1
|
Monaco M, Torazza C, Fedele E, Grilli M. The Impact of the Exposome on Alzheimer's Disease: The Influence of Nutrition. Int J Mol Sci 2025; 26:3015. [PMID: 40243652 PMCID: PMC11988514 DOI: 10.3390/ijms26073015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/18/2025] [Accepted: 03/24/2025] [Indexed: 04/18/2025] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by cognitive decline, memory loss, and behavioural changes. While genetic predispositions and pathological processes have been the traditional focus, this review highlights the fundamental role of environmental factors, particularly nutrition, within the exposome framework in modulating the risk and progression of AD. The exposome, which includes the totality of environmental exposures in an individual's lifetime, provides a comprehensive approach to understanding the complex aetiology of AD. In this review, we explore the impact of dietary factors and cyclic nucleotide pathways (cAMP/cGMP) on AD, emphasizing the potential of dietary interventions as therapeutic strategies. We investigate key aspects of how nutrition affects the accumulation of β-amyloid, the aggregation of tau proteins, and neuroinflammation. We also examine the impact of specific nutrients on cognitive performance and the risk of AD. Additionally, we discuss the potential of nutraceuticals with anti-phosphodiesterase activity and the role of various animal models of AD (such as 5xFAD, 3xTg-AD, Tg2576, and APP/PS1 mice) in demonstrating the effects of dietary interventions on disease onset and progression.
Collapse
Affiliation(s)
- Martina Monaco
- Pharmacology and Toxicology Unit, Department of Pharmacy, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Cembrano 4, 16148 Genoa, Italy; (M.M.); (C.T.); (E.F.)
| | - Carola Torazza
- Pharmacology and Toxicology Unit, Department of Pharmacy, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Cembrano 4, 16148 Genoa, Italy; (M.M.); (C.T.); (E.F.)
| | - Ernesto Fedele
- Pharmacology and Toxicology Unit, Department of Pharmacy, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Cembrano 4, 16148 Genoa, Italy; (M.M.); (C.T.); (E.F.)
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Massimo Grilli
- Pharmacology and Toxicology Unit, Department of Pharmacy, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Cembrano 4, 16148 Genoa, Italy; (M.M.); (C.T.); (E.F.)
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| |
Collapse
|
2
|
Clemente-Suárez VJ, Martín-Rodríguez A, Curiel-Regueros A, Rubio-Zarapuz A, Tornero-Aguilera JF. Neuro-Nutrition and Exercise Synergy: Exploring the Bioengineering of Cognitive Enhancement and Mental Health Optimization. Bioengineering (Basel) 2025; 12:208. [PMID: 40001727 PMCID: PMC11851474 DOI: 10.3390/bioengineering12020208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/14/2025] [Accepted: 02/17/2025] [Indexed: 02/27/2025] Open
Abstract
The interplay between nutrition, physical activity, and mental health has emerged as a frontier in bioengineering research, offering innovative pathways for enhancing cognitive function and psychological resilience. This review explores the neurobiological mechanisms underlying the synergistic effects of tailored nutritional strategies and exercise interventions on brain health and mental well-being. Key topics include the role of micronutrients and macronutrients in modulating neurogenesis and synaptic plasticity, the impact of exercise-induced myokines and neurotrophins on cognitive enhancement, and the integration of wearable bioelectronics for personalized monitoring and optimization. By bridging the disciplines of nutrition, psychology, and sports science with cutting-edge bioengineering, this review highlights translational opportunities for developing targeted interventions that advance mental health outcomes. These insights are particularly relevant for addressing global challenges such as stress, anxiety, and neurodegenerative diseases. The article concludes with a roadmap for future research, emphasizing the potential of bioengineered solutions to revolutionize preventive and therapeutic strategies in mental health care.
Collapse
Affiliation(s)
- Vicente Javier Clemente-Suárez
- Faculty of Sport Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, 28670 Madrid, Spain; (V.J.C.-S.); (A.M.-R.); (A.C.-R.)
- Grupo de Investigación en Cultura, Educación y Sociedad, Universidad de la Costa, Barranquilla 080002, Colombia
| | - Alexandra Martín-Rodríguez
- Faculty of Sport Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, 28670 Madrid, Spain; (V.J.C.-S.); (A.M.-R.); (A.C.-R.)
- Faculty of Applied Social Sciences and Communications, UNIE, 28015 Madrid, Spain
| | - Agustín Curiel-Regueros
- Faculty of Sport Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, 28670 Madrid, Spain; (V.J.C.-S.); (A.M.-R.); (A.C.-R.)
| | - Alejandro Rubio-Zarapuz
- Faculty of Sport Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, 28670 Madrid, Spain; (V.J.C.-S.); (A.M.-R.); (A.C.-R.)
| | | |
Collapse
|
3
|
Daly T, Olluri A. Is provision of substantial dietary interventions for brain health ethical? J Alzheimers Dis 2025:13872877251313559. [PMID: 39956968 DOI: 10.1177/13872877251313559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2025]
Abstract
We argue that the provision of substantial dietary modifications to individuals who wish to maximize their brain health is ethically permitted, despite evidence for such an intervention being not yet fully conclusive. However, we argue that for a burdensome therapy with weak evidence and potential harms, balanced communication, informed consent and follow-up are necessary components of the ethical provision of such lifestyle changes. Moreover, health should be discussed as a value with individuals alongside non-health priorities to achieve balance and avoid brain healthism.
Collapse
Affiliation(s)
- Timothy Daly
- Bordeaux Population Health UMR 1219, University of Bordeaux & INSERM, Bordeaux, France
- Bioethics Program, FLACSO Argentina, Buenos Aires, Argentina
| | - Andi Olluri
- student at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
4
|
Pal R, Mukherjee S, Khan A, Nathani M, Maji S, Tandey R, Das S, Patra A, Mandal V. A critical appraisal on the involvement of plant-based extracts as neuroprotective agents (2012-2022): an effort to ease out decision-making process for researchers. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:9367-9415. [PMID: 38985312 DOI: 10.1007/s00210-024-03266-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 06/28/2024] [Indexed: 07/11/2024]
Abstract
The purpose of this review study is to provide a condensed compilation of 164 medicinal plants that have been investigated for their neuroprotective aspects by researchers between the years 2012 and 2022 which also includes a recent update of 2023-2024. After using certain keywords to retrieve the data from SCOPUS, it was manually sorted to eliminate any instances of duplication. The article is streamlined into three major segments. The first segment takes a dig into the current global trend and attempts to decrypt vital information related to plant names, families, plant parts used, and neurological disorders investigated. The second segment of the article makes an attempt to present a comprehensive insight into the various mechanistic pathways through which phytochemicals can intervene to exert neuroprotection. The final segment of the manuscript is a bibliometric appraisal of all researches conducted. The study is based on 256 handpicked articles based on decided inclusion criteria. Illustrative compilation of various pathways citing their activation and deactivation channels are also presented with possible hitting points of various phytochemicals. The present study employed Microsoft Excel 2019 and VOS viewer as data visualisation tools.
Collapse
Affiliation(s)
- Riya Pal
- Department of Pharmacy, Guru Ghasidas Central University, Bilaspur, C.G, 495009, India
| | - Souvik Mukherjee
- Department of Pharmacy, Guru Ghasidas Central University, Bilaspur, C.G, 495009, India
| | - Altamash Khan
- Department of Pharmacy, Guru Ghasidas Central University, Bilaspur, C.G, 495009, India
| | - Mansi Nathani
- Department of Pharmacy, Guru Ghasidas Central University, Bilaspur, C.G, 495009, India
| | - Sayani Maji
- Department of Pharmacy, Guru Ghasidas Central University, Bilaspur, C.G, 495009, India
| | - Roshni Tandey
- Department of B. Pharm Ayurveda, Delhi Pharmaceutical Sciences and Research University, Sector-3, MB Road, Pushp Vihar, New Delhi, 110017, India
| | - Sinchan Das
- Department of Pharmacy, Guru Ghasidas Central University, Bilaspur, C.G, 495009, India
| | - Arjun Patra
- Department of Pharmacy, Guru Ghasidas Central University, Bilaspur, C.G, 495009, India
| | - Vivekananda Mandal
- Department of Pharmacy, Guru Ghasidas Central University, Bilaspur, C.G, 495009, India.
| |
Collapse
|
5
|
Chi Y, Yue R, Lv Y, Li H, Liao W. The dietary phytochemical index and its relation to polycystic ovary syndrome: a case-control study. J Ovarian Res 2024; 17:228. [PMID: 39550600 PMCID: PMC11568525 DOI: 10.1186/s13048-024-01540-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 10/21/2024] [Indexed: 11/18/2024] Open
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS), a hormonal disorder affecting women of reproductive age, can be significantly impacted by diet. This study explores the relationship between a diet rich in phytochemicals, measured by the Dietary Phytochemical Index (DPI), and PCOS, along with associated health markers. METHODS A case-control study design was implemented with 480 individuals diagnosed with PCOS based on the Rotterdam criteria, paired with 480 controls matched in terms of age and BMI. The evaluation encompassed dietary intake, anthropometric measurements, and hormonal/metabolic markers. Additionally, the DPI score was determined based on the consumption of phytochemical-rich foods. The study also examined PCOS-related complications like acne and irregular menstrual cycles, as well as mental health using the Beck Depression Inventory (BDI-II) scores. RESULTS Women with PCOS had significantly lower DPI scores (32.42 vs 43.87, p < 0.001) compared to the control group, indicating a less phytochemical-rich diet. The DPI scores coincided with higher levels of hormones typically associated with PCOS, including Luteinizing Hormone (LH), Dehydroepiandrosterone Sulfate (DHEA-S), and testosterone. Additionally, these scores were associated with markers of metabolic dysfunction such as C-reactive Protein (CRP), Fasting Blood Sugar (FBS), and Homeostatic Model Assessment for Insulin Resistance (HOMA-IR), while positively correlating with Sex Hormone-Binding Globulin (SHBG) (all p < 0.050).). Higher DPI scores were associated with a significantly reduced risk of PCOS (OR: 0.13, 95% CI: 0.08, 0.23, P for trend: 0.001) and its complications, including acne and irregular menstrual cycles. Interestingly, a positive association emerged, suggesting better mental health (lower BDI-II scores) with higher DPI scores. CONCLUSIONS In conclusion, this study indicates that lower DPI scores are associated with a higher incidence and severity of PCOS, suggesting that a phytochemical-rich diet could potentially benefit the management of PCOS by enhancing hormonal profiles, metabolic health, and mental well-being in women.
Collapse
Affiliation(s)
- Yasong Chi
- Department of Gynaecology, The Second People's Hospital of Liaocheng, Liaocheng, Shandong, 262600, China
| | - Ruiqin Yue
- Department of Gynaecology, The Second People's Hospital of Liaocheng, Liaocheng, Shandong, 262600, China
| | - Yanru Lv
- Department of Gynaecology, The Second People's Hospital of Liaocheng, Liaocheng, Shandong, 262600, China
| | - Haiyan Li
- Department of Gynaecology, The Second People's Hospital of Liaocheng, Liaocheng, Shandong, 262600, China
| | - Wei Liao
- Department of Gynaecology, The Second People's Hospital of Liaocheng, Liaocheng, Shandong, 262600, China.
| |
Collapse
|
6
|
Oyeniran OH, Courage FD, Ademiluyi AO, Oboh G. Sweet basil ( Ocimum basilicum) leaf and seed extracts alleviate neuronal dysfunction in aluminum chloride-induced neurotoxicity in Drosophila melanogaster Meigen model. Drug Chem Toxicol 2024; 47:949-959. [PMID: 38433659 DOI: 10.1080/01480545.2024.2317828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 02/06/2024] [Indexed: 03/05/2024]
Abstract
Ocimum basilicum is an important medicinal plant and culinary herb generally known as sweet basil (SB). These plants are effective radical scavengers, that have been employed in treatment of nervous system disorders, and thus, could be beneficial for the management of neurodegenerative diseases (NDs). Current clinical treatments for NDs present several side effects, therefore, there is need to develop new treatments that can mitigate these deadly diseases. Hence, this study investigated the neuroprotective activities of SB leaf and seed in aluminum chloride (AlCl3)-induced toxicity in Drosophila melanogaster. HPLC characterization of the leaves and seeds were carried out. AlCl3-diet was used to induce neurodegeneration and treated flies received SB leaf and seed extracts-supplemented diet. Survival and locomotor performance activities/levels of oxidative biomarkers [reactive oxygen species (ROS), thiobarbituric acid reactive species (TBARS), total thiol, catalase, superoxide dismutase (SOD) and glutathione-S-transferase (GST)], enzymes linked with neurodegeneration (acetylcholinesterase (AChE) and monoamine oxidase (MAO)) were investigated. SB leaf had significantly (p < 0.05) higher polyphenol contents; gallic acid and P-coumaric acid were the most abundant polyphenol in the leaf and seed respectively. Percentage survival and locomotor rates, level/activities of total thiol, catalase, SOD and GST were significantly (p < 0.05) reduced while ROS, TBARS, AChE and MAO activities were significantly (p < 0.05) increased in AlCl3-diet-fed flies. Treatment with SB leaf and seed diet lessened these observed impairments. However, SB leaf had better neuroprotective activities that could be related to the observed higher phenolic constituents. Hence, SB leaf diet may offer improved therapeutic effect in NDs.
Collapse
Affiliation(s)
- Olubukola H Oyeniran
- Phytomedicine and Molecular Toxicology Research Laboratory, Department of Biochemistry, Federal University Oye-Ekiti, Ekiti State, Nigeria
| | - Famusiwa D Courage
- Phytomedicine and Molecular Toxicology Research Laboratory, Department of Biochemistry, Federal University Oye-Ekiti, Ekiti State, Nigeria
| | - Adedayo O Ademiluyi
- Functional Foods, Nutraceuticals and Phytomedicine Unit, Department of Biochemistry, Federal University of Technology, Akure, Nigeria
| | - Ganiyu Oboh
- Functional Foods, Nutraceuticals and Phytomedicine Unit, Department of Biochemistry, Federal University of Technology, Akure, Nigeria
| |
Collapse
|
7
|
Sarkar B, Rana N, Singh C, Singh A. Medicinal herbal remedies in neurodegenerative diseases: an update on antioxidant potential. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:5483-5511. [PMID: 38472370 DOI: 10.1007/s00210-024-03027-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 02/23/2024] [Indexed: 03/14/2024]
Abstract
It has been widely documented that medicinal herbal remedies are effective, have fewer side effects than conventional medicine, and have a synergistic effect on health collaborations in the fight against complicated diseases. Traditional treatments for neurological problems in ancient times sometimes involved the use of herbal remedies and conventional methods from East Asian countries including India, Japan, China, and Korea. We collected and reviewed studies on plant-derived neuroprotective drugs and tested them in neurotoxic models. Basic research, preclinical and clinical transgene research can benefit from in silico, in vitro, and in vivo investigations. Research, summaries of the extracts, fractions, and herbal ingredients were compiled from popular scientific databases, which were then examined according to origin and bioactivity. Given the complex and varied causes of neurodegeneration, it may be beneficial to focus on multiple mechanisms of action and a neuroprotection approach. This approach aims to prevent cell death and restore function to damaged neurons, offering promising strategies for preventing and treating neurodegenerative diseases. Neurodegenerative illnesses can potentially be treated with natural compounds that have been identified as neuroprotective agents. To gain deeper insights into the neuropharmacological mechanisms underlying the neuroprotective and therapeutic properties of naturally occurring antioxidant phytochemical compounds in diverse neurodegenerative diseases, this study aims to comprehensively review such compounds, focusing on their modulation of apoptotic markers such as caspase, Bax, Bcl-2, and proinflammatory markers. In addition, we delve into a range of efficacies of antioxidant phytochemical compounds as neuroprotective agents in animal models. They reduce the oxidative stress of the brain and have been shown to have anti-apoptotic effects. Many researches have demonstrated that plant extracts or bioactive compounds can fight neurodegenerative disorders. Herbal medications may offer neurodegenerative disease patients' new treatments. This may be a cheaper and more culturally appropriate alternative to standard drugs for millions of people with age-related NDDs.
Collapse
Affiliation(s)
- Biplob Sarkar
- Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, affiliated to IK Gujral Punjab Technical University, Jalandhar, 144603, Punjab, India
| | - Nitasha Rana
- Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, affiliated to IK Gujral Punjab Technical University, Jalandhar, 144603, Punjab, India
| | - Charan Singh
- Department of Pharmaceutical Sciences, HNB Garhwal University (A Central University), Chauras Campus, Distt. Tehri Garhwal, Srinagar, 249161, Uttarakhand, India
| | - Arti Singh
- Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, affiliated to IK Gujral Punjab Technical University, Jalandhar, 144603, Punjab, India.
| |
Collapse
|
8
|
Jaberi KR, Alamdari-palangi V, Savardashtaki A, Vatankhah P, Jamialahmadi T, Tajbakhsh A, Sahebkar A. Modulatory Effects of Phytochemicals on Gut-Brain Axis: Therapeutic Implication. Curr Dev Nutr 2024; 8:103785. [PMID: 38939650 PMCID: PMC11208951 DOI: 10.1016/j.cdnut.2024.103785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/23/2024] [Accepted: 05/17/2024] [Indexed: 06/29/2024] Open
Abstract
This article explores the potential therapeutic implications of phytochemicals on the gut-brain axis (GBA), which serves as a communication network between the central nervous system and the enteric nervous system. Phytochemicals, which are compounds derived from plants, have been shown to interact with the gut microbiota, immune system, and neurotransmitter systems, thereby influencing brain function. Phytochemicals such as polyphenols, carotenoids, flavonoids, and terpenoids have been identified as having potential therapeutic implications for various neurological disorders. The GBA plays a critical role in the development and progression of various neurological disorders, including Parkinson's disease, multiple sclerosis, depression, anxiety, and autism spectrum disorders. Dysbiosis, or an imbalance in gut microbiota composition, has been associated with a range of neurological disorders, suggesting that modulating the gut microbiota may have potential therapeutic implications for these conditions. Although these findings are promising, further research is needed to elucidate the optimal use of phytochemicals in neurological disorder treatment, as well as their potential interactions with other medications. The literature review search was conducted using predefined search terms such as phytochemicals, gut-brain axis, neurodegenerative, and Parkinson in PubMed, Embase, and the Cochrane library.
Collapse
Affiliation(s)
- Khojasteh Rahimi Jaberi
- Department of Neuroscience, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Vahab Alamdari-palangi
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Savardashtaki
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Infertility Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Pooya Vatankhah
- Anesthesiology and Critical Care Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Tannaz Jamialahmadi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Tajbakhsh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
9
|
Islam F, Roy S, Zehravi M, Paul S, Sutradhar H, Yaidikar L, Kumar BR, Dogiparthi LK, Prema S, Nainu F, Rab SO, Doukani K, Emran TB. Polyphenols Targeting MAP Kinase Signaling Pathway in Neurological Diseases: Understanding Molecular Mechanisms and Therapeutic Targets. Mol Neurobiol 2024; 61:2686-2706. [PMID: 37922063 DOI: 10.1007/s12035-023-03706-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/10/2023] [Indexed: 11/05/2023]
Abstract
Polyphenols are a class of secondary metabolic products found in plants that have been extensively studied for how well they regulate biological processes, such as the proliferation of cells, autophagy, and apoptosis. The mitogen-activated protein kinase (MAPK)-mediated signaling cascade is currently identified as a crucial pro-inflammatory pathway that plays a significant role in the development of neuroinflammation. This process has been shown to contribute to the pathogenesis of several neurological conditions, such as Alzheimer's disease (AD), Parkinson's disease (PD), CNS damage, and cerebral ischemia. Getting enough polyphenols through eating habits has resulted in mitigating the effects of oxidative stress (OS) and lowering the susceptibility to associated neurodegenerative disorders, including but not limited to multiple sclerosis (MS), AD, stroke, and PD. Polyphenols possess significant promise in dealing with the root cause of neurological conditions by modulating multiple therapeutic targets simultaneously, thereby attenuating their complicated physiology. Several polyphenolic substances have demonstrated beneficial results in various studies and are presently undergoing clinical investigation to treat neurological diseases (NDs). The objective of this review is to provide a comprehensive summary of the different aspects of the MAPK pathway involved in neurological conditions, along with an appraisal of the progress made in using polyphenols to regulate the MAPK signaling system to facilitate the management of NDs.
Collapse
Affiliation(s)
- Fahadul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Sumon Roy
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Mehrukh Zehravi
- Department of Clinical Pharmacy, College of Dentistry & Pharmacy, Buraydah Private Colleges, Buraydah, 51418, Kingdom of Saudi Arabia.
| | - Shyamjit Paul
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Hriday Sutradhar
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Lavanya Yaidikar
- Department of Pharmacology, Seven Hills College of Pharmacy, Tirupati, India
| | - B Raj Kumar
- Department of Pharmaceutical Analysis, Moonray Institute of Pharmaceutical Sciences, Raikal (V), Farooq Nagar (Tlq), Shadnagar (M), R.R Dist., Telangana, 501512, India
| | - Lakshman Kumar Dogiparthi
- Department of Pharmacognosy, MB School of Pharmaceutical Sciences, MBU, Tirupati, Andhra Pradesh, India
| | - S Prema
- Crescent School of Pharmacy, BS Abdur Rahman Crescent Institute of Science and Technology, Vandalur, Chennai, 600048, India
| | - Firzan Nainu
- Department of Pharmacy, Faculty of Pharmacy, Hasanuddin University, Makassar, 90245, Indonesia
| | - Safia Obaidur Rab
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Koula Doukani
- Faculty of Nature and Life Sciences, University of Ibn Khaldoun-Tiaret, Tiaret, Algeria
| | - Talha Bin Emran
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh.
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School & Legorreta Cancer Center, Brown University, Providence, RI, 02912, USA.
| |
Collapse
|
10
|
Sadek MA, Rabie MA, El Sayed NS, Sayed HM, Kandil EA. Neuroprotective effect of curcumin against experimental autoimmune encephalomyelitis-induced cognitive and physical impairments in mice: an insight into the role of the AMPK/SIRT1 pathway. Inflammopharmacology 2024; 32:1499-1518. [PMID: 38112964 PMCID: PMC11006778 DOI: 10.1007/s10787-023-01399-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 11/18/2023] [Indexed: 12/21/2023]
Abstract
Multiple sclerosis (MS) is an incurable chronic neurodegenerative disease where autoimmunity, oxidative stress, and neuroinflammation collaboration predispose myelin sheath destruction. Interestingly, curcumin, a natural polyphenol, showed a neuroprotective effect in numerous neurodegenerative diseases, including MS. Nevertheless, the influence of curcumin against MS-induced cognitive impairment is still vague. Hence, we induced experimental autoimmune encephalomyelitis (EAE) in mice using spinal cord homogenate (SCH) and complete Freund's adjuvant, which eventually mimic MS. This study aimed not only to evaluate curcumin efficacy against EAE-induced cognitive and motor dysfunction, but also to explore a novel mechanism of action, by which curcumin exerts its beneficial effects in MS. Curcumin (200 mg/kg/day) efficacy was evaluated by behavioral tests, histopathological examination, and biochemical tests. Concisely, curcumin amended EAE-induced cognitive and motor impairments, as demonstrated by the behavioral tests and histopathological examination of the hippocampus. Interestingly, curcumin activated the adenosine monophosphate (AMP)-activated protein kinase/silent mating type information regulation 2 homolog 1 (AMPK/SIRT1) axis, which triggered cyclic AMP response element-binding protein/brain-derived neurotrophic factor/myelin basic protein (CREB/BDNF/MBP) pathway, hindering demyelination of the corpus callosum. Furthermore, AMPK/SIRT1 activation augmented nuclear factor erythroid 2-related factor 2 (Nrf2), a powerful antioxidant, amending EAE-induced oxidative stress. Additionally, curcumin abolished EAE-induced neuroinflammation by inhibiting Janus kinase 2 /signal transducers and activators of transcription 3 (JAK2/STAT3) axis, by various pathways, including AMPK/SIRT1 activation. JAK2/STAT3 inhibition halts inflammatory cytokines synthesis. In conclusion, curcumin's neuroprotective effect in EAE is controlled, at least in part, by AMPK/SIRT1 activation, which ultimately minimizes EAE-induced neuronal demyelination, oxidative stress, and neuroinflammation.
Collapse
Affiliation(s)
- Mohamed A Sadek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| | - Mostafa A Rabie
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Nesrine S El Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Helmy M Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Esraa A Kandil
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
11
|
Kurek-Górecka A, Kłósek M, Pietsz G, Balwierz R, Olczyk P, Czuba ZP. Ethanolic Extract of Propolis and CAPE as Cardioprotective Agents against LPS and IFN-α Stressed Cardiovascular Injury. Nutrients 2024; 16:627. [PMID: 38474755 DOI: 10.3390/nu16050627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/16/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
The inflammatory process is triggered by several factors such as toxins, pathogens, and damaged cells, promoting inflammation in various systems, including the cardiovascular system, leading to heart failure. The link between periodontitis as a chronic inflammatory disease and cardiovascular disease is confirmed. Propolis and its major component, caffeic acid phenethyl ester (CAPE), exhibit protective mechanisms and anti-inflammatory effects on the cardiovascular system. The objective of the conducted study was to assess the anti-inflammatory effects of the Polish ethanolic extract of propolis (EEP) and its major component-CAPE-in interferon-alpha (IFN-α), lipopolysaccharide (LPS), LPS + IFN-α-induced human gingival fibroblasts (HGF-1). EEP and CAPE were used at 10-100 µg/mL. A multiplex assay was used for interleukin and adhesive molecule detection. Our results demonstrate that EEP, at a concentration of 25 µg/mL, decreases pro-inflammatory cytokine IL-6 in LPS-induced HGF-1. At the same concentration, EEP increases the level of anti-inflammatory cytokine IL-10 in LPS + IFN-α-induced HGF-1. In the case of CAPE, IL-6 in LPS and LPS + IFN-α induced HGF-1 was decreased in all concentrations. However, in the case of IL-10, CAPE causes the highest increase at 50 µg/mL in IFN-α induced HGF-1. Regarding the impact of EEP on adhesion molecules, there was a noticeable reduction of E-selectin by EEP at 25, 50, and100 µg/mL in IFN-α -induced HGF-1. In a range of 10-100 µg/mL, EEP decreased endothelin-1 (ET-1) during all stimulations. CAPE statistically significantly decreases the level of ET-1 at 25-100 µg/mL in IFN-α and LPS + IFN-α. In the case of intercellular adhesion molecule-1 (ICAM-1), EEP and CAPE downregulated its expression in a non-statistically significant manner. Based on the obtained results, EEP and CAPE may generate beneficial cardiovascular effects by influencing selected factors. EEP and CAPE exert an impact on cytokines in a dose-dependent manner.
Collapse
Affiliation(s)
- Anna Kurek-Górecka
- Department of Community Pharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Kasztanowa 3, 41-200 Sosnowiec, Poland
| | - Małgorzata Kłósek
- Department of Microbiology and Immunology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, Jordana 19, 41-808 Zabrze, Poland
| | - Grażyna Pietsz
- Department of Microbiology and Immunology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, Jordana 19, 41-808 Zabrze, Poland
| | - Radosław Balwierz
- Institute of Chemistry, University of Opole, Oleska 48, 45-052 Opole, Poland
| | - Paweł Olczyk
- Department of Community Pharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Kasztanowa 3, 41-200 Sosnowiec, Poland
| | - Zenon P Czuba
- Department of Microbiology and Immunology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, Jordana 19, 41-808 Zabrze, Poland
| |
Collapse
|
12
|
Karim A, Anwar F, Saleem U, Fatima S, Ismail T, Obaidullah AJ, Khayat RO, Alqahtani MJ, Alsharif I, Khan H, Vargas-De-La-Cruz C, Shah MA. Administration of α-lipoic acid and silymarin attenuates aggression by modulating endocrine, oxidative stress and inflammatory pathways in mice. Metab Brain Dis 2023; 38:2255-2267. [PMID: 37458892 DOI: 10.1007/s11011-023-01258-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 06/23/2023] [Indexed: 09/16/2023]
Abstract
Aggression, a highly prevalent behavior among all the psychological disorders having strong association with psychiatric imbalance, neuroendocrine changes and neurological disturbances (including oxidative stress & neuroinflammation) require both pharmacological and non-pharmacological treatments. Focusing the preclinical neuroendocrine determinants of aggression, this interventional study was designed to elucidate the curative effect of antioxidants on aggression in male mice. Adult albino male mice (n = 140) randomly divided into two main treatment groups for α-lipoic acid (ALA) and silymarin with 5 subgroups (n = 10) for each curative study, namely control, disease (aggression-induced), standard (diazepam, 2.5 mg/kg), low dose (100 mg/kg) and high dose (200 mg/kg) treatment groups of selected antioxidants. Resident-intruder paradigm and levodopa (L-dopa 375 mg/kg, p.o.) induced models were used for aggression. Effect of antioxidant treatment (i.e., 21 days bid) on aggression was assessed by evaluating the changes in aggressive behavior, oxidative stress biomarkers superoxide dismutase, catalase, glutathione, nitrite and malondialdehyde (SOD, CAT, GSH, nitrite & MDA), neurotransmitters (dopamine, nor-adrenaline and serotonin), pro-inflammatory cytokines tumor necrosis factor-α and interleukin- 6 (TNF-α & IL-6) along with serum testosterone examination. This study showed potential ameliorative effect on aggressive behavior with both low (100 mg/kg) and high (200 mg/kg) doses of antioxidants (ALA & silymarin). Resident-intruder or L-dopa induced aggression in male mice was more significantly tuned with ALA treatment than silymarin via down regulating both oxidative stress and inflammatory biomarkers. ALA also exhibited notable effects in managing aggression-induced disturbances on plasma testosterone levels. In conclusion, ALA is more effective than silymarin in attenuating aggression in mice.
Collapse
Affiliation(s)
- Adnan Karim
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore, Pakistan
| | - Fareeha Anwar
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore, Pakistan.
| | - Uzma Saleem
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan.
| | - Saniya Fatima
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore, Pakistan
| | - Tariq Ismail
- Department of Pharmacy, COMSAT University, Abbottabad, Pakistan
| | - Ahmad J Obaidullah
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Rana O Khayat
- Department of Biology, College of Applied Sciences, Umm Al-Qura University, Makkah, 21955, Saudi Arabia
| | - Moneerah J Alqahtani
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Ifat Alsharif
- Department of Biology, Jamoum University College, Umm Al-Qura University, Makkah, 21955, Saudi Arabia
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan, Pakistan
| | - Celia Vargas-De-La-Cruz
- Department of Pharmacology, Bromatology, Toxicology, Faculty of Pharmacy and Biochemistry, Universidad Nacional Mayor de San Marcos, Jr. Puno 1002, Lima, 15001, Peru
- E-Health Research Center, Universidad de Ciencias Y Humanidades, Lima, 15001, Peru
| | | |
Collapse
|
13
|
Khosravi F, Hojati V, Mirzaei S, Hashemi M, Entezari M. Curcumin neuroprotective effects in Parkinson disease during pregnancy. Brain Res Bull 2023; 201:110726. [PMID: 37543296 DOI: 10.1016/j.brainresbull.2023.110726] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/02/2023] [Accepted: 08/02/2023] [Indexed: 08/07/2023]
Abstract
BACKGROUND Young onset Parkinson disease (YOPD) accounts for about 10% of PD patients, with the onset of symptoms between the ages of 21 and 40. At this age, the probability of pregnancy is high and there is a concern that the disease affects the fetuses. Therefore, in the present study, the effects of rotenone-induced PD on female mice as well as their fetuses and curcumin supplementation on the cerebral tissue of both female mice and their resulted fetuses were studied. METHODS The rotenone was injected subcutaneously to induce PD model of female mice. The different concentrations of curcumin were administrated every day i.p. for 3 weeks and the rotarod test was done on day 1 and 19. Cell viability was measured by MTT test and apoptosis and necrosis of cells were evaluate using flow cytometry technique. After primer design, the expressions of bax, bcl-2, miR-211 and circRNA 0001518 genes were measured using RT-PCR technique. RESULTS Curcumin administration were improved cerebral cell viability of both female PD mice and resulted fetuses by preventing cell apoptosis and necrosis. bax, miR-211 and circRNA 0001518 were downregulated and bcl-2 overexpressed in cerebral neurons of PD mice and their fetuses. CONCLUSION PD induction in mice affects their fetal brain, and curcumin can partially reduce the negative effects of PD on fetal brain cells by overexpressing bcl-2 and decreasing bax expression genes.
Collapse
Affiliation(s)
- Faramarz Khosravi
- Department of Biology, Damghan Branch, Islamic Azad University, Damghan, Iran
| | - Vida Hojati
- Department of Biology, Damghan Branch, Islamic Azad University, Damghan, Iran
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
14
|
Alam MZ. A review on plant-based remedies for the treatment of multiple sclerosis. ANNALES PHARMACEUTIQUES FRANÇAISES 2023; 81:775-789. [PMID: 36963654 DOI: 10.1016/j.pharma.2023.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 03/15/2023] [Accepted: 03/20/2023] [Indexed: 03/26/2023]
Abstract
Multiple sclerosis (MS) is a complex autoimmune disease of central nervous system, which is degenerative in nature usually appears between 20-40years of age. The exact cause of MS is still not clearly known. Loss of myelin sheath and axonal damage are the main features of MS that causes induction of inflammatory process and blocks free conduction of impulses. Till date FDA has approved 18 drugs to treat or modify MS symptoms. These medicines are disease-modifying in nature directed to prevent relapses or slow down the progression of disease. The use of the synthetic drug over an extended period causes undesirable effects that prompt us to look at Mother Nature. Complementary and alternative medicine involves the use of medicinal plants as an alternative to the existing modern medical treatment. However, modern drugs cannot be replaced completely with medicinal plants, but the two types of drugs can be used harmoniously with later one can be added as an adjuvant to the existing treatment. These medicinal plants have the potential to prevent progression and improve the symptoms of MS. Various plants such like Nigella sativa, ginger, saffron, pomegranate, curcumin, resveratrol, ginsenoside have been tested as therapeutics for many neurodegenerative diseases. The purpose of this write-up is to make information available about medicinal plants in their potential to treat or modify the symptoms of MS. Chronically ill patients tend to seek medicinal plants as they are easily available and there is a general perception about these medicines of having fewer undesirable effects.
Collapse
Affiliation(s)
- Mohammad Zubair Alam
- Pre-Clinical Research Unit, King Fahad Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| |
Collapse
|
15
|
de Mello e Silva GN, Batista Rodrigues ES, Lopes de Macêdo IY, Vicente Gil HP, Campos HM, Ghedini PC, Cardozo da Silva L, Batista EA, Lopes de Araújo G, Vaz BG, Pinto de Castro Ferreira TA, Oliveira do Couto R, de Souza Gil E. Blackberry jam fruit (Randia formosa (Jacq.) K. Schum): An Amazon superfruit with in vitro neuroprotective properties. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
16
|
The Potential Neuroprotective Effect of Cyperus esculentus L. Extract in Scopolamine-Induced Cognitive Impairment in Rats: Extensive Biological and Metabolomics Approaches. Molecules 2022; 27:molecules27207118. [PMID: 36296710 PMCID: PMC9606906 DOI: 10.3390/molecules27207118] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 11/05/2022] Open
Abstract
The aim of the present study is to investigate the phytochemical composition of tiger nut (TN) (Cyperus esculentus L.) and its neuroprotective potential in scopolamine (Scop)-induced cognitive impairment in rats. The UHPLC-ESI-QTOF-MS analysis enabled the putative annotation of 88 metabolites, such as saccharides, amino acids, organic acids, fatty acids, phenolic compounds and flavonoids. Treatment with TN extract restored Scop-induced learning and memory impairments. In parallel, TN extract succeeded in lowering amyloid beta, β-secretase protein expression and acetylcholine esterase (AChE) activity in the hippocampus of rats. TN extract decreased malondialdehyde levels, restored antioxidant levels and reduced proinflammatory cytokines as well as the Bax/Bcl2 ratio. Histopathological analysis demonstrated marked neuroprotection in TN-treated groups. In conclusion, the present study reveals that TN extract attenuates Scop-induced memory impairments by diminishing amyloid beta aggregates, as well as its anti-inflammatory, antioxidant, anti-apoptotic and anti-AChE activities.
Collapse
|
17
|
Sadeghian F, Divsalar DN, Fadil R, Tavakolian K, Blaber AP. Canadian aging and inactivity study: Spaceflight-inspired exercises during head-down tilt bedrest blunted reductions in muscle-pump but not cardiac baroreflex in older persons. Front Physiol 2022; 13:943630. [PMID: 36213230 PMCID: PMC9532525 DOI: 10.3389/fphys.2022.943630] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 08/18/2022] [Indexed: 11/13/2022] Open
Abstract
As part of the first Canadian aging and inactivity study (CAIS) we assessed the efficacy of space-based exercise countermeasures for maintenance of cardiac and muscle-pump baroreflex in older persons during bedrest. An initiative of the Canadian Space Agency, Canadian Institutes of Health Research and the Canadian Frailty Network, CAIS involved 14 days of 6-degree head-down tilt bedrest (HDBR) with (Exercise) or without (Control) combined upper and lower body strength, aerobic, and high-intensity interval training exercise countermeasures. Twenty healthy men and women aged 55 to 65, randomly divided into control and exercise groups (male control (MC, n = 5), male exercise (ME, n = 5), female control (FC, n = 6), female exercise (FE, n = 4)) (age: 58.7 ± 0.5 years, height: 1.67 ± 0.02 m, body mass: 70.2 ± 3.2 kg; mean ± SEM), completed the study. Cardiac and muscle-pump baroreflex activity were assessed with supine-to-stand tests. Wavelet transform coherence was used to characterise cardiac and muscle-pump baroreflex fraction time active (FTA) and gain values, and convergent cross-mapping was used to investigate causal directionality between blood pressure (BP) and heart rate, as well as BP and lower leg muscle electromyography (EMG). Seven of the twenty participants were unable to stand for 6 minutes after HDBR, with six of those being female. Our findings showed that 2 weeks of bedrest impaired skeletal muscle’s ability to return blood to the venous circulation differently across various sexes and intervention groups. Comparing values after bed rest with before bed rest values, there was a significant increase in heart rates (∆ of +25%; +17% in MC to +33% in FC; p < 0.0001), beat-to-beat EMG decreased (∆ of −43%; −25% in ME to −58% in MC; p < 0.02), while BP change was dependent on sex and intervention groups. Unlike their male counterparts, in terms of muscle-pump baroreflex, female participants had considerably decreased FTA after HDBR (p < 0.01). All groups except female control demonstrated parallel decreases in cardiac active gain and causality, while the FC demonstrated an increase in cardiac causality despite a similar decline in cardiac active gain. Results showed that the proposed exercises may alleviate muscle-pump baroreflex declines but could not influence the cardiac baroreflex decline from 14 days of inactivity in older adults.
Collapse
Affiliation(s)
- Farshid Sadeghian
- Department of Biomedical Physiology and Kinesiology, Aerospace Physiology Laboratory, Simon Fraser University, Burnaby, Canada
| | - Donya Naz Divsalar
- Department of Biomedical Physiology and Kinesiology, Aerospace Physiology Laboratory, Simon Fraser University, Burnaby, Canada
| | - Rabie Fadil
- Biomedical Engineering Program, University of North Dakota, Grand Forks, ND, United States
| | - Kouhyar Tavakolian
- Biomedical Engineering Program, University of North Dakota, Grand Forks, ND, United States
| | - Andrew P. Blaber
- Department of Biomedical Physiology and Kinesiology, Aerospace Physiology Laboratory, Simon Fraser University, Burnaby, Canada
- Biomedical Engineering Program, University of North Dakota, Grand Forks, ND, United States
- *Correspondence: Andrew P. Blaber,
| |
Collapse
|
18
|
Diab F, Khalil M, Lupidi G, Zbeeb H, Salis A, Damonte G, Bramucci M, Portincasa P, Vergani L. Influence of Simulated In Vitro Gastrointestinal Digestion on the Phenolic Profile, Antioxidant, and Biological Activity of Thymbra spicata L. Extracts. Antioxidants (Basel) 2022; 11:1778. [PMID: 36139852 PMCID: PMC9495638 DOI: 10.3390/antiox11091778] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/01/2022] [Accepted: 09/07/2022] [Indexed: 11/17/2022] Open
Abstract
Plants or plant extracts are widely investigated for preventing/counteracting several chronic disorders. The oral route is the most common route for nutraceutical and drug administration. Currently, it is still unclear as to whether and how the pattern of phenolic compounds (PCs) found in the plants as well as their bioactivity could be modified during the gastrointestinal transit. Recent studies have revealed antioxidant and anti-steatotic properties of Thymbra spicata. Here, we investigated the possible loss of phytochemicals that occurs throughout the sequential steps of a simulated in vitro gastrointestinal (GI) digestion of aqueous and ethanolic extracts of aerial parts of T. spicata. Crude, digested, and dialyzed extracts were characterized in terms of their phenolic profile and biological activities. Total contents of carbohydrates, proteins, PCs, flavonoids, and hydroxycinnamic acids were quantified. The changes in the PC profile and in bioactive compounds upon the simulated GI digestion were monitored by HPLC-MS/MS analysis. The antioxidant activity was measured by different spectrophotometric assays, and the antiproliferative potential was assessed by using three representative human cancer cell lines. We observed that the simulated GI digestion reduced the phytochemical contents in both aqueous and ethanolic T. spicata extracts and modified the PC profile. However, T. spicata extracts improved their antioxidant potential after digestion, while a partial reduction in the antiproliferative activity was observed for the ethanolic extract. Therefore, our results could provide a scientific basis for the employment of T. spicata extract as valuable nutraceutical.
Collapse
Affiliation(s)
- Farah Diab
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Corso Europa 26, 16132 Genova, Italy
| | - Mohamad Khalil
- Clinica Medica “A. Murri”, Department of Biomedical Sciences and Human Oncology, Medical School, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Giulio Lupidi
- School of Pharmacy, University of Camerino, 62032 Camerino, Italy
| | - Hawraa Zbeeb
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Corso Europa 26, 16132 Genova, Italy
| | - Annalisa Salis
- Department of Experimental Medicine (DIMES), University of Genova, Viale Benedetto XV 1, 16132 Genova, Italy
- Centre of Excellence for Biomedical Research (CEBR), University of Genova, Viale Benedetto XV 9, 16132 Genova, Italy
| | - Gianluca Damonte
- Department of Experimental Medicine (DIMES), University of Genova, Viale Benedetto XV 1, 16132 Genova, Italy
- Centre of Excellence for Biomedical Research (CEBR), University of Genova, Viale Benedetto XV 9, 16132 Genova, Italy
| | - Massimo Bramucci
- School of Pharmacy, University of Camerino, 62032 Camerino, Italy
| | - Piero Portincasa
- Clinica Medica “A. Murri”, Department of Biomedical Sciences and Human Oncology, Medical School, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Laura Vergani
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Corso Europa 26, 16132 Genova, Italy
| |
Collapse
|
19
|
Fakhri S, Piri S, Moradi SZ, Khan H. Phytochemicals Targeting Oxidative Stress, Interconnected Neuroinflammatory, and Neuroapoptotic Pathways Following Radiation. Curr Neuropharmacol 2022; 20:836-856. [PMID: 34370636 PMCID: PMC9881105 DOI: 10.2174/1570159x19666210809103346] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/19/2021] [Accepted: 06/28/2021] [Indexed: 11/22/2022] Open
Abstract
The radiation for therapeutic purposes has shown positive effects in different contexts; however, it can increase the risk of many age-related and neurodegenerative diseases such as Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), Huntington's disease (HD), and Parkinson's disease (PD). These different outcomes highlight a dose-response phenomenon called hormesis. Prevailing studies indicate that high doses of radiation could play several destructive roles in triggering oxidative stress, neuroapoptosis, and neuroinflammation in neurodegeneration. However, there is a lack of effective treatments in combating radiation-induced neurodegeneration, and the present drugs suffer from some drawbacks, including side effects and drug resistance. Among natural entities, polyphenols are suggested as multi-target agents affecting the dysregulated pathogenic mechanisms in neurodegenerative disease. This review discusses the destructive effects of radiation on the induction of neurodegenerative diseases by dysregulating oxidative stress, apoptosis, and inflammation. We also describe the promising effects of polyphenols and other candidate phytochemicals in preventing and treating radiation-induced neurodegenerative disorders, aiming to find novel/potential therapeutic compounds against such disorders.
Collapse
Affiliation(s)
- Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran;,Address correspondence to these author at the Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran; E-mail: Department of Pharmacy, Abdul Wali Khan University Mardan, 23200, Pakistan; E-mail:
| | - Sana Piri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran;,These authors have contributed equally to this work.
| | - Seyed Zachariah Moradi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran;,Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran;,These authors have contributed equally to this work.
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, 23200, Pakistan,Address correspondence to these author at the Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran; E-mail: Department of Pharmacy, Abdul Wali Khan University Mardan, 23200, Pakistan; E-mail:
| |
Collapse
|
20
|
Targeting Mitochondria by Plant Secondary Metabolites: A Promising Strategy in Combating Parkinson's Disease. Int J Mol Sci 2021; 22:ijms222212570. [PMID: 34830453 PMCID: PMC8619002 DOI: 10.3390/ijms222212570] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 09/27/2021] [Accepted: 09/29/2021] [Indexed: 02/06/2023] Open
Abstract
Parkinson’s disease (PD) is one of the most prevalent and debilitating neurodegenerative conditions, and is currently on the rise. Several dysregulated pathways are behind the pathogenesis of PD; however, the critical targets remain unclear. Accordingly, there is an urgent need to reveal the key dysregulated pathways in PD. Prevailing reports have highlighted the importance of mitochondrial and cross-talked mediators in neurological disorders, genetic changes, and related complications of PD. Multiple pathophysiological mechanisms of PD, as well as the low efficacy and side effects of conventional neuroprotective therapies, drive the need for finding novel alternative agents. Recently, much attention has been paid to using plant secondary metabolites (e.g., flavonoids/phenolic compounds, alkaloids, and terpenoids) in the modulation of PD-associated manifestations by targeting mitochondria. In this line, plant secondary metabolites have shown promising potential for the simultaneous modulation of mitochondrial apoptosis and reactive oxygen species. This review aimed to address mitochondria and multiple dysregulated pathways in PD by plant-derived secondary metabolites.
Collapse
|
21
|
Calvello R, Cianciulli A, Porro C, Moda P, De Nuccio F, Nicolardi G, Giannotti L, Panaro MA, Lofrumento DD. Formyl Peptide Receptor (FPR)1 Modulation by Resveratrol in an LPS-Induced Neuroinflammatory Animal Model. Nutrients 2021; 13:nu13051418. [PMID: 33922475 PMCID: PMC8147048 DOI: 10.3390/nu13051418] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/17/2021] [Accepted: 04/21/2021] [Indexed: 12/11/2022] Open
Abstract
Among therapeutic approaches that have been investigated, targeting of receptors implicated in managing neuroinflammation has been described. One such family of receptors comprises the formyl peptide receptors (FPRs) whose ligands could play a role in host defense. The murine FPR gene family includes at least six members while in humans there are only three. The two most important members are the Fpr1 and Fpr2. Fpr1encodes murine FPR1, which is considered the murine orthologue of human FPR. Resveratrol, a non-flavonoid polyphenol rich in red wine and grapes, apart from its beneficial health effects and anti-inflammatory properties, has been reported to reduce neuroinflammation in different neurodegenerative disease models. Resveratrol anti-inflammatory responses involve the activation of the protein deacetylase sirtuin 1 (SIRT1) gene. In this work we have investigated in an LPS-based murine model of neuroinflammation the role of FPR1, examining not only if this receptor undergoes a reduction of its expression during neuroinflammation, but also whether treatment with resveratrol was able to modulate its expression leading to an amelioration of neuroinflammatory picture in a murine model of neuroinflammation. Results of this work showed that FPR1 together with SIRT1 resulted upregulated by resveratrol treatment and that this increase is associated with an amelioration of the neuroinflammatory picture, as demonstrated by the induction of IL-10 and IL1-RA expression and the downregulation of proinflammatory mediators, such as TNF-α and IL-1β. The expression and the modulation of FPR1 by resveratrol may be evaluated in order to propose a novel anti-inflammatory and pro-resolving therapeutic approach for the reduction of the detrimental effects associated with neuro-inflammation based neurodegenerative diseases and also as a promising strategy to promote human health by a diet rich in antioxidative bioactive compounds.
Collapse
Affiliation(s)
- Rosa Calvello
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, I-70125 Bari, Italy; (R.C.); (A.C.)
| | - Antonia Cianciulli
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, I-70125 Bari, Italy; (R.C.); (A.C.)
| | - Chiara Porro
- Department of Clinical and Experimental Medicine, University of Foggia, I-71100 Foggia, Italy;
| | - Piergianni Moda
- Nuclear Medicine Department, SS. Annunziata Hospital, I-74100 Taranto, Italy;
| | - Francesco De Nuccio
- Department of Biological and Environmental Sciences and Technologies, Section of Human Anatomy, University of Salento, I-73100 Lecce, Italy; (F.D.N.); (G.N.); (L.G.); (D.D.L.)
| | - Giuseppe Nicolardi
- Department of Biological and Environmental Sciences and Technologies, Section of Human Anatomy, University of Salento, I-73100 Lecce, Italy; (F.D.N.); (G.N.); (L.G.); (D.D.L.)
| | - Laura Giannotti
- Department of Biological and Environmental Sciences and Technologies, Section of Human Anatomy, University of Salento, I-73100 Lecce, Italy; (F.D.N.); (G.N.); (L.G.); (D.D.L.)
| | - Maria Antonietta Panaro
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, I-70125 Bari, Italy; (R.C.); (A.C.)
- Correspondence:
| | - Dario Domenico Lofrumento
- Department of Biological and Environmental Sciences and Technologies, Section of Human Anatomy, University of Salento, I-73100 Lecce, Italy; (F.D.N.); (G.N.); (L.G.); (D.D.L.)
| |
Collapse
|
22
|
A Review on Potential Footprints of Ferulic Acid for Treatment of Neurological Disorders. Neurochem Res 2021; 46:1043-1057. [PMID: 33547615 DOI: 10.1007/s11064-021-03257-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 01/16/2021] [Accepted: 01/22/2021] [Indexed: 02/06/2023]
Abstract
Ferulic acid is being screened in preclinical settings to combat various neurological disorders. It is a naturally occurring dietary flavonoid commonly found in grains, fruits, and vegetables such as rice, wheat, oats, tomatoes, sweet corn etc., which exhibits protective effects against a number of neurological diseases such as epilepsy, depression, ischemia-reperfusion injury, Alzheimer's disease, and Parkinson's disease. Ferulic acid prevents and treats different neurological diseases pertaining to its potent anti-oxidative and anti-inflammatory effects, beside modulating unique neuro-signaling pathways. It stays in the bloodstream for longer periods than other dietary polyphenols and antioxidants and easily crosses blood brain barrier. The use of novel drug delivery systems such as solid-lipid nanoparticles (SLNs) or its salt forms (sodium ferulate, ethyl ferulate, and isopentyl ferulate) further enhance its bioavailability and cerebral penetration. Based on reported studies, ferulic acid appears to be a promising molecule for treatment of neurological disorders; however, more preclinical (in vitro and in vivo) mechanism-based studies should be planned and conceived followed by its testing in clinical settings.
Collapse
|
23
|
Huynh DL, Ngau TH, Nguyen NH, Tran GB, Nguyen CT. Potential therapeutic and pharmacological effects of Wogonin: an updated review. Mol Biol Rep 2020; 47:9779-9789. [PMID: 33165817 DOI: 10.1007/s11033-020-05972-9] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 11/03/2020] [Indexed: 12/17/2022]
Abstract
Flavonoids are members of polyphenolic compounds, which are naturally presented in fruits, vegetables, and some medicinal plants. Traditionally, the root of Scutellaria baicalensis is widely used as Chinese herbal medicine and contains several major bioactive compounds such as Wogonin, Scutellarein, Baicalein, and Baicalin. Experimental and clinical evidence has been proving that Wogonin exhibits diverse biological activities such as anti-cancer, anti-inflammation, and treatment of bacterial and viral infections. In this review, we summarize and emphasize the benefits of Wogonin as a therapeutic adjuvant for anti-viral infection, anti-inflammation, neuroprotection as well as anxiolytic and anticonvulsant. Moreover, the molecular mechanism(s) how Wogonin mediates the cellular signal pathways and immune responses are also discussed and highlighted valuable properties of Wogonin in multiple therapies.
Collapse
Affiliation(s)
- Do Luong Huynh
- Institute of Research and Development, Duy Tan University, Da Nang, 550000, Vietnam
| | - Tran Hoang Ngau
- Faculty of Biotechnology, Ho Chi Minh University of Food and Industry, Ho Chi Minh City, Vietnam
| | - Nguyen Hoai Nguyen
- Faculty of Biotechnology, Ho Chi Minh City Open University, 97 Vo Van Tan Street, District 3, Ho Chi Minh City, Vietnam
| | - Gia-Buu Tran
- Department of Biotechnology, Institute of Biotechnology and Food-Technology, Industrial University of Ho Chi Minh City, Ho Chi Minh City, Vietnam.
| | - Cuong Thach Nguyen
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam.
| |
Collapse
|
24
|
Tonisi S, Okaiyeto K, Mabinya LV, Okoh AI. Evaluation of bioactive compounds, free radical scavenging and anticancer activities of bulb extracts of Boophone disticha from Eastern Cape Province, South Africa. Saudi J Biol Sci 2020; 27:3559-3569. [PMID: 33304167 PMCID: PMC7715441 DOI: 10.1016/j.sjbs.2020.07.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/23/2020] [Accepted: 07/25/2020] [Indexed: 01/25/2023] Open
Abstract
Boophone disticha (B. disticha) is a bulbous tropical and subtropical flowering plant widespread in Africa, which is frequently used to treat several human ailments. Until the present, there is no scientific validation on the biological activity of this plant from the Eastern Cape Province of South Africa and as a result, this study aimed to assess the bioactive compounds, free radicals scavenging and anticancer potentials of crude bulb extracts (chloroform, acetone, and ethanol) of Boophone disticha obtained from this geographical location. Standard biochemical techniques and Gas-chromatography mass spectrometry (GCMS) analysis were used to pinpoint the bioactive compounds in the crude extracts sequel to their antioxidant potentials against radicals such as 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), hydrogen peroxide and nitric oxide as well as their ferric ion reducing power. In addition, their cytotoxicity effects against Human cervix adenocarcinoma (HeLa) cells were assessed as an in vitro model for anticancer. The phytochemical evaluation of the crude extracts showed the presence of phenolics, flavonoids, and alkaloids. GCMS profiles confirmed the presence of some bioactive compounds in the crude extracts of B. disticha that could be responsible for their biological activities. The plant extracts possessed considerable antioxidant activity and exhibited dose-dependent radicals’ inhibition from all assays carried out. Furthermore, the cytotoxicity effects against HeLa cells recorded inhibition concentration (IC50) of 1.5, 1.6, and 1.9 µg/mL for acetone, chloroform, and ethanolic extracts of B. disticha, respectively. Findings from the present study suggest that B. disticha could be a good prospective source of antioxidant and anticancer agents. Therefore, further research on the isolation and purification of compounds from these extracts are indispensable.
Collapse
Affiliation(s)
| | - Kunle Okaiyeto
- Corresponding author at: SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice 5700, South Africa.
| | | | | |
Collapse
|
25
|
Uddin MS, Hossain MF, Mamun AA, Shah MA, Hasana S, Bulbul IJ, Sarwar MS, Mansouri RA, Ashraf GM, Rauf A, Abdel-Daim MM, Bin-Jumah MN. Exploring the multimodal role of phytochemicals in the modulation of cellular signaling pathways to combat age-related neurodegeneration. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 725:138313. [PMID: 32464743 DOI: 10.1016/j.scitotenv.2020.138313] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 03/27/2020] [Accepted: 03/28/2020] [Indexed: 06/11/2023]
Abstract
Neurodegeneration is the progressive loss of neuronal structures and functions that lead to copious disorders like Alzheimer's (AD), Parkinson's (PD), Huntington's (HD), amyotrophic lateral sclerosis (ALS), and other less recurring diseases. Aging is the prime culprit for most neurodegenerative events. Moreover, the shared pathogenic factors of many neurodegenerative processes are inflammatory responses and oxidative stress (OS). Unfortunately, it is very complicated to treat neurodegeneration and there is no effective remedy. The rapid progression of the neurodegenerative diseases that exacerbate the burden and the concurrent absence of effective treatment strategies force the researchers to investigate more therapeutic approaches that ultimately target the causative factors of the neurodegeneration. Phytochemicals have great potential to exert their neuroprotective effects by targeting various mechanisms, such as OS, neuroinflammation, abnormal protein aggregation, neurotrophic factor deficiency, disruption in mitochondrial function, and apoptosis. Therefore, this review represents the molecular mechanisms of neuroprotection by multifunctional phytochemicals to combat age-linked neurodegenerative disorders.
Collapse
Affiliation(s)
- Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh; Pharmakon Neuroscience Research Network, Dhaka, Bangladesh.
| | - Md Farhad Hossain
- Pharmakon Neuroscience Research Network, Dhaka, Bangladesh; Department of Physical Therapy, Graduate School of Inje University, Gimhae, South Korea
| | - Abdullah Al Mamun
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh; Pharmakon Neuroscience Research Network, Dhaka, Bangladesh
| | - Muhammad Ajmal Shah
- Department of Pharmacognosy, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
| | - Sharifa Hasana
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh
| | | | - Md Shahid Sarwar
- Department of Pharmacy, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Rasha A Mansouri
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ghulam Md Ashraf
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia; Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Swabi, Anbar, Khyber Pakhtunkhwa, Pakistan
| | - Mohamed M Abdel-Daim
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - May N Bin-Jumah
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh 11474, Saudi Arabia
| |
Collapse
|
26
|
Abstract
The joint attack on the body by metabolic acidosis and oxidative stress suggests that treatment in degenerative diseases, including Alzheimer's disease (AD), may require a normalizing of extracellular and intracellular pH with simultaneous supplementation of an antioxidant combination cocktail at a sufficiently high dose. Evidence is also accumulating that combinations of antioxidants may be more effective, taking advantage of synergistic effects of appropriate antioxidants as well as a nutrient-rich diet to prevent and reverse AD. This review focuses on nutritional, nutraceutical and antioxidant treatments of AD, although they can also be used in other chronic degenerative and neurodegenerative diseases.
Collapse
Affiliation(s)
- Gerald Veurink
- Naturels, Armadale, Western Australia, Australia.,Department of Surgery, University of Western Australia, Perth, Australia.,Indian Scientific Education and Technology Foundation, Lucknow 226002, India
| | - George Perry
- Department of Biology, The University of Texas at San Antonio, San Antonio, TX, USA
| | - Sandeep Kumar Singh
- Indian Scientific Education and Technology Foundation, Lucknow 226002, India.,Centre of Biomedical Research, SGPGI Campus, Lucknow 226014, India
| |
Collapse
|
27
|
Effects of Phytochemicals on Blood Pressure and Neuroprotection Mediated Via Brain Renin-Angiotensin System. Nutrients 2019; 11:nu11112761. [PMID: 31739443 PMCID: PMC6893458 DOI: 10.3390/nu11112761] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/07/2019] [Accepted: 11/08/2019] [Indexed: 12/13/2022] Open
Abstract
Background: The renin-angiotensin system (RAS) in the brain plays a crucial role in maintaining blood pressure as well as neuroprotection. This study compared the effects of curcumin, quercetin, and saponin on blood pressure, the brain RAS, and cholinergic system using perindopril, an angiotensin converting enzyme inhibitor (ACEI), as a positive control. Methods: Five-week-old male mice were stabilized and randomly assigned into a control group (n = 8), three phytochemical-treated groups (curcumin (n = 8), quercetin (n = 8), and saponin (n = 8)), and a positive control group (n = 8). The groups treated with the phytochemical were orally administered daily at a dose of 50 mg/kg body weight of phytochemicals. During the experiments, the weight and dietary intakes were measured regularly. After experiments, the brain tissue was homogenized and centrifuged for an additional assay. The concentrations of ACE, angiotensin II (AngII), and aldosterone levels were measured, and the mRNA expressions of renin and ACE were measured. As biomarkers of neuroprotection, the concentrations of acetylcholine (ACh) as well as the concentration and activity of acetylcholine esterase (AChE) were measured. Results: After 4 weeks of treatment, the perindopril group showed the lowest blood pressure. Among the groups treated with the phytochemicals, treatment with curcumin and saponin significantly reduced blood pressure, although such effect was not as high as that of perindopril. Among phytochemicals, curcumin treatment significantly inhibited the concentration and activity of ACE, concentration of AngII, and mRNA expression of ACE. All phytochemical treatments significantly increased the concentration of ACh. The levels of AChE activity in groups exposed to curcumin or saponin (not quercetin) were significantly inhibited, Conclusion: Curcumin administration in rats reduced blood pressure by blocking the brain RAS components and protected the cholinergic system in brain by inhibiting the activity of AChE.
Collapse
|
28
|
Ayikobua ET, Semuyaba I, Eze DE, Kalange M, Nansunga M, Okpanachi AO, Safiriyu AA. Combined Donepezil and Ethanolic Extract of Propolis Improved Memory Better Than Donepezil and Propolis Monotherapy in Wild Type Drosophila melanogaster. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2018; 2018:3717328. [PMID: 30158994 PMCID: PMC6109536 DOI: 10.1155/2018/3717328] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 07/07/2018] [Accepted: 07/18/2018] [Indexed: 01/05/2023]
Abstract
BACKGROUND Donepezil is the most common drug used in the treatment of disorders associated with memory loss, especially that in Alzheimer's disease. Healthy individuals however have continued to use it as a memory enhancer. This study was aimed at evaluating the combined therapy of donepezil and propolis on cognition in Drosophila melanogaster. Method. Drosophila melanogaster flies were divided into five groups and fed with the different treatment doses of ethanolic extract of propolis and donepezil as follows: normal food, propolis 250 mg/mL, propolis 50 mg/mL, donepezil 0.001M, and donepezil 0.001M/propolis 50 mg/mL added to their food. The flies were fed from larval stage for 30 days. The memory and learning tests were conducted after every 10 days to assess improvement with time. RESULTS The results obtained showed that the combination of propolis with donepezil caused a remarkable improvement in both the short- and long-term memory. In addition, there was a dose dependent improvement with the administration of propolis. CONCLUSION Propolis extract obtained from different parts of Uganda expressed cognitive improvement when coadministered with donepezil in wild type Drosophila melanogaster.
Collapse
Affiliation(s)
- Emmanuel Tiyo Ayikobua
- Department of Physiology, Faculty of Biomedical Sciences, Kampala International University, Western Campus, P.O. Box 71, Bushenyi, Uganda
- Institute of Biomedical Research Laboratory, Kampala International University, Western Campus, P.O. Box 71, Bushenyi, Uganda
| | - Ibrahim Semuyaba
- Department of Physiology, Faculty of Biomedical Sciences, Kampala International University, Western Campus, P.O. Box 71, Bushenyi, Uganda
| | - Daniel Ejike Eze
- Department of Physiology, Faculty of Biomedical Sciences, Kampala International University, Western Campus, P.O. Box 71, Bushenyi, Uganda
| | - Muhamudu Kalange
- Department of Physiology, Faculty of Biomedical Sciences, Kampala International University, Western Campus, P.O. Box 71, Bushenyi, Uganda
| | - Mariam Nansunga
- Department of Physiology, Faculty of Biomedical Sciences, St. Augustine International University, P.O. Box 88, Kampala, Uganda
| | - Alfred Omachonu Okpanachi
- Department of Physiology, Faculty of Biomedical Sciences, Kampala International University, Western Campus, P.O. Box 71, Bushenyi, Uganda
- Institute of Biomedical Research Laboratory, Kampala International University, Western Campus, P.O. Box 71, Bushenyi, Uganda
| | - Abass Alao Safiriyu
- Department of Physiology, Faculty of Biomedical Sciences, Kampala International University, Western Campus, P.O. Box 71, Bushenyi, Uganda
- Institute of Biomedical Research Laboratory, Kampala International University, Western Campus, P.O. Box 71, Bushenyi, Uganda
| |
Collapse
|