1
|
Bózsik AP, Déri J, Bózsik BP, Egri B. Presence of Borrelia Spirochetes in White Stork ( Ciconia ciconia), White-Tailed Eagle ( Haliaeetus albicilla), and Eastern Imperial Eagle ( Aquila heliaca): Hospitalized in a Wild Bird Hospital and Sanctuary (Hortobágy, Hungary). Animals (Basel) 2024; 14:3553. [PMID: 39765457 PMCID: PMC11672504 DOI: 10.3390/ani14243553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/27/2024] [Accepted: 12/06/2024] [Indexed: 01/11/2025] Open
Abstract
Wild birds across the globe can carry the causative agent of avian borreliosis, Borrelia anserina, and that of human Lyme borreliosis, Borrelia burgdorferi sensu lato in the ticks attached to them. Currently, only limited proof exists for the presence of these pathogens in samples taken from living wild birds, carried by the birds as a reservoir, without symptoms. We investigated blood samples of large-bodied wild birds admitted to a bird hospital, where basic clinical symptoms were recorded. Thirty-six blood samples were collected from them, according to the DualDur kit methodology, and investigated using dark-field microscopy to search for spirochetes. Five of the samples were also investigated by immunofluorescence microscopy to identify Borrelia burgdorferi. Since the main reason for admittance to the hospital was a physical injury, no significant symptoms were observed regarding a current Borrelia infection. Out of the sixteen birds of prey, eleven (68%) were infected with spirochetes, and fifteen out of twenty storks (75%) were also infected with spirochetes, without major symptoms. All five samples investigated using immunofluorescence were confirmed to contain the human pathogenic Borrelia burgdorferi sensu lato. Thus, direct investigations of the blood of wild birds may show the asymptomatic prevalence of Borrelia in the wild bird population.
Collapse
Affiliation(s)
- András Pál Bózsik
- Department of Animal Science, Albert Kázmér Faculty of Agricultural and Food Sciences, Széchenyi István University, 9200 Mosonmagyaróvár, Hungary;
| | - János Déri
- Bird Hospital Foundation, 4071 Hortobágy, Hungary
| | | | - Borisz Egri
- Department of Animal Science, Albert Kázmér Faculty of Agricultural and Food Sciences, Széchenyi István University, 9200 Mosonmagyaróvár, Hungary;
| |
Collapse
|
2
|
Lewis J, Lloyd VK, Robichaud GA. Development, Optimization, and Validation of a Quantitative PCR Assay for Borrelia burgdorferi Detection in Tick, Wildlife, and Human Samples. Pathogens 2024; 13:1034. [PMID: 39770294 PMCID: PMC11679815 DOI: 10.3390/pathogens13121034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/04/2024] [Accepted: 11/19/2024] [Indexed: 01/30/2025] Open
Abstract
Tick-borne pathogens are growing in importance for human and veterinary research worldwide. We developed, optimized, and validated a reliable quantitative PCR (qPCR; real-time PCR) assay to assess Borrelia burgdorferi infection by targeting two B. burgdorferi genes, ospA and flaB. When assessing previously tested tick samples, its performance surpassed the nested PCR in efficiency, sensitivity, and specificity. Since the detection of Borrelia is more difficult in mammalian samples, the qPCR assay was also assessed using wildlife tissues. For wildlife samples, the sensitivity and specificity of ospA primers, with the incorporation of a pre-amplification step, was equivalent or superior to the nested PCR. For human samples, no primer set was successful with human tissue without culture, but we detected Borrelia with ospA and flaB primers in 50% of the Lyme culture samples, corresponding to 60% of the participants with a Lyme disease diagnosis or suspicion. The specificity of amplification was confirmed by Sanger sequencing. The healthy participant culture samples were negative. This PCR-based direct detection assay performs well for the detection of Borrelia in different biological samples. Advancements in detection methods lead to a better surveillance of Borrelia in vectors and hosts, and, ultimately, enhance human and animal health.
Collapse
Affiliation(s)
- Julie Lewis
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB E1A 3E9, Canada
| | - Vett K. Lloyd
- Department of Biology, Mount Allison University, Sackville, NB E4L 1G7, Canada
| | - Gilles A. Robichaud
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB E1A 3E9, Canada
- Atlantic Cancer Research Institute, Moncton, NB E1C 8X3, Canada
| |
Collapse
|
3
|
Golovchenko M, Opelka J, Vancova M, Sehadova H, Kralikova V, Dobias M, Raska M, Krupka M, Sloupenska K, Rudenko N. Concurrent Infection of the Human Brain with Multiple Borrelia Species. Int J Mol Sci 2023; 24:16906. [PMID: 38069228 PMCID: PMC10707132 DOI: 10.3390/ijms242316906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/22/2023] [Accepted: 11/26/2023] [Indexed: 12/18/2023] Open
Abstract
Lyme disease (LD) spirochetes are well known to be able to disseminate into the tissues of infected hosts, including humans. The diverse strategies used by spirochetes to avoid the host immune system and persist in the host include active immune suppression, induction of immune tolerance, phase and antigenic variation, intracellular seclusion, changing of morphological and physiological state in varying environments, formation of biofilms and persistent forms, and, importantly, incursion into immune-privileged sites such as the brain. Invasion of immune-privileged sites allows the spirochetes to not only escape from the host immune system but can also reduce the efficacy of antibiotic therapy. Here we present a case of the detection of spirochetal DNA in multiple loci in a LD patient's post-mortem brain. The presence of co-infection with Borrelia burgdorferi sensu stricto and Borrelia garinii in this LD patient's brain was confirmed by PCR. Even though both spirochete species were simultaneously present in human brain tissue, the brain regions where the two species were detected were different and non-overlapping. The presence of atypical spirochete morphology was noted by immunohistochemistry of the brain samples. Atypical morphology was also found in the tissues of experimentally infected mice, which were used as a control.
Collapse
Affiliation(s)
- Maryna Golovchenko
- Biology Centre Czech Academy of Sciences, Institute of Parasitology, 37005 Ceske Budejovice, Czech Republic;
| | - Jakub Opelka
- Biology Centre Czech Academy of Sciences, Institute of Entomology, 37005 Ceske Budejovice, Czech Republic; (J.O.); (H.S.)
- Faculty of Sciences, University of South Bohemia, 37005 Ceske Budejovice, Czech Republic
| | - Marie Vancova
- Biology Centre Czech Academy of Sciences, Institute of Parasitology, 37005 Ceske Budejovice, Czech Republic;
- Faculty of Sciences, University of South Bohemia, 37005 Ceske Budejovice, Czech Republic
| | - Hana Sehadova
- Biology Centre Czech Academy of Sciences, Institute of Entomology, 37005 Ceske Budejovice, Czech Republic; (J.O.); (H.S.)
- Faculty of Sciences, University of South Bohemia, 37005 Ceske Budejovice, Czech Republic
| | - Veronika Kralikova
- Institute of Forensic Medicine and Medical Law, University Hospital Olomouc, 77900 Olomouc, Czech Republic; (V.K.); (M.D.)
| | - Martin Dobias
- Institute of Forensic Medicine and Medical Law, University Hospital Olomouc, 77900 Olomouc, Czech Republic; (V.K.); (M.D.)
| | - Milan Raska
- Department of Immunology, University Hospital Olomouc, 77900 Olomouc, Czech Republic;
| | - Michal Krupka
- Department of Immunology, Faculty of Medicine and Dentistry, Palacky University Olomouc, 77900 Olomouc, Czech Republic; (M.K.); (K.S.)
| | - Kristyna Sloupenska
- Department of Immunology, Faculty of Medicine and Dentistry, Palacky University Olomouc, 77900 Olomouc, Czech Republic; (M.K.); (K.S.)
| | - Natalie Rudenko
- Biology Centre Czech Academy of Sciences, Institute of Parasitology, 37005 Ceske Budejovice, Czech Republic;
| |
Collapse
|
4
|
Roy S, Bahar AA, Gu H, Nangia S, Sauer K, Ren D. Persister control by leveraging dormancy associated reduction of antibiotic efflux. PLoS Pathog 2021; 17:e1010144. [PMID: 34890435 PMCID: PMC8716142 DOI: 10.1371/journal.ppat.1010144] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 12/29/2021] [Accepted: 11/24/2021] [Indexed: 11/19/2022] Open
Abstract
Persistent bacterial infections do not respond to current antibiotic treatments and thus present a great medical challenge. These conditions have been linked to the formation of dormant subpopulations of bacteria, known as persister cells, that are growth-arrested and highly tolerant to conventional antibiotics. Here, we report a new strategy of persister control and demonstrate that minocycline, an amphiphilic antibiotic that does not require active transport to penetrate bacterial membranes, is effective in killing Escherichia coli persister cells [by 70.8 ± 5.9% (0.53 log) at 100 μg/mL], while being ineffective in killing normal cells. Further mechanistic studies revealed that persister cells have reduced drug efflux and accumulate more minocycline than normal cells, leading to effective killing of this dormant subpopulation upon wake-up. Consistently, eravacycline, which also targets the ribosome but has a stronger binding affinity than minocycline, kills persister cells by 3 logs when treated at 100 μg/mL. In summary, the findings of this study reveal that while dormancy is a well-known cause of antibiotic tolerance, it also provides an Achilles’ heel for controlling persister cells by leveraging dormancy associated reduction of drug efflux. Bacterial persister cells are dormant phenotypic variants that are highly tolerant to most antibiotics; and thus, present a major challenge to infection control. This motivated us to develop new strategies that can specifically target the persister population. It is known that persister formation is associated with reduced membrane potential and cellular activities. Thus, we hypothesize that persister cells have reduced drug efflux compared to normal cells and accumulate more antimicrobial agents that can penetrate the membranes of persister cells. By testing this hypothesis, we developed a new set of criteria for selecting persister control agents and demonstrated effective control of Escherichia coli persister cells by minocycline, rifamycin SV, and eravacycline. Our results revealed that these agents are more effective against persister cells than normal cells and the killing occurred during persister wake-up. Collectively, these results demonstrate a new strategy for persister control by leveraging dormancy associated changes in bacterial physiology. The findings may contribute to future drug discovery and the treatment of persistent infections.
Collapse
Affiliation(s)
- Sweta Roy
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York, United States of America
| | - Ali Adem Bahar
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York, United States of America
| | - Huan Gu
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York, United States of America
| | - Shikha Nangia
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York, United States of America
| | - Karin Sauer
- Department of Biological Sciences, Binghamton University, Binghamton, New York, United States of America
| | - Dacheng Ren
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York, United States of America
- Department of Civil and Environmental Engineering, Syracuse University, Syracuse, New York, United States of America
- Department of Biology, Syracuse University, Syracuse, New York, United States of America
- * E-mail:
| |
Collapse
|
5
|
Gadila SKG, Rosoklija G, Dwork AJ, Fallon BA, Embers ME. Detecting Borrelia Spirochetes: A Case Study With Validation Among Autopsy Specimens. Front Neurol 2021; 12:628045. [PMID: 34040573 PMCID: PMC8141553 DOI: 10.3389/fneur.2021.628045] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 04/13/2021] [Indexed: 01/30/2023] Open
Abstract
The complex etiology of neurodegenerative disease has prompted studies on multiple mechanisms including genetic predisposition, brain biochemistry, immunological responses, and microbial insult. In particular, Lyme disease is often associated with neurocognitive impairment with variable manifestations between patients. We sought to develop methods to reliably detect Borrelia burgdorferi, the spirochete bacteria responsible for Lyme disease, in autopsy specimens of patients with a history of neurocognitive disease. In this report, we describe the use of multiple molecular detection techniques for this pathogen and its application to a case study of a Lyme disease patient. The patient had a history of Lyme disease, was treated with antibiotics, and years later developed chronic symptoms including dementia. The patient's pathology and clinical case description was consistent with Lewy body dementia. B. burgdorferi was identified by PCR in several CNS tissues and by immunofluorescent staining in the spinal cord. These studies offer proof of the principle that persistent infection with the Lyme disease spirochete may have lingering consequences on the CNS.
Collapse
Affiliation(s)
- Shiva Kumar Goud Gadila
- Division of Immunology, Tulane National Primate Research Center, Tulane University Health Sciences, Covington, LA, United States
| | - Gorazd Rosoklija
- Department of Psychiatry, Columbia University, New York, NY, United States.,Division of Molecular Imaging and Neuropathology, New York State Psychiatric Institute, New York, NY, United States
| | - Andrew J Dwork
- Department of Psychiatry, Columbia University, New York, NY, United States.,Division of Molecular Imaging and Neuropathology, New York State Psychiatric Institute, New York, NY, United States.,Macedonian Academy of Sciences and Arts, Skopje, Macedonia.,Department of Pathology and Cell Biology, Columbia University, New York, NY, United States
| | - Brian A Fallon
- Department of Psychiatry, Columbia University, New York, NY, United States
| | - Monica E Embers
- Division of Immunology, Tulane National Primate Research Center, Tulane University Health Sciences, Covington, LA, United States
| |
Collapse
|
6
|
Sanderson VP, Mainprize IL, Verzijlenberg L, Khursigara CM, Wills MKB. The Platelet Fraction Is a Novel Reservoir to Detect Lyme Borrelia in Blood. BIOLOGY 2020; 9:biology9110366. [PMID: 33137967 PMCID: PMC7694117 DOI: 10.3390/biology9110366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/23/2020] [Accepted: 10/27/2020] [Indexed: 11/23/2022]
Abstract
Simple Summary To diagnose Lyme disease, a patient’s blood is tested for antibodies that develop as part of the immune response. This can lead to cases being missed or inadequately treated. An ideal test would directly detect the Lyme disease bacteria, Borrelia, to provide better clinical guidance. In this study, we aimed to improve the methods currently used to find Borrelia in human blood, and identified two opportunities for optimization. We demonstrate that the container most commonly used to collect blood (EDTA) decreases Borrelia’s ability to grow, and we identify a superior alternative (citrate). Additionally, using experimentally infected blood, we show that Borrelia is highly concentrated in the platelet fraction, making it an ideal candidate for direct detection. These results lay the foundation for diagnostic test development, which could improve patient outcomes in Lyme disease. Abstract Serological diagnosis of Lyme disease suffers from considerable limitations. Yet, the technique cannot currently be replaced by direct detection methods, such as bacterial culture or molecular analysis, due to their inadequate sensitivity. The low bacterial burden in vasculature and lack of consensus around blood-based isolation of the causative pathogen, Borrelia burgdorferi, are central to this challenge. We therefore addressed methodological optimization of Borrelia recovery from blood, first by analyzing existing protocols, and then by using experimentally infected human blood to identify the processing conditions and fractions that increase Borrelia yield. In this proof-of-concept study, we now report two opportunities to improve recovery and detection of Borrelia from clinical samples. To enhance pathogen viability and cultivability during whole blood collection, citrate anticoagulant is superior to more commonly used EDTA. Despite the widespread reliance on serum and plasma as analytes, we found that the platelet fraction of blood concentrates Borrelia, providing an enriched resource for direct pathogen detection by microscopy, laboratory culture, Western blot, and PCR. The potential for platelets to serve as a reservoir for Borrelia and its diagnostic targets may transform direct clinical detection of this pathogen.
Collapse
Affiliation(s)
- Victoria P. Sanderson
- G. Magnotta Lyme Disease Research Lab, Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada; (V.P.S.); (I.L.M.); (L.V.)
| | - Iain L. Mainprize
- G. Magnotta Lyme Disease Research Lab, Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada; (V.P.S.); (I.L.M.); (L.V.)
| | - Lisette Verzijlenberg
- G. Magnotta Lyme Disease Research Lab, Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada; (V.P.S.); (I.L.M.); (L.V.)
| | - Cezar M. Khursigara
- Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada;
| | - Melanie K. B. Wills
- G. Magnotta Lyme Disease Research Lab, Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada; (V.P.S.); (I.L.M.); (L.V.)
- Correspondence: ; Tel.: +1-519-824-4120 (ext. 54062); Fax: +1-519-837-1802
| |
Collapse
|
7
|
I. Horowitz R, R. Freeman P. Efficacy of Double-Dose Dapsone Combination Therapy in the Treatment of Chronic Lyme Disease/Post-Treatment Lyme Disease Syndrome (PTLDS) and Associated Co-infections: A Report of Three Cases and Retrospective Chart Review. Antibiotics (Basel) 2020; 9:E725. [PMID: 33105645 PMCID: PMC7690415 DOI: 10.3390/antibiotics9110725] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/15/2020] [Accepted: 10/21/2020] [Indexed: 02/03/2023] Open
Abstract
Three patients with multi-year histories of relapsing and remitting Lyme disease and associated co-infections despite extended antibiotic therapy were each given double-dose dapsone combination therapy (DDD CT) for a total of 7-8 weeks. At the completion of therapy, all three patients' major Lyme symptoms remained in remission for a period of 25-30 months. A retrospective chart review of 37 additional patients undergoing DDD CT therapy (40 patients in total) was also performed, which demonstrated tick-borne symptom improvements in 98% of patients, with 45% remaining in remission for 1 year or longer. In conclusion, double-dose dapsone therapy could represent a novel and effective anti-infective strategy in chronic Lyme disease/ post-treatment Lyme disease syndrome (PTLDS), especially in those individuals who have failed regular dose dapsone combination therapy (DDS CT) or standard antibiotic protocols. A randomized, blinded, placebo-controlled trial is warranted to evaluate the efficacy of DDD CT in those individuals with chronic Lyme disease/PTLDS.
Collapse
Affiliation(s)
- Richard I. Horowitz
- HHS Babesia and Tick-borne Pathogens Subcommittee, Washington, DC 20201, USA
- Hudson Valley Healing Arts Center, Hyde Park, NY 12538, USA;
| | | |
Collapse
|
8
|
Rogerson AG, Lloyd VK. Lyme Disease Patient Outcomes and Experiences; A Retrospective Cohort Study. Healthcare (Basel) 2020; 8:healthcare8030322. [PMID: 32899834 PMCID: PMC7551198 DOI: 10.3390/healthcare8030322] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/27/2020] [Accepted: 08/28/2020] [Indexed: 11/16/2022] Open
Abstract
Lyme disease is a vector-borne illness caused by Borrelia spp. bacterium spread by ticks to humans and other mammals. Despite being prevalent in many regions of the world, there remains considerable uncertainty surrounding many aspects of the disease, and consensus on the most appropriate and effective means of treating the illness remains to be achieved. Recommendations published by the Infectious Diseases Society of America (IDSA) and the International Lyme and Associated Diseases Society (ILADS), the primary guidelines followed by health care professionals treating Lyme disease, diverge in many of their key recommendations, including treatment duration. Given this lack of consensus, surprisingly little research has been conducted on patient outcomes following different treatment approaches. In this study, patient outcomes were evaluated from a cohort of 210 Canadian Lyme disease patients seeking treatment at one US Lyme disease clinic following a treatment regimen conforming to the ILADS treatment guidelines. It was found that the majority of Lyme disease patients at the clinic responded positively to treatment and a significant (p < 0.05) decrease in symptoms was observed over time. This study, along with related studies, may help to guide physicians to provide their patients with the most effective care.
Collapse
|
9
|
Torres JP, Senejani AG, Gaur G, Oldakowski M, Murali K, Sapi E. Ex Vivo Murine Skin Model for B. burgdorferi Biofilm. Antibiotics (Basel) 2020; 9:E528. [PMID: 32824942 PMCID: PMC7558507 DOI: 10.3390/antibiotics9090528] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 08/06/2020] [Accepted: 08/17/2020] [Indexed: 02/06/2023] Open
Abstract
Borrelia burgdorferi, the causative agent of Lyme disease, has been recently shown to form biofilm structures in vitro and in vivo. Biofilms are tightly clustered microbes characterized as resistant aggregations that allow bacteria to withstand harsh environmental conditions, including the administration of antibiotics. Novel antibiotic combinations have recently been identified for B. burgdorferi in vitro, however, due to prohibiting costs, those agents have not been tested in an environment that can mimic the host tissue. Therefore, researchers cannot evaluate their true effectiveness against B. burgdorferi, especially its biofilm form. A skin ex vivo model system could be ideal for these types of experiments due to its cost effectiveness, reproducibility, and ability to investigate host-microbial interactions. Therefore, the main goal of this study was the establishment of a novel ex vivo murine skin biopsy model for B. burgdorferi biofilm research. Murine skin biopsies were inoculated with B. burgdorferi at various concentrations and cultured in different culture media. Two weeks post-infection, murine skin biopsies were analyzed utilizing immunohistochemical (IHC), reverse transcription PCR (RT-PCR), and various microscopy methods to determine B. burgdorferi presence and forms adopted as well as whether it remained live in the skin tissue explants. Our results showed that murine skin biopsies inoculated with 1 × 107 cells of B. burgdorferi and cultured in BSK-H + 6% rabbit serum media for two weeks yielded not just significant amounts of live B. burgdorferi spirochetes but biofilm forms as well. IHC combined with confocal and atomic force microscopy techniques identified specific biofilm markers and spatial distribution of B. burgdorferi aggregates in the infected skin tissues, confirming that they are indeed biofilms. In the future, this ex vivo skin model can be used to study development and antibiotic susceptibility of B. burgdorferi biofilms in efforts to treat Lyme disease effectively.
Collapse
Affiliation(s)
| | | | | | | | | | - Eva Sapi
- Department of Biology and Environmental Science, University of New Haven, 300 Boston Post Road, West Haven, CT 06516, USA; (J.P.T.); (A.G.S.); (G.G.); (M.O.); (K.M.)
| |
Collapse
|
10
|
Trevisan G, Bonin S, Ruscio M. A Practical Approach to the Diagnosis of Lyme Borreliosis: From Clinical Heterogeneity to Laboratory Methods. Front Med (Lausanne) 2020; 7:265. [PMID: 32793606 PMCID: PMC7390863 DOI: 10.3389/fmed.2020.00265] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 05/14/2020] [Indexed: 12/05/2022] Open
Abstract
Clinical evaluation of Lyme Borreliosis (LB) is the starting point for its diagnosis. The patient's medical history and clinical symptoms are fundamental for disease recognition. The heterogeneity in clinical manifestations of LB can be related to different causes, including the different strains of Borrelia, possible co-infection with other tick transmitted pathogens, and its interactions with the human host. This review aims at describing the heterogeneous symptoms of Lyme Borreliosis, as well as offering a practical approach for recognition of the disease, both in terms of clinical features and diagnostic/research tools.
Collapse
Affiliation(s)
- Giusto Trevisan
- DSM-Department of Medical Sciences, University of Trieste, Trieste, Italy
| | - Serena Bonin
- DSM-Department of Medical Sciences, University of Trieste, Trieste, Italy
| | - Maurizio Ruscio
- ASU GI-Azienda Sanitaria Universitaria Giuliano Isontina, Trieste, Italy
| |
Collapse
|
11
|
Scott JD. Presentation of Acrodermatitis Chronica Atrophicans Rashes on Lyme Disease Patients in Canada. Healthcare (Basel) 2020; 8:E157. [PMID: 32512846 PMCID: PMC7349802 DOI: 10.3390/healthcare8020157] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 05/25/2020] [Accepted: 05/29/2020] [Indexed: 01/11/2023] Open
Abstract
Lyme disease (Lyme borreliosis) is a complex multisystem illness with varying clinical manifestations. This tick-borne zoonosis is caused by the spirochetal bacterium, Borrelia burgdorferi sensu lato (Bbsl) and, worldwide, presents with at least 20 different types of rashes. Certain cutaneous rashes are inherently interconnected to various stages of Lyme disease. In this study, five Canadian Lyme disease patients from a multi-age range presented various phases of the acrodermatitis chronica atrophicans (ACA) rash. In each case of ACA, the underlying etiological pathogen was the Lyme disease spirochete. Although ACA rashes are normally found on the lower extremities, this study illustrates that ACA rashes are not directly correlated with a tick bite, geographic area, age, Bbsl genospecies, exercise, or any given surface area of the body. Case 4 provides confirmation for an ACA rash and gestational Lyme disease. One patient (Case 5) puts forth a Bbsl and Bartonella sp. co-infection with a complex ACA rash. This study documents ACA rashes on Lyme disease patients for the first time in Canada.
Collapse
Affiliation(s)
- John D Scott
- International Lyme and Associated Diseases Society, 2 Wisconsin Circle, Suite 700, Chevy Chase, MD 20815-7007, USA
| |
Collapse
|
12
|
Fesler MC, Middelveen MJ, Burke JM, Stricker RB. Erosive Vulvovaginitis Associated With Borrelia burgdorferi Infection. J Investig Med High Impact Case Rep 2020; 7:2324709619842901. [PMID: 31043089 PMCID: PMC6498767 DOI: 10.1177/2324709619842901] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
We describe a case of acute erosive vulvovaginitis accompanying Borrelia
burgdorferi infection. The patient is a 57-year-old woman
previously diagnosed with Lyme disease who presented with a painful erosive
genital lesion. At the time of the outbreak, she was being treated with oral
antibiotics, and she tested serologically positive for B
burgdorferi and serologically negative for syphilis. Histological
examination of biopsy tissue from the lesion was not characteristic of
dermatopathological patterns typical of erosive vulvar conditions.
Dieterle-stained biopsy sections revealed visible spirochetes throughout the
stratum spinosum and stratum basale, and anti–B burgdorferi
immunostaining was positive. Motile spirochetes were observed by darkfield
microscopy and cultured in Barbour-Stoner-Kelly–complete medium inoculated with
skin scrapings from the lesion. Cultured spirochetes were identified genetically
as B burgdorferi sensu stricto by polymerase chain reaction,
while polymerase chain reaction amplification of treponemal gene targets was
negative. The condition resolved after treatment with additional systemic
antibiotic therapy and topical antibiotics. In cases of genital ulceration that
have no identifiable etiology, the possibility of B burgdorferi
spirochetal infection should be considered.
Collapse
Affiliation(s)
| | | | - Jennie M Burke
- 3 Australian Biologics, Sydney, New South Wales, Australia
| | | |
Collapse
|
13
|
Lyme Disease: Diversity of Borrelia Species in California and Mexico Detected Using a Novel Immunoblot Assay. Healthcare (Basel) 2020; 8:healthcare8020097. [PMID: 32295182 PMCID: PMC7349648 DOI: 10.3390/healthcare8020097] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 04/10/2020] [Accepted: 04/10/2020] [Indexed: 01/15/2023] Open
Abstract
Background: With more than 300,000 new cases reported each year in the United States of America (USA), Lyme disease is a major public health concern. Borrelia burgdorferi sensu stricto (Bbss) is considered the primary agent of Lyme disease in North America. However, multiple genetically diverse Borrelia species encompassing the Borrelia burgdorferi sensu lato (Bbsl) complex and the Relapsing Fever Borrelia (RFB) group are capable of causing tickborne disease. We report preliminary results of a serological survey of previously undetected species of Bbsl and RFB in California and Mexico using a novel immunoblot technique. Methods: Serum samples were tested for seroreactivity to specific species of Bbsl and RFB using an immunoblot method based on recombinant Borrelia membrane proteins, as previously described. A sample was recorded as seropositive if it showed immunoglobulin M (IgM) and/or IgG reactivity with at least two proteins from a specific Borrelia species. Results: The patient cohort consisted of 90 patients residing in California or Mexico who met the clinical case definition of chronic Lyme disease. Immunoblot testing revealed that 42 patients were seropositive for Bbsl (Group 1), while 56 patients were seropositive for RFB (Group 2). Eight patients were seropositive for both Bbsl and RFB species. Group 1 included patients who were seropositive for Bbss (14), B. californiensis (eight), B. spielmanii (10), B. afzelii/B. garinii (10), and mixed infections that included B. mayonii (three). Group 2 included patients who were seropositive for B. hermsii (nine), B. miyamotoi (seven), B. turicatae (nine), and B. turcica (two). In the remaining Group 1 and Group 2 patients, the exact Borrelia species could not be identified using the immunoblot technique. Conclusions: Lyme disease is associated with a diverse group of Borrelia species in California and Mexico. Current testing for Lyme disease focuses on detection of Bbss, possibly resulting in missed diagnoses and failure to administer appropriate antibiotic therapy in a timely manner. The genetic diversity of Borrelia spirochetes must be considered in future Lyme disease test development.
Collapse
|
14
|
Monitoring of Nesting Songbirds Detects Established Population of Blacklegged Ticks and Associated Lyme Disease Endemic Area in Canada. Healthcare (Basel) 2020; 8:healthcare8010059. [PMID: 32183171 PMCID: PMC7151351 DOI: 10.3390/healthcare8010059] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/26/2020] [Accepted: 03/03/2020] [Indexed: 12/18/2022] Open
Abstract
This study provides a novel method of documenting established populations of bird-feeding ticks. Single populations of the blacklegged tick, Ixodes scapularis, and the rabbit tick, Haemaphysalis leporispalustris, were revealed in southwestern Québec, Canada. Blacklegged tick nymphs and, similarly, larval and nymphal rabbit ticks were tested for the Lyme disease bacterium, Borrelia burgdorferi sensu lato (Bbsl), using PCR and the flagellin (flaB) gene, and 14 (42%) of 33 of blacklegged tick nymphs tested were positive. In contrast, larval and nymphal H. leporsipalustris ticks were negative for Bbsl. The occurrence of Bbsl in I. scapularis nymphs brings to light the presence of a Lyme disease endemic area at this songbird nesting locality. Because our findings denote that this area is a Lyme disease endemic area, and I. scapularis is a human-biting tick, local residents and outdoor workers must take preventive measures to avoid tick bites. Furthermore, local healthcare practitioners must include Lyme disease in their differential diagnosis.
Collapse
|
15
|
Franck M, Ghozzi R, Pajaud J, Lawson-Hogban NE, Mas M, Lacout A, Perronne C. Borrelia miyamotoi: 43 Cases Diagnosed in France by Real-Time PCR in Patients With Persistent Polymorphic Signs and Symptoms. Front Med (Lausanne) 2020; 7:55. [PMID: 32181254 PMCID: PMC7059645 DOI: 10.3389/fmed.2020.00055] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 02/06/2020] [Indexed: 12/05/2022] Open
Abstract
Background:Borrelia species are divided into three groups depending on the induced disease and the tick vector. Borrelia miyamotoi is a relapsing fever Borrelia but can induce symptoms related to Lyme disease. Discovered in 1995, it is found in ticks around the world. In France, this species of Borrelia has been isolated in ticks and rodents, but was not yet observed in humans. Objective: The aim of the study was to look for B. miyamotoi in symptomatic patients. Methods: Real-time PCR was performed on 824 blood samples from patients presenting symptoms of persistent polymorphic syndrome possibly due to tick bite, a syndrome recognized by the French Authority for Health, which is close to the post-treatment Lyme disease syndrome. PCR was also performed on 24 healthy control persons. The primers were specifically designed for this particular species of Borrelia. The sequence of interest of 94 bp is located on the glpQ gene. Sequencing of amplification products, randomly chosen, confirmed the amplification specificity. To better investigate cases, a clinical questionnaire was sent to the patients PCR-positive for B. miyamotoi and to their physician. Results: This search revealed a positive PCR for B. miyamotoi in the blood from 43 patients out of 824 (5.22%). PCR was negative in all control persons. A clinical chart was obtained from 31 of the 43 patients. A history of erythema migrans was reported in five of these 31 patients (16%). All patients complained about fatigue, joint pain and neuro-cognitive disorders. Some patients complained about respiratory problems (chest tightness and/or lack of air in 41.9%). Episodes of relapsing fever were reported by 11 of the 31 patients (35.5%). Chilliness, hot flushes and/or sweats were reported by around half of the patients. B. miyamotoi may not cross-react with B. burgdorferi serology. Conclusion: This study is the first to detect B. miyamotoi in human blood in France. This series of human B. miyamotoi infection is the largest in patients with long term persistent syndrome. Our data suggest that this infection may be persistent, even on the long term.
Collapse
Affiliation(s)
| | - Raouf Ghozzi
- Hôpital de Lannemezan, Service Infectiologie, Fédération Française contre les Maladies Vectorielles à Tiques, Lannemezan, France
| | | | | | - Marie Mas
- Clinique Convert, Médecine Générale, Service des Urgences, Bourg en Bresse, France
| | - Alexis Lacout
- Centre de diagnostic ELSAN, Centre Médico - Chirurgical, Aurillac, France
| | - Christian Perronne
- Hôpital Universitaire Raymond Poincaré (Assistance Publique - Hôpitaux de Paris), Département d'Infectiologie, Université de Versailles - Saint Quentin, Paris-Saclay, Garches, France
| |
Collapse
|
16
|
Feng J, Leone J, Schweig S, Zhang Y. Evaluation of Natural and Botanical Medicines for Activity Against Growing and Non-growing Forms of B. burgdorferi. Front Med (Lausanne) 2020; 7:6. [PMID: 32154254 PMCID: PMC7050641 DOI: 10.3389/fmed.2020.00006] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 01/09/2020] [Indexed: 12/14/2022] Open
Abstract
Lyme disease is the most common vector-borne disease in the US and Europe. Although the current recommended Lyme antibiotic treatment is effective for the majority of Lyme disease patients, about 10-20% of patients continue to suffer from persisting symptoms. There have been various anecdotal reports on the use of herbal extracts for treating patients with persisting symptoms with varying degree of improvements. However, it is unclear whether the effect of the herb products is due to their direct antimicrobial activity or their effect on host immune system. In the present study, we investigated the antimicrobial effects of 12 commonly used botanical medicines and three other natural antimicrobial agents for potential anti-Borrelia burgdorferi activity in vitro. Among them, 7 natural product extracts at 1% were found to have good activity against the stationary phase B. burgdorferi culture compared to the control antibiotics doxycycline and cefuroxime. These active botanicals include Cryptolepis sanguinolenta, Juglans nigra (Black walnut), Polygonum cuspidatum (Japanese knotweed), Artemisia annua (Sweet wormwood), Uncaria tomentosa (Cat's claw), Cistus incanus, and Scutellaria baicalensis (Chinese skullcap). In contrast, Stevia rebaudiana, Andrographis paniculata, Grapefruit seed extract, colloidal silver, monolaurin, and antimicrobial peptide LL37 had little or no activity against stationary phase B. burgdorferi. The minimum inhibitory concentration (MIC) values of Artemisia annua, Juglans nigra, and Uncaria tomentosa were quite high for growing B. burgdorferi, despite their strong activity against the non-growing stationary phase B. burgdorferi. On the other hand, the top two active herbs, Cryptolepis sanguinolenta and Polygonum cuspidatum, showed strong activity against both growing B. burgdorferi (MIC = 0.03-0.06% and 0.25-0.5%, respectively) and non-growing stationary phase B. burgdorferi. In subculture studies, only 1% Cryptolepis sanguinolenta extract caused complete eradication, while doxycycline and cefuroxime and other active herbs could not eradicate B. burgdorferi stationary phase cells as many spirochetes were visible after 21-day subculture. Further studies are needed to identify the active constituents of the effective botanicals and evaluate their combinations for more effective eradication of B. burgdorferi in vitro and in vivo. The implications of these findings for improving treatment of persistent Lyme disease are discussed.
Collapse
Affiliation(s)
- Jie Feng
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
| | - Jacob Leone
- FOCUS Health Group, Naturopathic, Novato, CA, United States
| | - Sunjya Schweig
- California Center for Functional Medicine, Kensington, CA, United States
| | - Ying Zhang
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
17
|
Middelveen MJ, Martinez RM, Fesler MC, Sapi E, Burke J, Shah JS, Nicolaus C, Stricker RB. Classification and Staging of Morgellons Disease: Lessons from Syphilis. Clin Cosmet Investig Dermatol 2020; 13:145-164. [PMID: 32104041 PMCID: PMC7012249 DOI: 10.2147/ccid.s239840] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 01/16/2020] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Morgellons disease (MD) is a contested dermopathy that is associated with Borrelia spirochetal infection. A simple classification system was previously established to help validate the disease based on clinical features (classes I-IV). METHODS Drawing on historical and pathological parallels with syphilis, we formulated a more detailed staging system based on clinical features as well as severity of skin lesions and corresponding histopathological infection patterns, as determined by anti-Borrelia immunohistochemical staining. RESULTS Clinical classes I-IV of MD are further categorized as mild, moderate and severe, or stages A, B and C, respectively, based on histopathological findings. Stage A lesions demonstrated little or no immune infiltrates and little or no disorganization of cells; macrophages were not present, and hemorrhage was negligible. Extracellular isolated spirochetes and intracellular staining of keratinocytes in the lower epidermis was occasionally seen. Stage C lesions demonstrated positive staining of keratinocytes in the stratum basale and stratum spinosum and positive intracellular staining of macrophages for Borrelia. Aggregate Borrelia colonies were frequently encountered, hemorrhage was frequent, and intracellularly stained fibroblasts were occasionally seen. Stage B lesions demonstrated a pattern intermediate between Stages A and C. CONCLUSION The enhanced staging system provides objective criteria to assess the severity of dermopathy in MD. Further studies are needed to determine the optimal treatment for MD based on this staging system related to Borrelia infection.
Collapse
Affiliation(s)
| | | | | | - Eva Sapi
- Department of Biology and Environmental Science, University of New Haven, West Haven, CT, USA
| | | | | | | | | |
Collapse
|
18
|
Novel targets and strategies to combat borreliosis. Appl Microbiol Biotechnol 2020; 104:1915-1925. [PMID: 31953560 PMCID: PMC7222997 DOI: 10.1007/s00253-020-10375-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 01/05/2020] [Accepted: 01/12/2020] [Indexed: 12/12/2022]
Abstract
Lyme borreliosis is a bacterial infection that can be spread to humans by infected ticks and may severely affect many organs and tissues. Nearly four decades have elapsed since the discovery of the disease agent called Borrelia burgdorferi. Although there is a plethora of knowledge on the infectious agent and thousands of scientific publications, an effective way on how to combat and prevent Lyme borreliosis has not been found yet. There is no vaccine for humans available, and only one active vaccine program in clinical development is currently running. A spirited search for possible disease interventions is of high public interest as surveillance data indicates that the number of cases of Lyme borreliosis is steadily increasing in Europe and North America. This review provides a condensed digest of the history of vaccine development up to new promising vaccine candidates and strategies that are targeted against Lyme borreliosis, including elements of the tick vector, the reservoir hosts, and the Borrelia pathogen itself.
Collapse
|
19
|
Comparison of motif-based and whole-unique-sequence-based analyses of phage display library datasets generated by biopanning of anti-Borrelia burgdorferi immune sera. PLoS One 2020; 15:e0226378. [PMID: 31940357 PMCID: PMC6961823 DOI: 10.1371/journal.pone.0226378] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 11/25/2019] [Indexed: 11/19/2022] Open
Abstract
Detection of protection-associated epitopes via reverse vaccinology is the first step for development of subunit vaccines against microbial pathogens. Mapping subunit vaccine targets requires high throughput methods, which would allow delineation of epitopes recognized by protective antibodies on a large scale. Phage displayed random peptide library coupled to Next Generation Sequencing (PDRPL/NGS) is the universal platform that enables high-yield identification of peptides that mimic epitopes (mimotopes). Despite being unsurpassed as a tool for discovery of polyclonal serum mimotopes, the PDRPL/NGS is far inferior as a quantitative method of immune response. Difficult-to-control fluctuations in amounts of antibody-bound phages after rounds of selection and amplification diminish the quantitative capacity of the PDRPL/NGS. In an attempt to improve the accuracy of the PDRPL/NGS method, we compared the discriminating capacity of two approaches for PDRPL/NGS data analysis. The whole-unique-sequence-based analysis (WUSA) involved generation of 7-mer peptide profiles and comparison of the numbers of sequencing reads for unique peptide sequences between serum samples. The motif-based analysis (MA) included identification of 4-mer consensus motifs unifying unique 7-mer sequences and comparison of motifs between serum samples. The motif comparison was based not on the numbers of sequencing reads, but on the numbers of distinct 7-mers constituting the motifs. Our PDRPL/NGS datasets generated from biopanning of protective and non-protective anti-Borrelia burgdorferi sera of New Zealand rabbits were used to contrast the two approaches. As a result, the principle component analyses (PCA) showed that the discriminating powers of the WUSA and MA were similar. In contrast, the unsupervised hierarchical clustering obtained via the MA classified the preimmune, non-protective, and protective sera better than the WUSA-based clustering. Also, a total number of discriminating motifs was higher than that of discriminating 7-mers. In sum, our results indicate that MA approach improves the accuracy and quantitative capacity of the PDRPL/NGS method.
Collapse
|
20
|
Bamm VV, Ko JT, Mainprize IL, Sanderson VP, Wills MKB. Lyme Disease Frontiers: Reconciling Borrelia Biology and Clinical Conundrums. Pathogens 2019; 8:E299. [PMID: 31888245 PMCID: PMC6963551 DOI: 10.3390/pathogens8040299] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 12/06/2019] [Accepted: 12/12/2019] [Indexed: 12/18/2022] Open
Abstract
Lyme disease is a complex tick-borne zoonosis that poses an escalating public health threat in several parts of the world, despite sophisticated healthcare infrastructure and decades of effort to address the problem. Concepts like the true burden of the illness, from incidence rates to longstanding consequences of infection, and optimal case management, also remain shrouded in controversy. At the heart of this multidisciplinary issue are the causative spirochetal pathogens belonging to the Borrelia Lyme complex. Their unusual physiology and versatile lifestyle have challenged microbiologists, and may also hold the key to unlocking mysteries of the disease. The goal of this review is therefore to integrate established and emerging concepts of Borrelia biology and pathogenesis, and position them in the broader context of biomedical research and clinical practice. We begin by considering the conventions around diagnosing and characterizing Lyme disease that have served as a conceptual framework for the discipline. We then explore virulence from the perspective of both host (genetic and environmental predispositions) and pathogen (serotypes, dissemination, and immune modulation), as well as considering antimicrobial strategies (lab methodology, resistance, persistence, and clinical application), and borrelial adaptations of hypothesized medical significance (phenotypic plasticity or pleomorphy).
Collapse
Affiliation(s)
| | | | | | | | - Melanie K. B. Wills
- G. Magnotta Lyme Disease Research Lab, Molecular and Cellular Biology, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada; (V.V.B.); (J.T.K.); (I.L.M.); (V.P.S.)
| |
Collapse
|
21
|
Scott JD, Clark KL, Coble NM, Ballantyne TR. Detection and Transstadial Passage of Babesia Species and Borrelia burgdorferi Sensu Lato in Ticks Collected from Avian and Mammalian Hosts in Canada. Healthcare (Basel) 2019; 7:E155. [PMID: 31810270 PMCID: PMC6955799 DOI: 10.3390/healthcare7040155] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 11/26/2019] [Accepted: 11/26/2019] [Indexed: 11/17/2022] Open
Abstract
Lyme disease and human babesiosis are the most common tick-borne zoonoses in the Temperate Zone of North America. The number of infected patients has continued to rise globally, and these zoonoses pose a major healthcare threat. This tick-host-pathogen study was conducted to test for infectious microbes associated with Lyme disease and human babesiosis in Canada. Using the flagellin (flaB) gene, three members of the Borrelia burgdorferi sensu lato (Bbsl) complex were detected, namely a Borrelia lanei-like spirochete, Borrelia burgdorferi sensu stricto (Bbss), and a distinct strain that may represent a separate Bbsl genospecies. This novel Bbsl strain was detected in a mouse tick, Ixodes muris, collected from a House Wren, Troglodytes aedon, in Quebec during the southward fall migration. The presence of Bbsl in bird-feeding larvae of I. muris suggests reservoir competency in three passerines (i.e., Common Yellowthroat, House Wren, Magnolia Warbler). Based on the 18S ribosomal RNA (rRNA) gene, three Babesia species (i.e., Babesia divergens-like, Babesia microti, Babesia odocoilei) were detected in field-collected ticks. Not only was B. odocoilei found in songbird-derived ticks, this piroplasm was apparent in adult questing blacklegged ticks, Ixodes scapularis, in southern Canada. By allowing live, engorged ticks to molt, we confirm the transstadial passage of Bbsl in I. muris and B. odocoilei in I. scapularis. Bbss and Babesia microti were detected concurrently in a groundhog tick, Ixodes cookei, in Western Ontario. In Alberta, a winter tick, Dermacentor albipictus, which was collected from a moose, Alces alces, tested positive for Bbss. Notably, a B. divergens-like piroplasm was detected in a rabbit tick, Haemaphysalis leporispalustris, collected from an eastern cottontail in southern Manitoba; this Babesia species is a first-time discovery in Canada. This rabbit tick was also co-infected with Borrelia lanei-like spirochetes, which constitutes a first in Canada. Overall, five ticks were concurrently infected with Babesia and Bbsl pathogens and, after the molt, could potentially co-infect humans. Notably, we provide the first authentic report of I. scapularis ticks co-infected with Bbsl and B. odocoilei in Canada. The full extent of infectious microorganisms transmitted to humans by ticks is not fully elucidated, and clinicians need to be aware of the complexity of these tick-transmitted enzootic agents on human health. Diagnosis and treatment must be administered by those with accredited medical training in tick-borne zoonosis.
Collapse
Affiliation(s)
- John D. Scott
- International Lyme and Associated Diseases Society, 2 Wisconsin Circle, Suite 700, Chevy Chase, MD 20815-7007, USA
| | - Kerry L. Clark
- Environmental Epidemiology Research Laboratory, Department of Public Health, University of North Florida, Jacksonville, FL 32224, USA; (K.L.C.); (N.M.C.); (T.R.B.)
| | - Nikki M. Coble
- Environmental Epidemiology Research Laboratory, Department of Public Health, University of North Florida, Jacksonville, FL 32224, USA; (K.L.C.); (N.M.C.); (T.R.B.)
| | - Taylor R. Ballantyne
- Environmental Epidemiology Research Laboratory, Department of Public Health, University of North Florida, Jacksonville, FL 32224, USA; (K.L.C.); (N.M.C.); (T.R.B.)
| |
Collapse
|
22
|
Moysa C, Murtagh R, Lambert JS. Potential Persistent Borrelia Infection and Response to Antibiotic Therapy; a Clinical Case Study and Review of Recent Literature. Antibiotics (Basel) 2019; 8:antibiotics8040223. [PMID: 31739409 PMCID: PMC6963185 DOI: 10.3390/antibiotics8040223] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 11/08/2019] [Accepted: 11/09/2019] [Indexed: 11/23/2022] Open
Abstract
This report describes the case of an individual who was clinically diagnosed with Lyme borreliosis and initially responded to standard antibiotic therapy. Subsequent to treatment cessation, the patient experienced symptomatic rebound and failed to respond to a second course of the same antibiotic. The patient was eventually diagnosed with both Borrelia and Anaplasma infections by serological testing performed in a private laboratory. Following a two-month course of combination antibiotic therapy, the patient responded clinically, with a return to almost normal functioning. We discuss this case in the context of recent pre-clinical research examining potential Borrelial persistence despite antibiotic therapy.
Collapse
Affiliation(s)
- Cozette Moysa
- Independent Researcher, San Juan Capistrano, CA 92675, USA;
| | - Ross Murtagh
- School of Medicine, University College Dublin, D07 A8NN Dublin, Ireland
| | - John S. Lambert
- School of Medicine, University College Dublin, D07 A8NN Dublin, Ireland
- Infectious Diseases Department, Mater Misericordiae University Hospital, D07 K201 Dublin, Ireland
- Correspondence:
| |
Collapse
|
23
|
Sapi E, Kasliwala RS, Ismail H, Torres JP, Oldakowski M, Markland S, Gaur G, Melillo A, Eisendle K, Liegner KB, Libien J, Goldman JE. The Long-Term Persistence of Borrelia burgdorferi Antigens and DNA in the Tissues of a Patient with Lyme Disease. Antibiotics (Basel) 2019; 8:antibiotics8040183. [PMID: 31614557 PMCID: PMC6963883 DOI: 10.3390/antibiotics8040183] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 10/06/2019] [Accepted: 10/09/2019] [Indexed: 01/29/2023] Open
Abstract
Whether Borrelia burgdorferi, the causative agent of Lyme disease, can persist for long periods in the human body has been a controversial question. The objective of this study was to see if we could find B. burgdorferi in a Lyme disease patient after a long clinical course and after long-term antibiotic treatment. Therefore, we investigated the potential presence of B. burgdorferi antigens and DNA in human autopsy tissues from a well-documented serum-, PCR-, and culture-positive Lyme disease patient, a 53-year-old female from northern Westchester County in the lower Hudson Valley Region of New York State, who had received extensive antibiotic treatments during extensive antibiotic treatments over the course of her 16-year-long illness. We also asked what form the organism might take, with special interest in the recently found antibiotic-resistant aggregate form, biofilm. We also examined the host tissues for the presence of inflammatory markers such as CD3+ T lymphocytes. Autopsy tissue sections of the brain, heart, kidney, and liver were analyzed by histological and immunohistochemical methods (IHC), confocal microscopy, fluorescent in situ hybridization (FISH), polymerase chain reaction (PCR), and whole-genome sequencing (WGS)/metagenomics. We found significant pathological changes, including borrelial spirochetal clusters, in all of the organs using IHC combined with confocal microscopy. The aggregates contained a well-established biofilm marker, alginate, on their surfaces, suggesting they are true biofilm. We found B. burgdorferi DNA by FISH, polymerase chain reaction (PCR), and an independent verification by WGS/metagenomics, which resulted in the detection of B. burgdorferi sensu stricto specific DNA sequences. IHC analyses showed significant numbers of infiltrating CD3+ T lymphocytes present next to B. burgdorferi biofilms. In summary, we provide several lines of evidence that suggest that B. burgdorferi can persist in the human body, not only in the spirochetal but also in the antibiotic-resistant biofilm form, even after long-term antibiotic treatment. The presence of infiltrating lymphocytes in the vicinity of B. burgdorferi biofilms suggests that the organism in biofilm form might trigger chronic inflammation.
Collapse
Affiliation(s)
- Eva Sapi
- Department of Biology and Environmental Science, University of New Haven, West Haven, CT 06516, USA.
| | - Rumanah S Kasliwala
- Department of Biology and Environmental Science, University of New Haven, West Haven, CT 06516, USA.
| | - Hebo Ismail
- Department of Biology and Environmental Science, University of New Haven, West Haven, CT 06516, USA.
| | - Jason P Torres
- Department of Biology and Environmental Science, University of New Haven, West Haven, CT 06516, USA.
| | - Michael Oldakowski
- Department of Biology and Environmental Science, University of New Haven, West Haven, CT 06516, USA.
| | - Sarah Markland
- Department of Biology and Environmental Science, University of New Haven, West Haven, CT 06516, USA.
| | - Gauri Gaur
- Department of Biology and Environmental Science, University of New Haven, West Haven, CT 06516, USA.
| | - Anthony Melillo
- Department of Biology and Environmental Science, University of New Haven, West Haven, CT 06516, USA.
| | - Klaus Eisendle
- Central Teaching Hospital Bolzano L Böhlerstr, 539100 Bolzano, Italy.
| | - Kenneth B Liegner
- Private practice, 592 Route 22, Suite 1B, Pawling, NY 12564, USA.
- Northwell System, Northern Westchester Hospital, Mount Kisco, NY 10549, USA.
- Health Quest System, Sharon Hospital, Sharon, CT 06069, USA.
| | - Jenny Libien
- Department of Pathology, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, USA.
| | - James E Goldman
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10031, USA.
| |
Collapse
|
24
|
Hodzic E, Imai DM, Escobar E. Generality of Post-Antimicrobial Treatment Persistence of Borrelia burgdorferi Strains N40 and B31 in Genetically Susceptible and Resistant Mouse Strains. Infect Immun 2019; 87:e00442-19. [PMID: 31308087 PMCID: PMC6759297 DOI: 10.1128/iai.00442-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 07/11/2019] [Indexed: 01/22/2023] Open
Abstract
A basic feature of infection caused by Borrelia burgdorferi, the etiological agent of Lyme borreliosis, is that persistent infection is the rule in its many hosts. The ability to persist and evade host immune clearance poses a challenge to effective antimicrobial treatment. A link between therapy failure and the presence of persister cells has started to emerge. There is growing experimental evidence that viable but noncultivable spirochetes persist following treatment with several different antimicrobial agents. The current study utilized the mouse model to evaluate if persistence occurs following antimicrobial treatment in disease-susceptible (C3H/HeJ [C3H]) and disease-resistant (C57BL/6 [B6]) mouse strains infected with B. burgdorferi strains N40 and B31 and to confirm the generality of this phenomenon, as well as to assess the persisters' clinical relevance. The status of infection was evaluated at 12 and 18 months after treatment. The results demonstrated that persistent spirochetes remain viable for up to 18 months following treatment, as well as being noncultivable. The phenomenon of persistence in disease-susceptible C3H mice is equally evident in disease-resistant B6 mice and not unique to any particular B. burgdorferi strain. The results also demonstrate that, following antimicrobial treatment, both strains of B. burgdorferi, N40 and B31, lose one or more plasmids. The study demonstrated that noncultivable spirochetes can persist in a host following antimicrobial treatment for a long time but did not demonstrate their clinical relevance in a mouse model of chronic infection. The clinical relevance of persistent spirochetes beyond 18 months following antimicrobial treatment requires further studies in other animal models.
Collapse
Affiliation(s)
- Emir Hodzic
- Real-Time PCR Research and Diagnostic Core Facility, School of Veterinary Medicine, University of California at Davis, Davis, California, USA
| | - Denise M Imai
- Comparative Pathology Laboratory, School of Veterinary Medicine, University of California at Davis, Davis, California, USA
| | - Edlin Escobar
- Real-Time PCR Research and Diagnostic Core Facility, School of Veterinary Medicine, University of California at Davis, Davis, California, USA
| |
Collapse
|
25
|
Cytokine Expression Patterns and Single Nucleotide Polymorphisms (SNPs) in Patients with Chronic Borreliosis. Antibiotics (Basel) 2019; 8:antibiotics8030107. [PMID: 31366164 PMCID: PMC6784230 DOI: 10.3390/antibiotics8030107] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 07/21/2019] [Accepted: 07/25/2019] [Indexed: 12/19/2022] Open
Abstract
(1) Background: Genetically based hyperinflammation may play a role in pathogen defense. We here questioned whether alterations in circulating monocytes/macrophages, inflammatory biomarkers and a functional SNP (single nucleotide polymorphisms) of the Interleukin-6 (IL-6) promotor might play a role in patients with persistent, and treatment resistant borreliosis. (2) Methods: Leukocyte subpopulations were studied by flow cytometry; plasma cytokines were determined by a chemiluminescence based ELISA (Immulite®), and genotypes of the IL-6 promotor SNP rs1800795 were determined by pyrosequencing. (3) Results: In a cohort of n = 107 Lyme borreliosis patients, who concomitantly manifested either malignant diseases (group 1), autoimmune disorders (group 2), neurological diseases (group 3), or morbidities caused by multiple other infectious complications (group 4), we found decreased numbers of anti-inflammatory CD163-positive macrophages, elevated concentrations of inflammatory cytokines, and an imbalance of IL-6 promotor SNP rs1800795 genotypes. The most prominently upregulated cytokines were IL-1β, and IL-8. (4) Conclusions: Increased pro-inflammatory phenotypes identified by monocyte/macrophage subtypes and concomitantly increased cytokines appear to be valid to monitor disease activity in patients with persistent Lyme borreliosis. Patterns may vary by additional co-morbidities. In patients with autoimmune diseases, increased frequencies of a heterozygous IL-6 promotor SNP rs1800795 were identified. This functional SNP may guide chronic inflammation, impacting other cytokines to trigger trigger chronicity and therapeutic resistance in Lyme borreliosis.
Collapse
|
26
|
Delineating Surface Epitopes of Lyme Disease Pathogen Targeted by Highly Protective Antibodies of New Zealand White Rabbits. Infect Immun 2019; 87:IAI.00246-19. [PMID: 31085705 DOI: 10.1128/iai.00246-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 05/07/2019] [Indexed: 11/20/2022] Open
Abstract
Lyme disease (LD), the most prevalent vector-borne illness in the United States and Europe, is caused by Borreliella burgdorferi No vaccine is available for humans. Dogmatically, B. burgdorferi can establish a persistent infection in the mammalian host (e.g., mice) due to a surface antigen, VlsE. This antigenically variable protein allows the spirochete to continually evade borreliacidal antibodies. However, our recent study has shown that the B. burgdorferi spirochete is effectively cleared by anti-B. burgdorferi antibodies of New Zealand White rabbits, despite the surface expression of VlsE. Besides homologous protection, the rabbit antibodies also cross-protect against heterologous B. burgdorferi spirochetes and significantly reduce the pathology of LD arthritis in persistently infected mice. Thus, this finding that NZW rabbits develop a unique repertoire of very potent antibodies targeting the protective surface epitopes, despite abundant VlsE, prompted us to identify the specificities of the protective rabbit antibodies and their respective targets. By applying subtractive reverse vaccinology, which involved the use of random peptide phage display libraries coupled with next-generation sequencing and our computational algorithms, repertoires of nonprotective (early) and protective (late) rabbit antibodies were identified and directly compared. Consequently, putative surface epitopes that are unique to the protective rabbit sera were mapped. Importantly, the relevance of newly identified protection-associated epitopes for their surface exposure has been strongly supported by prior empirical studies. This study is significant because it now allows us to systematically test the putative epitopes for their protective efficacy with an ultimate goal of selecting the most efficacious targets for development of a long-awaited LD vaccine.
Collapse
|
27
|
New Zealand White Rabbits Effectively Clear Borrelia burgdorferi B31 despite the Bacterium's Functional vlsE Antigenic Variation System. Infect Immun 2019; 87:IAI.00164-19. [PMID: 30988058 DOI: 10.1128/iai.00164-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 04/11/2019] [Indexed: 12/20/2022] Open
Abstract
Borrelia burgdorferi is a tick-borne bacterium responsible for approximately 300,000 annual cases of Lyme disease (LD) in the United States, with increasing incidences in other parts of the world. The debilitating nature of LD is mainly attributed to the ability of B. burgdorferi to persist in patients for many years despite strong anti-Borrelia antibody responses. Antimicrobial treatment of persistent infection is challenging. Similar to infection of humans, B. burgdorferi establishes long-term infection in various experimental animal models except for New Zealand White (NZW) rabbits, which clear the spirochete within 4 to 12 weeks. LD spirochetes have a highly evolved antigenic variation vls system, on the lp28-1 plasmid, where gene conversion results in surface expression of the antigenically variable VlsE protein. VlsE is required for B. burgdorferi to establish persistent infection by continually evading otherwise potent antibodies. Since the clearance of B. burgdorferi is mediated by humoral immunity in NZW rabbits, the previously reported results that LD spirochetes lose lp28-1 during rabbit infection could potentially explain the failure of B. burgdorferi to persist. However, the present study unequivocally disproves that previous finding by demonstrating that LD spirochetes retain the vls system. However, despite the vls system being fully functional, the spirochete fails to evade anti-Borrelia antibodies of NZW rabbits. In addition to being protective against homologous and heterologous challenges, the rabbit antibodies significantly ameliorate LD-induced arthritis in persistently infected mice. Overall, the current data indicate that NZW rabbits develop a protective antibody repertoire, whose specificities, once defined, will identify potential candidates for a much-anticipated LD vaccine.
Collapse
|
28
|
Locke JW. Complement Evasion in Borrelia spirochetes: Mechanisms and Opportunities for Intervention. Antibiotics (Basel) 2019; 8:antibiotics8020080. [PMID: 31200570 PMCID: PMC6627623 DOI: 10.3390/antibiotics8020080] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 06/10/2019] [Accepted: 06/11/2019] [Indexed: 12/22/2022] Open
Abstract
Lyme disease (LD) is an increasingly prevalent, climate change-accelerated, vector-borne infectious disease with significant morbidity and cost in a proportion of patients who experience ongoing symptoms after antibiotic treatment, a condition known as post-treatment Lyme disease syndrome (PTLDS). Spirochetal bacteria of Borrelia species are the causative agents of LD. These obligate parasites have evolved sophisticated immune evasion mechanisms, including the ability to defeat the innate immune system’s complement cascade. Research on complement function and Borrelia evasion mechanisms, focusing on human disease, is reviewed, highlighting opportunities to build on existing knowledge. Implications for the development of new antibiotic therapies having the potential to prevent or cure PTLDS are discussed. It is noted that a therapy enabling the complement system to effectively counter Borrelia might have lower cost and fewer side-effects and risks than broad-spectrum antibiotic use and could avert the need to develop and administer a vaccine.
Collapse
Affiliation(s)
- Jonathan W Locke
- Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA.
| |
Collapse
|
29
|
Mixed Borrelia burgdorferi and Helicobacter pylori Biofilms in Morgellons Disease Dermatological Specimens. Healthcare (Basel) 2019; 7:healthcare7020070. [PMID: 31108976 PMCID: PMC6627092 DOI: 10.3390/healthcare7020070] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 04/17/2019] [Accepted: 05/14/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Morgellons disease (MD) is a dermopathy that is associated with tick-borne illness. It is characterized by spontaneously developing skin lesions containing embedded or projecting filaments, and patients may also experience symptoms resembling those of Lyme disease (LD) including musculoskeletal, neurological and cardiovascular manifestations. Various species of Borrelia and co-infecting pathogens have been detected in body fluids and tissue specimens from MD patients. We sought to investigate the coexistence of Borrelia burgdorferi (Bb) and Helicobacter pylori (Hp) in skin specimens from MD subjects, and to characterize their association with mixed amyloid biofilm development. METHODS Testing for Bb and Hp was performed on dermatological specimens from 14 MD patients using tissue culture, immunohistochemical (IHC) staining, polymerase chain reaction (PCR) testing, fluorescent in situ hybridization (FISH) and confocal microscopy. Markers for amyloid and biofilm formation were investigated using histochemical and IHC staining. RESULTS Bb and Hp were detected in dermatological tissue taken from MD lesions. Bb and Hp tended to co-localize in foci within the epithelial tissue. Skin sections exhibiting foci of co-infecting Bb and Hp contained amyloid markers including β-amyloid protein, thioflavin and phosphorylated tau. The biofilm marker alginate was also found in the sections. CONCLUSIONS Mixed Bb and Hp biofilms containing β-amyloid and phosphorylated tau may play a role in the evolution of MD.
Collapse
|
30
|
Rudenko N, Golovchenko M, Kybicova K, Vancova M. Metamorphoses of Lyme disease spirochetes: phenomenon of Borrelia persisters. Parasit Vectors 2019; 12:237. [PMID: 31097026 PMCID: PMC6521364 DOI: 10.1186/s13071-019-3495-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 05/09/2019] [Indexed: 12/22/2022] Open
Abstract
The survival of spirochetes from the Borrelia burgdorferi (sensu lato) complex in a hostile environment is achieved by the regulation of differential gene expression in response to changes in temperature, salts, nutrient content, acidity fluctuation, multiple host or vector dependent factors, and leads to the formation of dormant subpopulations of cells. From the other side, alterations in the level of gene expression in response to antibiotic pressure leads to the establishment of a persisters subpopulation. Both subpopulations represent the cells in different physiological states. "Dormancy" and "persistence" do share some similarities, e.g. both represent cells with low metabolic activity that can exist for extended periods without replication, both constitute populations with different gene expression profiles and both differ significantly from replicating forms of spirochetes. Persisters are elusive, present in low numbers, morphologically heterogeneous, multi-drug-tolerant cells that can change with the environment. The definition of "persisters" substituted the originally-used term "survivors", referring to the small bacterial population of Staphylococcus that survived killing by penicillin. The phenomenon of persisters is present in almost all bacterial species; however, the reasons why Borrelia persisters form are poorly understood. Persisters can adopt varying sizes and shapes, changing from well-known forms to altered morphologies. They are capable of forming round bodies, L-form bacteria, microcolonies or biofilms-like aggregates, which remarkably change the response of Borrelia to hostile environments. Persisters remain viable despite aggressive antibiotic challenge and are able to reversibly convert into motile forms in a favorable growth environment. Persisters are present in significant numbers in biofilms, which has led to the explanation of biofilm tolerance to antibiotics. Considering that biofilms are associated with numerous chronic diseases through their resilient presence in the human body, it is not surprising that interest in persisting cells has consequently accelerated. Certain diseases caused by pathogenic bacteria (e.g. tuberculosis, syphilis or leprosy) are commonly chronic in nature and often recur despite antibiotic treatment. Three decades of basic and clinical research have not yet provided a definite answer to the question: is there a connection between persisting spirochetes and recurrence of Lyme disease in patients?
Collapse
Affiliation(s)
- Natalie Rudenko
- Biology Centre CAS, Institute of Parasitology, Branisovska 31, 37005 Ceske Budejovice, Czech Republic
| | - Maryna Golovchenko
- Biology Centre CAS, Institute of Parasitology, Branisovska 31, 37005 Ceske Budejovice, Czech Republic
| | - Katerina Kybicova
- National Institute of Public Health, Srobarova 48, 100 42 Prague 10, Czech Republic
| | - Marie Vancova
- Biology Centre CAS, Institute of Parasitology, Branisovska 31, 37005 Ceske Budejovice, Czech Republic
| |
Collapse
|
31
|
Berghoff W, Hopf-Seidel P, Weitkus B, Steiner C. Critical Comments. DEUTSCHES ARZTEBLATT INTERNATIONAL 2019; 116:344. [PMID: 31288911 PMCID: PMC6630164 DOI: 10.3238/arztebl.2019.0344a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Affiliation(s)
| | | | - Barbara Weitkus
- ***Privatpraxis für Borreliosepatienten, Mittenwalde, Germany
| | | |
Collapse
|
32
|
Badawi A, Arora P, Brenner D. Biologic Markers of Antibiotic-Refractory Lyme Arthritis in Human: A Systematic Review. Infect Dis Ther 2018; 8:5-22. [PMID: 30506261 PMCID: PMC6374232 DOI: 10.1007/s40121-018-0223-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Indexed: 11/28/2022] Open
Abstract
INTRODUCTION Lyme disease-also known as Lyme borreliosis (LB)-is the most common vector-borne disease in North America and Europe. It may result in substantial morbidity, primarily from persistent Lyme arthritis (LA) that-although treatable-can develop into antibiotic-refractory LA (A-RLA). The aim of this study is to systematically review and evaluate a range of biomarkers for their potential predictive value in the development of A-RLA. METHODS We conducted a systematic review of studies examining biomarkers among patients with A-RLA from MEDLINE via OVID, EMBASE and Web of Science databases and identified a total of 26 studies for qualitative analysis. RESULTS All studies were of patient populations from the USA, with the exception of one from Europe. We identified an array of biomarkers that are commonly modulated in the A-RLA compared with subjects with antibiotic-responsive LA. These included a range of inflammatory markers (IL-6, IL-8, IL-10, IL-1β, IL-23, IL-17F, TNFα, IFNγ, CXCL9, CXCL10, CCL2, CCL3 and CCL4, CRP), factors along the innate and adaptive immune response pathways (e.g., CD4+ T cells, GITR receptors, OX40 receptors, IL-4+CD4+Th2 cells, IL-17+CD4+ T cells) and an array of miRNA species (e.g., miR-142, miR-17, miR-20a, let-7c and miR-30fam). CONCLUSION The evidence base of biologic markers for A-RLA is limited. However, a range of promising biomarkers have been identified. Cytokines and chemokines related to Th17 pathway together with a number of miRNAs species (miR-146a, miR-155 and let-7a) may be promising candidates in the prediction of A-RLA. A panel of multiple biomarkers may yield clinically relevant prediction of the possible resistance at the time of LA first diagnosis. FUNDING Public Health Agency of Canada.
Collapse
Affiliation(s)
- Alaa Badawi
- Public Health Risk Sciences Division, Public Health Agency of Canada, Toronto, Canada. .,Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, Canada.
| | - Paul Arora
- Dalla Lana School of Public Health, University of Toronto, Toronto, Canada.,Division of Enteric Diseases, National Microbiology Laboratory, Public Health Agency of Canada, Toronto, Canada
| | - Darren Brenner
- Cumming School of Medicine, University of Calgary, Calgary, Canada
| |
Collapse
|
33
|
Di Domenico EG, Cavallo I, Bordignon V, D'Agosto G, Pontone M, Trento E, Gallo MT, Prignano G, Pimpinelli F, Toma L, Ensoli F. The Emerging Role of Microbial Biofilm in Lyme Neuroborreliosis. Front Neurol 2018; 9:1048. [PMID: 30559713 PMCID: PMC6287027 DOI: 10.3389/fneur.2018.01048] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 11/19/2018] [Indexed: 01/04/2023] Open
Abstract
Lyme borreliosis (LB) is the most common tick-borne disease caused by the spirochete Borrelia burgdorferi in North America and Borrelia afzelii or Borrelia garinii in Europe and Asia, respectively. The infection affects multiple organ systems, including the skin, joints, and the nervous system. Lyme neuroborreliosis (LNB) is the most dangerous manifestation of Lyme disease, occurring in 10-15% of infected individuals. During the course of the infection, bacteria migrate through the host tissues altering the coagulation and fibrinolysis pathways and the immune response, reaching the central nervous system (CNS) within 2 weeks after the bite of an infected tick. The early treatment with oral antimicrobials is effective in the majority of patients with LNB. Nevertheless, persistent forms of LNB are relatively common, despite targeted antibiotic therapy. It has been observed that the antibiotic resistance and the reoccurrence of Lyme disease are associated with biofilm-like aggregates in B. burgdorferi, B. afzelii, and B. garinii, both in vitro and in vivo, allowing Borrelia spp. to resist to adverse environmental conditions. Indeed, the increased tolerance to antibiotics described in the persisting forms of Borrelia spp., is strongly reminiscent of biofilm growing bacteria, suggesting a possible role of biofilm aggregates in the development of the different manifestations of Lyme disease including LNB.
Collapse
Affiliation(s)
- Enea Gino Di Domenico
- Clinical Pathology and Microbiology Unit, San Gallicano Dermatological Institute IRCCS, Rome, Italy
| | - Ilaria Cavallo
- Clinical Pathology and Microbiology Unit, San Gallicano Dermatological Institute IRCCS, Rome, Italy
| | - Valentina Bordignon
- Clinical Pathology and Microbiology Unit, San Gallicano Dermatological Institute IRCCS, Rome, Italy
| | - Giovanna D'Agosto
- Clinical Pathology and Microbiology Unit, San Gallicano Dermatological Institute IRCCS, Rome, Italy
| | - Martina Pontone
- Clinical Pathology and Microbiology Unit, San Gallicano Dermatological Institute IRCCS, Rome, Italy
| | - Elisabetta Trento
- Clinical Pathology and Microbiology Unit, San Gallicano Dermatological Institute IRCCS, Rome, Italy
| | - Maria Teresa Gallo
- Clinical Pathology and Microbiology Unit, San Gallicano Dermatological Institute IRCCS, Rome, Italy
| | - Grazia Prignano
- Clinical Pathology and Microbiology Unit, San Gallicano Dermatological Institute IRCCS, Rome, Italy
| | - Fulvia Pimpinelli
- Clinical Pathology and Microbiology Unit, San Gallicano Dermatological Institute IRCCS, Rome, Italy
| | - Luigi Toma
- Department of Research, Advanced Diagnostics, and Technological Innovation, Translational Research Area, Regina Elena National Cancer Institute IRCCS, Rome, Italy
| | - Fabrizio Ensoli
- Clinical Pathology and Microbiology Unit, San Gallicano Dermatological Institute IRCCS, Rome, Italy
| |
Collapse
|
34
|
Scott JD, Clark KL, Foley JE, Anderson JF, Bierman BC, Durden LA. Extensive Distribution of the Lyme Disease Bacterium, Borrelia burgdorferi Sensu Lato, in Multiple Tick Species Parasitizing Avian and Mammalian Hosts across Canada. Healthcare (Basel) 2018; 6:healthcare6040131. [PMID: 30424543 PMCID: PMC6315338 DOI: 10.3390/healthcare6040131] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 11/02/2018] [Accepted: 11/02/2018] [Indexed: 12/19/2022] Open
Abstract
Lyme disease, caused by the spirochetal bacterium, Borrelia burgdorferi sensu lato (Bbsl), is typically transmitted by hard-bodied ticks (Acari: Ixodidae). Whenever this tick-borne zoonosis is mentioned in medical clinics and emergency rooms, it sparks a firestorm of controversy. Denial often sets in, and healthcare practitioners dismiss the fact that this pathogenic spirochetosis is present in their area. For distribution of Bbsl across Canada, we conducted a 4-year, tick–host study (2013–2016), and collected ticks from avian and mammalian hosts from Atlantic Canada to the West Coast. Overall, 1265 ticks representing 27 tick species belonging to four genera were collected. Of the 18 tick species tested, 15 species (83%) were positive for Bbsl and, of these infected ticks, 6 species bite humans. Overall, 13 of 18 tick species tested are human-biting ticks. Our data suggest that a 6-tick, enzootic maintenance cycle of Bbsl is present in southwestern B.C., and five of these tick species bite humans. Biogeographically, the groundhog tick, Ixodes cookei, has extended its home range from central and eastern Canada to southwestern British Columbia (B.C.). We posit that the Fox Sparrow, Passerella iliaca, is a reservoir-competent host for Bbsl. The Bay-breasted Warbler, Setophaga castanea, and the Tennessee Warbler, Vermivora peregrina, are new host records for the blacklegged tick, Ixodes scapularis. We provide the first report of a Bbsl-positive Amblyomma longirostre larva parasitizing a bird; this bird parasitism suggests that a Willow Flycatcher is a competent reservoir of Bbsl. Our findings show that Bbsl is present in all provinces, and that multiple tick species are implicated in the enzootic maintenance cycle of this pathogen. Ultimately, Bbsl poses a serious public health contagion Canada-wide.
Collapse
Affiliation(s)
- John D Scott
- International Lyme and Associated Diseases Society, Bethesda, MD 20827, USA.
| | - Kerry L Clark
- Environmental Epidemiology Research Laboratory, Department of Public Health, University of North Florida, Jacksonville, FL 32224, USA.
| | - Janet E Foley
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA.
| | - John F Anderson
- Department of Entomology, Center for Vector Ecology and Zoonotic Diseases, The Connecticut Agricultural Experiment Station, New Haven, CT 06504, USA.
| | - Bradley C Bierman
- Environmental Epidemiology Research Laboratory, Department of Public Health, University of North Florida, Jacksonville, FL 32224, USA.
| | - Lance A Durden
- Department of Biology, Georgia Southern University, Statesboro, GA 30458, USA.
| |
Collapse
|
35
|
Middelveen MJ, Shah JS, Fesler MC, Stricker RB. Relapsing fever Borrelia in California: a pilot serological study. Int J Gen Med 2018; 11:373-382. [PMID: 30288084 PMCID: PMC6160281 DOI: 10.2147/ijgm.s176493] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Background Borrelia spirochetes are tick-borne Gram-negative bacteria that cause disease in humans and animals. Although many studies have focused on Borrelia burgdorferi (Bb), the agent of Lyme disease, recent studies have examined the role of Relapsing Fever Borrelia (RFB) in human disease. In this pilot study, we have evaluated serological reactivity against Bb and RFB in patients residing in California. Methods Serological testing for reactivity to Bb and RFB antigens was performed in 543 patients with suspected tick-borne illness using a Western blot technique. Further evaluation of a subset of 321 patients residing in California was obtained. Serum samples were tested for IgM and IgG antibodies reactive with Bb and RFB, and samples were classified by county of residence according to Bb reactivity alone, RFB reactivity alone, and dual reactivity against Bb and RFB. Seroreactivity was ranked in counties with the highest absolute number and the highest prevalence of positive samples. Results Of the 543 total serum samples, 32% were positive for Bb, 22% were positive for RFB, and 7% were positive for both Bb and RFB. Of the 321 serum samples from patients residing in California, 33% were positive for Bb, 27% were positive for RFB, and 11% were positive for both Bb and RFB. In the California cohort, the highest rates of positive serological testing for Bb were found in Santa Clara, Alameda, and Contra Costa counties, while the highest rates of positive serological testing for RFB were found in Santa Clara, Alameda, Marin, and San Francisco counties. The highest rates of dual reactivity against Bb and RFB were found in Contra Costa, Alameda, and San Francisco counties. Among the 24 counties with patients who were tested, Bb seropositivity alone was found in four counties, RFB seropositivity alone was found in two counties, and seropositivity for both Bb and RFB was found in 14 counties. Conclusion Results of this pilot study suggest that seroreactivity against Bb and RFB is widespread in California, and dual exposure to Bb and RFB may complicate the diagnosis of tick-borne disease. Greater awareness of RFB and broader screening for this tick-borne infection is warranted.
Collapse
|
36
|
Abstract
Twenty-five years ago, the AIDS epidemic was wreaking havoc around the world. Although "HIV denialists" threatened to undermine research efforts to combat the epidemic, development of targeted antiviral therapy eventually provided effective treatment for the disease. Now the Lyme disease epidemic is wreaking havoc around the world, and "Lyme denialists" are undermining efforts to combat the epidemic. Drawing on our experience with the AIDS epidemic, there is a significant need to develop targeted therapy to control the Lyme disease epidemic.
Collapse
|
37
|
Scott JD, Clark KL, Foley JE, Bierman BC, Durden LA. Far-Reaching Dispersal of Borrelia burgdorferi Sensu Lato-Infected Blacklegged Ticks by Migratory Songbirds in Canada. Healthcare (Basel) 2018; 6:E89. [PMID: 30044388 PMCID: PMC6164468 DOI: 10.3390/healthcare6030089] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 07/09/2018] [Accepted: 07/18/2018] [Indexed: 12/11/2022] Open
Abstract
Lyme disease has been documented in northern areas of Canada, but the source of the etiological bacterium, Borrelia burgdorferi sensu lato (Bbsl) has been in doubt. We collected 87 ticks from 44 songbirds during 2017, and 24 (39%) of 62 nymphs of the blacklegged tick, Ixodes scapularis, were positive for Bbsl. We provide the first report of Bbsl-infected, songbird-transported I. scapularis in Cape Breton, Nova Scotia; Newfoundland and Labrador; north-central Manitoba, and Alberta. Notably, we report the northernmost account of Bbsl-infected ticks parasitizing a bird in Canada. DNA extraction, PCR amplification, and DNA sequencing reveal that these Bbsl amplicons belong to Borrelia burgdorferi sensu stricto (Bbss), which is pathogenic to humans. Based on our findings, health-care providers should be aware that migratory songbirds widely disperse B. burgdorferi-infected I. scapularis in Canada's North, and local residents do not have to visit an endemic area to contract Lyme disease.
Collapse
Affiliation(s)
- John D Scott
- International Lyme and Associated Diseases Society, Bethesda, MD 20827, USA.
| | - Kerry L Clark
- Epidemiology & Environmental Health, University of North Florida, Jacksonville, FL 32224, USA.
| | - Janet E Foley
- Vector-borne Disease Epidemiology and Department of Veterinary Medicine, University of California, Davis, CA 95616, USA.
| | - Bradley C Bierman
- Epidemiology & Environmental Health, University of North Florida, Jacksonville, FL 32224, USA.
| | - Lance A Durden
- Department of Biology, Georgia Southern University, Statesboro, GA 30458, USA.
| |
Collapse
|
38
|
Human Babesiosis Caused by Babesia duncani Has Widespread Distribution across Canada. Healthcare (Basel) 2018; 6:healthcare6020049. [PMID: 29772759 PMCID: PMC6023460 DOI: 10.3390/healthcare6020049] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 05/14/2018] [Accepted: 05/15/2018] [Indexed: 11/26/2022] Open
Abstract
Human babesiosis caused by Babesia duncani is an emerging infectious disease in Canada. This malaria-like illness is brought about by a protozoan parasite infecting red blood cells. Currently, controversy surrounds which tick species are vectors of B. duncani. Since the availability of a serological or molecular test in Canada for B. duncani has been limited, we conducted a seven-year surveillance study (2011–2017) to ascertain the occurrence and geographic distribution of B. duncani infection country-wide. Surveillance case data for human B. duncani infections were collected by contacting physicians and naturopathic physicians in the United States and Canada who specialize in tick-borne diseases. During the seven-year period, 1119 cases were identified. The presence of B. duncani infections was widespread across Canada, with the highest occurrence in the Pacific coast region. Patients with human babesiosis may be asymptomatic, but as this parasitemia progresses, symptoms range from mild to fatal. Donors of blood, plasma, living tissues, and organs may unknowingly be infected with this piroplasm and are contributing to the spread of this zoonosis. Our data show that greater awareness of human babesiosis is needed in Canada, and the imminent threat to the security of the Canadian blood supply warrants further investigation. Based on our epidemiological findings, human babesiosis should be a nationally notifiable disease in Canada. Whenever a patient has a tick bite, health practitioners must watch for B. duncani infections, and include human babesiosis in their differential diagnosis.
Collapse
|