1
|
Li H, Li P, Shen Q, Zhu Z, Yang M, Zhang X, Yang M, Shen W, Gong W. Nfil3 contributes to renal fibrosis by activating fibroblasts through directly promoting the expression of Spp1. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167741. [PMID: 39986442 DOI: 10.1016/j.bbadis.2025.167741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 01/21/2025] [Accepted: 02/17/2025] [Indexed: 02/24/2025]
Abstract
The activation of fibroblasts into myofibroblasts and the expansion of myofibroblasts are key processes contributing to renal fibrosis; however, the precise underlying mechanisms remain largely unclear. In this study, we found that nuclear factor, interleukin 3 regulated (Nfil3), a basic leucine zipper transcription factor, was significantly upregulated in fibroblasts in kidney tissues from mouse models of unilateral ureteral obstruction (UUO)-induced renal fibrosis and kidney biopsies from patients with renal fibrosis. Conditional knockout of Nfil3 in fibroblasts (Nfil3flox/floxS100a4Cre) and global knockout of Nfil3 reduced UUO-induced accumulation of myofibroblasts and the severity of renal fibrosis in mice, whereas ectopic expression of Nfil3 in fibroblasts activated renal interstitial fibroblasts and initiated renal fibrosis. Overexpression of Nfil3 significantly induced the expression of secreted phosphoprotein 1 (Spp1). Mechanistically, Nfil3 mediated the upregulation of Spp1 in renal fibroblasts by interacting with a conserved sequence in the promoter of Spp1 to regulate its transcription. Furthermore, transforming growth factor beta 1 (Tgfb1) was found to induce the upregulation of Nfil3 in renal fibroblasts. Knockdown of Nfil3 attenuated Tgfb1-induced expression of extracellular matrix proteins and the proliferation of fibroblasts by downregulating Spp1. Altogether, these results suggest that Nfil3 plays an important role in the activation and expansion of fibroblasts, thereby contributing to renal fibrosis.
Collapse
Affiliation(s)
- Huanan Li
- Department of Basic Medicine and Medical Technology, School of Medicine, Yangzhou University, Yangzhou, PR China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, School of Medicine, Yangzhou University, Yangzhou, PR China
| | - Peifen Li
- Department of Basic Medicine and Medical Technology, School of Medicine, Yangzhou University, Yangzhou, PR China
| | - Qinhao Shen
- Department of Basic Medicine and Medical Technology, School of Medicine, Yangzhou University, Yangzhou, PR China
| | - Zifan Zhu
- Department of Basic Medicine and Medical Technology, School of Medicine, Yangzhou University, Yangzhou, PR China
| | - Min Yang
- Department of Nephrology, Affiliated Hospital of Yangzhou University, Yangzhou, PR China; Department of Nephrology, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, PR China
| | - Xueying Zhang
- Department of Basic Medicine and Medical Technology, School of Medicine, Yangzhou University, Yangzhou, PR China
| | - Ming Yang
- Department of Nephrology, Affiliated Hospital of Yangzhou University, Yangzhou, PR China
| | - Weigan Shen
- Department of Basic Medicine and Medical Technology, School of Medicine, Yangzhou University, Yangzhou, PR China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, School of Medicine, Yangzhou University, Yangzhou, PR China.
| | - Weijuan Gong
- Department of Basic Medicine and Medical Technology, School of Medicine, Yangzhou University, Yangzhou, PR China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, School of Medicine, Yangzhou University, Yangzhou, PR China; Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, PR China.
| |
Collapse
|
2
|
Jeong K, Je J, Dusabimana T, Karekezi J, Nugroho TA, Ndahigwa EN, Yun SP, Kim HJ, Kim H, Park SW. Activation of Purinergic P2Y2 Receptor Protects the Kidney Against Renal Ischemia and Reperfusion Injury in Mice. Int J Mol Sci 2024; 25:12563. [PMID: 39684275 DOI: 10.3390/ijms252312563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/20/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
Extracellular ATP plays an important role in renal physiology as well as the pathogenesis of acute kidney injury induced by renal ischemia and reperfusion (IR). Expression of the purinergic P2Y2 receptor has been shown on inflammatory and structural cells of the kidney, and P2Y2R is preferably activated by ATP (or UTP). Here, we investigated the molecular mechanism of P2Y2R during IR injury by using P2Y2R knockout (KO) mice and a selective P2Y2R agonist, MRS2768. After renal IR, P2Y2R KO mice showed greater increases in plasma creatinine, tubular damage and neutrophil infiltration, and significant induction of proinflammatory cytokines and apoptotic markers than wild-type (WT) mice. In contrast, treatment with MRS2768 reduced plasma creatinine levels, tubular damage and inflammation, and renal apoptosis in mice subjected to renal IR. In cultured human proximal tubular HK-2 cells, MRS2768 upregulated P2Y2R mRNA levels and decreased TNF-α/cycloheximide-induced apoptosis and inflammation. Importantly, P2Y2R activation by MRS2768 increased the phosphorylation of protein kinase C (PKC), Src, and phosphatidylinositol 3-kinase (PI3K)/Akt. In addition, the inhibition of PI3K/Akt abolished the protective effects of MRS2768 against TNF-α/cycloheximide-induced apoptosis and inflammation in HK-2 cells. In conclusion, activation of P2Y2R protects against tubular apoptosis and inflammation during renal IR via the PKC/Src/Akt pathway, suggesting P2Y2R is a promising therapeutic target for acute kidney injury.
Collapse
Affiliation(s)
- Kyuho Jeong
- Department of Pharmacology, Institute of Medical Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
- Department of Biochemistry, College of Medicine, Dongguk University, Gyeongju 38066, Republic of Korea
| | - Jihyun Je
- Department of Pharmacology, Institute of Medical Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
- Department of Biochemistry, College of Medicine, Dongguk University, Gyeongju 38066, Republic of Korea
| | - Theodomir Dusabimana
- Department of Pharmacology, Institute of Medical Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Jacques Karekezi
- Department of Pharmacology, Institute of Medical Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
- Department of Convergence Medical Science, Gyeongsang National University Graduate School, Jinju 52727, Republic of Korea
| | - Tatang Aldi Nugroho
- Department of Pharmacology, Institute of Medical Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
- Department of Convergence Medical Science, Gyeongsang National University Graduate School, Jinju 52727, Republic of Korea
| | - Edvard Ntambara Ndahigwa
- Department of Pharmacology, Institute of Medical Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
- Department of Convergence Medical Science, Gyeongsang National University Graduate School, Jinju 52727, Republic of Korea
| | - Seung Pil Yun
- Department of Pharmacology, Institute of Medical Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
- Department of Convergence Medical Science, Gyeongsang National University Graduate School, Jinju 52727, Republic of Korea
| | - Hye Jung Kim
- Department of Pharmacology, Institute of Medical Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
- Department of Convergence Medical Science, Gyeongsang National University Graduate School, Jinju 52727, Republic of Korea
| | - Hwajin Kim
- Department of Pharmacology, Institute of Medical Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
- Department of Convergence Medical Science, Gyeongsang National University Graduate School, Jinju 52727, Republic of Korea
| | - Sang Won Park
- Department of Pharmacology, Institute of Medical Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
- Department of Convergence Medical Science, Gyeongsang National University Graduate School, Jinju 52727, Republic of Korea
| |
Collapse
|
3
|
Abdollahzadeh F, Khoshdel‐Rad N, Bahrehbar K, Erfanian S, Ezzatizadeh V, Totonchi M, Moghadasali R. Enhancing maturity in 3D kidney micro-tissues through clonogenic cell combinations and endothelial integration. J Cell Mol Med 2024; 28:e18453. [PMID: 38818569 PMCID: PMC11140233 DOI: 10.1111/jcmm.18453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 05/09/2024] [Accepted: 05/11/2024] [Indexed: 06/01/2024] Open
Abstract
As an advance laboratory model, three-dimensional (3D) organoid culture has recently been recruited to study development, physiology and abnormality of kidney tissue. Micro-tissues derived from primary renal cells are composed of 3D epithelial structures representing the main characteristics of original tissue. In this research, we presented a simple method to isolate mouse renal clonogenic mesenchymal (MLCs) and epithelial-like cells (ELCs). Then we have done a full characterization of MLCs using flow cytometry for surface markers which showed that more than 93% of cells expressed these markers (Cd44, Cd73 and Cd105). Epithelial and stem/progenitor cell markers characterization also performed for ELC cells and upregulating of these markers observed while mesenchymal markers expression levels were not significantly increased in ELCs. Each of these cells were cultured either alone (ME) or in combination with human umbilical vein endothelial cells (HUVECs) (MEH; with an approximate ratio of 10:5:2) to generate more mature kidney structures. Analysis of 3D MEH renal micro-tissues (MEHRMs) indicated a significant increase in renal-specific gene expression including Aqp1 (proximal tubule), Cdh1 (distal tubule), Umod (loop of Henle), Wt1, Podxl and Nphs1 (podocyte markers), compared to those groups without endothelial cells, suggesting greater maturity of the former tissue. Furthermore, ex ovo transplantation showed greater maturation in the constructed 3D kidney.
Collapse
Affiliation(s)
- Fatemeh Abdollahzadeh
- Department of Stem Cells and Developmental Biology, Cell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECRTehranIran
- Department of Developmental BiologyUniversity of Science and CultureTehranIran
| | - Niloofar Khoshdel‐Rad
- Department of Stem Cells and Developmental Biology, Cell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECRTehranIran
| | - Khadijeh Bahrehbar
- Department of Stem Cells and Developmental Biology, Cell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECRTehranIran
| | - Saiedeh Erfanian
- Department of Stem Cells and Developmental Biology, Cell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECRTehranIran
| | - Vahid Ezzatizadeh
- Medical Genetics DepartmentAyandeh Clinical and Genetic LaboratoryVaraminIran
| | - Mehdi Totonchi
- Department of Stem Cells and Developmental Biology, Cell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECRTehranIran
| | - Reza Moghadasali
- Department of Stem Cells and Developmental Biology, Cell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECRTehranIran
| |
Collapse
|
4
|
Gombedza FC, Shin S, Sadiua J, Stackhouse GB, Bandyopadhyay BC. The Rise in Tubular pH during Hypercalciuria Exacerbates Calcium Stone Formation. Int J Mol Sci 2024; 25:4787. [PMID: 38732005 PMCID: PMC11084476 DOI: 10.3390/ijms25094787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
In calcium nephrolithiasis (CaNL), most calcium kidney stones are identified as calcium oxalate (CaOx) with variable amounts of calcium phosphate (CaP), where CaP is found as the core component. The nucleation of CaP could be the first step of CaP+CaOx (mixed) stone formation. High urinary supersaturation of CaP due to hypercalciuria and an elevated urine pH have been described as the two main factors in the nucleation of CaP crystals. Our previous in vivo findings (in mice) show that transient receptor potential canonical type 3 (TRPC3)-mediated Ca2+ entry triggers a transepithelial Ca2+ flux to regulate proximal tubular (PT) luminal [Ca2+], and TRPC3-knockout (KO; -/-) mice exhibited moderate hypercalciuria and microcrystal formation at the loop of Henle (LOH). Therefore, we utilized TRPC3 KO mice and exposed them to both hypercalciuric [2% calcium gluconate (CaG) treatment] and alkalineuric conditions [0.08% acetazolamide (ACZ) treatment] to generate a CaNL phenotype. Our results revealed a significant CaP and mixed crystal formation in those treated KO mice (KOT) compared to their WT counterparts (WTT). Importantly, prolonged exposure to CaG and ACZ resulted in a further increase in crystal size for both treated groups (WTT and KOT), but the KOT mice crystal sizes were markedly larger. Moreover, kidney tissue sections of the KOT mice displayed a greater CaP and mixed microcrystal formation than the kidney sections of the WTT group, specifically in the outer and inner medullary and calyceal region; thus, a higher degree of calcifications and mixed calcium lithiasis in the kidneys of the KOT group was displayed. In our effort to find the Ca2+ signaling pathophysiology of PT cells, we found that PT cells from both treated groups (WTT and KOT) elicited a larger Ca2+ entry compared to the WT counterparts because of significant inhibition by the store-operated Ca2+ entry (SOCE) inhibitor, Pyr6. In the presence of both SOCE (Pyr6) and ROCE (receptor-operated Ca2+ entry) inhibitors (Pyr10), Ca2+ entry by WTT cells was moderately inhibited, suggesting that the Ca2+ and pH levels exerted sensitivity changes in response to ROCE and SOCE. An assessment of the gene expression profiles in the PT cells of WTT and KOT mice revealed a safeguarding effect of TRPC3 against detrimental processes (calcification, fibrosis, inflammation, and apoptosis) in the presence of higher pH and hypercalciuric conditions in mice. Together, these findings show that compromise in both the ROCE and SOCE mechanisms in the absence of TRPC3 under hypercalciuric plus higher tubular pH conditions results in higher CaP and mixed crystal formation and that TRPC3 is protective against those adverse effects.
Collapse
Affiliation(s)
- Farai C. Gombedza
- Calcium Signaling Laboratory, Research Service, Veterans Affairs Medical Center, 50 Irving Street, NW, Washington, DC 20422, USA; (F.C.G.); (S.S.); (J.S.)
| | - Samuel Shin
- Calcium Signaling Laboratory, Research Service, Veterans Affairs Medical Center, 50 Irving Street, NW, Washington, DC 20422, USA; (F.C.G.); (S.S.); (J.S.)
- Department of Biomedical Engineering, The Catholic University of America, 620 Michigan Avenue NE, Washington, DC 20064, USA
| | - Jaclyn Sadiua
- Calcium Signaling Laboratory, Research Service, Veterans Affairs Medical Center, 50 Irving Street, NW, Washington, DC 20422, USA; (F.C.G.); (S.S.); (J.S.)
| | - George B. Stackhouse
- Urology Service, Veterans Affairs Medical Center, 50 Irving Street, NW, Washington, DC 20422, USA;
| | - Bidhan C. Bandyopadhyay
- Calcium Signaling Laboratory, Research Service, Veterans Affairs Medical Center, 50 Irving Street, NW, Washington, DC 20422, USA; (F.C.G.); (S.S.); (J.S.)
- Department of Biomedical Engineering, The Catholic University of America, 620 Michigan Avenue NE, Washington, DC 20064, USA
- Division of Renal Diseases & Hypertension, Department of Medicine, The George Washington University, Washington, DC 20037, USA
| |
Collapse
|
5
|
Uchida Y, Torisu K, Aihara S, Imazu N, Ooboshi H, Kitazono T, Nakano T. Arginase 2 Promotes Cisplatin-Induced Acute Kidney Injury by the Inflammatory Response of Macrophages. J Transl Med 2023; 103:100227. [PMID: 37541621 DOI: 10.1016/j.labinv.2023.100227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 07/08/2023] [Accepted: 07/24/2023] [Indexed: 08/06/2023] Open
Abstract
Acute kidney injury (AKI) is a complex clinical syndrome with a rapid decrease in renal function caused by several different etiologies, including sepsis, ischemia, and the administration of nephrotoxic drugs. Tubular arginase 2 (ARG2), an arginine-metabolic enzyme, is a potential therapeutic target for AKI, but it has not been confirmed under various AKI conditions. The aim of this study was to investigate ARG2 as a therapeutic target for cisplatin-induced AKI. Cisplatin-treated mice with a genetic deficiency in Arg2 had significant amelioration of renal dysfunction, characterized by decreased acute tubular damage and apoptosis. In contrast, cisplatin-induced tubular toxicity was not ameliorated in proximal tubule cells derived from Arg2-deficient mice. Immunohistochemical analysis demonstrated the increased infiltration of ARG2-positive macrophages in kidneys damaged by cisplatin. Importantly, cisplatin-treated Arg2 knockout mice exhibited a significant reduction in kidney inflammation, characterized by the decreased infiltration of inflammatory macrophages and reduced gene expression of interleukin (IL)-6 and IL-1β. The secretion of IL-6 and IL-1β induced by lipopolysaccharides was decreased in bone marrow-derived macrophages isolated from Arg2-deficient mice. Furthermore, the lipopolysaccharide-induced elevation of mitochondrial membrane potential and production of reactive oxygen species were reduced in bone marrow-derived macrophages lacking Arg2. These findings indicate that ARG2 promotes the inflammatory responses of macrophages through mitochondrial reactive oxygen species, resulting in the exacerbation of AKI. Therefore, targeting ARG2 in macrophages may constitute a promising therapeutic approach for AKI.
Collapse
Affiliation(s)
- Yushi Uchida
- Division of Internal Medicine, Fukuoka Dental College, Fukuoka, Japan; Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kumiko Torisu
- Department of Integrated Therapy for Chronic Kidney Disease, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | - Seishi Aihara
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Noriyuki Imazu
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hiroaki Ooboshi
- Division of Internal Medicine, Fukuoka Dental College, Fukuoka, Japan
| | - Takanari Kitazono
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Toshiaki Nakano
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Center for Cohort Studies, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
6
|
Khelifi G, Chow T, Whiteley J, Fort V, Humphreys BD, Hussein SM, Rogers IM. Determining epigenetic memory in kidney proximal tubule cell derived induced pluripotent stem cells using a quadruple transgenic reprogrammable mouse. Sci Rep 2022; 12:20340. [PMID: 36434072 PMCID: PMC9700797 DOI: 10.1038/s41598-022-24581-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 11/17/2022] [Indexed: 11/27/2022] Open
Abstract
The majority of nucleated somatic cells can be reprogrammed to induced pluripotent stem cells (iPSCs). The process of reprogramming involves epigenetic remodelling to turn on pluripotency-associated genes and turn off lineage-specific genes. Some evidence shows that iPSCs retain epigenetic marks of their cell of origin and this "epigenetic memory" influences their differentiation potential, with a preference towards their cell of origin. Here, we reprogrammed proximal tubule cells (PTC) and tail tip fibroblasts (TTF), from a reprogrammable mouse to iPSCs and differentiated the iPSCs to renal progenitors to understand if epigenetic memory plays a role in renal differentiation. This model allowed us to eliminate experimental variability due to donor genetic differences and transfection of the reprogramming factors such as copy number and integration site. In this study we demonstrated that early passage PTC iPSCs and TTF iPSCs expressed low levels of renal progenitor genes and high levels of pluripotency-associated genes, and the transcriptional levels of these genes were not significantly different between PTC iPSCs and TTF iPSCs. We used ChIP-seq of H3K4me3, H3K27me3, H3K36me3 and global DNA methylation profiles of PTC iPSCs and TTF iPSCs to demonstrate that global epigenetic marks were not different between the cells from the two different sets of tissue samples. There were also no epigenetic differences observed when kidney developmental genes and pluripotency-associated genes were closely examined. We did observe that during differentiation to renal progenitor cells the PTC iPSC-derived renal cells expressed higher levels of three renal progenitor genes compared to progenitors derived from TTF iPSCs but the underlying DNA methylation and histone methylation patterns did not suggest an epigenetic memory basis for this.
Collapse
Affiliation(s)
- Gabriel Khelifi
- grid.23856.3a0000 0004 1936 8390Cancer Research Center, Université Laval, Quebec City, QC Canada ,grid.411081.d0000 0000 9471 1794Oncology Division, CHU of Québec-Université Laval Research Center, Quebec City, QC Canada
| | - Theresa Chow
- grid.250674.20000 0004 0626 6184Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON Canada ,grid.17063.330000 0001 2157 2938Department of Physiology, University of Toronto, Toronto, ON Canada
| | - Jennifer Whiteley
- grid.250674.20000 0004 0626 6184Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON Canada
| | - Victoire Fort
- grid.23856.3a0000 0004 1936 8390Cancer Research Center, Université Laval, Quebec City, QC Canada ,grid.411081.d0000 0000 9471 1794Oncology Division, CHU of Québec-Université Laval Research Center, Quebec City, QC Canada
| | - Benjamin D. Humphreys
- grid.4367.60000 0001 2355 7002Division of Nephrology, Department of Medicine, Department of Developmental Biology, Washington University in St. Louis School of Medicine, St. Louis, MO USA
| | - Samer M.I. Hussein
- grid.23856.3a0000 0004 1936 8390Cancer Research Center, Université Laval, Quebec City, QC Canada ,grid.411081.d0000 0000 9471 1794Oncology Division, CHU of Québec-Université Laval Research Center, Quebec City, QC Canada
| | - Ian M. Rogers
- grid.250674.20000 0004 0626 6184Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON Canada ,grid.17063.330000 0001 2157 2938Department of Physiology, University of Toronto, Toronto, ON Canada ,grid.17063.330000 0001 2157 2938Department of Obstetrics and Gynaecology, University of Toronto, Toronto, ON Canada ,grid.231844.80000 0004 0474 0428Ajmera Transplant Center, UHN, Toronto, Canada
| |
Collapse
|
7
|
Chen C, Wang W, Poklis JL, Lichtman AH, Ritter JK, Hu G, Xie D, Li N. Inactivation of fatty acid amide hydrolase protects against ischemic reperfusion injury-induced renal fibrogenesis. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166456. [PMID: 35710061 PMCID: PMC10215004 DOI: 10.1016/j.bbadis.2022.166456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/26/2022] [Accepted: 06/06/2022] [Indexed: 11/26/2022]
Abstract
Although cannabinoid receptors (CB) are recognized as targets for renal fibrosis, the roles of endogenous cannabinoid anandamide (AEA) and its primary hydrolytic enzyme, fatty acid amide hydrolase (FAAH), in renal fibrogenesis remain unclear. The present study used a mouse model of post-ischemia-reperfusion renal injury (PIR) to test the hypothesis that FAAH participates in the renal fibrogenesis. Our results demonstrated that PIR showed upregulated expression of FAAH in renal proximal tubules, accompanied with decreased AEA levels in kidneys. Faah knockout mice recovered the reduced AEA levels and ameliorated PIR-triggered increases in blood urea nitrogen, plasma creatinine as well as renal profibrogenic markers and injuries. Correspondingly, a selective FAAH inhibitor, PF-04457845, inhibited the transforming growth factor-beta 1 (TGF-β1)-induced profibrogenic markers in human proximal tubular cell line (HK-2 cells) and mouse primary cultured tubular cells. Knockdown of FAAH by siRNA in HK-2 cells had similar effects as PF-04457845. Tubular cells isolated from Faah-/- mice further validated the protection against TGF-β1-induced damages. The CB 1 or CB2 receptor antagonist and exogenous FAAH metabolite arachidonic acid failed to reverse the protective effects of FAAH inactivation in HK-2 cells. However, a substrate-selective inhibitor of AEA-cyclooxygenase-2 (COX-2) pathway significantly suppressed the anti-profibrogenic actions of FAAH inhibition. Further, the AEA-COX-2 metabolite, prostamide E2 exerted anti-fibrogenesis effect. These findings suggest that FAAH activation and the consequent reduction of AEA contribute to the renal fibrogenesis, and that FAAH inhibition protects against fibrogenesis in renal cells independently of CB receptors via the AEA-COX-2 pathway by the recovery of reduced AEA.
Collapse
Affiliation(s)
- Chaoling Chen
- Department of Pharmacology & Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Weili Wang
- Department of Pharmacology & Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Justin L Poklis
- Department of Pharmacology & Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Aron H Lichtman
- Department of Pharmacology & Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Joseph K Ritter
- Department of Pharmacology & Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Gaizun Hu
- Department of Pharmacology & Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Dengpiao Xie
- Department of Pharmacology & Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Ningjun Li
- Department of Pharmacology & Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA 23298, USA.
| |
Collapse
|
8
|
Jeong Y, Tin A, Irudayaraj J. Flipped Well-Plate Hanging-Drop Technique for Growing Three-Dimensional Tumors. Front Bioeng Biotechnol 2022; 10:898699. [PMID: 35860331 PMCID: PMC9289396 DOI: 10.3389/fbioe.2022.898699] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/25/2022] [Indexed: 11/24/2022] Open
Abstract
Three-dimensional (3D) tumor culture techniques are gaining popularity as in vitro models of tumoral tissue analogues. Despite the widespread interest, need, and present-day effort, most of the 3D tumor culturing methodologies have not gone beyond the inventors’ laboratories. This, in turn, limits their applicability and standardization. In this study, we introduce a straightforward and user-friendly approach based on standard 96-well plates with basic amenities for growing 3D tumors in a scaffold-free/scaffold-based format. Hanging drop preparation can be easily employed by flipping a universal 96-well plate. The droplets of the medium generated by the well-plate flip (WPF) method can be easily modified to address various mechanisms and processes in cell biology, including cancer. To demonstrate the applicability and practicality of the conceived approach, we utilized human colorectal carcinoma cells (HCT116) to first show the generation of large scaffold-free 3D tumor spheroids over 1.5 mm in diameter in single-well plates. As a proof-of-concept, we also demonstrate matrix-assisted tumor culture techniques in advancing the broader use of 3D culture systems. The conceptualized WPF approach can be adapted for a range of applications in both basic and applied biological/engineering research.
Collapse
Affiliation(s)
- Yoon Jeong
- Department of Bioengineering, University of Illinois at Urbana‐Champaign, Urbana, IL, United States
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Ashley Tin
- Department of Computer Science, University of Illinois at Urbana‐Champaign, Urbana, IL, United States
| | - Joseph Irudayaraj
- Department of Bioengineering, University of Illinois at Urbana‐Champaign, Urbana, IL, United States
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- *Correspondence: Joseph Irudayaraj,
| |
Collapse
|
9
|
Shin S, Ibeh CL, Awuah Boadi E, Choi BE, Roy SK, Bandyopadhyay BC. Hypercalciuria switches Ca 2+ signaling in proximal tubular cells, induces oxidative damage to promote calcium nephrolithiasis. Genes Dis 2022; 9:531-548. [PMID: 35224165 PMCID: PMC8843860 DOI: 10.1016/j.gendis.2021.04.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 04/05/2021] [Accepted: 04/27/2021] [Indexed: 11/20/2022] Open
Abstract
Proximal tubule (PT) transports most of the renal Ca2+, which was usually described as paracellular (passive). We found a regulated Ca2+ entry pathway in PT cells via the apical transient receptor potential canonical 3 (TRPC3) channel, which initiates transcellular Ca2+ transport. Although TRPC3 knockout (-/-) mice were mildly hypercalciuric and displayed luminal calcium phosphate (CaP) crystals at Loop of Henle (LOH), no CaP + calcium oxalate (CaOx) mixed urine crystals were spotted, which are mostly found in calcium nephrolithiasis (CaNL). Thus, we used oral calcium gluconate (CaG; 2%) to raise the PT luminal [Ca2+]o further in TRPC3 -/- mice for developing such mixed stones to understand the mechanistic role of PT-Ca2+ signaling in CaNL. Expectedly, CaG-treated mice urine samples presented with numerous mixed crystals with remains of PT cells, which were pronounced in TRPC3 -/- mice, indicating PT cell damage. Notably, PT cells from CaG-treated groups switched their mode of Ca2+ entry from receptor-operated to store-operated pathway with a sustained rise in intracellular [Ca2+] ([Ca2+]i), indicating the stagnation in PT Ca2+ transport. Moreover, those PT cells from CaG-treated groups demonstrated an upregulation of calcification, inflammation, fibrotic, oxidative stress, and apoptotic genes; effects of which were more robust in TRPC3 ablated condition. Furthermore, kidneys from CaG-treated groups exhibited fibrosis, tubular injury and calcifications with significant reactive oxygen species generation in the urine, thus, indicating in vivo CaNL. Taken together, excess PT luminal Ca2+ due to escalation of hypercalciuria in TRPC3 ablated mice induced surplus CaP crystal formation and caused stagnation of PT [Ca2+]i, invoking PT cell injury, hence mixed stone formation.
Collapse
Affiliation(s)
| | | | - Eugenia Awuah Boadi
- Calcium Signaling Laboratory, Research Service, Veterans Affairs Medical Center, 50 Irving Street, NW, Washington, DC 20422, USA
| | - Bok-Eum Choi
- Calcium Signaling Laboratory, Research Service, Veterans Affairs Medical Center, 50 Irving Street, NW, Washington, DC 20422, USA
| | - Sanjit K. Roy
- Calcium Signaling Laboratory, Research Service, Veterans Affairs Medical Center, 50 Irving Street, NW, Washington, DC 20422, USA
| | - Bidhan C. Bandyopadhyay
- Calcium Signaling Laboratory, Research Service, Veterans Affairs Medical Center, 50 Irving Street, NW, Washington, DC 20422, USA
| |
Collapse
|
10
|
Onishi Y, Mise K, Kawakita C, Uchida HA, Sugiyama H, Sugawara R, Yamaguchi S, Yoshida M, Mitsuhashi T, Yamada M, Hirabayashi J, Wada J. Development of Urinary Diagnostic Biomarker for IgA Nephropathy by Lectin Microarray. Am J Nephrol 2021; 53:10-20. [PMID: 34965524 DOI: 10.1159/000520998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 11/16/2021] [Indexed: 11/19/2022]
Abstract
INTRODUCTION The pathogenic roles of aberrantly glycosylated IgA1 have been reported. However, it is unexplored whether the profiling of urinary glycans contributes to the diagnosis of IgAN. METHODS We conducted a retrospective study enrolling 493 patients who underwent renal biopsy at Okayama University Hospital between December 2010 and September 2017. We performed lectin microarray in urine samples and investigated whether c-statistics of the reference standard diagnosis model employing hematuria, proteinuria, and serum IgA were improved by adding the urinary glycan intensity. RESULTS Among 45 lectins, 3 lectins showed a significant improvement of the models: Amaranthus caudatus lectin (ACA) with the difference of c-statistics 0.038 (95% CI: 0.019-0.058, p < 0.001), Agaricus bisporus lectin (ABA) 0.035 (95% CI: 0.015-0.055, p < 0.001), and Maackia amurensis lectin (MAH) 0.035 (95% CI: 0.015-0.054, p < 0.001). In 3 lectins, each signal plus reference standard showed good reclassification (category-free NRI and relative IDI) and good model fitting associated with the improvement of AIC and BIC. Stratified by eGFR, the discriminatory ability of ACA plus reference standard was maintained, suggesting the robust renal function-independent diagnostic performance of ACA. By decision curve analysis, there was a 3.45% net benefit by adding urinary glycan intensity of ACA to the reference standard at the predefined threshold probability of 40%. CONCLUSIONS The reduction of Gal(β1-3)GalNAc (T-antigen), Sia(α2-3)Gal(β1-3)GalNAc (Sialyl T), and Sia(α2-3)Gal(β1-3)Sia(α2-6)GalNAc (disialyl-T) was suggested by binding specificities of 3 lectins. C1GALT1 and COSMC were responsible for the biosynthesis of these glycans, and they were known to be downregulated in IgAN. The urinary glycan analysis by ACA is a useful and robust noninvasive strategy for the diagnosis of IgAN.
Collapse
Affiliation(s)
- Yasuhiro Onishi
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Koki Mise
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
- Section of Nephrology, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Chieko Kawakita
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Haruhito A Uchida
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
- Department of Chronic Kidney Disease and Cardiovascular Disease, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hitoshi Sugiyama
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
- Department of Human Resource Development of Dialysis Therapy for Kidney Disease, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Ryosuke Sugawara
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Satoshi Yamaguchi
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Michihiro Yoshida
- Center for Innovative Clinical Medicine, Okayama University Hospital, Okayama, Japan
| | - Toshiharu Mitsuhashi
- Center for Innovative Clinical Medicine, Okayama University Hospital, Okayama, Japan
| | | | - Jun Hirabayashi
- Institute for Glyco-core Research, Nagoya University, Nagoya, Japan
| | - Jun Wada
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
11
|
Chang DY, Li XQ, Chen M, Zhao MH. Dapagliflozin Ameliorates Diabetic Kidney Disease via Upregulating Crry and Alleviating Complement Over-activation in db/db Mice. Front Pharmacol 2021; 12:729334. [PMID: 34712135 PMCID: PMC8546210 DOI: 10.3389/fphar.2021.729334] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 09/29/2021] [Indexed: 12/30/2022] Open
Abstract
Sodium-glucose cotransporter 2(SGLT2) inhibitors show prominent renal protective effect in diabetic kidney disease (DKD), anti-inflammatory effect being one of its key mechanisms. Over-activation of the complement system, a crucial part of innate immunity, plays an important role in DKD. We aimed to investigate the effect of SGLT2 inhibitors on alleviating complement over-activation in DKD. Db/db mice were randomly divided into two groups, with 7 mice in each group treated with dapagliflozin and vehicle respectively, and 7 mice in m/m mice group. Laboratory and renal pathological parameters were evaluated. Mouse proximal tubular epithelial cells (MPTECs) were cultured and treated with high glucose. Dapagliflozin and dimethyloxallyl glycine (DMOG) were added as conditional treatment. Dapagliflozin-treated db/db mice showed significantly lower urinary albumin than vehicle-treated ones. Besides typical glomerular and tubulointerstitial injury, both C3b and membrane attack complex (MAC) depositions were significantly attenuated in dapagliflozin-treated db/db mice. The expression of complement receptor type 1-related protein y (Crry), a key complement regulator which inhibits complement over-activation, was significantly upregulated by dapagliflozin. Dapagliflozin-mediated Crry upregulation was associated with inhibition of HIF-1α accumulation under high glucose. When HIF-1α expression was stabilized by DMOG, the protective effect of dapagliflozin via upregulating Crry was blocked. In conclusion, dapagliflozin could attenuate complement over-activation in diabetic mice via upregulating Crry, which is associated with the suppression of HIF-1α accumulation in MPTECs.
Collapse
Affiliation(s)
- Dong-Yuan Chang
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, China.,Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China.,Research Units of Diagnosis and Treatment of Immune-Mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiao-Qian Li
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, China.,Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China.,Research Units of Diagnosis and Treatment of Immune-Mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Min Chen
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, China.,Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China.,Research Units of Diagnosis and Treatment of Immune-Mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Ming-Hui Zhao
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, China.,Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China.,Research Units of Diagnosis and Treatment of Immune-Mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
12
|
Lu YA, Liao CT, Raybould R, Talabani B, Grigorieva I, Szomolay B, Bowen T, Andrews R, Taylor PR, Fraser D. Single-Nucleus RNA Sequencing Identifies New Classes of Proximal Tubular Epithelial Cells in Kidney Fibrosis. J Am Soc Nephrol 2021; 32:2501-2516. [PMID: 34155061 PMCID: PMC8722798 DOI: 10.1681/asn.2020081143] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 05/19/2021] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Proximal tubular cells (PTCs) are the most abundant cell type in the kidney. PTCs are central to normal kidney function and to regeneration versus organ fibrosis following injury. This study used single-nucleus RNA sequencing (snRNAseq) to describe the phenotype of PTCs in renal fibrosis. METHODS Kidneys were harvested from naïve mice and from mice with renal fibrosis induced by chronic aristolochic acid administration. Nuclei were isolated using Nuclei EZ Lysis buffer. Libraries were prepared on the 10× platform, and snRNAseq was completed using the Illumina NextSeq 550 System. Genome mapping was carried out with high-performance computing. RESULTS A total of 23,885 nuclei were analyzed. PTCs were found in five abundant clusters, mapping to S1, S1-S2, S2, S2-cortical S3, and medullary S3 segments. Additional cell clusters ("new PTC clusters") were at low abundance in normal kidney and in increased number in kidneys undergoing regeneration/fibrosis following injury. These clusters exhibited clear molecular phenotypes, permitting labeling as proliferating, New-PT1, New-PT2, and (present only following injury) New-PT3. Each cluster exhibited a unique gene expression signature, including multiple genes previously associated with renal injury response and fibrosis progression. Comprehensive pathway analyses revealed metabolic reprogramming, enrichment of cellular communication and cell motility, and various immune activations in new PTC clusters. In ligand-receptor analysis, new PTC clusters promoted fibrotic signaling to fibroblasts and inflammatory activation to macrophages. CONCLUSIONS These data identify unrecognized PTC phenotype heterogeneity and reveal novel PTCs associated with kidney fibrosis.
Collapse
Affiliation(s)
- Yueh-An Lu
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom,Wales Kidney Research Unit, School of Medicine, Cardiff University, Cardiff, United Kingdom,Division of Nephrology, Kidney Research Center, Linkou Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Chia-Te Liao
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom,Systems Immunity University Research Institute, School of Medicine, Cardiff University, Cardiff, United Kingdom,Division of Nephrology, Department of Internal Medicine, Taipei Medical University–Shuang Ho Hospital, Taipei, Taiwan,Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan,Taipei Medical University-Research Center of Urology and Kidney, Taipei Medical University, Taipei, Taiwan
| | - Rachel Raybould
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom,Systems Immunity University Research Institute, School of Medicine, Cardiff University, Cardiff, United Kingdom,Dementia Research Institute, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Bnar Talabani
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom,Wales Kidney Research Unit, School of Medicine, Cardiff University, Cardiff, United Kingdom,Systems Immunity University Research Institute, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Irina Grigorieva
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom,Wales Kidney Research Unit, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Barbara Szomolay
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom,Systems Immunity University Research Institute, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Timothy Bowen
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom,Wales Kidney Research Unit, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Robert Andrews
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom,Systems Immunity University Research Institute, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Philip R. Taylor
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom,Systems Immunity University Research Institute, School of Medicine, Cardiff University, Cardiff, United Kingdom,Dementia Research Institute, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Donald Fraser
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom,Wales Kidney Research Unit, School of Medicine, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
13
|
Non-invasive assessment of exfoliated kidney cells extracted from urine using multispectral autofluorescence features. Sci Rep 2021; 11:10655. [PMID: 34017033 PMCID: PMC8138006 DOI: 10.1038/s41598-021-89758-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 04/30/2021] [Indexed: 11/22/2022] Open
Abstract
Optimally preserved urinary exfoliated renal proximal tubule cells were assessed by multispectral imaging of cell autofluorescence. We demonstrated different multispectral autofluorescence signals in such cells extracted from the urine of patients with healthy or diseased kidneys. Using up to 10 features, we were able to differentiate cells from individuals with heathy kidneys and impaired renal function (indicated by estimated glomerular filtration rate (eGFR) values) with the receiver operating characteristic area under the curve (AUC) of 0.99. Using the same method, we were also able to discriminate such urine cells from patients with and without renal fibrosis on biopsy, where significant differences in multispectral autofluorescence signals (AUC = 0.90) were demonstrated between healthy and diseased patients (p < 0.05). These findings show that multispectral assessment of the cell autofluorescence in urine exfoliated proximal tubule kidney cells has the potential to be developed as a sensitive, non-invasive diagnostic method for CKD.
Collapse
|
14
|
Jomura R, Tanno Y, Akanuma SI, Kubo Y, Tachikawa M, Hosoya KI. Monocarboxylate transporter 12 as a guanidinoacetate efflux transporter in renal proximal tubular epithelial cells. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183434. [PMID: 32781157 DOI: 10.1016/j.bbamem.2020.183434] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 07/29/2020] [Accepted: 07/30/2020] [Indexed: 12/12/2022]
Abstract
Guanidinoacetate (GAA), which is a precursor of creatine, is mainly biosynthesized in the renal proximal tubular epithelial cells (RPTECs). Plasma concentration of GAA has been reported to be reduced in patients with monocarboxylate transporter 12 (MCT12) mutation (p.Q215X). However, the mechanism underlying GAA release from the RPTECs remains unclear. Therefore, to elucidate the role of MCT12 in renal GAA release, MCT12-mediated GAA transport was evaluated using the human and rat MCT12-expressing Xenopus laevis oocytes and primary-cultured rat RPTECs. [14C]GAA uptake by the human and rat MCT12-expressing oocytes was significantly higher than that by the water-injected oocytes. Rat MCT12-mediated uptake of [14C]GAA by the oocytes was found to be sodium ion (Na+)-independent and exhibited saturable kinetics with a Michaelis-Menten constant of 3.38 mM. Transport activities of rat MCT12 tend to increase along with increasing of extracellular pH. In addition, the efflux transport of [14C]GAA from the human and rat MCT12-expressing oocytes was significantly higher than that from the water-injected oocytes. These results suggest that both the influx and efflux transport of GAA is mediated by MCT12. In the primary-cultured rat RPTECs, [14C]GAA efflux transport was significantly reduced by the transfection of MCT12-specific siRNAs, suggesting that MCT12 participates in GAA efflux transport in rat RPTECs. Therefore, it suggests that MCT12 is involved in GAA release from RPTECs to the circulating blood, since MCT12 is known to be localized on the basal membrane of RPTECs.
Collapse
Affiliation(s)
- Ryuta Jomura
- Department of Pharmaceutics, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan.
| | - Yu Tanno
- Department of Pharmaceutics, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan.
| | - Shin-Ichi Akanuma
- Department of Pharmaceutics, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan.
| | - Yoshiyuki Kubo
- Department of Pharmaceutics, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan.
| | - Masanori Tachikawa
- Graduate School of Biomedical Sciences, Tokushima University, 1-78-1 Shomachi, Tokushima 770-8505, Japan.
| | - Ken-Ichi Hosoya
- Department of Pharmaceutics, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan.
| |
Collapse
|
15
|
Han X, Sun Z. Epigenetic Regulation of KL (Klotho) via H3K27me3 (Histone 3 Lysine [K] 27 Trimethylation) in Renal Tubule Cells. Hypertension 2020; 75:1233-1241. [PMID: 32223380 DOI: 10.1161/hypertensionaha.120.14642] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
KL (klotho) levels decline with age, which is an important mechanistic driver of aging. KL gene deficiency is associated with hypertension. The purpose of this study is to investigate the potential role of H3K27me3 (histone 3 lysine [K] 27 trimethylation) in the regulation of KL gene expression and examine the related molecular pathways that may drive kidney cell aging. Kidneys were collected from 6-month-old WT (wild type; young WT), 30-month-old WT (aged WT), and 6- (young) and 20-month-old (aged) KL mutant mice, respectively. We demonstrated that the H3K27me3 level was increased in kidneys of aged WT and KL mutant mice versus young WT mice. Elevation of H3K27me3 levels was likely due to downregulation of the H3K27 (histone H3 Lys 27)-specific demethylase JMJD3 (the Jumonji domain containing-3) in the aged kidneys. Inhibition of PRC2 (polycomb repressive complex C2; histone trimethyltransferase) decreased the H3K27me3 levels leading to an increase in the expression of KL in cultured primary renal tubule cells assessed by Western blot and KL promoter activity assays. The chromatin immunoprecipitation qPCR assay revealed that H3K27me3 was physically associated with the KL promoter region. Furthermore, aging impaired the SGK1 (serum- and glucocorticoid-induced protein kinase 1)/FOXO3a (the forkhead box class O 3a) signaling leading to upregulation of p53 and p16 (aging markers) in the kidney of aged WT mice. KL may regulate the SGK1/FOXO3 signaling, which was decreased due to KL deficiency. Thus, aging-associated downregulation of KL gene expression may be partly attributed to upregulation of H3K27me3 levels. Downregulation of KL may impair the SGK1/FOXO3 signaling contributing to kidney cell aging.
Collapse
Affiliation(s)
- Xiaobin Han
- From the Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis
| | - Zhongjie Sun
- From the Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis
| |
Collapse
|
16
|
Satou R, Cypress MW, Woods TC, Katsurada A, Dugas CM, Fonseca VA, Navar LG. Blockade of sodium-glucose cotransporter 2 suppresses high glucose-induced angiotensinogen augmentation in renal proximal tubular cells. Am J Physiol Renal Physiol 2019; 318:F67-F75. [PMID: 31682172 DOI: 10.1152/ajprenal.00402.2019] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Renal proximal tubular angiotensinogen (AGT) is increased by hyperglycemia (HG) in diabetes mellitus, which augments intrarenal angiotensin II formation, contributing to the development of hypertension and kidney injury. Sodium-glucose cotransporter 2 (SGLT2) is abundantly expressed in proximal tubular cells (PTCs). The present study investigated the effects of canagliflozin (CANA), a SGLT2 inhibitor, on HG-induced AGT elevation in cultured PTCs. Mouse PTCs were treated with 5-25 mM glucose. CANA (0-10 µM) was applied 1 h before glucose treatment. Glucose (10 mM) increased AGT mRNA and protein levels at 12 h (3.06 ± 0.48-fold in protein), and 1 and 10 µM CANA as well as SGLT2 shRNA attenuated the AGT augmentation. CANA did not suppress the elevated AGT levels induced by 25 mM glucose. Increased AGT expression induced by treatment with pyruvate, a glucose metabolite that does not require SGLT2 for uptake, was not attenuated by CANA. In HG-treated PTCs, intracellular reactive oxygen species levels were elevated compared with baseline (4.24 ± 0.23-fold), and these were also inhibited by CANA. Furthermore, tempol, an antioxidant, attenuated AGT upregulation in HG-treated PTCs. HG-induced AGT upregulation was not inhibited by an angiotensin II receptor antagonist, indicating that HG stimulates AGT expression in an angiotensin II-independent manner. These results indicate that enhanced glucose entry via SGLT2 into PTCs elevates intracellular reactive oxygen species generation by stimulation of glycolysis and consequent AGT augmentation. SGLT2 blockade limits HG-induced AGT stimulation, thus reducing the development of kidney injury in diabetes mellitus.
Collapse
Affiliation(s)
- Ryousuke Satou
- Department of Physiology and Department of Medicine and Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New Orleans, Louisiana
| | - Michael W Cypress
- Department of Physiology and Department of Medicine and Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New Orleans, Louisiana
| | - T Cooper Woods
- Department of Physiology and Department of Medicine and Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New Orleans, Louisiana
| | - Akemi Katsurada
- Department of Physiology and Department of Medicine and Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New Orleans, Louisiana
| | - Courtney M Dugas
- Department of Physiology and Department of Medicine and Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New Orleans, Louisiana
| | - Vivian A Fonseca
- Department of Physiology and Department of Medicine and Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New Orleans, Louisiana
| | - L Gabriel Navar
- Department of Physiology and Department of Medicine and Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New Orleans, Louisiana
| |
Collapse
|
17
|
Ibeh CL, Yiu AJ, Kanaras YL, Paal E, Birnbaumer L, Jose PA, Bandyopadhyay BC. Evidence for a regulated Ca 2+ entry in proximal tubular cells and its implication in calcium stone formation. J Cell Sci 2019; 132:jcs.225268. [PMID: 30910829 DOI: 10.1242/jcs.225268] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 03/14/2019] [Indexed: 12/14/2022] Open
Abstract
Calcium phosphate (CaP) crystals, which begin to form in the early segments of the loop of Henle (LOH), are known to act as precursors for calcium stone formation. The proximal tubule (PT), which is just upstream of the LOH and is a major site for Ca2+ reabsorption, could be a regulator of such CaP crystal formation. However, PT Ca2+ reabsorption is mostly described as being paracellular. Here, we show the existence of a regulated transcellular Ca2+ entry pathway in luminal membrane PT cells induced by Ca2+-sensing receptor (CSR, also known as CASR)-mediated activation of transient receptor potential canonical 3 (TRPC3) channels. In support of this idea, we found that both CSR and TRPC3 are physically and functionally coupled at the luminal membrane of PT cells. More importantly, TRPC3-deficient mice presented with a deficiency in PT Ca2+ entry/transport, elevated urinary [Ca2+], microcalcifications in LOH and urine microcrystals formations. Taken together, these data suggest that a signaling complex comprising CSR and TRPC3 exists in the PT and can mediate transcellular Ca2+ transport, which could be critical in maintaining the PT luminal [Ca2+] to mitigate formation of the CaP crystals in LOH and subsequent formation of calcium stones.
Collapse
Affiliation(s)
- Cliff-Lawrence Ibeh
- Calcium Signaling Laboratory, Research Service, Veterans Affairs Medical Center, 50 Irving Street, NW, Washington DC, DC 20422, USA
| | - Allen J Yiu
- Calcium Signaling Laboratory, Research Service, Veterans Affairs Medical Center, 50 Irving Street, NW, Washington DC, DC 20422, USA.,Department of Medicine, Division of Renal Diseases & Hypertension, The George Washington University, Washington DC, DC 20037, USA
| | - Yianni L Kanaras
- Calcium Signaling Laboratory, Research Service, Veterans Affairs Medical Center, 50 Irving Street, NW, Washington DC, DC 20422, USA
| | - Edina Paal
- Pathology and Laboratory Service, Veterans Affairs Medical Center, 50 Irving Street, NW, Washington DC, DC 20422, USA
| | - Lutz Birnbaumer
- Division of Intramural Research, NIEHS, Research Triangle Park, Durham, NC 27709, USA.,Institute for Biomedical Research (BIOMED), Catholic University of Argentina, C1107AFF Buenos Aires, Argentina
| | - Pedro A Jose
- Department of Medicine, Division of Renal Diseases & Hypertension, The George Washington University, Washington DC, DC 20037, USA.,Department of Pharmacology and Physiology, The George Washington University, Washington DC, DC 20037, USA
| | - Bidhan C Bandyopadhyay
- Calcium Signaling Laboratory, Research Service, Veterans Affairs Medical Center, 50 Irving Street, NW, Washington DC, DC 20422, USA .,Department of Medicine, Division of Renal Diseases & Hypertension, The George Washington University, Washington DC, DC 20037, USA.,Department of Pharmacology and Physiology, The George Washington University, Washington DC, DC 20037, USA
| |
Collapse
|
18
|
Fujishiro H, Himeno S. Gene expression profiles of immortalized S1, S2, and S3 cells derived from each segment of mouse kidney proximal tubules. ACTA ACUST UNITED AC 2019. [DOI: 10.2131/fts.6.117] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Hitomi Fujishiro
- Laboratory of Molecular Nutrition and Toxicology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University
| | - Seiichiro Himeno
- Laboratory of Molecular Nutrition and Toxicology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University
| |
Collapse
|
19
|
Chen J, You H, Li Y, Xu Y, He Q, Harris RC. EGF Receptor-Dependent YAP Activation Is Important for Renal Recovery from AKI. J Am Soc Nephrol 2018; 29:2372-2385. [PMID: 30072422 PMCID: PMC6115662 DOI: 10.1681/asn.2017121272] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 06/22/2018] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Increasing evidence indicates that renal recovery from AKI stems from dedifferentiation and proliferation of surviving tubule epithelial cells. Both EGF receptor (EGFR) and the Hippo signaling pathway are implicated in cell proliferation and differentiation, and previous studies showed that activation of EGFR in renal proximal tubule epithelial cells (RPTCs) plays a critical role in recovery from ischemia-reperfusion injury (IRI). In this study, we explored RPTC activation of Yes-associated protein (YAP) and transcriptional coactivator with PDZ binding motif (TAZ), two key downstream effectors of the Hippo pathway, and their potential involvement in recovery from AKI. METHODS We used immunofluorescence to examine YAP expression in kidney biopsy samples from patients with clinical AKI and controls (patients with minimal change disease). Studies of RPTC activation of YAP and TAZ used cultured human RPTCs that were exposed to hypoxia-reoxygenation as well as knockout mice (with inducible deletions of Yap, Taz, or both occurring specifically in RPTCs) that were subjected to bilateral IRI. RESULTS YAP was activated in RPTCs in kidneys from post-AKI patients and post-IRI mouse kidneys. Inhibition of the interaction of YAP and the TEA domain (TEAD) transcription factor complex by verteporfin or conditional deletion of YAP in RPTCs delayed renal functional and structural recovery from IRI, whereas TAZ deletion had no effect. Activation of the EGFR-PI3K-Akt pathway in response to IRI signaled YAP activation, which promoted cell cycle progression. CONCLUSIONS This study shows that EGFR-PI3K-Akt-dependent YAP activation plays an essential role in mediating epithelial cell regeneration during kidney recovery from AKI.
Collapse
Affiliation(s)
- Jianchun Chen
- Department of Veterans Affairs, Nashville, Tennessee; Departments of
- Medicine and
- Vanderbilt Center for Kidney Disease, Nashville, Tennessee
| | - Huaizhou You
- Medicine and
- Division of Nephrology, Huashan Hospital, Fudan University, Shanghai, China; and
| | - Yan Li
- Medicine and
- Division of Nephrology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | | | | | - Raymond C Harris
- Department of Veterans Affairs, Nashville, Tennessee; Departments of
- Medicine and
- Vanderbilt Center for Kidney Disease, Nashville, Tennessee
- Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee
| |
Collapse
|
20
|
Ding W, Yousefi K, Shehadeh LA. Isolation, Characterization, And High Throughput Extracellular Flux Analysis of Mouse Primary Renal Tubular Epithelial Cells. J Vis Exp 2018. [PMID: 29985358 PMCID: PMC6101965 DOI: 10.3791/57718] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Mitochondrial dysfunction in the renal tubular epithelial cells (TECs) can lead to renal fibrosis, a major cause of chronic kidney disease (CKD). Therefore, assessing mitochondrial function in primary TECs may provide valuable insight into the bioenergetic status of the cells, providing insight into the pathophysiology of CKD. While there are a number of complex protocols available for the isolation and purification of proximal tubules in different species, the field lacks a cost-effective method optimized for tubular cell isolation without the need for purification. Here, we provide an isolation protocol that allows for studies focusing on both primary mouse proximal and distal renal TECs. In addition to cost-effective reagents and minimal animal procedures required in this protocol, the isolated cells maintain high energy levels after isolation and can be sub-cultured up to four passages, allowing for continuous studies. Furthermore, using a high throughput extracellular flux analyzer, we assess the mitochondrial respiration directly in the isolated TECs in a 96-well plate for which we provide recommendations for the optimization of cell density and compound concentration. These observations suggest that this protocol can be used for renal tubular ex vivo studies with a consistent, well-standardized production of renal TECs. This protocol may have broader future applications to study mitochondrial dysfunction associated with renal disorders for drug discovery or drug characterization purposes.
Collapse
Affiliation(s)
- Wen Ding
- Department of Molecular and Cellular Pharmacology, University of Miami Leonard M. Miller School of Medicine; Interdisciplinary Stem Cell Institute, University of Miami Leonard M. Miller School of Medicine
| | - Keyvan Yousefi
- Department of Molecular and Cellular Pharmacology, University of Miami Leonard M. Miller School of Medicine; Interdisciplinary Stem Cell Institute, University of Miami Leonard M. Miller School of Medicine
| | - Lina A Shehadeh
- Interdisciplinary Stem Cell Institute, University of Miami Leonard M. Miller School of Medicine; Department of Medicine, Division of Cardiology, University of Miami Leonard M. Miller School of Medicine; Vascular Biology Institute, University of Miami Leonard M. Miller School of Medicine; Peggy and Harold Katz Family Drug Discovery Center, University of Miami Leonard M. Miller School of Medicine;
| |
Collapse
|
21
|
Ding W, Yousefi K, Goncalves S, Goldstein BJ, Sabater AL, Kloosterboer A, Ritter P, Lambert G, Mendez AJ, Shehadeh LA. Osteopontin deficiency ameliorates Alport pathology by preventing tubular metabolic deficits. JCI Insight 2018; 3:94818. [PMID: 29563333 PMCID: PMC5926939 DOI: 10.1172/jci.insight.94818] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 02/09/2018] [Indexed: 12/31/2022] Open
Abstract
Alport syndrome is a rare hereditary renal disorder with no etiologic therapy. We found that osteopontin (OPN) is highly expressed in the renal tubules of the Alport mouse and plays a causative pathological role. OPN genetic deletion ameliorated albuminuria, hypertension, tubulointerstitial proliferation, renal apoptosis, and hearing and visual deficits in the Alport mouse. In Alport renal tubules we found extensive cholesterol accumulation and increased protein expression of dynamin-3 (DNM3) and LDL receptor (LDLR) in addition to dysmorphic mitochondria with defective bioenergetics. Increased pathological cholesterol influx was confirmed by a remarkably increased uptake of injected DiI-LDL cholesterol by Alport renal tubules, and by the improved lifespan of the Alport mice when crossed with the Ldlr-/- mice with defective cholesterol influx. Moreover, OPN-deficient Alport mice demonstrated significant reduction of DNM3 and LDLR expression. In human renal epithelial cells, overexpressing DNM3 resulted in elevated LDLR protein expression and defective mitochondrial respiration. Our results suggest a potentially new pathway in Alport pathology where tubular OPN causes DNM3- and LDLR-mediated enhanced cholesterol influx and impaired mitochondrial respiration.
Collapse
Affiliation(s)
- Wen Ding
- Department of Molecular and Cellular Pharmacology
- Interdisciplinary Stem Cell Institute
| | - Keyvan Yousefi
- Department of Molecular and Cellular Pharmacology
- Interdisciplinary Stem Cell Institute
| | | | | | | | | | | | | | | | - Lina A. Shehadeh
- Interdisciplinary Stem Cell Institute
- Department of Medicine, Division of Cardiology
- Vascular Biology Institute, and
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, USA
| |
Collapse
|
22
|
Smith JD, Huang Z, Escobar PA, Foppiano P, Maw H, Loging W, Yu H, Phillips JA, Taub M, Ku WW. A Predominant Oxidative Renal Metabolite of Empagliflozin in Male Mice Is Cytotoxic in Mouse Renal Tubular Cells but not Genotoxic. Int J Toxicol 2017; 36:440-448. [PMID: 29130831 DOI: 10.1177/1091581817735090] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In a previously reported CD-1 mouse 2-year carcinogenicity study with the sodium glucose cotransporter-2 inhibitor empagliflozin, an increased incidence of renal tubular adenomas and carcinomas was identified only in the male high-dose group. Follow-up investigative studies have shown that the renal tumors in male high-dose mice were preceded by a number of renal degenerative/regenerative findings. Prior cross-species in vitro metabolism studies using microsomes identified an oxidative metabolite (M466/2) predominantly formed in the male mouse kidney and which spontaneously degrades to a metabolite (M380/1) and reactive 4-OH crotonaldehyde (CTA). In order to further evaluate potential modes of action for empagliflozin-associated male mouse renal tumors, we report here a series of in vitro investigative toxicology studies conducted to evaluate the cytotoxic and genotoxic potential of empagliflozin and M466/2. To assess the cytotoxic potential of empagliflozin and M466/2, a primary mouse renal tubular epithelial (mRTE) cell model was used. In mRTE cells, M466/2-derived in vitro 4-OH CTA exposure was cytotoxic, while empagliflozin was not cytotoxic or mitogenic. Empagliflozin and M466/2 were not genotoxic, supporting an indirect mode of action for empagliflozin-associated male mouse renal tumorigenesis. In conclusion, these in vitro data show that M466/2-derived 4-OH CTA exposure is associated with cytotoxicity in renal tubule cells and may be involved in promoting compound-related in vivo renal metabolic stress and chronic low-level renal injury, in turn supporting a nongenotoxic mode of tumor pathogenesis specific to the male mouse.
Collapse
Affiliation(s)
- James D Smith
- 1 Boehringer Ingelheim Pharmaceuticals Inc, Ridgefield, CT, USA
| | - Zimei Huang
- 1 Boehringer Ingelheim Pharmaceuticals Inc, Ridgefield, CT, USA
| | | | - Pamela Foppiano
- 1 Boehringer Ingelheim Pharmaceuticals Inc, Ridgefield, CT, USA
| | - Hlaing Maw
- 1 Boehringer Ingelheim Pharmaceuticals Inc, Ridgefield, CT, USA
| | - William Loging
- 1 Boehringer Ingelheim Pharmaceuticals Inc, Ridgefield, CT, USA
| | - Hongbin Yu
- 1 Boehringer Ingelheim Pharmaceuticals Inc, Ridgefield, CT, USA
| | | | - Mitchell Taub
- 1 Boehringer Ingelheim Pharmaceuticals Inc, Ridgefield, CT, USA
| | - Warren W Ku
- 1 Boehringer Ingelheim Pharmaceuticals Inc, Ridgefield, CT, USA
| |
Collapse
|
23
|
Sasaki M, Sasako T, Kubota N, Sakurai Y, Takamoto I, Kubota T, Inagi R, Seki G, Goto M, Ueki K, Nangaku M, Jomori T, Kadowaki T. Dual Regulation of Gluconeogenesis by Insulin and Glucose in the Proximal Tubules of the Kidney. Diabetes 2017. [PMID: 28630133 DOI: 10.2337/db16-1602] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Growing attention has been focused on the roles of the proximal tubules (PTs) of the kidney in glucose metabolism, including the mechanism of regulation of gluconeogenesis. In this study, we found that PT-specific insulin receptor substrate 1/2 double-knockout mice, established by using the newly generated sodium-glucose cotransporter 2 (SGLT2)-Cre transgenic mice, exhibited impaired insulin signaling and upregulated gluconeogenic gene expression and renal gluconeogenesis, resulting in systemic insulin resistance. In contrast, in streptozotocin-treated mice, although insulin action was impaired in the PTs, the gluconeogenic gene expression was unexpectedly downregulated in the renal cortex, which was restored by administration of an SGLT1/2 inhibitor. In the HK-2 cells, the gluconeogenic gene expression was suppressed by insulin, accompanied by phosphorylation and inactivation of forkhead box transcription factor 1 (FoxO1). In contrast, glucose deacetylated peroxisome proliferator-activated receptor γ coactivator 1-α (PGC1α), a coactivator of FoxO1, via sirtuin 1, suppressing the gluconeogenic gene expression, which was reversed by inhibition of glucose reabsorption. These data suggest that both insulin signaling and glucose reabsorption suppress the gluconeogenic gene expression by inactivation of FoxO1 and PGC1α, respectively, providing insight into novel mechanisms underlying the regulation of gluconeogenesis in the PTs.
Collapse
Affiliation(s)
- Motohiro Sasaki
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Mie Research Laboratories, Sanwa Kagaku Kenkyusho Co., Ltd., Mie, Japan
| | - Takayoshi Sasako
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Translational Systems Biology and Medicine Initiative, The University of Tokyo, Tokyo, Japan
- Department of Molecular Diabetic Medicine, Diabetes Research Center, National Center for Global Health and Medicine, Tokyo, Japan
| | - Naoto Kubota
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Translational Systems Biology and Medicine Initiative, The University of Tokyo, Tokyo, Japan
- Department of Clinical Nutrition Therapy, The University of Tokyo Hospital, The University of Tokyo, Tokyo, Japan
- Clinical Nutrition Program, National Institute of Health and Nutrition, Tokyo, Japan
- Laboratory for Metabolic Homeostasis, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
| | - Yoshitaka Sakurai
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Iseki Takamoto
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tetsuya Kubota
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Clinical Nutrition Program, National Institute of Health and Nutrition, Tokyo, Japan
- Laboratory for Metabolic Homeostasis, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
- Division of Cardiovascular Medicine, Toho University Ohashi Medical Center, Tokyo, Japan
| | - Reiko Inagi
- Department of Nephrology and Endocrinology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | | | - Moritaka Goto
- Mie Research Laboratories, Sanwa Kagaku Kenkyusho Co., Ltd., Mie, Japan
| | - Kohjiro Ueki
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Translational Systems Biology and Medicine Initiative, The University of Tokyo, Tokyo, Japan
- Department of Molecular Diabetic Medicine, Diabetes Research Center, National Center for Global Health and Medicine, Tokyo, Japan
| | - Masaomi Nangaku
- Department of Nephrology and Endocrinology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takahito Jomori
- Mie Research Laboratories, Sanwa Kagaku Kenkyusho Co., Ltd., Mie, Japan
| | - Takashi Kadowaki
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Translational Systems Biology and Medicine Initiative, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
24
|
Parasar P, Sacha CR, Ng N, McGuirk ER, Chinthala S, Ozcan P, Lindsey J, Salas S, Laufer MR, Missmer SA, Anchan RM. Differentiating mouse embryonic stem cells express markers of human endometrium. Reprod Biol Endocrinol 2017; 15:52. [PMID: 28716123 PMCID: PMC5514487 DOI: 10.1186/s12958-017-0273-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 07/06/2017] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Modeling early endometrial differentiation is a crucial step towards understanding the divergent pathways between normal and ectopic endometrial development as seen in endometriosis. METHODS To investigate these pathways, mouse embryonic stem cells (mESCs) and embryoid bodies (EBs) were differentiated in standard EB medium (EBM). Immunofluorescence (IF) staining and reverse-transcription polymerase chain reaction (RT-PCR) were used to detect expression of human endometrial cell markers on differentiating cells, which were sorted into distinct populations using fluorescence-activated cell sorting (FACS). RESULTS A subpopulation (50%) of early differentiating mESCs expressed both glandular (CD9) and stromal (CD13) markers of human endometrium, suggestive of a novel endometrial precursor cell population. We further isolated a small population of endometrial mesenchymal stem cells, CD45-/CD146+/PDGFR-β+, from differentiating EBs, representing 0.7% of total cells. Finally, quantitative PCR demonstrated significantly amplified expression of transcription factors Hoxa10 and Foxa2 in CD13+ EBs isolated by FACS (p = 0.03). CONCLUSIONS These findings demonstrate that mESCs have the capacity to express human endometrial cell markers and demonstrate potential differentiation pathways of endometrial precursor and mesenchymal stem cells, providing an in vitro system to model early endometrial tissue development. This model represents a key step in elucidating the mechanisms of ectopic endometrial tissue growth. Such a system could enable the development of strategies to prevent endometriosis and identify approaches for non-invasive monitoring of disease progression.
Collapse
Affiliation(s)
- P. Parasar
- Boston Center for Endometriosis, Boston Children’s and Brigham and Women’s Hospitals, 333 and 221 Longwood Avenue, Boston, MA 02115 USA
- Center for Infertility and Reproductive Surgery, Department of Obstetrics, Gynecology, and Reproductive Biology, Brigham and Women’s Hospital and Harvard Medical School, 75 Francis Street, Boston, MA 02115 USA
| | - C. R. Sacha
- Center for Infertility and Reproductive Surgery, Department of Obstetrics, Gynecology, and Reproductive Biology, Brigham and Women’s Hospital and Harvard Medical School, 75 Francis Street, Boston, MA 02115 USA
| | - N. Ng
- Center for Infertility and Reproductive Surgery, Department of Obstetrics, Gynecology, and Reproductive Biology, Brigham and Women’s Hospital and Harvard Medical School, 75 Francis Street, Boston, MA 02115 USA
| | - E. R. McGuirk
- Center for Infertility and Reproductive Surgery, Department of Obstetrics, Gynecology, and Reproductive Biology, Brigham and Women’s Hospital and Harvard Medical School, 75 Francis Street, Boston, MA 02115 USA
| | - S. Chinthala
- Center for Infertility and Reproductive Surgery, Department of Obstetrics, Gynecology, and Reproductive Biology, Brigham and Women’s Hospital and Harvard Medical School, 75 Francis Street, Boston, MA 02115 USA
- Department of OB/GYN, University of Chicago, 5841 S. Maryland Ave, Chicago, IL 60637 USA
| | - P. Ozcan
- Center for Infertility and Reproductive Surgery, Department of Obstetrics, Gynecology, and Reproductive Biology, Brigham and Women’s Hospital and Harvard Medical School, 75 Francis Street, Boston, MA 02115 USA
| | - J. Lindsey
- Center for Infertility and Reproductive Surgery, Department of Obstetrics, Gynecology, and Reproductive Biology, Brigham and Women’s Hospital and Harvard Medical School, 75 Francis Street, Boston, MA 02115 USA
| | - S. Salas
- Center for Infertility and Reproductive Surgery, Department of Obstetrics, Gynecology, and Reproductive Biology, Brigham and Women’s Hospital and Harvard Medical School, 75 Francis Street, Boston, MA 02115 USA
| | - M. R. Laufer
- Boston Center for Endometriosis, Boston Children’s and Brigham and Women’s Hospitals, 333 and 221 Longwood Avenue, Boston, MA 02115 USA
- Center for Infertility and Reproductive Surgery, Department of Obstetrics, Gynecology, and Reproductive Biology, Brigham and Women’s Hospital and Harvard Medical School, 75 Francis Street, Boston, MA 02115 USA
- Division of Gynecology, Department of Surgery, Boston Children’s Hospital, 300 Longwood Avenue, Boston, MA 02115 USA
| | - S. A. Missmer
- Boston Center for Endometriosis, Boston Children’s and Brigham and Women’s Hospitals, 333 and 221 Longwood Avenue, Boston, MA 02115 USA
- Division of Adolescent and Young Adult Medicine, Department of Medicine, Boston Children’s Hospital and Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115 USA
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, 677 Huntington Ave, Boston, MA 02115 USA
| | - R. M. Anchan
- Boston Center for Endometriosis, Boston Children’s and Brigham and Women’s Hospitals, 333 and 221 Longwood Avenue, Boston, MA 02115 USA
- Center for Infertility and Reproductive Surgery, Department of Obstetrics, Gynecology, and Reproductive Biology, Brigham and Women’s Hospital and Harvard Medical School, 75 Francis Street, Boston, MA 02115 USA
| |
Collapse
|
25
|
Wang S, Wang X, Boone J, Wie J, Yip KP, Zhang J, Wang L, Liu R. Application of Hanging Drop Technique for Kidney Tissue Culture. Kidney Blood Press Res 2017; 42:220-231. [PMID: 28478441 PMCID: PMC6050513 DOI: 10.1159/000476018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 02/07/2017] [Indexed: 12/13/2022] Open
Abstract
Background/Aims The hanging drop technique is a well-established method used in culture of animal tissues. However, this method has not been used in adult kidney tissue culture yet. This study was to explore the feasibility of using this technique for culturing adult kidney cortex to study the time course of RNA viability in the tubules and vasculature, as well as the tissue structural integrity. Methods In each Petri dish with the plate covered with sterile buffer, a section of mouse renal cortex was cultured within a drop of DMEM culture medium on the inner surface of the lip facing downward. The tissue were then harvested at each specific time points for Real-time PCR analysis and histological studies. Results The results showed that the mRNA level of most Na+ related transporters and cotransporters were stably maintained within 6 hours in culture, and that the mRNA level of most receptors found in the vasculature and glomeruli were stably maintained for up to 9 days in culture. Paraffin sections of the cultured renal cortex indicated that the tubules began to lose tubular integrity after 6 hours, but the glomeruli and vasculatures were still recognizable up to 9 days in culture. Conclusions We concluded that adult kidney tissue culture by hanging drop method can be used to study gene expressions in vasculature and glomeruli.
Collapse
Affiliation(s)
- Shaohui Wang
- Department of Molecular Pharmacology & Physiology, University of South Florida Morsani College of Medicine, Tampa, Florida, USA
| | - Ximing Wang
- Present Address: Shandong Medical Imaging Research Institute, Shandong provincial key laboratory of diagnosis and treatment of cardio-cerebral vascular disease, Shandong University, Jinan, China
| | - Jasmine Boone
- Department of Molecular Pharmacology & Physiology, University of South Florida Morsani College of Medicine, Tampa, Florida, USA
| | - Jin Wie
- Department of Molecular Pharmacology & Physiology, University of South Florida Morsani College of Medicine, Tampa, Florida, USA
| | - Kay-Pong Yip
- Department of Molecular Pharmacology & Physiology, University of South Florida Morsani College of Medicine, Tampa, Florida, USA
| | - Jie Zhang
- Department of Molecular Pharmacology & Physiology, University of South Florida Morsani College of Medicine, Tampa, Florida, USA
| | - Lei Wang
- Department of Molecular Pharmacology & Physiology, University of South Florida Morsani College of Medicine, Tampa, Florida, USA
| | - Ruisheng Liu
- Department of Molecular Pharmacology & Physiology, University of South Florida Morsani College of Medicine, Tampa, Florida, USA
| |
Collapse
|
26
|
Ide N, Olauson H, Sato T, Densmore MJ, Wang H, Hanai JI, Larsson TE, Lanske B. In vivo evidence for a limited role of proximal tubular Klotho in renal phosphate handling. Kidney Int 2016; 90:348-362. [DOI: 10.1016/j.kint.2016.04.009] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 03/29/2016] [Accepted: 04/14/2016] [Indexed: 01/11/2023]
|
27
|
Erikci A, Ucar G, Yabanoglu-Ciftci S. Role of serotonin in the regulation of renal proximal tubular epithelial cells. Ren Fail 2016; 38:1141-50. [PMID: 27277500 DOI: 10.1080/0886022x.2016.1194165] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
In various renal injuries, tissue damage occurs and platelet activation is observed. Recent studies suggest that some factors, such as serotonin, are released into microenvironment upon platelet activation following renal injury. In the present study, we aimed to investigate whether platelets and platelet-released serotonin are involved in the functional regulation of renal proximal tubular epithelial cells (PTECs). PTECs were obtained by primary cell culture and treated with platelet lysate (PL) (2 × 10(6)/mL, 4 × 10(6)/mL, 8 × 10(6)/mL) or serotonin (1 μM or 5 μM) for 12 or 24 h. Phenotypic transdifferentiation of epithelial cells into myofibroblasts were demonstrated under light microscope and confirmed by the determination of α-smooth muscle actin gene expression. Serotonin and PL were shown to induce epithelial-mesenchymal transdifferentiation of PTECs. After stimulation of PTECs with serotonin or PL, matrix metalloproteinase-2, tissue inhibitor of metalloproteinase-1, and collagen-α1 gene expressions, which were reported to be elevated in renal injury, were determined by real-time PCR and found to be upregulated. Expressions of some inflammatory cytokines such as tumor necrosis factor-α, interleukin-6, and transforming growth factor-β1 were found to be increased in both protein and gene levels. Recently there is no published report on the effect of serotonin on renal PTECs. Results obtained in this study have lightened the role of serotonin and platelet-mediated effects of serotonin on fibrotic and inflammatory processes in PTECs.
Collapse
Affiliation(s)
- Acelya Erikci
- a Department of Biochemistry, Faculty of Pharmacy , Hacettepe University , Ankara , Turkey
| | - Gulberk Ucar
- a Department of Biochemistry, Faculty of Pharmacy , Hacettepe University , Ankara , Turkey
| | | |
Collapse
|
28
|
Chen J, Harris RC. Interaction of the EGF Receptor and the Hippo Pathway in the Diabetic Kidney. J Am Soc Nephrol 2015; 27:1689-700. [PMID: 26453611 DOI: 10.1681/asn.2015040415] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 08/27/2015] [Indexed: 12/30/2022] Open
Abstract
Activation of the EGF receptor (EGFR) or the Hippo signaling pathway can control cell proliferation, apoptosis, and differentiation, and the dysregulation of these pathways can contribute to tumorigenesis. Previous studies showed that activation of EGFR signaling in renal epithelial cells can exacerbate diabetic kidney injury. Moreover, EGFR has been implicated in regulating the Hippo signaling pathway in Drosophila; thus, we examined this potential interaction in mammalian diabetic kidney disease. Yes-associated protein (YAP) is a transcriptional regulator regulated by the Hippo signaling pathway. We found YAP protein expression and phosphorylation were upregulated in diabetic mouse renal proximal tubule epithelial cells, which were inhibited in diabetic proximal tubule EGFR-knockout mice (EGFR(ptKO)) or administration of an EGFR tyrosine kinase inhibitor erlotinib. Furthermore, activation of an EGFR-PI3K-Akt-CREB signaling pathway mediated YAP gene expression and YAP nuclear translocation and interaction with the TEA domain (TEAD) transcription factor complex, which led to upregulated expression of two TEAD-dependent genes, the connective tissue growth factor and amphiregulin genes. In a renal proximal tubule cell line, either pharmacologic or genetic inhibition of EGFR, Akt, or CREB blunted YAP expression in response to high-glucose treatment. Additionally, knocking down YAP expression by specific siRNA inhibited cell proliferation in response to high glucose or exogenous EGF. Therefore, these results link the Hippo pathway to EGFR-mediated renal epithelial injury in diabetes.
Collapse
Affiliation(s)
- Jianchun Chen
- Department of Veterans Affairs, Nashville, Tennessee; and Department of Medicine and
| | - Raymond C Harris
- Department of Veterans Affairs, Nashville, Tennessee; and Department of Medicine and Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee
| |
Collapse
|
29
|
Kamiyama M, Garner MK, Farragut KM, Sofue T, Hara T, Morikawa T, Konishi Y, Imanishi M, Nishiyama A, Kobori H. Detailed localization of augmented angiotensinogen mRNA and protein in proximal tubule segments of diabetic kidneys in rats and humans. Int J Biol Sci 2014; 10:530-42. [PMID: 24910532 PMCID: PMC4046880 DOI: 10.7150/ijbs.8450] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2013] [Accepted: 04/22/2014] [Indexed: 01/13/2023] Open
Abstract
In the intrarenal renin-angiotensin system, angiotensinogen levels are well known to be increased in diabetes, and these enhanced intrarenal angiotensinogen levels may initiate the development and accelerate the progression of diabetic nephropathy. However, the specific localization of the augmented angiotensinogen in proximal tubule segments in diabetes is still unknown. We investigated the detailed localization of angiotensinogen in 3 proximal tubule segments in the diabetic Otsuka Long-Evans Tokushima fatty (OLETF) rats and the control Long-Evans Tokushima Otsuka (LETO) rats. We also prepared OLETF rats treated with angiotensin II type 1 receptor blocker, olmesartan or with a combination of vasodilator agents. Moreover, biopsied samples of human kidney cortex were used to confirm the results of animal studies. We examined the co-localization of angiotensinogen with segment-specific markers by double staining using fluorescence in situ hybridization and/or immunofluorescence. Angiotensinogen mRNA expression was barely detectable in segment 1. In segment 3, the area of angiotensinogen mRNA expression was augmented in the OLETF rats compared with the LETO rats. Angiotensinogen protein expression areas in segments 1 and 3 were also increased in the OLETF rats compared with the LETO rats. Chronic treatment with olmesartan ameliorated these areas of augmented angiotensinogen expression. Biopsied human kidney samples showed similar results. These data suggest that the augmented angiotensinogen mRNA levels in segment 3 and angiotensinogen protein levels in segments 1 and 3 may contribute to the progression of diabetic nephropathy.
Collapse
Affiliation(s)
- Masumi Kamiyama
- 1. Department of Physiology, Tulane University Health Sciences Center, New Orleans, LA 70112, USA; ; 2. Hypertension and Renal Center of Excellence, Tulane University Health Sciences Center, New Orleans, LA 70112, USA
| | - Michelle K Garner
- 1. Department of Physiology, Tulane University Health Sciences Center, New Orleans, LA 70112, USA; ; 2. Hypertension and Renal Center of Excellence, Tulane University Health Sciences Center, New Orleans, LA 70112, USA
| | - Kristina M Farragut
- 1. Department of Physiology, Tulane University Health Sciences Center, New Orleans, LA 70112, USA; ; 2. Hypertension and Renal Center of Excellence, Tulane University Health Sciences Center, New Orleans, LA 70112, USA
| | - Tadashi Sofue
- 4. Department of Cardiorenal and Cerebrovascular Medicine, Kagawa University School of Medicine, Kagawa 761-0793, Japan
| | - Taiga Hara
- 4. Department of Cardiorenal and Cerebrovascular Medicine, Kagawa University School of Medicine, Kagawa 761-0793, Japan
| | - Takashi Morikawa
- 6. Department of Nephrology and Hypertension, Osaka City General Hospital, Osaka 534-0021, Japan
| | - Yoshio Konishi
- 6. Department of Nephrology and Hypertension, Osaka City General Hospital, Osaka 534-0021, Japan
| | - Masahito Imanishi
- 6. Department of Nephrology and Hypertension, Osaka City General Hospital, Osaka 534-0021, Japan
| | - Akira Nishiyama
- 5. Department of Pharmacology, Kagawa University School of Medicine, Kagawa 761-0793, Japan
| | - Hiroyuki Kobori
- 1. Department of Physiology, Tulane University Health Sciences Center, New Orleans, LA 70112, USA; ; 2. Hypertension and Renal Center of Excellence, Tulane University Health Sciences Center, New Orleans, LA 70112, USA; ; 3. Department of Medicine, Tulane University Health Sciences Center, New Orleans, LA 70112, USA; ; 5. Department of Pharmacology, Kagawa University School of Medicine, Kagawa 761-0793, Japan
| |
Collapse
|
30
|
Miyata K, Satou R, Shao W, Prieto MC, Urushihara M, Kobori H, Navar LG. ROCK/NF-κB axis-dependent augmentation of angiotensinogen by angiotensin II in primary-cultured preglomerular vascular smooth muscle cells. Am J Physiol Renal Physiol 2014; 306:F608-18. [PMID: 24431199 DOI: 10.1152/ajprenal.00464.2013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
In angiotensin II (ANG II)-dependent hypertension, the augmented intrarenal ANG II constricts the renal microvasculature and stimulates Rho kinase (ROCK), which modulates vascular contractile responses. Rho may also stimulate angiotensinogen (AGT) expression in preglomerular vascular smooth muscle cells (VSMCs), but this has not been established. Therefore, the aims of this study were to determine the direct interactions between Rho and ANG II in regulating AGT and other renin-angiotensin system (RAS) components and to elucidate the roles of the ROCK/NF-κB axis in the ANG II-induced AGT augmentation in primary cultures of preglomerular VSMCs. We first demonstrated that these preglomerular VSMCs express renin, AGT, angiotensin-converting enzyme, and ANG II type 1 (AT1) receptors. Furthermore, incubation with ANG II (100 pmol/l for 24 h) increased AGT mRNA (1.42 ± 0.03, ratio to control) and protein (1.68 ± 0.05, ratio to control) expression levels, intracellular ANG II levels, and NF-κB activity. In contrast, the ANG II treatment did not alter AT1a and AT1b mRNA levels in the cells. Treatment with H-1152 (ROCK inhibitor, 10 nmol/l) and ROCK1 small interfering (si) RNA suppressed the ANG II-induced AGT augmentation and the upregulation and translocalization of p65 into nuclei. Functional studies showed that ROCK exerted a greater influence on afferent arteriole responses to ANG II in rats subjected to chronic ANG II infusions. These results indicate that ROCK is involved in NF-κB activation and the ROCK/NF-κB axis contributes to ANG II-induced AGT upregulation, leading to intracellular ANG II augmentation.
Collapse
Affiliation(s)
- Kayoko Miyata
- Dept. of Physiology and Hypertension and Renal Center of Excellence, Tulane Univ. Health Sciences Center, 1430 Tulane Ave., SL39, New Orleans, LA 70112-2699.
| | | | | | | | | | | | | |
Collapse
|
31
|
Kobori H, Kamiyama M, Harrison-Bernard LM, Navar LG. Cardinal role of the intrarenal renin-angiotensin system in the pathogenesis of diabetic nephropathy. J Investig Med 2013. [PMID: 23266706 DOI: 10.231/jim.0b013e31827c28bb] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Diabetes mellitus is one of the most prevalent diseases and is associated with increased incidence of structural and functional derangements in the kidneys, eventually leading to end-stage renal disease in a significant fraction of afflicted individuals. The renoprotective effects of renin-angiotensin system (RAS) blockade have been established; however, the mechanistic pathways have not been fully elucidated. In this review article, the cardinal role of an activated RAS in the pathogenesis of diabetic nephropathy (DN) is discussed with a focus on 4 themes: (1) introduction to RAS cascade, (2) intrarenal RAS in diabetes, (3) clinical outcomes of RAS blockade in DN, and (4) potential of urinary angiotensinogen as an early biomarker of intrarenal RAS status in DN. This review article provides a mechanistic rational supporting the hypothesis that an activated intrarenal RAS contributes to the pathogenesis of DN and that urinary angiotensinogen levels provide an index of intrarenal RAS activity.
Collapse
Affiliation(s)
- Hiroyuki Kobori
- Department of Physiology, and Hypertension and Renal Center of Excellence, Tulane University Health Sciences Center, New Orleans, LA, USA.
| | | | | | | |
Collapse
|
32
|
Kamiyama M, Urushihara M, Morikawa T, Konishi Y, Imanishi M, Nishiyama A, Kobori H. Oxidative stress/angiotensinogen/renin-angiotensin system axis in patients with diabetic nephropathy. Int J Mol Sci 2013; 14:23045-62. [PMID: 24284398 PMCID: PMC3856105 DOI: 10.3390/ijms141123045] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 11/07/2013] [Accepted: 11/07/2013] [Indexed: 01/22/2023] Open
Abstract
Although recent studies have proven that renin-angiotensin system (RAS) blockades retard the progression of diabetic nephropathy, the detailed mechanisms of their reno-protective effects on the development of diabetic nephropathy remain uncertain. In rodent models, it has been reported that reactive oxygen species (ROS) are important for intrarenal angiotensinogen (AGT) augmentation in the progression of diabetic nephropathy. However, no direct evidence is available to demonstrate that AGT expression is enhanced in the kidneys of patients with diabetes. To examine whether the expression levels of ROS- and RAS-related factors in kidneys are increased with the progression of diabetic nephropathy, biopsied samples from 8 controls and 27 patients with type 2 diabetes were used. After the biopsy, these patients were diagnosed with minor glomerular abnormality or diabetes mellitus by clinical and pathological findings. The intensities of AGT, angiotensin II (Ang II), 4-hydroxy-2-nonenal (4-HNE), and heme oxygenase-1 (HO-1) were examined by fluorescence in situ hybridization and/or immunohistochemistry. Expression levels were greater in patients with diabetes than in control subjects. Moreover, the augmented intrarenal AGT mRNA expression paralleled renal dysfunction in patients with diabetes. These data suggest the importance of the activated oxidative stress/AGT/RAS axis in the pathogenesis of diabetic nephropathy.
Collapse
Affiliation(s)
- Masumi Kamiyama
- Department of Physiology, Tulane University Health Sciences Center, 1430 Tulane Avenue, New Orleans, LA 70112, USA; E-Mails: (M.K.); (M.U.)
- Hypertension and Renal Center of Excellence, Tulane University Health Sciences Center, 1430 Tulane Avenue, New Orleans, LA 70112, USA
| | - Maki Urushihara
- Department of Physiology, Tulane University Health Sciences Center, 1430 Tulane Avenue, New Orleans, LA 70112, USA; E-Mails: (M.K.); (M.U.)
- Hypertension and Renal Center of Excellence, Tulane University Health Sciences Center, 1430 Tulane Avenue, New Orleans, LA 70112, USA
| | - Takashi Morikawa
- Department of Nephrology and Hypertension, Osaka City General Hospital, 2-13-22 Miyakojima-Hondori, Miyakojima-ku, Osaka 534-0021, Japan; E-Mails: (T.M.); (Y.K.); (M.I.)
| | - Yoshio Konishi
- Department of Nephrology and Hypertension, Osaka City General Hospital, 2-13-22 Miyakojima-Hondori, Miyakojima-ku, Osaka 534-0021, Japan; E-Mails: (T.M.); (Y.K.); (M.I.)
| | - Masahito Imanishi
- Department of Nephrology and Hypertension, Osaka City General Hospital, 2-13-22 Miyakojima-Hondori, Miyakojima-ku, Osaka 534-0021, Japan; E-Mails: (T.M.); (Y.K.); (M.I.)
| | - Akira Nishiyama
- Department of Pharmacology, Kagawa University Medical School, Miki, 1750-1 Ikenobe, Miki, Kagawa 761-0793, Japan; E-Mail:
| | - Hiroyuki Kobori
- Department of Physiology, Tulane University Health Sciences Center, 1430 Tulane Avenue, New Orleans, LA 70112, USA; E-Mails: (M.K.); (M.U.)
- Hypertension and Renal Center of Excellence, Tulane University Health Sciences Center, 1430 Tulane Avenue, New Orleans, LA 70112, USA
- Department of Pharmacology, Kagawa University Medical School, Miki, 1750-1 Ikenobe, Miki, Kagawa 761-0793, Japan; E-Mail:
- Department of Medicine, Tulane University Health Sciences Center, 1430 Tulane Avenue, New Orleans, LA 70112, USA
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-504-988-2591; Fax: +1-504-988-0911
| |
Collapse
|
33
|
Kobori H, Mori H, Masaki T, Nishiyama A. Angiotensin II blockade and renal protection. Curr Pharm Des 2013; 19:3033-42. [PMID: 23176216 DOI: 10.2174/1381612811319170009] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 11/20/2012] [Indexed: 12/15/2022]
Abstract
Current national guidelines have recommended the use of renin-angiotensin system inhibitors, including angiotensin II type 1 receptor blockers (ARBs), in preference to other antihypertensive agents for treating hypertensive patients with chronic kidney disease. However, the mechanisms underlying the renoprotective effects of ARBs are multiple and complex. Blood pressure reduction by systemic vasodilation with an ARB contributes to its beneficial effects in treating kidney disease. Furthermore, ARB-induced renal vasodilation results in an increase in renal blood flow, leading to improvement of renal ischemia and hypoxia. ARBs are also effective in reducing urinary albumin excretion through a reduction in intraglomerular pressure and the protection of glomerular endothelium and/or podocyte injuries. In addition to blocking angiotensin II-induced renal cell and tissue injuries, ARBs can decrease intrarenal angiotensin II levels by reducing proximal tubular angiotensinogen and production of collecting duct renin, as well as angiotensin II accumulation in the kidney. In this review, we will briefly summarize our current understanding of the pharmacological effects of an ARB in the kidney. We will also discuss the possible mechanisms responsible for the renoprotective effects of ARBs on type 2 diabetic nephropathy.
Collapse
Affiliation(s)
- Hiroyuki Kobori
- Department of Pharmacology, Faculty of Medicine, Kagawa University, Ikenobe 1750-1, Miki, Kita, Kagawa 761-0793, Japan
| | | | | | | |
Collapse
|
34
|
Divergent localization of angiotensinogen mRNA and protein in proximal tubule segments of normal rat kidney. J Hypertens 2013; 30:2365-72. [PMID: 23032142 DOI: 10.1097/hjh.0b013e3283598eed] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVES Angiotensinogen in the kidneys is formed primarily in the proximal tubule cells and is secreted into the tubular fluid. Structurally, proximal tubules can be divided into three segments. The first segment, segment 1 (S1) is mainly confined to the pars convoluta, the second segment, segment 2 (S2) comprises the end of pars convoluta, and the third segment, segment 3 (S3) includes the major part of the pars recta. There are some reports describing angiotensinogen localization in kidneys; however, it remains uncertain which proximal tubule segments express angiotensinogen. To determine the detailed localization of angiotensinogen in the three proximal tubule segments, we established multistaining methods using segment-specific protein markers. METHODS Using kidneys from Wistar-Kyoto rats, we performed immunohistochemistry and double or triple staining by fluorescence in-situ hybridization and/or immunofluorescence. RESULTS Our results show that angiotensinogen mRNA and protein are expressed in the cortex and outer medulla of the normal rat kidney. Angiotensinogen mRNA was hardly detected in S1, detected weakly in S2 and strongly in S3 segments. In contrast, angiotensinogen protein was detected in S1 at high levels and less in S2 and S3 segments. CONCLUSION These data indicate divergence of angiotensinogen mRNA transcription and angiotensinogen protein synthesis and metabolism in different segments of the normal rat proximal tubules.
Collapse
|
35
|
Van der Hauwaert C, Savary G, Gnemmi V, Glowacki F, Pottier N, Bouillez A, Maboudou P, Zini L, Leroy X, Cauffiez C, Perrais M, Aubert S. Isolation and characterization of a primary proximal tubular epithelial cell model from human kidney by CD10/CD13 double labeling. PLoS One 2013; 8:e66750. [PMID: 23799132 PMCID: PMC3682988 DOI: 10.1371/journal.pone.0066750] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Accepted: 05/11/2013] [Indexed: 11/27/2022] Open
Abstract
Renal proximal tubular epithelial cells play a central role in renal physiology and are among the cell types most sensitive to ischemia and xenobiotic nephrotoxicity. In order to investigate the molecular and cellular mechanisms underlying the pathophysiology of kidney injuries, a stable and well-characterized primary culture model of proximal tubular cells is required. An existing model of proximal tubular cells is hampered by the cellular heterogeneity of kidney; a method based on cell sorting for specific markers must therefore be developed. In this study, we present a primary culture model based on the mechanical and enzymatic dissociation of healthy tissue obtained from nephrectomy specimens. Renal epithelial cells were sorted using co-labeling for CD10 and CD13, two renal proximal tubular epithelial markers, by flow cytometry. Their purity, phenotypic stability and functional properties were evaluated over several passages. Our results demonstrate that CD10/CD13 double-positive cells constitute a pure, functional and stable proximal tubular epithelial cell population that displays proximal tubule markers and epithelial characteristics over the long term, whereas cells positive for either CD10 or CD13 alone appear to be heterogeneous. In conclusion, this study describes a method for establishing a robust renal proximal tubular epithelial cell model suitable for further experimentation.
Collapse
Affiliation(s)
- Cynthia Van der Hauwaert
- EA4483, Département de Biochimie et Biologie Moléculaire, Faculté de Médecine de Lille, Pôle Recherche, Lille, France
| | - Grégoire Savary
- EA4483, Département de Biochimie et Biologie Moléculaire, Faculté de Médecine de Lille, Pôle Recherche, Lille, France
| | - Viviane Gnemmi
- Institut National de la Santé et de la Recherche Médicale, U837, Centre de Recherche Jean-Pierre Aubert, Equipe 5 Mucines, Différentiation et Cancérogenèse Épithéliales, Lille, France
- Service d'Anatomie Pathologique, Centre de Biologie et Pathologie, CHRU Lille, Lille, France
- Faculté de Médecine de Lille, Université Lille 2, Lille, France
| | - François Glowacki
- EA4483, Département de Biochimie et Biologie Moléculaire, Faculté de Médecine de Lille, Pôle Recherche, Lille, France
- Faculté de Médecine de Lille, Université Lille 2, Lille, France
- Service de Néphrologie, Hôpital Huriez, CHRU Lille, Lille, France
| | - Nicolas Pottier
- EA4483, Département de Biochimie et Biologie Moléculaire, Faculté de Médecine de Lille, Pôle Recherche, Lille, France
- Faculté de Médecine de Lille, Université Lille 2, Lille, France
| | - Audrey Bouillez
- Institut National de la Santé et de la Recherche Médicale, U837, Centre de Recherche Jean-Pierre Aubert, Equipe 5 Mucines, Différentiation et Cancérogenèse Épithéliales, Lille, France
| | - Patrice Maboudou
- Service de Biochimie, Centre de Biologie et Pathologie, CHRU Lille, Lille, France
| | - Laurent Zini
- Institut National de la Santé et de la Recherche Médicale, U837, Centre de Recherche Jean-Pierre Aubert, Equipe 5 Mucines, Différentiation et Cancérogenèse Épithéliales, Lille, France
- Faculté de Médecine de Lille, Université Lille 2, Lille, France
- Service d'Urologie, Hôpital Huriez, CHRU Lille, Lille, France
| | - Xavier Leroy
- Institut National de la Santé et de la Recherche Médicale, U837, Centre de Recherche Jean-Pierre Aubert, Equipe 5 Mucines, Différentiation et Cancérogenèse Épithéliales, Lille, France
- Service d'Anatomie Pathologique, Centre de Biologie et Pathologie, CHRU Lille, Lille, France
- Faculté de Médecine de Lille, Université Lille 2, Lille, France
| | - Christelle Cauffiez
- EA4483, Département de Biochimie et Biologie Moléculaire, Faculté de Médecine de Lille, Pôle Recherche, Lille, France
- Faculté de Médecine de Lille, Université Lille 2, Lille, France
| | - Michaël Perrais
- Institut National de la Santé et de la Recherche Médicale, U837, Centre de Recherche Jean-Pierre Aubert, Equipe 5 Mucines, Différentiation et Cancérogenèse Épithéliales, Lille, France
- Faculté de Médecine de Lille, Université Lille 2, Lille, France
| | - Sébastien Aubert
- Institut National de la Santé et de la Recherche Médicale, U837, Centre de Recherche Jean-Pierre Aubert, Equipe 5 Mucines, Différentiation et Cancérogenèse Épithéliales, Lille, France
- Service d'Anatomie Pathologique, Centre de Biologie et Pathologie, CHRU Lille, Lille, France
- Faculté de Médecine de Lille, Université Lille 2, Lille, France
- * E-mail:
| |
Collapse
|
36
|
Gildea JJ, Tran HT, Van Sciver RE, Bigler Wang D, Carlson JM, Felder RA. A novel role for c-Myc in G protein-coupled receptor kinase 4 (GRK4) transcriptional regulation in human kidney proximal tubule cells. Hypertension 2013; 61:1021-7. [PMID: 23509080 DOI: 10.1161/hypertensionaha.111.00321] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The G protein-coupled receptor kinase 4 (GRK4) negatively regulates the dopaminergic system by desensitizing the dopamine-1-receptor. The expressional control of GRK4 has not been reported, but here we show that the transcription factor c-Myc binds to the promoter of GRK4 and positively regulates GRK4 protein expression in human renal proximal tubule cells (RPTCs). Addition of phorbol esters to RPTCs not only increased c-Myc binding to the GRK4 promoter but also increased both phospho-c-Myc and GRK4 expression. The phorbol ester-mediated increase in GRK4 expression was completely blocked by the c-Myc inhibitor, 10074-G5, indicating that GRK4 is downstream of phospho-c-Myc. The autocrine production of angiotensin II (Ang II) in RPTCs increased the phosphorylation and activation of c-Myc and subsequently GRK4 expression. 3-Amino-4-thio-butyl sulfonate, an inhibitor of aminopeptidase A, increased RPTC secretion of Ang II. 3-Amino-4-thio-butyl sulfonate or Ang II increased the expression of both phospho-c-Myc and GRK4, which was blocked by 10074-G5. Blockade of the Ang II type 1 receptor with losartan decreased phospho-c-Myc and GRK4 expression. Both inhibition of c-Myc activity and blockade of Ang II type 1 receptor restored the coupling of dopamine-1-receptor to adenylyl cyclase stimulation in uncoupled RPTCs, whereas phorbol esters or Ang II caused the uncoupling of normally coupled RPTCs. We suggest that the Ang II type 1 receptor impairs dopamine-1-receptor function via c-Myc activation of GRK4. This novel pathway may be involved in the increase in blood pressure in hypertension that is mediated by increased activity of the renin-angiotensin system and decreased activity of the renal dopaminergic system.
Collapse
Affiliation(s)
- John J Gildea
- Department of Pathology, University of Virginia Health System, Charlottesville, VA 22908, USA.
| | | | | | | | | | | |
Collapse
|
37
|
Kobori H, Kamiyama M, Harrison-Bernard LM, Navar LG. Cardinal Role of the Intrarenal Renin-Angiotensin System in the Pathogenesis of Diabetic Nephropathy. J Investig Med 2013; 61:256-264. [DOI: 10.2310/jim.0b013e31827c28bb] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Diabetes mellitus is one of the most prevalent diseases and is associated with increased incidence of structural and functional derangements in the kidneys, eventually leading to end-stage renal disease in a significant fraction of afflicted individuals. The renoprotective effects of renin-angiotensin system (RAS) blockade have been established; however, the mechanistic pathways have not been fully elucidated. In this review article, the cardinal role of an activated RAS in the pathogenesis of diabetic nephropathy (DN) is discussed with a focus on 4 themes: (1) introduction to RAS cascade, (2) intrarenal RAS in diabetes, (3) clinical outcomes of RAS blockade in DN, and (4) potential of urinary angiotensinogen as an early biomarker of intrarenal RAS status in DN. This review article provides a mechanistic rational supporting the hypothesis that an activated intrarenal RAS contributes to the pathogenesis of DN and that urinary angiotensinogen levels provide an index of intrarenal RAS activity.
Collapse
Affiliation(s)
- Hiroyuki Kobori
- *Department of Physiology, and Hypertension and Renal Center of Excellence, Tulane University Health Sciences Center
| | - Masumi Kamiyama
- *Department of Physiology, and Hypertension and Renal Center of Excellence, Tulane University Health Sciences Center
| | | | - L. Gabriel Navar
- *Department of Physiology, and Hypertension and Renal Center of Excellence, Tulane University Health Sciences Center
| |
Collapse
|
38
|
Kobori H, Urushihara M. Augmented intrarenal and urinary angiotensinogen in hypertension and chronic kidney disease. Pflugers Arch 2012; 465:3-12. [PMID: 22918624 DOI: 10.1007/s00424-012-1143-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 08/03/2012] [Accepted: 08/06/2012] [Indexed: 12/22/2022]
Abstract
Activated intrarenal renin-angiotensin system plays a cardinal role in the pathogenesis of hypertension and chronic kidney disease. Angiotensinogen is the only known substrate for renin, which is the rate-limiting enzyme of the renin-angiotensin system. Because the levels of angiotensinogen are close to the Michaelis-Menten constant values for renin, angiotensinogen levels as well as renin levels can control the renin-angiotensin system activity, and thus, upregulation of angiotensinogen leads to an increase in the angiotensin II levels and ultimately increases blood pressure. Recent studies using experimental animal models have documented the involvement of angiotensinogen in the intrarenal renin-angiotensin system activation and development of hypertension. Enhanced intrarenal angiotensinogen mRNA and/or protein levels were observed in experimental models of hypertension and chronic kidney disease, supporting the important roles of angiotensinogen in the development and the progression of hypertension and chronic kidney disease. Urinary excretion rates of angiotensinogen provide a specific index of the intrarenal renin-angiotensin system status in angiotensin II-infused rats. Also, a direct quantitative method has been developed recently to measure urinary angiotensinogen using human angiotensinogen enzyme-linked immunosorbent assay. These data prompted us to measure urinary angiotensinogen in patients with hypertension and chronic kidney disease, and investigate correlations with clinical parameters. This short article will focus on the role of the augmented intrarenal angiotensinogen in the pathophysiology of hypertension and chronic kidney disease. In addition, the potential of urinary angiotensinogen as a novel biomarker of the intrarenal renin-angiotensin system status in hypertension and chronic kidney disease will be also discussed.
Collapse
Affiliation(s)
- Hiroyuki Kobori
- Department of Physiology, Tulane University Health Sciences Center, 1430 Tulane Avenue, #SL39, New Orleans, LA 70112-2699, USA.
| | | |
Collapse
|
39
|
Kamiyama M, Zsombok A, Kobori H. Urinary angiotensinogen as a novel early biomarker of intrarenal renin-angiotensin system activation in experimental type 1 diabetes. J Pharmacol Sci 2012; 119:314-23. [PMID: 22850612 DOI: 10.1254/jphs.12076fp] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Urinary excretion of albumin (UAlb) is used clinically as a marker of diabetic nephropathy (DN). Although DN was thought to be a unidirectional process, recent studies demonstrated that a large proportion of patients diagnosed with DN reverted to normoalbuminuria. Moreover, despite the normoalbuminuria, one-third of them exhibited reduced renal function even during the microalbuminuric stage. This study was performed to investigate whether urinary angiotensinogen (UAGT) level may serve as a useful marker of the early stage of experimental type 1 diabetes (T1DM). T1DM was induced by a single intraperitoneal injection of streptozotocin. Control mice were injected with citrate buffer. Two days after streptozotocin injection, half of the mice received continuous insulin treatment. Our data showed that UAlb excretion was increased 6 days after streptozotocin injection compared to controls, whereas UAGT excretion was increased at an earlier time point. These increases were reversed by insulin treatment. The UAGT to UAlb ratio was increased in diabetic mice compared to control mice. Furthermore, the increased AGT expression in the kidneys was observed in diabetic mice. These data suggest that UAGT might be useful as a novel early biomarker of activation of the renin-angiotensin system in experimental type 1 diabetes.
Collapse
Affiliation(s)
- Masumi Kamiyama
- Department of Physiology, Tulane University Health Sciences Center, USA
| | | | | |
Collapse
|