1
|
Dissanayake IH, Tabassum W, Alsherbiny M, Chang D, Li CG, Bhuyan DJ. Lactic acid bacterial fermentation as a biotransformation strategy to enhance the bioavailability of phenolic antioxidants in fruits and vegetables: A comprehensive review. Food Res Int 2025; 209:116283. [PMID: 40253191 DOI: 10.1016/j.foodres.2025.116283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 02/24/2025] [Accepted: 03/12/2025] [Indexed: 04/21/2025]
Abstract
Fruits and vegetables (FVs) are rich sources of macro and micro-nutrients crucial for a healthy diet. In addition to these nutrients, FVs also contain fibre and phytochemicals known for their antioxidant properties. Despite the growing evidence of the disease-preventive role of antioxidants in FVs, their bioavailability and bioaccessibility vary significantly and have not been adequately explored. Lactic acid bacterial (LAB) fermentation is considered the most appropriate and accessible biotechnological approach to maintain and enhance the safety, nutritional, sensory and shelf-life properties of perishable foods such as FVs. This review critically assesses how LAB fermentation could be utilised as a promising biotransformation strategy to enhance the bioavailability of antioxidants in FVs. Furthermore, it discusses the potential use of uniquely nutritious Australian native fruits as suitable candidates for LAB fermentation. Further research is essential to identify the beneficial properties of bioactive compounds and effective LAB-based biotransformation strategies to improve the bioavailability and bioaccessibility of antioxidants in FVs.
Collapse
Affiliation(s)
| | - Wahida Tabassum
- NICM Health Research Institute, Western Sydney University, Penrith, NSW 2751, Australia
| | - Muhammad Alsherbiny
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt; Freedman Foundation Metabolomics Facility, Innovation Centre, Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia
| | - Dennis Chang
- NICM Health Research Institute, Western Sydney University, Penrith, NSW 2751, Australia
| | - Chung Guang Li
- NICM Health Research Institute, Western Sydney University, Penrith, NSW 2751, Australia
| | - Deep Jyoti Bhuyan
- NICM Health Research Institute, Western Sydney University, Penrith, NSW 2751, Australia; School of Science, Western Sydney University, Penrith, NSW 2751, Australia.
| |
Collapse
|
2
|
Huang T, Xiong X, Gao S, Dou P, Lv H, Tan Y, Hong H, Luo Y. Enhancing Cordyceps Sinensis shelf life: The role of liquid nitrogen spray freezing in maintaining hypha structure and reducing metabolic degradation. Food Chem 2025; 473:142982. [PMID: 39855073 DOI: 10.1016/j.foodchem.2025.142982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 01/04/2025] [Accepted: 01/18/2025] [Indexed: 01/27/2025]
Abstract
Cordyceps sinensis (C. sinensis) is a valuable edible fungus, known for its therapeutic benefits, including immune enhancement and anti-inflammatory effects, making it an important component in nutritional applications. However, its delicate nature makes long-term storage challenging, with conventional freezing often leading to the loss of bioactive compounds. This study evaluates liquid nitrogen spray freezing (LNSF) at -80 °C and - 120 °C compared to conventional freezing (CF) at -20 °C over 90 days of storage. Our findings show that LNSF at -120 °C (LNSF-120) preserved superior color quality, sensory attributes, and reduced thawing loss at endpoint, while both LNSF temperatures stabilized total sugars, amino acids, cordycepin, adenosine levels, as well as antioxidant enzyme activities and free radical scavenging capacities. These results suggest that LNSF is a superior method for the long-term preservation of C. sinensis, with diverse advantages and their corresponding shelf lives associated with the two different LNSF temperatures.
Collapse
Affiliation(s)
- Tianzhuo Huang
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Xin Xiong
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Song Gao
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Peipei Dou
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Huanzhi Lv
- Zhejiang Guokuntang Health Holdings Group Co., Ltd., Hangzhou, Zhejiang 310000, China
| | - Yuqing Tan
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Hui Hong
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yongkang Luo
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
3
|
Székelyhidi R, Lakatos E, Tóth Z, Sik B. The effect of mint addition on the physicochemical and organoleptic properties of strawberry sorbets. Food Chem X 2025; 26:102271. [PMID: 40027110 PMCID: PMC11872461 DOI: 10.1016/j.fochx.2025.102271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 02/05/2025] [Accepted: 02/07/2025] [Indexed: 03/05/2025] Open
Abstract
The study aimed to produce, analyse, and evaluate the consumer acceptance of a functional peppermint-, and spearmint-enriched (0.5,1,2 %) sorbet, which contains only natural substances in its composition, to meet today's popular health-conscious consumer trends. Regarding acid composition, the sorbets contained malic acid, succinic acid, and citric acid. Sorbets regarded of water-soluble sugars, contained sucrose in the lowest concentration, followed by glucose, and the amount of fructose, which is typical for fruits, was the highest. The sorbets' TPC and TAC contents were determined to be between 510.72 and 743.77 mg GAE/kg, and 906.64 and 1137.67 mg AAE/kg respectively. The average melting rate of the desserts was 0.16-0.22 g/min, and based on consumer acceptance, the control and the samples added with 0.5 % spearmint and peppermint mint were the most favorable. The sorbets containing 1 % and 2 % mint had too intense menthol flavor, thus the enjoyment value of the products was reduced based on consumer feedback.
Collapse
Affiliation(s)
- Rita Székelyhidi
- Department of Food Science, Albert Kázmér Faculty of Agricultural and Food Sciences of Széchenyi István University in Mosonmagyaróvár, Széchenyi István University, Lucsony Street 15-17, 9200 Mosonmagyaróvár, Hungary
| | - Erika Lakatos
- Department of Food Science, Albert Kázmér Faculty of Agricultural and Food Sciences of Széchenyi István University in Mosonmagyaróvár, Széchenyi István University, Lucsony Street 15-17, 9200 Mosonmagyaróvár, Hungary
| | - Zsófia Tóth
- Department of Food Science, Albert Kázmér Faculty of Agricultural and Food Sciences of Széchenyi István University in Mosonmagyaróvár, Széchenyi István University, Lucsony Street 15-17, 9200 Mosonmagyaróvár, Hungary
| | - Beatrix Sik
- Department of Food Science, Albert Kázmér Faculty of Agricultural and Food Sciences of Széchenyi István University in Mosonmagyaróvár, Széchenyi István University, Lucsony Street 15-17, 9200 Mosonmagyaróvár, Hungary
| |
Collapse
|
4
|
Flores-Verastegui MIM, Coe S, Tammam J, Almahjoubi H, Bridle R, Bi S, Thondre PS. Effects of Frozen Red Dragon Fruit Consumption on Metabolic Markers in Healthy Subjects and Individuals at Risk of Type 2 Diabetes. Nutrients 2025; 17:441. [PMID: 39940297 PMCID: PMC11821054 DOI: 10.3390/nu17030441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/20/2025] [Accepted: 01/21/2025] [Indexed: 02/14/2025] Open
Abstract
BACKGROUND/OBJECTIVES The interest in creating new products to decrease the risk of developing non-communicable chronic diseases such as type 2 diabetes (T2D) is increasing. These products include traditional food sources used as part of diverse cultures around the world, such as dragon fruit. The aim of this study was to investigate the effects of a frozen red dragon fruit (FRDF) beverage on blood pressure, glycaemic response (GR) and insulinaemic response (IR), lipid profile (LP), total antioxidant status (TAS), and C-reactive protein (CRP) levels in healthy subjects and individuals at risk of T2D. METHODS A parallel design trial (UREC registration number 211527; ClinicalTrials.gov registration number NCT05199636/19 January 2022) lasting four weeks and involving three testing sessions was conducted; participants were randomly assigned to one of two treatments (following general health guidance or consuming FRDF beverage). Systolic and diastolic blood pressures were taken; venous blood samples were collected to determine the LP and CRP levels; and capillary blood samples were taken before and after consuming a standard glucose drink to evaluate GR and IR at 15 min intervals (first hour) and 30 min intervals (second hour). RESULTS Eighteen participants completed this study, nine healthy (28.44 ± 5.20 years) and nine at risk (31.78 ± 12.11 years). The daily consumption of an FRDF-based beverage for four weeks by individuals at risk of T2D resulted in a reduction in blood pressure and IR-incremental area under the curve. The LP showed a downward trend, and a significant difference between treatments (p = 0.009) was found for CRP levels. CONCLUSIONS Beverages based on FRDF may have the potential to decrease the risk of T2D.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Pariyarath Sangeetha Thondre
- Oxford Brookes Centre for Nutrition and Health, School of Sport, Nutrition and Allied Health Professions, Oxford Brookes University, Oxford OX3 0BP, UK or (M.I.M.F.-V.); (S.C.); (J.T.)
| |
Collapse
|
5
|
Kurek M, Pišonić P, Ščetar M, Janči T, Čanak I, Vidaček Filipec S, Benbettaieb N, Debeaufort F, Galić K. Edible Coatings for Fish Preservation: Literature Data on Storage Temperature, Product Requirements, Antioxidant Activity, and Coating Performance-A Review. Antioxidants (Basel) 2024; 13:1417. [PMID: 39594558 PMCID: PMC11591116 DOI: 10.3390/antiox13111417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/01/2024] [Accepted: 11/09/2024] [Indexed: 11/28/2024] Open
Abstract
Fresh fish is among the most nutritive foodstuffs, but it is also the most perishable one. Therefore, huge efforts have been made to find the most suitable tools to deliver fish of the highest quality to exigent consumers. Scientific studies help the industry to exploit the newest findings to scale up emerging industrial technologies. In this review article, the focus is on the latest scientific findings on edible films used for fish coatings and storage. Since today's packaging processing and economy are governed by sustainability, naturality underpins packaging science. The synthesis of edible coatings, their components, processing advantages, and disadvantages are outlined with respect to the preservation requirements for sensitive fish. The requirements of coating properties are underlined for specific scenarios distinguishing cold and freezing conditions. This review raises the importance of antioxidants and their role in fish storage and preservation. A summary of their impact on physical, chemical, microbiological, and sensory alterations upon application in real fish is given. Studies on their influence on product stability, including pro-oxidant activity and the prevention of the autolysis of fish muscle, are given. Examples of lipid oxidation and its inhibition by the antioxidants embedded in edible coatings are given together with the relationship to the development of off-odors and other unwanted impacts. This review selects the most significant and valuable work performed in the past decade in the field of edible coatings whose development is on the global rise and adheres to food waste and sustainable development goals 2 (zero hunger), 3 (good health and well-being), and 12 (responsible consumption and production).
Collapse
Affiliation(s)
- Mia Kurek
- Laboratory for Food Packaging, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (P.P.); (M.Š.); (K.G.)
| | - Petra Pišonić
- Laboratory for Food Packaging, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (P.P.); (M.Š.); (K.G.)
| | - Mario Ščetar
- Laboratory for Food Packaging, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (P.P.); (M.Š.); (K.G.)
| | - Tibor Janči
- Laboratory for Meat and Fish Technology, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (T.J.); (S.V.F.)
| | - Iva Čanak
- Laboratory for General Microbiology and Food Microbiology, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia;
| | - Sanja Vidaček Filipec
- Laboratory for Meat and Fish Technology, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (T.J.); (S.V.F.)
| | - Nasreddine Benbettaieb
- Joint Unit PAM-PCAV (Physico-Chemistry of Food and Wine Laboratory), Université Bourgogne-Franche-Comté, Institut AgroDijon, INRAé, Université de Bourgogne, 1 Esplanade Erasme, 21000 Dijon, France; (N.B.); (F.D.)
- Department of BioEngineering, Institute of Technology, University of Burgundy, 7 Blvd Docteur Petitjean, 210780 Dijon, France
| | - Frédéric Debeaufort
- Joint Unit PAM-PCAV (Physico-Chemistry of Food and Wine Laboratory), Université Bourgogne-Franche-Comté, Institut AgroDijon, INRAé, Université de Bourgogne, 1 Esplanade Erasme, 21000 Dijon, France; (N.B.); (F.D.)
- Department of BioEngineering, Institute of Technology, University of Burgundy, 7 Blvd Docteur Petitjean, 210780 Dijon, France
| | - Kata Galić
- Laboratory for Food Packaging, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (P.P.); (M.Š.); (K.G.)
| |
Collapse
|
6
|
Krusinski L, Maciel ICF, van Vliet S, Ahsin M, Adams J, Lu G, Bitler CA, Rowntree JE, Fenton JI. Fatty acids and secondary metabolites can predict grass-finished beef and supplemental cattle feeds. NPJ Sci Food 2024; 8:73. [PMID: 39367030 PMCID: PMC11452727 DOI: 10.1038/s41538-024-00315-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 09/24/2024] [Indexed: 10/06/2024] Open
Abstract
Beef raised using rotational grazing practices on biodiverse pastures offers potential benefits to animal and environmental health and can improve the nutrient density of meat to favor human health. However, many cattle producers contend with the seasonal unavailability of fresh forage, necessitating the utilization of supplementary feeds or indoor feeding. The objective of this study was to profile secondary metabolites and fatty acids in grass-finished beef supplemented with different feeds (4.5 kg/head/day) and to explore the potential for grass-finished beef authentication. In this two-year study, steers (n = 115) were randomly allocated to one of four diets: 1) pastured/supplemented with hay (control group), 2) pastured/supplemented with baleage, 3) pastured/supplemented with soybean hulls, or 4) baleage/soybean hulls in confinement. Secondary metabolites and fatty acids were measured using UHPLC-MS/MS and GC-MS, respectively. Of the 94 measured metabolites, pyridoxine, alpha-tocopherol, hippuric acid, and gallic acid differed between diets (p < 0.05 for all). Based on random forest classification, beef from the pasture/hay, pasture/baleage, pasture/soybean hulls, and confinement baleage/soybean hulls groups could be identified with a predictive accuracy of 100%, 50%, 41%, and 97%, respectively. Although minimal significant differences were observed, our data indicate that certain supplemental feeds maintain favorable nutritional profiles of grass-finished beef. In addition, metabolomics can predict cattle on exclusively forage-based or feed-based diets with a high degree of certainty.
Collapse
Affiliation(s)
- Lucas Krusinski
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, USA
- Schmid College of Science and Technology, Food Science Program, Chapman University, Orange, CA, USA
| | - Isabella C F Maciel
- Department of Animal Science, Michigan State University, East Lansing, MI, USA
| | - Stephan van Vliet
- Center for Human Nutrition Studies, Department of Nutrition, Dietetics, and Food Sciences, Utah State University, Logan, UT, USA
| | - Muhammad Ahsin
- Center for Human Nutrition Studies, Department of Nutrition, Dietetics, and Food Sciences, Utah State University, Logan, UT, USA
| | - Julianna Adams
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, USA
| | - Guanqi Lu
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, USA
| | | | - Jason E Rowntree
- Department of Animal Science, Michigan State University, East Lansing, MI, USA
| | - Jenifer I Fenton
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
7
|
Bao Y, Huang JY. Effect of microbubbles on immersion freezing of grape tomato. Food Chem 2024; 454:139813. [PMID: 38810460 DOI: 10.1016/j.foodchem.2024.139813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 05/13/2024] [Accepted: 05/22/2024] [Indexed: 05/31/2024]
Abstract
Microbubbles (MBs) were incorporated into calcium chloride solution as a novel freezing medium for immersion freezing of grape tomato. The effects of MB size (39, 43, 48 μm mean diameter), entrapped gas (air, N2, CO2) and freezing temperature (-10, -15, -20 °C) on the freezing behavior and quality attributes of tomato were investigated. MBs increased the nucleation temperature from -7.4 to -3.5 °C and reduced the onset time of nucleation from 5.8 to 2.9 min at freezing temperature of -20 °C, which facilitated the formation of small ice crystals within tomato. MB-assisted freezing reduced the drip loss by 13.7-17.0% and improved the firmness of tomato, particularly when MB size and freezing temperature decreased. Freezing tomato with air-MBs did not compromise its nutritional quality, using N2- and CO2-MBs even increased its lycopene content, by 31% and 23%, respectively. The results proved the preservation effect of MBs on fruit during immersion freezing. This study can benefit the fruit and vegetable industry by providing an efficient freezing technology for producing frozen products with high sensory and nutritional quality.
Collapse
Affiliation(s)
- Yiwen Bao
- Department of Food Science, Purdue University, West Lafayette, IN 47907, USA
| | - Jen-Yi Huang
- Department of Food Science, Purdue University, West Lafayette, IN 47907, USA; Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN 47907, USA; Environmental and Ecological Engineering, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
8
|
Görgüç A, Erdoğdu Ö, Demirci K, Bayraktar B, Yilmaz FM. Cryoprotective role of vacuum infused inulin on the quality of artichoke: Interactive effects of freezing, thawing and storage period. Cryobiology 2024; 116:104914. [PMID: 38821389 DOI: 10.1016/j.cryobiol.2024.104914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/02/2024]
Abstract
Freezing of artichoke is a promising alternative to storing it in brine and canning. The perishable vegetable was vacuum infused with inulin to improve freezing tolerance. Artichokes with and without inulin were frozen by static, air blast and individual quick freezing (IQF) methods and thawed by microwave, 25 °C and 4 °C temperature levels at each month of 6-months storage. Process conditions were evaluated by multivariate analysis of variance (MANOVA) and were found significant on the quality parameters. Inulin infusion better conserved the aw, color, texture, ascorbic acid and overall integrity of artichokes during frozen storage. Inulin incorporation and IQF showed mutual positive effect on drip loss. Polyphenol oxidase (PPO) activity values fitted to 2nd order kinetic and the highest residuals were determined in static freezing. PPO showed alleviating effect on total phenolic content. Vacuum impregnation caused a color difference prior to freezing, but was found effective for maintaining color during storage. As a result, the use of quick freezing techniques together with the addition of cryoprotectant was effective in the preservation of artichoke quality attributes during frozen storage.
Collapse
Affiliation(s)
- Ahmet Görgüç
- Aydın Adnan Menderes University, Faculty of Engineering, Food Engineering Department, 09010-Efeler, Aydın, Türkiye
| | - Özlem Erdoğdu
- Aydın Adnan Menderes University, Faculty of Engineering, Food Engineering Department, 09010-Efeler, Aydın, Türkiye; Aydın Adnan Menderes University, Graduate School of Natural and Applied Sciences, Food Engineering Program, 09010-Efeler, Aydın, Türkiye
| | - Kardelen Demirci
- Aydın Adnan Menderes University, Graduate School of Natural and Applied Sciences, Food Engineering Program, 09010-Efeler, Aydın, Türkiye
| | - Beyzanur Bayraktar
- Aydın Adnan Menderes University, Graduate School of Natural and Applied Sciences, Food Engineering Program, 09010-Efeler, Aydın, Türkiye
| | - Fatih Mehmet Yilmaz
- Aydın Adnan Menderes University, Faculty of Engineering, Food Engineering Department, 09010-Efeler, Aydın, Türkiye.
| |
Collapse
|
9
|
Valverde P, Lodolini EM, Giorgi V, Garcia-Lopez MT, Neri D. An easy methodology for frost tolerance assessment in olive cultivars. FRONTIERS IN PLANT SCIENCE 2024; 15:1397534. [PMID: 39040509 PMCID: PMC11260825 DOI: 10.3389/fpls.2024.1397534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 06/14/2024] [Indexed: 07/24/2024]
Abstract
Introduction Olive cultivation, like other evergreen fruit crops worldwide, is limited by the occurrence of frost episodes in different times of the year, mainly in winter or early spring. Some contradictory results are reported about cultivars' response to frost, which depends on the physiological stage of the tissues (acclimated or not acclimated) when the cold or frost episode occurs. This work aimed to implement a user-friendly and reliable lab method for discerning frost tolerance. Methods Our methodology considered both detached leaves and potted plantlets. The optimal temperature at which damage differentiated between cultivars was evaluated, as well as the time of exposure to cold and the recovery time for the correct evaluation of the symptoms. Furthermore, a comparative analysis of damage on both young and mature leaves was conducted. To validate the efficacy of the methodology, assessments were conducted on the cultivars 'Arbequina' (tolerant), 'Picual' (moderately tolerant), and 'Frantoio' (susceptible) under acclimated and non-acclimated conditions. Results and discussion The results indicated that, when detached leaves were used for frost evaluation, a temperature of -10°C ± 1°C for 30 min and a recovery time at 26°C for 24-48 h after exposure to cold are enough to induce damages on the leaves and discriminate between cultivar susceptibility. Under these conditions, a precise assessment of symptoms can be made, facilitating the categorization of frost tolerance level in various olive cultivars. Notably, no significant differences were observed between young and mature leaves during the evaluation process. On the other hand, the critical temperature to assess damages on potted plantlets was determined to be -7°C ± 1°C. In addition, it was observed that acclimated plants exhibited fewer symptoms compared to non-acclimated ones, with 'Frantoio' being the most affected alongside 'Picual' and 'Arbequina'. Conclusion The implemented methodology will allow the assessment of frost tolerance in several olive cultivars within a short timeframe, and it is proven to be user-friendly and reliable.
Collapse
Affiliation(s)
- Pedro Valverde
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
- Agronomy Department, University of Cordoba, Escuela Tecnica Superior de Ingenieros Agronomos y de Montes (ETSIAM), Cordoba, Spain
| | - Enrico Maria Lodolini
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
- Research Centre for Olive, Fruit and Citrus Crops, Council for Agricultural Research and Economics, Rome, Italy
| | - Veronica Giorgi
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| | - Maria Teresa Garcia-Lopez
- Agronomy Department, University of Cordoba, Escuela Tecnica Superior de Ingenieros Agronomos y de Montes (ETSIAM), Cordoba, Spain
| | - Davide Neri
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| |
Collapse
|
10
|
Liu Y, Deng Y, Yang Y, Dong H, Li L, Chen G. Comparison of different drying pretreatment combined with ultrasonic-assisted enzymolysis extraction of anthocyanins from Lycium ruthenicum Murr. ULTRASONICS SONOCHEMISTRY 2024; 107:106933. [PMID: 38865900 PMCID: PMC11222793 DOI: 10.1016/j.ultsonch.2024.106933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 05/26/2024] [Accepted: 05/30/2024] [Indexed: 06/14/2024]
Abstract
Extraction of anthocyanins from Lycium ruthenicum Murr. (L. ruthenicum) is a notable challenge in food production, requiring methods that balance efficiency and safety. In this study, we conducted a comparative analysis the extraction of anthocyanins by natural air drying (NAD), vacuum freeze drying (VFD), hot air drying (HAD), and vacuum microwave drying (MVD) combined with ultrasonic-assisted enzymolysis extraction (UAEE). The results demonstrated that the extraction yield and antioxidant activity of anthocyanins were significantly higher in VFD. This phenomenon can be attributed to the modification of raw material's microstructure, leading to an increased extraction yield of specific anthocyanins such as Cyanidin-3-galactoside, Delphinidin chloride, Cyanidin, and Petunidin. According to the pretreatment results, the extraction process of anthocyanins was further optimized. The highest yield (3.16 g/100 g) was obtained in following conditions: 0.24 % pectinase, 48 °C, solid:liquid = 1:21, and 21 min ultrasonic time. This study improves the commercial value and potential application of L. ruthenicum in food industry.
Collapse
Affiliation(s)
- Yuxing Liu
- College of Food, Shihezi University, Shihezi 832000, China
| | - Yu Deng
- College of Food, Shihezi University, Shihezi 832000, China
| | - Yulong Yang
- College of Food, Shihezi University, Shihezi 832000, China
| | - Hao Dong
- Shihezi Quality and Metrology Inspection Institute, Shihezi 832000, China
| | - Lingling Li
- College of Food, Shihezi University, Shihezi 832000, China.
| | - Guogang Chen
- College of Food, Shihezi University, Shihezi 832000, China.
| |
Collapse
|
11
|
Abstract
Berries are highly regarded as flavorful and healthy fruits that may prevent or delay some chronic diseases attributed to oxidative stress and inflammation. Berries are low in calories and harbor diverse bioactive phytochemicals, antioxidants, dietary fibers, and vitamins. This review delves into the main characteristics of fresh berries and berry products as foods and the technologies associated with their production. The main effects of processing operations and related variables on bioactive components and antioxidants are described. This review critically discusses why some health claims based on in vitro antioxidant data and clinical studies and intervention trials are difficult to assess. The review suggests that the beneficial health effects of berries are derived from a multifactorial combination of complex mixtures of abundant phenolic components, antioxidants, and their metabolites acting synergistically or additively with other nutrients like fibers and vitamins and possibly by modulating the gut microbiota.
Collapse
Affiliation(s)
- José Miguel Aguilera
- Department of Chemical and Bioprocess Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile;
| |
Collapse
|
12
|
Lavrentev FV, Baranovskaia DA, Shiriaev VA, Fomicheva DA, Iatsenko VA, Ivanov MS, Ashikhmina MS, Morozova OV, Iakovchenko NV. Influence of pre-treatment methods on quality indicators and mineral composition of plant milk from different sources of raw materials. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:967-978. [PMID: 37728318 DOI: 10.1002/jsfa.12992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/11/2023] [Accepted: 09/20/2023] [Indexed: 09/21/2023]
Abstract
BACKGROUND Pre-treatment of plant materials is essential in producing plant-based products and can affect their various organoleptic and physicochemical characteristics. This work aimed to study the effect of pre-treatment of vegetable raw materials, namely ultrasonic processing and freezing of raw materials under various low-temperature conditions, to obtain multiple types of vegetable milk and determine their characteristics. RESULTS It is shown that by applying a certain kind of pre-treatment of vegetable raw materials it is possible to adjust organoleptic parameters and the content of solids, protein, fat, carbohydrates, fiber and mineral composition of various types of vegetable milk from soy, rice, oats, wheat, peas, buckwheat, pumpkin seeds and lentils. Ultrasound pre-treatment allows increasing of polyphenol content by an average of 15-20% for all types of plant milk, except for lentil milk. The results showed that ultrasound treatment for 3 min had the most significant effect on the overall acceptability for lentils, pumpkin, rice and pea milk. Pre-freezing at a temperature regime of -17 and -85 °C contributed to an increase in Fe, K, Zn, Ca, Mg, Si and P by an average of 30-100%, depending on the plant material. CONCLUSION Pre-treatment of vegetable raw materials, including freezing and ultrasonic treatment, can positively affect the macro- and micronutrient composition of plant milk. However, the effect may vary depending on the type of raw material and processing conditions. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Filipp V Lavrentev
- Infochemistry Scientific Center, ITMO University, Saint Petersburg, Russia
| | | | - Valerii A Shiriaev
- Faculty of Biotechnologies (BioTech), ITMO University, Saint Petersburg, Russia
| | - Daria A Fomicheva
- Faculty of Biotechnologies (BioTech), ITMO University, Saint Petersburg, Russia
| | | | - Maksim S Ivanov
- Faculty of Biotechnologies (BioTech), ITMO University, Saint Petersburg, Russia
| | | | - Olga V Morozova
- Faculty of Biotechnologies (BioTech), ITMO University, Saint Petersburg, Russia
| | | |
Collapse
|
13
|
Grover Y, Negi PS. Recent developments in freezing of fruits and vegetables: Striving for controlled ice nucleation and crystallization with enhanced freezing rates. J Food Sci 2023; 88:4799-4826. [PMID: 37872804 DOI: 10.1111/1750-3841.16810] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/26/2023] [Accepted: 10/05/2023] [Indexed: 10/25/2023]
Abstract
Fruits and vegetables are rich in essential nutrients such as minerals, vitamins, and antioxidants; however, they have short shelf life. Freezing is a superior method of preservation compared to other techniques with respect to nutrient retention and maintenance of sensory attributes. However, several physical and textural quality changes associated with freezing and thawing pose a serious problem to the quality of frozen products. Some of the disadvantages associated with the currently employed methods for freezing fruits and vegetables include low rates of heat exchange in blast freezers, shape limitation in plate freezers, high cost of operation in cryogenic freezing, and freezing solution dilution in immersion freezing. Therefore, novel freezing technologies have been developed to achieve controlled ice nucleation and crystallization, enhanced freezing rate, decreased phase transition time, and maintained temperature stability. This review discusses some of the most recent approaches employed in freezing and points to their adoption for maintaining the quality of fruits and vegetables with extended storage.
Collapse
Affiliation(s)
- Yashmita Grover
- Department of Fruit and Vegetable Technology, CSIR-Central Food Technological Research Institute, Mysuru, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Pradeep Singh Negi
- Department of Fruit and Vegetable Technology, CSIR-Central Food Technological Research Institute, Mysuru, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
14
|
Nthabiseng LK, Adeyanju AA, Bamidele OP. Effects of frozen of marula fruits (Sclerocarya birrea) on chemical, antioxidant activities, and sensory properties of marula fruit juice. Heliyon 2023; 9:e20452. [PMID: 37780766 PMCID: PMC10539932 DOI: 10.1016/j.heliyon.2023.e20452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/09/2023] [Accepted: 09/26/2023] [Indexed: 10/03/2023] Open
Abstract
This study determined the effects of frozen storage on physicochemical, phenolic content and antioxidant activities of fruit juice extracted from frozen marula fruits. The marula fruits were frozen for zero to eight weeks after which the frozen marula fruits were thawed between 10 and 12 h and the juice extracted manually. There was 36.35% decrease in vitamin C content of the juice, 36.70% decrease in TPC, 46.50% decrease in FRAP and 53.22% decrease in TFC. The colour of the marula fruit juice decreases with increase in frozen storage time and the marula fruit juice extracted from unfrozen marula fruit was score highest in all the sensory properties evaluated. Although, freezing is one of the best preservative methods of fruits, the type of freezer used for the freezing process determines the nutritional value of the fruits and the juice. A home freezer may not be good to store marula fruits.
Collapse
|
15
|
Palka A, Wilczyńska A. Storage Quality Changes in Craft and Industrial Blueberry, Strawberry, Raspberry and Passion Fruit-Mango Sorbets. Foods 2023; 12:2733. [PMID: 37509825 PMCID: PMC10378843 DOI: 10.3390/foods12142733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/26/2023] [Accepted: 07/03/2023] [Indexed: 07/30/2023] Open
Abstract
Sorbets are a popular dessert, especially during hot summer days. They can also have health-promoting qualities, mainly due to the nutritional value of the fruit from which they are made. The production technology can also have an impact on the final nutritional quality of the sorbets. This paper presents a comparative assessment of the quality of industrial fruit sorbets and their craft analogs. Sorbets with the following flavors were selected for the research: blueberry, strawberry, raspberry, and passion fruit with mango. An organoleptic evaluation was performed, and the overrun, melting resistance, active acidity (pH), color in the CIE Lab system, antiradical activity (DDPH method), and content of vitamin C and total polyphenols were determined. The research revealed the differences between sorbets produced from different fruits as well as the differences depending on the production method between products made of the same type of fruit. Craft sorbets were found to be better than industrial sorbets, and storage time had a significant effect on the sorbets' quality. In terms of organoleptic characteristics, craft mango-passion fruit sorbet turned out to be the best; in terms of antioxidant properties, craft raspberry and strawberry sorbets were the best, and these two sorbets also showed good, stable overrun and melting resistance values during storage.
Collapse
Affiliation(s)
- Agnieszka Palka
- Department of Quality Management, Faculty of Management and Quality Science, Gdynia Maritime University, 81-225 Gdynia, Poland
| | - Aleksandra Wilczyńska
- Department of Quality Management, Faculty of Management and Quality Science, Gdynia Maritime University, 81-225 Gdynia, Poland
| |
Collapse
|
16
|
Li M, Wang Y, Wei X, Wang Z, Wang C, Du X, Lin Y, Zhang Y, Wang Y, He W, Wang X, Chen Q, Zhang Y, Luo Y, Tang H. Effects of pretreatment and freezing storage on the bioactive components and antioxidant activity of two kinds of celery after postharvest. Food Chem X 2023; 18:100655. [PMID: 37008724 PMCID: PMC10060598 DOI: 10.1016/j.fochx.2023.100655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 03/14/2023] [Accepted: 03/18/2023] [Indexed: 03/29/2023] Open
Abstract
Celery is well liked for it medicinal functions and nutritive value. However, fresh celery is not resistant to storage, severely limiting its supply time and marketing region. In this study, the effects of pretreatment and freezing storage on the nutritional quality of two kinds of celery (Chinese celery cultivar 'Lvlin Huangxinqin' and Western celery cultivar 'Jinnan Shiqin') after postharvest were investigated. Under all treatment combinations, 120 s blanching at 60 °C and 75 s blanching at 75 °C were the most effective pretreatments for 'Lvlin Huangxinqin' and 'Jinnan Shiqin', respectively. These two pretreatments combinations effectively delayed the decline of chlorophyll and fiber content, and maintained the level of carotenoids, soluble protein, total sugars, DPPH radical scavenging, total phenols, and vitamin C during freezing storage. These findings suggest that blanching and quick-freezing treatments are beneficial to maintain the nutritional quality of two kinds of celery, which have important reference significance for the postharvest processing of celery.
Collapse
|
17
|
Addo PW, Poudineh Z, Shearer M, Taylor N, MacPherson S, Raghavan V, Orsat V, Lefsrud M. Relationship between Total Antioxidant Capacity, Cannabinoids and Terpenoids in Hops and Cannabis. PLANTS (BASEL, SWITZERLAND) 2023; 12:1225. [PMID: 36986914 PMCID: PMC10056619 DOI: 10.3390/plants12061225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/02/2023] [Accepted: 03/06/2023] [Indexed: 06/18/2023]
Abstract
Efficient determination of antioxidant activity in medicinal plants may provide added value to extracts. The effects of postharvest pre-freezing and drying [microwave-assisted hot air (MAHD) and freeze drying] on hops and cannabis were evaluated to determine the relationship between antioxidant activity and secondary metabolites. The 2,2-diphenyl-1-picrylhydrazine (DPPH) reduction and ferric reducing ability of power (FRAP) assays were assessed for suitability in estimating the antioxidant activity of extracted hops and cannabis inflorescences and correlation with cannabinoid and terpene content. Antioxidant activity in extracts obtained from fresh, undried samples amounted to 3.6 Trolox equivalent antioxidant activity (TEAC) (M) dry matter-1 and 2.32 FRAP (M) dry matter-1 for hops, in addition to 2.29 TEAC (M) dry matter-1 and 0.25 FRAP (M) dry matter-1 for cannabis. Pre-freezing significantly increased antioxidant values by 13% (DPPH) and 29.9% (FRAP) for hops, and by 7.7% (DPPH) and 19.4% (FRAP) for cannabis. ANOVA analyses showed a significant (p < 0.05) increase in total THC (24.2) and THCA (27.2) concentrations (g 100 g dry matter-1) in pre-frozen, undried samples compared to fresh, undried samples. Freeze-drying and MAHD significantly (p < 0.05) reduced antioxidant activity in hops by 79% and 80.2% [DPPH], respectively and 70.1% and 70.4% [FRAP], respectively, when compared to antioxidant activity in extracts obtained from pre-frozen, undried hops. DPPH assay showed that both freeze-drying and MAHD significantly (p < 0.05) reduced the antioxidant activity of cannabis by 60.5% compared to the pre-frozen samples although, there was no significant (p < 0.05) reduction in the antioxidant activity using the FRAP method. Greater THC content was measured in MAHD-samples when compared to fresh, undried (64.7%) and pre-frozen, undried (57%), likely because of decarboxylation. Both drying systems showed a significant loss in total terpene concentration, yet freeze-drying has a higher metabolite retention compared to MAHD. These results may prove useful for future experiments investigating antioxidant activity and added value to cannabis and hops.
Collapse
Affiliation(s)
- Philip Wiredu Addo
- Bioresource Engineering Department, McGill University, Macdonald Campus, Ste-Anne-De-Bellevue, QC H9X 3V9, Canada; (P.W.A.)
| | - Zohreh Poudineh
- Bioresource Engineering Department, McGill University, Macdonald Campus, Ste-Anne-De-Bellevue, QC H9X 3V9, Canada; (P.W.A.)
| | - Michelle Shearer
- Bloom Labs, 173 Dr Bernie MacDonald Drive, Bible Hill, NS B6L 2H5, Canada
| | - Nichole Taylor
- Bloom Labs, 173 Dr Bernie MacDonald Drive, Bible Hill, NS B6L 2H5, Canada
| | - Sarah MacPherson
- Bioresource Engineering Department, McGill University, Macdonald Campus, Ste-Anne-De-Bellevue, QC H9X 3V9, Canada; (P.W.A.)
| | - Vijaya Raghavan
- Bioresource Engineering Department, McGill University, Macdonald Campus, Ste-Anne-De-Bellevue, QC H9X 3V9, Canada; (P.W.A.)
| | - Valérie Orsat
- Bioresource Engineering Department, McGill University, Macdonald Campus, Ste-Anne-De-Bellevue, QC H9X 3V9, Canada; (P.W.A.)
| | - Mark Lefsrud
- Bioresource Engineering Department, McGill University, Macdonald Campus, Ste-Anne-De-Bellevue, QC H9X 3V9, Canada; (P.W.A.)
| |
Collapse
|
18
|
Tatasciore S, Santarelli V, Neri L, González Ortega R, Faieta M, Di Mattia CD, Di Michele A, Pittia P. Freeze-Drying Microencapsulation of Hop Extract: Effect of Carrier Composition on Physical, Techno-Functional, and Stability Properties. Antioxidants (Basel) 2023; 12:antiox12020442. [PMID: 36830001 PMCID: PMC9951912 DOI: 10.3390/antiox12020442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/26/2023] [Accepted: 01/30/2023] [Indexed: 02/12/2023] Open
Abstract
In this study, freeze-drying microencapsulation was proposed as a technology for the production of powdered hop extracts with high stability intended as additives/ingredients in innovative formulated food products. The effects of different carriers (maltodextrin, Arabic gum, and their mixture in 1:1 w/w ratio) on the physical and techno-functional properties, bitter acids content, yield and polyphenols encapsulation efficiency of the powders were assessed. Additionally, the powders' stability was evaluated for 35 days at different temperatures and compared with that of non-encapsulated extract. Coating materials influenced the moisture content, water activity, colour, flowability, microstructure, and water sorption behaviour of the microencapsulates, but not their solubility. Among the different carriers, maltodextrin showed the lowest polyphenol load yield and bitter acid content after processing but the highest encapsulation efficiency and protection of hop extracts' antioxidant compounds during storage. Irrespective of the encapsulating agent, microencapsulation did not hinder the loss of bitter acids during storage. The results of this study demonstrate the feasibility of freeze-drying encapsulation in the development of functional ingredients, offering new perspectives for hop applications in the food and non-food sectors.
Collapse
Affiliation(s)
- Simona Tatasciore
- Department of Bioscience and Technologies for Food Agriculture and Environment, University of Teramo, Via Renato Balzarini 1, 64100 Teramo, Italy
| | - Veronica Santarelli
- Department of Bioscience and Technologies for Food Agriculture and Environment, University of Teramo, Via Renato Balzarini 1, 64100 Teramo, Italy
| | - Lilia Neri
- Department of Bioscience and Technologies for Food Agriculture and Environment, University of Teramo, Via Renato Balzarini 1, 64100 Teramo, Italy
- Correspondence:
| | - Rodrigo González Ortega
- Faculty of Science and Technology, University of Bolzano, Piazza Università, 39100 Bolzano, Italy
| | - Marco Faieta
- Department of Bioscience and Technologies for Food Agriculture and Environment, University of Teramo, Via Renato Balzarini 1, 64100 Teramo, Italy
| | - Carla Daniela Di Mattia
- Department of Bioscience and Technologies for Food Agriculture and Environment, University of Teramo, Via Renato Balzarini 1, 64100 Teramo, Italy
| | - Alessandro Di Michele
- Department of Physics and Geology, University of Perugia, Via Pascoli, 06123 Perugia, Italy
| | - Paola Pittia
- Department of Bioscience and Technologies for Food Agriculture and Environment, University of Teramo, Via Renato Balzarini 1, 64100 Teramo, Italy
| |
Collapse
|
19
|
Kaul S, Kaur K, Kaur P, Kaur J. Development and Shelf‐life Assessment of
Ready‐to‐Bake
Frozen Potato
Paranthas
Fortified with Iron and Zinc. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.16067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Shivani Kaul
- Department of Food Science and Technology Punjab Agricultural University Ludhiana India
| | - Kamaljit Kaur
- Department of Food Science and Technology Punjab Agricultural University Ludhiana India
| | - Preetinder Kaur
- Department of Processing and Food Engineering Punjab Agricultural University Ludhiana India
| | - Jaspreet Kaur
- Department of Food Science and Technology Punjab Agricultural University Ludhiana India
| |
Collapse
|
20
|
Wang Z, Valenzuela C, Wu J, Chen Y, Wang L, Feng W. Bioinspired Freeze-Tolerant Soft Materials: Design, Properties, and Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2201597. [PMID: 35971186 DOI: 10.1002/smll.202201597] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 07/12/2022] [Indexed: 06/15/2023]
Abstract
In nature, many biological organisms have developed the exceptional antifreezing ability to survive in extremely cold environments. Inspired by the freeze resistance of these organisms, researchers have devoted extensive efforts to develop advanced freeze-tolerant soft materials and explore their potential applications in diverse areas such as electronic skin, soft robotics, flexible energy, and biological science. Herein, a comprehensive overview on the recent advancement of freeze-tolerant soft materials and their emerging applications from the perspective of bioinspiration and advanced material engineering is provided. First, the mechanisms underlying the freeze tolerance of cold-enduring biological organisms are introduced. Then, engineering strategies for developing antifreezing soft materials are summarized. Thereafter, recent advances in freeze-tolerant soft materials for different technological applications such as smart sensors and actuators, energy harvesting and storage, and cryogenic medical applications are presented. Finally, future challenges and opportunities for the rapid development of bioinspired freeze-tolerant soft materials are discussed.
Collapse
Affiliation(s)
- Zhiyong Wang
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, China
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117583, Singapore
| | - Cristian Valenzuela
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Jianhua Wu
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, China
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Yuanhao Chen
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Ling Wang
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, China
- Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, China
| | - Wei Feng
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, China
- Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, China
| |
Collapse
|
21
|
The Effect of Pre-Treatment of Arabica Coffee Beans with Cold Atmospheric Plasma, Microwave Radiation, Slow and Fast Freezing on Antioxidant Activity of Aqueous Coffee Extract. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12125780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Thermal and non-thermal technologies used in food processing should be not only effective in terms of decontamination and preservation but also minimize undesirable losses of natural bioactive compounds. Arabica (Coffea arabica) is the most cultivated variety of coffee, making it a valuable source of phytonutrients, including antioxidants. In the present study, green and roasted Arabica coffee beans were treated with slow freezing (SF), fast freezing (FF), microwave radiation (MWR) and cold atmospheric plasma (CAP). Moisture content (MC) of coffee beans and antioxidant activity (AOA) of aqueous extracts were measured. Green coffee showed a decrease in MC after MWR treatment, and roasted coffee showed an increase in MC after freezing. After SF and FF at −19 °C for 24 h, all extract samples showed an increase in AOA by 4.1–17.2%. MWR treatment at 800 W for 60 s was accompanied by an increase in the AOA of green coffee extracts by 5.7%, while the changes in the AOA of roasted coffee extracts were insignificant. Sequential combined treatments of SF + MWR and FF + MWR resulted in an additive/synergistic increase in the AOA of green/roasted coffee extracts, up to +23.0%. After CAP treatment with dielectric barrier discharge (DBD) parameters of 1 μs, 15 kV and 200 Hz for 5 and 15 min, green coffee showed a decrease in the extract AOA by 3.8% and 9.7%, respectively, while the changes in the AOA of roasted coffee extracts were insignificant. A high positive correlation (r = 0.89, p < 0.001) between AOA and MC was revealed. The results obtained indicate that SF, FF, MWR and combined treatments may be applied at the pre-extraction stage of coffee bean preparation in order to increase the yield of antioxidant extractives.
Collapse
|
22
|
Identification of volatile compounds, physicochemical and techno-functional properties of pineapple processing waste (PPW). JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-021-01243-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
23
|
Giangrieco I, Tamburrini M, Tuppo L, Pasquariello MS, Ciardiello MA. Healthy biological activities in legume flours from industrial cooking. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
24
|
King ES, Noll A, Glenn S, Bolling BW. Refrigerated and frozen storage impact aronia berry quality. FOOD PRODUCTION, PROCESSING AND NUTRITION 2022. [DOI: 10.1186/s43014-021-00080-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Abstract
Postharvest storage of many freshly picked berries affects polyphenol and sugar content. However, little is known about the impact of refrigerated and frozen storage on aronia berry composition. Therefore, the objective of this study was to characterize how storage at 4 ± 2 °C and − 20 ± 2 °C, and temperature cycles affect aronia berry polyphenols, total solid content, pH, titratable acidity, polyphenol oxidase (PPO) activity, sugar content, acid content, color, and cell structure. Refrigerated storage reduced proanthocyanidins (21%), anthocyanins (36%), and total phenols (21%) after 12 weeks. Frozen storage increased polyphenols in the first 6 mo. of frozen storage but then decreased polyphenols at mo. 8 to levels similar to initial values. Frozen temperature cycling reduced anthocyanins 18% but did not affect total phenols or proanthocyanidins. Scanning electron microscopy analysis indicated temperature cycling induced cell damage, shrinking, and fusion. This disruption led to the release of anthocyanins inside the berry tissue. PPO activity did not significantly correlate with the decrease in polyphenol content during storage. °Brix did not significantly change during refrigeration and frozen storage but did during the 12th temperature cycle. Aronia berries’ pH and titratable acidity were affected more by refrigeration than frozen and temperature storage. The pH increased by 4% during refrigeration, and titratable acidity decreased by 17% at 12 weeks. In conclusion, refrigerated storage results in a modest reduction of aronia berry polyphenols, but absolute extractable polyphenols are stable for up to 8 months of frozen storage.
Graphical abstract
Collapse
|
25
|
Zhang G, Zhu C, Walayat N, Nawaz A, Ding Y, Liu J. Recent development in evaluation methods, influencing factors and control measures for freeze denaturation of food protein. Crit Rev Food Sci Nutr 2022; 63:5874-5889. [PMID: 34996325 DOI: 10.1080/10408398.2022.2025534] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Frozen storage is most widely adopted preservation method to maintain food freshness and nutritional attributes. However, at low temperature, food is prone to chemical changes such as protein denaturation and lipid oxidation. In this review, we discussed the reasons and influencing factors that cause protein denaturation during freezing, such as freezing rate, freezing temperature, freezing method, etc. From the previous literatures, it was found that frozen storage is commonly used to prevent freeze induced protein denaturation by adding cryoprotectants to food. Some widely used cryoprotectants (for example, sucrose and sorbitol) have been reported with higher sweetness and weaker cryoprotective abilities. Therefore, this article comprehensively discusses the new cryopreservation methods and providing comparative study to the conventional frozen storage. Meanwhile, this article sheds light on the freeze induced alterations, such as change in functional and gelling properties. In addition, this article could be helpful for the prolonged frozen storage of food with minimum quality related changes. Meanwhile, it could also improve the commercial values and consumer satisfaction of frozen food as well.
Collapse
Affiliation(s)
- Gaopeng Zhang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, P.R. China
- Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou, P.R. China
- National R & D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, P.R. China
| | - Chunyan Zhu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, P.R. China
- Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou, P.R. China
- National R & D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, P.R. China
| | - Noman Walayat
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, P.R. China
- Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou, P.R. China
- National R & D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, P.R. China
| | - Asad Nawaz
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou, P.R. China
| | - Yuting Ding
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, P.R. China
- Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou, P.R. China
- National R & D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, P.R. China
| | - Jianhua Liu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, P.R. China
- Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou, P.R. China
- National R & D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, P.R. China
| |
Collapse
|
26
|
Santarelli V, Neri L, Carbone K, Macchioni V, Pittia P. Use of Conventional and Innovative Technologies for the Production of Food Grade Hop Extracts: Focus on Bioactive Compounds and Antioxidant Activity. PLANTS (BASEL, SWITZERLAND) 2021; 11:plants11010041. [PMID: 35009045 PMCID: PMC8747399 DOI: 10.3390/plants11010041] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/10/2021] [Accepted: 12/20/2021] [Indexed: 05/15/2023]
Abstract
This study investigated the use of conventional and innovative extraction methods to produce food-grade hop extracts with high antioxidant capacity and content in bioactive compounds. Conventional extractions (CONV) were performed under dynamic maceration at 25 and 60 °C; innovative extractions were performed using two ultrasound systems, a laboratory bath (US) and a high-power ultrasound bath (HPUS), and a high-pressure industrial process. For CONV, US, and HPUS extractions the effect of the extraction time was also tested. Experimental results showed that extraction method, temperature, and time affect to a different extent the phenolic profile and have a significant effect (p < 0.05) on the total phenolic content, total flavonoid content, antiradical capacity (ABTS), chlorophyll α, and total carotenoids content. Overall, US and CONV 60 °C extractions showed the highest extraction efficiency for almost all the investigated compounds, however, the extraction method and time to be used strongly depends on the target compounds to extract.
Collapse
Affiliation(s)
- Veronica Santarelli
- Faculty of Bioscience and Technologies for Food, Agriculture and Environment, University of Teramo, Via Renato Balzarini 1, 64100 Teramo, Italy; (V.S.); (P.P.)
| | - Lilia Neri
- Faculty of Bioscience and Technologies for Food, Agriculture and Environment, University of Teramo, Via Renato Balzarini 1, 64100 Teramo, Italy; (V.S.); (P.P.)
- Correspondence:
| | - Katya Carbone
- CREA Research Centre for Olive, Fruit and Citrus Crops, Via di Fioranello 52, 00134 Rome, Italy; (K.C.); (V.M.)
| | - Valentina Macchioni
- CREA Research Centre for Olive, Fruit and Citrus Crops, Via di Fioranello 52, 00134 Rome, Italy; (K.C.); (V.M.)
| | - Paola Pittia
- Faculty of Bioscience and Technologies for Food, Agriculture and Environment, University of Teramo, Via Renato Balzarini 1, 64100 Teramo, Italy; (V.S.); (P.P.)
| |
Collapse
|
27
|
Preservation of Biologically Active Compounds and Nutritional Potential of Quick-Frozen Berry Fruits of the Genus Rubus. Processes (Basel) 2021. [DOI: 10.3390/pr9111940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Cryoprotective freezing methods are increasingly being developed and used as an effective means of protecting valuable bioactive compounds in processed berry fruits. The quick-freezing method allows the bioactive compounds in the plant material to be preserved over a longer period of time, thus providing a high-quality product with significant antioxidant capacity. The aim of this study was to determine the effects of the quick-freezing method on physico-chemical properties and bioactive compounds content of fruits in three soft fruit species: tayberry, raspberry, and blackberry, and to evaluate the stability of specific phytochemicals during the three-month storage period. The freezing method had a significant effect on the physicochemical properties with a significantly less drip loss observed after thawing in fruit frozen by quick-freezing (at −34 °C for 25 min) compared to fruit frozen classically (−18 °C to 24 h). The color of quick-frozen fruits also changed significantly less compared to fresh fruits. Of the bioactive compounds analyzed, it should be noted that there was a significantly lower loss of ascorbic acid recorded during quick-freezing. On average, the quick-frozen fruits contained 28% more ascorbic acid than the classical frozen fruits. In general, the quick-freezing procedure contributed to a better preservation of total polyphenolic compounds and anthocyanins, and thus berry fruits also showed higher values of antioxidant capacity during quick freezing than during the classical procedure. During the storage period of three months, a decrease in the content of all the bioactive compounds studied was observed, although it should be emphasized that this loss during storage was not as pronounced in fruits frozen by the quick-freezing method as in classically frozen fruits. It can be concluded that the quick-freezing contributes significantly to the preservation of valuable bioactive compounds of berries and that this processing method can be considered important for maintaining the nutritional properties of berry fruits.
Collapse
|
28
|
Giannakourou M, Taoukis P. Changes during Food Freezing and Frozen Storage. Foods 2021; 10:foods10112525. [PMID: 34828806 PMCID: PMC8618057 DOI: 10.3390/foods10112525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 10/11/2021] [Indexed: 11/16/2022] Open
Affiliation(s)
- Maria Giannakourou
- Department of Food Science and Technology, University of West Attica, 12243 Egaleo, Greece
- Correspondence:
| | - Petros Taoukis
- Laboratory of Food Chemistry and Technology, School of Chemical Engineering, National Technical University of Athens, 15780 Athens, Greece;
| |
Collapse
|
29
|
Stevanović SM, Petrović TS, Marković DD, Milovančević UM, Stevanović SV, Urošević TM, Kozarski MS. Changes of quality and free radical scavenging activity of strawberry and raspberry frozen under different conditions. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | | | - Dragan D. Marković
- Faculty of Mechanical Engineering University of Belgrade Belgrade Serbia
| | | | | | | | | |
Collapse
|
30
|
Araújo-Rodrigues H, Santos D, Campos DA, Guerreiro S, Ratinho M, Rodrigues IM, Pintado ME. Impact of Processing Approach and Storage Time on Bioactive and Biological Properties of Rocket, Spinach and Watercress Byproducts. Foods 2021; 10:2301. [PMID: 34681349 PMCID: PMC8534970 DOI: 10.3390/foods10102301] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/17/2021] [Accepted: 09/18/2021] [Indexed: 11/16/2022] Open
Abstract
The high nutritional value of vegetables is well recognized, but their short shelf life and seasonal nature result in massive losses and wastes. Vegetable's byproducts are an opportunity to develop value-added ingredients, increasing food system efficiency and environmental sustainability. In the present work, pulps and powders of byproducts from rocket and spinach leaves and watercress were developed and stored for six months under freezing and vacuum conditions, respectively. After processing and storage, microbiological quality, bioactive compounds (polyphenols, carotenoids and tocopherols profiles), antioxidant capacity, and pulps viscosity were analyzed. Generally, the developed vegetable's pulps and powders were considered microbiologically safe. Although some variations after processing and storage were verified, the antioxidant activity was preserved or improved. A rich phenolic composition was also registered and maintained. During freezing, the quantitative carotenoid profile was significantly improved (mainly in rocket and spinach), while after drying, there was a significant decrease. A positive effect was verified in the vitamin E level. Both processing and storage conditions resulted in products with relevant phenolics, carotenoids and tocopherol levels, contributing to the antioxidant activity registered. Thus, this study demonstrates the potential of vegetable byproducts valorization through developing these functional ingredients bringing economic and environmental value into the food chain.
Collapse
Affiliation(s)
- Helena Araújo-Rodrigues
- CBQF—Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (H.A.-R.); (D.S.); (D.A.C.)
| | - Diva Santos
- CBQF—Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (H.A.-R.); (D.S.); (D.A.C.)
| | - Débora A. Campos
- CBQF—Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (H.A.-R.); (D.S.); (D.A.C.)
| | - Suse Guerreiro
- Vitacress Portugal S.A., Quinta dos Cativos, 7630-033 Odemira, Portugal; (S.G.); (M.R.)
| | - Modesta Ratinho
- Vitacress Portugal S.A., Quinta dos Cativos, 7630-033 Odemira, Portugal; (S.G.); (M.R.)
| | - Ivo M. Rodrigues
- Departamento de Ciências Agrárias e Tecnologias, Escola Superior Agrária, Instituto Politécnico de Coimbra, 3045-601 Coimbra, Portugal;
| | - Manuela E. Pintado
- Vitacress Portugal S.A., Quinta dos Cativos, 7630-033 Odemira, Portugal; (S.G.); (M.R.)
| |
Collapse
|
31
|
Development of Frozen Pulps and Powders from Carrot and Tomato by-Products: Impact of Processing and Storage Time on Bioactive and Biological Properties. HORTICULTURAE 2021. [DOI: 10.3390/horticulturae7070185] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Vegetables and fruits have an interesting nutritional profile, rich in bioactive metabolites, holding a high antioxidant potential and health associated benefits. However, their functional properties, the shorter shelf-life due to their high-water content, and their seasonality nature lead to extensive food losses and waste. The valorization of vegetables and fruits by-products through the development of value-added products and the application of preservation methods is of utmost importance to prevent food losses and waste. In this study, based on a circular economy approach, pulps and powders of baby carrot and cherry tomato by-products were prepared. Freezing, hot air drying and storage time impact on antioxidant activity and bioactive compounds were studied. Microbiological quality and pulps viscosity were also monitored for 6 months. During the freezing storage, TPC and antioxidant capacity by ABTS and ORAC assays decreased. The antioxidant capacity by DPPH method and carotenoid content increased during the first months of freezing, but then decreased. The drying process negatively affected the antioxidant capacity as well as carotenoid and polyphenolic content compared with the fresh vegetables. Both processing methodologies positively impacted the vitamin E content. During drying storage, there were no key variations in antioxidant capacity and bioactive content.
Collapse
|
32
|
Kumla J, Suwannarach N, Tanruean K, Lumyong S. Comparative Evaluation of Chemical Composition, Phenolic Compounds, and Antioxidant and Antimicrobial Activities of Tropical Black Bolete Mushroom Using Different Preservation Methods. Foods 2021; 10:foods10040781. [PMID: 33916446 PMCID: PMC8066496 DOI: 10.3390/foods10040781] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/26/2021] [Accepted: 04/02/2021] [Indexed: 11/16/2022] Open
Abstract
Tropical black bolete, Phlebopus portentosus, provides various nutritional benefits and natural antioxidants to humans. In this study, the chemical composition, phenolic compounds, and antioxidant and antimicrobial activities of fresh mushroom samples and samples stored for a period of one year using different preservation methods (drying, brining, and frozen) were investigated. The results indicated that the brining method significantly reduced the protein and fat contents of the mushrooms. The polyphenol and flavonoid contents of the frozen sample were not significantly different from that of the fresh sample. The results revealed that an inhibition value of 50% (IC50) for the 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay of the extract of the dried and frozen samples was not statistically different from that of the fresh sample. The IC50 value of 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS) assay and ferric reducing antioxidant power (FRAP) value in the extract of the frozen sample were not found to be significantly different from those of the fresh sample. Furthermore, the lowest degree of antioxidant activity was found in the extract of the brined sample. Additionally, the antimicrobial activities of the extracts of the fresh and frozen samples were not significantly different and both extracts could have inhibited the growth of all tested Gram-positive bacteria and Pseudomonas aeruginosa.
Collapse
Affiliation(s)
- Jaturong Kumla
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (N.S.); (S.L.)
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand
- Correspondence: or ; Tel.: +66-8-7192-6527
| | - Nakarin Suwannarach
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (N.S.); (S.L.)
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Keerati Tanruean
- Biology Program, Faculty of Science and Technology, Pibulsongkram Rajabhat University, Phitsanulok 65000, Thailand;
| | - Saisamorn Lumyong
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (N.S.); (S.L.)
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand
- Academy of Science, The Royal Society of Thailand, Bangkok 10300, Thailand
| |
Collapse
|