1
|
Zhang Q, Choi K, Wang X, Xi L, Lu S. The Contribution of Human Antimicrobial Peptides to Fungi. Int J Mol Sci 2025; 26:2494. [PMID: 40141139 PMCID: PMC11941821 DOI: 10.3390/ijms26062494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/07/2025] [Accepted: 03/08/2025] [Indexed: 03/28/2025] Open
Abstract
Various species of fungi can be detected in the environment and within the human body, many of which may become pathogenic under specific conditions, leading to various forms of fungal infections. Antimicrobial peptides (AMPs) are evolutionarily ancient components of the immune response that are quickly induced in response to infections with many pathogens in almost all tissues. There is a wide range of AMP classes in humans, many of which exhibit broad-spectrum antimicrobial function. This review provides a comprehensive overview of the mechanisms of action of AMPs, their distribution in the human body, and their antifungal activity against a range of both common and rare clinical fungal pathogens. It also discusses the current research status of promising novel antifungal strategies, highlighting the challenges that must be overcome in the development of these therapies. The hope is that antimicrobial peptides, as a class of antimicrobial agents, will soon progress through large-scale clinical trials and be implemented in clinical practice, offering new treatment options for patients suffering from infections.
Collapse
Affiliation(s)
| | | | | | | | - Sha Lu
- Department of Dermatology and Venereology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, #107 Yanjiang West Rd., Guangzhou 510120, China; (Q.Z.); (K.C.); (X.W.); (L.X.)
| |
Collapse
|
2
|
Xu H, Wang S, Liu X, Li M, Wang X, Chen H, Qu C, Liu Y, Liu J. Strategies for Survival of Staphylococcus aureus in Host Cells. Int J Mol Sci 2025; 26:720. [PMID: 39859434 PMCID: PMC11765632 DOI: 10.3390/ijms26020720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/11/2025] [Accepted: 01/12/2025] [Indexed: 01/27/2025] Open
Abstract
Staphylococcus aureus, a common pathogen, is capable of producing a significant array of toxins and can develop biofilms or small colony variants (SCVs) to evade detection by the immune system and resist the effects of antibiotics. Its ability to persist for extended periods within host cells has led to increased research interest. This review examines the process of internalization of S. aureus, highlighting the impact of its toxins and adhesion factors on host cells. It elucidates the intricate interactions between them and the host cellular environment, thereby offering potential strategies for the treatment and prevention of S. aureus infections.
Collapse
Affiliation(s)
- Huiling Xu
- College of Veterinary Medicine, Shandong Agricultural University, Tai’an 271018, China; (H.X.); (S.W.); (X.L.); (X.W.); (C.Q.)
| | - Shengnan Wang
- College of Veterinary Medicine, Shandong Agricultural University, Tai’an 271018, China; (H.X.); (S.W.); (X.L.); (X.W.); (C.Q.)
| | - Xiaoting Liu
- College of Veterinary Medicine, Shandong Agricultural University, Tai’an 271018, China; (H.X.); (S.W.); (X.L.); (X.W.); (C.Q.)
| | - Muzi Li
- Shandong Provincial Key Laboratory of Zoonoses, Shandong Agricultural University, Tai’an 271018, China; (M.L.); (H.C.)
| | - Xiaozhou Wang
- College of Veterinary Medicine, Shandong Agricultural University, Tai’an 271018, China; (H.X.); (S.W.); (X.L.); (X.W.); (C.Q.)
| | - Huahua Chen
- Shandong Provincial Key Laboratory of Zoonoses, Shandong Agricultural University, Tai’an 271018, China; (M.L.); (H.C.)
| | - Chaonan Qu
- College of Veterinary Medicine, Shandong Agricultural University, Tai’an 271018, China; (H.X.); (S.W.); (X.L.); (X.W.); (C.Q.)
| | - Yongxia Liu
- College of Veterinary Medicine, Shandong Agricultural University, Tai’an 271018, China; (H.X.); (S.W.); (X.L.); (X.W.); (C.Q.)
| | - Jianzhu Liu
- College of Veterinary Medicine, Shandong Agricultural University, Tai’an 271018, China; (H.X.); (S.W.); (X.L.); (X.W.); (C.Q.)
- Shandong Provincial Key Laboratory of Zoonoses, Shandong Agricultural University, Tai’an 271018, China; (M.L.); (H.C.)
| |
Collapse
|
3
|
Mondal RK, Anurag Anand A, Sen D, Samanta SK. The anti-MRSA resource: a comprehensive archive of anti-MRSA peptides and essential oils. J Biomol Struct Dyn 2025:1-13. [PMID: 39757585 DOI: 10.1080/07391102.2024.2446670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 07/29/2024] [Indexed: 01/07/2025]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA), a major cause of fatalities due to Antimicrobial Resistance (AMR), can act as an opportunistic pathogen despite being part of the normal human flora. MRSA infections, such as skin infections, pneumonia, sepsis, and surgical site infections, have risen significantly, with bloodstream infection cases increasing from 21% in 2016 to 35% in 2020. This surge has prompted research into alternative treatments like nanomaterials, photodynamic therapy, antimicrobial peptides (AMPs), and essential oils (EOs). AMPs and EOs have shown higher success rates compared to other alternatives, gaining significant attention for their effectiveness against MRSA. In this perspective, we have created a database for peptides and EOs that have been discovered to treat MRSA. Manual data curation was done to get related information on each of the anti-MRSA EOs and AMPs from the PubMed articles. This led to the curation of 1789 peptides (1029 unique) and 863 EOs (671 unique) that have been reported against MRSA. This was followed by database creation and the development of tools for sequence analysis and determination of physiochemical properties. This resource has been named 'The Anti-MRSA Resource' or 'TAMRSAR' which we believe will aid in future drug development efforts to combat the diseases caused by MRSA. The database is accessible on any web browser at the URL: https://bblserver.org.in/tamrsar/.
Collapse
Affiliation(s)
- Rajat Kumar Mondal
- Biochemistry and Bioinformatics Laboratory, Department of Applied Sciences, Indian Institute of Information Technology Allahabad (IIIT-A), Prayagraj, Uttar Pradesh, India
| | - Ananya Anurag Anand
- Biochemistry and Bioinformatics Laboratory, Department of Applied Sciences, Indian Institute of Information Technology Allahabad (IIIT-A), Prayagraj, Uttar Pradesh, India
| | - Debarup Sen
- Persistent Systems Ltd., Pune, Maharashtra, India
| | - Sintu Kumar Samanta
- Biochemistry and Bioinformatics Laboratory, Department of Applied Sciences, Indian Institute of Information Technology Allahabad (IIIT-A), Prayagraj, Uttar Pradesh, India
| |
Collapse
|
4
|
Zhu Y, Liu W, Wang M, Wang X, Wang S. Causal roles of skin microbiota in skin cancers suggested by genetic study. Front Microbiol 2024; 15:1426807. [PMID: 39161599 PMCID: PMC11330880 DOI: 10.3389/fmicb.2024.1426807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 07/19/2024] [Indexed: 08/21/2024] Open
Abstract
Background There is evidence from observational studies that skin microbiota is linked to skin cancers. Nevertheless, the causal association between skin microbiota and skin cancers is yet to be fully clarified. Methods A bidirectional two-sample Mendelian randomization (MR) was performed to determine the causal relationship between skin microbiota and skin cancers. A total of 294 skin microbial taxa were identified from the first genome-wide association study across three skin microenvironments of two German population cohorts. Summary data of three skin cancers (malignant melanoma, squamous cell carcinoma, and basal cell carcinoma) were obtained from the FinnGen consortium. Moreover, sensitivity analysis examined horizontal pleiotropy and heterogeneity, and microenvironment-based meta-analysis confirmed the reliability of the results. Results We identified 65 nominal causalities and 5 strong causal associations between skin microbiota and skin cancers. Among them, the class Bacilli revealed a bidirectional positive relationship with malignant melanoma. The class Betaproteobacteria and class Gammaproteobacteria demonstrated a causal association with an elevated risk of malignant melanoma and basal cell carcinoma, respectively. In the reverse MR analysis, malignant melanoma was associated with a lower abundance of phylum Bacteroidetes. There were no indications of significant heterogeneity in instrumental variables or evidence of horizontal pleiotropy. Conclusion Our MR analysis indicated bidirectional causal associations between skin microbiota and skin cancers, and had the potential to offer novel perspectives on the mechanistic of microbiota-facilitated carcinogenesis.
Collapse
Affiliation(s)
- Yuhang Zhu
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Wanguo Liu
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Mei Wang
- Department of Dermatology, The First Hospital of Jilin University, Changchun, China
| | - Xu Wang
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Sibo Wang
- Department of Neurology, Center for Neuroscience, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
5
|
Radhouani M, Starkl P. Adjuvant-independent airway sensitization and infection mouse models leading to allergic asthma. FRONTIERS IN ALLERGY 2024; 5:1423938. [PMID: 39157265 PMCID: PMC11327155 DOI: 10.3389/falgy.2024.1423938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 07/05/2024] [Indexed: 08/20/2024] Open
Abstract
Asthma is a chronic respiratory disease of global importance. Mouse models of allergic asthma have been instrumental in advancing research and novel therapeutic strategies for patients. The application of relevant allergens and physiological routes of exposure in such models has led to valuable insights into the complexities of asthma onset and development as well as key disease mechanisms. Furthermore, environmental microbial exposures and infections have been shown to play a fundamental part in asthma pathogenesis and alter disease outcome. In this review, we delve into physiological mouse models of allergic asthma and explore literature reports on most significant interplays between microbial infections and asthma development with relevance to human disease.
Collapse
Affiliation(s)
- Mariem Radhouani
- Research Division of Infection Biology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Philipp Starkl
- Research Division of Infection Biology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
6
|
Albuquerque Borges MGDS, de Oliveira E Lima L, Veras ACMF, Ferreira RC, da Nóbrega Alves D, de Medeiros IA, Magnani M, Sobral MV, Dias de Castro R, Relison Tintino S, de Morais Oliveira-Tintino CD, Coutinho HDM, Guerra FQS, de Barros DB, de Oliveira MBM. Cytotoxicity and Biological Activities of Geopopolis Extract from the Stingless bee (Melipona scutellaris) in Isolates of Staphylococcus aureus. Chem Biodivers 2024; 21:e202301982. [PMID: 38608157 DOI: 10.1002/cbdv.202301982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 04/14/2024]
Abstract
Geopropolis resins are produced by stingless bees (Meliponinae), developed from the collection of resinous materials, waxes and exudates, from the flora of the region where stingless bees are present, in addition to the addition of clay or earth in its composition. Several biological activities are attributed to Ethanol Extracts of Geopropolis (EEGP). The bioactive properties are associated with the complex chemical composition that the samples have. This work aims to evaluate the biological activities of the EEGP, in order to contribute with a natural therapeutic alternative, to face infections, mainly those caused by resistant strains of Staphylococcus aureus. The EEGP MIC tests showed antibacterial activity against two strains of S. aureus, both at concentrations of 550 μg/mL. The MBC performed with the inhibition values showed that the EEGP has bacteriostatic activity in both strains. Biofilm inhibition rates exhibited an average value greater than 65 % at the highest concentration. The EEGP antioxidant potential test showed good antioxidant activity (IC50) of 11.05±1.55 μg/mL. In the cytotoxicity test against HaCat cells, after 24 hours, EEGP induced cell viability at the three tested concentrations (550 μg/mL: 81.68±3.79 %; 1100 μg/mL: 67.10±3.76 %; 2200 μg/mL: 67.40±1.86 %). In view of the above, the safe use of EEGP from the brazilian northeast could be proven by the cytotoxicity test, and its use as an antioxidant and antibacterial agent has proven to be effective, as an alternative in combating oxidative stress and microorganisms such as S. aureus, which, through the spread and ongoing evolution of drug resistance, generates an active search for effective solutions.
Collapse
Affiliation(s)
| | | | | | - Rafael Carlos Ferreira
- Programa de Pós Graduação em Produtos Naturais e Sintéticos Bioativos, Universidade Federal da Paraíba, João Pessoa, Brasil
| | | | | | - Marciane Magnani
- Departamento de Engenharia de Alimentos, Universidade Federal da Paraíba, João Pessoa, Brasil
| | - Marianna Vieira Sobral
- Programa de Pós Graduação em Produtos Naturais e Sintéticos Bioativos, Universidade Federal da Paraíba, João Pessoa, Brasil
| | - Ricardo Dias de Castro
- Departamento de Odontologia Clínica e Social, Universidade Federal da Paraíba, João Pessoa, Brasil
| | - Saulo Relison Tintino
- Departamento de Química Biológica, Universidade Regional do Cariri, Crato, Ceará, Brasil
| | | | | | | | | | | |
Collapse
|
7
|
Ahator SD, Hegstad K, Lentz CS, Johannessen M. Deciphering Staphylococcus aureus-host dynamics using dual activity-based protein profiling of ATP-interacting proteins. mSystems 2024; 9:e0017924. [PMID: 38656122 PMCID: PMC11097646 DOI: 10.1128/msystems.00179-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 03/26/2024] [Indexed: 04/26/2024] Open
Abstract
The utilization of ATP within cells plays a fundamental role in cellular processes that are essential for the regulation of host-pathogen dynamics and the subsequent immune response. This study focuses on ATP-binding proteins to dissect the complex interplay between Staphylococcus aureus and human cells, particularly macrophages (THP-1) and keratinocytes (HaCaT), during an intracellular infection. A snapshot of the various protein activity and function is provided using a desthiobiotin-ATP probe, which targets ATP-interacting proteins. In S. aureus, we observe enrichment in pathways required for nutrient acquisition, biosynthesis and metabolism of amino acids, and energy metabolism when located inside human cells. Additionally, the direct profiling of the protein activity revealed specific adaptations of S. aureus to the keratinocytes and macrophages. Mapping the differentially activated proteins to biochemical pathways in the human cells with intracellular bacteria revealed cell-type-specific adaptations to bacterial challenges where THP-1 cells prioritized immune defenses, autophagic cell death, and inflammation. In contrast, HaCaT cells emphasized barrier integrity and immune activation. We also observe bacterial modulation of host processes and metabolic shifts. These findings offer valuable insights into the dynamics of S. aureus-host cell interactions, shedding light on modulating host immune responses to S. aureus, which could involve developing immunomodulatory therapies. IMPORTANCE This study uses a chemoproteomic approach to target active ATP-interacting proteins and examines the dynamic proteomic interactions between Staphylococcus aureus and human cell lines THP-1 and HaCaT. It uncovers the distinct responses of macrophages and keratinocytes during bacterial infection. S. aureus demonstrated a tailored response to the intracellular environment of each cell type and adaptation during exposure to professional and non-professional phagocytes. It also highlights strategies employed by S. aureus to persist within host cells. This study offers significant insights into the human cell response to S. aureus infection, illuminating the complex proteomic shifts that underlie the defense mechanisms of macrophages and keratinocytes. Notably, the study underscores the nuanced interplay between the host's metabolic reprogramming and immune strategy, suggesting potential therapeutic targets for enhancing host defense and inhibiting bacterial survival. The findings enhance our understanding of host-pathogen interactions and can inform the development of targeted therapies against S. aureus infections.
Collapse
Affiliation(s)
- Stephen Dela Ahator
- Centre for New Antibacterial Strategies (CANS) & Research Group for Host-Microbe Interactions, Department of Medical Biology, Faculty of Health Sciences, UiT–The Arctic University of Norway, Tromsø, Norway
| | - Kristin Hegstad
- Centre for New Antibacterial Strategies (CANS) & Research Group for Host-Microbe Interactions, Department of Medical Biology, Faculty of Health Sciences, UiT–The Arctic University of Norway, Tromsø, Norway
- Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway
| | - Christian S. Lentz
- Centre for New Antibacterial Strategies (CANS) & Research Group for Host-Microbe Interactions, Department of Medical Biology, Faculty of Health Sciences, UiT–The Arctic University of Norway, Tromsø, Norway
| | - Mona Johannessen
- Centre for New Antibacterial Strategies (CANS) & Research Group for Host-Microbe Interactions, Department of Medical Biology, Faculty of Health Sciences, UiT–The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
8
|
Fernandes PO, Dias ALT, Dos Santos Júnior VS, Sá Magalhães Serafim M, Sousa YV, Monteiro GC, Coutinho ID, Valli M, Verzola MMSA, Ottoni FM, Pádua RMD, Oda FB, Dos Santos AG, Andricopulo AD, da Silva Bolzani V, Mota BEF, Alves RJ, de Oliveira RB, Kronenberger T, Maltarollo VG. Machine Learning-Based Virtual Screening of Antibacterial Agents against Methicillin-Susceptible and Resistant Staphylococcus aureus. J Chem Inf Model 2024; 64:1932-1944. [PMID: 38437501 DOI: 10.1021/acs.jcim.4c00087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
The application of computer-aided drug discovery (CADD) approaches has enabled the discovery of new antimicrobial therapeutic agents in the past. The high prevalence of methicillin-resistantStaphylococcus aureus(MRSA) strains promoted this pathogen to a high-priority pathogen for drug development. In this sense, modern CADD techniques can be valuable tools for the search for new antimicrobial agents. We employed a combination of a series of machine learning (ML) techniques to select and evaluate potential compounds with antibacterial activity against methicillin-susceptible S. aureus (MSSA) and MRSA strains. In the present study, we describe the antibacterial activity of six compounds against MSSA and MRSA reference (American Type Culture Collection (ATCC)) strains as well as two clinical strains of MRSA. These compounds showed minimal inhibitory concentrations (MIC) in the range from 12.5 to 200 μM against the different bacterial strains evaluated. Our results constitute relevant proven ML-workflow models to distinctively screen for novel MRSA antibiotics.
Collapse
Affiliation(s)
- Philipe Oliveira Fernandes
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais 31.270-901, Brazil
| | - Anna Letícia Teotonio Dias
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais 31.270-901, Brazil
| | - Valtair Severino Dos Santos Júnior
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais 31.270-901, Brazil
| | - Mateus Sá Magalhães Serafim
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais 31.270-901, Brazil
| | - Yamara Viana Sousa
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais 31.270-901, Brazil
| | - Gustavo Claro Monteiro
- Departamento de Química Orgânica, Instituto de Química, Universidade Estadual Paulista (UNESP), Araraquara, São Paulo 14.800-900, Brazil
| | - Isabel Duarte Coutinho
- Departamento de Química Orgânica, Instituto de Química, Universidade Estadual Paulista (UNESP), Araraquara, São Paulo 14.800-900, Brazil
| | - Marilia Valli
- Departamento de Física e Ciência Interdisciplinar, Instituto de Física, Universidade de São Paulo (USP), São Carlos, São Paulo 13.563-120, Brazil
| | - Marina Mol Sena Andrade Verzola
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais 31.270-901, Brazil
| | - Flaviano Melo Ottoni
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais 31.270-901, Brazil
| | - Rodrigo Maia de Pádua
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais 31.270-901, Brazil
| | - Fernando Bombarda Oda
- Departamento de Fármacos e Medicamentos, Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista (UNESP), Araraquara 14.800-903, Brazil
| | - André Gonzaga Dos Santos
- Departamento de Fármacos e Medicamentos, Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista (UNESP), Araraquara 14.800-903, Brazil
| | - Adriano Defini Andricopulo
- Departamento de Física e Ciência Interdisciplinar, Instituto de Física, Universidade de São Paulo (USP), São Carlos, São Paulo 13.563-120, Brazil
| | - Vanderlan da Silva Bolzani
- Departamento de Química Orgânica, Instituto de Química, Universidade Estadual Paulista (UNESP), Araraquara, São Paulo 14.800-900, Brazil
| | - Bruno Eduardo Fernandes Mota
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais 31.270-901, Brazil
| | - Ricardo José Alves
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais 31.270-901, Brazil
| | - Renata Barbosa de Oliveira
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais 31.270-901, Brazil
| | - Thales Kronenberger
- Institute of Pharmacy, Pharmaceutical/Medicinal Chemistry and Tübingen Center for Academic Drug Discovery, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Vinícius Gonçalves Maltarollo
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais 31.270-901, Brazil
| |
Collapse
|
9
|
Nong Y, Steinig E, Pollock GL, Taiaroa G, Carter GP, Monk IR, Pang S, Daley DA, Coombs GW, Forde BM, Harris PNA, Sherry NL, Howden BP, Pasricha S, Baines SL, Williamson DA. Emergence and clonal expansion of a qacA-harbouring sequence type 45 lineage of methicillin-resistant Staphylococcus aureus. Commun Biol 2024; 7:349. [PMID: 38514781 PMCID: PMC10957945 DOI: 10.1038/s42003-024-06012-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 03/05/2024] [Indexed: 03/23/2024] Open
Abstract
The past decade has seen an increase in the prevalence of sequence type (ST) 45 methicillin-resistant Staphylococcus aureus (MRSA), yet the underlying drivers for its emergence and spread remain unclear. To better understand the worldwide dissemination of ST45 S. aureus, we performed phylogenetic analyses of Australian isolates, supplemented with a global population of ST45 S. aureus genomes. Our analyses revealed a distinct lineage of multidrug-resistant ST45 MRSA harbouring qacA, predominantly found in Australia and Singapore. Bayesian inference predicted that the acquisition of qacA occurred in the late 1990s. qacA was integrated into a structurally variable region of the chromosome containing Tn552 (carrying blaZ) and Tn4001 (carrying aac(6')-aph(2")) transposable elements. Using mutagenesis and in vitro assays, we provide phenotypic evidence that qacA confers tolerance to chlorhexidine. These findings collectively suggest both antimicrobial resistance and the carriage of qacA may play a role in the successful establishment of ST45 MRSA.
Collapse
Affiliation(s)
- Yi Nong
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia.
| | - Eike Steinig
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Georgina L Pollock
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - George Taiaroa
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Glen P Carter
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
- Doherty Applied Microbial Genomics, Doherty Institute, The University of Melbourne, Melbourne, VIC, Australia
| | - Ian R Monk
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Stanley Pang
- Antimicrobial Resistance and Infectious Diseases Research Laboratory, Murdoch University, Murdoch, WA, Australia
- Department of Microbiology, PathWest Laboratory Medicine-WA, Fiona Stanley Hospital, Murdoch, WA, Australia
| | - Denise A Daley
- Australian Group on Antimicrobial Resistance, Fiona Stanley Hospital, Murdoch, WA, Australia
| | - Geoffrey W Coombs
- Antimicrobial Resistance and Infectious Diseases Research Laboratory, Murdoch University, Murdoch, WA, Australia
- Department of Microbiology, PathWest Laboratory Medicine-WA, Fiona Stanley Hospital, Murdoch, WA, Australia
| | - Brian M Forde
- The University of Queensland, Faculty of Medicine, UQ Centre for Clinical Research, Brisbane, QLD, Australia
| | - Patrick N A Harris
- The University of Queensland, Faculty of Medicine, UQ Centre for Clinical Research, Brisbane, QLD, Australia
- Central Microbiology, Pathology Queensland, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
| | - Norelle L Sherry
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology & Immunology, The University of Melbourne at The Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Benjamin P Howden
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology & Immunology, The University of Melbourne at The Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Shivani Pasricha
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Sarah L Baines
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Deborah A Williamson
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia.
- Victorian Infectious Diseases Reference Laboratory, Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia.
| |
Collapse
|
10
|
Liu Y, Wu X, Song P, Liu L, Zhong X, He Q, Zhang Z. Increased S. aureus colonization and reduced antimicrobial peptide expression in erythrodermic psoriasis. Int Immunopharmacol 2024; 127:111343. [PMID: 38096593 DOI: 10.1016/j.intimp.2023.111343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/30/2023] [Accepted: 12/03/2023] [Indexed: 01/18/2024]
Abstract
BACKGROUND Erythrodermic psoriasis (EP) is a severe and rare condition characterized by prominent erythema and scaling over 75 % of the body surface area. Unlike psoriasis vulgaris (PV), EP carries high risk of systemic involvement, including superficial skin infections and sepsis, particularly those caused by Staphylococcus aureus. OBJECTIVE To explore the microecological characteristics of EP and detect the levels of antimicrobial peptides (AMPs) in both skin and serum of EP patients. METHODS In this study, skin microbiomes of 10 EP patients were analyzed through 16S rRNA gene sequencing. The expressions of AMPs, Interleukin-4/13 (IL-4/13), Interleukin-17 (IL-17) and Interferon-γ (IFN-γ) in skin were detected via immunohistochemical staining and serum levels of AMP were evaluated by ELISA. We also enrolled 10 AD and 10 PV patients as controls. RESULTS EP patients retained rich microbial diversity, dominated by S. aureus. The AMPs of hBD2, LL-37, and RNase7 in EP keratinocytes were significantly lower than those in PV, but higher than those in AD. The expression levels of IL-4, IL-13 and IFN-γ in lesions are similar between EP and AD, but quite different from PV. What's more, the serum AMP levels in EP were similar to those in PV while significantly lower than in AD. CONCLUSION We found EP patients have a rich microbial diversity dominated by S. aureus in lesions, while lower serum and skin AMPs expressions, which may account for the increased incidence of S. aureus cutaneous infections and sepsis in EP patients.
Collapse
Affiliation(s)
- Yuhua Liu
- Department of Dermatology, The University of Hong Kong-Shenzhen Hospital, Guangdong Province, PR China
| | - Xiaoyan Wu
- Department of Dermatology, The University of Hong Kong-Shenzhen Hospital, Guangdong Province, PR China
| | - Pengfei Song
- Department of Dermatology, The Eighth Affiliated Hospital of Sun Yat-sen University, Guangdong Province, PR China
| | - Leying Liu
- Department of Dermatology, The Eighth Affiliated Hospital of Sun Yat-sen University, Guangdong Province, PR China
| | - Xinyu Zhong
- Department of Dermatology, The Eighth Affiliated Hospital of Sun Yat-sen University, Guangdong Province, PR China
| | - Qin He
- Department of Dermatology, The Eighth Affiliated Hospital of Sun Yat-sen University, Guangdong Province, PR China
| | - Zhenying Zhang
- Department of Dermatology, The University of Hong Kong-Shenzhen Hospital, Guangdong Province, PR China; Department of Dermatology, The Eighth Affiliated Hospital of Sun Yat-sen University, Guangdong Province, PR China.
| |
Collapse
|
11
|
Arumugam P, Kielian T. Metabolism Shapes Immune Responses to Staphylococcus aureus. J Innate Immun 2023; 16:12-30. [PMID: 38016430 PMCID: PMC10766399 DOI: 10.1159/000535482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 11/21/2023] [Indexed: 11/30/2023] Open
Abstract
BACKGROUND Staphylococcus aureus (S. aureus) is a common cause of hospital- and community-acquired infections that can result in various clinical manifestations ranging from mild to severe disease. The bacterium utilizes different combinations of virulence factors and biofilm formation to establish a successful infection, and the emergence of methicillin- and vancomycin-resistant strains introduces additional challenges for infection management and treatment. SUMMARY Metabolic programming of immune cells regulates the balance of energy requirements for activation and dictates pro- versus anti-inflammatory function. Recent investigations into metabolic adaptations of leukocytes and S. aureus during infection indicate that metabolic crosstalk plays a crucial role in pathogenesis. Furthermore, S. aureus can modify its metabolic profile to fit an array of niches for commensal or invasive growth. KEY MESSAGES Here we focus on the current understanding of immunometabolism during S. aureus infection and explore how metabolic crosstalk between the host and S. aureus influences disease outcome. We also discuss how key metabolic pathways influence leukocyte responses to other bacterial pathogens when information for S. aureus is not available. A better understanding of how S. aureus and leukocytes adapt their metabolic profiles in distinct tissue niches may reveal novel therapeutic targets to prevent or control invasive infections.
Collapse
Affiliation(s)
- Prabhakar Arumugam
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Tammy Kielian
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| |
Collapse
|
12
|
Lu X, Yang M, Zhou S, Yang S, Chen X, Khalid M, Wang K, Fang Y, Wang C, Lai R, Duan Z. Identification and Characterization of RK22, a Novel Antimicrobial Peptide from Hirudinaria manillensis against Methicillin Resistant Staphylococcus aureus. Int J Mol Sci 2023; 24:13453. [PMID: 37686259 PMCID: PMC10487658 DOI: 10.3390/ijms241713453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/23/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
Staphylococcus aureus (S. aureus) infections are a leading cause of morbidity and mortality, which are compounded by drug resistance. By manipulating the coagulation system, S. aureus gains a significant advantage over host defense mechanisms, with hypercoagulation induced by S. aureus potentially aggravating infectious diseases. Recently, we and other researchers identified that a higher level of LL-37, one endogenous antimicrobial peptide with a significant killing effect on S. aureus infection, resulted in thrombosis formation through the induction of platelet activation and potentiation of the coagulation factor enzymatic activity. In the current study, we identified a novel antimicrobial peptide (RK22) from the salivary gland transcriptome of Hirudinaria manillensis (H. manillensis) through bioinformatic analysis, and then synthesized it, which exhibited good antimicrobial activity against S. aureus, including a clinically resistant strain with a minimal inhibitory concentration (MIC) of 6.25 μg/mL. The RK22 peptide rapidly killed S. aureus by inhibiting biofilm formation and promoting biofilm eradication, with good plasma stability, negligible cytotoxicity, minimal hemolytic activity, and no significant promotion of the coagulation system. Notably, administration of RK22 significantly inhibited S. aureus infection and the clinically resistant strain in vivo. Thus, these findings highlight the potential of RK22 as an ideal treatment candidate against S. aureus infection.
Collapse
Affiliation(s)
- Xiaoyu Lu
- School of Life Sciences, Tianjin University, Tianjin 300072, China;
- Key Laboratory of Bioactive Peptides of Yunnan Province, National & Local Joint Engineering Center of Natural Bioactive Peptides, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; (M.Y.); (S.Z.); (S.Y.); (X.C.); (M.K.); (K.W.); (Y.F.); (C.W.)
| | - Min Yang
- Key Laboratory of Bioactive Peptides of Yunnan Province, National & Local Joint Engineering Center of Natural Bioactive Peptides, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; (M.Y.); (S.Z.); (S.Y.); (X.C.); (M.K.); (K.W.); (Y.F.); (C.W.)
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Shengwen Zhou
- Key Laboratory of Bioactive Peptides of Yunnan Province, National & Local Joint Engineering Center of Natural Bioactive Peptides, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; (M.Y.); (S.Z.); (S.Y.); (X.C.); (M.K.); (K.W.); (Y.F.); (C.W.)
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Shuo Yang
- Key Laboratory of Bioactive Peptides of Yunnan Province, National & Local Joint Engineering Center of Natural Bioactive Peptides, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; (M.Y.); (S.Z.); (S.Y.); (X.C.); (M.K.); (K.W.); (Y.F.); (C.W.)
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Xiran Chen
- Key Laboratory of Bioactive Peptides of Yunnan Province, National & Local Joint Engineering Center of Natural Bioactive Peptides, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; (M.Y.); (S.Z.); (S.Y.); (X.C.); (M.K.); (K.W.); (Y.F.); (C.W.)
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Mehwish Khalid
- Key Laboratory of Bioactive Peptides of Yunnan Province, National & Local Joint Engineering Center of Natural Bioactive Peptides, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; (M.Y.); (S.Z.); (S.Y.); (X.C.); (M.K.); (K.W.); (Y.F.); (C.W.)
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Kexin Wang
- Key Laboratory of Bioactive Peptides of Yunnan Province, National & Local Joint Engineering Center of Natural Bioactive Peptides, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; (M.Y.); (S.Z.); (S.Y.); (X.C.); (M.K.); (K.W.); (Y.F.); (C.W.)
- School of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Yaqun Fang
- Key Laboratory of Bioactive Peptides of Yunnan Province, National & Local Joint Engineering Center of Natural Bioactive Peptides, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; (M.Y.); (S.Z.); (S.Y.); (X.C.); (M.K.); (K.W.); (Y.F.); (C.W.)
| | - Chaoming Wang
- Key Laboratory of Bioactive Peptides of Yunnan Province, National & Local Joint Engineering Center of Natural Bioactive Peptides, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; (M.Y.); (S.Z.); (S.Y.); (X.C.); (M.K.); (K.W.); (Y.F.); (C.W.)
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Ren Lai
- Key Laboratory of Bioactive Peptides of Yunnan Province, National & Local Joint Engineering Center of Natural Bioactive Peptides, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; (M.Y.); (S.Z.); (S.Y.); (X.C.); (M.K.); (K.W.); (Y.F.); (C.W.)
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650107, China
- National Resource for Non-Human Primates, Kunming Primate Research Center, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650107, China
- Sino-African Joint Research Center, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Zilei Duan
- Key Laboratory of Bioactive Peptides of Yunnan Province, National & Local Joint Engineering Center of Natural Bioactive Peptides, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; (M.Y.); (S.Z.); (S.Y.); (X.C.); (M.K.); (K.W.); (Y.F.); (C.W.)
| |
Collapse
|
13
|
Al-Trad EI, Chew CH, Che Hamzah AM, Suhaili Z, Rahman NIA, Ismail S, Puah SM, Chua KH, Kwong SM, Yeo CC. The Plasmidomic Landscape of Clinical Methicillin-Resistant Staphylococcus aureus Isolates from Malaysia. Antibiotics (Basel) 2023; 12:antibiotics12040733. [PMID: 37107095 PMCID: PMC10135026 DOI: 10.3390/antibiotics12040733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 03/31/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a priority nosocomial pathogen with plasmids playing a crucial role in its genetic adaptability, particularly in the acquisition and spread of antimicrobial resistance. In this study, the genome sequences of 79 MSRA clinical isolates from Terengganu, Malaysia, (obtained between 2016 and 2020) along with an additional 15 Malaysian MRSA genomes from GenBank were analyzed for their plasmid content. The majority (90%, 85/94) of the Malaysian MRSA isolates harbored 1-4 plasmids each. In total, 189 plasmid sequences were identified ranging in size from 2.3 kb to ca. 58 kb, spanning all seven distinctive plasmid replication initiator (replicase) types. Resistance genes (either to antimicrobials, heavy metals, and/or biocides) were found in 74% (140/189) of these plasmids. Small plasmids (<5 kb) were predominant (63.5%, 120/189) with a RepL replicase plasmid harboring the ermC gene that confers resistance to macrolides, lincosamides, and streptogramin B (MLSB) identified in 63 MRSA isolates. A low carriage of conjugative plasmids was observed (n = 2), but the majority (64.5%, 122/189) of the non-conjugative plasmids have mobilizable potential. The results obtained enabled us to gain a rare view of the plasmidomic landscape of Malaysian MRSA isolates and reinforces their importance in the evolution of this pathogen.
Collapse
Affiliation(s)
- Esra'a I Al-Trad
- Centre for Research in Infectious Diseases and Biotechnology (CeRIDB), Faculty of Medicine, Universiti Sultan Zainal Abidin, Kuala Terengganu 20400, Malaysia
| | - Ching Hoong Chew
- Faculty of Health Sciences, Universiti Sultan Zainal Abidin, Kuala Nerus 21300, Malaysia
| | | | - Zarizal Suhaili
- Faculty of Bioresources and Food Industry, Universiti Sultan Zainal Abidin, Besut 22200, Malaysia
| | - Nor Iza A Rahman
- Centre for Research in Infectious Diseases and Biotechnology (CeRIDB), Faculty of Medicine, Universiti Sultan Zainal Abidin, Kuala Terengganu 20400, Malaysia
| | - Salwani Ismail
- Centre for Research in Infectious Diseases and Biotechnology (CeRIDB), Faculty of Medicine, Universiti Sultan Zainal Abidin, Kuala Terengganu 20400, Malaysia
| | - Suat Moi Puah
- Department of Biomedical Science, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Kek Heng Chua
- Department of Biomedical Science, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Stephen M Kwong
- Infectious Diseases & Microbiology, School of Medicine, Western Sydney University, Campbelltown 2560, Australia
| | - Chew Chieng Yeo
- Centre for Research in Infectious Diseases and Biotechnology (CeRIDB), Faculty of Medicine, Universiti Sultan Zainal Abidin, Kuala Terengganu 20400, Malaysia
| |
Collapse
|
14
|
Yao Y, Zhang W, Li S, Xie H, Zhang Z, Jia B, Huang S, Li W, Ma L, Gao Y, Song J, Wang R. Development of Neuropeptide Hemokinin-1 Analogues with Antimicrobial and Wound-Healing Activity. J Med Chem 2023; 66:6617-6630. [PMID: 36893465 DOI: 10.1021/acs.jmedchem.2c02021] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
Wound healing is a complex process that can be delayed in some pathological conditions, such as infection and diabetes. Following skin injury, the neuropeptide substance P (SP) is released from peripheral neurons to promote wound healing by multiple mechanisms. Human hemokinin-1 (hHK-1) has been identified as an SP-like tachykinin peptide. Surprisingly, hHK-1 shares similar structural features with antimicrobial peptides (AMPs), but it does not display efficient antimicrobial activity. Therefore, a series of hHK-1 analogues were designed and synthesized. Among these analogues, AH-4 was found to display the greatest antimicrobial activity against a broad spectrum of bacteria. Furthermore, AH-4 rapidly killed bacteria by membrane disruption, similar to most AMPs. More importantly, AH-4 showed favorable healing activity in all tested mouse full-thickness excisional wound models. Overall, this study suggests that the neuropeptide hHK-1 can be used as a desirable template for developing promising therapeutics with multiple functions for wound healing.
Collapse
Affiliation(s)
- Yufan Yao
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Wei Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Sisi Li
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Huan Xie
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Zhengzheng Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Bo Jia
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Sujie Huang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Wenyuan Li
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Ling Ma
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Yuxuan Gao
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Jingjing Song
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Rui Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, Gansu 730000, China.,State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
15
|
Waglewska E, Maliszewska I, Bazylińska U. Antimicrobial phyto-photodynamic activity inducing by polyphenol-supported Methylene Blue co-loaded into multifunctional bilosomes: Advanced hybrid nanoplatform in the skin infections treatment? JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2023; 240:112650. [PMID: 36701884 DOI: 10.1016/j.jphotobiol.2023.112650] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 01/08/2023] [Accepted: 01/12/2023] [Indexed: 01/15/2023]
Abstract
Widespread skin infections caused primarily by bacteria and yeast, pose a growing threat to healthcare systems. Phyto-photodynamic antimicrobial therapy is a promising treatment strategy with a few mild side effects for both superficial and deeper skin infections. The combination of natural plant products (polyphenols) with conventional photosensitizers makes it possible to improve the outcome of skin infections. In the present study, nanoengineered self-assembling bilosomes were used as a nanoplatform to deliver two compounds with different solubility, i.e., curcumin applied as a hydrophobic phytochemical compound and Methylene Blue used as a hydrophilic photosensitizer. Compared with the encapsulation of Methylene Blue alone, the double-loaded bilosomes (curcumin-supported Methylene Blue) showed higher efficiency in generating reactive oxygen species. Importantly, in our study, we also confirmed that bioinspired bilosomes prevent the rapid photobleaching of Methylene Blue, thereby enhancing its photoactivity. The post-irradiation antimicrobial action was tested against two pathogens - the Gram-positive bacterium (Staphylococcus aureus) and yeast (Candida albicans). The irradiation was provided after 10, 20, and 30 min, at a specific wavelength (λ = 640 nm) corresponding to 63, 126, and 189 J cm-2 energy fluences. The most effective reduction in the microbial cells number was found 30 min post-irradiation and was 99.994% for double-loaded bilosomes compared to 99.989% killing S. aureus for bilosomes with Methylene Blue alone. For C. albicans fungal cells, the mortality was 99.669% in the presence of a Methylene Blue and curcumin mixture compared to 98.229% of those killed without the addition of curcumin. The overall results of our contribution provide evidence that curcumin in combination with MB enhances the photo-eradication efficiency of S. aureus and C. albicans planktonic cultures. Thus, the mixture of the phytochemicals with photosensitizers and their encapsulation in multifunctional bilosomes may contribute to the development of innovative antimicrobial phyto-photodynamic therapy in the future.
Collapse
Affiliation(s)
- Ewelina Waglewska
- Department of Physical and Quantum Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Irena Maliszewska
- Department of Organic and Medical Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland.
| | - Urszula Bazylińska
- Department of Physical and Quantum Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland.
| |
Collapse
|
16
|
Nikolic P, Mudgil P. The Cell Wall, Cell Membrane and Virulence Factors of Staphylococcus aureus and Their Role in Antibiotic Resistance. Microorganisms 2023; 11:microorganisms11020259. [PMID: 36838224 PMCID: PMC9965861 DOI: 10.3390/microorganisms11020259] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023] Open
Abstract
Antibiotic resistant strains of bacteria are a serious threat to human health. With increasing antibiotic resistance in common human pathogens, fewer antibiotics remain effective against infectious diseases. Staphylococcus aureus is a pathogenic bacterium of particular concern to human health as it has developed resistance to many of the currently used antibiotics leaving very few remaining as effective treatment. Alternatives to conventional antibiotics are needed for treating resistant bacterial infections. A deeper understanding of the cellular characteristics of resistant bacteria beyond well characterized resistance mechanisms can allow for increased ability to properly treat them and to potentially identify targetable changes. This review looks at antibiotic resistance in S aureus in relation to its cellular components, the cell wall, cell membrane and virulence factors. Methicillin resistant S aureus bacteria are resistant to most antibiotics and some strains have even developed resistance to the last resort antibiotics vancomycin and daptomycin. Modifications in cell wall peptidoglycan and teichoic acids are noted in antibiotic resistant bacteria. Alterations in cell membrane lipids affect susceptibility to antibiotics through surface charge, permeability, fluidity, and stability of the bacterial membrane. Virulence factors such as adhesins, toxins and immunomodulators serve versatile pathogenic functions in S aureus. New antimicrobial strategies can target cell membrane lipids and virulence factors including anti-virulence treatment as an adjuvant to traditional antibiotic therapy.
Collapse
|
17
|
Reiss Z, Rob F, Kolar M, Schierova D, Kreisinger J, Jackova Z, Roubalova R, Coufal S, Mihula M, Thon T, Bajer L, Novakova M, Vasatko M, Kostovcikova K, Galanova N, Lukas M, Kverka M, Tresnak Hercogova J, Tlaskalova-Hogenova H, Jiraskova Zakostelska Z. Skin microbiota signature distinguishes IBD patients and reflects skin adverse events during anti-TNF therapy. Front Cell Infect Microbiol 2023; 12:1064537. [PMID: 36704107 PMCID: PMC9872723 DOI: 10.3389/fcimb.2022.1064537] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 12/01/2022] [Indexed: 01/11/2023] Open
Abstract
Crohn's disease (CD) and ulcerative colitis (UC) are two forms of inflammatory bowel disease (IBD), where the role of gut but not skin dysbiosis is well recognized. Inhibitors of TNF have been successful in IBD treatment, but up to a quarter of patients suffer from unpredictable skin adverse events (SkAE). For this purpose, we analyzed temporal dynamics of skin microbiota and serum markers of inflammation and epithelial barrier integrity during anti-TNF therapy and SkAE manifestation in IBD patients. We observed that the skin microbiota signature of IBD patients differs markedly from healthy subjects. In particular, the skin microbiota of CD patients differs significantly from that of UC patients and healthy subjects, mainly in the retroauricular crease. In addition, we showed that anti-TNF-related SkAE are associated with specific shifts in skin microbiota profile and with a decrease in serum levels of L-FABP and I-FABP in IBD patients. For the first time, we showed that shifts in microbial composition in IBD patients are not limited to the gut and that skin microbiota and serum markers of the epithelium barrier may be suitable markers of SkAE during anti-TNF therapy.
Collapse
Affiliation(s)
- Zuzana Reiss
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Filip Rob
- Department of Dermatovenerology, Second Faculty of Medicine, Charles University, University Hospital Bulovka, Prague, Czechia
| | - Martin Kolar
- IBD Clinical and Research Centre ISCARE a.s., Prague, Czechia
| | - Dagmar Schierova
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Jakub Kreisinger
- Department of Zoology, Faculty of Science, Charles University, Prague, Czechia
| | - Zuzana Jackova
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Radka Roubalova
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Stepan Coufal
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Martin Mihula
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Tomas Thon
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Lukas Bajer
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia,Department of Gastroenterology and Hepatology, Institute of Clinical and Experimental Medicine, Prague, Czechia
| | - Michaela Novakova
- Department of Dermatovenerology, Second Faculty of Medicine, Charles University, University Hospital Bulovka, Prague, Czechia
| | - Martin Vasatko
- IBD Clinical and Research Centre ISCARE a.s., Prague, Czechia
| | - Klara Kostovcikova
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Natalie Galanova
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Milan Lukas
- IBD Clinical and Research Centre ISCARE a.s., Prague, Czechia,Institute of Medical Biochemistry and Laboratory Diagnostics, General University Hospital and First Faculty of Medicine, Charles University, Prague, Czechia
| | - Miloslav Kverka
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Jana Tresnak Hercogova
- Department of Dermatovenerology, Second Faculty of Medicine, Charles University, University Hospital Bulovka, Prague, Czechia,Prof. Hercogova Dermatology, Prague, Czechia
| | | | - Zuzana Jiraskova Zakostelska
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia,*Correspondence: Zuzana Jiraskova Zakostelska,
| |
Collapse
|
18
|
Ishiai T, Subsomwong P, Narita K, Kawai N, Teng W, Suzuki S, Sukchawalit R, Nakane A, Asano K. Extracellular vesicles of Pseudomonas aeruginosa downregulate pyruvate fermentation enzymes and inhibit the initial growth of Staphylococcus aureus. CURRENT RESEARCH IN MICROBIAL SCIENCES 2023; 4:100190. [PMID: 37131486 PMCID: PMC10149184 DOI: 10.1016/j.crmicr.2023.100190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023] Open
Abstract
Staphylococcus aureus and Pseudomonas aeruginosa are well-known opportunistic pathogens that frequently coexist in chronic wounds and cystic fibrosis. The exoproducts of P. aeruginosa have been shown to affect the growth and pathogenicity of S. aureus, but the detailed mechanisms are not well understood. In this study, we investigated the effect of extracellular vesicles from P. aeruginosa (PaEVs) on the growth of S. aureus. We found that PaEVs inhibited the S. aureus growth independently of iron chelation and showed no bactericidal activity. This growth inhibitory effect was also observed with methicillin-resistant S. aureus but not with Acinetobacter baumannii, Enterococcus faecalis, S. Typhimurium, E. coli, Listeria monocytogenes, or Candida albicans, suggesting that the growth inhibitory effect of PaEVs is highly specific for S. aureus. To better understand the detailed mechanism, the difference in protein production of S. aureus between PaEV-treated and non-treated groups was further analyzed. The results revealed that lactate dehydrogenase 2 and formate acetyltransferase enzymes in the pyruvate fermentation pathway were significantly reduced after PaEV treatment. Likewise, the expression of ldh2 gene for lactate dehydrogenase 2 and pflB gene for formate acetyltransferase in S. aureus was reduced by PaEV treatment. In addition, this inhibitory effect of PaEVs was abolished by supplementation with pyruvate or oxygen. These results suggest that PaEVs inhibit the growth of S. aureus by suppressing the pyruvate fermentation pathway. This study reported a mechanism of PaEVs in inhibiting S. aureus growth which may be important for better management of S. aureus and P. aeruginosa co-infections.
Collapse
Affiliation(s)
- Takahito Ishiai
- Department of Microbiology and Immunology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036-8562, Japan
| | - Phawinee Subsomwong
- Department of Microbiology and Immunology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036-8562, Japan
| | - Kouj Narita
- Department of Microbiology and Immunology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036-8562, Japan
- Institute for Animal Experimentation, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036-8562, Japan
| | - Noriaki Kawai
- Department of Microbiology and Immunology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036-8562, Japan
| | - Wei Teng
- Department of Microbiology and Immunology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036-8562, Japan
| | - Sachio Suzuki
- Department of Respiratory Medicine, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036-8562, Japan
| | - Rojana Sukchawalit
- Laboratory of Biotechnology, Chulabhorn Research Institute, Lak Si, Bangkok 10210, Thailand
| | - Akio Nakane
- Department of Biopolymer and Health Science, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 306-8562, Japan
| | - Krisana Asano
- Department of Microbiology and Immunology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036-8562, Japan
- Department of Biopolymer and Health Science, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 306-8562, Japan
- Corresponding author at: Department of Microbiology and Immunology, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, 036-8562, Japan.
| |
Collapse
|
19
|
Jorde I, Schreiber J, Stegemann-Koniszewski S. The Role of Staphylococcus aureus and Its Toxins in the Pathogenesis of Allergic Asthma. Int J Mol Sci 2022; 24:ijms24010654. [PMID: 36614093 PMCID: PMC9820472 DOI: 10.3390/ijms24010654] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/15/2022] [Accepted: 12/20/2022] [Indexed: 01/01/2023] Open
Abstract
Bronchial asthma is one of the most common chronic diseases worldwide and affects more than 300 million patients. Allergic asthma affects the majority of asthmatic children as well as approximately 50% of adult asthmatics. It is characterized by a Th2-mediated immune response against aeroallergens. Many aspects of the overall pathophysiology are known, while the underlying mechanisms and predisposing factors remain largely elusive today. Over the last decade, respiratory colonization with Staphylococcus aureus (S. aureus), a Gram-positive facultative bacterial pathogen, came into focus as a risk factor for the development of atopic respiratory diseases. More than 30% of the world’s population is constantly colonized with S. aureus in their nasopharynx. This colonization is mostly asymptomatic, but in immunocompromised patients, it can lead to serious complications including pneumonia, sepsis, or even death. S. aureus is known for its ability to produce a wide range of proteins including toxins, serine-protease-like proteins, and protein A. In this review, we provide an overview of the current knowledge about the pathophysiology of allergic asthma and to what extent it can be affected by different toxins produced by S. aureus. Intensifying this knowledge might lead to new preventive strategies for atopic respiratory diseases.
Collapse
|
20
|
Exploring Active Peptides with Antimicrobial Activity In Planta against Xylella fastidiosa. BIOLOGY 2022; 11:biology11111685. [DOI: 10.3390/biology11111685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/15/2022] [Accepted: 11/18/2022] [Indexed: 11/24/2022]
Abstract
Xylella fastidiosa (Xf) is a xylem-limited quarantine plant bacterium and one of the most harmful agricultural pathogens across the world. Despite significant research efforts, neither a direct treatment nor an efficient strategy has yet been developed for combatting Xylella-associated diseases. Antimicrobial peptides (AMPs) have been gaining interest as a promising sustainable tool to control pathogens due to their unique mechanism of action, broad spectrum of activity, and low environmental impact. In this study, we disclose the bioactivity of nine AMPs reported in the literature to be efficient against human and plant pathogen bacteria, i.e., Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa, against Xf, through in vitro and in vivo experiments. Based on viable-quantitative PCR (v-qPCR), fluorescence microscopy (FM), optical density (OD), and transmission electron microscopy (TEM) assays, peptides Ascaphin-8 (GF19), DASamP1 (FF13), and DASamP2 (IL14) demonstrated the highest bactericidal and antibiofilm activities and were more efficient than the peptide PB178 (KL29), reported as one of the most potent AMPs against Xf at present. Furthermore, these AMPs showed low to no toxicity when tested on eukaryotic cells. In in planta tests, no Xf disease symptoms were noticed in Nicotiana tabacum plants treated with the AMPs 40 days post inoculation. This study highlighted the high antagonistic activity of newly tested AMP candidates against Xf, which could lead to the development of promising eco-friendly management of Xf-related diseases.
Collapse
|
21
|
Marin M, Rizzotto F, Léguillier V, Péchoux C, Borezee-Durant E, Vidic J. Naked-eye detection of Staphylococcus aureus in powdered milk and infant formula using gold nanoparticles. J Microbiol Methods 2022; 201:106578. [PMID: 36108985 DOI: 10.1016/j.mimet.2022.106578] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 09/07/2022] [Accepted: 09/07/2022] [Indexed: 12/27/2022]
Abstract
Nonspecific binding of proteins from complex food matrices is a significant challenge associated with a biosensor using gold nanoparticles (AuNPs). To overcome this, we developed an efficient EDTA chelating treatment to denature milk proteins and prevent their adsorption on AuNPs. The use of EDTA to solubilize proteins enabled a sensitive label-free apta-sensor platform for colorimetric detection of Staphylococcus aureus in milk and infant formula. In the assay, S. aureus depleted aptamers from the test solution, and the reduction of aptamers enabled aggregation of AuNPs upon salt addition, a process characterized by a color change from red to purple. Under optimized conditions, S. aureus could be visually detected within 30 min with the detection limit of 7.5 × 104 CFU/mL and 8.4 × 104 CFU/mL in milk and infant formula, respectively. The EDTA treatment provides new opportunities for monitoring milk contamination and may prove valuable for biosensor point-of-need applications.
Collapse
Affiliation(s)
- Marco Marin
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France
| | - Francesco Rizzotto
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France
| | - Vincent Léguillier
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France
| | | | - Elise Borezee-Durant
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France
| | - Jasmina Vidic
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France.
| |
Collapse
|
22
|
Li M, Wang X, Wang C, Qiu L, Xuan Y, Lei X, Jiang P, Shi H, Wang J. Antimicrobial Peptide-Loaded Gelatinase-Responsive Photothermal Nanogel for the Treatment of Staphylococcus aureus-Infected Wounds. ACS Biomater Sci Eng 2022; 8:3463-3472. [PMID: 35771187 DOI: 10.1021/acsbiomaterials.2c00522] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
As the most common pathogen of community and nosocomial infection, the resistance of Staphylococcus aureus (S. aureus) to traditional antibiotics is still increasing with years. Although the potent antibacterial activity of antimicrobial peptides (AMPs) has been widely confirmed, the unpredictable cytotoxicity remains the biggest obstacle to their clinical application. The development of a targeted drug delivery system for S. aureus is a practical strategy to ameliorate the inherent limitations of AMPs. In this work, we constructed an AMP release nanogel (cypate-GNPs@Cy3-AMP, CGCA) of S. aureus infection microenvironment using gelatinase nanoparticles (GNPs) for toxicity control and bacterial clearance. Gelatinase present in the infected site degrades GNPs, thus releasing Cy3-AMP in situ to destroy bacterial cells. Cypate modified on the surface of GNPs supports CGCA to generate localized heat under near-infrared (NIR) laser irradiation, which together with AMPs could cause irreversible physical damage to bacteria. In addition, the encapsulation from GNPs not only effectively limited the toxicity of AMPs but also significantly promoted cell proliferation and migration in vitro. In the mouse infection model, CGCA also exhibited excellent effects of bacterial clearance and wound healing, providing a potential direction for the correct use of AMPs.
Collapse
Affiliation(s)
- Mengjin Li
- School of Pharmacy, Changzhou University, Changzhou 213164, Jiangsu, P. R. China
| | - Xuan Wang
- School of Pharmacy, Changzhou University, Changzhou 213164, Jiangsu, P. R. China
| | - Cheng Wang
- School of Pharmacy, Changzhou University, Changzhou 213164, Jiangsu, P. R. China
| | - Lin Qiu
- School of Pharmacy, Changzhou University, Changzhou 213164, Jiangsu, P. R. China
| | - Yang Xuan
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Science, Dalian Minzu University, Dalian 116600, Liaoning, P. R. China
| | - Xiaoling Lei
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, P. R. China
| | - Pengju Jiang
- School of Pharmacy, Changzhou University, Changzhou 213164, Jiangsu, P. R. China
| | - Honglei Shi
- Wujin Hospital Affiliated with Jiangsu University, Changzhou 213017, Jiangsu, P. R. China
| | - Jianhao Wang
- School of Pharmacy, Changzhou University, Changzhou 213164, Jiangsu, P. R. China
| |
Collapse
|
23
|
A 3D-printed transepidermal microprojection array for human skin microbiome sampling. Proc Natl Acad Sci U S A 2022; 119:e2203556119. [PMID: 35867832 PMCID: PMC9335308 DOI: 10.1073/pnas.2203556119] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Skin microbiome sampling is currently performed with tools such as swabs and tape strips to collect microbes from the skin surface. However, these conventional approaches may be unable to detect microbes deeper in the epidermis or in epidermal invaginations. We describe a sampling tool with a depth component, a transepidermal microprojection array (MPA), which captures microbial biomass from both the epidermal surface and deeper skin layers. We leveraged the rapid customizability of 3D printing to enable systematic optimization of MPA for human skin sampling. Evaluation of sampling efficacy on human scalp revealed the optimized MPA was comparable in sensitivity to swab and superior to tape strip, especially for nonstandard skin surfaces. We observed differences in species diversity, with the MPA detecting clinically relevant fungi more often than other approaches. This work delivers a tool in the complex field of skin microbiome sampling to potentially address gaps in our understanding of its role in health and disease.
Collapse
|
24
|
Improvements in Human Keratinocytes and Antimicrobial Effect Mediated by Cell-Free Supernatants Derived from Probiotics. FERMENTATION 2022. [DOI: 10.3390/fermentation8070332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The skin acts as a physical and physiological barrier, thereby protecting the body from various environmental components and stimuli. Cell-free supernatants (CFS) derived from probiotics can improve skin functions and retain moisture. In this study, to assess the efficacy of CFS derived from Ligilactobacillus salivarius and Limosilactobacillus fermentum, we investigated the barrier strengthening and moisturizing effects of CFS in keratinocytes along with their antibacterial effects. We also determined the adhesive effects of probiotics on colorectal cells. To confirm improvements in moisturization and barrier function mediated by CFS in keratinocytes, hyaluronic acid (HA) production, and mRNA expression of HA synthases (HAS)2, HAS3, and FLG were measured. The results showed that CFS from L. salivarius MG242 and L. fermentum MG901 increased the expression of these genes along with the production of HA (2.40- and 1.95-fold of control). Additionally, CFS derived from L. salivarius MG242 and L. fermentum MG901 inhibited the growth of S. aureus and E. coli, thereby demonstrating inhibitory effects against harmful pathogens observed on the skin. These results indicate that the use of CFS derived from L. salivarius MG242 and L. fermentum MG901 may increase moisturization in the skin and improve barrier function of keratinocytes along with elimination of potential pathogens.
Collapse
|
25
|
Nerb B, Dudziak D, Gessner A, Feuerer M, Ritter U. Have We Ignored Vector-Associated Microbiota While Characterizing the Function of Langerhans Cells in Experimental Cutaneous Leishmaniasis? FRONTIERS IN TROPICAL DISEASES 2022. [DOI: 10.3389/fitd.2022.874081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
26
|
Choi H, Zaki FR, Monroy GL, Won J, Boppart SA. Imaging and characterization of transitions in biofilm morphology via anomalous diffusion following environmental perturbation. BIOMEDICAL OPTICS EXPRESS 2022; 13:1654-1670. [PMID: 35414993 PMCID: PMC8973182 DOI: 10.1364/boe.449131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 02/03/2022] [Accepted: 02/03/2022] [Indexed: 06/14/2023]
Abstract
Microorganisms form macroscopic structures for the purpose of environmental adaptation. Sudden environmental perturbations induce dynamics that cause bacterial biofilm morphology to transit to another equilibrium state, thought to be related to anomalous diffusion processes. Here, detecting the super-diffusion characteristics would offer a long-sought goal for a rapid detection method of biofilm phenotypes based on their dynamics, such as growth or dispersal. In this paper, phase-sensitive Doppler optical coherence tomography (OCT) and dynamic light scattering (DLS) are combined to demonstrate wide field-of-view and label-free internal dynamic imaging of biofilms. The probability density functions (PDFs) of phase displacement of the backscattered light and the dynamic characteristics of the PDFs are estimated by a simplified mixed Cauchy and Gaussian model. This model can quantify the super-diffusion state and estimate the dynamic characteristics and macroscopic responses in biofilms that may further describe dispersion and growth in biofilm models.
Collapse
Affiliation(s)
- Honggu Choi
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Farzana R. Zaki
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Guillermo L. Monroy
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Jungeun Won
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Stephen A. Boppart
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Carle Illinois College of Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
27
|
Thomson P, García P, Miles J, Isla D, Yáñez C, Santibáñez R, Núñez A, Flores-Yáñez C, del Río C, Cuadra F. Isolation and Identification of Staphylococcus Species Obtained from Healthy Companion Animals and Humans. Vet Sci 2022; 9:vetsci9020079. [PMID: 35202332 PMCID: PMC8879518 DOI: 10.3390/vetsci9020079] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 01/20/2023] Open
Abstract
The close contact between people and their pets has generated the exchange of skin microbiota, accompanied by bacteria that present resistance to antibiotics. Staphylococcus spp., opportunistic pathogens present in the skin and mucosa of mammals, have had their importance recognized in human and veterinary medicine. The objectives of this study were to identify Staphylococcus spp. present in isolates from the nostrils of healthy humans, dogs and cats as well as to determine their phenotype of resistance to methicillin. Strain identification was performed by MALDI-TOF mass spectrometry and antimicrobial susceptibility was determined using a disk diffusion assay for 12 antibiotics. Sixty humans (veterinary and technicians), sixty dogs and sixty cats were sampled; of them, 61.6%, 56.6% and 46.6%, respectively, carried Staphylococcus spp. in their nostrils, and only two people carried two different species of Staphylococcus in the only anatomical site sampled. A methicillin-resistant phenotype was present in 48.7% of the humans, 26.5% of the dogs and 57.1% of the cats, and sampled. These results demonstrate the presence of Staphylococcus spp. strains resistant to methicillin in personnel who work in contact with animals, as well as in dogs and cats that entered the same hospital or veterinary clinic, which alerts us to the potential transfer of these strains to or between people, dogs and/or cats.
Collapse
Affiliation(s)
- Pamela Thomson
- Laboratorio de Microbiología Clínica y Microbioma, Escuela de Medicina Veterinaria, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago 8370134, Chile; (C.d.R.); (F.C.)
- Correspondence: ; Tel.: +56-227-703-688
| | - Patricia García
- Departamento de Laboratorios Clínicos, Facultad de Medicina, Pontificia Universidad Católica, Santiago 8940000, Chile; (P.G.); (J.M.); (D.I.); (C.Y.)
| | - Jorge Miles
- Departamento de Laboratorios Clínicos, Facultad de Medicina, Pontificia Universidad Católica, Santiago 8940000, Chile; (P.G.); (J.M.); (D.I.); (C.Y.)
| | - David Isla
- Departamento de Laboratorios Clínicos, Facultad de Medicina, Pontificia Universidad Católica, Santiago 8940000, Chile; (P.G.); (J.M.); (D.I.); (C.Y.)
| | - Camilo Yáñez
- Departamento de Laboratorios Clínicos, Facultad de Medicina, Pontificia Universidad Católica, Santiago 8940000, Chile; (P.G.); (J.M.); (D.I.); (C.Y.)
| | - Rodrigo Santibáñez
- Departamento de Ingeniería Química y Bioprocesos, Facultad de Ingeniería, Pontificia Universidad Católica, Santiago 8940000, Chile;
| | - Andrea Núñez
- Facultad de Medicina Veterinaria y Agronomía, Universidad de las Américas, Santiago 7500975, Chile;
| | | | - Camila del Río
- Laboratorio de Microbiología Clínica y Microbioma, Escuela de Medicina Veterinaria, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago 8370134, Chile; (C.d.R.); (F.C.)
| | - Françoise Cuadra
- Laboratorio de Microbiología Clínica y Microbioma, Escuela de Medicina Veterinaria, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago 8370134, Chile; (C.d.R.); (F.C.)
| |
Collapse
|
28
|
Zhou C, Jiang M, Ye X, Liu X, Zhao W, Ma L, Zhou C. Antibacterial Activities of Peptide HF-18 Against Helicobacter pylori and its Virulence Protein CagA. Int J Pept Res Ther 2022. [DOI: 10.1007/s10989-022-10372-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
29
|
Perturbation of alphavirus and flavivirus infectivity by components of the bacterial cell wall. J Virol 2022; 96:e0006022. [PMID: 35107376 DOI: 10.1128/jvi.00060-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The impact of the host microbiota on arbovirus infections is currently not well understood. Arboviruses are viruses transmitted through the bites of infected arthropods, predominantly mosquitoes or ticks. The first site of arbovirus inoculation is the biting site in the host skin, which is colonized by a complex microbial community that could possibly influence arbovirus infection. We demonstrated that pre-incubation of arboviruses with certain components of the bacterial cell wall, including lipopolysaccharides (LPS) of some Gram-negative bacteria and lipoteichoic acids or peptidoglycan of certain Gram-positive bacteria, significantly reduced arbovirus infectivity in vitro. This inhibitory effect was observed for arboviruses of different virus families, including chikungunya virus of the Alphavirus genus and Zika virus of the Flavivirus genus, showing that this is a broad phenomenon. A modest inhibitory effect was observed following incubation with a panel of heat-inactivated bacteria, including bacteria residing on the skin. No viral inhibition was observed after pre-incubation of cells with LPS. Furthermore, a virucidal effect of LPS on viral particles was noticed by electron microscopy. Therefore, the main inhibitory mechanism seems to be due to a direct effect on the virus particles. Together, these results suggest that bacteria are able to decrease the infectivity of alphaviruses and flaviviruses. Importance During the past decades the world has experienced a vast increase in epidemics of alphavirus and flavivirus infections. These viruses can cause severe diseases such as hemorrhagic fever, encephalitis and arthritis. Several alpha- and flaviviruses, such as chikungunya virus, Zika virus and dengue virus, are significant global health threats because of their high disease burden, their widespread (re-)emergence and the lack of (good) anti-arboviral strategies. Despite the clear health burden, alphavirus and flavivirus infection and disease are not fully understood. A knowledge gap in the interplay between the host and the arbovirus is the potential interaction with host skin bacteria. Therefore, we studied the effect of (skin) bacteria and bacterial cell wall components on alphavirus and flavivirus infectivity in cell culture. Our results show that certain bacterial cell wall components markedly reduced viral infectivity by directly interacting with the virus particle.
Collapse
|
30
|
Improving Polysaccharide-Based Chitin/Chitosan-Aerogel Materials by Learning from Genetics and Molecular Biology. MATERIALS 2022; 15:ma15031041. [PMID: 35160985 PMCID: PMC8839503 DOI: 10.3390/ma15031041] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/14/2022] [Accepted: 01/26/2022] [Indexed: 12/26/2022]
Abstract
Improved wound healing of burnt skin and skin lesions, as well as medical implants and replacement products, requires the support of synthetical matrices. Yet, producing synthetic biocompatible matrices that exhibit specialized flexibility, stability, and biodegradability is challenging. Synthetic chitin/chitosan matrices may provide the desired advantages for producing specialized grafts but must be modified to improve their properties. Synthetic chitin/chitosan hydrogel and aerogel techniques provide the advantages for improvement with a bioinspired view adapted from the natural molecular toolbox. To this end, animal genetics provide deep knowledge into which molecular key factors decisively influence the properties of natural chitin matrices. The genetically identified proteins and enzymes control chitin matrix assembly, architecture, and degradation. Combining synthetic chitin matrices with critical biological factors may point to the future direction with engineering materials of specific properties for biomedical applications such as burned skin or skin blistering and extensive lesions due to genetic diseases.
Collapse
|
31
|
Staphylococcus aureus-A Known Opponent against Host Defense Mechanisms and Vaccine Development-Do We Still Have a Chance to Win? Int J Mol Sci 2022; 23:ijms23020948. [PMID: 35055134 PMCID: PMC8781139 DOI: 10.3390/ijms23020948] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/11/2022] [Accepted: 01/13/2022] [Indexed: 02/07/2023] Open
Abstract
The main purpose of this review is to present justification for the urgent need to implement specific prophylaxis of invasive Staphylococcus aureus infections. We emphasize the difficulties in achieving this goal due to numerous S. aureus virulence factors important for the process of infection and the remarkable ability of these bacteria to avoid host defense mechanisms. We precede these considerations with a brief overview of the global necessitiy to intensify the use of vaccines against other pathogens as well, particularly in light of an impasse in antibiotic therapy. Finally, we point out global trends in research into modern technologies used in the field of molecular microbiology to develop new vaccines. We focus on the vaccines designed to fight the infections caused by S. aureus, which are often resistant to the majority of available therapeutic options.
Collapse
|
32
|
A review on synthetic account of 1,2,4-oxadiazoles as anti-infective agents. Mol Divers 2022; 26:2967-2980. [PMID: 34984590 PMCID: PMC8727175 DOI: 10.1007/s11030-021-10375-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 12/24/2021] [Indexed: 11/03/2022]
Abstract
Most of the currently marketed drugs consist of heterocyclic scaffolds containing nitrogen and or oxygen as heteroatoms in their structures. Several research groups have synthesized diversely substituted 1,2,4-oxadiazoles as anti-infective agents having anti-bacterial, anti-viral, anti-leishmanial, etc. activities. For the first time, the present review article will provide the coverage of synthetic account of 1,2,4-oxadiazoles as anti-infective agents along with their potential for SAR, activity potential, promising target for mode of action. The efforts have been made to provide the chemical intuitions to the reader to design new chemical entity with potential of anti-infective activity. This review will mark the impact as the valuable, comprehensive and pioneered work along with the library of synthetic strategies for the organic and medicinal chemists for further refinement of 1,2,4-oxadiazole as anti-infective agents.
Collapse
|
33
|
Is the Success of Cefazolin plus Ertapenem in Methicillin-Susceptible
Staphylococcus aureus
Bacteremia Based on Release of Interleukin 1-beta? Antimicrob Agents Chemother 2022; 66:e0216621. [DOI: 10.1128/aac.02166-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cefazolin and ertapenem has been shown to be an effective salvage regimen for refractory methicillin-susceptible
Staphylococcus aureus
bacteremia. Our findings suggest cefazolin plus ertapenem
in vitro
stimulates interleukin-1β release from peripheral blood monocytes both with and without
S. aureus
presence. This IL-1β augmentation was primarily driven by ertapenem. These findings support further exploration of cefazolin plus ertapenem in MSSA bacteremia and may partially explain its marked potency
in vivo
despite modest synergy
in vitro
.
Collapse
|
34
|
Yang Z, Qiu B, Cheng D, Zhao N, Liu Y, Li M, Liu Q. Virulent Staphylococcus aureus Colonizes Pediatric Nares by Resisting Killing of Human Antimicrobial Peptides. Int J Med Microbiol 2022; 312:151550. [DOI: 10.1016/j.ijmm.2022.151550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 01/16/2022] [Accepted: 01/23/2022] [Indexed: 11/29/2022] Open
|
35
|
Bencardino D, Amagliani G, Brandi G. Carriage of Staphylococcus aureus among food handlers: An ongoing challenge in public health. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108362] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
36
|
Mutua V, Gershwin LJ. A Review of Neutrophil Extracellular Traps (NETs) in Disease: Potential Anti-NETs Therapeutics. Clin Rev Allergy Immunol 2021; 61:194-211. [PMID: 32740860 PMCID: PMC7395212 DOI: 10.1007/s12016-020-08804-7] [Citation(s) in RCA: 334] [Impact Index Per Article: 83.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Activated neutrophils release neutrophil extracellular traps (NETs) in response to a variety of stimuli. NETosis is driven by protein-arginine deiminase type 4, with the release of intracellular granule components that function by capturing and destroying microbes, including viral, fungal, bacterial, and protozoal pathogens. The positive effects of pathogen control are countered by pro-inflammatory effects as demonstrated in a variety of diseases. Components of NETS are non-specific, and other than controlling microbes, they cause injury to surrounding tissue by themselves or by increasing the pro-inflammatory response. NETs can play a role in enhancement of the inflammation seen in autoimmune diseases including psoriasis, rheumatoid arthritis, and systemic lupus erythematosis. In addition, autoinflammatory diseases such as gout have been associated with NETosis. Inhibition of NETs may decrease the severity of many diseases improving survival. Herein, we describe NETosis in different diseases focusing on the detrimental effect of NETs and outline possible therapeutics that can be used to mitigate netosis. There is a need for more studies and clinical trials on these and other compounds that could prevent or destroy NETs, thereby decreasing damage to patients.
Collapse
Affiliation(s)
- Victoria Mutua
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California Davis, 1 Shields Ave, Davis, CA, USA.
| | - Laurel J Gershwin
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California Davis, 1 Shields Ave, Davis, CA, USA
| |
Collapse
|
37
|
Cai D, Chen S, Wu B, Chen J, Tao D, Li Z, Dong Q, Zou Y, Chen Y, Bi C, Zu D, Lu L, Fang B. Construction of multifunctional porcine acellular dermal matrix hydrogel blended with vancomycin for hemorrhage control, antibacterial action, and tissue repair in infected trauma wounds. Mater Today Bio 2021; 12:100127. [PMID: 34585135 PMCID: PMC8452890 DOI: 10.1016/j.mtbio.2021.100127] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/29/2021] [Accepted: 08/16/2021] [Indexed: 12/18/2022] Open
Abstract
Prevention of bacterial infection and reduction of hemorrhage, the primary challenges posed by trauma before hospitalization, are essential steps in prolonging the patient's life until they have been transported to a trauma center. Extracellular matrix (ECM) hydrogel is a promising biocompatible material for accelerating wound closure. However, due to the lack of antibacterial properties, this hydrogel is difficult to be applied to acute contaminated wounds. This study formulates an injectable dermal extracellular matrix hydrogel (porcine acellular dermal matrix (ADM)) as a scaffold for skin defect repair. The hydrogel combines vancomycin, an antimicrobial agent for inducing hemostasis, expediting antimicrobial activity, and promoting tissue repair. The hydrogel possesses a porous structure beneficial for the adsorption of vancomycin. The antimicrobial agent can be timely released from the hydrogel within an hour, which is less than the time taken by bacteria to infest an injury, with a cumulative release rate of approximately 80%, and thus enables a relatively fast bactericidal effect. The cytotoxicity investigation demonstrates the biocompatibility of the ADM hydrogel. Dynamic coagulation experiments reveal accelerated blood coagulation by the hydrogel. In vivo antibacterial and hemostatic experiments on a rat model indicate the healing of infected tissue and effective control of hemorrhaging by the hydrogel. Therefore, the vancomycin-loaded ADM hydrogel will be a viable biomaterial for controlling hemorrhage and preventing bacterial infections in trauma patients.
Collapse
Affiliation(s)
- D Cai
- Department of Spine Surgery, The Central Hospital Affiliated to Shaoxing University, Shaoxing, China
| | - S Chen
- Department of Spine Surgery, The Central Hospital Affiliated to Shaoxing University, Shaoxing, China
| | - B Wu
- Department of Spine Surgery, The Central Hospital Affiliated to Shaoxing University, Shaoxing, China
| | - J Chen
- Bacterial Laboratory, The Central Hospital Affiliated to Shaoxing University, Shaoxing, China
| | - D Tao
- Pathology Department, The Central Hospital Affiliated to Shaoxing University, Shaoxing, China
| | - Z Li
- Pathology Department, The Central Hospital Affiliated to Shaoxing University, Shaoxing, China
| | - Q Dong
- Department of Spine Surgery, The Central Hospital Affiliated to Shaoxing University, Shaoxing, China
| | - Y Zou
- Department of Spine Surgery, The Central Hospital Affiliated to Shaoxing University, Shaoxing, China
| | - Y Chen
- Department of Spine Surgery, The Central Hospital Affiliated to Shaoxing University, Shaoxing, China.,School of Medcine, Shaoxing University, Shaoxing, China
| | - C Bi
- Department of Spine Surgery, The Central Hospital Affiliated to Shaoxing University, Shaoxing, China.,School of Medcine, Shaoxing University, Shaoxing, China
| | - D Zu
- Central Laboratory, The Central Hospital Affiliated to Shaoxing University, Shaoxing, China
| | - L Lu
- Department of Spine Surgery, The Central Hospital Affiliated to Shaoxing University, Shaoxing, China
| | - B Fang
- Department of Spine Surgery, The Central Hospital Affiliated to Shaoxing University, Shaoxing, China
| |
Collapse
|
38
|
Yoshioka M, Sawada Y, Nakamura M. Diagnostic Tools and Biomarkers for Severe Drug Eruptions. Int J Mol Sci 2021; 22:ijms22147527. [PMID: 34299145 PMCID: PMC8306321 DOI: 10.3390/ijms22147527] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/09/2021] [Accepted: 07/11/2021] [Indexed: 12/19/2022] Open
Abstract
In accordance with the development of human technology, various medications have been speedily developed in the current decade. While they have beneficial impact on various diseases, these medications accidentally cause adverse reactions, especially drug eruption. This delayed hypersensitivity reaction in the skin sometimes causes a life-threatening adverse reaction, namely Stevens-Johnson syndrome and toxic epidermal necrolysis. Therefore, how to identify these clinical courses in early time points is a critical issue. To improve this problem, various biomarkers have been found for these severe cutaneous adverse reactions through recent research. Granulysin, Fas ligands, perforin, and granzyme B are recognized as useful biomarkers to evaluate the early onset of Stevens-Johnson syndrome and toxic epidermal necrolysis, and other biomarkers, such as miRNAs, high mobility group box 1 protein (HMGB1), and S100A2, which are also helpful to identify the severe cutaneous adverse reactions. Because these tools have been currently well developed, updates of the knowledge in this field are necessary for clinicians. In this review, we focused on the detailed biomarkers and diagnostic tools for drug eruption and we also discussed the actual usefulness of these biomarkers in the clinical aspects based on the pathogenesis of drug eruption.
Collapse
|
39
|
Suepaul S, Georges K, Unakal C, Boyen F, Sookhoo J, Ashraph K, Yusuf A, Butaye P. Determination of the frequency, species distribution and antimicrobial resistance of staphylococci isolated from dogs and their owners in Trinidad. PLoS One 2021; 16:e0254048. [PMID: 34214140 PMCID: PMC8253405 DOI: 10.1371/journal.pone.0254048] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 06/21/2021] [Indexed: 11/25/2022] Open
Abstract
The close contact between humans and their dogs can lead to the commingling of staphylococci and the exchange of mobile genetic elements encoding antimicrobial resistance. The objectives of this study were to determine the species distribution and antimicrobial resistance patterns of staphylococci colonizing canine pets and their owners in Trinidad. Staphylococci were isolated from canine pets and their owners and identified using MALDI-TOF mass spectrometry. Antimicrobial susceptibilities were determined using the Kirby-Bauer disc diffusion method against seven classes of antimicrobial agents. A total of 440 staphylococci were isolated from 112 canine pets and their owners, 53.4% were from canine pets and 46.6% were from owners. Twenty-four species were detected, of which, most isolates (32.5%) belonged to the Staphylococcus intermedius group (SIG). S. sciuri was the most common species of coagulase-negative staphylococci (CoNS) comprising 22.3% of all isolates. Antimicrobial resistance was highest against commonly used antimicrobials, such as penicillin (51.4%), tetracycline (26.1%) and trimethoprim/sulfamethoxazole (18.6%). These antimicrobials also comprised the most common multidrug resistance (MDR) combination. Overall, 19.1% of isolates displayed multidrug resistance. No methicillin-resistant Staphylococcus aureus (MRSA) isolates were detected. However, methicillin resistance was detected in 13.3% and 15.1% of coagulase-positive staphylococci (CoPS) and the CoNS+CoVS (combined CoNS and coagulase-variable staphylococci) group respectively. The presence of methicillin-resistant staphylococci is worrisome because there is the potential for the transfer of these strains between dogs and humans. These strains may act as a reservoir of resistance genes.
Collapse
Affiliation(s)
- Sharianne Suepaul
- Department of Basic Veterinary Sciences, School of Veterinary Medicine, Faculty of Medical Sciences, The University of the West Indies, St. Augustine, Trinidad and Tobago
- * E-mail:
| | - Karla Georges
- Department of Basic Veterinary Sciences, School of Veterinary Medicine, Faculty of Medical Sciences, The University of the West Indies, St. Augustine, Trinidad and Tobago
| | - Chandrashekhar Unakal
- Department of Paraclinical Sciences, School of Medicine, Faculty of Medical Sciences, The University of the West Indies, St. Augustine, Trinidad and Tobago
| | - Filip Boyen
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - Jamie Sookhoo
- Department of Basic Veterinary Sciences, School of Veterinary Medicine, Faculty of Medical Sciences, The University of the West Indies, St. Augustine, Trinidad and Tobago
| | - Khalil Ashraph
- Department of Paraclinical Sciences, School of Medicine, Faculty of Medical Sciences, The University of the West Indies, St. Augustine, Trinidad and Tobago
| | - Anisah Yusuf
- Department of Basic Veterinary Sciences, School of Veterinary Medicine, Faculty of Medical Sciences, The University of the West Indies, St. Augustine, Trinidad and Tobago
| | - Patrick Butaye
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
- School of Veterinary Medicine, Ross University, Basseterre, St. Kitts and Nevis
| |
Collapse
|
40
|
Miguéis SDC, Tavares APM, Martins GV, Frasco MF, Sales MGF. Biosensors for European Zoonotic Agents: A Current Portuguese Perspective. SENSORS (BASEL, SWITZERLAND) 2021; 21:4547. [PMID: 34283108 PMCID: PMC8271446 DOI: 10.3390/s21134547] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 06/20/2021] [Accepted: 06/25/2021] [Indexed: 01/24/2023]
Abstract
Emerging and recurrent outbreaks caused by zoonotic agents pose a public health risk. They result in morbidity and mortality in humans and significant losses in the livestock and food industries. This highlights the need for rapid surveillance methods. Despite the high reliability of conventional pathogen detection methods, they have high detection limits and are time-consuming and not suitable for on-site analysis. Furthermore, the unpredictable spread of zoonotic infections due to a complex combination of risk factors urges the development of innovative technologies to overcome current limitations in early warning and detection. Biosensing, in particular, is highlighted here, as it offers rapid and cost-effective devices for use at the site of infection while increasing the sensitivity of detection. Portuguese research in biosensors for zoonotic pathogens is the focus of this review. This branch of research produces exciting and innovative devices for the study of the most widespread pathogenic bacteria. The studies presented here relate to the different classes of pathogens whose characteristics and routes of infection are also described. Many advances have been made in recent years, and Portuguese research teams have increased publications in this field. However, biosensing still needs to be extended to other pathogens, including potentially pandemic viruses. In addition, the use of biosensors as part of routine diagnostics in hospitals for humans, in animal infections for veterinary medicine, and food control has not yet been achieved. Therefore, a convergence of Portuguese efforts with global studies on biosensors to control emerging zoonotic diseases is foreseen for the future.
Collapse
Affiliation(s)
- Samuel da Costa Miguéis
- BioMark@ISEP, School of Engineering, Polytechnic Institute of Porto, 4249-015 Porto, Portugal; (A.P.M.T.); (G.V.M.); (M.F.F.)
- Centro de Investigação Desenvolvimento e Inovação da Academia Militar, Academia Militar, Instituto Universitário Militar, 1169-203 Lisboa, Portugal
| | - Ana P. M. Tavares
- BioMark@ISEP, School of Engineering, Polytechnic Institute of Porto, 4249-015 Porto, Portugal; (A.P.M.T.); (G.V.M.); (M.F.F.)
- BioMark@UC, Faculty of Sciences and Technology, University of Coimbra, 3030-790 Coimbra, Portugal
- CEB, Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | - Gabriela V. Martins
- BioMark@ISEP, School of Engineering, Polytechnic Institute of Porto, 4249-015 Porto, Portugal; (A.P.M.T.); (G.V.M.); (M.F.F.)
- BioMark@UC, Faculty of Sciences and Technology, University of Coimbra, 3030-790 Coimbra, Portugal
- CEB, Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | - Manuela F. Frasco
- BioMark@ISEP, School of Engineering, Polytechnic Institute of Porto, 4249-015 Porto, Portugal; (A.P.M.T.); (G.V.M.); (M.F.F.)
- BioMark@UC, Faculty of Sciences and Technology, University of Coimbra, 3030-790 Coimbra, Portugal
- CEB, Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | - Maria Goreti Ferreira Sales
- BioMark@ISEP, School of Engineering, Polytechnic Institute of Porto, 4249-015 Porto, Portugal; (A.P.M.T.); (G.V.M.); (M.F.F.)
- BioMark@UC, Faculty of Sciences and Technology, University of Coimbra, 3030-790 Coimbra, Portugal
- CEB, Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| |
Collapse
|
41
|
In Silico Molecular Analysis and Docking of Potent Antimicrobial Peptides Against MurE Enzyme of Methicillin Resistant Staphylococcus Aureus. Int J Pept Res Ther 2021. [DOI: 10.1007/s10989-021-10165-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
42
|
Luger T, Paller AS, Irvine AD, Sidbury R, Eichenfield LF, Werfel T, Bieber T. Topical therapy of atopic dermatitis with a focus on pimecrolimus. J Eur Acad Dermatol Venereol 2021; 35:1505-1518. [PMID: 33834524 DOI: 10.1111/jdv.17272] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 03/16/2021] [Indexed: 12/12/2022]
Abstract
Atopic dermatitis (AD) is a chronic and relapsing, inflammatory skin disease characterized by impaired skin barrier function and immune system dysregulation that results in dryness, skin microbiome dysbiosis and intense pruritus. It is highly heterogeneous, and its management is demanding. Patients with AD are at greater risk of comorbidities such as attention-deficit hyperactivity disorder as well as other atopic diseases. Early-onset AD cases typically improve or resolve in late childhood; however, it is proposed that the prevalence of persistent or adult-onset AD is higher than previously thought. Basic therapy consists of emollient application and trigger avoidance, and when insufficient, topical corticosteroids (TCS) are the first-line treatment. However, corticophobia/steroid aversion and TCS side-effects, particularly on sensitive skin areas, lead to low compliance and insufficient disease control. Several long- and short-term randomized controlled and daily practice studies have demonstrated that topical calcineurin inhibitors, such as pimecrolimus, have similar anti-inflammatory effects to low-to-medium strength TCS, reduce pruritus and improve the quality of life of patients. In addition, pimecrolimus does not cause skin atrophy, is steroid-sparing and has a good safety profile, with no evidence for an increased risk of malignancies or skin infections. In general, pimecrolimus cream is well-accepted and well-tolerated, encouraging patient adherence and leading to its use by many physicians as a preferred therapy for children and sensitive skin areas.
Collapse
Affiliation(s)
- T Luger
- Department of Dermatology, University of Münster, Münster, Germany
| | - A S Paller
- Departments of Dermatology and Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - A D Irvine
- Pediatric Dermatology, Children's Health Ireland at Crumlin, Dublin, Ireland.,National Children's Research Centre, Our Lady's Children's Hospital Crumlin, Dublin, Ireland.,Clinical Medicine, Trinity College Dublin, Dublin, Ireland
| | - R Sidbury
- University of Washington School of Medicine, Seattle, WA, USA.,Seattle Children's Hospital, Seattle, WA, USA
| | - L F Eichenfield
- Departments of Dermatology and Pediatrics, University of California, San Diego School of Medicine, Rady Children's Hospital, San Diego, CA, USA
| | - T Werfel
- Department of Dermatology, MHH, Hannover, Germany
| | - T Bieber
- Department of Dermatology and Allergy, Christine Kühne-Center for Allergy Research and Education, University Hospital, Bonn, Germany
| |
Collapse
|
43
|
Dijksteel GS, Ulrich MMW, Middelkoop E, Boekema BKHL. Review: Lessons Learned From Clinical Trials Using Antimicrobial Peptides (AMPs). Front Microbiol 2021; 12:616979. [PMID: 33692766 PMCID: PMC7937881 DOI: 10.3389/fmicb.2021.616979] [Citation(s) in RCA: 227] [Impact Index Per Article: 56.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 01/29/2021] [Indexed: 12/15/2022] Open
Abstract
Antimicrobial peptides (AMPs) or host defense peptides protect the host against various pathogens such as yeast, fungi, viruses and bacteria. AMPs also display immunomodulatory properties ranging from the modulation of inflammatory responses to the promotion of wound healing. More interestingly, AMPs cause cell disruption through non-specific interactions with the membrane surface of pathogens. This is most likely responsible for the low or limited emergence of bacterial resistance against many AMPs. Despite the increasing number of antibiotic-resistant bacteria and the potency of novel AMPs to combat such pathogens, only a few AMPs are in clinical use. Therefore, the current review describes (i) the potential of AMPs as alternatives to antibiotics, (ii) the challenges toward clinical implementation of AMPs and (iii) strategies to improve the success rate of AMPs in clinical trials, emphasizing the lessons we could learn from these trials.
Collapse
Affiliation(s)
- Gabrielle S Dijksteel
- Association of Dutch Burn Centres, Beverwijk, Netherlands.,Department of Plastic, Reconstructive and Hand Surgery, Amsterdam Movement Sciences, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Magda M W Ulrich
- Association of Dutch Burn Centres, Beverwijk, Netherlands.,Department of Plastic, Reconstructive and Hand Surgery, Amsterdam Movement Sciences, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands.,Department of Pathology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Esther Middelkoop
- Association of Dutch Burn Centres, Beverwijk, Netherlands.,Department of Plastic, Reconstructive and Hand Surgery, Amsterdam Movement Sciences, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | | |
Collapse
|
44
|
Functional Identification of Serine Hydroxymethyltransferase as a Key Gene Involved in Lysostaphin Resistance and Virulence Potential of Staphylococcus aureus Strains. Int J Mol Sci 2020; 21:ijms21239135. [PMID: 33266291 PMCID: PMC7731198 DOI: 10.3390/ijms21239135] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 11/22/2020] [Accepted: 11/26/2020] [Indexed: 12/17/2022] Open
Abstract
Gaining an insight into the mechanism underlying antimicrobial-resistance development in Staphylococcus aureus is crucial for identifying effective antimicrobials. We isolated S. aureus sequence type 72 from a patient in whom the S. aureus infection was highly resistant to various antibiotics and lysostaphin, but no known resistance mechanisms could explain the mechanism of lysostaphin resistance. Genome-sequencing followed by subtractive and functional genomics revealed that serine hydroxymethyltransferase (glyA or shmT gene) plays a key role in lysostaphin resistance. Serine hydroxymethyltransferase (SHMT) is indispensable for the one-carbon metabolism of serine/glycine interconversion and is linked to folate metabolism. Functional studies revealed the involvement of SHMT in lysostaphin resistance, as ΔshmT was susceptible to the lysostaphin, while complementation of the knockout expressing shmT restored resistance against lysostaphin. In addition, the ΔshmT showed reduced virulence under in vitro (mammalian cell lines infection) and in vivo (wax-worm infection) models. The SHMT inhibitor, serine hydroxymethyltransferase inhibitor 1 (SHIN1), protected the 50% of the wax-worm infected with wild type S. aureus. These results suggest SHMT is relevant to the extreme susceptibility to lysostaphin and the host immune system. Thus, the current study established that SHMT plays a key role in lysostaphin resistance development and in determining the virulence potential of multiple drug-resistant S. aureus.
Collapse
|
45
|
Casey D, Sleator RD. A genomic analysis of osmotolerance in Staphylococcus aureus. Gene 2020; 767:145268. [PMID: 33157201 DOI: 10.1016/j.gene.2020.145268] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 09/07/2020] [Accepted: 10/20/2020] [Indexed: 12/12/2022]
Abstract
A key phenotypic characteristic of the Gram-positive bacterial pathogen, Staphylococcus aureus, is its ability to grow in low aw environments. A homology transfer based approach, using the well characterised osmotic stress response systems of Bacillus subtilis and Escherichia coli, was used to identify putative osmotolerance loci in Staphylococcus aureus ST772-MRSA-V. A total of 17 distinct putative hyper and hypo-osmotic stress response systems, comprising 78 genes, were identified. The ST772-MRSA-V genome exhibits significant degeneracy in terms of the osmotic stress response; with three copies of opuD, two copies each of nhaK and mrp/mnh, and five copies of opp. Furthermore, regulation of osmotolerance in ST772-MRSA-V appears to be mediated at the transcriptional, translational, and post-translational levels.
Collapse
Affiliation(s)
- Dylan Casey
- Department of Biological Sciences, Munster Technological University, Bishopstown Campus, Cork, Ireland
| | - Roy D Sleator
- Department of Biological Sciences, Munster Technological University, Bishopstown Campus, Cork, Ireland.
| |
Collapse
|
46
|
Jorde I, Hildebrand CB, Kershaw O, Lücke E, Stegemann-Koniszewski S, Schreiber J. Modulation of Allergic Sensitization and Allergic Inflammation by Staphylococcus aureus Enterotoxin B in an Ovalbumin Mouse Model. Front Immunol 2020; 11:592186. [PMID: 33193436 PMCID: PMC7649385 DOI: 10.3389/fimmu.2020.592186] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 10/05/2020] [Indexed: 01/02/2023] Open
Abstract
The superantigen Staphylococcus aureus (S. aureus) enterotoxin B (SEB) has been proposed a central player in the associations between S. aureus nasal colonization and the development of allergic asthma. Previously, SEB has been shown to aggravate allergic sensitization and allergic airway inflammation (AAI) in experimental mouse models. Aiming at understanding the underlying immunological mechanisms, we tested the hypothesis that intranasal (i.n.) SEB-treatment divergently modulates AAI depending on the timing and intensity of the SEB-encounter. In an ovalbumin-mediated mouse model of AAI, we treated mice i.n. with 50 ng or 500 ng SEB either together with the allergic challenge or prior to the peripheral sensitization. We observed SEB to affect different hallmark parameters of AAI depending on the timing and the dose of treatment. SEB administered i.n. together with the allergic challenge significantly modulated respiratory leukocyte accumulation, intensified lymphocyte activation and, at the higher dose, induced a strong type-1 and pro-inflammatory cytokine response and alleviated airway hyperreactivity in AAI. SEB administered i.n. prior to the allergic sensitization at the lower dose significantly boosted the specific IgE response while administration of the higher dose led to a significantly reduced recruitment of immune cells, including eosinophils, to the respiratory tract and to a significantly dampened Th-2 cytokine response without inducing a Th-1 or pro-inflammatory response. We show a remarkably versatile potential for SEB to either aggravate or alleviate different parameters of allergic sensitization and AAI. Our study thereby not only highlights the complexity of the associations between S. aureus and allergic asthma but possibly even points at prophylactic and therapeutic pathways.
Collapse
Affiliation(s)
- Ilka Jorde
- Experimental Pneumology, Department of Pneumology, University Hospital Magdeburg/Medical Faculty, Health Campus Immunology, Infectiology and Inflammation (GC-I³), Otto-von-Guericke-University, Magdeburg, Germany
| | - Christina B Hildebrand
- Experimental Pneumology, Department of Pneumology, University Hospital Magdeburg/Medical Faculty, Health Campus Immunology, Infectiology and Inflammation (GC-I³), Otto-von-Guericke-University, Magdeburg, Germany
| | - Olivia Kershaw
- Department of Veterinary Medicine, Institute of Veterinary Pathology, Freie Universität Berlin, Berlin, Germany
| | - Eva Lücke
- Experimental Pneumology, Department of Pneumology, University Hospital Magdeburg/Medical Faculty, Health Campus Immunology, Infectiology and Inflammation (GC-I³), Otto-von-Guericke-University, Magdeburg, Germany
| | - Sabine Stegemann-Koniszewski
- Experimental Pneumology, Department of Pneumology, University Hospital Magdeburg/Medical Faculty, Health Campus Immunology, Infectiology and Inflammation (GC-I³), Otto-von-Guericke-University, Magdeburg, Germany
| | - Jens Schreiber
- Experimental Pneumology, Department of Pneumology, University Hospital Magdeburg/Medical Faculty, Health Campus Immunology, Infectiology and Inflammation (GC-I³), Otto-von-Guericke-University, Magdeburg, Germany
| |
Collapse
|
47
|
Walduck A, Sangwan P, Vo QA, Ratcliffe J, White J, Muir BW, Tran N. Treatment of Staphylococcus aureus skin infection in vivo using rifampicin loaded lipid nanoparticles. RSC Adv 2020; 10:33608-33619. [PMID: 35515067 PMCID: PMC9056717 DOI: 10.1039/d0ra06120d] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 09/02/2020] [Indexed: 02/06/2023] Open
Abstract
We have previously reported on a novel nanoparticle formulation that was effective at killing Staphylococcus aureus in vitro. Here, we report for the first time, the antibacterial effects of a lipidic nano-carrier containing rifampicin (NanoRIF) which can be used to successfully treat Methicillin-Resistant S. aureus (MRSA) infection at a reduced antibiotic dosage compared to the free drug in a skin wound model in mice. The formulation used contains the lipid monoolein, a cationic lipid N-[1-(2,3-dioleoyloxy)propyl]-N,N,N-trimethylammonium methyl-sulfate (DOTAP) and the antibiotic. We have shown that rifampicin-loaded nanoparticles are more effective at treating infection in the skin wound model than the antibiotic alone. Cryo-TEM was used to capture for the first time, interactions of the formed nanoparticles with the cell wall of an individual bacterium. Our data strongly indicate enhanced binding of these charged nanoparticles with the negatively charged bacterial membrane. The efficacy we have now observed in vivo is of significant importance for the continued development of nanomedicine-based strategies to combat antibiotic resistant bacterial skin infections.
Collapse
Affiliation(s)
- Anna Walduck
- School of Science, RMIT University 124 La Trobe Street Melbourne 3000 Victoria Australia
| | - Parveen Sangwan
- CSIRO Manufacturing Bag 10 Clayton South 3169 Victoria Australia
| | - Quynh Anh Vo
- CSIRO Manufacturing Bag 10 Clayton South 3169 Victoria Australia
- Chimie Paris Tech Paris France
| | - Julian Ratcliffe
- CSIRO Manufacturing Bag 10 Clayton South 3169 Victoria Australia
| | - Jacinta White
- CSIRO Manufacturing Bag 10 Clayton South 3169 Victoria Australia
| | - Benjamin W Muir
- CSIRO Manufacturing Bag 10 Clayton South 3169 Victoria Australia
| | - Nhiem Tran
- School of Science, RMIT University 124 La Trobe Street Melbourne 3000 Victoria Australia
| |
Collapse
|
48
|
Almoughrabie S, Ngari C, Guillier L, Briandet R, Poulet V, Dubois-Brissonnet F. Rapid assessment and prediction of the efficiency of two preservatives against S. aureus in cosmetic products using High Content Screening-Confocal Laser Scanning Microscopy. PLoS One 2020; 15:e0236059. [PMID: 32716948 PMCID: PMC7384607 DOI: 10.1371/journal.pone.0236059] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 06/26/2020] [Indexed: 11/18/2022] Open
Abstract
Most cosmetic products are susceptible to microbiological spoilage due to contaminations that could happen during fabrication or by consumer’s repetitive manipulation. The composition of cosmetic products must guarantee efficient bacterial inactivation all along with the product shelf life, which is usually assessed by challenge-tests. A challenge-test consists in inoculating specific bacteria, i.e. Staphylococcus aureus, in the formula and then investigating the bacterial log reduction over time. The main limitation of this method is relative to the time-consuming protocol, where 30 days are needed to obtain results. In this study, we have proposed a rapid alternative method coupling High Content Screening—Confocal Laser Scanning Microscopy (HCS-CLSM), image analysis and modeling. It consists in acquiring real-time S. aureus inactivation kinetics on short-time periods (typically 4h) and in predicting the efficiency of preservatives on longer scale periods (up to 7 days). The action of two preservatives, chlorphenesin and benzyl alcohol, was evaluated against S. aureus at several concentrations in a cosmetic matrix. From these datasets, we compared two secondary models to determine the logarithm reduction time (Dc) for each preservative concentration. Afterwards, we used two primary inactivation models to predict log reductions for up to 7 days and we compared them to observed log reductions. The IQ model better fits datasets and the Q value gives information about the matrix level of interference.
Collapse
Affiliation(s)
- Samia Almoughrabie
- Micalis Institute, Université Paris-Saclay, INRAE, AgroParisTech, Jouy-en-Josas, France
| | | | - Laurent Guillier
- Direction de l’évaluation des risques, ANSES, Agence nationale de sécurité de l’alimentation, de l’environnement et du travail, Maisons-Alfort, France
| | - Romain Briandet
- Micalis Institute, Université Paris-Saclay, INRAE, AgroParisTech, Jouy-en-Josas, France
| | | | | |
Collapse
|
49
|
Long acting anti-infection constructs on titanium. J Control Release 2020; 326:91-105. [PMID: 32580044 DOI: 10.1016/j.jconrel.2020.06.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/23/2020] [Accepted: 06/14/2020] [Indexed: 01/12/2023]
Abstract
Peri-prosthetic joint infections (PJI) are a serious adverse event following joint replacement surgeries; antibiotics are usually added to bone cement to prevent infection offset. For uncemented prosthesis, alternative antimicrobial approaches are necessary in order to prevent PJI; however, despite elution of drug from the surface of the device being shown one of the most promising approach, no effective antimicrobial eluting uncemented device is currently available on the market. Consequently, there is a clinical need for non-antibiotic antimicrobial uncemented prosthesis as these devices present numerous benefits, particularly for young patients, over cemented artificial joints. Moreover, non-antibiotic approaches are driven by the need to address the growing threat posed by antibiotic resistance. We developed a multilayers functional coating on titanium surfaces releasing chlorhexidine, a well-known antimicrobial agent used in mouthwash products and antiseptic creams, embedding the drug between alginate and poly-beta-amino-esters. Chlorhexidine release was sustained for almost 2 months and the material efficacy and safety was proven both in vitro and in vivo. The coatings did not negatively impact osteoblast and fibroblast cells growth and were capable of reducing bacterial load and accelerating wound healing in an excisional wound model. As PJI can develop weeks and months after the initial surgery, these materials could provide a viable solution to prevent infections after arthroplasty in uncemented prosthetic devices and, simultaneously, help the fight against antibiotic resistance.
Collapse
|
50
|
Mosaic-CLSM Assessment of Bacterial Spatial Distribution in Cosmetic Matrices According to Matrix Viscosity and Bacterial Hydrophobicity. COSMETICS 2020. [DOI: 10.3390/cosmetics7020032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The reliability of the challenge test depends, among other parameters, on the spatial distribution of microorganisms in the matrix. The present study aims to quickly identify factors that are susceptible to impair a uniform distribution of inoculated bacteria in cosmetic matrices in this context. We used mosaic confocal laser scanning microscopy (M-CLSM) to obtain rapid assessment of the impact of the composition and viscosity of cosmetic matrices on S. aureus spatial distribution. Several models of cosmetic matrices were formulated with different concentrations of two thickeners and were inoculated with three S. aureus strains having different levels of hydrophobicity. The spatial distribution of S. aureus in each matrix was evaluated according to the frequency distribution of the fluorescence values of at least 1350 CLSM images. We showed that, whatever the thickener used, an increasingly concentration of thickener results in increasingly bacterial clustered distribution. Moreover, higher bacterial hydrophobicity also resulted in a more clustered spatial distribution. In conclusion, CLSM-based method allows a rapid characterization of bacterial spatial distribution in complex emulsified systems. Both matrix viscosity and bacterial surface hydrophobicity affect the bacterial spatial distribution which can have an impact on the reliability of bacterial enumeration during challenge test.
Collapse
|