1
|
Reyes-Torres LJ, de Jesús Crespo R, Oczkowski AJ, Yee DA. Environmental heterogeneity across an urban gradient influences detritus and nutrients within artificial containers and their associated vector Aedes sp. larvae in San Juan, Puerto Rico. JOURNAL OF MEDICAL ENTOMOLOGY 2025:tjaf058. [PMID: 40353583 DOI: 10.1093/jme/tjaf058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 12/10/2024] [Accepted: 04/05/2025] [Indexed: 05/14/2025]
Abstract
Detrital inputs from the surrounding terrestrial environment provide essential nutrients that sustain mosquito populations in aquatic containers. The larvae of Aedes aegypti (L.), an anthropophilic invasive vector species, often develop in artificial habitats in urban areas but little is known about how that environment shapes their life history or phenotypic traits. We hypothesized that container detritus, nutrients, and larval interspecific competition with the endemic mosquito, Aedes mediovittatus (Coquillett), would vary along an urban gradient in the San Juan Metropolitan Area in Puerto Rico. We also hypothesized that fine-scale variations within a 200 m buffer of the container environment would alter Ae. aegypti larval nutrients, density, and biomass. We sampled mosquito larvae, container detritus, and suspended particulate organic matter in 44 locations and characterized the surrounding environment in terms of land cover, land use, and vegetation α diversity. We show that container detritus and nutrients are influenced by fine-scale environmental variations environment, affecting Ae. aegypti and Ae. mediovittatus larvae phenotypic traits and nutrient composition. Aedes aegypti was the dominant species in all samples across the urban gradient. We found a negative relationship between Ae. mediovittatus larval % carbon and vegetation cover in the surrounding environment, and a negative correlation between this species' larval C:N and suspended particulate organic matter C:N. These findings suggest a potential disadvantage in nutrient allocation that could affect its competitive ability in urban areas. We found smaller and less nitrogen enriched (δ¹⁵N) Ae. aegypti in containers surrounded by higher impervious cover. The implications of these findings on potential vector disease risk across urban gradients are discussed.
Collapse
Affiliation(s)
- Limarie J Reyes-Torres
- School of Biological, Environmental, and Earth Sciences, University of Southern Mississippi, Hattiesburg, MS, USA
| | | | - Autumn J Oczkowski
- Atlantic Ecology Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Narragansett, RI, USA
| | - Donald A Yee
- School of Biological, Environmental, and Earth Sciences, University of Southern Mississippi, Hattiesburg, MS, USA
| |
Collapse
|
2
|
de Jesús Crespo R, Pavlakis A, Breaux J, Riegel C. Discarded vehicle tires and their association with mosquito vector abundance across socioenvironmental gradients in New Orleans, LA. JOURNAL OF MEDICAL ENTOMOLOGY 2024; 61:1240-1250. [PMID: 39096529 DOI: 10.1093/jme/tjae092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/30/2024] [Accepted: 07/17/2024] [Indexed: 08/05/2024]
Abstract
Discarded vehicle tires serve as habitat for mosquito vectors. In New Orleans, Louisiana, discarded tires are an increasingly important public concern, especially considering that the city is home to many medically important mosquito species. Discarded tires are known to be associated with mosquito abundance, but how their presence interacts with other socioenvironmental gradients to influence mosquito ecology is poorly understood. Here, we ask whether discarded tire distribution could be explained by social factors, particularly median income, home vacancy and human population density, and whether these factors interact with urban heat islands (UHI) to drive mosquito vector assemblages. We surveyed tire piles across the city and adult mosquitoes in 12 sites, between May and October of 2020. We compared this data with the social indicators selected and UHI estimates. Our results show that median income and human population density were inversely related to tire abundance. Tire abundance was positively associated with Aedes albopictus abundance in places of low heat (LS) severity. Heat was the only predictor for the other monitored species, where high heat corresponded to higher abundance of Aedes aegypti, and LS to higher abundance of Culex quinquefasciatus. Our results suggest that low-income, sparsely populated neighborhoods of New Orleans may be hotspots for discarded vehicle tires, and are associated with higher abundances of at least one medically important mosquito (Ae. albopictus). These findings suggest potential locations for prioritizing source reduction efforts to control mosquito vectors and highlight discarded tires as a potential exposure pathway to unequal disease risk for low-income residents.
Collapse
Affiliation(s)
| | - Alexandros Pavlakis
- New Orleans Mosquito, Termite, and Rodent Control Board, New Orleans, LA, USA
| | - Jennifer Breaux
- New Orleans Mosquito, Termite, and Rodent Control Board, New Orleans, LA, USA
| | - Claudia Riegel
- New Orleans Mosquito, Termite, and Rodent Control Board, New Orleans, LA, USA
| |
Collapse
|
3
|
Aguilar-Durán JA, Hamer GL, Reyes-Villanueva F, Fernández-Santos NA, Uriegas-Camargo S, Rodríguez-Martínez LM, Estrada-Franco JG, Rodríguez-Pérez MA. Effectiveness of mass trapping interventions using autocidal gravid ovitraps (AGO) for the control of the dengue vector, Aedes (Stegomyia) aegypti, in Northern Mexico. Parasit Vectors 2024; 17:344. [PMID: 39154005 PMCID: PMC11330617 DOI: 10.1186/s13071-024-06361-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 06/18/2024] [Indexed: 08/19/2024] Open
Abstract
BACKGROUND Mosquito-borne diseases, such as malaria, dengue, Zika and chikungunya, pose significant public health threats in tropical and subtropical regions worldwide. To mitigate the impact of these diseases on human health, effective vector surveillance and control strategies are necessary. Traditional vector control methods, which rely on chemical agents such as insecticides and larvicides, face challenges such as resistance and environmental concerns. Consequently, there has been a push to explore novel surveillance and control tools. Mass trapping interventions have emerged as a promising and environmentally friendly approach to reducing the burden of mosquito-borne diseases. This study assessed mass-trapping interventions using autocidal gravid ovitraps (AGOs) on Aedes aegypti populations in Reynosa, Tamaulipas, Mexico. METHODS Four neighborhoods were selected to evaluate the effects of three treatments: AGO mass-trapping, integrated vector control (IVC), which included source reduction and the application of chemical larvicide and adulticide, and AGO + IVC on Ae. aegypti populations. A control area with no interventions was also included. The effectiveness of the interventions was evaluated by comparing Ae. aegypti abundance between the pre-treatment period (9 weeks) and the post-treatment period (11 weeks) for each treatment. RESULTS Only treatment using AGO mass trapping with an 84% coverage significantly reduced Ae. aegypti female populations by 47%, from 3.75 ± 0.32 to 1.96 ± 0.15 females/trap/week. As expected, the abundance of Ae. aegypti in the control area did not differ from the pre- and post-treatment period (range of 4.97 ± 0.59 to 5.78 ± 0.53); Ae. aegypti abundance in the IVC treatment was 3.47 ± 0.30 before and 4.13 ± 0.35 after, which was not significantly different. However, Ae. aegypti abundance in the AGO + IVC treatment increased from 1.43 ± 0.21 before to 2.11 ± 0.20 after interventions; this increase may be explained in part by the low AGO (56%) coverage. CONCLUSIONS This is the first report to our knowledge on the effectiveness of mass-trapping interventions with AGOs in Mexico, establishing AGOs as a potential tool for controlling Ae. aegypti in Northeastern Mexico when deployed with sufficient coverage.
Collapse
Affiliation(s)
- Jesús Alejandro Aguilar-Durán
- Instituto Politécnico Nacional, Centro de Biotecnología Genómica, Laboratorio de Biomedicina Molecular, Reynosa, Tamaulipas, México
| | - Gabriel L Hamer
- Department of Entomology, Texas A&M University, College Station, TX, USA
| | - Filiberto Reyes-Villanueva
- Instituto Politécnico Nacional, Centro de Biotecnología Genómica, Laboratorio de Biomedicina Molecular, Reynosa, Tamaulipas, México
| | - Nadia Angélica Fernández-Santos
- Instituto Politécnico Nacional, Centro de Biotecnología Genómica, Laboratorio de Biomedicina Molecular, Reynosa, Tamaulipas, México.
- Department of Entomology, Texas A&M University, College Station, TX, USA.
| | | | - Luis Mario Rodríguez-Martínez
- Instituto Politécnico Nacional, Centro de Biotecnología Genómica, Laboratorio de Biomedicina Molecular, Reynosa, Tamaulipas, México
| | - José Guillermo Estrada-Franco
- Instituto Politécnico Nacional, Centro de Biotecnología Genómica, Laboratorio de Biomedicina Molecular, Reynosa, Tamaulipas, México
| | - Mario Alberto Rodríguez-Pérez
- Instituto Politécnico Nacional, Centro de Biotecnología Genómica, Laboratorio de Biomedicina Molecular, Reynosa, Tamaulipas, México.
| |
Collapse
|
4
|
Christofferson RC, Turner EA, Peña-García VH. Identifying Knowledge Gaps through the Systematic Review of Temperature-Driven Variability in the Competence of Aedes aegypti and Ae. albopictus for Chikungunya Virus. Pathogens 2023; 12:1368. [PMID: 38003832 PMCID: PMC10675276 DOI: 10.3390/pathogens12111368] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/10/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
Temperature is a well-known effector of several transmission factors of mosquito-borne viruses, including within mosquito dynamics. These dynamics are often characterized by vector competence and the extrinsic incubation period (EIP). Vector competence is the intrinsic ability of a mosquito population to become infected with and transmit a virus, while EIP is the time it takes for the virus to reach the salivary glands and be expectorated following an infectious bloodmeal. Temperatures outside the optimal range act on life traits, decreasing transmission potential, while increasing temperature within the optimal range correlates to increasing vector competence and a decreased EIP. These relatively well-studied effects of other Aedes borne viruses (dengue and Zika) are used to make predictions about transmission efficiency, including the challenges presented by urban heat islands and climate change. However, the knowledge of temperature and chikungunya (CHIKV) dynamics within its two primary vectors-Ae. aegypti and Ae. albopictus-remains less characterized, even though CHIKV remains a virus of public-health importance. Here, we review the literature and summarize the state of the literature on CHIKV and temperature dependence of vector competence and EIP and use these data to demonstrate how the remaining knowledge gap might confound the ability to adequately predict and, thus, prepare for future outbreaks.
Collapse
Affiliation(s)
| | - Erik A. Turner
- School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA;
| | | |
Collapse
|
5
|
Rogers R, Polito MJ, de Jesús Crespo R. Tree canopy cover affects basal resources and nutrient profiles of Aedes and Culex larvae in cemetery vases in New Orleans, Louisiana, United States. JOURNAL OF MEDICAL ENTOMOLOGY 2023; 60:500-510. [PMID: 36920104 DOI: 10.1093/jme/tjad018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 01/11/2023] [Accepted: 02/06/2023] [Indexed: 05/13/2023]
Abstract
Cemetery vases are important habitat for vector mosquito production, yet there is limited understanding on their food web dynamics and how they vary across environmental gradients. Tree cover is one factor that varies widely across cemeteries, and influence food webs by means of detrital inputs, temperature mediation, and light availability. Such information can be important for determining mosquito adult body size, fecundity, and competition outcomes, all of which may influence mosquito population and disease risk. This study evaluates the relationship between tree canopy cover and indicators of basal resources for Aede aegypti (L.), Aedes albopictuss (Skuse), and Culex quinquefasciatus (Say) larvae, such as stable isotopes (δ13C and δ15N) and nutrient stoichiometry in cemeteries of New Orleans, Louisiana (USA). Stable isotope values suggest that larvae feed directly on the Particulate Organic Matter (POM) suspended in the vase's water, and that POM composition influence the nutrient profiles of mosquito larvae. The POM of open canopy vases had higher δ13C values, than that of closed canopy vases indicating differences in relative proportion of basal carbon sources, with open canopy POM having a lower proportion of allochthonous carbon, and a higher proportion of authoctonous carbon. Accordingly, mosquito larvae collected from open canopy vases had higher δ13C values, and higher C:N than larvae from closed canopy vases. The results of this study show a shift in food web dynamics driven by canopy cover in cemetery vases that directly influence the nutrient profiles of mosquito larvae. The implications for mosquito ecology, and vector management are discussed.
Collapse
Affiliation(s)
- Rachel Rogers
- Department of Environmental Sciences, Louisiana State University, Baton Rouge, USA
| | - Michael J Polito
- Department of Oceanography and Coastal Sciences, Louisiana State University, Baton Rouge, USA
| | | |
Collapse
|
6
|
Alexander J, Wilke ABB, Mantero A, Vasquez C, Petrie W, Kumar N, Beier JC. Using machine learning to understand microgeographic determinants of the Zika vector, Aedes aegypti. PLoS One 2022; 17:e0265472. [PMID: 36584050 PMCID: PMC9803113 DOI: 10.1371/journal.pone.0265472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 12/13/2022] [Indexed: 12/31/2022] Open
Abstract
There are limited data on why the 2016 Zika outbreak in Miami-Dade County, Florida was confined to certain neighborhoods. In this research, Aedes aegypti, the primary vector of Zika virus, are studied to examine neighborhood-level differences in their population dynamics and underlying processes. Weekly mosquito data were acquired from the Miami-Dade County Mosquito Control Division from 2016 to 2020 from 172 traps deployed around Miami-Dade County. Using random forest, a machine learning method, predictive models of spatiotemporal dynamics of Ae. aegypti in response to meteorological conditions and neighborhood-specific socio-demographic and physical characteristics, such as land-use and land-cover type and income level, were created. The study area was divided into two groups: areas affected by local transmission of Zika during the 2016 outbreak and unaffected areas. Ae. aegypti populations in areas affected by Zika were more strongly influenced by 14- and 21-day lagged weather conditions. In the unaffected areas, mosquito populations were more strongly influenced by land-use and day-of-collection weather conditions. There are neighborhood-scale differences in Ae. aegypti population dynamics. These differences in turn influence vector-borne disease diffusion in a region. These results have implications for vector control experts to lead neighborhood-specific vector control strategies and for epidemiologists to guide vector-borne disease risk preparations, especially for containing the spread of vector-borne disease in response to ongoing climate change.
Collapse
Affiliation(s)
- Jagger Alexander
- University of Miami Department of Public Health, Miami, FL, United States of America
- * E-mail:
| | - André Barretto Bruno Wilke
- Laboratory for Computational Epidemiology and Public Health, Department of Epidemiology and Biostatistics, Indiana University School of Public Health, Bloomington, IN, United States of America
| | - Alejandro Mantero
- University of Miami Department of Public Health, Miami, FL, United States of America
| | - Chalmers Vasquez
- Miami-Dade County Mosquito Control Division, Miami, FL, United States of America
| | - William Petrie
- Miami-Dade County Mosquito Control Division, Miami, FL, United States of America
| | - Naresh Kumar
- University of Miami Department of Public Health, Miami, FL, United States of America
| | - John C. Beier
- University of Miami Department of Public Health, Miami, FL, United States of America
| |
Collapse
|