciated for their nutrients and bioactive compounds content, which contribute to their antioxidant and antimicrobial capacities. The purpose of this study was to determine bioactive compound (phenolic, flavonoids, and carotenoid contents), antioxidant activity (DPPH, ABTS, ORAC, and FRAP), and antibacterial potential against MDR and food-borne pathogenic strains of Escherichia coli, and Staphylococcus aureus during different stages of fruit ripening.The results elucidated that ripe fruits (methanolic extract) contain the highest total phenolic, flavonoids, and carotenoid contents (417.36 ± 2.63 µg GAE/gm of FW, 711.78 ± 0.70 µg QE/gm of FW and 0.683 ± 0.06 µg/gm of FW) followed by hexane, ethyl acetate, and aqueous. Methanolic extract of the ripe fruits showed the highest antioxidant activity when measured by DPPH (61.55 ± 0.91%), FRAP (31.83 ± 0.98 mM Fe(II)/gm of FW), ORAC (17.19 ± 0.47 mM TE/ gm of FW), and ABTS (41.31 ± 0.99 µmol Trolox/gm of FW) assays. In the antibacterial assay, the ripe stage had the highest antibacterial activity against MDR and food-borne pathogenic strains of Escherichia coli, and Staphylococcus aureus. The methanolic ripe extract was found to possess maximum antibacterial activity ZOI, MIC, and IC50 18.00 ± 1.00 mm, 95.95 ± 0.05%, and 0.58 μg/ml; 15.66 ± 0.57 mm, 94.66 ± 0.19%, and 0.50 μg/ml, respectively, against pathogenic and MDR strains of E. coli and 22.33 ± 0.57 mm, 98.97 ± 0.02%, and 0.26 μg/ml; 20.33 ± 1.15 mm, 96.82 ± 0.14%, and 0.39 μg/ml, respectively, against pathogenic and MDR strains of S. aureus. Considering the bioactive compounds and beneficial effects, these fruit extracts could be promising antibiotic alternatives, avoiding antibiotic overuse and its negative effects on human health and the environment, and can be recommended as a novel functional food.
Collapse
Affiliation(s)
- Ambreen Bano
- Department of Biosciences, Faculty of Sciences, IIRC-3, Plant-Microbe Interaction and Molecular Immunology Laboratory, Integral University, Lucknow, UP, India
| | - Anmol Gupta
- Department of Biosciences, Faculty of Sciences, IIRC-3, Plant-Microbe Interaction and Molecular Immunology Laboratory, Integral University, Lucknow, UP, India
| | - Smita Rai
- Department of Biosciences, Faculty of Sciences, IIRC-3, Plant-Microbe Interaction and Molecular Immunology Laboratory, Integral University, Lucknow, UP, India
| | - Swati Sharma
- Department of Biosciences, Faculty of Sciences, IIRC-3, Plant-Microbe Interaction and Molecular Immunology Laboratory, Integral University, Lucknow, UP, India
| | - Tarun Kumar Upadhyay
- Department of Biotechnology, Parul Institute of Applied Sciences and Animal Cell Culture and Immunobiochemistry Lab, Centre of Research for Development, Parul University, Vadodara, Gujarat, 391760, India
| | - Lamya Ahmed Al-Keridis
- Biology Department, Faculty of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia.
| | - Nawaf Alshammari
- Department of Biology, College of Science, University of Ha'il, P.O. Box 2440, Ha'il, 81411, Saudi Arabia
| | - Neelam Pathak
- Department of Biochemistry, Dr. Ram Manohar Lohia Avadh University, Ayodhya, Uttar Pradesh, India.
| | - Marcello Iriti
- Department of Biomedical, Surgical and Dental Sciences, Università Degli Studi Di Milano, Via Celoria 2, 20133, Milan, Italy
| | - Mohd Saeed
- Department of Biology, College of Science, University of Ha'il, P.O. Box 2440, Ha'il, 81411, Saudi Arabia.
| |
Collapse
|
47
|
Nova P, Pimenta-Martins A, Maricato É, Nunes C, Abreu H, Coimbra MA, Freitas AC, Gomes AM. Chemical Composition and Antioxidant Potential of Five Algae Cultivated in Fully Controlled Closed Systems. Molecules 2023; 28:4588. [PMID: 37375143 DOI: 10.3390/molecules28124588] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/02/2023] [Accepted: 06/03/2023] [Indexed: 06/29/2023] Open
Abstract
In this study, the chemical composition and antioxidant profile of five edible macroalgae, Fucus vesiculosus, Palmaria palmata, Porphyra dioica, Ulva rigida, and Gracilaria gracilis, cultivated in fully controlled closed systems, were determined. Protein, carbohydrates, and fat contents ranged between 12.4% and 41.8%, 27.6% and 42.0%, and 0.1% and 3.4%, respectively. The tested seaweeds presented considerable amounts of Ca, Mg, K, Mn, and Fe, which reinforce their favorable nutritional profile. Regarding their polysaccharide composition, Gracilaria gracilis and Porphyra dioica were rich in sugars common to agar-producing red algae, and Fucus vesiculosus was composed mainly of uronic acids, mannose, and fucose, characteristic of alginate and fucoidans, whereas rhamnose and uronic acid, characteristic of ulvans, predominated in Ulva rigida. Comparatively, the brown F. vesiculosus clearly stood out, presenting a high polysaccharide content rich in fucoidans, and higher total phenolic content and antioxidant scavenging activity, determined by DPPH and ABTS. The remarkable potential of these marine macroalgae makes them excellent ingredients for a wide range of health, food, and industrial applications.
Collapse
Affiliation(s)
- Paulo Nova
- CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Ana Pimenta-Martins
- CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Élia Maricato
- LAQV/REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Cláudia Nunes
- CICECO-Aveiro Institute of Materials, Department of Materials and Ceramic Engineering, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Helena Abreu
- AlgaPlus, Travessa Alexandre da Conceição s/n, 3830-196 Ílhavo, Portugal
| | - Manuel A Coimbra
- LAQV/REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Ana Cristina Freitas
- CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Ana Maria Gomes
- CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| |
Collapse
|
48
|
Phucharoenrak P, Muangnoi C, Trachootham D. Metabolomic Analysis of Phytochemical Compounds from Ethanolic Extract of Lime (Citrus aurantifolia) Peel and Its Anti-Cancer Effects against Human Hepatocellular Carcinoma Cells. Molecules 2023; 28:molecules28072965. [PMID: 37049726 PMCID: PMC10095956 DOI: 10.3390/molecules28072965] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/16/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
Lime peels are food waste from lime product manufacturing. We previously developed and optimized a green extraction method for hesperidin-limonin-rich lime peel extract. This study aimed to identify the metabolomics profile of phytochemicals and the anti-cancer effects of ethanolic extract of lime (Citrus aurantifolia) peel against liver cancer cells PLC/PRF/5. The extract’s metabolomics profile was analyzed by using LC-qTOF/MS and GC-HRMS. The anti-cancer effects were studied by using MTT assay, Annexin-PI assay, and Transwell-invasion assay. Results show that the average IC50(s) of hesperidin, limonin, and the extract on cancer cells’ viability were 165.615, 188.073, and 503.004 µg/mL, respectively. At the IC50 levels, the extract induced more apoptosis than those of pure compounds when incubating for 24 and 48 h (p < 0.0001). A combination of limonin and hesperidin showed a synergistic effect on apoptosis induction (p < 0.001), but the effect of the combination was still less than that of the extract at 48 h. Furthermore, the extract significantly inhibited cancer cell invasion better than limonin but equal to hesperidin. At the IC50 level, the extract contains many folds lower amounts of hesperidin and limonin than the IC50 doses of the pure compounds. Besides limonin and hesperidin, there were another 60 and 22 compounds detected from the LCMS and GCMS analyses, respectively. Taken altogether, the superior effect of the ethanolic extract against liver cancer cells compared to pure compound likely results from the combinatorial effects of limonin, hesperidin, and other phytochemical components in the extract.
Collapse
|
49
|
Shakoor R, Hussain N, Younas S, Bilal M. Novel strategies for extraction, purification, processing, and stability improvement of bioactive molecules. J Basic Microbiol 2023; 63:276-291. [PMID: 36316223 DOI: 10.1002/jobm.202200401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/10/2022] [Accepted: 10/01/2022] [Indexed: 11/07/2022]
Abstract
Bioactive molecules gain significance in pharmaceutical and nutraceutical industries for showcasing various beneficial biological properties including but not limited to anticancer, antimicrobial, antioxidant, antifungal, anti-inflammatory, cardioprotective, neuroprotective, and antidiabetic. However, the practice of using traditional approaches to produce bioactive molecules is gradually declining due to various limitations such as low product quality, high toxicity, low product yield, low efficiency, and product degradation. Thus, with the escalating demand for these bioactive molecules and active agents in food and other food-related industries, it has become a dire need for the scientific world to come up with novel approaches and strategies that cannot just improve the quality of these bioactives but also prepare them in a comparatively shorter time span. This review includes the latest approaches and techniques used either independently or in combinations for the extraction, purification, processing, and stability improvement of general bioactive molecules. Different parameters of these versatile techniques have been discussed with their effectiveness and work principles.
Collapse
Affiliation(s)
- Rafia Shakoor
- Centre for Applied Molecular Biology (CAMB), University of the Punjab, Lahore, Pakistan
| | - Nazim Hussain
- Centre for Applied Molecular Biology (CAMB), University of the Punjab, Lahore, Pakistan
| | - Saima Younas
- Centre for Applied Molecular Biology (CAMB), University of the Punjab, Lahore, Pakistan
| | - Muhammad Bilal
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Poznan, Poland
| |
Collapse
|
50
|
Rajput A, Sharma P, Singh D, Singh S, Kaur P, Attri S, Mohana P, Kaur H, Rashid F, Bhatia A, Jankowski J, Arora V, Tuli HS, Arora S. Role of polyphenolic compounds and their nanoformulations: a comprehensive review on cross-talk between chronic kidney and cardiovascular diseases. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:901-924. [PMID: 36826494 DOI: 10.1007/s00210-023-02410-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 01/26/2023] [Indexed: 02/25/2023]
Abstract
Chronic kidney disease (CKD) affects a huge portion of the world's population and frequently leads to cardiovascular diseases (CVDs). It might be because of common risk factors between chronic kidney disease and cardiovascular diseases. Renal dysfunction caused by chronic kidney disease creates oxidative stress which in turn leads to cardiovascular diseases. Oxidative stress causes endothelial dysfunction and inflammation in heart which results in atherosclerosis. It ends in clogging of veins and arteries that causes cardiac stroke and myocardial infarction. To develop an innovative therapeutic approach and new drugs to treat these diseases, it is important to understand the pathophysiological mechanism behind the CKD and CVDs and their interrelationship. Natural phytoconstituents of plants such as polyphenolic compounds are well known for their medicinal value. Polyphenols are plant secondary metabolites with immense antioxidant properties, which can protect from free radical damage. Nowadays, polyphenols are generating a lot of buzz in the scientific community because of their potential health benefits especially in the case of heart and kidney diseases. This review provides a detailed account of the pathophysiological link between CKD and CVDs and the pharmacological potential of polyphenols and their nanoformulations in promoting cardiovascular and renal health.
Collapse
Affiliation(s)
- Ankita Rajput
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Palvi Sharma
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Davinder Singh
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Sharabjit Singh
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Prabhjot Kaur
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Shivani Attri
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Pallvi Mohana
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Harneetpal Kaur
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Farhana Rashid
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Astha Bhatia
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Joachim Jankowski
- Institute for Molecular Cardiovascular Research, RWTH Aachen University, Aachen, Germany
| | - Vanita Arora
- Sri Sukhmani Dental College & Hospital, Derabassi, Punjab, India
| | - Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, 133207, India
| | - Saroj Arora
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India.
| |
Collapse
|