1
|
Larrosa M, Gil-Izquierdo A, González-Rodríguez LG, Alférez MJM, San Juan AF, Sánchez-Gómez Á, Calvo-Ayuso N, Ramos-Álvarez JJ, Fernández-Lázaro D, Lopez-Grueso R, López-León I, Moreno-Lara J, Domínguez-Balmaseda D, Illescas-Quiroga R, Cuenca E, López T, Montoya JJ, Rodrigues-de-Souza DP, Carrillo-Alvarez E, Casado A, Rodriguez-Doñate B, Porta-Oliva M, Santiago C, Iturriaga T, De Lucas B, Solaesa ÁG, Montero-López MDP, Benítez De Gracia E, Veiga-Herreros P, Muñoz-López A, Orantes-Gonzalez E, Barbero-Alvarez JC, Cabeza-Ruiz R, Carnero-Diaz Á, Sospedra I, Fernández-Galván LM, Martínez-Sanz JM, Martín-Almena FJ, Pérez M, Guerra-Hernández EJ, López-Samanes Á, Sánchez-Oliver AJ, Domínguez R. Nutritional Strategies for Optimizing Health, Sports Performance, and Recovery for Female Athletes and Other Physically Active Women: A Systematic Review. Nutr Rev 2025; 83:e1068-e1089. [PMID: 38994896 PMCID: PMC11819490 DOI: 10.1093/nutrit/nuae082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024] Open
Abstract
CONTEXT Despite the progress toward gender equality in events like the Olympic Games and other institutionalized competitions, and the rising number of women engaging in physical exercise programs, scientific studies focused on establishing specific nutritional recommendations for female athletes and other physically active women are scarce. OBJECTIVE This systematic review aimed to compile the scientific evidence available for addressing the question "What dietary strategies, including dietary and supplementation approaches, can improve sports performance, recovery, and health status in female athletes and other physically active women?" DATA SOURCES The Pubmed, Web of Science, and Scopus databases were searched. DATA EXTRACTION The review process involved a comprehensive search strategy using keywords connected by Boolean connectors. Data extracted from the selected studies included information on the number of participants and their characteristics related to sport practice, age, and menstrual function. DATA ANALYSIS A total of 71 studies were included in this review: 17 focused on the analysis of dietary manipulation, and 54 focused on the effects of dietary supplementation. The total sample size was 1654 participants (32.5% categorized as competitive athletes, 30.7% as highly/moderately trained, and 37.2% as physically active/recreational athletes). The risk of bias was considered moderate, mainly for reasons such as a lack of access to the study protocol, insufficient description of how the hormonal phase during the menstrual cycle was controlled for, inadequate dietary control during the intervention, or a lack of blinding of the researchers. CONCLUSION Diets with high carbohydrate (CHO) content enhance performance in activities that induce muscle glycogen depletion. In addition, pre-exercise meals with a high glycemic index or rich in CHOs increase CHO metabolism. Ingestion of 5-6 protein meals interspersed throughout the day, with each intake exceeding 25 g of protein favors anabolism of muscle proteins. Dietary supplements taken to enhance performance, such as caffeine, nitric oxide precursors, β-alanine, and certain sport foods supplements (such as CHOs, proteins, or their combination, and micronutrients in cases of nutritional deficiencies), may positively influence sports performance and/or the health status of female athletes and other physically active women. SYSTEMATIC REVIEW REGISTRATION PROSPERO registration no. CRD480674.
Collapse
Affiliation(s)
- Mar Larrosa
- Departamento de Nutrición y Ciencia de los Alimentos, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Angel Gil-Izquierdo
- Research Group on Food and Nutrition (ALINUT), University of Alicante, 03690 Alicante, Spain
- Quality, Safety, and Bioactivity of Plant Foods Group, Department of Food Science and Technology, CEBAS-CSIC, University of Murcia, 30100 Murcia, Spain
| | - Liliana Guadalupe González-Rodríguez
- Departamento de Nutrición y Ciencia de los Alimentos, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain
- VALORNUT Research Group, Complutense University of Madrid, 28040 Madrid, Spain
| | - María José Muñoz Alférez
- Department of Physiology (Faculty of Pharmacy, Cartuja University Campus), Institute of Nutrition and Food Technology “José Mataix”, University of Granada, 18071 Granada, Spain
| | - Alejandro F San Juan
- Department of Health and Human Performance, Faculty of Physical Activity and Sports Sciences (INEF), Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | | | - Natalia Calvo-Ayuso
- Departamento de Enfermería y Fisioterapia, Campus de Ponferrada, Universidad de León, 24401 Ponferrada, Spain
| | - Juan José Ramos-Álvarez
- School of Sport Medicine, Department of Radiology, Rehabilitation and Physiotherapy, Complutense University Madrid, 28040 Madrid, Spain
| | - Diego Fernández-Lázaro
- Department of Cellular Biology, Genetics, Histology and Pharmacology, Faculty of Health Sciences, University of Valladolid, 42004 Soria, Spain
- Neurobiology Research Group, Faculty of Medicine, University of Valladolid, 47005 Valladolid, Spain
| | - Raúl Lopez-Grueso
- Facultad de Ciencias de la Salud, Universidad Isabel I, 09003 Burgos, Spain
| | - Inmaculada López-León
- Departamento de Motricidad Humana y Rendimiento Deportivo, University of Seville, 41013 Seville, Spain
| | - Javier Moreno-Lara
- Departamento de Motricidad Humana y Rendimiento Deportivo, University of Seville, 41013 Seville, Spain
| | - Diego Domínguez-Balmaseda
- Facultad de Ciencias de la Actividad Física, Deporte y Fisioterapia, Universidad Europea de Madrid, 28670 Villaviciosa de Odón, Spain
| | - Román Illescas-Quiroga
- Departamento de Enfermería y Fisioterapia, University of Alcala, 28805 Alcalá de Henares, Spain
| | - Eduardo Cuenca
- Academia de Guardias y Suboficiales de la Guardia Civil, 23440 Baeza, Spain
| | - Teba López
- Academia de Guardias y Suboficiales de la Guardia Civil, 23440 Baeza, Spain
| | - Juan José Montoya
- School of Sport Medicine, Department of Radiology, Rehabilitation and Physiotherapy, Complutense University Madrid, 28040 Madrid, Spain
| | - Daiana Priscila Rodrigues-de-Souza
- Departamento de Enfermería, Farmacología y Fisioterapia, 14004 Córdoba, Spain
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC), 14004 Córdoba, Spain
| | - Elena Carrillo-Alvarez
- Global Research on Wellbeing (GRoW) Research Group, Blanquerna School of Health Sciences, University Ramon Llull, 08025 Barcelona, Spain
| | - Arturo Casado
- Centro de Investigación en Ciencias del Deporte, Universidad Rey Juan Carlos, 28943 Fuenlabrada, Spain
| | | | - Mireia Porta-Oliva
- Faculty of Food Technology, Autonomous University of Barcelona (UAB), Bellaterra, Spain
- FC Barcelona Medical Department, FC Barcelona, 08028 Barcelona, Spain
- Catalan School of Kinanthropometry, INEFC, 0838 Barcelona, Spain
| | - Catalina Santiago
- Facultad de Ciencias de la Actividad Física, Deporte y Fisioterapia, Universidad Europea de Madrid, 28670 Villaviciosa de Odón, Spain
| | - Támara Iturriaga
- Facultad de Ciencias de la Actividad Física, Deporte y Fisioterapia, Universidad Europea de Madrid, 28670 Villaviciosa de Odón, Spain
| | - Beatriz De Lucas
- Facultad de Ciencias de la Actividad Física, Deporte y Fisioterapia, Universidad Europea de Madrid, 28670 Villaviciosa de Odón, Spain
| | | | | | - Elvira Benítez De Gracia
- Facultad de Ciencias de la Salud, Universidad Alfonso X El Sabio, 28691 Villanueva de la Cañada, Spain
| | - Pablo Veiga-Herreros
- Facultad de Ciencias de la Salud, Universidad Alfonso X El Sabio, 28691 Villanueva de la Cañada, Spain
| | - Alejandro Muñoz-López
- Departamento de Motricidad Humana y Rendimiento Deportivo, University of Seville, 41013 Seville, Spain
| | - Eva Orantes-Gonzalez
- Department of Sports and Computer Science, Faculty of Sports, University of Pablo de Olavide, 41013 Seville, Spain
| | | | - Ruth Cabeza-Ruiz
- Departamento de Motricidad Humana y Rendimiento Deportivo, University of Seville, 41013 Seville, Spain
| | - Ángel Carnero-Diaz
- Departamento de Educación Física y Deportiva, University of Seville, 41013 Seville, Spain
| | - Isabel Sospedra
- Nursing Department, Faculty of Health Sciences, University of Alicante, 03690 San Vicente del Raspeig, Spain
| | | | - José Miguel Martínez-Sanz
- Nursing Department, Faculty of Health Sciences, University of Alicante, 03690 San Vicente del Raspeig, Spain
| | | | - Margarita Pérez
- Department of Health and Human Performance, Faculty of Physical Activity and Sports Sciences (INEF), Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - Eduardo J Guerra-Hernández
- Departamento de Nutrición y Bromatología, Facultad de Farmacia, Universidad de Granada, 18011 Granada, Spain
| | - Álvaro López-Samanes
- Faculty of Human and Social Sciences, Universidad Pontificia Comillas, 28049 Madrid, Spain
| | - Antonio Jesús Sánchez-Oliver
- Departamento de Motricidad Humana y Rendimiento Deportivo, University of Seville, 41013 Seville, Spain
- Studies Research Group in Neuromuscular Responses (GEPREN), University of Lavras, 37203-202 Lavras, Brazil
| | - Raúl Domínguez
- Departamento de Motricidad Humana y Rendimiento Deportivo, University of Seville, 41013 Seville, Spain
- Studies Research Group in Neuromuscular Responses (GEPREN), University of Lavras, 37203-202 Lavras, Brazil
| |
Collapse
|
2
|
Vargas-Molina S, Murri M, Gonzalez-Jimenez A, Gómez-Urquiza JL, Benítez-Porres J. Effects of the Ketogenic Diet on Strength Performance in Trained Men and Women: A Systematic Review and Meta-Analysis. Nutrients 2024; 16:2200. [PMID: 39064644 PMCID: PMC11279805 DOI: 10.3390/nu16142200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
Ketogenic diets (KDs) are an alternative to improve strength performance and body composition in resistance training participants. The objective of this review and meta-analysis is to verify whether a ketogenic diet produces an increase in the strength of resistance-trained participants. We have evaluated the effect of the ketogenic diet in conjunction with resistance training on the strength levels in trained participants. Boolean algorithms from various databases (PubMed, Scopus, and Web of Science) were used. Meta-analyses were carried out, one on the 1-RM squat (SQ), with 106 trained participants or athletes, and another on the 1-RM on the bench press (BP), evaluating 119 participants. We did not find significant differences between the groups in the variables of SQ or BP, although the size of the effect was slightly higher in the ketogenic group. Conclusions: KDs do not appear to impair 1-RM performance; however, this test does not appear to be the most optimal tool for assessing hypertrophy-based strength session performance in resistance-trained participants.
Collapse
Affiliation(s)
- Salvador Vargas-Molina
- Physical Education and Sports Area, Faculty of Medicine, University of Málaga, 29010 Málaga, Spain;
- Research Division, Dynamical Business and Science Society—DBSS International SAS, Bogotá 110311, Colombia
| | - Mora Murri
- Instituto de Investigacion Biomedica de Malaga, IBIMA-Plataforma BIONAND, 29590 Málaga, Spain;
- Endocrinology and Nutrition Clinical Management Unit, Virgen de la Victoria University Hospital, 29010 Málaga, Spain
- Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y la Nutrición (CIBERObn), Instituto de Salud Carlos III, 29016 Madrid, Spain
| | - Andrés Gonzalez-Jimenez
- Instituto de Investigacion Biomedica de Malaga, IBIMA-Plataforma BIONAND, 29590 Málaga, Spain;
| | - José Luis Gómez-Urquiza
- Department of Nursing, Faculty of Health Sciences, University of Granada, 51005 Ceuta, Spain;
| | - Javier Benítez-Porres
- Physical Education and Sports Area, Faculty of Medicine, University of Málaga, 29010 Málaga, Spain;
- Instituto de Investigacion Biomedica de Malaga, IBIMA-Plataforma BIONAND, 29590 Málaga, Spain;
| |
Collapse
|
3
|
Cannataro R, Petro JL, Abrego-Guandique DM, Cione E, Caroleo MC, Kreider RB, Bonilla DA. Ketogenic Diet Plus Resistance Training Applied to Physio-Pathological Conditions: A Brief Review. APPLIED SCIENCES 2024; 14:5445. [DOI: 10.3390/app14135445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2024]
Abstract
The ketogenic diet (KD) is a nutritional strategy characterized by a reduced intake of carbohydrates (between 30 and 45 g per day or ≈5% of one’s total calories from this macronutrient). The regimen induces physiological ketosis in which serum levels of ketone bodies increase from 0.5 to 3.0 mM, becoming an essential contributor to energy production. The popularity of using the KD to lose weight and its application in specific physio-pathological conditions, such as epilepsy, lipedema, and polycystic ovary syndrome, which is maintained over extended periods, gave us the impulse to write this brief review. In these types of physio-pathological conditions, subjects can achieve favorable training outcomes even if adhering to a KD. Therefore, performing resistance training under the KD to enhance muscle status and quality of life could be possible. It is important to note that, while some statements here suggest potential future directions, they are hypotheses that require experimental validation, even if they are supported by the independent benefits reported from the KD and resistance training and represent a promising area for future research.
Collapse
Affiliation(s)
- Roberto Cannataro
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, CS, Italy
- Galascreen Laboratories, University of Calabria, 87036 Rende, CS, Italy
- Research Division, Dynamical Business & Science Society, DBSS International SAS, Bogotá 110861, Colombia
| | - Jorge Luis Petro
- Research Division, Dynamical Business & Science Society, DBSS International SAS, Bogotá 110861, Colombia
- Research Group in Physical Activity, Sports and Health Sciences (GICAFS), Universidad de Córdoba, Montería 230002, Colombia
| | | | - Erika Cione
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, CS, Italy
- Galascreen Laboratories, University of Calabria, 87036 Rende, CS, Italy
| | - Maria Cristina Caroleo
- Department of Health Sciences, University of Magna Graecia Catanzaro, 88100 Catanzaro, CZ, Italy
| | - Richard B. Kreider
- Exercise & Sport Nutrition Lab, Human Clinical Research Facility, Texas A&M University, College Station, TX 77843, USA
| | - Diego A. Bonilla
- Research Division, Dynamical Business & Science Society, DBSS International SAS, Bogotá 110861, Colombia
- Research Group in Physical Activity, Sports and Health Sciences (GICAFS), Universidad de Córdoba, Montería 230002, Colombia
- Hologenomiks Research Group, Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
| |
Collapse
|
4
|
Kruszewski M, Kruszewski A, Tabęcki R, Kuźmicki S, Stec K, Ambroży T, Aksenov MO, Merchelski M, Danielik T. Effectiveness of high-fat and high-carbohydrate diets on body composition and maximal strength after 15 weeks of resistance training. Adv Med Sci 2024; 69:139-146. [PMID: 38428587 DOI: 10.1016/j.advms.2024.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 12/09/2023] [Accepted: 02/25/2024] [Indexed: 03/03/2024]
Abstract
PURPOSE The aim of this study was to compare High Carbohydrates Low Fat (HCLF) and Low Carbohydrate High Fat (LCHF) diets in terms of changes in body composition and maximal strength. PATIENTS/METHODS The study involved 48 men aged 25 ± 2.5, divided into two groups, one of which (n = 23) was following the LCHF diet and the other (n = 25) the HCLF diet. Both groups performed the same resistance training protocol for 15 weeks. Maximal strength in squat, bench press and deadlift was assessed pre- and post-intervention. Measurements of selected body circumferences and tissue parameters were made using the multifunctional, multi-frequency, direct bioelectric impedance InBody 770 analyzer from InBody Co., Ltd (Cerritos, California, USA). The team with the necessary qualifications and experience in research performed all the measurements and maintained participants' oversight throughout the entire length of the study. RESULTS Both nutritional approaches were effective in terms of reducing body fat mass. The HCLF group achieved greater skeletal muscle hypertrophy. Significant decreases in body circumferences, especially in the abdominal area, were observed for both dietary approaches. Maximal strength significantly increased in the HCLF group and decreased in the LCHF group. CONCLUSION Holistic analysis of the results led to the conclusion that both dietary approaches may elicit positive adaptations in body composition. The two approaches constitute useful alternatives for both recreational exercisers and physique athletes with body composition goals.
Collapse
Affiliation(s)
- Marek Kruszewski
- Department of Physical Education, Józef Piłsudski University of Physical Education in Warsaw, Warsaw, Poland.
| | - Artur Kruszewski
- Department of Physical Education, Józef Piłsudski University of Physical Education in Warsaw, Warsaw, Poland
| | - Rafał Tabęcki
- Department of Physical Education, Józef Piłsudski University of Physical Education in Warsaw, Warsaw, Poland
| | - Stanisław Kuźmicki
- Department of Physical Education, Józef Piłsudski University of Physical Education in Warsaw, Warsaw, Poland
| | - Krzysztof Stec
- Department of Health Sciences, Jan Długosz University in Częstochowa, Częstochowa, Poland
| | - Tadeusz Ambroży
- Institute of Sport Sciences, University of Physical Education in Kraków, Cracow, Poland
| | - Maksim Olegovich Aksenov
- Plekhanov Russian University of Economics, Academic Department of Physical Education, Moscow, Russia; Banzarov Buryat State University, Department of Physical Education Theory, Faculty of Physical Training, Sport and Tourism, Ulan-Ude, Russia
| | - Maciej Merchelski
- Department of Physical Education, Józef Piłsudski University of Physical Education in Warsaw, Warsaw, Poland
| | - Tomasz Danielik
- Department of Physical Education, Józef Piłsudski University of Physical Education in Warsaw, Warsaw, Poland
| |
Collapse
|
5
|
Szendi K, Murányi E, Hunter N, Németh B. Methodological Challenges and Confounders in Research on the Effects of Ketogenic Diets: A Literature Review of Meta-Analyses. Foods 2024; 13:248. [PMID: 38254549 PMCID: PMC10814162 DOI: 10.3390/foods13020248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/04/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Several meta-analyses have found a positive association between a popular type of "fad diet", ketogenic diets, and their effect on anthropometric and blood parameters. However, the non-specific inclusion criteria for meta-analyses may lead to incorrect conclusions. The aim of this literature review is to highlight the main confounders and methodological pitfalls of meta-analyses on ketogenic diets by inspecting the presence of key inclusion criteria. The PubMed, Embase, and Web of Science databases and the Cochrane Database of Systematic Reviews were searched for meta-analyses. Most meta-analyses did not define the essential parameters of a ketogenic diet (i.e., calories, macronutrient ratio, types of fatty acids, ketone bodies, etc.) as inclusion criteria. Of the 28 included meta-analyses, few addressed collecting real, re-measured nutritional data from the ketogenic diet and control groups in parallel with the pre-designed nutritional data. Most meta-analyses reported positive results in favor of ketogenic diets, which can result in erroneous conclusions considering the numerous methodological pitfalls and confounders. Well-designed clinical trials with comparable results and their meta-analyses are needed. Until then, medical professionals should not recommend ketogenic diets as a form of weight loss when other well-known dietary options have been shown to be healthy and effective.
Collapse
Affiliation(s)
- Katalin Szendi
- Department of Public Health Medicine, Medical School, University of Pécs, 7624 Pécs, Hungary
| | | | | | | |
Collapse
|
6
|
Park SB, Yang SJ. Ketogenic diet preserves muscle mass and strength in a mouse model of type 2 diabetes. PLoS One 2024; 19:e0296651. [PMID: 38198459 PMCID: PMC10781088 DOI: 10.1371/journal.pone.0296651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024] Open
Abstract
Diabetes is often associated with reduced muscle mass and function. The ketogenic diet (KD) may improve muscle mass and function via the induction of nutritional ketosis. To test whether the KD is able to preserve muscle mass and strength in a mouse model of type 2 diabetes (T2DM), C57BL/6J mice were assigned to lean control, diabetes control, and KD groups. The mice were fed a standard diet (10% kcal from fat) or a high-fat diet (HFD) (60% kcal from fat). The diabetic condition was induced by a single injection of streptozotocin (STZ; 100 mg/kg) and nicotinamide (NAM; 120 mg/kg) into HFD-fed mice. After 8-week HFD feeding, the KD (90% kcal from fat) was fed to the KD group for the following 6 weeks. After the 14-week experimental period, an oral glucose tolerance test and grip strength test were conducted. Type 2 diabetic condition induced by HFD feeding and STZ/NAM injection resulted in reduced muscle mass and grip strength, and smaller muscle fiber areas. The KD nutritional intervention improved these effects. Additionally, the KD altered the gene expression of nucleotide-binding and oligomerization domain-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome- and endoplasmic reticulum (ER) stress-related markers in the muscles of diabetic mice. Collectively, KD improved muscle mass and function with alterations in NLRP3 inflammasome and ER stress.
Collapse
Affiliation(s)
- Sol Been Park
- Department of Food and Nutrition, Seoul Women’s University, Seoul, Republic of Korea
| | - Soo Jin Yang
- Department of Food and Nutrition, Seoul Women’s University, Seoul, Republic of Korea
| |
Collapse
|
7
|
Chung N. Impact of the ketogenic diet on body fat, muscle mass, and exercise performance: a review. Phys Act Nutr 2023; 27:1-7. [PMID: 38297470 PMCID: PMC10844723 DOI: 10.20463/pan.2023.0031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/12/2023] [Accepted: 11/17/2023] [Indexed: 02/02/2024] Open
Abstract
PURPOSE The purpose of this review was to investigate the effects of the ketogenic diet (KD), on body fat, muscle mass, and exercise performance. As the KD is a subject of ongoing debate, we also present the existing evidence regarding its potential benefits in the aforementioned areas of body fat, muscle mass, and exercise performance. METHODS A literature search was conducted using the keywords "ketogenic diet, low-carbohydrate diet, high-fat diet, body fat, muscle mass, and exercise performance" in PubMed, Web of Science, and Google Scholar. RESULTS The KD effectively reduced body fat in the short term and, preserved muscle mass during weight loss, however, its impact on exercise performance remains inconclusive owing to various factors. CONCLUSION While controversial, it is undeniable that the KD has the potential to affect body fat, muscle mass, and exercise performance. Consequently, additional research is required to elucidate the underlying mechanisms across various populations, optimize their implementation, and understand their long-term effects.
Collapse
Affiliation(s)
- Nana Chung
- Department of Physical Education, Sangji University, Wonju, Republic of Korea
| |
Collapse
|
8
|
Borszcz FK, Gabiatti MP, de Lucas RD, Hansen F. Ketogenic diets, exercise performance, and training adaptations. Curr Opin Clin Nutr Metab Care 2023; 26:364-368. [PMID: 37144460 DOI: 10.1097/mco.0000000000000940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
PURPOSE OF REVIEW The ketogenic diet has been proposed as a nutritional strategy in sports. This review was undertaken to provide an overview of the recent literature concerning the effects of ketogenic diet on exercise performance and training adaptations. RECENT FINDINGS Most recent literature on the ketogenic diet and exercise performance showed no beneficial effects, especially for trained individuals. During a period of intensified training, performance was clearly impaired during the ketogenic intervention, while a diet with high carbohydrates maintained physical performance. The main effect of the ketogenic diet resides in metabolic flexibility, inducing the metabolism to oxidize more fat for ATP resynthesis regardless of submaximal exercise intensities. SUMMARY The ketogenic diet is not a reasonable nutritional strategy, as it has no advantage over normal/high carbohydrate-based diets on physical performance and training adaptations even when used only in a specific training/nutritional periodization stage.
Collapse
Affiliation(s)
- Fernando Klitzke Borszcz
- Physical Effort Laboratory, Sports Center, Federal University of Santa Catarina, University Campus, Pantanal
| | - Mariana Papini Gabiatti
- Department of Nutrition, Health Sciences Center, Federal University of Santa Catarina, University Campus, Trindade, Florianópolis, Santa Catarina, Brazil
| | - Ricardo Dantas de Lucas
- Physical Effort Laboratory, Sports Center, Federal University of Santa Catarina, University Campus, Pantanal
| | - Fernanda Hansen
- Department of Nutrition, Health Sciences Center, Federal University of Santa Catarina, University Campus, Trindade, Florianópolis, Santa Catarina, Brazil
| |
Collapse
|
9
|
Patikorn C, Saidoung P, Pham T, Phisalprapa P, Lee YY, Varady KA, Veettil SK, Chaiyakunapruk N. Effects of ketogenic diet on health outcomes: an umbrella review of meta-analyses of randomized clinical trials. BMC Med 2023; 21:196. [PMID: 37231411 PMCID: PMC10210275 DOI: 10.1186/s12916-023-02874-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 04/19/2023] [Indexed: 05/27/2023] Open
Abstract
BACKGROUND Systematic reviews and meta-analyses of randomized clinical trials (RCTs) have reported the benefits of ketogenic diets (KD) in various participants such as patients with epilepsy and adults with overweight or obesity. Nevertheless, there has been little synthesis of the strength and quality of this evidence in aggregate. METHODS To grade the evidence from published meta-analyses of RCTs that assessed the association of KD, ketogenic low-carbohydrate high-fat diet (K-LCHF), and very low-calorie KD (VLCKD) with health outcomes, PubMed, EMBASE, Epistemonikos, and Cochrane database of systematic reviews were searched up to February 15, 2023. Meta-analyses of RCTs of KD were included. Meta-analyses were re-performed using a random-effects model. The quality of evidence per association provided in meta-analyses was rated by the GRADE (Grading of Recommendations, Assessment, Development, and Evaluations) criteria as high, moderate, low, and very low. RESULTS We included 17 meta-analyses comprising 68 RCTs (median [interquartile range, IQR] sample size of 42 [20-104] participants and follow-up period of 13 [8-36] weeks) and 115 unique associations. There were 51 statistically significant associations (44%) of which four associations were supported by high-quality evidence (reduced triglyceride (n = 2), seizure frequency (n = 1) and increased low-density lipoprotein cholesterol (LDL-C) (n = 1)) and four associations supported by moderate-quality evidence (decrease in body weight, respiratory exchange ratio (RER), hemoglobin A1c, and increased total cholesterol). The remaining associations were supported by very low (26 associations) to low (17 associations) quality evidence. In overweight or obese adults, VLCKD was significantly associated with improvement in anthropometric and cardiometabolic outcomes without worsening muscle mass, LDL-C, and total cholesterol. K-LCHF was associated with reduced body weight and body fat percentage, but also reduced muscle mass in healthy participants. CONCLUSIONS This umbrella review found beneficial associations of KD supported by moderate to high-quality evidence on seizure and several cardiometabolic parameters. However, KD was associated with a clinically meaningful increase in LDL-C. Clinical trials with long-term follow-up are warranted to investigate whether the short-term effects of KD will translate to beneficial effects on clinical outcomes such as cardiovascular events and mortality.
Collapse
Affiliation(s)
- Chanthawat Patikorn
- Department of Pharmacotherapy, College of Pharmacy, University of Utah, 30 2000 E, Salt Lake City, Utah 84112 USA
- Department of Social and Administrative Pharmacy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Pantakarn Saidoung
- Department of Pharmacotherapy, College of Pharmacy, University of Utah, 30 2000 E, Salt Lake City, Utah 84112 USA
| | - Tuan Pham
- Division of Gastroenterology, Hepatology & Nutrition, Department of Internal Medicine, University of Utah, Salt Lake City, Utah USA
| | - Pochamana Phisalprapa
- Division of Ambulatory Medicine, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Yeong Yeh Lee
- School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | - Krista A. Varady
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, Illinois USA
| | - Sajesh K. Veettil
- Department of Pharmacotherapy, College of Pharmacy, University of Utah, 30 2000 E, Salt Lake City, Utah 84112 USA
| | - Nathorn Chaiyakunapruk
- Department of Pharmacotherapy, College of Pharmacy, University of Utah, 30 2000 E, Salt Lake City, Utah 84112 USA
- IDEAS Center, Veterans Affairs Salt Lake City Healthcare System, Salt Lake City, Utah USA
| |
Collapse
|
10
|
Zong Z, Zhao M, Zhang M, Xu K, Zhang Y, Zhang X, Hu C. Association between PM 1 Exposure and Lung Function in Children and Adolescents: A Systematic Review and Meta-Analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:15888. [PMID: 36497960 PMCID: PMC9740616 DOI: 10.3390/ijerph192315888] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
The detrimental effects of PM2.5 and PM10 (particulate matter less than 2.5 or 10 μm) on human respiratory system, including lung function, have been widely assessed. However, the associations between PM1 (particulate matter of less than 1 μm) and lung function in children and adolescents are less explored, and current evidence is inconsistent. We conducted a meta-analysis of the literature on the association between PM1 and lung function in children and adolescents to fill this gap. With no date or language constraints, we used a combination of MeSH (Medical Subject Headings) terms and free text to search PubMed, EMBASE and Web of Science databases through, 1 October 2022 for "PM1 exposure" and "lung function". A total of 6420 relevant studies were identified through our initial search, and seven studies were included in our study. In this meta-analysis, the fixed effect and random effects statistical models were used to estimate the synthesized effects of the seven included studies. For every 10 μg/m3 increase in short-term PM1 exposure, forced vital capacity (FVC), forced expiratory volume in the first second (FEV1), peak expiratory flow (PEF) and maximal mid-expiratory flow (MMEF) decreased by 31.82 mL (95% CI: 20.18, 43.45), 32.28 mL (95% CI: 16.73, 48.91), 36.85 mL/s (95% CI: 15.33, 58.38) and 34.51 mL/s (95% CI: 19.61, 49.41), respectively. For each 10 μg/m3 increase in long-term PM1 exposure, FVC, FEV1, PEF and MMEF decreased by 102.34 mL (95% CI: 49.30, 155.38), 75.17 mL (95% CI: 39.61, 110.73), 119.01 mL/s (95% CI: 72.14, 165.88) and 44.94 mL/s (95% CI: 4.70, 85.18), respectively. Our study provides further scientific evidence for the harmful effects of PM1 exposure on lung function in children and adolescents, indicating that exposure to PM1 is detrimental to pulmonary health. To reduce the adverse health effects of air pollution on children and adolescents, effective preventive measures should be taken.
Collapse
Affiliation(s)
- Zhiqiang Zong
- Department of Clinical Medicine, The Second School of Clinical Medicine, Anhui Medical University, Hefei 230032, China
| | - Mengjie Zhao
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Mengyue Zhang
- Department of Clinical Medicine, The Second School of Clinical Medicine, Anhui Medical University, Hefei 230032, China
| | - Kexin Xu
- Department of Clinical Medicine, The Second School of Clinical Medicine, Anhui Medical University, Hefei 230032, China
| | - Yunquan Zhang
- School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Xiujun Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Chengyang Hu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei 230032, China
- Department of Humanistic Medicine, School of Humanistic Medicine, Anhui Medical University, Hefei 230032, China
| |
Collapse
|