1
|
Dhakal R, Chowdhury IA, Plaisance A, Yan G. Development of a Recombinase Polymerase Amplification Assay for Rapid Detection of the New Root-Lesion Nematode Pratylenchus dakotaensis on Soybean. PLANT DISEASE 2025; 109:603-614. [PMID: 39320378 DOI: 10.1094/pdis-05-24-1133-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Root-lesion nematodes, Pratylenchus spp., are reported to cause serious yield losses in various crops, including soybean. A new root-lesion nematode species was detected in 2015 in a soybean field in North Dakota (ND) and named Pratylenchus dakotaensis in 2021. Nematode detection and differentiation from other species are critical in management strategies. Thus, a recombinase polymerase amplification (RPA) assay was developed for rapid detection of this nematode from field soils under isothermal conditions. New primers and probes were designed from internal transcribed spacer-ribosomal DNA region of the nematode genome and tested for both specificity and sensitivity. The RPA assay was able to detect DNA from a single adult nematode at 39.5°C in 20 min using both TwistAmp Basic and Exo Kits. The specificity of the primers was initially confirmed through in silico analyses and followed by laboratory tests. The assay successfully amplified DNA from the target species, although no amplification occurred for other Pratylenchus spp. and non-Pratylenchus control species. Sensitivity testing with real-time RPA revealed its ability to detect DNA in dilutions equivalent to 1/32 of a single nematode from DNA extracted from inoculated sterile soil. To further validate the assay, it was tested with 19 field soil samples collected in ND. This assay amplified soil DNA extracts of all P. dakotaensis-infested field samples confirmed through conventional PCR. It did not amplify DNA from 13 other field soils infested with other Pratylenchus spp. This is the first report of RPA development for detecting a root-lesion nematode species. The RPA assay developed can help in the rapid detection of this nematode species for effective nematode management.
Collapse
Affiliation(s)
- Roshan Dhakal
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58108, U.S.A
| | - Intiaz Amin Chowdhury
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58108, U.S.A
| | - Addison Plaisance
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58108, U.S.A
| | - Guiping Yan
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58108, U.S.A
| |
Collapse
|
2
|
Mahato RP, Kumar S. The future in diagnostic tools for TB outbreaks: A review of the approaches with focus on LAMP and RPA diagnostics tests. J Microbiol Methods 2024; 227:107064. [PMID: 39448035 DOI: 10.1016/j.mimet.2024.107064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 10/18/2024] [Accepted: 10/21/2024] [Indexed: 10/26/2024]
Abstract
Tuberculosis (TB) is still the most frequent cause of morbidity and mortality in the world caused by Mycobacterium tuberculosis (MTB). Due to slow diagnostic and treatment options, the disease is a major concern for public health and also increases the burden on the global economy. Rapid, sensitive, and cheaper TB diagnosis test is urgent to lower their rates by point of care testing (POCT). Therefore, molecular detection techniques like recombinase polymerase assay (RPA) and Loop-mediated isothermal amplification (LAMP) play a significant role in this regard as they work on the principle of isothermal nucleic acid amplification. RPA and LAMP bridge the research gap between the previous PCR-based detection tool and other reported isothermal tools for MTB. In this review, we endeavor to provide an overview of the assay that will be a novel approach toward a rapid amplification and visualization of DNA by the naked eye in natural light. RPA and LAMP can prove to be a highly specific pathogen detection technique in combination with lateral flow (LF) strips and SYBR Green I. Optimization of amplification conditions also made the assay ideally suited to the resource-limited field application at POCT. Additionally, RPA and LAMP have paved the way for meeting a key component of the POC diagnosis of TB like universal drug susceptibility testing. However, RPA is more suitable at the POC level than LPA as it requires a lower amplification temperature of around 37-42 °C and a simpler primer design.
Collapse
Affiliation(s)
- Richa Prasad Mahato
- Department of Microbiology, Kanya Gurukula Campus, Gurukula Kangri (Deemed to be University), Haridwar 249407, India.
| | - Saurabh Kumar
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, India
| |
Collapse
|
3
|
Goraya M, Yan G. Rapid and Direct Detection of the Stubby Root Nematode, Paratrichodorus allius, from Soil DNA Extracts Using Recombinase Polymerase Amplification Assay. Int J Mol Sci 2024; 25:10371. [PMID: 39408699 PMCID: PMC11476371 DOI: 10.3390/ijms251910371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/18/2024] [Accepted: 09/23/2024] [Indexed: 10/20/2024] Open
Abstract
The stubby root nematode, Paratrichodorus allius, is one of the most important plant-parasitic nematodes. Besides root feeding, P. allius also transmits the Tobacco rattle virus in potatoes, which causes corky ringspot disease. Rapid detection of P. allius is key for efficient management. This study was conducted to develop a real-time recombinase polymerase amplification (RPA) assay that is capable of detecting P. allius directly in DNA extracts from soil using a simple portable device in real time. A fluorophore-attached probe was designed to target the internal transcribed spacer (ITS)-rDNA of P. allius and was used along with primers designed previously. The real-time RPA assay had the ability to detect P. allius DNA extracted directly from infested soil with a sensitivity of one-sixteenth portion of a single nematode. This RPA assay was specific, as it did not produce positive signals from non-target nematodes tested. The real-time RPA was found to be rapid as it could even detect P. allius in as little as 7 min. Testing with 15 field soil samples validated the RPA assay developed in this study. This is the first report of P. allius detection directly from soil DNA using real-time RPA and is the fastest method for P. allius detection in soil to date.
Collapse
Affiliation(s)
| | - Guiping Yan
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58108, USA;
| |
Collapse
|
4
|
Thongmee P, Ngernpimai S, Srichaiyapol O, Mongmonsin U, Teerasong S, Charoensri N, Wongwattanakul M, Lulitanond A, Kuwatjanakul W, Wonglakorn L, Kendal RP, Chompoosor A, Daduang J, Tippayawat P. The Evaluation of a Lateral Flow Strip Based on the Covalently Fixed "End-On" Orientation of an Antibody for Listeria monocytogenes Detection. Anal Chem 2024; 96:8543-8551. [PMID: 38748432 PMCID: PMC11140673 DOI: 10.1021/acs.analchem.4c00533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 05/01/2024] [Accepted: 05/07/2024] [Indexed: 05/29/2024]
Abstract
In this study, the covalently fixed "end-on" orientation of a monoclonal Listeria monocytogenes antibody (mAb-Lis) to amino terminated oligo (ethylene glycol)-capped gold nanoparticles (NH2-TEG-AuNPs) was used to fabricate an in-house lateral flow strip (LFS), namely, the fixed "end-on" Lis-mAb-NH-TEG-AuNPs LFS. The aim was to evaluate the performance of the fixed "end-on" Lis-mAb-NH-TEG-AuNPs LFS in detecting L. monocytogenes. The proposed LFS enabled the sensitive detection of L. monocytogenes in 15 min with a visual limit of detection of 102 CFU/mL. Quantitative analysis indicated an LOD at 10 CFU/mL. The fixed "end-on" Lis-mAb-NH-TEG-AuNPs LFS showed no cross-reactivity with other pathogenic bacteria and practical performance across different food matrices, including human blood, milk, and mushroom samples. Furthermore, the clinical performance of the fixed "end-on" Lis-mAb-NH-TEG-AuNPs LFS for detecting L. monocytogenes was evaluated by using 12 clinical samples validated by the hemoculture method. It demonstrated excellent concordance with the reference methods, with no false-positive or false-negative results observed. Therefore, the fixed "end-on" Lis-mAb-NH-TEG-AuNPs LFS serves as a promising candidate for a point-of-care test (POCT), enabling the rapid, precise, and highly sensitive detection of L. monocytogenes in clinical samples and contaminated food.
Collapse
Affiliation(s)
- Patsara Thongmee
- Centre
for Research and Development of Medical Diagnostic Laboratories (CMDL),
Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
- Department
of Medical Technology, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Sawinee Ngernpimai
- Centre
for Innovation and Standard for Medical Technology and Physical Therapy,
Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Oranee Srichaiyapol
- Centre
for Innovation and Standard for Medical Technology and Physical Therapy,
Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Urairat Mongmonsin
- Department
of Medical Technology, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Saowapak Teerasong
- Department
of Chemistry and Applied Analytical Chemistry Research Unit, School
of Science, King Mongkut’s Institute
of Technology Ladkrabang, Bangkok 10520, Thailand
| | - Nicha Charoensri
- Centre
for Research and Development of Medical Diagnostic Laboratories (CMDL),
Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Molin Wongwattanakul
- Centre
for Research and Development of Medical Diagnostic Laboratories (CMDL),
Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Aroonlug Lulitanond
- Centre
for Research and Development of Medical Diagnostic Laboratories (CMDL),
Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Waewta Kuwatjanakul
- Clinical
Microbiology Unit, Srinagarind Hospital, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Lumyai Wonglakorn
- Clinical
Microbiology Unit, Srinagarind Hospital, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | | | - Apiwat Chompoosor
- Department
of Chemistry and Centre of Excellence for Innovation in Chemistry,
Faculty of Science, Ramkhamhaeng University, Bangkok 10240, Thailand
| | - Jureerut Daduang
- Centre
for Research and Development of Medical Diagnostic Laboratories (CMDL),
Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
- Department
of Medical Technology, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Patcharaporn Tippayawat
- Centre
for Research and Development of Medical Diagnostic Laboratories (CMDL),
Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
- Department
of Medical Technology, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
5
|
Lee SY, Oh SW. Point-of-Care Diagnostic System for Viable Salmonella Species via Improved Propidium Monoazide and Recombinase Polymerase Amplification Based Nucleic Acid Lateral Flow. Diagnostics (Basel) 2024; 14:831. [PMID: 38667476 PMCID: PMC11049151 DOI: 10.3390/diagnostics14080831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/05/2024] [Accepted: 04/05/2024] [Indexed: 04/28/2024] Open
Abstract
Salmonella species are prominent foodborne microbial pathogens transmitted through contaminated food or water and pose a significant threat to human health. Accurate and rapid point-of-care (POC) diagnosis is gaining attention in effectively preventing outbreaks of foodborne disease. However, the presence of dead bacteria can interfere with an accurate diagnosis, necessitating the development of methods for the rapid, simple, and efficient detection of viable bacteria only. Herein, we used an improved propidium monoazide (PMAxx) to develop a nucleic acid lateral flow (NALF) assay based on recombinase polymerase amplification (RPA) to differentiate viable Salmonella Typhimurium. We selected an RPA primer set targeting the invA gene and designed a probe for NALF. RPA-based NALF was optimized for temperature (30-43 °C), time (1-25 min), and endonuclease IV concentration (0.025-0.15 unit/µL). PMAxx successfully eliminated false-positive results from dead S. Typhimurium, enabling the accurate detection of viable S. Typhimurium with a detection limit of 1.11 × 102 CFU/mL in pure culture. The developed method was evaluated with spiked raw chicken breast and milk with analysis completed within 25 min at 39 °C. This study has potential as a tool for the POC diagnostics of viable foodborne pathogens with high specificity, sensitivity, rapidity, and cost-effectiveness.
Collapse
Affiliation(s)
| | - Se-Wook Oh
- Department of Food and Nutrition, Kookmin University, Seoul 136-702, Republic of Korea;
| |
Collapse
|
6
|
Wang X, Xu T, Ding S, Xu Y, Jin X, Guan F. Recombinase polymerase amplification combined with lateral flow dipstick assay for rapid visual detection of A.simplex (s. s.) and A.pegreffii in sea foods. Heliyon 2024; 10:e28943. [PMID: 38623257 PMCID: PMC11016599 DOI: 10.1016/j.heliyon.2024.e28943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/27/2024] [Accepted: 03/27/2024] [Indexed: 04/17/2024] Open
Abstract
Anisakiasis is a food-borne parasitic disease mainly caused by the third stage of Anisakis simplex (s. s.) and Anisakis pegreffii. Traditional methods for detecting of Anisakis involve morphology identification such as visual inspection, enzyme digestion, and molecular methods based on PCR, but they have certain limitations. In this study, the internal transcribed spacer 1 (ITS 1) regions of Anisakis were targeted to develop a visual screening method for detecting A. simplex (s. s.) and A. pegreffii in fish meat based on recombinase polymerase amplification (RPA) combined with lateral flow dipstick (LFD). Specific primers and probes were designed and optimized for temperature, reaction time, and detection threshold. LFD produced clear visual results that were easily identifiable after a consistent incubation of 10-20 min at 37 °C. The whole process of DNA amplification by RPA and readout by LFD did not exceed 30 min. In addition, the detection limit is up to 9.5 × 10-4 ng/μL, and the detection of the artificially contaminated samples showed that the developed assay can effectively and specifically detect A. simplex (s. s.) and A. pegreffii, which fully meet the market's requirements for fish food safety supervision.
Collapse
Affiliation(s)
- Xiaoming Wang
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China
- Zhejiang Museum of Natural History, Hangzhou 310018, China
| | - Ting Xu
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Siling Ding
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Ye Xu
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Xingsheng Jin
- Zhejiang Museum of Natural History, Hangzhou 310018, China
| | - Feng Guan
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| |
Collapse
|
7
|
Gao XZ, Cao YD, Gao YZ, Hu J, Ji T. Efficient detection of Streptococcus pyogenes based on recombinase polymerase amplification and lateral flow strip. Eur J Clin Microbiol Infect Dis 2024; 43:735-745. [PMID: 38361135 DOI: 10.1007/s10096-024-04780-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 02/07/2024] [Indexed: 02/17/2024]
Abstract
PURPOSE This article aims to establish a rapid visual method for the detection of Streptococcus pyogenes (GAS) based on recombinase polymerase amplification (RPA) and lateral flow strip (LFS). METHODS Utilizing speB of GAS as a template, RPA primers were designed, and basic RPA reactions were performed. To reduce the formation of primer dimers, base mismatch was introduced into primers. The probe was designed according to the forward primer, and the RPA-LFS system was established. According to the color results of the reaction system, the optimum reaction temperature and time were determined. Thirteen common clinical standard strains and 14 clinical samples of GAS were used to detect the selectivity of this method. The detection limit of this method was detected by using tenfold gradient dilution of GAS genome as template. One hundred fifty-six clinical samples were collected and compared with qPCR method and culture method. Kappa index and clinical application evaluation of the RPA-LFS were carried out. RESULTS The enhanced RPA-LFS method demonstrates the ability to complete the amplification process within 6 min at 33 °C. This method exhibits a high analytic sensitivity, with the lowest detection limit of 0.908 ng, and does not exhibit cross-reaction with other pathogenic bacteria. CONCLUSIONS The utilization of RPA and LFS allows for efficient and rapid testing of GAS, thereby serving as a valuable method for point-of-care testing.
Collapse
Affiliation(s)
- Xu-Zhu Gao
- Department of Central Laboratory, Lianyungang Hospital Affiliated to Kangda College of Nanjing Medical University, Lianyungang, China
- Department of Central Laboratory, Lianyungang Hospital Affiliated to Xuzhou Medical University, Lianyungang, China
- Institute of Clinical Oncology, The Second People's Hospital of Lianyungang City (Cancer Hospital of Lianyungang), Lianyungang, China
- The Second People's Hospital of Lianyungang Affiliated to Bengbu Medical College, Lianyungang, China
- Department of Medicine Laboratory, The Second People's Hospital of Lianyungang City (Cancer Hospital of Lianyungang), 161 Xingfu Road, Lianyungang, China
| | - Yu-Die Cao
- The Second People's Hospital of Lianyungang Affiliated to Bengbu Medical College, Lianyungang, China
| | - Yu-Zhi Gao
- Department of Central Laboratory, Lianyungang Hospital Affiliated to Kangda College of Nanjing Medical University, Lianyungang, China
- Department of Central Laboratory, Lianyungang Hospital Affiliated to Xuzhou Medical University, Lianyungang, China
- Institute of Clinical Oncology, The Second People's Hospital of Lianyungang City (Cancer Hospital of Lianyungang), Lianyungang, China
| | - Juan Hu
- Department of Medicine Laboratory, The Second People's Hospital of Lianyungang City (Cancer Hospital of Lianyungang), 161 Xingfu Road, Lianyungang, China.
| | - Tuo Ji
- Department of Central Laboratory, Lianyungang Hospital Affiliated to Kangda College of Nanjing Medical University, Lianyungang, China.
- Department of Central Laboratory, Lianyungang Hospital Affiliated to Xuzhou Medical University, Lianyungang, China.
- Institute of Clinical Oncology, The Second People's Hospital of Lianyungang City (Cancer Hospital of Lianyungang), Lianyungang, China.
- The Second People's Hospital of Lianyungang Affiliated to Bengbu Medical College, Lianyungang, China.
- Department of Medicine Laboratory, The Second People's Hospital of Lianyungang City (Cancer Hospital of Lianyungang), 161 Xingfu Road, Lianyungang, China.
| |
Collapse
|
8
|
Qian M, Xu D, Wang J, Zaeim D, Han J, Qu D. Isolation, antimicrobial resistance and virulence characterization of Salmonella spp. from fresh foods in retail markets in Hangzhou, China. PLoS One 2023; 18:e0292621. [PMID: 37856530 PMCID: PMC10586686 DOI: 10.1371/journal.pone.0292621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 09/25/2023] [Indexed: 10/21/2023] Open
Abstract
Salmonella can cause severe foodborne diseases. This study investigated the prevalence of Salmonella spp. in fresh foods in Hangzhou market and their harborage of antibiotic resistance and virulence genes, antibiotic susceptibility, and pathogenicity. A total of 500 samples (pork, n = 140; chicken, n = 128; vegetable, n = 232) were collected over a one-year period. Salmonella was found in 4.2% (21) of samples with the detection rate in pork, chicken and vegetables as 4.3% (6), 6.3% (8), and 3% (7), respectively. One Salmonella strain was recovered from each positive sample. The isolates were identified as six serotypes, of which S. Enteritidis (n = 7) and S. Typhimurium (n = 6) were the most predominant serotypes. The majority of isolates showed resistance to tetracycline (85.7%) and/or ciprofloxacin (71.4%). Tetracycline resistance genes showed the highest prevalence (90.5%). The occurrence of resistance genes for β-lactams (blaTEM-1, 66.7%; and blaSHV, 9.5%) and aminoglycosides (aadA1, 47.6%; Aac(3)-Ia, 19%) was higher than sulfonamides (sul1, 42.9%) and quinolones (parC, 38.1%). The virulence gene fimA was detected in 57.1% of isolates. Gene co-occurrence analysis implied that resistance genes were associated with virulence genes. Furthermore, selected S. Typhimurium isolates (n = 4) carrying different resistance and virulence genes up-regulated the secretions of cytokines IL-6 and IL-8 by Caco-2 cells in different degrees, suggesting that virulence genes may play a role in inflammatory transcription. In in vivo virulence test, microbiological counts in mouse feces and tissues showed that all included S. Typhimurium were able to infect mice, with one strain showing significantly higher virulence than others. In conclusion, this study indicates Salmonella contamination in fresh foods in Hangzhou market poses a risk to public health and it should be closely monitored to prevent and control foodborne diseases.
Collapse
Affiliation(s)
- Min Qian
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Dingting Xu
- The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jiankang Wang
- Agricultural Technology and Water Conservancy Service Center, Jiaxing, China
| | - Davood Zaeim
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Jianzhong Han
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Daofeng Qu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| |
Collapse
|
9
|
Seok Y, Mauk MG, Li R, Qian C. Trends of respiratory virus detection in point-of-care testing: A review. Anal Chim Acta 2023; 1264:341283. [PMID: 37230728 DOI: 10.1016/j.aca.2023.341283] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/27/2023]
Abstract
In resource-limited conditions such as the COVID-19 pandemic, on-site detection of diseases using the Point-of-care testing (POCT) technique is becoming a key factor in overcoming crises and saving lives. For practical POCT in the field, affordable, sensitive, and rapid medical testing should be performed on simple and portable platforms, instead of laboratory facilities. In this review, we introduce recent approaches to the detection of respiratory virus targets, analysis trends, and prospects. Respiratory viruses occur everywhere and are one of the most common and widely spreading infectious diseases in the human global society. Seasonal influenza, avian influenza, coronavirus, and COVID-19 are examples of such diseases. On-site detection and POCT for respiratory viruses are state-of-the-art technologies in this field and are commercially valuable global healthcare topics. Cutting-edge POCT techniques have focused on the detection of respiratory viruses for early diagnosis, prevention, and monitoring to protect against the spread of COVID-19. In particular, we highlight the application of sensing techniques to each platform to reveal the challenges of the development stage. Recent POCT approaches have been summarized in terms of principle, sensitivity, analysis time, and convenience for field applications. Based on the analysis of current states, we also suggest the remaining challenges and prospects for the use of the POCT technique for respiratory virus detection to improve our protection ability and prevent the next pandemic.
Collapse
Affiliation(s)
- Youngung Seok
- Department of Biotechnology and Bioengineering, Chonnam National University, Gwangju, 61186, Republic of Korea; Department of Mechanical Engineering and Applied Mechanics, School of Engineering and Applied Science, University of Pennsylvania, 216 Towne Building, 220 S. 33rd Street, Philadelphia, PA, 19104, USA.
| | - Michael G Mauk
- Department of Mechanical Engineering and Applied Mechanics, School of Engineering and Applied Science, University of Pennsylvania, 216 Towne Building, 220 S. 33rd Street, Philadelphia, PA, 19104, USA
| | - Ruijie Li
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 29 Zhongguancun East Road, Haidian District, Beijing, 100190, China
| | - Cheng Qian
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, 310018, China
| |
Collapse
|
10
|
Chen Y, Hu Y, Lu X. Polyethersulfone-Based Microfluidic Device Integrated with DNA Extraction on Paper and Recombinase Polymerase Amplification for the Detection of Salmonella enterica. ACS Sens 2023; 8:2331-2339. [PMID: 37228176 DOI: 10.1021/acssensors.3c00387] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Rising consumption, large-scale production, and widespread distribution have been accompanied by an increase in the number of Salmonella infections reported to implicate contaminated food products. We developed a portable origami microfluidic device that enabled rapid detection of S. enterica from sample preparation to end-point detection, including nucleic acid extraction on paper dipstick without pipetting, nucleic acid amplification using isothermal recombinase polymerase amplification (RPA), and lateral flow assay for results readout. We also explored the feasibility of the polyethersulfone (PES) membrane as a new reaction matrix against the widely used chromatography paper to optimize nucleic acid amplification. Nucleic acid amplification was achieved within 20 min and demonstrated 100% specificity to S. enterica. The limit of detection of this PES-based microfluidic device was 260 CFU/mL and equivalent to RPA reaction in tube. A chromatography paper-based microfluidic device was found 1-log less in sensitivity for Salmonella detection compared to the use of PES. This PES-based microfluidic device could detect S. enterica in lettuce, chicken breast, and milk at concentrations of 6 CFU/g, 9 CFU/g, and 58 CFU/mL, respectively, after 6 h enrichment. PES has shown high compatibility to isothermal nucleic acid amplification and great potential to be implemented as an integrated sample-to-answer microfluidic device for the detection of pathogens in various food commodities.
Collapse
Affiliation(s)
- Yunxuan Chen
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Yaxi Hu
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Food Science Program, Department of Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada
| | - Xiaonan Lu
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Food Science and Agricultural Chemistry, McGill University, 21111 Lakeshore Road,Sainte-Anne-de-Bellevue H9X 3V9 Quebec, Canada
| |
Collapse
|
11
|
Ma X, Bai X, Li H, Ding J, Zhang H, Qiu Y, Wang J, Liu X, Liu M, Tang B, Xu N. A rapid and visual detection assay for Clonorchis sinensis based on recombinase polymerase amplification and lateral flow dipstick. Parasit Vectors 2023; 16:165. [PMID: 37208693 DOI: 10.1186/s13071-023-05774-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/12/2023] [Indexed: 05/21/2023] Open
Abstract
BACKGROUND Fish-borne zoonotic clonorchiasis, caused by Clonorchis sinensis, is an emerging public health problem in several countries with more than 15 million people infected globally. However, a lack of accurate point-of-care (POC) diagnostic tests in resource-limited areas is still a critical barrier to effective treatment and control of clonorchiasis. The development of the recombinase polymerase amplification(RPA) assay, a POC diagnostic test based on the amplification of pathogen DNA, has provided a new, simple and inexpensive tool for disease detection with high sensitivity and specificity. METHODS A novel RPA method was developed based on specific primers and probes, and combined with the dipstick, to allow for the rapid and intuitive detection of C. sinensis through the amplification of the mitochondrial cytochrome c oxidase subunit 1 (COX1) gene. The lower limit of detection for the combined RPA/lateral flow dipstick (RPA-LFD) assay was evaluated using dilutions of the target DNA sequence. Cross-reactivity was evaluated using genomic DNA from 10 additional control parasites. Forty human clinical stool samples were tested to verify its performance. RESULTS The evaluated primers designed from the C. sinensis COX1 region can be used to detect adult worms, metacercariae, and eggs at 39 °C within 20 min, and the results can be visually observed using the LFD. The detection limit of pathogen genomic DNA was as low as 10 fg, and the number of metacercaria(e) in fish and egg(s) in faeces were both as low as one. This improved the sensitivity of low-infection detection tremendously. The test is species-specific, and no other related control parasites were detected. In human stool samples with eggs per gram (EPG) > 50, the RPA-LFD assay was performed consistent with conventional Kato-Katz (KK) and PCR methods. CONCLUSION The established RPA-LFD assay provides a powerful tool for the diagnosis and epidemiological survey of C. sinensis from human and animal samples, and has important implications for the effective control of clonorchiasis.
Collapse
Affiliation(s)
- Xiaoxiao Ma
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130012, Jilin, China
| | - Xue Bai
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130012, Jilin, China
| | - Hongchang Li
- Qingdao Special Servicemen Recuperation Center of PLA Navy, Qingdao, 266071, Shandong, China
| | - Jing Ding
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130012, Jilin, China
| | - Huiyuan Zhang
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130012, Jilin, China
| | - Yangyuan Qiu
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130012, Jilin, China
| | - Jing Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130012, Jilin, China
| | - Xiaolei Liu
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130012, Jilin, China
| | - Mingyuan Liu
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130012, Jilin, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China
| | - Bin Tang
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130012, Jilin, China.
| | - Ning Xu
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130012, Jilin, China.
| |
Collapse
|
12
|
Aiying W, Ju L, Cilin W, Yuxuan H, Baojun Y, Jian T, Shuhua L. Establishment and application of the Recombinase-Aided Amplification-Lateral Flow Dipstick detection method for Pantoea ananatis on rice. AUSTRALASIAN PLANT PATHOLOGY : APP 2023; 52:1-9. [PMID: 37363287 PMCID: PMC10193322 DOI: 10.1007/s13313-023-00918-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 04/14/2023] [Indexed: 06/28/2023]
Abstract
Pantoea ananatis is a major pathogen that causes the new bacterial blight in rice, and its symptoms very similar to rice bacterial blight. Therefore, there is a dire need for an accurate and rapid method for detecting P. ananatis. In this study, an early and rapid visual detection method for P. ananatis was established. Using GyrB gene as the target sequence, an innovative recombinase-aided amplification detection system integrated with a lateral flow dipstick (RAA-LFD) was constructed. The optimized RAA-LFD detection method can be initiated at body temperature and does not rely on precise instruments. It does not require DNA extraction and can be used directly with plant tissue fluids. The results can be visualized after 10 minutes of amplification. The specificity and sensitivity tests showed that the RAA-LFD method could detect P. ananatis, whereas other common plant pathogens were not detected, and its detection sensitivity for P. ananatis DNA reached 100 copies/µL. The detection of diseased tissues indicated that this method could accurately detect P. ananatis in artificially inoculated rice tissues in the early stages of infection before symptoms. The RAA-LFD detection system established in this study is simple and fast, with visual results, excellent specificity, and high sensitivity. It is semi-quantitative and should be used for the early detection and rapid field diagnosis of new leaf blight, which provides technical support for the early warning and real-time detection of field samples.
Collapse
Affiliation(s)
- Wang Aiying
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006 China
| | - Luo Ju
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006 China
| | - Wang Cilin
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006 China
| | - Hou Yuxuan
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006 China
| | - Yang Baojun
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006 China
| | - Tang Jian
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006 China
| | - Liu Shuhua
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006 China
| |
Collapse
|
13
|
Xiang S, Zhang H, Cha X, Lin Y, Shang Y. A New Duplex Recombinase Polymerase Amplification (D-RPA) Method for the Simultaneous and Rapid Detection of Shigella and Bacillus cereus in Food. Foods 2023; 12:1889. [PMID: 37174427 PMCID: PMC10178236 DOI: 10.3390/foods12091889] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/23/2023] [Accepted: 05/01/2023] [Indexed: 05/15/2023] Open
Abstract
Shigella and Bacillus cereus are two common foodborne pathogens that cause intestinal diseases and seriously affect human life and health. Traditional microbiological culture methods are time-consuming and laborious, and polymerase chain reaction (PCR)-based methods rely on expensive thermal cyclers and lengthy reaction times. In this study, on the basis of the specific gene ipaH7 of Shigella and the virulence gene nheABC of B. cereus, a duplex detection system was established for the first time by using the recombinase polymerase amplification technique (D-RPA). After optimization, D-RPA could be effectively amplified at 42 °C for 25 min with excellent specificity, and the detection limits of D-RPA for Shigella and B. cereus in artificially contaminated samples were 2.7 × 101 and 5.2 × 102 CFU/mL, respectively. This study provides a certain research basis for multiple detection with RPA, an isothermal amplification technology. Furthermore, it lays a good foundation for high-throughput rapid detection of foodborne pathogens.
Collapse
Affiliation(s)
| | | | | | | | - Ying Shang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Yunnan 650500, China
| |
Collapse
|
14
|
Kim J, Kim C, Park JS, Lee NE, Lee S, Cho SY, Park C, Yoon DS, Yoo YK, Lee JH. Affordable on-site COVID-19 test using non-powered preconcentrator. Biosens Bioelectron 2023; 222:114965. [PMID: 36493723 PMCID: PMC9715458 DOI: 10.1016/j.bios.2022.114965] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/24/2022] [Accepted: 11/27/2022] [Indexed: 12/03/2022]
Abstract
A simple, affordable point of care test (POCT) is necessary for on-site detection of coronavirus disease 2019 (COVID-19). The lateral flow assay (LFA) has great potential for use in POCT mainly because of factors such as low time consumption, low cost, and ease of use. However, it lacks sensitivity and limits of detection (LOD), which are essential for early diagnostics. In this study, we proposed a non-powered preconcentrator (NPP) based on nanoelectrokinetics for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Antigen (Ag) lateral flow assay. The non-powered preconcentrator is composed of glass fiber-based composite paper and ion permselective material, and it can be simply operated by force balancing gravitational, capillary, and depletion-induced forces. The proposed approach helps enrich the SARS-CoV-2 viral nucleocapsid (N) proteins based on a 10-min operation, and it improved the LOD by up to 10-fold. The corresponding virus enrichment, which was evaluated using the reverse-transcriptase polymerase chain reaction (RT-PCR), revealed an improvement in ΔCt values > 3. We successfully demonstrated the enhancement of the NPP-assisted LFA, we extended to applying it to clinical samples. Further, we demonstrated an affordable, easy-to-implement form of LFA by simply designing NPP directly on the LFA buffer tube.
Collapse
Affiliation(s)
- Jinhwan Kim
- Department of Electrical Engineering, Kwangwoon University, Seoul, 01897, Republic of Korea
| | - Cheonjung Kim
- Department of Electrical Engineering, Kwangwoon University, Seoul, 01897, Republic of Korea; Department of Electronic Engineering, Catholic Kwandong University, Gangneung-si, Gangwon-do, 25601, Republic of Korea
| | - Jeong Soo Park
- Department of Electrical Engineering, Kwangwoon University, Seoul, 01897, Republic of Korea
| | - Na Eun Lee
- Department of Electrical Engineering, Kwangwoon University, Seoul, 01897, Republic of Korea; Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Seungmin Lee
- Department of Electrical Engineering, Kwangwoon University, Seoul, 01897, Republic of Korea; School of Biomedical Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Sung-Yeon Cho
- Vaccine Bio Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea; Division of Infectious Diseases, Department of Internal Medicine, Seoul St. Mary's Hospital, Catholic Hematology Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Chulmin Park
- Vaccine Bio Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Dae Sung Yoon
- School of Biomedical Engineering, Korea University, Seoul, 02841, Republic of Korea.
| | - Yong Kyoung Yoo
- Department of Electronic Engineering, Catholic Kwandong University, Gangneung-si, Gangwon-do, 25601, Republic of Korea.
| | - Jeong Hoon Lee
- Department of Electrical Engineering, Kwangwoon University, Seoul, 01897, Republic of Korea.
| |
Collapse
|
15
|
Wang J, Jiang H, Pan L, Gu X, Xiao C, Liu P, Tang Y, Fang J, Li X, Lu C. Rapid on-site nucleic acid testing: On-chip sample preparation, amplification, and detection, and their integration into all-in-one systems. Front Bioeng Biotechnol 2023; 11:1020430. [PMID: 36815884 PMCID: PMC9930993 DOI: 10.3389/fbioe.2023.1020430] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 01/12/2023] [Indexed: 02/04/2023] Open
Abstract
As nucleic acid testing is playing a vital role in increasingly many research fields, the need for rapid on-site testing methods is also increasing. The test procedure often consists of three steps: Sample preparation, amplification, and detection. This review covers recent advances in on-chip methods for each of these three steps and explains the principles underlying related methods. The sample preparation process is further divided into cell lysis and nucleic acid purification, and methods for the integration of these two steps on a single chip are discussed. Under amplification, on-chip studies based on PCR and isothermal amplification are covered. Three isothermal amplification methods reported to have good resistance to PCR inhibitors are selected for discussion due to their potential for use in direct amplification. Chip designs and novel strategies employed to achieve rapid extraction/amplification with satisfactory efficiency are discussed. Four detection methods providing rapid responses (fluorescent, optical, and electrochemical detection methods, plus lateral flow assay) are evaluated for their potential in rapid on-site detection. In the final section, we discuss strategies to improve the speed of the entire procedure and to integrate all three steps onto a single chip; we also comment on recent advances, and on obstacles to reducing the cost of chip manufacture and achieving mass production. We conclude that future trends will focus on effective nucleic acid extraction via combined methods and direct amplification via isothermal methods.
Collapse
Affiliation(s)
- Jingwen Wang
- Key Laboratory of Specialty Agri-products Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Han Jiang
- Key Laboratory of Specialty Agri-products Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Leiming Pan
- Zhejiang Hongzheng Testing Co., Ltd., Ningbo, China
| | - Xiuying Gu
- Zhejiang Gongzheng Testing Center Co., Ltd., Hangzhou, China
| | - Chaogeng Xiao
- Institute of Food Science, Zhejiang Academy of Agricultural Science, Hangzhou, China
| | - Pengpeng Liu
- Key Laboratory of Biosafety detection for Zhejiang Market Regulation, Zhejiang Fangyuan Testing Group LO.T, Hangzhou, China
| | - Yulong Tang
- Hangzhou Tiannie Technology Co., Ltd., Hangzhou, China
| | - Jiehong Fang
- Key Laboratory of Specialty Agri-products Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Xiaoqian Li
- Key Laboratory of Specialty Agri-products Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Chenze Lu
- Key Laboratory of Specialty Agri-products Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, China
| |
Collapse
|
16
|
Lu C, Wang J, Pan L, Gu X, Lu W, Chen D, Zhang C, Ye Q, Xiao C, Liu P, Tang Y, Tang B, Huang G, Fang J, Jiang H. Rapid detection of multiple resistance genes to last-resort antibiotics in Enterobacteriaceae pathogens by recombinase polymerase amplification combined with lateral flow dipstick. Front Microbiol 2023; 13:1062577. [PMID: 36687650 PMCID: PMC9850091 DOI: 10.3389/fmicb.2022.1062577] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 12/12/2022] [Indexed: 01/07/2023] Open
Abstract
The worrying emergence of multiple resistance genes to last-resort antibiotics in food animals and human populations throughout the food chain and relevant environments has been increasingly reported worldwide. Enterobacteriaceae pathogens are considered the most common reservoirs of such antibiotic resistance genes (ARGs). Thus, a rapid, efficient and accurate detection method to simultaneously screen and monitor such ARGs in Enterobacteriaceae pathogens has become an urgent need. Our study developed a recombinase polymerase amplification (RPA) assay combined with a lateral flow dipstick (LFD) for simultaneously detecting predominant resistance genes to last-resort antibiotics of Enterobacteriaceae pathogens, including mcr-1, blaNDM-1 and tet(X4). It is allowed to complete the entire process, including crude DNA extraction, amplification as well as reading, within 40 min at 37°C, and the detection limit is 101 copies/μl for mcr-1, blaNDM-1 and tet(X4). Sensitivity analysis showed obvious association of color signals with the template concentrations of mcr-1, blaNDM-1 and tet(X4) genes in Enterobacteriaceae pathogens using a test strip reader (R 2 = 0.9881, R 2 = 0.9745, and R 2 = 0.9807, respectively), allowing for quantitative detection using multiplex RPA-LFD assays. Therefore, the RPA-LFD assay can suitably help to detect multiple resistance genes to last-resort antibiotics in foodborne pathogens and has potential applications in the field.
Collapse
Affiliation(s)
- Chenze Lu
- Key Laboratory of Specialty Agri-Products Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang, China
| | - Jingwen Wang
- Key Laboratory of Specialty Agri-Products Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang, China
| | - Leiming Pan
- Zhejiang Hongzheng Testing Co., Ltd, Ningbo, Zhejiang, China
| | - Xiuying Gu
- Zhejiang Gongzheng Testing Center Co., Ltd, Hangzhou, Zhejiang, China
| | - Wenjing Lu
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Di Chen
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Cen Zhang
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Qin Ye
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Chaogeng Xiao
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Pengpeng Liu
- Key Laboratory of Biosafety Detection for Zhejiang Market Regulation, Zhejiang Fangyuan Testing Group LO.T, Hangzhou, Zhejiang, China
| | - Yulong Tang
- Hangzhou Tiannie Technology Co., Ltd, Hangzhou, Zhejiang, China
| | - Biao Tang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products and Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Guangrong Huang
- Key Laboratory of Specialty Agri-Products Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang, China
| | - Jiehong Fang
- Key Laboratory of Specialty Agri-Products Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang, China,*Correspondence: Jiehong Fang, ✉
| | - Han Jiang
- Key Laboratory of Specialty Agri-Products Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang, China,Han Jiang, ✉
| |
Collapse
|
17
|
Bienes KM, Mao L, Selekon B, Gonofio E, Nakoune E, Wong G, Berthet N. Rapid Detection of the Varicella-Zoster Virus Using a Recombinase-Aided Amplification-Lateral Flow System. Diagnostics (Basel) 2022; 12:diagnostics12122957. [PMID: 36552964 PMCID: PMC9777233 DOI: 10.3390/diagnostics12122957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/05/2022] [Accepted: 11/14/2022] [Indexed: 11/29/2022] Open
Abstract
Varicella-zoster virus (VZV) is the etiological agent of varicella (chickenpox) and herpes zoster (shingles). VZV infections are ubiquitous and highly contagious, and diagnosis is mostly based on the assessment of signs and symptoms. However, monkeypox, an emerging infectious disease caused by the monkeypox virus (MPXV), has clinical manifestations that are similar to those of VZV infections. With the recent monkeypox outbreak in non-endemic regions, VZV infections are likely to be misdiagnosed in the absence of laboratory testing. Considering the lack of accessible diagnostic tests that discriminate VZV from MPXV or other poxviruses, a handy and affordable detection system for VZV is crucial for rapid differential diagnosis. Here, we developed a new detection method for VZV using recombinase-aided amplification technology, combined with the lateral flow system (RAA-LF). Given the prevalence of VZV worldwide, this method can be applied not only to distinguish VZV from other viruses causing rash, but also to foster early detection, contributing substantially to disease control.
Collapse
Affiliation(s)
- Kathrina Mae Bienes
- Unit of Discovery and Molecular Characterization of Pathogens, Center for Microbes, Development and Health, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Lingjing Mao
- Unit of Discovery and Molecular Characterization of Pathogens, Center for Microbes, Development and Health, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | | | - Ella Gonofio
- Institut Pasteur of Bangui, Bangui, Central African Republic
| | | | - Gary Wong
- Viral Hemorrhagic Fevers Research Unit, CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
- Correspondence: (G.W.); (N.B.)
| | - Nicolas Berthet
- Unit of Discovery and Molecular Characterization of Pathogens, Center for Microbes, Development and Health, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
- Cellule d’Intervention Biologique d’Urgence, Unité Environnement et Risque Infectieux, Institut Pasteur, 75724 Paris, France
- Correspondence: (G.W.); (N.B.)
| |
Collapse
|
18
|
Lateral flow biosensor based on LAMP-CRISPR/Cas12a for sensitive and visualized detection of Salmonella spp. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
19
|
Lai FY, Chang KC, Chang CS, Wang PH. Development of a Rapid Sex Identification Method for Newborn Pigeons Using Recombinase Polymerase Amplification and a Lateral-Flow Dipstick on Farm. Animals (Basel) 2022; 12:ani12212969. [PMID: 36359091 PMCID: PMC9656852 DOI: 10.3390/ani12212969] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 11/26/2022] Open
Abstract
Simple Summary The sex of a bird is important for aviculture, scientific research, and conservation. Sex identification is usually not easy, even if the bird’s appearances and sex organs are examined more closely. In monomorphic birds—or most birds during young, molecular sexing—there is a requirement for a fast and accurate identification method. We have designed a pair of DNA primers that is unique to the W chromosome of pigeon, which was unique to the female; further, RPA and LFD are combined for the purposes of a portable field detection for a sex identification method for birds (i.e., pigeons). The minimal-equipped on-farm approach was tested on pigeon sexing and the results have been 100% correct, so far. The concept of this study could spread to any kind of bird to meet the needs and achieve the goals of bird studies and businesses. Abstract According to pigeon racing rules in Taiwan, the pigeon raiser must decide which juveniles will be chosen as soon as possible. Differentiating the sex of young pigeons based on appearances, and other traditional methods, can be time-consuming and require several pieces of equipment. Recombinase polymerase amplification (RPA) combined with a lateral-flow dipstick (LFD) could further simplify the presentation of amplification results. A designed reverse primer and probe were labeled with biotin and FAM (fluorescein), respectively, to serve as ligands in the LFD. With the addition of a designed forward primer, the RPA-LFD can be used to perform sex identification of pigeon DNA. The optimal conditions were determined to require at least 6.3 pg of the DNA template, a temperature of 37 °C, and a reaction time of at least 20 min. Under these conditions, the test band area on the strip appeared as a dark color if the sample contained female template DNA, whereas the male DNA samples did not produce any test signal in any of the conditions. The results of random samples using RPA-LFD under the optimal conditions agreed with the results of the same samples determined by PCR-agarose gel electrophoresis. The approach in this study represents a rapid and accurate method for pigeon sexing.
Collapse
Affiliation(s)
- Fang-Yu Lai
- Key Laboratory of Animal Genetics, Breeding and Bioresources, Department of Animal Science and Technology, College of Bioresources and Agriculture, National Taiwan University, Taipei City 10672, Taiwan
| | - Kuang-Chih Chang
- Avance Technology Co., Ltd., 10F., No. 1, Ln. 83, Sec. 1, Guangfu Rd., Sanchong Dist., New Taipei City 24158, Taiwan
| | - Chi-Sheng Chang
- Department of Animal Science, Chinese Culture University, No. 55, Hwa-Kang Rd., Yang-Ming-Shan, Taipei City 11114, Taiwan
| | - Pei-Hwa Wang
- Key Laboratory of Animal Genetics, Breeding and Bioresources, Department of Animal Science and Technology, College of Bioresources and Agriculture, National Taiwan University, Taipei City 10672, Taiwan
- Correspondence: ; Tel.: +886-02-3366-4164; Fax: +886-02-2372-4070
| |
Collapse
|
20
|
Valloly P, Roy R. Nucleic Acid Quantification with Amplicon Yield in Recombinase Polymerase Amplification. Anal Chem 2022; 94:13897-13905. [PMID: 36170603 DOI: 10.1021/acs.analchem.2c02810] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Amplification-based quantitative polymerase chain reaction (qPCR) provides accurate and sensitive nucleic acid quantification. However, the requirement of temperature cycling and real-time monitoring limits its translation to many settings. Quantitative isothermal amplification methods alleviate the need for thermal cyclers; however, they still require continuous monitoring of the nucleic acid amplification on sophisticated readers. Here, we adapted an isothermal recombinase polymerase amplification (RPA) reaction to develop a semiquantitative method that relies on the final amplicon yield to estimate the initial target nucleic acid copy number. To achieve this, we developed a phenomenological model that captures the essential RPA dynamics. We identified reaction conditions that constrained the reaction yield corresponding to the starting DNA template concentration. We validated these predictions experimentally and showed that the amplicon yields at the end of the RPA reaction correlated well with the starting DNA concentration while reducing nonspecific amplification robustly. We demonstrate this approach, termed quantitative endpoint RPA (qeRPA), to detect DNA over five log orders with a detection limit of 100 molecules. Using a linear regression model of the normalized endpoint intensity (NEI) standard curve, we estimate the viral load from the serum of dengue virus-infected patients with comparable performance to qPCR. Unlike the conventional isothermal quantitative methods, qeRPA can be employed for robust and sensitive nucleic acid estimation at close to room temperature without real-time monitoring and can be beneficial for field deployment in resource-limited settings.
Collapse
Affiliation(s)
- Priyanka Valloly
- Department of Chemical Engineering, Indian Institute of Science, Bangalore, Karnataka, India 560012
| | - Rahul Roy
- Department of Chemical Engineering, Indian Institute of Science, Bangalore, Karnataka, India 560012.,Center for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, Karnataka, India 560012
| |
Collapse
|
21
|
Zhang T, Liu X, Yang X, Liu F, Yang H, Li X, Feng H, Wu X, Jiang G, Shen H, Dong J. Rapid On-Site Detection Method for White Spot Syndrome Virus Using Recombinase Polymerase Amplification Combined With Lateral Flow Test Strip Technology. Front Cell Infect Microbiol 2022; 12:889775. [PMID: 35909952 PMCID: PMC9334525 DOI: 10.3389/fcimb.2022.889775] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 06/23/2022] [Indexed: 11/13/2022] Open
Abstract
The white spot syndrome virus is the most destructive virus threatening the shrimp industry worldwide, causing hundreds of millions of dollars in economic losses each year. There is currently no specific medicine to treat it. Therefore, rapid and accurate detection of WSSV is of great significance for controlling its spread and reducing economic losses. Traditional detection methods, such as polymerase chain reaction (PCR) and quantitative fluorescent PCR, rely on laboratory equipment and are not suitable for field testing. In this study, recombinase polymerase amplification (RPA) combined with a lateral flow strip (LFS) was developed. This method targets the entire genome and designs primers and probes accordingly. The detection can be completed in 30 min at 37°C, and the detection limit of each reaction is 20 copies, which is much more sensitive than other detection methods. The RPA-LFS method is highly specific to the white spot syndrome virus and has no cross-reactivity with other common shrimp viruses or pathogens. In total, 100 field samples were tested and compared to the real-time PCR method. Both methods detected 8 positive results, and the positive detection rate was 100%. The method was fast, simple, specific, and sensitive. It does not rely on laboratory equipment and has broad application prospects for in-field detection, especially in remote areas with underdeveloped medical equipment.
Collapse
Affiliation(s)
- Tianmeng Zhang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang, China
| | - Xia Liu
- Department of Laboratory Medicine, The Second People’s Hospital of Lianyungang City, Lianyungang, China
| | - Xiaohan Yang
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Feixue Liu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang, China
| | - Haitao Yang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang, China
| | - Xueqing Li
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang, China
| | - Huimiao Feng
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang, China
| | - Xinyu Wu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang, China
| | - Ge Jiang
- Marine Fisheries Research Institute of Jiangsu, Nantong, China
- *Correspondence: Jingquan Dong, ; Hui Shen, ; Ge Jiang,
| | - Hui Shen
- Marine Fisheries Research Institute of Jiangsu, Nantong, China
- *Correspondence: Jingquan Dong, ; Hui Shen, ; Ge Jiang,
| | - Jingquan Dong
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang, China
- *Correspondence: Jingquan Dong, ; Hui Shen, ; Ge Jiang,
| |
Collapse
|
22
|
Development and evaluation of a novel visual and rapid detection assay for toxigenic Fusarium graminearum in maize based on recombinase polymerase amplification and lateral flow analysis. Int J Food Microbiol 2022; 372:109682. [DOI: 10.1016/j.ijfoodmicro.2022.109682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/29/2022] [Accepted: 04/15/2022] [Indexed: 11/18/2022]
|
23
|
Mao X, Zhao Y, Jiang J, Du Q, Tu B, Li J, Wang F. Sensitive and high-accuracy detection of Salmonella based on CRISPR/Cas12a combined with recombinase polymerase amplification. Lett Appl Microbiol 2022; 75:899-907. [PMID: 35694840 DOI: 10.1111/lam.13765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 06/06/2022] [Accepted: 06/08/2022] [Indexed: 11/30/2022]
Abstract
Salmonella is a crucial food-borne pathogen causing food poisoning, leading to severe public health events. Here, we developed a technique by integrating recombinase polymerase amplification with CRISPR-LbCas12a and employing two targets with engineered crRNA for detection of Salmonella (RPA-LbCas12a-TTECDS). Our findings revealed that this novel method rapidly detects trace Salmonella in food through fluorescence intensity and provides a template for other food-borne pathogen detection methods. Further, crRNA was optimized to increase detection sensitivity. Double targets were used to enhance the detection accuracy, reaching the level of qPCR, which was superior to fluorescent RPA. The RPA-LbCas12a-TTECDS system specifically detected Salmonella levels as low as 50 CFU per ml at 37°C in 1 h. In summary, a simple, rapid, sensitive and high accuracy detection technique based on CRISPR-Cas12a was created for Salmonella detection without complicated equipment.
Collapse
Affiliation(s)
- X Mao
- Pathogen Inspection Center, Changzhou Center for Disease Prevention and Control, Changzhou, China
| | - Y Zhao
- Pathogen Inspection Center, Changzhou Center for Disease Prevention and Control, Changzhou, China
| | - J Jiang
- Pathogen Inspection Center, Changzhou Center for Disease Prevention and Control, Changzhou, China
| | - Q Du
- Pathogen Inspection Center, Changzhou Center for Disease Prevention and Control, Changzhou, China
| | - B Tu
- Pathogen Inspection Center, Changzhou Center for Disease Prevention and Control, Changzhou, China
| | - J Li
- Pathogen Inspection Center, Changzhou Center for Disease Prevention and Control, Changzhou, China
| | - F Wang
- Pathogen Inspection Center, Changzhou Center for Disease Prevention and Control, Changzhou, China
| |
Collapse
|
24
|
Rapid detection of strawberry mottle virus using reverse transcription recombinase polymerase amplification with lateral flow strip. J Virol Methods 2022; 307:114566. [PMID: 35700833 DOI: 10.1016/j.jviromet.2022.114566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 06/03/2022] [Accepted: 06/08/2022] [Indexed: 11/21/2022]
Abstract
Strawberry mottle virus (SMoV) is one of the main RNA viruses that profoundly affects the growth of strawberries worldwide. The rapid on-site detection of SMoV described here can be applied to produce virus-free strawberry seedlings. Reverse transcriptase recombinase polymerase amplification (RT-RPA) was combined with lateral flow (LF) strip to rapidly detect SMoV. The detection limit was 500 fg of RNA under optimized conditions. The SMoV-RT-RPA-LF assay was optimal with a combination of 2 μL reverse primer (5 μM) and 0.6 μL probe (10 μM) in a 50 μL RT-RPA reaction mixture for isothermal amplification at 40 ℃ for 15 min. In addition, 100 suspected samples were collected from different regions in the Shanghai suburbs. The SMoV-RT-RPA-LF assay showed that 3 of these 100 samples were positive for SMoV, which was in good concordance with the reverse transcription polymerase chain reaction (RT-PCR) results. The primers and probe had a unique specificity to SMoV because there was no cross-reaction with other strawberry viruses. This study provides an effective technique for the rapid on-site detection of SMoV to ensure a virus-free strawberry nursery.
Collapse
|
25
|
Ramasamy P, Dakshinamoorthy G, Jayashree S, Prabhu D, Rajamanikandan S, Velusamy P, Dayanithi G, Hanna REB. A Novel Prototype Biosensor Array Electrode System for Detecting the Bacterial Pathogen Salmonella typhimurium. BIOSENSORS 2022; 12:389. [PMID: 35735537 PMCID: PMC9221460 DOI: 10.3390/bios12060389] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/26/2022] [Accepted: 06/02/2022] [Indexed: 06/15/2023]
Abstract
Salmonellosis caused by Salmonella sp. has long been reported all over the world. Despite the availability of various diagnostic methods, easy and effective detection systems are still required. This report describes a dialysis membrane electrode interface disc with immobilized specific antibodies to capture antigenic Salmonella cells. The interaction of a specific Salmonella antigen with a mouse anti-Salmonella monoclonal antibody complexed to rabbit anti-mouse secondary antibody conjugated with HRP and the substrate o-aminophenol resulted in a response signal output current measured using two electrode systems (cadmium reference electrode and glassy carbon working electrode) and an agilent HP34401A 6.5 digital multimeter without a potentiostat or applied potential input. A maximum response signal output current was recorded for various concentrations of Salmonella viz., 3, 30, 300, 3000, 30,000 and 300,000 cells. The biosensor has a detection limit of three cells, which is very sensitive when compared with other detection sensors. Little non-specific response was observed using Streptococcus, Vibrio, and Pseudomonas sp. The maximum response signal output current for a dialysis membrane electrode interface disc was greater than that for gelatin, collagen, and agarose. The device and technique have a range of biological applications. This novel detection system has great potential for future development and application in surveillance for microbial pathogens.
Collapse
Affiliation(s)
- Palaniappan Ramasamy
- Research and Development Wing, Bharath Institute of Higher Education and Research (BIHER), Sree Balaji Medical College and Hospital (SBMCH), Chromepet, Chennai 600044, Tamil Nadu, India
- Department of Biotechnology, University of Madras, Chennai 600025, Tamil Nadu, India
| | - Gajalakshmi Dakshinamoorthy
- Department of Biotechnology, University of Madras, Chennai 600025, Tamil Nadu, India
- MRD Tech Development, 505 Penobcot Dr., Redwood City, CA 94063, USA
| | - Shanmugam Jayashree
- Department of Biotechnology, University of Madras, Chennai 600025, Tamil Nadu, India
- Department of Biotechnology, Stella Maris College, Chennai 600086, Tamil Nadu, India
| | - Dhamodharan Prabhu
- Research and Development Wing, Bharath Institute of Higher Education and Research (BIHER), Sree Balaji Medical College and Hospital (SBMCH), Chromepet, Chennai 600044, Tamil Nadu, India
| | - Sundararaj Rajamanikandan
- Research and Development Wing, Bharath Institute of Higher Education and Research (BIHER), Sree Balaji Medical College and Hospital (SBMCH), Chromepet, Chennai 600044, Tamil Nadu, India
| | - Palaniyandi Velusamy
- Research and Development Wing, Bharath Institute of Higher Education and Research (BIHER), Sree Balaji Medical College and Hospital (SBMCH), Chromepet, Chennai 600044, Tamil Nadu, India
| | - Govindan Dayanithi
- Research and Development Wing, Bharath Institute of Higher Education and Research (BIHER), Sree Balaji Medical College and Hospital (SBMCH), Chromepet, Chennai 600044, Tamil Nadu, India
- Molecular Mechanisms in Neurodegenerative Diseases Laboratory (MMDN), University of Montpellier, L'École Pratique des Hautes Etudes-Sorbonne, INSERM, UMR-S1198, CEDEX 5, 34095 Montpellier, France
| | - Robert E B Hanna
- School of Biology and Biochemistry, The Queen's University of Belfast, Belfast BT7 1NN, UK
- Veterinary Science Division, Agri-Food and Biosciences Institute, Belfast BT4 3SD, UK
| |
Collapse
|
26
|
Ge D, Wang F, Hu Y, Wang B, Gao X, Chen Z. Fast, Simple, and Highly Specific Molecular Detection of Porphyromonas gingivalis Using Isothermal Amplification and Lateral Flow Strip Methods. Front Cell Infect Microbiol 2022; 12:895261. [PMID: 35694545 PMCID: PMC9174636 DOI: 10.3389/fcimb.2022.895261] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 04/27/2022] [Indexed: 12/16/2022] Open
Abstract
Porphyromonas gingivalis is an important oral pathogen that causes periodontal disease and is difficult to culture under conventional conditions. Therefore, a reliable technique for detecting this pathogenic bacterium is required. Here, isothermal recombinase polymerase amplification (RPA), a new nucleic acid amplification method, was combined with a visualization method based on nanoparticle-based lateral flow strips (LFS) for the rapid detection of P. gingivalis. The species-specific 16S rRNA sequence of P. gingivalis was used as the target for RPA, and a set of specific primer–probe combinations were designed and screened to amplify the target sequences. As a thermostatic amplification method, the RPA reaction, under optimized conditions, takes only 30 min to complete at a constant temperature (37°C). The amplification reaction products can be detected visually by LFS without any need for special equipment. The RPA-LFS method established for the detection of P. gingivalis was shown to be highly specific in distinguishing P. gingivalis from other pathogenic organisms by using 20 clinical isolates of P. gingivalis and 23 common pathogenic microorganisms. Susceptibility measurements and probit regression analysis were performed with gradient dilutions of P. gingivalis genomic DNA. The method was obtained to be highly sensitive, with a detection limit of 9.27 CFU per reaction at 95% probability. By analyzing the gingival sulcus fluid specimens from 130 patients with chronic periodontitis, the results showed that the RPA-LFS method detected 118 positive cases and 12 negative cases of P. gingivalis, and the results obtained were consistent with those of a conventional PCR assay. The RPA–LFS method is an efficient, rapid, and convenient diagnostic method that simplifies the tedious process of detecting P. gingivalis.
Collapse
Affiliation(s)
| | | | | | | | - Xuzhu Gao
- *Correspondence: Zhenxing Chen, ; Xuzhu Gao,
| | | |
Collapse
|
27
|
Li N, Wang L, Wang F, Chen H, Tao S, Zhu Q, Liu L, Liang W, Ma F. Rapid Detection of Klebsiella pneumoniae Carrying Virulence Gene rmpA2 by Recombinase Polymerase Amplification Combined With Lateral Flow Strips. Front Cell Infect Microbiol 2022; 12:877649. [PMID: 35663473 PMCID: PMC9160666 DOI: 10.3389/fcimb.2022.877649] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 04/22/2022] [Indexed: 11/16/2022] Open
Abstract
Highly virulent Klebsiella pneumoniae often causes invasive infections with high morbidity and mortality rates, posing an immense clinical challenge. Rapid and accurate detection of pathogenic bacteria is of great significance for treatment and preventive control. Conventional detection by polymerase chain reaction (PCR) is limited by a dependence on laboratory equipment and professional staff. Recombinase polymerase amplification (RPA) combined with a lateral flow strip (LFS) can rapidly amplify and visualize target genes in a short period of time. The aim of this study was to develop an RPA-LFS technique for detection of the K. pneumoniae virulence gene rmpA2. Primers were designed against conserved sequences specific to the virulence gene, and primer probe design was optimized by introducing base substitution to obtain a specific and sensitive primer-probe combination for clinical detection. We tested 65 actual samples collected from clinics to evaluate the performance of the newly established RPA-LFS system in comparison with conventional PCR methods and qPCR methods. The RPA-LFS assay was performed at for 25 min a constant temperature of 37°C, and results could be observed without instrumentation. The system could specifically identify highly virulent K. pneumoniae carrying the virulence gene rmpA2 with a minimum detection limit of 10−1 ng/μL and 10 copies/μL. For the 65 clinical samples tested, The RPA-LFS assay results were in complete agreement with the qPCR results and PCR results. The RPA-LFS assay provides a rapid, accurate, and simple method for identification of highly virulent K. pneumoniae carrying rmpA2.
Collapse
Affiliation(s)
- Na Li
- Department of Laboratory Medicine, The Second People’s Hospital of Lianyungang City, Affiliated to Bengbu Medical College, Lianyungang, China
- Department of Medical Laboratory, Bengbu Medical College, Bengbu, China
| | - Lei Wang
- Department of Laboratory Medicine, The Second People’s Hospital of Lianyungang City, Affiliated to Bengbu Medical College, Lianyungang, China
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Fang Wang
- Department of Laboratory Medicine, The Second People’s Hospital of Lianyungang City, Affiliated to Bengbu Medical College, Lianyungang, China
| | - Huimin Chen
- Department of Central Laboratory, Lianyungang Second People’s Hospital affiliated to Jiangsu University, Lianyungang, China
| | - Shuan Tao
- Department of Central Laboratory, Lianyungang Second People’s Hospital affiliated to Jiangsu University, Lianyungang, China
| | - Qing Zhu
- Lianyungang Second People’s Hospital affiliated to Xuzhou Medical University, Lianyungang, China
| | - Liping Liu
- Lianyungang Second People’s Hospital affiliated to Xuzhou Medical University, Lianyungang, China
| | - Wei Liang
- Department of Laboratory Medicine, The Second People’s Hospital of Lianyungang City, Affiliated to Bengbu Medical College, Lianyungang, China
- *Correspondence: Wei Liang, ; Fang Ma,
| | - Fang Ma
- Department of Medical Laboratory, Bengbu Medical College, Bengbu, China
- *Correspondence: Wei Liang, ; Fang Ma,
| |
Collapse
|
28
|
Mota DS, Guimarães JM, Gandarilla AMD, Filho JCBS, Brito WR, Mariúba LAM. Recombinase polymerase amplification in the molecular diagnosis of microbiological targets and its applications. Can J Microbiol 2022; 68:383-402. [PMID: 35394399 DOI: 10.1139/cjm-2021-0329] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Since the introduction of the polymerase chain reaction (PCR) technique in 1983, nucleic acid amplification has permeated all fields of biological science, particularly clinical research. Despite its importance, PCR has been restricted to specialized centers and its use in laboratories with few resources is limited. In recent decades, there has been a notable increase in the development of new isothermal technologies for molecular diagnosis with the hope of overcoming the traditional limitations of the laboratory. Among these technologies, recombinase polymerase amplification (RPA) has a wide application potential because it does not require thermocyclers and has high sensitivity, specificity, simplicity, and detection speed. This technique has been used for DNA and RNA amplification in various pathogenic organisms such as viruses, bacteria, and parasites. In addition, RPA has been successfully implemented in different detection strategies, making it a promising alternative for performing diagnoses in environments with scarce resources and a high burden of infectious diseases. In this study, we present a review of the use of RPA in clinical settings and its implementation in various research areas.
Collapse
Affiliation(s)
- D S Mota
- Programa de Pós-graduação em Imunologia Básica e Aplicada, Universidade Federal do Amazonas (UFAM), Manaus, AM, 69067-005, Brazil
| | - J M Guimarães
- Centro Multiusuário para Análises de Fenômenos Biomédicos, Universidade do Estado do Amazonas (UEA), Manaus, AM, 69065-00, Brazil
| | - A M D Gandarilla
- Departamento de Química, ICE, Universidade Federal do Amazonas (UFAM), Manaus, AM, 69067-005, Brazil.,Laboratório de Bioeletrônica e Eletroquímica, LABEL, Central Analítica, Universidade Federal do Amazonas (UFAM), Manaus, AM, 69067-005, Brazil
| | - J C B S Filho
- Departamento de Química, ICE, Universidade Federal do Amazonas (UFAM), Manaus, AM, 69067-005, Brazil.,Laboratório de Bioeletrônica e Eletroquímica, LABEL, Central Analítica, Universidade Federal do Amazonas (UFAM), Manaus, AM, 69067-005, Brazil
| | - W R Brito
- Departamento de Química, ICE, Universidade Federal do Amazonas (UFAM), Manaus, AM, 69067-005, Brazil.,Laboratório de Bioeletrônica e Eletroquímica, LABEL, Central Analítica, Universidade Federal do Amazonas (UFAM), Manaus, AM, 69067-005, Brazil
| | - L A M Mariúba
- Programa de Pós-graduação em Imunologia Básica e Aplicada, Universidade Federal do Amazonas (UFAM), Manaus, AM, 69067-005, Brazil.,Fundação Oswaldo Cruz, Fiocruz, Instituto Leônidas e Maria Deane (ILMD-FIOCRUZ), Manaus, AM, 69057-070, Brazil.,Programa de Pós-Graduação em Biotecnologia, Instituto de Ciências Biológicas, Universidade Federal do Amazonas (UFAM), Manaus, AM, 69057-070, Brazil.,Programa de Pós-Graduação em Biologia Celular e Molecular, Fundação Oswaldo Cruz, Fiocruz, Instituto Oswaldo Cruz, Rio de Janeiro, RJ, 21040-360, Brazil
| |
Collapse
|
29
|
Sohrabi H, Majidi MR, Khaki P, Jahanban-Esfahlan A, de la Guardia M, Mokhtarzadeh A. State of the art: Lateral flow assays toward the point-of-care foodborne pathogenic bacteria detection in food samples. Compr Rev Food Sci Food Saf 2022; 21:1868-1912. [PMID: 35194932 DOI: 10.1111/1541-4337.12913] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/18/2021] [Accepted: 12/23/2021] [Indexed: 12/24/2022]
Abstract
Diverse chemicals and some physical phenomena recently introduced in nanotechnology have enabled scientists to develop useful devices in the field of food sciences. Concerning such developments, detecting foodborne pathogenic bacteria is now an important issue. These kinds of bacteria species have demonstrated severe health effects after consuming foods and high mortality related to acute cases. The most leading path of intoxication and infection has been through food matrices. Hence, quick recognition of foodborne bacteria agents at low concentrations has been required in current diagnostics. Lateral flow assays (LFAs) are one of the urgent and prevalently applied quick recognition methods that have been settled for recognizing diverse types of analytes. Thus, the present review has stressed on latest developments in LFAs-based platforms to detect various foodborne pathogenic bacteria such as Salmonella, Listeria, Escherichia coli, Brucella, Shigella, Staphylococcus aureus, Clostridium botulinum, and Vibrio cholera. Proper prominence has been given on exactly how the labels, detection elements, or procedures have affected recent developments in the evaluation of diverse bacteria using LFAs. Additionally, the modifications in assays specificity and sensitivity consistent with applied food processing techniques have been discussed. Finally, a conclusion has been drawn for highlighting the main challenges confronted through this method and offered a view and insight of thoughts for its further development in the future.
Collapse
Affiliation(s)
- Hessamaddin Sohrabi
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Mir Reza Majidi
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Pegah Khaki
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Ali Jahanban-Esfahlan
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Biology, Faculty of Fundamental Sciences, University College of Nabi Akram (UCNA), Tabriz, Iran
| | | | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
30
|
Chen S, Yuan H, Yan X. Rapid visual detection of benzimidazole resistance in Botrytis cinerea by recombinase polymerase amplification combined with a lateral flow dipstick. PEST MANAGEMENT SCIENCE 2022; 78:821-830. [PMID: 34719103 DOI: 10.1002/ps.6697] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/24/2021] [Accepted: 10/30/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Benzimidazole resistance in Botrytis cinerea is related to point mutations in the target β-tubulin gene (TUB2). Three mutations (E198A, E198K, E198V) at codon 198 account for most of the resistant strains. A rapid on-site diagnostic assay would be useful to detect the presence and monitor further spread of this resistance mechanism. RESULTS A recombinase polymerase amplification combined with lateral flow detection (RPA-LFD) method was established for the rapid detection of methyl benzimidazole carbamate (MBC) resistance in B. cinerea. Based on the three mutations at TUB2 codon 198, three sets of RPA-LFD primers were designed, and each of these primer sets was able to specifically amplify the DNA containing its corresponding mutation; no amplification was detected with other mutated or wild-type DNA. The assay was optimized for specificity and sensitivity and was shown to detect the presence of 2 × 102 copies μl-1 of target DNA per reaction within 10 min. DNA from eight other common fungal species of small fruit did not yield a signal. The system worked well over a wide range of temperatures from 25 to 45°C. Crude DNA obtained from boiled mycelium and conidia of symptomatic fruit could be used as templates, which simplified the assay process. CONCLUSION This study developed a novel assay based on RPA-LFD for the rapid and equipment-free detection of MBC-resistant isolates. In combination with a simple DNA extraction method, the assay could detect B. cinerea MBC-resistant isolates even without specialized equipment within 30 min. Considering its specificity, stability and simplicity, the RPA-LFD assay could be a promising tool for rapid on-site diagnosis of fungicide-resistant isolates. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Shuning Chen
- China and Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Huizhu Yuan
- China and Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaojing Yan
- China and Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
31
|
Guo Q, Zhou K, Chen C, Yue Y, Shang Z, Zhou K, Fu Z, Liu J, Lin J, Xia C, Tang W, Cong X, Sun X, Hong Y. Development of a Recombinase Polymerase Amplification Assay for Schistosomiasis Japonica Diagnosis in the Experimental Mice and Domestic Goats. Front Cell Infect Microbiol 2021; 11:791997. [PMID: 34869085 PMCID: PMC8635165 DOI: 10.3389/fcimb.2021.791997] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 10/27/2021] [Indexed: 11/13/2022] Open
Abstract
Although the prevalence of schistosomiasis japonica has declined gradually in China, more accurate and sensitive diagnostic methods are urgently needed for the prevention and control of this disease. Molecular diagnostic methods are advantageous in terms of sensitivity and specificity, but they are time-consuming and require expensive instruments and skilled personnel, which limits their application in low-resource settings. In this study, an isothermal DNA amplification assay and recombinase polymerase amplification (RPA) combined with lateral flow dipstick (LFD) were set up. It was used to detect S. japonicum infections in experimental mice and domestic goats by amplifying a specific DNA fragment of S. japonicum. The lower limit of detection for the LFD-RPA assay was evaluated using dilutions of plasmid containing the target sequence. Cross-reactivity was evaluated using genomic DNA from eight other parasites. The effectiveness of the LFD-RPA assay was verified by assessing 36 positive plasma samples and 36 negative plasma samples from mice. The LFD-RPA assay and real-time PCR were also used to assess 48 schistosomiasis japonica-positive plasma samples and 53 negative plasma samples from goats. The LFD-RPA assay could detect 2.6 femtogram (fg) of S. japonicum target DNA (~39 fg genomic DNA of S. japonicum), only 10-fold less sensitive than real-time PCR assay. There was no cross-reactivity with DNA from the other eight parasites, such as Haemonchus contortus and Spirometra. The whole amplification process could be completed within 15 min at 39°C, and the results can be observed easily using the LFD. The sensitivity and specificity of the LFD-RPA assay were 97.22% (35/36, 95% CI, 85.47%-99.93%) and 100% (36/36, 95% CI, 90.26%-100%) in mice, and 93.75% (45/48, 95% CI, 82.80%-98.69%) and 100% (53/53, 95% CI, 93.28%-100%) in goats. By comparison, the sensitivity and specificity of real-time PCR were 100% (36/36, 95% CI, 90.26%-100%) and 100% (36/36, 95% CI, 90.26%-100%) for mice, and 97.92% (47/48, 95% CI, 88.93%-99.95%) and 100% (53/53, 95% CI, 93.28%-100%) for goats. The LFD-RPA assay exhibits high sensitivity and specificity for the diagnosis of schistosomiasis japonica, and it is an alternative method for diagnosis schistosomiasis japonica in low resource setting.
Collapse
Affiliation(s)
- Qinghong Guo
- National Reference Laboratory for Animal Schistosomiasis, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China.,Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Kerou Zhou
- National Reference Laboratory for Animal Schistosomiasis, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China.,Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Cheng Chen
- National Reference Laboratory for Animal Schistosomiasis, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China.,Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Yongcheng Yue
- National Reference Laboratory for Animal Schistosomiasis, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China.,Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Zheng Shang
- National Reference Laboratory for Animal Schistosomiasis, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China.,Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Keke Zhou
- National Reference Laboratory for Animal Schistosomiasis, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China.,Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Zhiqiang Fu
- National Reference Laboratory for Animal Schistosomiasis, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China.,Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Jinming Liu
- National Reference Laboratory for Animal Schistosomiasis, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China.,Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Jiaojiao Lin
- National Reference Laboratory for Animal Schistosomiasis, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China.,Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Chenyang Xia
- Institute of Animal Science, Tibet Academy of Agricultural and Animal Husbandry Science, Lhasa, China
| | - Wenqiang Tang
- Institute of Animal Science, Tibet Academy of Agricultural and Animal Husbandry Science, Lhasa, China
| | - Xiaonan Cong
- Huancui Development Center for Animal Husbandry, Weihai, China
| | - Xuejun Sun
- Huancui Development Center for Animal Husbandry, Weihai, China
| | - Yang Hong
- National Reference Laboratory for Animal Schistosomiasis, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| |
Collapse
|
32
|
Wang F, Ge D, Wang L, Li N, Chen H, Zhang Z, Zhu W, Wang S, Liang W. Rapid and sensitive recombinase polymerase amplification combined with lateral flow strips for detecting Candida albicans. Anal Biochem 2021; 633:114428. [PMID: 34678249 DOI: 10.1016/j.ab.2021.114428] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 10/13/2021] [Accepted: 10/16/2021] [Indexed: 12/30/2022]
Abstract
Owing to modern lifestyles and increasing amounts of medical intervention, clinical infections caused by conditionally pathogenic fungi are becoming increasingly serious. Among these, Candida albicans is the most common. Therefore, the rapid and accurate detection of this pathogenic fungus is important to guiding the selection of clinical therapeutic agents. Recombinase polymerase amplification (RPA) combined with lateral flow strips (LFS) is a promising molecular detection method with the advantages of rapidity, simplicity of operation and high sensitivity. However, this simplicity brings with it the inherent and non-negligible risk of false-positive signals from primer-dimers. In this study, primer-dependent artifacts were eliminated by using probes in the RPA reaction, introducing specific base substitutions to the primer and probe sequences and analyzing and screening the formation of primer-probe complexes. These measures were rigorously tested for efficacy, leading to the creation of an improved RPA-LFS system. The standardized method enabled the specific detection of C. albicans within 25 min at 37 °C without interference. The system had a detection limit of 1 CFU per reaction without DNA purification or 102 fg genomic DNA/50 μL. The detection sensitivity was not affected by the presence of other fungal DNA. The RPA-LFS method can therefore be used to detect clinical samples, and the results are accurate and consistent in comparison with those obtained using quantitative PCR. This study provides a paradigm for eliminating the risk of false-positive primer dimers in isothermal amplification assays and establishes a simple and easy method for the detection of C. albicans.
Collapse
Affiliation(s)
- Fang Wang
- Department of Central Laboratory, the Second People's Hospital of Lianyungang City (Cancer Hospital of Lianyungang), Affiliated to Bengbu Medical College, Lianyungang, 222000, Jiangsu, China
| | - Duobao Ge
- Department of Central Laboratory, the Second People's Hospital of Lianyungang City (Cancer Hospital of Lianyungang), Affiliated to Bengbu Medical College, Lianyungang, 222000, Jiangsu, China
| | - Lei Wang
- Department of Central Laboratory, the Second People's Hospital of Lianyungang City (Cancer Hospital of Lianyungang), Affiliated to Bengbu Medical College, Lianyungang, 222000, Jiangsu, China; School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212018, Jiangsu, China
| | - Na Li
- Department of Central Laboratory, the Second People's Hospital of Lianyungang City (Cancer Hospital of Lianyungang), Affiliated to Bengbu Medical College, Lianyungang, 222000, Jiangsu, China
| | - Huimin Chen
- Department of Central Laboratory, the Second People's Hospital of Lianyungang City (Cancer Hospital of Lianyungang), Affiliated to Bengbu Medical College, Lianyungang, 222000, Jiangsu, China
| | - Zhexiong Zhang
- Department of Central Laboratory, the Second People's Hospital of Lianyungang City (Cancer Hospital of Lianyungang), Affiliated to Bengbu Medical College, Lianyungang, 222000, Jiangsu, China
| | - Wenjun Zhu
- Department of Central Laboratory, the Second People's Hospital of Lianyungang City (Cancer Hospital of Lianyungang), Affiliated to Bengbu Medical College, Lianyungang, 222000, Jiangsu, China
| | - Siming Wang
- Department of Central Laboratory, the Second People's Hospital of Lianyungang City (Cancer Hospital of Lianyungang), Affiliated to Bengbu Medical College, Lianyungang, 222000, Jiangsu, China.
| | - Wei Liang
- Department of Central Laboratory, the Second People's Hospital of Lianyungang City (Cancer Hospital of Lianyungang), Affiliated to Bengbu Medical College, Lianyungang, 222000, Jiangsu, China.
| |
Collapse
|
33
|
Kovalskaya N, Hammond RW. Rapid diagnostic detection of tomato apical stunt viroid based on isothermal reverse transcription-recombinase polymerase amplification. J Virol Methods 2021; 300:114353. [PMID: 34767861 DOI: 10.1016/j.jviromet.2021.114353] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/05/2021] [Accepted: 11/06/2021] [Indexed: 12/31/2022]
Abstract
Tomato apical stunt viroid (TASVd) is a serious threat to tomato plants that can cause a considerable yield loss. In the present study, two isothermal molecular diagnostic assays based on reverse transcription-recombinase polymerase amplification (RT-RPA) utilizing the AmplifyRP® platform for plant pathogen detection were developed. The results of this research demonstrated distinct specificity of both developed assays, AmplifyRP® Acceler8™ and AmplifyRP® XRT, expressed in the absence of any cross-reaction activity to all total RNA extracts obtained from plants infected with other pospiviroids. The RT-RPA assays detected viroid RNA in 81- and 27-fold dilutions of the original TASVd-infected crude extract for AmplifyRP® Acceler8™ and AmplifyRP® XRT, respectively. The sensitivity tests in serial water dilutions showed the ability of AmplifyRP® Acceler8™ and AmplifyRP® XRT to detect 8 and 80 fg of pure TASVd RNA transcript, respectively. The influence of crude extract on viroid RNA transcript detection was also examined and a decrease of sensitivity of approximately 100-fold for both RT-RPA assays was revealed. To our knowledge, this is the first report describing development of RT-RPA assays to detect TASVd in plants using the AmplifyRP® platform that can be further employed both in laboratory conditions and in the field for on-site diagnosis.
Collapse
Affiliation(s)
- Natalia Kovalskaya
- ORISE-USDA ARS USNA Floral and Nursery Plant Research Unit, 10300 Baltimore Ave, Bldg. 004, Rm. 211, Beltsville, MD, 20705, USA.
| | - Rosemarie W Hammond
- USDA ARS Molecular Plant Pathology Laboratory, 10300 Baltimore Ave, Bldg. 004, Rm. 214, Beltsville, MD, 20705, USA.
| |
Collapse
|
34
|
Zhang T, Li HT, Xia X, Liu J, Lu Y, Khan MR, Deng S, Busquets R, He G, He Q, Zhang J, Deng R. Direct Detection of Foodborne Pathogens via a Proximal DNA Probe-Based CRISPR-Cas12 Assay. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:12828-12836. [PMID: 34694123 DOI: 10.1021/acs.jafc.1c04663] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Foodborne pathogens can cause illnesses. Existing tools for detecting foodborne pathogens are typically time-consuming or require complex protocols. Here, we report an assay to directly analyze pathogenic genes based on CRISPR-Cas12. This new test, termed proximal DNA probe-based CRISPR-Cas12 (PPCas12), facilitates the detection of foodborne pathogens without amplification steps. The elimination of the nucleic acid amplification process dramatically reduced the processing time, complexity, and costs in the analysis of foodborne pathogens. The substitution of the frequently used dually labeled DNA reporter with a proximal DNA probe in the PPCas12 assay led to a 4-fold sensitivity enhancement. PPCas12 offered a limit of detection of 619 colony-forming units in the detection of Salmonella enterica (S. enterica) without the nucleic acid amplification process. The specific recognition of genes via PPCas12 allowed distinguishing S. enterica from other foodborne pathogens. The PPCas12 assay was applied in the screening of S. enterica contamination on fresh eggs with high precision. Hence, the new PPCas12 assay will be a valuable tool for on-site monitoring of foodborne pathogens.
Collapse
Affiliation(s)
- Ting Zhang
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China
| | - Hai-Tao Li
- Tianjin Physical & Chemical Analysis Center, Tianjin 300051, China
| | - Xuhan Xia
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China
| | - Jun Liu
- Chengdu Customs Technology Center, Chengdu 610041, China
| | - Yunhao Lu
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China
| | - Mohammad Rizwan Khan
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sha Deng
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China
| | - Rosa Busquets
- School of Life Sciences, Pharmacy and Chemistry, Kingston University, Penrhyn Road, KT1 2EE Kingston Upon Thames, United Kingdom
| | - Guiping He
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China
| | - Qiang He
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China
| | - Jiaqi Zhang
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China
| | - Ruijie Deng
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China
| |
Collapse
|
35
|
Wang P, Ma C, Liao L, Yu J, Yi L, Qiao Y, Liu X, Gao S, Shen H, Lu Q. Simultaneous visual diagnosis of acute hepatopancreatic necrosis disease and Enterocytozoon hepatopenaei infection in shrimp with duplex recombinase polymerase amplification. JOURNAL OF FISH DISEASES 2021; 44:1753-1763. [PMID: 34237791 DOI: 10.1111/jfd.13492] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 06/25/2021] [Accepted: 06/28/2021] [Indexed: 06/13/2023]
Abstract
Shrimp is a globally popular seafood. Shrimp farming has been challenged by various infectious diseases that lead to significant economic losses. The prevention of two important shrimp infectious diseases, the acute hepatopancreatic necrosis disease (AHPND) and the Enterocytozoon hepatopenaei (EHP) infection, is highly dependent on early and accurate diagnostic. On-site monitoring of the two diseases in shrimp farming facilities demands point-of-care-testing (POCT) type of diagnostic assays. This study established a duplex recombinase polymerase amplification (RPA) and lateral flow dipstick (LFD) combined assay that could simultaneously diagnose the two diseases. The optimized RPA-LFD assay could finish the diagnostic in 35 min with good specificity, and the sensitivity reached 101 and 102 gene copies per reaction for EHP and AHPND, respectively, which were at the same level as the currently available molecular diagnostic assays. Test results of clinical samples showed 100% agreement of this assay with the industrial standard nested polymerase chain reaction (PCR) assays, and samples with both diseases were simultaneously identified. Because of the isothermal 37℃ amplification and the visual reading of the signal on dipsticks, the dependence on equipment is minimal. This duplex RPA-LFD assay is well suited for simultaneous POCT diagnostic of the two important shrimp infectious diseases. Moreover, the principle can be applied to multiplex POCT diagnostic of other infectious diseases in aquaculture.
Collapse
Affiliation(s)
- Pei Wang
- Key Laboratory of Molecular Biophysics of Ministry of Education, Department of Biomedical Engineering, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Chao Ma
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Key Laboratory of Marine Biological Resources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, School of Pharmacy, Jiangsu Ocean University, Lianyungang, China
| | - Lei Liao
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Key Laboratory of Marine Biological Resources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, School of Pharmacy, Jiangsu Ocean University, Lianyungang, China
| | - Junwei Yu
- Ustar Biotechnologies (Hangzhou) Ltd, Zhejiang, China
| | - Longyu Yi
- Key Laboratory of Molecular Biophysics of Ministry of Education, Department of Biomedical Engineering, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Qiao
- Jiangsu Institute of Oceanology and Marine Fisheries, Nantong, China
| | - Xin Liu
- Key Laboratory of Molecular Biophysics of Ministry of Education, Department of Biomedical Engineering, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Song Gao
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Key Laboratory of Marine Biological Resources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, School of Pharmacy, Jiangsu Ocean University, Lianyungang, China
| | - Hui Shen
- Jiangsu Institute of Oceanology and Marine Fisheries, Nantong, China
| | - Qunwei Lu
- Key Laboratory of Molecular Biophysics of Ministry of Education, Department of Biomedical Engineering, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
36
|
Guaman-Bautista LP, Moreta-Urbano E, Oña-Arias CG, Torres-Arias M, Kyriakidis NC, Malcı K, Jonguitud-Borrego N, Rios-Solis L, Ramos-Martinez E, López-Cortés A, Barba-Ostria C. Tracking SARS-CoV-2: Novel Trends and Diagnostic Strategies. Diagnostics (Basel) 2021; 11:1981. [PMID: 34829328 PMCID: PMC8621220 DOI: 10.3390/diagnostics11111981] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/18/2021] [Accepted: 09/23/2021] [Indexed: 12/26/2022] Open
Abstract
The COVID-19 pandemic has had an enormous impact on economies and health systems globally, therefore a top priority is the development of increasingly better diagnostic and surveillance alternatives to slow down the spread of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In order to establish massive testing and contact tracing policies, it is crucial to have a clear view of the diagnostic options available and their principal advantages and drawbacks. Although classical molecular methods such as RT-qPCR are broadly used, diagnostic alternatives based on technologies such as LAMP, antigen, serological testing, or the application of novel technologies such as CRISPR-Cas for diagnostics, are also discussed. The present review also discusses the most important automation strategies employed to increase testing capability. Several serological-based diagnostic kits are presented, as well as novel nanotechnology-based diagnostic methods. In summary, this review provides a clear diagnostic landscape of the most relevant tools to track COVID-19.
Collapse
Affiliation(s)
- Linda P. Guaman-Bautista
- Centro de Investigación Biomédica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170147, Ecuador; (L.P.G.-B.); (E.M.-U.); (C.G.O.-A.)
| | - Erick Moreta-Urbano
- Centro de Investigación Biomédica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170147, Ecuador; (L.P.G.-B.); (E.M.-U.); (C.G.O.-A.)
| | - Claudia G. Oña-Arias
- Centro de Investigación Biomédica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170147, Ecuador; (L.P.G.-B.); (E.M.-U.); (C.G.O.-A.)
| | - Marbel Torres-Arias
- Immunology and Virology Laboratory, Department of Life Science and Agriculture, Universidad de las Fuerzas Armadas, Quito 171103, Ecuador;
| | - Nikolaos C. Kyriakidis
- Grupo de Investigación en Biotecnología Aplicada a Biomedicina (BIOMED), Universidad de Las Américas, Quito 170125, Ecuador;
- One Health Research Group, Faculty of Medicine, Universidad de Las Américas (UDLA), Quito 170125, Ecuador
| | - Koray Malcı
- Institute for Bioengineering, School of Engineering, University of Edinburgh, Edinburgh EH8 9LE, UK; (K.M.); (N.J.-B.); (L.R.-S.)
- Centre for Synthetic and Systems Biology (SynthSys), University of Edinburgh, Edinburgh EH8 9LE, UK
| | - Nestor Jonguitud-Borrego
- Institute for Bioengineering, School of Engineering, University of Edinburgh, Edinburgh EH8 9LE, UK; (K.M.); (N.J.-B.); (L.R.-S.)
- Centre for Synthetic and Systems Biology (SynthSys), University of Edinburgh, Edinburgh EH8 9LE, UK
| | - Leonardo Rios-Solis
- Institute for Bioengineering, School of Engineering, University of Edinburgh, Edinburgh EH8 9LE, UK; (K.M.); (N.J.-B.); (L.R.-S.)
- Centre for Synthetic and Systems Biology (SynthSys), University of Edinburgh, Edinburgh EH8 9LE, UK
| | - Espiridion Ramos-Martinez
- Experimental Medicine Research Unit, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 4510, Mexico;
| | - Andrés López-Cortés
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170147, Ecuador;
| | - Carlos Barba-Ostria
- Escuela de Medicina, Colegio de Ciencias de la Salud Quito, Universidad San Francisco de Quito USFQ, Quito 170901, Ecuador
| |
Collapse
|
37
|
Yang X, Dong Y, Ma C, Qiao Y, Jiang G, Chen S, Dong J, Shen H, Gao S. Establishment of a visualized isothermal nucleic acid amplification method for on-site diagnosis of acute hepatopancreatic necrosis disease in shrimp farm. JOURNAL OF FISH DISEASES 2021; 44:1293-1303. [PMID: 34041767 DOI: 10.1111/jfd.13388] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/16/2021] [Accepted: 04/18/2021] [Indexed: 06/12/2023]
Abstract
Acute hepatopancreatic necrosis disease (AHPND) is a significant deadly infectious disease in the shrimp farming industry, causing serious economic losses globally every year. Because of the rapid progress speed, lack of effective treatment and high mortality rate of AHPND, monitoring with frequent diagnostic tests is vital for a successful prevention. The conventional histopathological diagnosis fell far short of the requirement for efficient monitoring, and the polymerase chain reaction (PCR)-based molecular diagnostic methods that rely on sophisticated thermocycler and trained personnel are hardly applicable in the field. Combining the recombinase polymerase amplification (RPA) and the lateral flow strips (LFSs), a diagnostic method suitable for on-site everyday monitoring of AHPND has been established in this study. This RPA-LFS method targeted the binary toxic photorhabdus insect-related genes PirA and PirB on a virulence plasmid of the AHPND-causative Vibrio parahaemolyticus strains. The diagnostic test was completed within 30 min at 37°C and showed good specificity and good sensitivity of 20 fg DNA of the AHPND shrimp or one colony-forming unit of the causative bacterium per reaction, which was better than the administration-approved standard AP4 assay. Crude templates from sample boiling could be directly used. Tests of clinical samples showed 100% consistency of this method with the standard AP4 assay. This RPA-LFS method can be a good choice for on-site diagnosis of AHPND with quick response time, easy procedure and low demand for resources, and should have significant value for the control of spreading of this dangerous disease in farmed shrimp.
Collapse
Affiliation(s)
- Xiaohan Yang
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, School of Pharmacy, Jiangsu Ocean University, Lianyungang, China
- College of Life Science and Technology, Hua Zhong University of Science and Technology, Wuhan, China
| | - Yu Dong
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, School of Pharmacy, Jiangsu Ocean University, Lianyungang, China
| | - Chao Ma
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, School of Pharmacy, Jiangsu Ocean University, Lianyungang, China
| | - Yi Qiao
- Jiangsu Institute of Oceanology and Marine Fisheries, Nantong, China
| | - Ge Jiang
- Jiangsu Institute of Oceanology and Marine Fisheries, Nantong, China
| | - Shiqi Chen
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, School of Pharmacy, Jiangsu Ocean University, Lianyungang, China
| | - Jingquan Dong
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, School of Pharmacy, Jiangsu Ocean University, Lianyungang, China
| | - Hui Shen
- Jiangsu Institute of Oceanology and Marine Fisheries, Nantong, China
| | - Song Gao
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, School of Pharmacy, Jiangsu Ocean University, Lianyungang, China
| |
Collapse
|
38
|
Gu X, Hou Q, Liu J, Xia P, Duan Q, Zhu G. Sef fimbria operon construction, expression, and function for direct rapid detection of Salmonella Enteritidis. Appl Microbiol Biotechnol 2021; 105:5631-5641. [PMID: 34155530 DOI: 10.1007/s00253-021-11400-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/27/2021] [Accepted: 05/29/2021] [Indexed: 11/28/2022]
Abstract
Salmonella Enteritidis (SE) causes both horizontal and vertical transmission of diseases in poultry industry and is also one of the main causes of human food poisoning. Sequence analysis of the sef operon of poultry-derived Salmonella serotypes showed the presence of an entire sef operon in SE, whereas only sef pseudogenes were found in Salmonella Gallinarum and Salmonella Pullorum. Subsequently, the sef operon of SE was cloned into the pBR322 plasmid and expressed in a modified Escherichia coli strain SE5000. sef operon expression was demonstrated using sodium dodecyl sulfate-polyacrylamide gel electrophoresis, western blot, agglutination assay, and transmission electron microscopy. The results showed that SE5000+Sef, but not SE5000+pBR322, could specifically react with SE-positive chicken serum in an agglutination assay, which could be clearly visualized by the naked eye within less than 2 min. In contrast, SE5000+Sef could not be recognized in Salmonella Gallinarum- and Salmonella Pullorum-positive chicken sera. Next, taking advantage of the exclusive presence of an entire sef operon in SE, we set up an agglutination-based detection system to monitor the dynamics of Sef-targeted antibody from SE-infected chicks for 47 days. Using the proposed detection method, SE was readily detectable starting from 2 weeks post-infection. Finally, we compared the proposed SE5000+Sef-based detection system with commercially available agglutination antigen using the classical bacterial isolation and identification procedure as reference. The results showed that the SE5000+Sef system was more consistent with the results of bacterial isolation and identification with almost 100% accuracy. We established a simple, sensitive, and cheap agglutination method for rapid and specific detection of SE-infected chickens, which can facilitate epidemiological investigation and eradication of SE infections. KEY POINTS: • Only the Salmonella Enteritidis serotype expressed Sef fimbriae in chicken infected with SE. • A rapid, large-scale method of detection by the naked eye of detection of SE-infected chicken is presented.
Collapse
Affiliation(s)
- Xuanqiang Gu
- College of Veterinary Medicine, Yangzhou University, 12 East Wenhui Road, Yangzhou, 225009, China.,Jiangsu Co-Innovation Center for Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
| | - Qianxi Hou
- College of Veterinary Medicine, Yangzhou University, 12 East Wenhui Road, Yangzhou, 225009, China.,Jiangsu Co-Innovation Center for Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
| | - Jiaqi Liu
- College of Veterinary Medicine, Yangzhou University, 12 East Wenhui Road, Yangzhou, 225009, China.,Jiangsu Co-Innovation Center for Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
| | - Pengpeng Xia
- College of Veterinary Medicine, Yangzhou University, 12 East Wenhui Road, Yangzhou, 225009, China.,Jiangsu Co-Innovation Center for Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
| | - Qiangde Duan
- College of Veterinary Medicine, Yangzhou University, 12 East Wenhui Road, Yangzhou, 225009, China. .,Jiangsu Co-Innovation Center for Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China. .,Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China.
| | - Guoqiang Zhu
- College of Veterinary Medicine, Yangzhou University, 12 East Wenhui Road, Yangzhou, 225009, China. .,Jiangsu Co-Innovation Center for Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China. .,Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
39
|
Tailor-Made Immunochromatographic Test for the Detection of Multiple 17α-Methylated Anabolics in Dietary Supplements. Foods 2021; 10:foods10040741. [PMID: 33915816 PMCID: PMC8065520 DOI: 10.3390/foods10040741] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/26/2021] [Accepted: 03/30/2021] [Indexed: 01/13/2023] Open
Abstract
In recent years, the undeclared presence of various anabolic androgenic steroids (AAS) in commercial supplements has been confirmed. This fact can be a potential threat to all athletes using these supplements, and therefore, there is of increased interest in the implementation of rapid methods for the detection of AAS. The presented study describes the development of an immunostrip test for the detection of multiple 17α-methylated AAS based on direct and indirect competitive principle using gold nanoparticles as a label. As a capture reagent on test lines conjugated stanazolol to rabbit serum albumin (RSA/ST-3) was used, the intensity of color formed in the test line of the AAS-positive sample was visually distinguishable from that of negative sample within 10 min. The optimized closed direct and indirect format of the test provided a similar visual detection limit (0.7 and 0.9 ng/mL, respectively). The most commonly orally abused AAS (17α-methyltestosterone, methandienone, methyldihydrotestosterone, oxandrolone and oxymetholone) showed a strong cross-reaction. Developed immunostrips were successfully applied to analysis of artificially contaminated dietary supplements with 17α-methylated AASs. The developed immunostrips offer potential as a useful user-friendly method for capturing suspicious dietary supplement samples with different contents of AAS at levels far below the usually used concentrations of AAS.
Collapse
|
40
|
Zhao L, Wang J, Sun XX, Wang J, Chen Z, Xu X, Dong M, Guo YN, Wang Y, Chen P, Gao W, Geng Y. Development and Evaluation of the Rapid and Sensitive RPA Assays for Specific Detection of Salmonella spp. in Food Samples. Front Cell Infect Microbiol 2021; 11:631921. [PMID: 33718280 PMCID: PMC7946851 DOI: 10.3389/fcimb.2021.631921] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 01/19/2021] [Indexed: 11/16/2022] Open
Abstract
Salmonella spp. is among the main foodborne pathogens which cause serious foodborne diseases. An isothermal real-time recombinase polymerase amplification (RPA) and lateral flow strip detection (LFS RPA) were used to detect Salmonella spp. targeting the conserved sequence of invasion protein A (invA). The Real-time RPA was performed in a portable florescence scanner at 39°C for 20 min. The LFS RPA was performed in an incubator block at 39°C for 15 min, under the same condition that the amplifications could be inspected by the naked eyes on the LFS within 5 min. The detection limit of Salmonella spp. DNA using real-time RPA was 1.1 × 101 fg, which was the same with real-time PCR but 10 times higher than that of LFS RPA assay. Moreover, the practicality of discovering Salmonella spp. was validated with artificially contaminated lamb, chicken, and broccoli samples. The analyzing time dropped from 60 min to proximately 5–12 min on the basis of the real-time and LFS RPA assays compared with the real-time PCR assay. Real-time and LFS RPA assays’ results were equally reliable. There was no cross-reactivity with other pathogens in both assays. In addition, the assays had good stability. All of these helped to show that the developed RPA assays were simple, rapid, sensitive, credible, and could be a potential point-of-need (PON) test required mere resources.
Collapse
Affiliation(s)
- Liwei Zhao
- Heibei Key Laboratory of Chinese Medicine Research on Cardiocerebrovascular Disease, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Jianchang Wang
- Food Microbiology and Animal Quarantine Laboratory, Technology Center of Shijiazhuang Customs, Shijiazhuang, China
| | - Xiao Xia Sun
- Food Microbiology and Animal Quarantine Laboratory, Technology Center of Shijiazhuang Customs, Shijiazhuang, China
| | - Jinfeng Wang
- Food Microbiology and Animal Quarantine Laboratory, Technology Center of Shijiazhuang Customs, Shijiazhuang, China
| | - Zhimin Chen
- Food Microbiology and Animal Quarantine Laboratory, Technology Center of Shijiazhuang Customs, Shijiazhuang, China
| | - Xiangdong Xu
- School of Public Health, Key Laboratory of Environment and Human Health, Hebei Medical University, Shijiazhuang, China
| | - Mengyuan Dong
- Heibei Key Laboratory of Chinese Medicine Research on Cardiocerebrovascular Disease, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Ya-Nan Guo
- Heibei Key Laboratory of Chinese Medicine Research on Cardiocerebrovascular Disease, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Yuanyuan Wang
- Heibei Key Laboratory of Chinese Medicine Research on Cardiocerebrovascular Disease, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Pingping Chen
- Heibei Key Laboratory of Chinese Medicine Research on Cardiocerebrovascular Disease, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Weijuan Gao
- Heibei Key Laboratory of Chinese Medicine Research on Cardiocerebrovascular Disease, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Yunyun Geng
- Heibei Key Laboratory of Chinese Medicine Research on Cardiocerebrovascular Disease, Hebei University of Chinese Medicine, Shijiazhuang, China
| |
Collapse
|
41
|
Tomar PS, Kumar S, Patel S, Kumar JS. Development and Evaluation of Real-Time Reverse Transcription Recombinase Polymerase Amplification Assay for Rapid and Sensitive Detection of West Nile Virus in Human Clinical Samples. Front Cell Infect Microbiol 2021; 10:619071. [PMID: 33708642 PMCID: PMC7940365 DOI: 10.3389/fcimb.2020.619071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 12/31/2020] [Indexed: 11/17/2022] Open
Abstract
West Nile virus (WNV) causes West Nile fever and encephalitis worldwide. Currently, there are no effective drugs or vaccines available in the market to treat WNV infection in humans. Hence, it is of paramount importance to detect WNV early for the success of the disease control programs and timely clinical management in endemic areas. In the present paper, we report the development of real-time reverse transcription recombinase polymerase amplification (RT-RPA) assay for rapid and real-time detection of WNV targeting the envelope (env) gene of the virus. The RPA reaction was performed successfully at 39°C for 15 min in a real-time thermal cycler. The sensitivity of this assay was found similar to that of the quantitative real-time RT PCR (RT-qPCR) assay, which could detect 10 copies of the gene. The efficacy of the assay was evaluated with a panel of 110 WN suspected human samples showing the signs of retinitis, febrile illness and acute posterior uveitis. In comparison with RT-qPCR, RT-RPA showed a specificity of 100% (CI, 95.07–100%) and sensitivity of 96.15% (CI, 80.36–99.90%) with a negative (NPV) and positive predictive value (PPV) of 98.65 and 100%, respectively. The level of agreement between RT-RPA and reference RT-qPCR assay was shown to be very high. The turnaround time of real-time RPA assay is about 10-20 times faster than the RT-qPCR, which confirms its utility in the rapid and sensitive diagnosis of WNV infection. To the best of our knowledge, this is the first report which deals with the development of real-time RT-RPA assay for simple, rapid, sensitive, and specific detection of WNV in human clinical samples. The present RT-RPA assay proves to be a powerful tool that can be used for the rapid diagnosis of a large number of patient samples in endemic settings.
Collapse
Affiliation(s)
- Priyanka Singh Tomar
- Division of Virology, Defence Research and Development Establishment, Gwalior, India
| | - Sanjay Kumar
- Division of BDTE, Defence Research and Development Establishment, Gwalior, India
| | - Sapan Patel
- School of Studies in Botany, Jiwaji University, Gwalior, India
| | - Jyoti S Kumar
- Division of Virology, Defence Research and Development Establishment, Gwalior, India
| |
Collapse
|
42
|
|
43
|
Bhunia AK, Bisha B, Gehring AG, Brehm-Stecher BF. Advances in Foodborne Pathogen Analysis. Foods 2020; 9:1635. [PMID: 33182540 PMCID: PMC7696508 DOI: 10.3390/foods9111635] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 11/02/2020] [Indexed: 12/20/2022] Open
Abstract
As the world population has grown, new demands on the production of foods have been met by increased efficiencies in production, from planting and harvesting to processing, packaging and distribution to retail locations. These efficiencies enable rapid intranational and global dissemination of foods, providing longer "face time" for products on retail shelves and allowing consumers to make healthy dietary choices year-round. However, our food production capabilities have outpaced the capacity of traditional detection methods to ensure our foods are safe. Traditional methods for culture-based detection and characterization of microorganisms are time-, labor- and, in some instances, space- and infrastructure-intensive, and are therefore not compatible with current (or future) production and processing realities. New and versatile detection methods requiring fewer overall resources (time, labor, space, equipment, cost, etc.) are needed to transform the throughput and safety dimensions of the food industry. Access to new, user-friendly, and point-of-care testing technologies may help expand the use and ease of testing, allowing stakeholders to leverage the data obtained to reduce their operating risk and health risks to the public. The papers in this Special Issue on "Advances in Foodborne Pathogen Analysis" address critical issues in rapid pathogen analysis, including preanalytical sample preparation, portable and field-capable test methods, the prevalence of antibiotic resistance in zoonotic pathogens and non-bacterial pathogens, such as viruses and protozoa.
Collapse
Affiliation(s)
- Arun K. Bhunia
- Department of Food Science, Purdue University, West Lafayette, IN 47907, USA
- Department of Comparative Pathobiology (Courtesy), Purdue University, West Lafayette, IN 47907, USA
| | - Bledar Bisha
- Department of Animal Science, University of Wyoming, Laramie, WY 82071, USA
| | - Andrew G. Gehring
- Molecular Characterization of Foodborne Pathogens, Agricultural Research Service, United States Department of Agriculture, Wyndmoor, PA 19038, USA
| | - Byron F. Brehm-Stecher
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
44
|
Fang W, Cai Y, Zhu L, Wang H, Lu Y. Rapid and Highly Sensitive Detection of Toxigenic Vibrio cholerae Based on Recombinase-Aided Amplification Combining with Lateral Flow Assay. FOOD ANAL METHOD 2020. [DOI: 10.1007/s12161-020-01909-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
45
|
Yang X, Zhao P, Dong Y, Chen S, Shen H, Jiang G, Zhu H, Dong J, Gao S. An isothermal recombinase polymerase amplification and lateral flow strip combined method for rapid on-site detection of Vibrio vulnificus in raw seafood. Food Microbiol 2020; 98:103664. [PMID: 33875195 DOI: 10.1016/j.fm.2020.103664] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 10/09/2020] [Accepted: 10/13/2020] [Indexed: 02/06/2023]
Abstract
Vibrio vulnificus is an important foodborne pathogenic bacterium that mainly contaminates seafood. Rapid and accurate technologies that suitable for on-site detection are critical for effective control of its spreading. Conventional detection methods and polymerase chain reaction (PCR)-based and qPCR-based approaches have application limitations in on-site scenarios. Application of loop-mediated isothermal amplification (LAMP) technology was a good step towards the on-site detection. In this study, a recombinase polymerase amplification (RPA)-based detection method for V. vulnificus was developed combining with lateral flow strip (LFS) for visualized signal. The method targeted the conservative empV gene encoding the extracellular metalloproteinase, and finished detection in 35 min at a conveniently low temperature of 37 °C. It showed good specificity and an excellent sensitivity of 2 copies of the genome or 10-1 colony forming unit (CFU) per reaction, or 1 CFU/10 g in spiked food samples with enrichment. The method tolerated unpurified templates directly from sample boiling, which added the convenience of the overall procedure. Application of the RPA-LFS method for clinical samples showed accurate and consistent detection results compared to bioassay and quantitative PCR. This RPA-LFS combined method is well suited for on-site detection of V. vulnificus.
Collapse
Affiliation(s)
- Xiaohan Yang
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Panpan Zhao
- Key Laboratory of Zoonosis Research By Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Yu Dong
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Shiqi Chen
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Hui Shen
- Jiangsu Institute of Oceanology and Marine Fisheries, Nantong, 226007, China
| | - Ge Jiang
- Jiangsu Institute of Oceanology and Marine Fisheries, Nantong, 226007, China
| | - Hai Zhu
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Jingquan Dong
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China.
| | - Song Gao
- School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China.
| |
Collapse
|
46
|
Campbell VR, Carson MS, Lao A, Maran K, Yang EJ, Kamei DT. Point-of-Need Diagnostics for Foodborne Pathogen Screening. SLAS Technol 2020; 26:55-79. [PMID: 33012245 DOI: 10.1177/2472630320962003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Foodborne illness is a major public health issue that results in millions of global infections annually. The burden of such illness sits mostly with developing countries, as access to advanced laboratory equipment and skilled lab technicians, as well as consistent power sources, is limited and expensive. Current gold standards in foodborne pathogen screening involve labor-intensive sample enrichment steps, pathogen isolation and purification, and costly readout machinery. Overall, time to detection can take multiple days, excluding the time it takes to ship samples to off-site laboratories. Efforts have been made to simplify the workflow of such tests by integrating multiple steps of foodborne pathogen screening procedures into a singular device, as well as implementing more point-of-need readout methods. In this review, we explore recent advancements in developing point-of-need devices for foodborne pathogen screening. We discuss the detection of surface markers, nucleic acids, and metabolic products using both paper-based and microfluidic devices, focusing primarily on developments that have been made between 2015 and mid-2020.
Collapse
Affiliation(s)
- Veronica R Campbell
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences, University of California, Los Angeles, CA, USA
| | - Mariam S Carson
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences, University of California, Los Angeles, CA, USA
| | - Amelia Lao
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences, University of California, Los Angeles, CA, USA
| | - Kajal Maran
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences, University of California, Los Angeles, CA, USA
| | - Eric J Yang
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences, University of California, Los Angeles, CA, USA
| | - Daniel T Kamei
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences, University of California, Los Angeles, CA, USA
| |
Collapse
|
47
|
Recombinase Polymerase Amplification Based Multiplex Lateral Flow Dipstick for Fast Identification of Duck Ingredient in Adulterated Beef. Animals (Basel) 2020; 10:ani10101765. [PMID: 33003526 PMCID: PMC7601885 DOI: 10.3390/ani10101765] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/18/2020] [Accepted: 09/28/2020] [Indexed: 11/17/2022] Open
Abstract
Simple Summary The adulteration and authenticity of meat and meat products has become a global social problem. Beef is often intentionally adulterated with cheap meat. In order to ensure the authenticity of meat, and provide technical support to regulatory authorities, we developed a rapid and visual method to detect duck ingredient in adulterated beef. This method is implemented recombinase polymerase amplification (RPA) and multiplex lateral flow dipstick (MLFD) cascade. The whole RPA-MLFD reaction process can be finished within 35 min, and the results can be determined by naked eyes. RPA-MLFD was applied to simultaneously detect duck ingredient and beef ingredient without using additional instruments. An adulteration ratio as low as 5% of duck ingredient in beef can be easily measured. Moreover, we confirmed that our new method held good potential in the detection of commercially processed meat samples. Therefore, this study reports a useful animal derived meat adulteration detection method, which have potential application in future. Abstract Meat adulteration has become a global social problem. In order to protect consumers from meat adulteration, several methods have been developed to identify meat species. However, the conventional methods are labor-intensive, time-consuming and require instruments. In the present study, a rapid and visual method based on recombinase polymerase amplification (RPA) and multiplex lateral flow dipstick (MLFD) was developed to detect duck ingredient in adulterated beef. Using recombinase and strand displacement polymerase enable RPA to amplify different double-labeled DNA amplicons at room temperature, which can be further detected by MLFD. The whole reaction process can be finished within 35 min, and the results can be determined by naked eyes. As low as 5% of duck ingredient in adulterated beef can be easily measured. Moreover, we confirmed that our new method held good potential in the detection of commercially processed meat samples. In conclusion, this study reported a useful animal derived meat adulteration detection method, which have potential application in future.
Collapse
|
48
|
Zhu Y, Zeng F, Sun J, Liu X, Wu M, Huang B, Lian Y, Xiao L, Ma L, Zhang S, Cong F. Application of recombinase polymerase amplification method for rapid detection of infectious laryngotracheitis virus. Mol Cell Probes 2020; 54:101646. [PMID: 32758643 DOI: 10.1016/j.mcp.2020.101646] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/24/2020] [Accepted: 08/01/2020] [Indexed: 11/16/2022]
Abstract
Infectious laryngotracheitis is a significant respiratory disease of chickens that causes huge economic losses due to high morbidity and mortality and reduced egg production. A real-time recombinase polymerase amplification (RPA) assay was developed to accurately detect ILTV. The specific probe and primer sets were carefully designed and screened. The real-time RPA assay was carried out at 39 °C for 30 min, and results were obtained within 15 min. The results of the specificity assay showed no fluorescence signals with other avian-related viruses. The sensitivity of the assay was 1 × 102 copies/μL. The low CV value showed that the assay was reproducible. A total of 115 clinical samples were tested using the real-time RPA assay and the real-time PCR assay in parallel; the coincidence rates of the two detection methods were 100%. The results indicated that the real-time RPA assay is a specific, sensitive, rapid, and useful tool for epidemiological studies and clinical diagnosis, especially in the field and in resource-poor areas.
Collapse
Affiliation(s)
- Yujun Zhu
- Guangdong Laboratory Animals Monitoring Institute and Guangdong Provincial Key Laboratory of Laboratory Animals, Guangzhou, 510633, China
| | - Fanwen Zeng
- College of Animal Science, South China Agricultural University, Wushan Road 483, Tianhe District, Guangzhou, 510642, China
| | - Junying Sun
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangdong Open Laboratory of Veterinary Public Health, Guangdong Provincial Key Laboratory of Livestock Disease Prevention, Guangzhou, 510640, Guangdong, China
| | - Xiangnan Liu
- College of Animal Science and Technology, Guangdong Polytechnic of Science and Trade, Guangzhou, 510640, China
| | - Miaoli Wu
- Guangdong Laboratory Animals Monitoring Institute and Guangdong Provincial Key Laboratory of Laboratory Animals, Guangzhou, 510633, China
| | - Bihong Huang
- Guangdong Laboratory Animals Monitoring Institute and Guangdong Provincial Key Laboratory of Laboratory Animals, Guangzhou, 510633, China
| | - Yuexiao Lian
- Guangdong Laboratory Animals Monitoring Institute and Guangdong Provincial Key Laboratory of Laboratory Animals, Guangzhou, 510633, China
| | - Li Xiao
- Guangdong Laboratory Animals Monitoring Institute and Guangdong Provincial Key Laboratory of Laboratory Animals, Guangzhou, 510633, China
| | - Lei Ma
- Guangdong Laboratory Animals Monitoring Institute and Guangdong Provincial Key Laboratory of Laboratory Animals, Guangzhou, 510633, China
| | - Shouquan Zhang
- College of Animal Science, South China Agricultural University, Wushan Road 483, Tianhe District, Guangzhou, 510642, China.
| | - Feng Cong
- Guangdong Laboratory Animals Monitoring Institute and Guangdong Provincial Key Laboratory of Laboratory Animals, Guangzhou, 510633, China.
| |
Collapse
|