1
|
Guan H, Sun Y, Qiao S, Li D, Cai J, Zhang Z. Mechanistic Insights Into the Role of Selenoprotein M in Nickel-Induced Lung Fibrosis. Biol Trace Elem Res 2025:10.1007/s12011-025-04636-8. [PMID: 40295458 DOI: 10.1007/s12011-025-04636-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Accepted: 04/20/2025] [Indexed: 04/30/2025]
Abstract
Long-term exposure to high concentrations of nickel (Ni) compounds could cause damage to lung tissue and increase the risk of lung and respiratory cancers. Selenoprotein M (SELENOM) plays a crucial role in antioxidant and anti-inflammatory activities. However, the relationship between SELENOM and the mechanism of Ni-induced pulmonary fibrosis in mice remains unknown. Our study explored the regulated mechanism of SELENOM in Ni-induced pulmonary fibrosis. Wild-type and SELENOM knockout C57BL/6N male mice were randomly divided into Wild-control and Wild-Ni groups, which were administered distilled water and NiCl2 (10 mg/kg) by gavage for 21 days. Lung tissues were then collected for histological analysis using hematoxylin-eosin (H&E) and Masson staining, as well as for electron microscopic examination. Firstly, light microscopy revealed inflammatory cell infiltration, alveolar collapse, and alveolar wall thickening in the lung tissue of SELENOM knockout mice. Electron microscopy of lung tissue showed a large accumulation of fibroblasts, proliferation of collagen fibers, and dense collagen deposition, indicating that SELENOM knockout increased lung injury in Ni treatment. Secondly, SELENOM knockout increased malondialdehyde (MDA) levels while decreasing superoxide dismutase (SOD), total antioxidant capacity (T-AOC), and glutathione peroxidase (GSH-Px) activities. Furthermore, Ni exposure and SELENOM knockout significantly upregulated protein and mRNA levels of epithelial-mesenchymal transition (EMT) markers α-SMA, COL-I, TGF-β1/Smad, and JAK2/STAT3 signaling pathway in the lung. These findings suggest that SELENOM knockout promotes EMT and exacerbates pulmonary fibrosis and inflammation through activation of the TGF-β1/Smad and JAK2/STAT3 signaling pathways. In summary, our study highlights the critical role of SELENOM in mitigating Ni-induced pulmonary fibrosis and provides insights into potential therapeutic targets for Ni-induced lung diseases.
Collapse
Affiliation(s)
- Haoyue Guan
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, P. R. China
- College of Animal Science and Veterinary Medicine, Sichuan Agricultural University, Chengdu, 625014, P. R. China
| | - Yue Sun
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, P. R. China
| | - Senqiu Qiao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, P. R. China
| | - Di Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, P. R. China
| | - Jingzeng Cai
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, P. R. China.
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, P. R. China.
| | - Ziwei Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, P. R. China.
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, P. R. China.
| |
Collapse
|
2
|
Li N, Zhang Z, Shen L, Song G, Tian J, Liu Q, Ni J. Selenium metabolism and selenoproteins function in brain and encephalopathy. SCIENCE CHINA. LIFE SCIENCES 2025; 68:628-656. [PMID: 39546178 DOI: 10.1007/s11427-023-2621-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 06/09/2024] [Indexed: 11/17/2024]
Abstract
Selenium (Se) is an essential trace element of the utmost importance to human health. Its deficiency induces various disorders. Se species can be absorbed by organisms and metabolized to hydrogen selenide for the biosynthesis of selenoproteins, selenonucleic acids, or selenosugars. Se in mammals mainly acts as selenoproteins to exert their biological functions. The brain ranks highest in the specific hierarchy of organs to maintain the level of Se and the expression of selenoproteins under the circumstances of Se deficiency. Dyshomeostasis of Se and dysregulation of selenoproteins result in encephalopathy such as Alzheimer's disease, Parkinson's disease, depression, amyotrophic lateral sclerosis, and multiple sclerosis. This review provides a summary and discussion of Se metabolism, selenoprotein function, and their roles in modulating brain diseases based on the most currently published literature. It focuses on how Se is utilized and transported to the brain, how selenoproteins are biosynthesized and function physiologically in the brain, and how selenoproteins are involved in neurodegenerative diseases. At the end of this review, the perspectives and problems are outlined regarding Se and selenoproteins in the regulation of encephalopathy.
Collapse
Affiliation(s)
- Nan Li
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, China
- Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China
| | - Zhonghao Zhang
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, China
| | - Liming Shen
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, China
- Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China
| | - Guoli Song
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, China
| | - Jing Tian
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, China.
| | - Qiong Liu
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, China.
| | - Jiazuan Ni
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, China
| |
Collapse
|
3
|
Duță C, Muscurel C, Dogaru CB, Stoian I. Selenoproteins: Zoom-In to Their Metal-Binding Properties in Neurodegenerative Diseases. Int J Mol Sci 2025; 26:1305. [PMID: 39941073 PMCID: PMC11818150 DOI: 10.3390/ijms26031305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/30/2025] [Accepted: 02/02/2025] [Indexed: 02/16/2025] Open
Abstract
Selenoproteins contain selenium (Se), which is included in the 21st proteinogenic amino acid selenocysteine (Sec). Selenium (Se) is an essential trace element that exerts its biological actions mainly through selenoproteins. Selenoproteins have crucial roles in maintaining healthy brain activity. At the same time, brain-function-associated selenoproteins may also be involved in neurodegenerative diseases, such as Alzheimer's disease (AD) and Parkinson's disease (PD). The selenoproteins GPx4 (glutathione peroxidase 4), GPx1 (glutathione peroxidase 1), SELENOP (selenoprotein P), SELENOK (selenoprotein K), SELENOS (selenoprotein S), SELENOW (selenoprotein W), and SELENOT (selenoprotein T) are highly expressed, specifically in AD-related brain regions being closely correlated to brain function. Only a few selenoproteins, mentioned above (especially SELENOP), can bind transition and heavy metals. Metal ion homeostasis accomplishes the vital physiological function of the brain. Dyshomeostasis of these metals induces and entertains neurodegenerative diseases. In this review, we described some of the proposed and established mechanisms underlying the actions and properties of the above-mentioned selenoproteins having the characteristic feature of binding transition or heavy metals.
Collapse
Affiliation(s)
| | | | - Carmen Beatrice Dogaru
- Department of Biochemistry, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.D.); (C.M.); (I.S.)
| | | |
Collapse
|
4
|
Skalny AV, Aschner M, Santamaria A, Filippini T, Gritsenko VA, Tizabi Y, Zhang F, Guo X, Rocha JBT, Tinkov AA. The Role of Gut Microbiota in the Neuroprotective Effects of Selenium in Alzheimer's Disease. Mol Neurobiol 2025; 62:1675-1692. [PMID: 39012446 DOI: 10.1007/s12035-024-04343-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 07/02/2024] [Indexed: 07/17/2024]
Abstract
The objective of the present review was to provide a timely update on the molecular mechanisms underlying the beneficial role of Se in Alzheimer's disease pathogenesis, and discuss the potential role of gut microbiota modulation in this neuroprotective effect. The existing data demonstrate that selenoproteins P, M, S, R, as well as glutathione peroxidases and thioredoxin reductases are involved in regulation of Aβ formation and aggregation, tau phosphorylation and neurofibrillary tangles formation, as well as mitigate the neurotoxic effects of Aβ and phospho-tau. Correspondingly, supplementation with various forms of Se in cellular and animal models of AD was shown to reduce Aβ formation, tau phosphorylation, reverse the decline in brain antioxidant levels, inhibit neuronal oxidative stress and proinflammatory cytokine production, improve synaptic plasticity and neurogenesis, altogether resulting in improved cognitive functions. In addition, most recent findings demonstrate that these neuroprotective effects are associated with Se-induced modulation of gut microbiota. In animal models of AD, Se supplementation was shown to improve gut microbiota biodiversity with a trend to increased relative abundance of Lactobacillus, Bifidobacterium, and Desulfivibrio, while reducing that of Lachnospiracea_NK4A136, Rikenella, and Helicobacter. Moreover, the relative abundance of Se-affected taxa was significantly associated with Aβ accumulation, tau phosphorylation, neuronal oxidative stress, and neuroinflammation, indicative of the potential role of gut microbiota to mediate the neuroprotective effects of Se in AD. Hypothetically, modulation of gut microbiota along with Se supplementation may improve the efficiency of the latter in AD, although further detailed laboratory and clinical studies are required.
Collapse
Affiliation(s)
- Anatoly V Skalny
- Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University, Sovetskaya Str. 14, Yaroslavl, 150000, Russia
- Laboratory of Molecular Dietetics, IM Sechenov First Moscow State Medical University (Sechenov University), Bolshaya Pirogovskaya St., 2-4, Moscow, 119146, Russia
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Abel Santamaria
- Facultad de Ciencias, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
- Laboratorio de Nanotecnología y Nanomedicina, Departamento de Atención a la Salud, Universidad Autónoma Metropolitana-Xochimilco, 04960, Mexico City, Mexico
| | - Tommaso Filippini
- Environmental, Genetic and Nutritional Epidemiology Research Center (CREAGEN), Department of Biomedical, Metabolic and Neural Sciences, Medical School, University of Modena and Reggio Emilia, Modena, Italy
- School of Public Health, University of California Berkeley, Berkeley, CA, USA
| | - Viktor A Gritsenko
- Institute of Cellular and Intracellular Symbiosis, Russian Academy of Sciences, Orenburg, 460000, Russia
| | - Yousef Tizabi
- Department of Pharmacology, Howard University College of Medicine, Washington, DC, 20059, USA
| | - Feng Zhang
- Key Laboratory of Trace Elements and Endemic Diseases, Health Science Center, School of Public Health, National Health and Family Planning Commission, Xi'an Jiaotong University, Xi'an 710061, China
| | - Xiong Guo
- Key Laboratory of Trace Elements and Endemic Diseases, Health Science Center, School of Public Health, National Health and Family Planning Commission, Xi'an Jiaotong University, Xi'an 710061, China
| | - Joao B T Rocha
- Departamento de Bioquímica E Biologia Molecular, CCNE, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Alexey A Tinkov
- Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University, Sovetskaya Str. 14, Yaroslavl, 150000, Russia.
- Laboratory of Molecular Dietetics, IM Sechenov First Moscow State Medical University (Sechenov University), Bolshaya Pirogovskaya St., 2-4, Moscow, 119146, Russia.
| |
Collapse
|
5
|
Kshirsagar S, Islam MA, Reddy AP, Reddy PH. Cell culture research in aging and Alzheimer's disease: The strategic use/reuse of untreated controls and savings people's tax dollars. J Alzheimers Dis Rep 2025; 9:25424823241310716. [PMID: 40034533 PMCID: PMC11864248 DOI: 10.1177/25424823241310716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 12/04/2024] [Indexed: 03/05/2025] Open
Abstract
Cell culture is an essential tool in both fundamental and translational research, particularly for understanding complex diseases like Alzheimer's disease (AD). The use of cell lines provides the advantage of genetic homogeneity, ensuring reproducible and consistent results. This article explores the application of mammalian cell cultures to model AD, focusing on the transfection of cells with key genes associated with the disease to replicate the cellular environment of AD. It explains various transfection methods and challenges related to the process. These models offer a robust platform for investigating cellular biology, molecular pathways, physiological processes, and drug discovery efforts. A range of assays, including RT-PCR, western blotting, ELISA, mitochondrial respiration, and reactive oxygen species analysis, are employed to assess the impact of genetic modifications on cellular functions and to screen potential AD therapies. Researchers often design experiments with multiple variables such as genetic modifications, chemical treatments, or time points, paired with positive and negative controls. By using a consistent control group across all conditions and under identical experimental conditions, researchers can minimize variability and enhance data reproducibility. This approach is particularly valuable in AD research, where small experimental differences can significantly influence outcomes. Using a shared control group ensures data comparability across experiments, saving time and resources by eliminating redundant control tests. This strategy not only streamlines the research process but also improves the reliability of results, making it a sensible, resource-efficient method that ultimately conserves public funding in the pursuit of AD treatments.
Collapse
Affiliation(s)
- Sudhir Kshirsagar
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Md Ariful Islam
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Arubala P Reddy
- Nutritional Sciences Department, College of Human Sciences, Texas Tech University, Lubbock, TX, USA
| | - P Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- Nutritional Sciences Department, College of Human Sciences, Texas Tech University, Lubbock, TX, USA
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- Department of Neurology, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- Department of Public Health, Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- Department of Speech, Language, and Hearing Sciences, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| |
Collapse
|
6
|
Vana F, Szabo Z, Masarik M, Kratochvilova M. The interplay of transition metals in ferroptosis and pyroptosis. Cell Div 2024; 19:24. [PMID: 39097717 PMCID: PMC11297737 DOI: 10.1186/s13008-024-00127-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 07/08/2024] [Indexed: 08/05/2024] Open
Abstract
Cell death is one of the most important mechanisms of maintaining homeostasis in our body. Ferroptosis and pyroptosis are forms of necrosis-like cell death. These cell death modalities play key roles in the pathophysiology of cancer, cardiovascular, neurological diseases, and other pathologies. Transition metals are abundant group of elements in all living organisms. This paper presents a summary of ferroptosis and pyroptosis pathways and their connection to significant transition metals, namely zinc (Zn), copper (Cu), molybdenum (Mo), lead (Pb), cobalt (Co), iron (Fe), cadmium (Cd), nickel (Ni), mercury (Hg), uranium (U), platinum (Pt), and one crucial element, selenium (Se). Authors aim to summarize the up-to-date knowledge of this topic.In this review, there are categorized and highlighted the most common patterns in the alterations of ferroptosis and pyroptosis by transition metals. Special attention is given to zinc since collected data support its dual nature of action in both ferroptosis and pyroptosis. All findings are presented together with a brief description of major biochemical pathways involving mentioned metals and are visualized in attached comprehensive figures.This work concludes that the majority of disruptions in the studied metals' homeostasis impacts cell fate, influencing both death and survival of cells in the complex system of altered pathways. Therefore, this summary opens up the space for further research.
Collapse
Affiliation(s)
- Frantisek Vana
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, CZ-625 00, Czech Republic
| | - Zoltan Szabo
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, CZ-625 00, Czech Republic
- Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Zluty kopec 7, Brno, 656 53, Czech Republic
| | - Michal Masarik
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, CZ-625 00, Czech Republic
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, CZ-625 00, Czech Republic
- First Faculty of Medicine, BIOCEV, Charles University, Prumyslova 595, Vestec, CZ-252 50, Czech Republic
| | - Monika Kratochvilova
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, CZ-625 00, Czech Republic.
| |
Collapse
|
7
|
Angelone T, Rocca C, Lionetti V, Penna C, Pagliaro P. Expanding the Frontiers of Guardian Antioxidant Selenoproteins in Cardiovascular Pathophysiology. Antioxid Redox Signal 2024; 40:369-432. [PMID: 38299513 DOI: 10.1089/ars.2023.0285] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
Significance: Physiological levels of reactive oxygen and nitrogen species (ROS/RNS) function as fundamental messengers for many cellular and developmental processes in the cardiovascular system. ROS/RNS involved in cardiac redox-signaling originate from diverse sources, and their levels are tightly controlled by key endogenous antioxidant systems that counteract their accumulation. However, dysregulated redox-stress resulting from inefficient removal of ROS/RNS leads to inflammation, mitochondrial dysfunction, and cell death, contributing to the development and progression of cardiovascular disease (CVD). Recent Advances: Basic and clinical studies demonstrate the critical role of selenium (Se) and selenoproteins (unique proteins that incorporate Se into their active site in the form of the 21st proteinogenic amino acid selenocysteine [Sec]), including glutathione peroxidase and thioredoxin reductase, in cardiovascular redox homeostasis, representing a first-line enzymatic antioxidant defense of the heart. Increasing attention has been paid to emerging selenoproteins in the endoplasmic reticulum (ER) (i.e., a multifunctional intracellular organelle whose disruption triggers cardiac inflammation and oxidative stress, leading to multiple CVD), which are crucially involved in redox balance, antioxidant activity, and calcium and ER homeostasis. Critical Issues: This review focuses on endogenous antioxidant strategies with therapeutic potential, particularly selenoproteins, which are very promising but deserve more detailed and clinical studies. Future Directions: The importance of selective selenoproteins in embryonic development and the consequences of their mutations and inborn errors highlight the need to improve knowledge of their biological function in myocardial redox signaling. This could facilitate the development of personalized approaches for the diagnosis, prevention, and treatment of CVD. Antioxid. Redox Signal. 40, 369-432.
Collapse
Affiliation(s)
- Tommaso Angelone
- Cellular and Molecular Cardiovascular Pathophysiology Laboratory, Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, Rende, Italy
- National Institute of Cardiovascular Research (INRC), Bologna, Italy
| | - Carmine Rocca
- Cellular and Molecular Cardiovascular Pathophysiology Laboratory, Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, Rende, Italy
| | - Vincenzo Lionetti
- Unit of Translational Critical Care Medicine, Laboratory of Basic and Applied Medical Sciences, Interdisciplinary Research Center "Health Science," Scuola Superiore Sant'Anna, Pisa, Italy
- UOSVD Anesthesiology and Intensive Care Medicine, Fondazione Toscana "Gabriele Monasterio," Pisa, Italy
| | - Claudia Penna
- National Institute of Cardiovascular Research (INRC), Bologna, Italy
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, Italy
| | - Pasquale Pagliaro
- National Institute of Cardiovascular Research (INRC), Bologna, Italy
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, Italy
| |
Collapse
|
8
|
Nunes LGA, Cain A, Comyns C, Hoffmann PR, Krahn N. Deciphering the Role of Selenoprotein M. Antioxidants (Basel) 2023; 12:1906. [PMID: 38001759 PMCID: PMC10668967 DOI: 10.3390/antiox12111906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 10/20/2023] [Accepted: 10/21/2023] [Indexed: 11/26/2023] Open
Abstract
Selenocysteine (Sec), the 21st amino acid, is structurally similar to cysteine but with a sulfur to selenium replacement. This single change retains many of the chemical properties of cysteine but often with enhanced catalytic and redox activity. Incorporation of Sec into proteins is unique, requiring additional translation factors and multiple steps to insert Sec at stop (UGA) codons. These Sec-containing proteins (selenoproteins) are found in all three domains of life where they often are involved in cellular homeostasis (e.g., reducing reactive oxygen species). The essential role of selenoproteins in humans requires us to maintain appropriate levels of selenium, the precursor for Sec, in our diet. Too much selenium is also problematic due to its toxic effects. Deciphering the role of Sec in selenoproteins is challenging for many reasons, one of which is due to their complicated biosynthesis pathway. However, clever strategies are surfacing to overcome this and facilitate production of selenoproteins. Here, we focus on one of the 25 human selenoproteins, selenoprotein M (SELENOM), which has wide-spread expression throughout our tissues. Its thioredoxin motif suggests oxidoreductase function; however, its mechanism and functional role(s) are still being uncovered. Furthermore, the connection of both high and low expression levels of SELENOM to separate diseases emphasizes the medical application for studying the role of Sec in this protein. In this review, we aim to decipher the role of SELENOM through detailing and connecting current evidence. With multiple proposed functions in diverse tissues, continued research is still necessary to fully unveil the role of SELENOM.
Collapse
Affiliation(s)
- Lance G. A. Nunes
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813-5525, USA
| | - Antavius Cain
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA;
| | - Cody Comyns
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511-4902, USA
| | - Peter R. Hoffmann
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813-5525, USA
| | - Natalie Krahn
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA;
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511-4902, USA
| |
Collapse
|
9
|
Sun X, Zhang W, Shi X, Wang Y, Zhang Y, Liu X, Xu S, Zhang J. Selenium deficiency caused hepatitis in chickens via the miR-138-5p/SelM/ROS/Ca 2+ overload pathway induced by hepatocyte necroptosis. Food Funct 2023; 14:9226-9242. [PMID: 37743830 DOI: 10.1039/d3fo00683b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Selenoprotein M (SelM), a key thioredoxin like enzyme in the endoplasmic reticulum (ER), is closely related to hepatocyte degeneration. However, the role of miR-138-5p/SelM and necroptosis in chicken SelM-deficient hepatitis and the specific biological mechanism of liver inflammation caused by SelM deficiency have not been elucidated. We established an in vivo chicken liver Se deficiency model by feeding a low-Se diet. The miR-138-5p knockdown and overexpression models and SelM knockdown models were established in LMH cells for an in vitro study. Transmission electron microscopy, H&E staining, Fluo4-AM/ER staining, and flow cytometry were used to detect the morphological changes in chicken liver tissue and the expression changes of necroptosis and inflammation in chicken liver cells. We observed that Se deficiency resulted in liver inflammation, up-regulation of miR-138-5p expression and down-regulation of SelM expression in chickens. Oxidative stress, Ca2+ overload, energy metabolism disorder and necroptosis occurred in chicken liver tissue. Importantly, ROS and the Ca2+ inhibitor could effectively alleviate the energy metabolism disorder, necroptosis and inflammatory cytokine secretion caused by miR-138-5p overexpression and SelM knockdown in LMH cells. In conclusion, selenium deficiency causes hepatitis by upregulating miR-138-5p targeting SelM. Our research findings enrich our knowledge about the biological functions of SelM and provide a theoretical basis for the lack of SelM leading to liver inflammation in chickens.
Collapse
Affiliation(s)
- Xinyue Sun
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China.
| | - Wenyue Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China.
| | - Xu Shi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China.
| | - Yuqi Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China.
| | - Yilei Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China.
| | - Xiaojing Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China.
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China.
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, P. R. China
| | - Jiuli Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China.
- Heilongjiang Polytechnic, Harbin 150030, P. R. China.
| |
Collapse
|
10
|
Ma W, Liu Y, Xu L, Gai X, Sun Y, Qiao S, Liu P, Liu Q, Zhang Z. The role of selenoprotein M in nickel-induced pyroptosis in mice spleen tissue via oxidative stress. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:34270-34281. [PMID: 36504304 DOI: 10.1007/s11356-022-24597-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
Nickel (Ni) is a heavy metal element and a pollutant that threatens the organism's health. Melatonin (Mel) is an antioxidant substance that can be secreted by the organism and has a protective effect against heavy metals. Selenoprotein M (SelM) is a selenoprotein widely distributed of the body, and its role is to protect these tissues from oxidative damage. To study the mechanism of Ni, Mel, and SelM in mouse spleen, 80 SelM+/+ wild-type and 80 SelM-/- homozygous mice were divided into 8 groups with 20 mice in each group. The Ni group was intragastric at a concentration of 10 mg/kg, while the Mel group was intragastric at 2 mg/kg. Mice were injected with 0.1 mL/10 g body weight for 21 days. Histopathological and ultrastructural observations showed the changes in Ni, such as the destruction of white and red pulp and the appearance of pyroptosomes. SelM knockout showed more severe injury, while Mel could effectively interfere with Ni-induced spleen toxicity. The results of antioxidant capacity determination showed that Ni could cause oxidative stress in the spleen, and Mel could also effectively reduce oxidative stress. Finally, Ni exposure increased the expression levels of the pyroptotic genes, including apoptosis-associated speck protein (ASC), absent in melanoma-2 (AIM2), NOD-like receptor thermal protein domain-associated protein 3 (NLRP3), Caspase-1, interleukin- (IL-) 18, and IL-1β (p < 0.05). Loss of SelM significantly increased these (p < 0.05), while Mel decreased the alleviated impact of Ni. In conclusion, the loss of SelM aggravated Ni-induced pyroptosis of the spleen via activating oxidative stress, which was alleviated by Mel, but the effect of Mel was not obvious in the absence of SelM, which reflected the important role of SelM in Ni-induced pyroptosis.
Collapse
Affiliation(s)
- Wenxue Ma
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Yue Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Lihua Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Xiaoxue Gai
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Yue Sun
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Senqiu Qiao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Pinnan Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Qiaohan Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Ziwei Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Harbin, People's Republic of China.
| |
Collapse
|
11
|
Varshini MS, Ravi Kiran AVVV, Garikapati KK, Krishnamurthy PT, Patil VM, Khaydarov RR. Novel Therapeutic Targets for Treating Alzheimer’s Disease. DECIPHERING DRUG TARGETS FOR ALZHEIMER’S DISEASE 2023:19-39. [DOI: 10.1007/978-981-99-2657-2_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
12
|
Zhang X, Xu L, Liu P, Ma W, Liu Y, Qiao S, Liu Q, Cai J, Zhang Z. Editorial: The mechanism of trace elements on regulating immunity in prevention and control of human and animal diseases. Front Immunol 2023; 14:1159289. [PMID: 36911709 PMCID: PMC9996112 DOI: 10.3389/fimmu.2023.1159289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 02/10/2023] [Indexed: 02/25/2023] Open
Affiliation(s)
- Xintong Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Lihua Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Pinnan Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Wenxue Ma
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yue Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Senqiu Qiao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Qiaohan Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Jingzeng Cai
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Ziwei Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.,Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Harbin, China
| |
Collapse
|
13
|
Jehan C, Cartier D, Bucharles C, Anouar Y, Lihrmann I. Emerging roles of ER-resident selenoproteins in brain physiology and physiopathology. Redox Biol 2022; 55:102412. [PMID: 35917681 PMCID: PMC9344019 DOI: 10.1016/j.redox.2022.102412] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/05/2022] [Accepted: 07/14/2022] [Indexed: 12/23/2022] Open
Abstract
The brain has a very high oxygen consumption rate and is particularly sensitive to oxidative stress. It is also the last organ to suffer from a loss of selenium (Se) in case of deficiency. Se is a crucial trace element present in the form of selenocysteine, the 21st proteinogenic amino acid present in selenoproteins, an essential protein family in the brain that participates in redox signaling. Among the most abundant selenoproteins in the brain are glutathione peroxidase 4 (GPX4), which reduces lipid peroxides and prevents ferroptosis, and selenoproteins W, I, F, K, M, O and T. Remarkably, more than half of them are proteins present in the ER and recent studies have shown their involvement in the maintenance of ER homeostasis, glycoprotein folding and quality control, redox balance, ER stress response signaling pathways and Ca2+ homeostasis. However, their molecular functions remain mostly undetermined. The ER is a highly specialized organelle in neurons that maintains the physical continuity of axons over long distances through its continuous distribution from the cell body to the nerve terminals. Alteration of this continuity can lead to degeneration of distal axons and subsequent neuronal death. Elucidation of the function of ER-resident selenoproteins in neuronal pathophysiology may therefore become a new perspective for understanding the pathophysiology of neurological diseases. Here we summarize what is currently known about each of their molecular functions and their impact on the nervous system during development and stress.
Collapse
Affiliation(s)
- Cédric Jehan
- Rouen-Normandie University, UNIROUEN, Inserm, U1239, Neuroendocrine, Endocrine and Germinal Differenciation and Communication Laboratory, Mont-Saint-Aignan Cedex, France; Institute for Research and Innovation in Biomedicine, Rouen, France
| | - Dorthe Cartier
- Rouen-Normandie University, UNIROUEN, Inserm, U1239, Neuroendocrine, Endocrine and Germinal Differenciation and Communication Laboratory, Mont-Saint-Aignan Cedex, France; Institute for Research and Innovation in Biomedicine, Rouen, France
| | - Christine Bucharles
- Rouen-Normandie University, UNIROUEN, Inserm, U1239, Neuroendocrine, Endocrine and Germinal Differenciation and Communication Laboratory, Mont-Saint-Aignan Cedex, France; Institute for Research and Innovation in Biomedicine, Rouen, France
| | - Youssef Anouar
- Rouen-Normandie University, UNIROUEN, Inserm, U1239, Neuroendocrine, Endocrine and Germinal Differenciation and Communication Laboratory, Mont-Saint-Aignan Cedex, France; Institute for Research and Innovation in Biomedicine, Rouen, France
| | - Isabelle Lihrmann
- Rouen-Normandie University, UNIROUEN, Inserm, U1239, Neuroendocrine, Endocrine and Germinal Differenciation and Communication Laboratory, Mont-Saint-Aignan Cedex, France; Institute for Research and Innovation in Biomedicine, Rouen, France.
| |
Collapse
|
14
|
Chung CZ, Krahn N. The selenocysteine toolbox: A guide to studying the 21st amino acid. Arch Biochem Biophys 2022; 730:109421. [DOI: 10.1016/j.abb.2022.109421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/22/2022] [Accepted: 09/26/2022] [Indexed: 11/28/2022]
|
15
|
Cai J, Huang J, Yang J, Chen X, Zhang H, Zhu Y, Liu Q, Zhang Z. The protective effect of selenoprotein M on non-alcoholic fatty liver disease: the role of the AMPKα1-MFN2 pathway and Parkin mitophagy. Cell Mol Life Sci 2022; 79:354. [PMID: 35678878 PMCID: PMC11073218 DOI: 10.1007/s00018-022-04385-0] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 05/04/2022] [Accepted: 05/19/2022] [Indexed: 12/11/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is related to a dysregulation of mitophagy, a process that is not fully understood. Parkin-related mitophagy can sustain mitochondrial homeostasis and hepatocyte viability. Herein, we report that selenoprotein M (SELENOM) plays a central role in maintaining mitophagy in high-fat diet (HFD)-mediated NAFLD. We show that SELENOM was significantly downregulated in the liver of HFD-fed mice. SELENOM deletion aggravated HFD-mediated hepatic steatosis, inflammation, and fibrosis; accompanied by enhanced fatty acid oxidation and oxidative stress in the liver. Molecular analyses show that lipotoxicity was related to increased mitochondrial apoptosis as evidenced by enhanced mitochondrial ROS production, and attenuation of mitochondrial potential in the liver of HFD-fed SELENOM-/- mice. Additionally, SELENOM deletion reduced mitophagy and aggravated hepatic injury in NAFLD. Mechanistically, SELENOM overexpression activated Parkin-mediated mitophagy to reduce mitochondrial apoptosis and remove HFD-damaged mitochondria. We further found that SELENOM regulates Parkin expression via the AMPKα1-MFN2 pathway; blockade of AMPKα1 prevented SELENOM activation of Parkin-mediated mitophagy. Our work identified SELENOM downregulation as a possible explanation for the defective mitophagy in NAFLD. Thus, targeting SELENOM may be potential new therapeutic modalities for NAFLD treatment.
Collapse
Affiliation(s)
- Jingzeng Cai
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Jiaqiang Huang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, People's Republic of China
| | - Jie Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Xiaoming Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Haoran Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Yue Zhu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Qi Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Ziwei Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
- Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Key Laboratory of the Provincial Education, Harbin, People's Republic of China.
| |
Collapse
|
16
|
Wang Y, Liu P, Chang J, Xu Y, Wang J. Site-Specific Selenocysteine Incorporation into Proteins by Genetic Engineering. Chembiochem 2021; 22:2918-2924. [PMID: 33949764 DOI: 10.1002/cbic.202100124] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/03/2021] [Indexed: 01/23/2023]
Abstract
Selenocysteine (Sec), a rare naturally proteinogenic amino acid, is the major form of essential trace element selenium in living organisms. Selenoproteins, with one or several Sec residues, are found in all three domains of life. Many selenoproteins play a role in critical cellular functions such as maintaining cell redox homeostasis. Sec is usually encoded by an in-frame stop codon UGA in the selenoprotein mRNA, and its incorporation in vivo is highly species-dependent and requires the reprogramming of translation. This mechanistic complexity of selenoprotein synthesis poses a big challenge to produce synthetic selenoproteins. To understand the functions of natural as well as engineered selenoproteins, many strategies have recently been developed to overcome the inherent barrier for recombinant selenoprotein production. In this review, we will describe the progress in selenoprotein production methodology.
Collapse
Affiliation(s)
- Yuchuan Wang
- Shenzhen Institute of Transfusion Medicine Shenzhen Blood Center, Shenzhen, Futian District, 518052, P. R. China.,Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen, Nanshan District, 518055, P. R. China
| | - Pengcheng Liu
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, Chaoyang District, 100101, P. R. China
| | - Jiao Chang
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, Chaoyang District, 100101, P. R. China
| | - Yunping Xu
- Shenzhen Institute of Transfusion Medicine Shenzhen Blood Center, Shenzhen, Futian District, 518052, P. R. China
| | - Jiangyun Wang
- Shenzhen Institute of Transfusion Medicine Shenzhen Blood Center, Shenzhen, Futian District, 518052, P. R. China.,Institute of Biophysics, Chinese Academy of Sciences, Beijing, Chaoyang District, 100101, P. R. China.,Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen, Nanshan District, 518055, P. R. China
| |
Collapse
|
17
|
Zhang ZH, Song GL. Roles of Selenoproteins in Brain Function and the Potential Mechanism of Selenium in Alzheimer's Disease. Front Neurosci 2021; 15:646518. [PMID: 33762907 PMCID: PMC7982578 DOI: 10.3389/fnins.2021.646518] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 02/16/2021] [Indexed: 12/13/2022] Open
Abstract
Selenium (Se) and its compounds have been reported to have great potential in the prevention and treatment of Alzheimer's disease (AD). However, little is known about the functional mechanism of Se in these processes, limiting its further clinical application. Se exerts its biological functions mainly through selenoproteins, which play vital roles in maintaining optimal brain function. Therefore, selenoproteins, especially brain function-associated selenoproteins, may be involved in the pathogenesis of AD. Here, we analyze the expression and distribution of 25 selenoproteins in the brain and summarize the relationships between selenoproteins and brain function by reviewing recent literature and information contained in relevant databases to identify selenoproteins (GPX4, SELENOP, SELENOK, SELENOT, GPX1, SELENOM, SELENOS, and SELENOW) that are highly expressed specifically in AD-related brain regions and closely associated with brain function. Finally, the potential functions of these selenoproteins in AD are discussed, for example, the function of GPX4 in ferroptosis and the effects of the endoplasmic reticulum (ER)-resident protein SELENOK on Ca2+ homeostasis and receptor-mediated synaptic functions. This review discusses selenoproteins that are closely associated with brain function and the relevant pathways of their involvement in AD pathology to provide new directions for research on the mechanism of Se in AD.
Collapse
Affiliation(s)
- Zhong-Hao Zhang
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China.,Shenzhen Bay Laboratory, Shenzhen, China
| | - Guo-Li Song
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China.,Shenzhen Bay Laboratory, Shenzhen, China.,Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
| |
Collapse
|
18
|
Solovyev N. Selenoprotein P and its potential role in Alzheimer's disease. Hormones (Athens) 2020; 19:73-79. [PMID: 31250406 DOI: 10.1007/s42000-019-00112-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 05/29/2019] [Indexed: 12/13/2022]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease associated with cognitive decline, loss of memory, and progressive cerebral atrophy. The trace element selenium (Se) is known to be involved in brain pathology. Selenoprotein P (SELENOP), as the main Se transport protein, is, to a great extent, responsible for maintaining Se homeostasis and the hierarchy of selenoprotein expression in the body. Adequate Se supply through SELENOP is vital for proper brain development and function. Additionally, SELENOP may be implicated in pathological processes in the central nervous system, including those in AD. The current review summarizes recent findings on the possible role of SELENOP in AD, with a focus on probable mechanisms: Se delivery to neurons, antioxidant activity, cytoskeleton assembly, interaction with redox-active metals (e.g., copper and iron), and misfolded proteins (amyloid beta and tau protein). The use of SELENOP as a biomarker of Se status is also briefly discussed. Epidemiological studies on Se supplementation are beyond the scope of the current review.
Collapse
Affiliation(s)
- Nikolay Solovyev
- Institute of Chemistry, St. Petersburg State University, Universitetskaya nab. 7/9, St. Petersburg, Russian Federation, 199034.
- Department of Chemistry, Atomic & Mass Spectrometry - A&MS Research Unit, Ghent University, Campus Sterre, Krijgslaan, 281-S12, 9000, Ghent, Belgium.
| |
Collapse
|
19
|
Leonardi A, Evke S, Lee M, Melendez JA, Begley TJ. Epitranscriptomic systems regulate the translation of reactive oxygen species detoxifying and disease linked selenoproteins. Free Radic Biol Med 2019; 143:573-593. [PMID: 31476365 PMCID: PMC7650020 DOI: 10.1016/j.freeradbiomed.2019.08.030] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/28/2019] [Accepted: 08/29/2019] [Indexed: 02/07/2023]
Abstract
Here we highlight the role of epitranscriptomic systems in post-transcriptional regulation, with a specific focus on RNA modifying writers required for the incorporation of the 21st amino acid selenocysteine during translation, and the pathologies linked to epitranscriptomic and selenoprotein defects. Epitranscriptomic marks in the form of enzyme-catalyzed modifications to RNA have been shown to be important signals regulating translation, with defects linked to altered development, intellectual impairment, and cancer. Modifications to rRNA, mRNA and tRNA can affect their structure and function, while the levels of these dynamic tRNA-specific epitranscriptomic marks are stress-regulated to control translation. The tRNA for selenocysteine contains five distinct epitranscriptomic marks and the ALKBH8 writer for the wobble uridine (U) has been shown to be vital for the translation of the glutathione peroxidase (GPX) and thioredoxin reductase (TRXR) family of selenoproteins. The reactive oxygen species (ROS) detoxifying selenocysteine containing proteins are a prime examples of how specialized translation can be regulated by specific tRNA modifications working in conjunction with distinct codon usage patterns, RNA binding proteins and specific 3' untranslated region (UTR) signals. We highlight the important role of selenoproteins in detoxifying ROS and provide details on how epitranscriptomic marks and selenoproteins can play key roles in and maintaining mitochondrial function and preventing disease.
Collapse
Affiliation(s)
- Andrea Leonardi
- Colleges of Nanoscale Science and Engineering, University at Albany, State University of New York, Albany, NY, USA
| | - Sara Evke
- Colleges of Nanoscale Science and Engineering, State University of New York Polytechnic Institute, Albany, NY, USA
| | - May Lee
- Colleges of Nanoscale Science and Engineering, State University of New York Polytechnic Institute, Albany, NY, USA
| | - J Andres Melendez
- Colleges of Nanoscale Science and Engineering, State University of New York Polytechnic Institute, Albany, NY, USA.
| | - Thomas J Begley
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY, USA; RNA Institute, University at Albany, State University of New York, Albany, NY, USA.
| |
Collapse
|
20
|
Cenini G, Voos W. Mitochondria as Potential Targets in Alzheimer Disease Therapy: An Update. Front Pharmacol 2019; 10:902. [PMID: 31507410 PMCID: PMC6716473 DOI: 10.3389/fphar.2019.00902] [Citation(s) in RCA: 175] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 07/18/2019] [Indexed: 02/06/2023] Open
Abstract
Alzheimer disease (AD) is a progressive and deleterious neurodegenerative disorder that affects mostly the elderly population. At the moment, no effective treatments are available in the market, making the whole situation a compelling challenge for societies worldwide. Recently, novel mechanisms have been proposed to explain the etiology of this disease leading to the new concept that AD is a multifactor pathology. Among others, the function of mitochondria has been considered as one of the intracellular processes severely compromised in AD since the early stages and likely represents a common feature of many neurodegenerative diseases. Many mitochondrial parameters decline already during the aging, reaching an extensive functional failure concomitant with the onset of neurodegenerative conditions, although the exact timeline of these events is still unclear. Thereby, it is not surprising that mitochondria have been already considered as therapeutic targets in neurodegenerative diseases including AD. Together with an overview of the role of mitochondrial dysfunction, this review examines the pros and cons of the tested therapeutic approaches targeting mitochondria in the context of AD. Since mitochondrial therapies in AD have shown different degrees of progress, it is imperative to perform a detailed analysis of the significance of mitochondrial deterioration in AD and of a pharmacological treatment at this level. This step would be very important for the field, as an effective drug treatment in AD is still missing and new therapeutic concepts are urgently needed.
Collapse
Affiliation(s)
- Giovanna Cenini
- Institut für Biochemie und Molekularbiologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Wolfgang Voos
- Institut für Biochemie und Molekularbiologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| |
Collapse
|
21
|
Jiang H, Shi QQ, Ge LY, Zhuang QF, Xue D, Xu HY, He XZ. Selenoprotein M stimulates the proliferative and metastatic capacities of renal cell carcinoma through activating the PI3K/AKT/mTOR pathway. Cancer Med 2019; 8:4836-4844. [PMID: 31274247 PMCID: PMC6712446 DOI: 10.1002/cam4.2403] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 06/11/2019] [Accepted: 06/22/2019] [Indexed: 01/02/2023] Open
Abstract
High-throughput sequencing methods have facilitated the identification of novel selenoproteins, which exert a vital role in the development and progression of tumor diseases. Recently, Selenoprotein M (SELM) is upregulated in several types of cancer. However, the biological roles of SELM in renal cell carcinoma (RCC) remain unclear. In this paper, quantitative reverse transcription PCR (qRT-PCR) and Western blot were used to measure relative levels of SELM in a cohort of RCC tissues with matched normal tissues as well as human RCC cell lines. SELM expression was found to be upregulated in RCC. High level of SELM was related to poor prognosis of RCC. Furthermore, silence of SELM could inhibit the in vitro proliferative, migratory, and invasive capacities of RCC. In addition, downregulated SELM could impede in vivo tumorigenesis of RCC. SELM could activate the PI3K/Akt/mTOR pathway and mediate expressions of matrix metallopeptidase 2 and 9 (MMP2, MMP9). In conclusion, our study reveals the oncogenic function of SELM in RCC, and SELM may be a therapeutic and prognostic target for RCC.
Collapse
Affiliation(s)
- Hao Jiang
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, People's Republic of China
| | - Qian-Qian Shi
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, People's Republic of China
| | - Li-Yuan Ge
- Department of Urology, Peking University Third Hospital, Beijing, People's Republic of China
| | - Qian-Feng Zhuang
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, People's Republic of China
| | - Dong Xue
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, People's Republic of China
| | - Hai-Yan Xu
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, People's Republic of China
| | - Xiao-Zhou He
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, People's Republic of China
| |
Collapse
|
22
|
Solovyev N, Drobyshev E, Bjørklund G, Dubrovskii Y, Lysiuk R, Rayman MP. Selenium, selenoprotein P, and Alzheimer's disease: is there a link? Free Radic Biol Med 2018; 127:124-133. [PMID: 29481840 DOI: 10.1016/j.freeradbiomed.2018.02.030] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 02/18/2018] [Accepted: 02/22/2018] [Indexed: 12/13/2022]
Abstract
The essential trace element, selenium (Se), is crucial to the brain but it may be potentially neurotoxic, depending on dosage and speciation; Se has been discussed for decades in relation to Alzheimer's disease (AD). Selenoprotein P (SELENOP) is a secreted heparin-binding glycoprotein which serves as the main Se transport protein in mammals. In vivo studies showed that this protein might have additional functions such as a contribution to redox regulation. The current review focuses on recent research on the possible role of SELENOP in AD pathology, based on model and human studies. The review also briefly summarizes results of epidemiological studies on Se supplementation in relation to brain diseases, including PREADViSE, EVA, and AIBL. Although mainly positive effects of Se are assessed in this review, possible detrimental effects of Se supplementation or exposure, including potential neurotoxicity, are also mentioned. In relation to AD, various roles of SELENOP are discussed, i.e. as the means of Se delivery to neurons, as an antioxidant, in cytoskeleton assembly, in interaction with redox-active metals (copper, iron, and mercury) and with misfolded proteins (amyloid-beta and hyperphosphorylated tau-protein).
Collapse
Affiliation(s)
- Nikolay Solovyev
- St. Petersburg State University, Institute of Chemistry, St. Petersburg, Russian Federation.
| | - Evgenii Drobyshev
- Universität Potsdam, Institut für Ernährungswissenschaft, Potsdam, Germany
| | - Geir Bjørklund
- Council for Nutritional and Environmental Medicine, Mo i Rana, Norway.
| | - Yaroslav Dubrovskii
- St. Petersburg State University, Institute of Chemistry, St. Petersburg, Russian Federation
| | - Roman Lysiuk
- Department of Pharmacognosy and Botany, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - Margaret P Rayman
- Department of Nutritional Sciences, University of Surrey, Guildford, UK
| |
Collapse
|
23
|
Guo L, Yang W, Huang Q, Qiang J, Hart JR, Wang W, Hu J, Zhu J, Liu N, Zhang Y. Selenocysteine-Specific Mass Spectrometry Reveals Tissue-Distinct Selenoproteomes and Candidate Selenoproteins. Cell Chem Biol 2018; 25:1380-1388.e4. [PMID: 30174312 DOI: 10.1016/j.chembiol.2018.08.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 07/11/2018] [Accepted: 08/06/2018] [Indexed: 01/05/2023]
Abstract
Selenoproteins, defined by the presence of selenocysteines (Sec), play important roles in a wide range of biological processes. All known selenoproteins are marked by the presence of Sec insertion sequence (SECIS) at their mRNA. The lack of an effective analytical method has hindered our ability to explore the selenoproteome and new selenoproteins beyond SECIS. Here, we develop a Sec-specific mass spectrometry-based technique, termed "SecMS," which allows the systematic profiling of selenoproteomes by selective alkylation of Sec. Using SecMS, we quantitatively characterized the age- and stress-regulated selenoproteomes for nine tissues from mice of different ages and mammalian cells, demonstrating tissue-specific selenoproteomes and an age-dependent decline in specific selenoproteins in brains and hearts. We established an integrated platform using SecMS and SECIS-independent selenoprotein (SIS) database and further identified five candidate selenoproteins. The application of this integrated platform provides an effective strategy to explore the selenoproteome independent of SECIS.
Collapse
Affiliation(s)
- Lin Guo
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 26 Qiuyue Road, Pudong, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wu Yang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 26 Qiuyue Road, Pudong, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiang Huang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 26 Qiuyue Road, Pudong, Shanghai 201210, China
| | - Jiali Qiang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 26 Qiuyue Road, Pudong, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jonathan Ross Hart
- Departments of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Wenyuan Wang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 26 Qiuyue Road, Pudong, Shanghai 201210, China
| | - Junhao Hu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 26 Qiuyue Road, Pudong, Shanghai 201210, China
| | - Jidong Zhu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 26 Qiuyue Road, Pudong, Shanghai 201210, China
| | - Nan Liu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 26 Qiuyue Road, Pudong, Shanghai 201210, China
| | - Yaoyang Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 26 Qiuyue Road, Pudong, Shanghai 201210, China.
| |
Collapse
|
24
|
Liu J, Chen Q, Rozovsky S. Selenocysteine-Mediated Expressed Protein Ligation of SELENOM. Methods Mol Biol 2018; 1661:265-283. [PMID: 28917051 DOI: 10.1007/978-1-4939-7258-6_19] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A sizeable fraction of the selenoproteome encodes oxidoreductases possessing a thioredoxin fold, a structural motif that is shared among a diverse group of enzymes. In these oxidoreductases, the active site is comprised of a cysteine and a selenocysteine separated by one to two amino acids. In a subset of these selenoproteins, such as human SELENOH, SELENOM, SELENOT, SELENOV, SELENOW, and SELENOF, this redox motif is positioned immediately after the first β-sheet in a short loop, and is essential for interactions with its substrate or partners. Here, we describe the preparation of a representative member of this group, SELENOM, by selenocysteine-driven expressed protein ligation. The preparation employs a peptide bond formation between two protein fragments expressed recombinantly in E. coli. This method can be employed to prepare other selenoproteins.
Collapse
Affiliation(s)
- Jun Liu
- Department of Chemistry and Biochemistry, University of Delaware, 136 Brown Laboratory, Newark, DE, 19716, USA
| | - Qingqing Chen
- Department of Chemistry and Biochemistry, University of Delaware, 136 Brown Laboratory, Newark, DE, 19716, USA
| | - Sharon Rozovsky
- Department of Chemistry and Biochemistry, University of Delaware, 136 Brown Laboratory, Newark, DE, 19716, USA.
| |
Collapse
|
25
|
Liu Q, Yang J, Cai J, Luan Y, Sattar H, Liu M, Xu S, Zhang Z. Analysis of the Interactions Between Thioredoxin and 20 Selenoproteins in Chicken. Biol Trace Elem Res 2017; 179:304-317. [PMID: 28251482 DOI: 10.1007/s12011-017-0961-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 02/06/2017] [Indexed: 12/14/2022]
Abstract
Thioredoxin (Trx) is a small molecular protein with complicated functions in a number of processes, including inflammation, apoptosis, embryogenesis, cardiovascular disease, and redox regulation. Some selenoproteins, such as glutathione peroxidase (Gpx), iodothyronine deiodinase (Dio), and thioredoxin reductase (TR), are involved in redox regulation. However, whether there are interactions between Trx and selenoproteins is still not known. In the present paper, we used a Modeller, Hex 8.0.0, and the KFC2 Server to predict the interactions between Trx and selenoproteins. We used the Modeller to predict the target protein in objective format and assess the accuracy of the results. Molecular interaction studies with Trx and selenoproteins were performed using the molecular docking tools in Hex 8.0.0. Next, we used the KFC2 Server to further test the protein binding sites. In addition to the selenoprotein physiological functions, we also explored potential relationships between Trx and selenoproteins beyond all the results we got. The results demonstrate that Trx has the potential to interact with 19 selenoproteins, including iodothyronine deiodinase 1 (Dio1), iodothyronine deiodinase 3 (Dio3), glutathione peroxidase 1 (Gpx1), glutathione peroxidase 2 (Gpx2), glutathione peroxidase 3 (Gpx3), glutathione peroxidase 4 (Gpx4), selenoprotein H (SelH), selenoprotein I (SelI), selenoprotein M (SelM), selenoprotein N (SelN), selenoprotein T (SelT), selenoprotein U (SelU), selenoprotein W (SelW), selenoprotein 15 (Sep15), methionine sulfoxide reductase B (Sepx1), selenophosphate synthetase 1 (SPS1), TR1, TR2, and TR3, among which TR1, TR2, TR3, SPS1, Sep15, SelN, SelM, SelI, Gpx2, Gpx3, Gpx4, and Dio3 exhibited intense correlations with Trx. However, additional experiments are needed to verify them.
Collapse
Affiliation(s)
- Qi Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Jie Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Jingzeng Cai
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Yilin Luan
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Hamid Sattar
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Man Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Ziwei Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
| |
Collapse
|
26
|
Wang C, Chen P, He X, Peng Z, Chen S, Zhang R, Cheng J, Liu Q. Direct interaction between selenoprotein R and Aβ42. Biochem Biophys Res Commun 2017; 489:509-514. [PMID: 28579431 DOI: 10.1016/j.bbrc.2017.05.182] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 05/31/2017] [Indexed: 01/15/2023]
Abstract
Amyloid-β (Aβ) peptides have taken a central role in AD research, the aggregation of Aβ peptide is involved in the progression of Alzheimer's disease (AD). The 35th amino acid was methionine (Met) in Aβ peptides and it's redox state is critical in determining the biological activity of Aβ. It has been suggested that oxidation of Met35 (Met35O) plays a key role in the formation of paranuclei and in the control of oligomerization pathway choice. As an antioxidative selenoenzyme, Selenoprotein R (SelR) plays important roles in reducing the R-form of MetO to Met to maintain intracellular redox balance. However, the relationship between SelR and Aβ was little investigated. Here, we found that SelR can directly interact with Aβ42, and the interaction between SelR and Aβ42 was verified by fluorescence resonance energy transfer (FRET), co-immunoprecipitation (co-IP), and pull-down assays. SelR is closely related to AD, its biological functions in human brain become a research focus. This work implies that SelR makes it capable of modulating Aβ42 aggregation and provides a novel avenue for further study on the mechanism of SelR in AD prevention.
Collapse
Affiliation(s)
- Chao Wang
- Shenzhen Center for Disease Control and Prevention, 518055, Shenzhen, China
| | - Ping Chen
- Department of Biochemical Engineering, Nanyang Institute of Technology, 473004, Nanyang, China
| | - Xiaohong He
- Enshi Center for Disease Control and Prevention, 445000, Enshi, China
| | - Zaisheng Peng
- Enshi Center for Disease Control and Prevention, 445000, Enshi, China
| | - Siqiang Chen
- Enshi Center for Disease Control and Prevention, 445000, Enshi, China
| | - Renli Zhang
- Shenzhen Center for Disease Control and Prevention, 518055, Shenzhen, China.
| | - Jinquan Cheng
- Shenzhen Center for Disease Control and Prevention, 518055, Shenzhen, China.
| | - Qiong Liu
- Department of Marine Biology, Shenzhen Key Laboratory of Marine Biotechnology and Ecology, Shenzhen University, 518060, Shenzhen, China.
| |
Collapse
|
27
|
Endoplasmic reticulum-resident selenoproteins as regulators of calcium signaling and homeostasis. Cell Calcium 2017; 70:76-86. [PMID: 28506443 DOI: 10.1016/j.ceca.2017.05.001] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 04/30/2017] [Indexed: 01/07/2023]
Abstract
The human selenoprotein family contains 25 members that share the common feature of containing the amino acid, selenocysteine (Sec). Seven selenoproteins are localized to the endoplasmic reticulum (ER) and exhibit different structural features contributing to a range of cellular functions. Some of these functions are either directly or indirectly related to calcium (Ca2+) flux or homeostasis. The presence of the unique Sec residue within these proteins allows some to exert oxidoreductase activity, while the function of the Sec in other ER selenoproteins remains unclear. Some functional insight has been achieved by identifying domains within the ER selenoproteins or through the identification of binding partners. For example, selenoproteins K and N (SELENOK AND SELENON) have been characterized through interactions detected with the inositol 1,4,5-triphosphate receptors (IP3Rs) and the SERCA2b pump, respectively. Others have been linked to chaperone functions related to ER stress or Ca2+ homeostasis. This review summarizes the details gathered to date regarding the ER-resident selenoproteins and their effect on Ca2+ regulated pathways and outcomes in cells.
Collapse
|
28
|
Rubin A, Salzberg AC, Imamura Y, Grivitishvilli A, Tombran-Tink J. Identification of novel targets of diabetic nephropathy and PEDF peptide treatment using RNA-seq. BMC Genomics 2016; 17:936. [PMID: 27855634 PMCID: PMC5114726 DOI: 10.1186/s12864-016-3199-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 10/25/2016] [Indexed: 01/31/2023] Open
Abstract
Background Diabetic nephropathy (DN) is a major complication of type1 and type 2 diabetes. Understanding how diabetes regulate transcriptome dynamics in DN is important for understanding the biology of the disease and for guiding development of new treatments. Results We analyzed the kidney transcriptome of a DN mouse model, D2.B6-Ins2Akita/MatbJ, before/after treatment with P78-PEDF. Age, weight, and gender-matched mice and wild-type (wt) littermates were treated at 6 weeks (early treatment) or 12 weeks (late treatment) of age for the duration of 6 weeks. Animals were implanted with an osmotic mini pump delivering 0.3 ug/g/day P78-PEDF or vehicle. Using RNA-seq, we identified14,316 transcripts (12,328 coding;1,988 non-coding) that were significant and reliably expressed (FPKM > =1) in diabetic kidneys. Expression of 1,129 (7.9%) including 901 coding genes was altered by diabetes with log2 fold changes (FC) between -86.2 and +86.0 (q < 0.05) compared to wt. Of these, 164 (14.5%) showed increased and 965 (85.5%) decreased expression with FC > 1.5. Coding genes with highest FC in diabetic kidneys include Nhej1 (32.04), Ept1 (8.6), Srd5a2 (-6.55), Aif1 (-6.05), and Angptl7 (-4.71). Early and late stage diabetic groups receiving continuous infusion of P78 showed altered expression of 316/14,316 (2.2%) transcripts, including 121 coding genes compared to non-treated diabetic controls. Of these, 183 were upregulated and 133 downregulated with FC +50.9–-93.3 (q < 0.05). P78 reversed diabetes-induced changes in 138/1129 (12.2%) transcripts, including 49/901 (5.44%) coding genes. Nhej1 (-37.94), Tceanc2 (5.76), Ept1 (-4.45), Ugt1a2 (3.03), and Tmsb15l (-3.0) showed the highest FC with treatment. The DNA repair gene, Nhej1 with the greatest FC in diabetic kidneys was completely restored to control levels by both early and late P78 treatments. Expression of other coding genes regulated by diabetes with FC > =(+/-) 1.5 and completely reversed by P78 include Mamdc4, Kdm4b, Tmem252, Selm, and Hpd. RT and QRT-PCR validated expression of gene with FC > (+/-)2.0. Transcriptome changes were also observed between early and late-stage treatments. Precursor non-coding miRNAs showed the highest fold changes in expression in the diabetic and P78 treatment groups. Several diabetic-induced changes were reversed in direction of expression by treatment including Gm24083, GM25953, miR1905, Gm25535, Gm27903, and miR196a1 with FC > =(+/-)20. From Ingenuity pathway analysis (IPA), mitochondrial dysfunction, Nrf-2- mediated oxidative stress and renal injury pathways emerged as key mechanisms in DN. DN-enriching genes in these pathways were reduced in number or regulated in the opposite direction by treatment. Conclusions Unique biomarkers and canonical pathways identified in this study may hold the key to understanding mechanisms of DN pathobiology with value for clinical translation. Our data suggest that mitochondrial dysfunction, genotoxicity and oxidative stress are principal events in DN and that P78-PEDF holds promise for its management.
Collapse
Affiliation(s)
- Ana Rubin
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, USA
| | - Anna C Salzberg
- Functional Genome Sciences, Penn State College of Medicine, Hershey, USA
| | - Yuka Imamura
- Functional Genome Sciences, Penn State College of Medicine, Hershey, USA
| | - Anzor Grivitishvilli
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, USA
| | - Joyce Tombran-Tink
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, USA. .,Department of Ophthalmology, Penn State College of Medicine, Hershey, PA, 17033, USA.
| |
Collapse
|
29
|
Solovyev ND. Importance of selenium and selenoprotein for brain function: From antioxidant protection to neuronal signalling. J Inorg Biochem 2015; 153:1-12. [PMID: 26398431 DOI: 10.1016/j.jinorgbio.2015.09.003] [Citation(s) in RCA: 187] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Revised: 09/03/2015] [Accepted: 09/09/2015] [Indexed: 12/21/2022]
Abstract
Multiple biological functions of selenium manifest themselves mainly via 25 selenoproteins that have selenocysteine at their active centre. Selenium is vital for the brain and seems to participate in the pathology of disorders such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis and epilepsy. Since selenium was shown to be involved in diverse functions of the central nervous system, such as motor performance, coordination, memory and cognition, a possible role of selenium and selenoproteins in brain signalling pathways may be assumed. The aim of the present review is to analyse possible relations between selenium and neurotransmission. Selenoproteins seem to be of special importance in the development and functioning of GABAergic (GABA, γ-aminobutyric acid) parvalbumin positive interneurons of the cerebral cortex and hippocampus. Dopamine pathway might be also selenium dependent as selenium shows neuroprotection in the nigrostriatal pathway and also exerts toxicity towards dopaminergic neurons under higher concentrations. Recent findings also point to acetylcholine neurotransmission involvement. The role of selenium and selenoproteins in neurotransmission might not only be limited to their antioxidant properties but also to inflammation, influencing protein phosphorylation and ion channels, alteration of calcium homeostasis and brain cholesterol metabolism. Moreover, a direct signalling function was proposed for selenoprotein P through interaction with post-synaptic apoliprotein E receptors 2 (ApoER2).
Collapse
Affiliation(s)
- Nikolay D Solovyev
- Institute of Chemistry, St. Petersburg State University, St. Petersburg 198504, Russian Federation.
| |
Collapse
|
30
|
Cardoso BR, Roberts BR, Bush AI, Hare DJ. Selenium, selenoproteins and neurodegenerative diseases. Metallomics 2015; 7:1213-28. [DOI: 10.1039/c5mt00075k] [Citation(s) in RCA: 164] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A review of selenium's essential role in normal brain function and its potential involvement in neurodegenerative diseases.
Collapse
Affiliation(s)
- Bárbara Rita Cardoso
- The Florey Institute of Neuroscience and Mental Health
- The University of Melbourne
- Parkville, Australia
- Faculty of Pharmaceutical Sciences
- Department of Food and Experimental Nutrition
| | - Blaine R. Roberts
- The Florey Institute of Neuroscience and Mental Health
- The University of Melbourne
- Parkville, Australia
| | - Ashley I. Bush
- The Florey Institute of Neuroscience and Mental Health
- The University of Melbourne
- Parkville, Australia
| | - Dominic J. Hare
- The Florey Institute of Neuroscience and Mental Health
- The University of Melbourne
- Parkville, Australia
- Elemental Bio-imaging Facility
- University of Technology Sydney
| |
Collapse
|
31
|
Labunskyy VM, Hatfield DL, Gladyshev VN. Selenoproteins: molecular pathways and physiological roles. Physiol Rev 2014; 94:739-77. [PMID: 24987004 DOI: 10.1152/physrev.00039.2013] [Citation(s) in RCA: 903] [Impact Index Per Article: 82.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Selenium is an essential micronutrient with important functions in human health and relevance to several pathophysiological conditions. The biological effects of selenium are largely mediated by selenium-containing proteins (selenoproteins) that are present in all three domains of life. Although selenoproteins represent diverse molecular pathways and biological functions, all these proteins contain at least one selenocysteine (Sec), a selenium-containing amino acid, and most serve oxidoreductase functions. Sec is cotranslationally inserted into nascent polypeptide chains in response to the UGA codon, whose normal function is to terminate translation. To decode UGA as Sec, organisms evolved the Sec insertion machinery that allows incorporation of this amino acid at specific UGA codons in a process requiring a cis-acting Sec insertion sequence (SECIS) element. Although the basic mechanisms of Sec synthesis and insertion into proteins in both prokaryotes and eukaryotes have been studied in great detail, the identity and functions of many selenoproteins remain largely unknown. In the last decade, there has been significant progress in characterizing selenoproteins and selenoproteomes and understanding their physiological functions. We discuss current knowledge about how these unique proteins perform their functions at the molecular level and highlight new insights into the roles that selenoproteins play in human health.
Collapse
Affiliation(s)
- Vyacheslav M Labunskyy
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts; and Molecular Biology of Selenium Section, Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Dolph L Hatfield
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts; and Molecular Biology of Selenium Section, Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Vadim N Gladyshev
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts; and Molecular Biology of Selenium Section, Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
32
|
Pillai R, Uyehara-Lock JH, Bellinger FP. Selenium and selenoprotein function in brain disorders. IUBMB Life 2014; 66:229-39. [PMID: 24668686 DOI: 10.1002/iub.1262] [Citation(s) in RCA: 143] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 03/10/2014] [Indexed: 01/14/2023]
Abstract
Selenoproteins are important for normal brain function, and decreased function of selenoproteins can lead to impaired cognitive function and neurological disorders. This review examines the possible roles of selenoproteins in Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and epilepsy. Selenium deficiency is associated with cognitive decline, and selenoproteins may be helpful in preventing neurodegeneration in AD. PD is associated with impaired function of glutathione peroxidase selenoenzymes. In HD, selenium deters lipid peroxidation by increasing specific glutathione peroxidases. Selenium deficiency increases risk of seizures in epilepsy, whereas supplementation may help to alleviate seizures. Further studies on the mechanisms of selenoprotein function will increase our understanding of how selenium and selenoproteins can be used in treatment and prevention of brain disorders.
Collapse
Affiliation(s)
- Roshan Pillai
- Department of Cell and Molecular Biology, University of Hawaii, John A. Burns School of Medicine, Honolulu, HI, USA
| | | | | |
Collapse
|
33
|
Du X, Li H, Wang Z, Qiu S, Liu Q, Ni J. Selenoprotein P and selenoprotein M block Zn2+ -mediated Aβ42 aggregation and toxicity. Metallomics 2014; 5:861-70. [PMID: 23652332 DOI: 10.1039/c3mt20282h] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Aggregation and cytotoxicity of the amyloid-β (Aβ) peptide with transition metal ions in neuronal cells have been suggested to be involved in the progression of Alzheimer's disease (AD). A therapeutic strategy to combat this incurable disease is to design chemical agents to target metal-Aβ species. Selenoproteins are a group of special proteins that contain the 21st amino acid Sec in their sequence. Due to the presence of Sec, studies of this group of proteins are basically focused on their roles in regulating redox potential and scavenging reactive oxygen species. Here, we reported that the His-rich domain of selenoprotein P (SelP-H) and the Sec-to-Cys mutant selenoprotein M (SelM') are capable of binding transition metal ions and modulating the Zn(2+)-mediated Aβ aggregation, ROS production and neurotoxicity. SelM' (U48C) and SelP-H were found to coordinate 0.5 and 2 molar equivalents of Zn(2+)/Cd(2+) with micromolar and submicromolar affinities, respectively. Metal binding induced the structural changes in SelP-H and SelM' according to the circular dichorism spectra. Zn(2+) binding to Aβ42 almost completely suppressed Aβ42 fibrillization, which could be significantly restored by SelP-H and SelM', as observed by thioflavin T (ThT) fluorescence and transmission electron microscopy (TEM). Interestingly, both SelP-H and SelM' inhibited Zn(2+)-Aβ42-induced neurotoxicity and the intracellular ROS production in living cells. These studies suggest that SelP and SelM may play certain roles in regulating redox balance as well as metal homeostasis.
Collapse
Affiliation(s)
- Xiubo Du
- College of Life Sciences, Shenzhen Key Laboratory of Microbial Genetic Engineering, Shenzhen University, Shenzhen, China
| | | | | | | | | | | |
Collapse
|
34
|
|
35
|
Galectin-1 is an interactive protein of selenoprotein M in the brain. Int J Mol Sci 2013; 14:22233-45. [PMID: 24284396 PMCID: PMC3856062 DOI: 10.3390/ijms141122233] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 10/24/2013] [Accepted: 10/24/2013] [Indexed: 11/17/2022] Open
Abstract
Selenium, an essential trace element for human health, mainly exerts its biological function through selenoproteins. Selenoprotein M (SelM) is one of the highly expressed selenoproteins in the brain, but its biological effect and molecular mechanism remain unclear. Thus, the interactive protein of SelM was investigated in this paper to guide further study. In order to avoid protein translational stop, the selenocysteine-encoding UGA inside the open reading frame of SelM was site-directly changed to the cysteine-encoding UGC to generate the SelM' mutant. Meanwhile, its N terminal transmembrane signal peptide was also cut off. This truncated SelM' was used to screen a human fetal brain cDNA library by the yeast two-hybrid system. A new interactive protein of SelM' was found to be galectin-1 (Gal-1). This protein-protein interaction was further verified by the results of fluorescence resonance energy transfer techniques, glutathione S-transferase pull-down and co-immunoprecipitation assays. As Gal-1 plays important roles in preventing neurodegeneration and promoting neuroprotection in the brain, the interaction between SelM' and Gal-1 displays a new direction for studying the biological function of SelM in the human brain.
Collapse
|
36
|
Chen P, Wang C, Ma X, Zhang Y, Liu Q, Qiu S, Liu Q, Tian J, Ni J. Direct Interaction of Selenoprotein R with Clusterin and Its Possible Role in Alzheimer's Disease. PLoS One 2013; 8:e66384. [PMID: 23805218 PMCID: PMC3689823 DOI: 10.1371/journal.pone.0066384] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 05/06/2013] [Indexed: 11/22/2022] Open
Abstract
Selenoprotein R (SelR) plays an important role in maintaining intracellular redox balance by reducing the R-form of methionine sulfoxide to methionine. As SelR is highly expressed in brain and closely related to Alzheimer′s disease (AD), its biological functions in human brain become a research focus. In this paper, the selenocysteine-coding TGA of SelR gene was mutated to cysteine-coding TGC and used to screen the human fetal brain cDNA library with a yeast two-hybrid system. Our results demonstrated that SelR interacts with clusterin (Clu), a chaperone protein. This protein interaction was further verified by fluorescence resonance energy transfer (FRET), coimmunoprecipitation (co-IP), and pull-down assays. The interacting domain of Clu was determined by co-IP to be a dynamic, molten globule structure spanning amino acids 315 to 381 with an amphipathic-helix. The interacting domain of SelR was investigated by gene manipulation, ligand replacement, protein over-expression, and enzyme activity measurement to be a tetrahedral complex consisting of a zinc ion binding with four Cys residues. Study on the mutual effect of SelR and Clu showed synergic property between the two proteins. Cell transfection with SelR gene increased the expression of Clu, while cell transfection with Clu promoted the enzyme activity of SelR. Co-overexpression of SelR and Clu in N2aSW cells, an AD model cell line, significantly decreased the level of intracellular reactive oxygen species. Furthermore, FRET and co-IP assays demonstrated that Clu interacted with β-amyloid peptide, a pathological protein of AD, which suggested a potential effect of SelR and Aβ with the aid of Clu. The interaction between SelR and Clu provides a novel avenue for further study on the mechanism of SelR in AD prevention.
Collapse
Affiliation(s)
- Ping Chen
- College of life Sciences, Shenzhen Key Laboratory of Microbial Genetic Engineering, Shenzhen University, Shenzhen, China
- College of Optoelectronic Engineering, Shenzhen University, Shenzhen, P.R. China
| | - Chao Wang
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, P.R. China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, P.R. China
| | - Xiaojie Ma
- College of life Sciences, Shenzhen Key Laboratory of Microbial Genetic Engineering, Shenzhen University, Shenzhen, China
| | - Yizhe Zhang
- College of life Sciences, Shenzhen Key Laboratory of Microbial Genetic Engineering, Shenzhen University, Shenzhen, China
| | - Qing Liu
- College of life Sciences, Shenzhen Key Laboratory of Microbial Genetic Engineering, Shenzhen University, Shenzhen, China
| | - Shi Qiu
- College of life Sciences, Shenzhen Key Laboratory of Microbial Genetic Engineering, Shenzhen University, Shenzhen, China
| | - Qiong Liu
- College of life Sciences, Shenzhen Key Laboratory of Microbial Genetic Engineering, Shenzhen University, Shenzhen, China
- * E-mail: (QL); (JN)
| | - Jing Tian
- College of life Sciences, Shenzhen Key Laboratory of Microbial Genetic Engineering, Shenzhen University, Shenzhen, China
| | - Jiazuan Ni
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, P.R. China
- College of life Sciences, Shenzhen Key Laboratory of Microbial Genetic Engineering, Shenzhen University, Shenzhen, China
- * E-mail: (QL); (JN)
| |
Collapse
|