1
|
Sun X, Peng Y, Zhu J, Pan Y, Wang D, Meng L, Liu W, Yan C. Tissue-specific transcriptome analysis in Propsilocerus akamusi provides novel insights into the regulatory mechanisms under deltamethrin exposure. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2025; 56:101542. [PMID: 40413920 DOI: 10.1016/j.cbd.2025.101542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 05/19/2025] [Accepted: 05/19/2025] [Indexed: 05/27/2025]
Abstract
Deltamethrin is extensively utilized in agricultural pest control and its toxicological impacts on aquatic insects have drawn significant attention. However, the mechanisms of deltamethrin modulates gene expression framework in different tissues remain largely unknown. Herein, we selected non-biting midge, Propsilocerus akamusi (Diptera: Chironomidae), to investigate the gene repertoires in hemolymph, fat body, midgut and Malpighian tubules under the different concentrations of deltamethrin. Distinct tissue-specific gene expression patterns and pH levels were found in the response of P. akamusi to deltamethrin. Deltamethrin induced transcriptional perturbations in cuticle formation-, xenobiotic detoxification-, oxygen transport, and calcium signaling-related genes. The midgut and fat body mainly functioned on oxygen transportation, with the Malpighian tubules engaging in the calcium-ion transmembrane transport, and the overexpression of cuticular protein genes found in the hemolymph. In addition to the key role of detoxification genes, we inferred that deltamethrin perhaps activates calcium signaling pathways that protect against toxins found in the hemolymph and Malpighian tubules. Both organs exhibited upregulation of calcium/calmodulin-dependent protein Kinase II (CaMKII) and voltage-gated calcium channel (VGCC) genes, along with a rise in the pH level. Furthermore, we have compared the tertiary structures of the CaMKII genes in P. akamusi and identified CaMKII members in six other chironomids to explore the characteristics of these species that inhabit adverse environments. Our findings revealed the tissue-specific gene framework for P. akamsui, with particularly high expression detected in the hemolymph, which is instrumental in seeking target organs to develop effective biomarkers for water quality measurement.
Collapse
Affiliation(s)
- Xiaoya Sun
- Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, Tianjin Normal University, Tianjin, China; Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin, China
| | - Yuanyuan Peng
- Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, Tianjin Normal University, Tianjin, China; Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin, China
| | - Junhao Zhu
- Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, Tianjin Normal University, Tianjin, China; Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin, China
| | - Yahan Pan
- Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, Tianjin Normal University, Tianjin, China; Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin, China
| | - Deyu Wang
- Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, Tianjin Normal University, Tianjin, China; Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin, China
| | - Lingfei Meng
- Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, Tianjin Normal University, Tianjin, China; Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin, China
| | - Wenbin Liu
- Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, Tianjin Normal University, Tianjin, China; Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin, China.
| | - Chuncai Yan
- Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, Tianjin Normal University, Tianjin, China; Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin, China.
| |
Collapse
|
2
|
Guo H, Gao Y, Sun D, Liu X, Qiao J, Liu T, Su J. Molecular Insights into Pharmacological Mechanism of Insect Kir Channels and the Toxicity of Kir Inhibitors on Hemipteran Insects. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:6522-6536. [PMID: 40062477 DOI: 10.1021/acs.jafc.4c12183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Inwardly rectifying potassium channels (Kir) play a key role in regulating various physiological processes. However, the structural and pharmacological mechanisms of insect Kir channels remain unclear. In this study, we show that coexpression of different Kir subunits in the same tissue did not affect the rectification properties of strongly rectifying Kir. The Kir inhibitor VU041, along with the insecticide flonicamid and its metabolite flumetnicam, were tested for their inhibitory effects on the homotetrameric Kir1 and Kir2 channels. Both Kir1 and Kir2 channels from the two insect species showed similar pharmacological responses to VU041, flonicamid, and flumetnicam. However, VU041 demonstrated significantly higher inhibitory activity than both insecticides across all four Kir channels, while flumetnicam exhibited the weakest inhibition. Molecular docking analyses indicate that the binding site of VU041 is not the same as that of flonicamid, and flumetnicam. flonicamid, and flumetnicam have binding sites similar to the ATP binding sites in cytoplasmic region of human Kir6.2, whereas VU041 is located in the pore of the ion channel, and serves as a pore blocker that inhibits Kir channels. Mutation analysis confirmed the essential roles of these residues in channel function and binding affinity. Finally, the toxicities of the three inhibitors were evaluated in N. lugens and M. persicae. VU041, a potent inhibitor of the insect Kir channel, showed lower toxicity compared to the other two inhibitors, whereas flumethoxan, which is less active on the Kir1 channel, showed higher toxicity, probably related to the different bioavailability of the different compounds. These findings suggest that the potential of targeting Kir channels as insecticidal strategies requires further evaluation.
Collapse
Affiliation(s)
- Hailiang Guo
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuying Gao
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Dongmei Sun
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Xuan Liu
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Jizu Qiao
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Tengfei Liu
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Jianya Su
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
3
|
Andersen MK, Donini A, MacMillan HA. Measuring insect osmoregulation in vitro: A reference guide. Comp Biochem Physiol A Mol Integr Physiol 2025; 299:111751. [PMID: 39341353 DOI: 10.1016/j.cbpa.2024.111751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024]
Abstract
Osmoregulation is influenced by a wide variety of biotic and abiotic variables, and maintenance of systemic osmoregulatory homeostasis is critical to insect fitness. Because insects are so small, accurately quantifying renal organ function is technically challenging, and often requires specialized equipment. On top of this, nearly a century of toiling in the laboratory has led to a wide and still growing variety of methods that can be difficult for novice researchers to disentangle. Here, we provide a reference guide for the most used in vitro approaches in the study of insect osmoregulation, including the Ramsay assay, Ussing chamber, epithelial potential measurement, scanning ion-selective electrode technique, and hindgut assays. Along the way, we highlight the history of each methodological innovation.
Collapse
Affiliation(s)
| | - Andrew Donini
- Department of Biology, York University, Toronto M3J 1P3, Canada
| | - Heath A MacMillan
- Department of Biology and Institute of Biochemistry, Carleton University, Ottawa K1S 5B6, Canada.
| |
Collapse
|
4
|
Fitzmeyer EA, Dutt TS, Pinaud S, Graham B, Gallichotte EN, Hill JL, Campbell CL, Ogg H, Howick V, Lawniczak MKN, Nishimura EO, Merkling SH, Henao-Tamayo M, Ebel GD. A single-cell atlas of the Culex tarsalis midgut during West Nile virus infection. PLoS Pathog 2025; 21:e1012855. [PMID: 39869679 PMCID: PMC11793825 DOI: 10.1371/journal.ppat.1012855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 02/04/2025] [Accepted: 12/20/2024] [Indexed: 01/29/2025] Open
Abstract
The mosquito midgut functions as a key interface between pathogen and vector. However, studies of midgut physiology and virus infection dynamics are scarce, and in Culex tarsalis-an extremely efficient vector of West Nile virus (WNV)-nonexistent. We performed single-cell RNA sequencing on Cx. tarsalis midguts, defined multiple cell types, and determined whether specific cell types are more permissive to WNV infection. We identified 20 cell states comprising 8 distinct cell types, consistent with existing descriptions of Drosophila and Aedes aegypti midgut physiology. Most midgut cell populations were permissive to WNV infection. However, there were higher levels of WNV RNA (vRNA) in enteroendocrine cells (EE), suggesting enhanced replication in this population. In contrast, proliferating intestinal stem cells (ISC) had the lowest levels of vRNA, a finding consistent with studies suggesting ISC proliferation in the midgut is involved in infection control. ISCs were also found to have a strong transcriptional response to WNV infection; genes involved in ribosome structure and biogenesis, and translation were significantly downregulated in WNV-infected ISC populations. Notably, we did not detect significant WNV-infection induced upregulation of canonical mosquito antiviral immune genes (e.g., AGO2, R2D2, etc.) at the whole-midgut level. Rather, we observed a significant positive correlation between immune gene expression levels and vRNA load in individual cells, suggesting that within midgut cells, high levels of vRNA may trigger antiviral responses. Our findings establish a Cx. tarsalis midgut cell atlas, and provide insight into midgut infection dynamics of WNV by characterizing cell-type specific enhancement/restriction of, and immune response to, infection at the single-cell level.
Collapse
Affiliation(s)
- Emily A. Fitzmeyer
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Taru S. Dutt
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Silvain Pinaud
- MIVEGEC, Université de Montpellier, IRD, CNRS, Montpellier, France
| | - Barb Graham
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Emily N. Gallichotte
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Jessica L. Hill
- Department of Biochemistry and Molecular Biology, College of Natural Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Corey L. Campbell
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Hunter Ogg
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Virginia Howick
- School of Biodiversity, One Health and Veterinary Medicine, Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, UK
| | | | - Erin Osborne Nishimura
- Department of Biochemistry and Molecular Biology, College of Natural Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Sarah Hélène Merkling
- Institut Pasteur, Université Paris Cité, CNRS UMR2000, Insect-Virus Interactions Unit, Paris, France
| | - Marcela Henao-Tamayo
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Gregory D. Ebel
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
5
|
Jones CM, Hughes GL, Coleman S, Fellows R, Quilliam RS. A perspective on the impacts of microplastics on mosquito biology and their vectorial capacity. MEDICAL AND VETERINARY ENTOMOLOGY 2024; 38:138-147. [PMID: 38469658 DOI: 10.1111/mve.12710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 02/10/2024] [Indexed: 03/13/2024]
Abstract
Microplastics (plastic particles <5 mm) permeate aquatic and terrestrial ecosystems and constitute a hazard to animal life. Although much research has been conducted on the effects of microplastics on marine and benthic organisms, less consideration has been given to insects, especially those adapted to urban environments. Here, we provide a perspective on the potential consequences of exposure to microplastics within typical larval habitat on mosquito biology. Mosquitoes represent an ideal organism in which to explore the biological effects of microplastics on terrestrial insects, not least because of their importance as an infectious disease vector. Drawing on evidence from other organisms and knowledge of the mosquito life cycle, we summarise some of the more plausible impacts of microplastics including physiological, ecotoxicological and immunological responses. We conclude that although there remains little experimental evidence demonstrating any adverse effect on mosquito biology or pathogen transmission, significant knowledge gaps remain, and there is now a need to quantify the effects that microplastic pollution could have on such an important disease vector.
Collapse
Affiliation(s)
- Christopher M Jones
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Grant L Hughes
- Departments of Vector Biology and Tropical Disease Biology, Centre for Neglected Tropical Disease, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Sylvester Coleman
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Rosie Fellows
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, UK
| | - Richard S Quilliam
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, UK
| |
Collapse
|
6
|
Picinic B, Paluzzi JPV, Donini A. Protein localization of aquaporins in the adult female disease vector mosquito, Aedes aegypti. FRONTIERS IN INSECT SCIENCE 2024; 4:1365651. [PMID: 38699443 PMCID: PMC11064791 DOI: 10.3389/finsc.2024.1365651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/25/2024] [Indexed: 05/05/2024]
Abstract
The female Aedes aegypti mosquito is a vector for several arboviral diseases, due to their blood feeding behavior and their association with urban communities. While ion transport in Ae. aegypti has been studied, much less is known about mechanisms of water transport. Rapid water and ion excretion occurs in the adult female mosquito post blood meal and involves a set of organs including the midgut, Malpighian tubules (MTs), and hindgut. The MTs are responsible for the formation of primary urine and are considered the most important site for active transport of ions. Within the cells of the MTs, along with various ion transporters, there are aquaporin water channels that aid in the transport of water across the tubule cell membrane. Six aquaporin genes have been molecularly identified in Ae. aegypti (AQP1-6) and found to be responsible for the transport of water and in some cases, small solutes such as glycerol. In this study, we used immunohistochemistry to localize AaAQP1, 2, 4, 5, and 6 in the adult female Ae. aegypti, in non-blood fed and post blood feeding (0.5 and 24hr) conditions. We further examined the main water transporting aquaporin, AaAQP1, using western blotting to determine protein abundance changes in isolated MTs pre- and post-blood feeding. Using fluorescence in situ hybridization, aqp1 mRNA was found exclusively in the principal cells of female MTs. Finally, we used immunogold staining with transmission electron microscopy to determine subcellular localization of AaAQP1 in the Malpighian tubules under non-blood fed conditions. Interestingly, AaAQP1 was found to be predominantly in the principal cells of the MTs, dispersed throughout the brush border; however, there was also evidence of some AaAQP1 localization in the stellate cells of the MTs.
Collapse
Affiliation(s)
| | | | - Andrew Donini
- Department of Biology, York University, Toronto, ON, Canada
| |
Collapse
|
7
|
Sourisseau F, Chahine C, Pouliot V, Cens T, Charnet P, Chahine M. Cloning, functional expression, and pharmacological characterization of inwardly rectifying potassium channels (Kir) from Apis mellifera. Sci Rep 2024; 14:7834. [PMID: 38570597 PMCID: PMC10991380 DOI: 10.1038/s41598-024-58234-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 03/26/2024] [Indexed: 04/05/2024] Open
Abstract
Potassium channels belong to the super family of ion channels and play a fundamental role in cell excitability. Kir channels are potassium channels with an inwardly rectifying property. They play a role in setting the resting membrane potential of many excitable cells including neurons. Although putative Kir channel family genes can be found in the Apis mellifera genome, their functional expression, biophysical properties, and sensitivity to small molecules with insecticidal activity remain to be investigated. We cloned six Kir channel isoforms from Apis mellifera that derive from two Kir genes, AmKir1 and AmKir2, which are present in the Apis mellifera genome. We studied the tissue distribution, the electrophysiological and pharmacological characteristics of three isoforms that expressed functional currents (AmKir1.1, AmKir2.2, and AmKir2.3). AmKir1.1, AmKir2.2, and AmKir2.3 isoforms exhibited distinct characteristics when expressed in Xenopus oocytes. AmKir1.1 exhibited the largest potassium currents and was impermeable to cesium whereas AmKir2.2 and AmKir2.3 exhibited smaller currents but allowed cesium to permeate. AmKir1 exhibited faster opening kinetics than AmKir2. Pharmacological experiments revealed that both AmKir1.1 and AmKir2.2 are blocked by the divalent ion barium, with IC50 values of 10-5 and 10-6 M, respectively. The concentrations of VU041, a small molecule with insecticidal properties required to achieve a 50% current blockade for all three channels were higher than those needed to block Kir channels in other arthropods, such as the aphid Aphis gossypii and the mosquito Aedes aegypti. From this, we conclude that Apis mellifera AmKir channels exhibit lower sensitivity to VU041.
Collapse
Affiliation(s)
- Fabien Sourisseau
- CERVO Brain Research Centre, 2601, chemin de la Canardière, Quebec City, QC, G1J 2G3, Canada
| | - Chaimaa Chahine
- CERVO Brain Research Centre, 2601, chemin de la Canardière, Quebec City, QC, G1J 2G3, Canada
| | - Valérie Pouliot
- CERVO Brain Research Centre, 2601, chemin de la Canardière, Quebec City, QC, G1J 2G3, Canada
| | - Thierry Cens
- Institut des Biomolécules Max Mousseron (IBMM), CNRS UMR 5247, 1919 Route de Mende, Montpellier, France
| | - Pierre Charnet
- Institut des Biomolécules Max Mousseron (IBMM), CNRS UMR 5247, 1919 Route de Mende, Montpellier, France
| | - Mohamed Chahine
- CERVO Brain Research Centre, 2601, chemin de la Canardière, Quebec City, QC, G1J 2G3, Canada.
- Department of Medicine, Faculty of Medicine, Université Laval, Quebec City, QC, Canada.
| |
Collapse
|
8
|
Farrell S, Dates J, Ramirez N, Hausknecht-Buss H, Kolosov D. Voltage-gated ion channels are expressed in the Malpighian tubules and anal papillae of the yellow fever mosquito (Aedes aegypti), and may regulate ion transport during salt and water imbalance. J Exp Biol 2024; 227:jeb246486. [PMID: 38197515 PMCID: PMC10912814 DOI: 10.1242/jeb.246486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 12/22/2023] [Indexed: 01/11/2024]
Abstract
Vectors of infectious disease include several species of Aedes mosquitoes. The life cycle of Aedes aegypti, the yellow fever mosquito, consists of a terrestrial adult and an aquatic larval life stage. Developing in coastal waters can expose larvae to fluctuating salinity, causing salt and water imbalance, which is addressed by two prime osmoregulatory organs - the Malpighian tubules (MTs) and anal papillae (AP). Voltage-gated ion channels (VGICs) have recently been implicated in the regulation of ion transport in the osmoregulatory epithelia of insects. In the current study, we: (i) generated MT transcriptomes of freshwater-acclimated and brackish water-exposed larvae of Ae. aegypti, (ii) detected expression of several voltage-gated Ca2+, K+, Na+ and non-ion-selective ion channels in the MTs and AP using transcriptomics, PCR and gel electrophoresis, (iii) demonstrated that mRNA abundance of many altered significantly following brackish water exposure, and (iv) immunolocalized CaV1, NALCN, TRP/Painless and KCNH8 in the MTs and AP of larvae using custom-made antibodies. We found CaV1 to be expressed in the apical membrane of MTs of both larvae and adults, and its inhibition to alter membrane potentials of this osmoregulatory epithelium. Our data demonstrate that multiple VGICs are expressed in osmoregulatory epithelia of Ae. aegypti and may play an important role in the autonomous regulation of ion transport.
Collapse
Affiliation(s)
- Serena Farrell
- Department of Biological Sciences, California State University San Marcos, 333 S. Twin Oaks Valley Road, San Marcos, CA 92096, USA
| | - Jocelyne Dates
- Department of Biological Sciences, California State University San Marcos, 333 S. Twin Oaks Valley Road, San Marcos, CA 92096, USA
| | - Nancy Ramirez
- Department of Biological Sciences, California State University San Marcos, 333 S. Twin Oaks Valley Road, San Marcos, CA 92096, USA
| | - Hannah Hausknecht-Buss
- Department of Biological Sciences, California State University San Marcos, 333 S. Twin Oaks Valley Road, San Marcos, CA 92096, USA
| | - Dennis Kolosov
- Department of Biological Sciences, California State University San Marcos, 333 S. Twin Oaks Valley Road, San Marcos, CA 92096, USA
| |
Collapse
|
9
|
Gil MF, Tano de la Hoz MF, Fassolari M, Battaglia ME, Berón CM. Neochloris aquatica induces larval mortality, molting defects, and unstable flightless adults in the Asian tiger mosquito. J Invertebr Pathol 2024; 202:108041. [PMID: 38092085 DOI: 10.1016/j.jip.2023.108041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/05/2023] [Accepted: 12/08/2023] [Indexed: 12/18/2023]
Abstract
The Asian tiger mosquito, Aedes albopictus, is a highly invasive and aggressive species capable of transmitting a large number of etiological agents of medical and veterinary importance, posing a high risk for the transmission of emerging viruses between animals and humans. In this work, we evaluated the mosquitocidal activity of Neochloris aquatica against A. albopictus throughout its development and analyzed whether this effect was potentiated when the microalga was cultivated under stress conditions due to nutrient deprivation. Our results suggest that N. aquatica produces metabolites that have negative effects on these insects, including larval mortality, interruption of pupal development, and incomplete emergence of adults when fed on microalgae in the larval stages. When microalgae were cultured under stress conditions, an increase in molting defects was recorded, and the number of healthy adults emerged drastically decreased. Histological studies revealed severe signs of total disintegration of different tissues and organs in the thorax and abdomen regions. The muscles and fat bodies in the midgut and foregut were severely distorted. In particular, larval intestinal tissue damage included vacuolization of the cytoplasm, destruction of brush border microvilli, and dilation of the intercellular space, which are distinctive morphological characteristics of apoptotic cells. Evidence suggests that N. aquatica produces metabolites with mosquitocidal effects that affect development and, therefore, the ability to vector etiological agents of medical and veterinary importance.
Collapse
Affiliation(s)
- María Florencia Gil
- Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC - CONICET), Fundación para Investigaciones Biológicas Aplicadas (FIBA), Mar del Plata, Argentina; Departamento de Biología, Facultad de Ciencias Exactas y Naturales (UNMdP), Argentina
| | - María Florencia Tano de la Hoz
- Instituto de Investigaciones en Ciencia y Tecnología de Materiales (INTEMA - CONICET), Universidad Nacional de Mar del Plata (UNMdP), Argentina; Departamento de Biología, Facultad de Ciencias Exactas y Naturales (UNMdP), Argentina
| | - Marisol Fassolari
- Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC - CONICET), Fundación para Investigaciones Biológicas Aplicadas (FIBA), Mar del Plata, Argentina
| | - Marina E Battaglia
- Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC - CONICET), Fundación para Investigaciones Biológicas Aplicadas (FIBA), Mar del Plata, Argentina.
| | - Corina M Berón
- Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC - CONICET), Fundación para Investigaciones Biológicas Aplicadas (FIBA), Mar del Plata, Argentina; Departamento de Biología, Facultad de Ciencias Exactas y Naturales (UNMdP), Argentina.
| |
Collapse
|
10
|
Halberg KV, Denholm B. Mechanisms of Systemic Osmoregulation in Insects. ANNUAL REVIEW OF ENTOMOLOGY 2024; 69:415-438. [PMID: 37758224 DOI: 10.1146/annurev-ento-040323-021222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Water is essential to life. Terrestrial insects lose water by evaporation from the body surface and respiratory surfaces, as well as in the excretory products, posing a challenge made more acute by their high surface-to-volume ratio. These losses must be kept to a minimum and be offset by water gained from other sources. By contrast, insects such as the blood-sucking bug Rhodnius prolixus consume up to 10 times their body weight in a single blood meal, necessitating rapid expulsion of excess water and ions. How do insects manage their ion and water budgets? A century of study has revealed a great deal about the organ systems that insects use to maintain their ion and water balance and their regulation. Traditionally, a taxonomically wide range of species were studied, whereas more recent research has focused on model organisms to leverage the power of the molecular genetic approach. Key advances in new technologies have become available for a wider range of species in the past decade. We document how these approaches have already begun to inform our understanding of the diversity and conservation of insect systemic osmoregulation. We advocate that these technologies be combined with traditional approaches to study a broader range of nonmodel species to gain a comprehensive overview of the mechanism underpinning systemic osmoregulation in the most species-rich group of animals on earth, the insects.
Collapse
Affiliation(s)
- Kenneth Veland Halberg
- Section for Cell and Neurobiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark;
| | - Barry Denholm
- Department of Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
11
|
Croce AC, Garbelli A, Moyano A, Soldano S, Tejeda-Guzmán C, Missirlis F, Scolari F. Developmental and Nutritional Dynamics of Malpighian Tubule Autofluorescence in the Asian Tiger Mosquito Aedes albopictus. Int J Mol Sci 2023; 25:245. [PMID: 38203417 PMCID: PMC10778832 DOI: 10.3390/ijms25010245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/19/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
Malpighian tubules (MTs) are arthropod excretory organs crucial for the osmoregulation, detoxification and excretion of xenobiotics and metabolic wastes, which include tryptophan degradation products along the kynurenine (KYN) pathway. Specifically, the toxic intermediate 3-hydroxy kynurenine (3-HK) is metabolized through transamination to xanthurenic acid or in the synthesis of ommochrome pigments. Early investigations in Drosophila larval fat bodies revealed an intracellular autofluorescence (AF) that depended on tryptophan administration. Subsequent observations documented AF changes in the MTs of Drosophila eye-color mutants genetically affecting the conversion of tryptophan to KYN or 3-HK and the intracellular availability of zinc ions. In the present study, the AF properties of the MTs in the Asian tiger mosquito, Aedes albopictus, were characterized in different stages of the insect's life cycle, tryptophan-administered larvae and blood-fed adult females. Confocal imaging and microspectroscopy showed AF changes in the distribution of intracellular, brilliant granules and in the emission spectral shape and amplitude between the proximal and distal segments of MTs across the different samples. The findings suggest AF can serve as a promising marker for investigating the functional status of MTs in response to metabolic alterations, contributing to the use of MTs as a potential research model in biomedicine.
Collapse
Affiliation(s)
- Anna Cleta Croce
- Institute of Molecular Genetics IGM CNR “Luigi Luca Cavalli-Sforza”, Via Abbiategrasso 207, 27100 Pavia, Italy; (A.G.); (A.M.); (S.S.)
- Department of Biology and Biotechnology, University of Pavia, Via Ferrata 9, 27100 Pavia, Italy
| | - Anna Garbelli
- Institute of Molecular Genetics IGM CNR “Luigi Luca Cavalli-Sforza”, Via Abbiategrasso 207, 27100 Pavia, Italy; (A.G.); (A.M.); (S.S.)
| | - Andrea Moyano
- Institute of Molecular Genetics IGM CNR “Luigi Luca Cavalli-Sforza”, Via Abbiategrasso 207, 27100 Pavia, Italy; (A.G.); (A.M.); (S.S.)
- Department of Biology and Biotechnology, University of Pavia, Via Ferrata 9, 27100 Pavia, Italy
| | - Sara Soldano
- Institute of Molecular Genetics IGM CNR “Luigi Luca Cavalli-Sforza”, Via Abbiategrasso 207, 27100 Pavia, Italy; (A.G.); (A.M.); (S.S.)
- Department of Biology and Biotechnology, University of Pavia, Via Ferrata 9, 27100 Pavia, Italy
| | - Carlos Tejeda-Guzmán
- Department of Physiology, Biophysics and Neuroscience, Cinvestav, Mexico City 07360, Mexico; (C.T.-G.); (F.M.)
| | - Fanis Missirlis
- Department of Physiology, Biophysics and Neuroscience, Cinvestav, Mexico City 07360, Mexico; (C.T.-G.); (F.M.)
| | - Francesca Scolari
- Institute of Molecular Genetics IGM CNR “Luigi Luca Cavalli-Sforza”, Via Abbiategrasso 207, 27100 Pavia, Italy; (A.G.); (A.M.); (S.S.)
- Department of Biology and Biotechnology, University of Pavia, Via Ferrata 9, 27100 Pavia, Italy
| |
Collapse
|
12
|
Zhu J, Li Z, Zhang M, Qin W, Park Y, He Y. Transcriptome of Excretory Organs Revealed Potential Targets for the Control of Nilaparvata lugens. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:17733-17741. [PMID: 37934932 DOI: 10.1021/acs.jafc.3c05276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
The excretory organs of insects offer potential physiological targets for insect control. In this study, RNA-seq was utilized to identify a set of transporter and receptor genes enriched in the excretory organs of the brown planthopper (BPH), Nilaparvata lugens, which is considered the most important phloem-feeding insect pest in rice. A total of 1565 and 1084 transcripts were upregulated in the excretory organs, Malpighian tubules, and hindgut, respectively, compared to the midgut, which was enriched for transport activity and oxidoreductase activity. Eight potentially important genes were selected for the exploration of biological function, including one sodium/potassium-ATPase (NKA) subunit (ATP1A1), five aquaporins (AQPs), and two neuropeptide receptors. RNA interference (RNAi) assays showed that the knockdown of ATP1A1 and two AQP genes in BPH resulted in significant lethal phenotypes (corrected mortalities = 42.9-63.6%, 7 days after injection) and significantly reduced honeydew amounts. Our findings suggest that several genes enriched in excretory organs were important for BPH survival, which could be new insect control targets.
Collapse
Affiliation(s)
- Jinghua Zhu
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Zengxin Li
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Meng Zhang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Weiwei Qin
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yoonseong Park
- Department of Entomology, Kansas State University, Manhattan, Kansas 66506, United States
| | - Yueping He
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
13
|
Ricardo Dos Santos Correia P, Duarte de Freitas J, André Zeoly L, Silva Porto R, José da Paz Lima D. Discovery and structure-activity relationship of Morita-Baylis-Hillman adducts as larvicides against dengue mosquito vector, Aedes aegypti (Diptera: Culicidae). Bioorg Med Chem 2023; 90:117315. [PMID: 37253304 DOI: 10.1016/j.bmc.2023.117315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/24/2023] [Accepted: 05/02/2023] [Indexed: 06/01/2023]
Abstract
Neglected tropical diseases (NTDs) have become a significant public health problem worldwide, notably the life-threatening dengue hemorrhagic fever borne by the Aedes aegypti mosquito. Thus, mosquito vector control measures remain essential in public health vector surveillance and control to combat Aedes-borne infections. Therefore, a series of MBH adducts were synthesized and assessed towards the fourth instar mosquito larvae, Aedes aegypti, along with the preliminary structure-activity relationship (SAR). Noteworthy, this compound class might be synthetized by an efficient eco-friendly synthesismethod and a rapid route for the synthesis of commercial larvicide through a single synthetic step. The bioassays showed that this compound class is a promising larvicide to control Aedes aegypti mosquito larvae, mainly 3g, with an LC50 of 41.35 µg/mL, which was higher than evaluated positive controls. Nevertheless, it is a viable larvicidalhit candidate for further hit-to-leadproperties optimization of its biphenyl backbone scaffold with enhanced insecticidalbioactivity. Moreover, scanning electron microscopy analysis suggested a disruption of the osmoregulatory/ionoregulatory functions by the complete deterioration of the terminal exoskeleton hindgut and anal papillae. Therefore, this new study shows the larvicidal efficacy of the tested compounds against the Aedes aegypti larvae.
Collapse
Affiliation(s)
- Paulo Ricardo Dos Santos Correia
- Institute of Chemistry and Biotechnology, Federal University of Alagoas, Avenida Lourival Melo Mota, Maceió, Alagoas 57072-970, Brazil
| | | | - Lucas André Zeoly
- Department of Organic Chemistry, Institute of Chemistry, University of Campinas, PO Box 6154, 13083-970 Campinas, São Paulo, Brazil
| | - Ricardo Silva Porto
- Institute of Chemistry and Biotechnology, Federal University of Alagoas, Avenida Lourival Melo Mota, Maceió, Alagoas 57072-970, Brazil
| | - Dimas José da Paz Lima
- Institute of Chemistry and Biotechnology, Federal University of Alagoas, Avenida Lourival Melo Mota, Maceió, Alagoas 57072-970, Brazil.
| |
Collapse
|
14
|
Orchard I, Al-Dailami AN, Leyria J, Lange AB. Malpighian tubules of Rhodnius prolixus: More than post-prandial diuresis. FRONTIERS IN INSECT SCIENCE 2023; 3:1167889. [PMID: 38469518 PMCID: PMC10926411 DOI: 10.3389/finsc.2023.1167889] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 03/14/2023] [Indexed: 03/13/2024]
Abstract
Rhodnius prolixus, a major vector of Chagas disease, may be considered the model upon which the foundations of insect physiology and biochemistry were built. It is an obligate blood feeder in which the blood meal triggers growth, development and reproduction. The blood meal also triggers a post-prandial diuresis to maintain osmotic homeostasis. In R. prolixus, as with other insects, the Malpighian tubules play a critical role in this diuresis, and much has been learned about diuresis in R. prolixus, and in other model insects. But the post-genomic era has brought new insights, identifying functions quite apart from diuresis for Malpighian tubules. Indeed, microarrays, transcriptomes, and proteomics have revealed the major roles that Malpighian tubules play in immunity, detoxification, pesticide resistance, and in tolerance to overall stress. This is particularly relevant to R. prolixus since gorging on blood creates several challenges in addition to osmotic balance. Xenobiotics may be present in the blood or toxins may be produced by metabolism of blood; and these must be neutralized and excreted. These processes have not been well described at the molecular level for Malpighian tubules of R. prolixus. This paper will review the involvement of Malpighian tubules in immunity and detoxification, identifying new aspects for Malpighian tubule physiology of R. prolixus by virtue of a transcriptome analysis. The transcriptome analysis indicates the potential of Malpighian tubules of R. prolixus to mount a robust innate immune response, and to contribute to antioxidant production and heme detoxification.
Collapse
Affiliation(s)
- Ian Orchard
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada
| | | | | | | |
Collapse
|
15
|
Hellhammer F, Heinig-Hartberger M, Neuhof P, Teitge F, Jung-Schroers V, Becker SC. Impact of different diets on the survival, pupation, and adult emergence of Culex pipiens biotype molestus larvae, and infectability with the insect-specific Culex Y virus. FRONTIERS IN TROPICAL DISEASES 2023. [DOI: 10.3389/fitd.2023.1107857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023] Open
Abstract
The current rapidly advancing climate change will affect the transmission of arthropod-borne viruses (arboviruses), mainly through changes in vector populations. Mosquitos of the Culex pipiens complex play a particularly prominent role in virus transmission in central Europe. Factors that contribute to the vector population density and the ability of those vectors to transmit viral pathogens (vector competence) can include nutrition during the larval stages. To test the influence of larval diet on larval survival and adult emergence, as well as vector competence, several diets varying in their nutritional composition were compared using a newly established assay. We tested the effects of 17 diets or diet combinations on the fitness of third-instar larvae of Culex pipiens biotype molestus. Larval survival rates at day 7 ranged from 43.33% to 94.44%. We then selected 3 of the 17 diets (Tetra Pleco, as the routine feed; JBL NovoTab, as the significantly inferior feed; and KG, as the significantly superior feed) and tested the effect of these diets, in combination with Culex Y virus infection, on larval survival rate. All Culex Y virus-infected larvae showed significantly lower larval survival, as well as low pupation and adult emergence rates. However, none of the tested diets in our study had a significant impact on larval survival in combination with viral infection. Furthermore, we were able to correlate several water quality parameters, such as phosphate, nitrate, and ammonium concentration, electrical conductivity, and low O2 saturations, with reduced larval survival. Thus, we were able to demonstrate that Culex Y virus could be a suitable agent to reduce mosquito population density by reducing larval density, pupation rate, and adult emergence rate. When combined with certain water quality parameters, these effects can be further enhanced, leading to a reduced mosquito population density, and reduce the cycle of transmission. Furthermore, we demonstrate, for the first time, the infection of larvae of the mosquito Culex pipiens biotype molestus with a viral pathogen.
Collapse
|
16
|
Conway MJ, Haslitt DP, Swarts BM. Targeting Aedes aegypti Metabolism with Next-Generation Insecticides. Viruses 2023; 15:469. [PMID: 36851683 PMCID: PMC9964334 DOI: 10.3390/v15020469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Aedes aegypti is the primary vector of dengue virus (DENV), zika virus (ZIKV), and other emerging infectious diseases of concern. A key disease mitigation strategy is vector control, which relies heavily on the use of insecticides. The development of insecticide resistance poses a major threat to public health worldwide. Unfortunately, there is a limited number of chemical compounds available for vector control, and these chemicals can have off-target effects that harm invertebrate and vertebrate species. Fundamental basic science research is needed to identify novel molecular targets that can be exploited for vector control. Next-generation insecticides will have unique mechanisms of action that can be used in combination to limit selection of insecticide resistance. Further, molecular targets will be species-specific and limit off-target effects. Studies have shown that mosquitoes rely on key nutrients during multiple life cycle stages. Targeting metabolic pathways is a promising direction that can deprive mosquitoes of nutrition and interfere with development. Metabolic pathways are also important for the virus life cycle. Here, we review studies that reveal the importance of dietary and stored nutrients during mosquito development and infection and suggest strategies to identify next-generation insecticides with a focus on trehalase inhibitors.
Collapse
Affiliation(s)
- Michael J. Conway
- Foundational Sciences, Central Michigan University College of Medicine, Mount Pleasant, MI 48859, USA
| | - Douglas P. Haslitt
- Foundational Sciences, Central Michigan University College of Medicine, Mount Pleasant, MI 48859, USA
| | - Benjamin M. Swarts
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, MI 48859, USA
- Biochemistry, Cell, and Molecular Biology Graduate Programs, Central Michigan University, Mount Pleasant, MI 48859, USA
| |
Collapse
|
17
|
Kandel Y, Pinch M, Lamsal M, Martinez N, Hansen IA. Exploratory phosphoproteomics profiling of Aedes aegypti Malpighian tubules during blood meal processing reveals dramatic transition in function. PLoS One 2022; 17:e0271248. [PMID: 35802606 PMCID: PMC9269769 DOI: 10.1371/journal.pone.0271248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/24/2022] [Indexed: 11/20/2022] Open
Abstract
Malpighian tubules, the renal organs of mosquitoes, facilitate the rapid dehydration of blood meals through aquaporin-mediated osmosis. We performed phosphoproteomics analysis of three Malpighian tubule protein-libraries (1000 tubules/sample) from unfed female mosquitoes as well as one and 24 hours after a blood meal. We identified 4663 putative phosphorylation sites in 1955 different proteins. Our exploratory dataset reveals blood meal-induced changes in phosphorylation patterns in many subunits of V-ATPase, proteins of the target of rapamycin signaling pathway, vesicle-mediated protein transport proteins, proteins involved in monocarboxylate transport, and aquaporins. Our phosphoproteomics data suggest the involvement of a variety of new pathways including nutrient-signaling, membrane protein shuttling, and paracellular water flow in the regulation of urine excretion. Our results support a model in which aquaporin channels translocate from intracellular vesicles to the cell membrane of stellate cells and the brush border membrane of principal cells upon blood feeding.
Collapse
Affiliation(s)
- Yashoda Kandel
- Department of Biology, New Mexico State University, Las Cruces, New Mexico, United States of America
| | - Matthew Pinch
- Department of Biology, New Mexico State University, Las Cruces, New Mexico, United States of America
| | - Mahesh Lamsal
- Department of Biology, New Mexico State University, Las Cruces, New Mexico, United States of America
| | - Nathan Martinez
- Department of Biology, New Mexico State University, Las Cruces, New Mexico, United States of America
| | - Immo A. Hansen
- Department of Biology, New Mexico State University, Las Cruces, New Mexico, United States of America
- Institute of Applied Biosciences, New Mexico State University, Las Cruces, New Mexico, United States of America
| |
Collapse
|
18
|
Das De T, Sharma P, Tevatiya S, Chauhan C, Kumari S, Yadav P, Singla D, Srivastava V, Rani J, Hasija Y, Pandey KC, Kajla M, Dixit R. Bidirectional Microbiome-Gut-Brain-Axis Communication Influences Metabolic Switch-Associated Responses in the Mosquito Anopheles culicifacies. Cells 2022; 11:1798. [PMID: 35681493 PMCID: PMC9180301 DOI: 10.3390/cells11111798] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/20/2022] [Accepted: 05/24/2022] [Indexed: 02/05/2023] Open
Abstract
The periodic ingestion of a protein-rich blood meal by adult female mosquitoes causes a drastic metabolic change in their innate physiological status, which is referred to as a 'metabolic switch'. While understanding the neural circuits for host-seeking is modestly attended, how the gut 'metabolic switch' modulates brain functions, and resilience to physiological homeostasis, remains unexplored. Here, through a comparative brain RNA-Seq study, we demonstrate that the protein-rich diet induces the expression of brain transcripts related to mitochondrial function and energy metabolism, possibly causing a shift in the brain's engagement to manage organismal homeostasis. A dynamic mRNA expression pattern of neuro-signaling and neuro-modulatory genes in both the gut and brain likely establishes an active gut-brain communication. The disruption of this communication through decapitation does not affect the modulation of the neuro-modulator receptor genes in the gut. In parallel, an unusual and paramount shift in the level of neurotransmitters (NTs), from the brain to the gut after blood feeding, further supports the idea of the gut's ability to serve as a 'second brain'. After blood-feeding, a moderate enrichment of the gut microbial population, and altered immunity in the gut of histamine receptor-silenced mosquitoes, provide initial evidence that the gut-microbiome plays a crucial role in gut-brain-axis communication. Finally, a comparative metagenomics evaluation of the gut microbiome highlighted that blood-feeding enriches the family members of the Morganellaceae and Pseudomonadaceae bacterial communities. The notable observation of a rapid proliferation of Pseudomonas bacterial sp. and tryptophan enrichment in the gut correlates with the suppression of appetite after blood-feeding. Additionally, altered NTs dynamics of naïve and aseptic mosquitoes provide further evidence that gut-endosymbionts are key modulators for the synthesis of major neuroactive molecules. Our data establish a new conceptual understanding of microbiome-gut-brain-axis communication in mosquitoes.
Collapse
Affiliation(s)
- Tanwee Das De
- Laboratory of Host-Parasite Interaction Studies, ICMR-National Institute of Malaria Research, Sector-8, Dwarka, Delhi 110077, India; (T.D.D.); (P.S.); (S.T.); (C.C.); (S.K.); (P.Y.); (D.S.); (V.S.); (J.R.); (K.C.P.); (M.K.)
- Department of Biology, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune 411008, India
| | - Punita Sharma
- Laboratory of Host-Parasite Interaction Studies, ICMR-National Institute of Malaria Research, Sector-8, Dwarka, Delhi 110077, India; (T.D.D.); (P.S.); (S.T.); (C.C.); (S.K.); (P.Y.); (D.S.); (V.S.); (J.R.); (K.C.P.); (M.K.)
| | - Sanjay Tevatiya
- Laboratory of Host-Parasite Interaction Studies, ICMR-National Institute of Malaria Research, Sector-8, Dwarka, Delhi 110077, India; (T.D.D.); (P.S.); (S.T.); (C.C.); (S.K.); (P.Y.); (D.S.); (V.S.); (J.R.); (K.C.P.); (M.K.)
| | - Charu Chauhan
- Laboratory of Host-Parasite Interaction Studies, ICMR-National Institute of Malaria Research, Sector-8, Dwarka, Delhi 110077, India; (T.D.D.); (P.S.); (S.T.); (C.C.); (S.K.); (P.Y.); (D.S.); (V.S.); (J.R.); (K.C.P.); (M.K.)
| | - Seena Kumari
- Laboratory of Host-Parasite Interaction Studies, ICMR-National Institute of Malaria Research, Sector-8, Dwarka, Delhi 110077, India; (T.D.D.); (P.S.); (S.T.); (C.C.); (S.K.); (P.Y.); (D.S.); (V.S.); (J.R.); (K.C.P.); (M.K.)
| | - Pooja Yadav
- Laboratory of Host-Parasite Interaction Studies, ICMR-National Institute of Malaria Research, Sector-8, Dwarka, Delhi 110077, India; (T.D.D.); (P.S.); (S.T.); (C.C.); (S.K.); (P.Y.); (D.S.); (V.S.); (J.R.); (K.C.P.); (M.K.)
| | - Deepak Singla
- Laboratory of Host-Parasite Interaction Studies, ICMR-National Institute of Malaria Research, Sector-8, Dwarka, Delhi 110077, India; (T.D.D.); (P.S.); (S.T.); (C.C.); (S.K.); (P.Y.); (D.S.); (V.S.); (J.R.); (K.C.P.); (M.K.)
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana 141004, India
| | - Vartika Srivastava
- Laboratory of Host-Parasite Interaction Studies, ICMR-National Institute of Malaria Research, Sector-8, Dwarka, Delhi 110077, India; (T.D.D.); (P.S.); (S.T.); (C.C.); (S.K.); (P.Y.); (D.S.); (V.S.); (J.R.); (K.C.P.); (M.K.)
| | - Jyoti Rani
- Laboratory of Host-Parasite Interaction Studies, ICMR-National Institute of Malaria Research, Sector-8, Dwarka, Delhi 110077, India; (T.D.D.); (P.S.); (S.T.); (C.C.); (S.K.); (P.Y.); (D.S.); (V.S.); (J.R.); (K.C.P.); (M.K.)
| | - Yasha Hasija
- Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Main Bawana Road, Delhi 110042, India;
| | - Kailash C. Pandey
- Laboratory of Host-Parasite Interaction Studies, ICMR-National Institute of Malaria Research, Sector-8, Dwarka, Delhi 110077, India; (T.D.D.); (P.S.); (S.T.); (C.C.); (S.K.); (P.Y.); (D.S.); (V.S.); (J.R.); (K.C.P.); (M.K.)
| | - Mayur Kajla
- Laboratory of Host-Parasite Interaction Studies, ICMR-National Institute of Malaria Research, Sector-8, Dwarka, Delhi 110077, India; (T.D.D.); (P.S.); (S.T.); (C.C.); (S.K.); (P.Y.); (D.S.); (V.S.); (J.R.); (K.C.P.); (M.K.)
| | - Rajnikant Dixit
- Laboratory of Host-Parasite Interaction Studies, ICMR-National Institute of Malaria Research, Sector-8, Dwarka, Delhi 110077, India; (T.D.D.); (P.S.); (S.T.); (C.C.); (S.K.); (P.Y.); (D.S.); (V.S.); (J.R.); (K.C.P.); (M.K.)
| |
Collapse
|
19
|
Piermarini PM, Denton JS, Swale DR. The Molecular Physiology and Toxicology of Inward Rectifier Potassium Channels in Insects. ANNUAL REVIEW OF ENTOMOLOGY 2022; 67:125-142. [PMID: 34606365 DOI: 10.1146/annurev-ento-062121-063338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Inward rectifier K+ (Kir) channels have been studied extensively in mammals, where they play critical roles in health and disease. In insects, Kir channels have recently been found to be key regulators of diverse physiological processes in several tissues. The importance of Kir channels in insects has positioned them to serve as emerging targets for the development of insecticides with novel modes of action. In this article, we provide the first comprehensive review of insect Kir channels, highlighting the rapid progress made in understanding their molecular biology, physiological roles, pharmacology, and toxicology. In addition, we highlight key gaps in our knowledge and suggest directions for future research to advance our understanding of Kir channels and their roles in insect physiology. Further knowledge of their functional roles will also facilitate their exploitation as targets for controlling arthropod pests and vectors of economic, medical, and/or veterinary relevance.
Collapse
Affiliation(s)
- Peter M Piermarini
- Department of Entomology, The Ohio State University, Wooster, Ohio 44691, USA;
| | - Jerod S Denton
- Departments of Anesthesiology & Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee 37235, USA;
| | - Daniel R Swale
- Department of Entomology, Louisiana State University AgCenter, Baton Rouge, Louisiana 70803, USA;
| |
Collapse
|
20
|
Singh H, Sehrawat N. Molecular characterization and in-silico analysis of AsSGU (Secreted Glycocojugate of Unknown function) in malaria vector Anopheles stephensi for transmission blocking. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
21
|
Physiological characterization of chitin synthase A responsible for the biosynthesis of cuticle chitin in Culex pipiens pallens (Diptera: Culicidae). Parasit Vectors 2021; 14:234. [PMID: 33933137 PMCID: PMC8088658 DOI: 10.1186/s13071-021-04741-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 04/21/2021] [Indexed: 11/10/2022] Open
Abstract
Background The pathogens transmitted by mosquitoes to humans and animals cause several emerging and resurgent infectious diseases. Increasing insecticide resistance requires rational action to control the target vector population. Chitin is indispensable for insect growth and development and absent from vertebrates and higher plants. Chitin synthase A (CHSA) is a crucial enzyme in chitin synthesis; therefore, identifying and characterizing how CHSA determines chitin content may contribute to the development of novel vector control strategies. Results The injection of small interfering RNA targeting CHSA (siCHSA) to knockdown CHSA transcripts in larval, pupal and adult stages of Culex pipiens pallens resulted in the appearance of different lethal phenotypes. When larval and pupal stages were injected with siCHSA, CHSA knockdown prevented larval molting, pupation and adult eclosion, and affected the production of chitin and chitin degradation, which resulted in an ecdysis defect phenotype of mosquitoes. When siCHSA was injected into mosquitoes in the adult stage, CHSA knockdown also affected the laminar organization of the mesoderm and the formation of pseudo-orthogonal patterns of the large fibers of the endoderm. Conclusion We provide a systematic and comprehensive description of the effects of CHSA on morphogenesis and metamorphosis. The results show that CHSA not only affects chitin synthesis during molting, but also might be involved in chitin degradation. Our results further show that CHSA is important for the structural integrity of the adult mosquito cuticle. Graphic abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-021-04741-2.
Collapse
|
22
|
Tsujimoto H, Anderson MAE, Eggleston H, Myles KM, Adelman ZN. Aedes aegypti dyspepsia encodes a novel member of the SLC16 family of transporters and is critical for reproductive fitness. PLoS Negl Trop Dis 2021; 15:e0009334. [PMID: 33826624 PMCID: PMC8055033 DOI: 10.1371/journal.pntd.0009334] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 04/19/2021] [Accepted: 03/25/2021] [Indexed: 12/13/2022] Open
Abstract
As a key vector for major arthropod-borne viruses (arboviruses) such as dengue, Zika and chikungunya, control of Aedes aegypti represents a major challenge in public health. Bloodmeal acquisition is necessary for the reproduction of vector mosquitoes and pathogen transmission. Blood contains potentially toxic amounts of iron while it provides nutrients for mosquito offspring; disruption of iron homeostasis in the mosquito may therefore lead to novel control strategies. We previously described a potential iron exporter in Ae. aegypti after a targeted functional screen of ZIP (zinc-regulated transporter/Iron-regulated transporter-like) and ZnT (zinc transporter) family genes. In this study, we performed an RNAseq-based screen in an Ae. aegypti cell line cultured under iron-deficient and iron-excess conditions. A subset of differentially expressed genes were analyzed via a cytosolic iron-sensitive dual-luciferase reporter assay with several gene candidates potentially involved in iron transport. In vivo gene silencing resulted in significant reduction of fecundity (egg number) and fertility (hatch rate) for one gene, termed dyspepsia. Silencing of dyspepsia reduced the induction of ferritin expression in the midgut and also resulted in delayed/impaired excretion and digestion. Further characterization of this gene, including a more direct confirmation of its substrate (iron or otherwise), could inform vector control strategies as well as to contribute to the field of metal biology.
Collapse
Affiliation(s)
- Hitoshi Tsujimoto
- Department of Entomology, Texas A&M Agrilife Research, College Station, Texas, United States of America
| | | | - Heather Eggleston
- Department of Entomology, Texas A&M Agrilife Research, College Station, Texas, United States of America
| | - Kevin M. Myles
- Department of Entomology, Texas A&M Agrilife Research, College Station, Texas, United States of America
| | - Zach N. Adelman
- Department of Entomology, Texas A&M Agrilife Research, College Station, Texas, United States of America
| |
Collapse
|
23
|
Meng X, Wu Z, Yang X, Qian K, Zhang N, Jiang H, Yin X, Guan D, Zheng Y, Wang J. Flonicamid and knockdown of inward rectifier potassium channel gene CsKir2B adversely affect the feeding and development of Chilo suppressalis. PEST MANAGEMENT SCIENCE 2021; 77:2045-2053. [PMID: 33342029 DOI: 10.1002/ps.6232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/17/2020] [Accepted: 12/20/2020] [Indexed: 05/04/2023]
Abstract
BACKGROUND The selective insecticide flonicamid shows highly insecticidal activities against piercing-sucking insects and has been widely used for the control of Hemipteran insect pests, whereas its effects on Lepidopteran insect pests remain largely unknown. Recently, inward rectifier potassium (Kir) channel has been verified to be a target of flonicamid, however, functional characterization of Lepidopteran Kir genes is still lacking. RESULTS Flonicamid shows no insecticidal toxicity against Chilo suppressalis larvae. However, the feeding and growth of larvae were reversibly inhibited by flonicamid (50-1200 mg L-1 ). Flonicamid treatment also remarkably reduced and delayed the pupation and eclosion of Chilo suppressalis. Additionally, five distinct Kir channel genes (CsKir1, CsKir2A, CsKir2B, CsKir3A and CsKir3B) were cloned from Chilo suppressalis. Expression profiles analysis revealed that CsKir2A was predominately expressed in the hindgut of larvae, whereas CsKir2B had high expressions in the Malpighian tubules and hindgut. RNA interference (RNAi)-mediated knockdown of CsKir2B significantly reduced the growth and increased the mortalities of larvae, whereas silencing of CsKir2A had no obvious effects on Chilo suppressalis. CONCLUSION Flonicamid exhibits adverse effects on the growth and development of Chilo suppressalis. CsKir2B might be involved in the feeding behavior of Chilo suppressalis. These results provide valuable information on the effects of flonicamid on non-target insects as well as the function of insect Kir channels, and are helpful in developing new insecticide targeting insect Kir channels. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiangkun Meng
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Zhaolu Wu
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Xuemei Yang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Kun Qian
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Nan Zhang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Heng Jiang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Xingcan Yin
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Daojie Guan
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Yang Zheng
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Jianjun Wang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, China
| |
Collapse
|
24
|
Saelao P, Hickner PV, Bendele KG, Pérez de León AA. Phylogenomics of Tick Inward Rectifier Potassium Channels and Their Potential as Targets to Innovate Control Technologies. Front Cell Infect Microbiol 2021; 11:647020. [PMID: 33816352 PMCID: PMC8018274 DOI: 10.3389/fcimb.2021.647020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 02/16/2021] [Indexed: 02/03/2023] Open
Abstract
This study was conducted to enhance the identification of novel targets to develop acaricides that can be used to advance integrated tick-borne disease management. Drivers for the emergence and re-emergence of tick-borne diseases affecting humans, livestock, and other domestic animals in many parts of the world include the increased abundance and expanded geographic distribution of tick species that vector pathogens. The evolution of resistance to acaricides among some of the most important tick vector species highlights the vulnerability of relying on chemical treatments for tick control to mitigate the health burden of tick-borne diseases. The involvement of inward rectifier potassium (Kir) channels in homeostasis, diuresis, and salivary gland secretion in ticks and other pests identified them as attractive targets to develop novel acaricides. However, few studies exist on the molecular characteristics of Kir channels in ticks. This bioinformatic analysis described Kir channels in 20 species of hard and soft ticks. Summarizing relevant investigations on Kir channel function in invertebrate pests allowed the phylogenomic study of this class of ion channels in ticks. How this information can be adapted to innovate tick control technologies is discussed.
Collapse
Affiliation(s)
- Perot Saelao
- USDA-ARS Knipling-Bushland U.S. Livestock Insects Research Laboratory, Kerrville, TX, United States.,Veterinary Pest Genomics Center, Kerrville, TX, United States
| | - Paul V Hickner
- USDA-ARS Knipling-Bushland U.S. Livestock Insects Research Laboratory, Kerrville, TX, United States.,Veterinary Pest Genomics Center, Kerrville, TX, United States
| | - Kylie G Bendele
- USDA-ARS Knipling-Bushland U.S. Livestock Insects Research Laboratory, Kerrville, TX, United States.,Veterinary Pest Genomics Center, Kerrville, TX, United States
| | - Adalberto A Pérez de León
- USDA-ARS Knipling-Bushland U.S. Livestock Insects Research Laboratory, Kerrville, TX, United States.,Veterinary Pest Genomics Center, Kerrville, TX, United States
| |
Collapse
|
25
|
Sousa GL, Bishnoi R, Baxter RHG, Povelones M. The CLIP-domain serine protease CLIPC9 regulates melanization downstream of SPCLIP1, CLIPA8, and CLIPA28 in the malaria vector Anopheles gambiae. PLoS Pathog 2020; 16:e1008985. [PMID: 33045027 PMCID: PMC7580898 DOI: 10.1371/journal.ppat.1008985] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 10/22/2020] [Accepted: 09/16/2020] [Indexed: 01/10/2023] Open
Abstract
The arthropod melanization immune response is activated by extracellular protease cascades predominantly comprised of CLIP-domain serine proteases (CLIP-SPs) and serine protease homologs (CLIP-SPHs). In the malaria vector, Anopheles gambiae, the CLIP-SPHs SPCLIP1, CLIPA8, and CLIPA28 form the core of a hierarchical cascade downstream of mosquito complement that is required for microbial melanization. However, our understanding of the regulatory relationship of the CLIP-SPH cascade with the catalytic CLIP-SPs driving melanization is incomplete. Here, we report on the development of a novel screen to identify melanization pathway components based on the quantitation of melanotic mosquito excreta, eliminating the need for microdissections or hemolymph enzymatic assays. Using this screen, we identified CLIPC9 and subsequent functional analyses established that this protease is essential for the melanization of both Escherichia coli and the rodent malaria parasite Plasmodium berghei. Mechanistically, septic infection with E. coli promotes CLIPC9 cleavage and both full-length and cleaved CLIPC9 localize to this bacterium in a CLIPA8-dependent manner. The steady state level of CLIPC9 in the hemolymph is regulated by thioester-containing protein 1 (TEP1), suggesting it functions downstream of mosquito complement. In support, CLIPC9 cleavage is inhibited following SPCLIP1, CLIPA8, and CLIPA28 knockdown positioning it downstream of the CLIP-SPH cascade. Moreover, like CLIPA8 and CLIPA28, CLIPC9 processing is negatively regulated by serine protease inhibitor 2 (SRPN2). This report demonstrates how our novel excretion-based approach can be utilized to dissect the complex protease networks regulating mosquito melanization. Collectively, our findings establish that CLIPC9 is required for microbial melanization in An. gambiae and shed light on how the CLIP-SPH cascade regulates this potent immune response.
Collapse
Affiliation(s)
- Gregory L. Sousa
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Ritika Bishnoi
- Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, United States of America
| | - Richard H. G. Baxter
- Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, United States of America
| | - Michael Povelones
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
26
|
Lai X, Xu J, Ma H, Liu Z, Zheng W, Liu J, Zhu H, Zhou Y, Zhou X. Identification and Expression of Inward-Rectifying Potassium Channel Subunits in Plutella xylostella. INSECTS 2020; 11:insects11080461. [PMID: 32707967 PMCID: PMC7469208 DOI: 10.3390/insects11080461] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 11/30/2022]
Abstract
In insects, inward-rectifying potassium (Kir) channels regulate vital physiological functions, such as feeding behavior, silk secretion, renal excretion, and immune function. Therefore, they offer promising potential as targets for insecticides. Three types of Kir subunits have been identified in Diptera and Hemiptera, but the Kir subunits of Lepidoptera still remain unclear. This study identified five Kir subunit genes (pxkir1, pxkir2, pxkir3A, pxkir3B, and pxkir4) in the transcriptome of Plutella xylostella. Phylogenetic analysis identified pxkir1, pxkir2, pxkir3A, and pxkir3B as orthologous genes of kir1–3 in other insects. Interestingly, pxkir4 may be encoding a new class of Kir subunit in Lepidoptera that has not been reported to date. To identify further Kir channel subunits of P. xylostella, the gene expression profiles of five pxkir genes were studied by quantitative real-time PCR. These pxkir genes are expressed throughout the development of P. xylostella. pxkir1 and pxkir2 were highly expressed in thoraxes and legs, while pxkir3 (3A and 3B) and pxkir4 had high expression levels in the midgut and Malpighian tubules. This study identified the composition and distribution of Kir subunits in P. xylostella for the first time, and provides useful information for the further study of Kir channel subunits in Lepidoptera.
Collapse
Affiliation(s)
- Xiaoyi Lai
- Long Ping Branch, Graduate School of Hunan University, Changsha 410125, China; (X.L.); (W.Z.)
| | - Jie Xu
- Institute of Agricultural Biotechnology, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (J.X.); (Z.L.); (J.L.); (H.Z.); (Y.Z.)
| | - Haihao Ma
- Institute of Agricultural Biotechnology, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (J.X.); (Z.L.); (J.L.); (H.Z.); (Y.Z.)
- Correspondence: (H.M.); (X.Z.)
| | - Zheming Liu
- Institute of Agricultural Biotechnology, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (J.X.); (Z.L.); (J.L.); (H.Z.); (Y.Z.)
| | - Wei Zheng
- Long Ping Branch, Graduate School of Hunan University, Changsha 410125, China; (X.L.); (W.Z.)
| | - Jia Liu
- Institute of Agricultural Biotechnology, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (J.X.); (Z.L.); (J.L.); (H.Z.); (Y.Z.)
| | - Hang Zhu
- Institute of Agricultural Biotechnology, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (J.X.); (Z.L.); (J.L.); (H.Z.); (Y.Z.)
| | - Yong Zhou
- Institute of Agricultural Biotechnology, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (J.X.); (Z.L.); (J.L.); (H.Z.); (Y.Z.)
| | - Xiaomao Zhou
- Long Ping Branch, Graduate School of Hunan University, Changsha 410125, China; (X.L.); (W.Z.)
- Institute of Agricultural Biotechnology, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (J.X.); (Z.L.); (J.L.); (H.Z.); (Y.Z.)
- Correspondence: (H.M.); (X.Z.)
| |
Collapse
|
27
|
Edgerton EB, McCrea AR, Berry CT, Kwok JY, Thompson LK, Watson B, Fuller EM, Nolan TJ, Lok JB, Povelones M. Activation of mosquito immunity blocks the development of transmission-stage filarial nematodes. Proc Natl Acad Sci U S A 2020; 117:3711-3717. [PMID: 32015105 PMCID: PMC7035481 DOI: 10.1073/pnas.1909369117] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mosquito-borne helminth infections are responsible for a significant worldwide disease burden in both humans and animals. Accordingly, development of novel strategies to reduce disease transmission by targeting these pathogens in the vector are of paramount importance. We found that a strain of Aedes aegypti that is refractory to infection by Dirofilaria immitis, the agent of canine heartworm disease, mounts a stronger immune response during infection than does a susceptible strain. Moreover, activation of the Toll immune signaling pathway in the susceptible strain arrests larval development of the parasite, thereby decreasing the number of transmission-stage larvae. Notably, this strategy also blocks transmission-stage Brugia malayi, an agent of human lymphatic filariasis. Our data show that mosquito immunity can play a pivotal role in restricting filarial nematode development and suggest that genetically engineering mosquitoes with enhanced immunity will help reduce pathogen transmission.
Collapse
Affiliation(s)
- Elizabeth B Edgerton
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104
| | - Abigail R McCrea
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104
| | - Corbett T Berry
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104
| | - Jenny Y Kwok
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104
| | - Letitia K Thompson
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104
| | - Brittany Watson
- Department of Clinical Sciences & Advanced Medicine, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104
| | | | - Thomas J Nolan
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104
| | - James B Lok
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104
| | - Michael Povelones
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104;
| |
Collapse
|
28
|
Swale DR. Perspectives on new strategies for the identification and development of insecticide targets. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2019; 161:23-32. [PMID: 31685193 DOI: 10.1016/j.pestbp.2019.07.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 07/02/2019] [Accepted: 07/02/2019] [Indexed: 06/10/2023]
Abstract
The discovery and development of new active ingredients to control arthropod populations and circumvent the inevitable evolution of insecticide resistance has been of consistent interest to the field of insecticide science. This interest has resulted in a slow, but steady increase in the diversity of chemical scaffolds and biochemical target sites within the insecticide arsenal over the past 70 years with growth from three biochemical target sites in the 1950s to 22 distinct biochemical targets in 2018. Despite this growth, the number of biochemical target sites for insecticides remains relatively limited when compared to human pharmaceuticals, which has approximately 700 distinct biochemical targets that are targeted by FDA approved drugs. Potential reasons for this large discrepancy between two closely related fields and putative mechanisms to enhance the identification of tractable biochemical targets for insecticides are discussed. Next, this perspective discusses the movement of insecticide science into the "genomic era" and for comparative purposes, I provide a retrospective analysis of the impact the release of the human genome had to human pharmaceutical development. Based on this analysis and because the fields of insecticide science and human pharmaceuticals mirror each other, researchers in the field of insecticide science would do well to heed the lessons learned by the human pharmaceutical industry and to carefully consider the challenges that arise from genomic approaches for chemical development. Lastly, I pose the question if the field of insecticide science would benefit from adapting an industry-academia model through the generation of industry-sponsored centers of excellence. The goal of this article is not to definitively describe strategies to enhance insecticide development, but rather present different thoughts on agrochemical development that will foster discussions among academic, government, and industry scientists to address current and future problems in the field of insecticide science.
Collapse
Affiliation(s)
- Daniel R Swale
- Department of Entomology, Louisiana State University AgCenter, Baton Rouge, LA 70803, United States of America.
| |
Collapse
|
29
|
Díaz-Fleischer F, Arredondo J, Lasa R, Bonilla C, Debernardi D, Pérez-Staples D, Williams T. Sickly Sweet: Insecticidal Polyols Induce Lethal Regurgitation in Dipteran Pests. INSECTS 2019; 10:E53. [PMID: 30759873 PMCID: PMC6410098 DOI: 10.3390/insects10020053] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 01/27/2019] [Accepted: 02/06/2019] [Indexed: 11/30/2022]
Abstract
Polyols are commonly used in food and medicines as sweeteners and preservatives but may also have insecticidal properties against some species of Diptera. Here we compared the insecticidal activity and feeding response of glycerol and propylene glycol (PG) on two tephritids: Anastrepha ludens and Anastrepha obliqua, and the drosophilid Drosophila suzukii. First, flies were exposed to solutions of 50% sucrose and the two polyols at concentrations of 1.67 M, 2.78 M and 4.18 M for 24 h and then observed at 24 h intervals for a period of three days. Both polyols elicited strong regurgitation behavior in the three flies and killed them. Regurgitation apparently also reduced flies' body weight, and this was particularly apparent in insects that fed on 4.18 M PG solutions. A high percentage of individuals exposed to PG solutions perished after 72 hours. The number of proboscis extensions, which is associated with feeding preference, was lower in the 4.18 M polyols + sucrose mixtures than in the 50% sucrose solution. Glycerol had a lower insecticidal effect in Anastrepha spp. and very little insecticidal effect in D. suzukii. Finally, elevated regurgitation and mortality was confirmed in A. ludens treated with 1.0⁻2.78 M of erythritol plus sucrose. Our results demonstrate that PG, and to a lower extent glycerol, have the potential for being used as a safer method of insect pest control. The hyper-regurgitation response may contribute to the insecticidal properties of these polyols in Diptera.
Collapse
Affiliation(s)
| | - José Arredondo
- Programa Moscafrut SAGARPA-SENASICA, Camino a los Cacaotales S/N, CP 30860, Metapa de Domínguez, Chiapas, Mexico.
| | - Rodrigo Lasa
- Instituto de Ecología AC, Apartado Postal 63, Xalapa, Veracruz 91070, Mexico.
| | - Carlos Bonilla
- INBIOTECA, Universidad Veracruzana, Apartado Postal 250, Xalapa, Veracruz 91000, Mexico.
| | - Diana Debernardi
- INBIOTECA, Universidad Veracruzana, Apartado Postal 250, Xalapa, Veracruz 91000, Mexico.
| | - Diana Pérez-Staples
- INBIOTECA, Universidad Veracruzana, Apartado Postal 250, Xalapa, Veracruz 91000, Mexico.
| | - Trevor Williams
- Instituto de Ecología AC, Apartado Postal 63, Xalapa, Veracruz 91070, Mexico.
| |
Collapse
|
30
|
Davies SA, Cabrero P, Marley R, Corrales GM, Ghimire S, Dornan AJ, Dow JAT. Epithelial Function in the Drosophila Malpighian Tubule: An In Vivo Renal Model. Methods Mol Biol 2019; 1926:203-221. [PMID: 30742274 DOI: 10.1007/978-1-4939-9021-4_17] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The insect renal (Malpighian) tubule has long been a model system for the study of fluid secretion and its neurohormonal control, as well as studies on ion transport mechanisms. To extend these studies beyond the boundaries of classical physiology, a molecular genetic approach together with the 'omics technologies is required. To achieve this in any vertebrate transporting epithelium remains a daunting task, as the genetic tools available are still relatively unsophisticated. Drosophila melanogaster, however, is an outstanding model organism for molecular genetics. Here we describe a technique for fluid secretion assays in the D. melanogaster equivalent of the kidney nephron. The development of this first physiological assay for a Drosophila epithelium, allowing combined approaches of integrative physiology and functional genomics, has now provided biologists with an entirely new model system, the Drosophila Malpighian tubule, which is utilized in multiple fields as diverse as kidney disease research and development of new modes of pest insect control.
Collapse
Affiliation(s)
- Shireen-A Davies
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, UK.
| | - Pablo Cabrero
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, UK
| | - Richard Marley
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, UK
| | - Guillermo Martinez Corrales
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, UK
| | - Saurav Ghimire
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, UK
| | - Anthony J Dornan
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, UK
| | - Julian A T Dow
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, UK.
| |
Collapse
|
31
|
Rusconi Trigueros R, Hopkins CR, Denton JS, Piermarini PM. Pharmacological Inhibition of Inward Rectifier Potassium Channels Induces Lethality in Larval Aedes aegypti. INSECTS 2018; 9:E163. [PMID: 30445675 PMCID: PMC6315791 DOI: 10.3390/insects9040163] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 11/07/2018] [Accepted: 11/12/2018] [Indexed: 11/30/2022]
Abstract
The inward rectifier potassium (Kir) channels play key roles in the physiology of mosquitoes and other insects. Our group, among others, previously demonstrated that small molecule inhibitors of Kir channels are promising lead molecules for developing new insecticides to control adult female mosquitoes. However, the potential use of Kir channel inhibitors as larvicidal agents is unknown. Here we tested the hypothesis that pharmacological inhibition of Kir channels in the larvae of Aedes aegypti, the vector of several medically important arboviruses, induces lethality. We demonstrated that adding barium, a non-specific blocker of Kir channels, or VU041, a specific small-molecule inhibitor of mosquito Kir1 channels, to the rearing water (deionized H₂O) of first instar larvae killed them within 48 h. We further showed that the toxic efficacy of VU041 within 24 h was significantly enhanced by increasing the osmolality of the rearing water to 100 mOsm/kg H₂O with NaCl, KCl or mannitol; KCl provided the strongest enhancement compared to NaCl and mannitol. These data suggest: (1) the important role of Kir channels in the acclimation of larvae to elevated ambient osmolality and KCl concentrations; and (2) the disruption of osmoregulation as a potential mechanism of the toxic action of VU041. The present study provides the first evidence that inhibition of Kir channels is lethal to larval mosquitoes and broadens the potential applications of our existing arsenal of small molecule inhibitors of Kir channels, which have previously only been considered for developing adulticides.
Collapse
Affiliation(s)
- Renata Rusconi Trigueros
- Department of Entomology, The Ohio State University, Ohio Agricultural Research and Development Center, Wooster, OH 44691, USA.
| | - Corey R Hopkins
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| | - Jerod S Denton
- Departments of Anesthesiology and Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| | - Peter M Piermarini
- Department of Entomology, The Ohio State University, Ohio Agricultural Research and Development Center, Wooster, OH 44691, USA.
| |
Collapse
|
32
|
Ren M, Niu J, Hu B, Wei Q, Zheng C, Tian X, Gao C, He B, Dong K, Su J. Block of Kir channels by flonicamid disrupts salivary and renal excretion of insect pests. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2018; 99:17-26. [PMID: 29842935 DOI: 10.1016/j.ibmb.2018.05.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 05/23/2018] [Accepted: 05/23/2018] [Indexed: 06/08/2023]
Abstract
Flonicamid is a selective insecticide for the control of sap-sucking insects; it exerts toxic effects by inhibiting insect feeding. However, its molecular target remains elusive. In this study, we functionally characterized NlKir1 channels of the brown planthopper (Nilaparvata lugens) in HEK293 cells. Homomeric NlKir1 channels generated inward-rectifying K+ currents. Flonicamid inhibited NlKir1 channels at nanomolar concentrations. Furthermore, flonicamid inhibited honeydew and salivary secretions of planthoppers, and reduced the renal excretion of female mosquitoes in a dose-dependent manner. The inhibitory effect of flonicamid on fluid secretion of isolated Malpighian tubules from Culex pipiens pullens was comparable to that of the selective Kir1 inhibitor. The observed physiological alterations by flonicamid are likely mediated by Kir1 channels and could lead to the disruption of feeding behaviors and eventually lethality. Our study establishes the Kir1 channel as the target of flonicamid and provided new insights into the mode of action of flonicamid.
Collapse
Affiliation(s)
- Miaomiao Ren
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jianguo Niu
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Bo Hu
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qi Wei
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Cheng Zheng
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiangrui Tian
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Congfen Gao
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Bingjun He
- College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Ke Dong
- Department of Entomology and Neuroscience Program, Michigan State University, East Lansing, MI, 48824, USA.
| | - Jianya Su
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
33
|
Doran CR, Estévez-Lao TY, Hillyer JF. Mosquito aging modulates the heart rate and the proportional directionality of heart contractions. JOURNAL OF INSECT PHYSIOLOGY 2017; 101:47-56. [PMID: 28655496 DOI: 10.1016/j.jinsphys.2017.06.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 06/12/2017] [Accepted: 06/23/2017] [Indexed: 06/07/2023]
Abstract
Mosquito aging impacts a myriad of physiological processes, including digestion, flight, mating, reproductive success, and immunity. In the present study, we conducted intravital video imaging in 1, 3, 5, 10, 15 and 20-day-old Anopheles gambiae female adults to assess whether aging impacts mosquito heart physiology. We found that the heart contraction rate increases over the first 15days of adulthood and then decreases. These changes occur for both contraction directions, although aging results in a relative change in the anterograde versus retrograde contraction rates. That is, whereas for the first 5days of life the anterograde and retrograde contraction rates are similar, from day 10 to day 20 the retrograde contraction rate is higher than the anterograde contraction rate. Aging also biases the proportional directionality of heart contractions, from approximately two thirds of the time being spent contracting in the anterograde direction and two thirds of the contractions propagating anterograde during the first 5days of life to an approximately even split between anterograde and retrograde when the mosquitoes have reached 10 to 20days of age. Transcriptional analyses of crustacean cardioactive peptide (CCAP), FMRFamide, calcium-calmodulin dependent kinase II (CaMKII), pygopus, manganese-iron superoxide dismutase (MnSOD1) and vinculin by quantitative RT-PCR revealed age-associated changes in gene expression, with MnSOD1 and vinculin expression showing a declining trend with age. RNAi-based knockdown of MnSOD1 or vinculin resulted in heart physiology that trended toward the aging phenotype for every parameter that was measured, suggesting that these two genes are involved in cardiac aging.
Collapse
Affiliation(s)
- Charlotte R Doran
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Tania Y Estévez-Lao
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Julián F Hillyer
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
34
|
Sreenivasamurthy SK, Madugundu AK, Patil AH, Dey G, Mohanty AK, Kumar M, Patel K, Wang C, Kumar A, Pandey A, Prasad TSK. Mosquito-Borne Diseases and Omics: Tissue-Restricted Expression and Alternative Splicing Revealed by Transcriptome Profiling of Anopheles stephensi. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2017; 21:488-497. [PMID: 28708456 DOI: 10.1089/omi.2017.0073] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Malaria is one of the most debilitating mosquito-borne diseases with high global health burdens. While much of the research on malaria and mosquito-borne diseases is focused on Africa, Southeast Asia accounts for a sizable portion of the global burden of malaria. Moreover, about 50% of the Asian malaria incidence and deaths have been from India. A promising development in this context is that the completion of genome sequence of Anopheles stephensi, a major malaria vector in Asia, offers new opportunities for global health innovation, including the progress in deciphering the vectorial ability of this mosquito species at a molecular level. Moving forward, tissue-based expression profiling would be the next obvious step in understanding gene functions of An. stephensi. We report in this article, to the best of our knowledge, the first in-depth study on tissue-based transcriptomic profile of four important organs (midgut, Malpighian tubules, fat body, and ovary) of adult female An. stephensi mosquitoes. In all, we identified over 20,000 transcripts corresponding to more than 12,000 gene loci from these four tissues. We present and discuss the tissue-based expression profiles of majority of annotated transcripts in An. stephensi genome, and the dynamics of their alternative splicing in these tissues, in this study. The domain-based Gene Ontology analysis of the differentially expressed transcripts in each of the mosquito tissue indicated enrichment of transcripts with proteolytic activity in midgut; transporter activity in Malpighian tubules; cell cycle, DNA replication, and repair activities in ovaries; and oxidoreductase activities in fat body. Tissue-based study of transcript expression and gene functions markedly enhances our understanding of this important malaria vector, and in turn, offers rationales for further studies on vectorial ability and identification of novel molecular targets to intercept malaria transmission.
Collapse
Affiliation(s)
| | - Anil K Madugundu
- 1 Institute of Bioinformatics , Bangalore, India .,3 Centre for Bioinformatics, Pondicherry University , Kalapet, India
| | - Arun H Patil
- 1 Institute of Bioinformatics , Bangalore, India .,4 YU-IOB Center for Systems Biology and Molecular Medicine, Yenepoya University , Mangalore, India .,5 School of Biotechnology, KIIT University , Bhubaneswar, India
| | - Gourav Dey
- 1 Institute of Bioinformatics , Bangalore, India .,2 Manipal University , Manipal, India
| | - Ajeet Kumar Mohanty
- 6 National Institute of Malaria Research , Field Station, Panjim, India .,7 Department of Zoology, Goa University , Taleigao Plateau, India
| | - Manish Kumar
- 1 Institute of Bioinformatics , Bangalore, India .,2 Manipal University , Manipal, India
| | - Krishna Patel
- 1 Institute of Bioinformatics , Bangalore, India .,8 Amrita School of Biotechnology , Amrita Vishwa Vidyapeetham, Kollam, India
| | - Charles Wang
- 9 Center for Genomics and Department of Basic Sciences, School of Medicine, Loma Linda University , Loma Linda, California
| | - Ashwani Kumar
- 6 National Institute of Malaria Research , Field Station, Panjim, India
| | - Akhilesh Pandey
- 1 Institute of Bioinformatics , Bangalore, India .,10 McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine , Baltimore, Maryland.,11 Department of Biological Chemistry, Johns Hopkins University School of Medicine , Baltimore, Maryland.,12 Department of Oncology, Johns Hopkins University School of Medicine , Baltimore, Maryland.,13 Department of Pathology, Johns Hopkins University School of Medicine , Baltimore, Maryland
| | | |
Collapse
|