1
|
Sandoval JE, Carullo NVN, Salisbury AJ, Day JJ, Reich NO. Mechanism of non-coding RNA regulation of DNMT3A. Epigenetics Chromatin 2025; 18:15. [PMID: 40148869 PMCID: PMC11951571 DOI: 10.1186/s13072-025-00574-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 02/11/2025] [Indexed: 03/29/2025] Open
Abstract
BACKGROUND De novo DNA methylation by DNMT3A is a fundamental epigenetic modification for transcriptional regulation. Histone tails and regulatory proteins regulate DNMT3A, and the crosstalk between these epigenetic mechanisms ensures appropriate DNA methylation patterning. Based on findings showing that Fos ecRNA inhibits DNMT3A activity in neurons, we sought to characterize the contribution of this regulatory RNA in the modulation of DNMT3A in the presence of regulatory proteins and histone tails. RESULTS We show that Fos ecRNA and mRNA strongly correlate in primary cortical neurons on a single cell level and provide evidence that Fos ecRNA modulation of DNMT3A at these actively transcribed sites occurs in a sequence-independent manner. Further characterization of the Fos ecRNA-DNMT3A interaction showed that Fos-1 ecRNA binds the DNMT3A tetramer interface and clinically relevant DNMT3A substitutions that disrupt the inhibition of DNMT3A activity by Fos-1 ecRNA are restored by the formation of heterotetramers with DNMT3L. Lastly, using DNMT3L and Fos ecRNA in the presence of synthetic histone H3 tails or reconstituted polynucleosomes, we found that regulatory RNAs play dominant roles in the modulation of DNMT3A activity. CONCLUSION Our results are consistent with a model for RNA regulation of DNMT3A that involves localized production of short RNAs binding to a nonspecific site on the protein, rather than formation of localized RNA/DNA structures. We propose that regulatory RNAs play a dominant role in the regulation of DNMT3A catalytic activity at sites with increased production of regulatory RNAs.
Collapse
Affiliation(s)
- Jonathan E Sandoval
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA, 93106-9510, USA
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, 93106-9510, USA
| | - Nancy V N Carullo
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Aaron J Salisbury
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Jeremy J Day
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Norbert O Reich
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, 93106-9510, USA.
| |
Collapse
|
2
|
Machour FE, Barisaac AS, Ayoub N. Why are RNA processing factors recruited to DNA double-strand breaks? Trends Genet 2025; 41:194-200. [PMID: 39567312 DOI: 10.1016/j.tig.2024.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/23/2024] [Accepted: 10/23/2024] [Indexed: 11/22/2024]
Abstract
DNA double-strand break (DSB) induction leads to local transcriptional silencing at damage sites, raising the question: Why are RNA processing factors (RPFs), including splicing factors, rapidly recruited to these sites? Recent findings show that DSBs cluster in a chromatin compartment termed the 'D compartment', where DNA damage response (DDR) genes relocate and undergo transcriptional activation. Here, we propose two non-mutually exclusive models to elucidate the rationale behind the recruitment of RPFs to DSB sites. First, RPFs circulate through the D compartment to process transcripts of the relocated DDR genes. Second, the D compartment serves as a 'post-translational modifications (PTMs) hub', altering RPF activity and leading to the production of unique DNA damage-induced transcripts, which are essential for orchestrating the DDR.
Collapse
Affiliation(s)
- Feras E Machour
- Department of Biology, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Alma Sophia Barisaac
- Department of Biology, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Nabieh Ayoub
- Department of Biology, Technion - Israel Institute of Technology, Haifa 3200003, Israel.
| |
Collapse
|
3
|
Aborode AT, Abass OA, Nasiru S, Eigbobo MU, Nefishatu S, Idowu A, Tiamiyu Z, Awaji AA, Idowu N, Busayo BR, Mehmood Q, Onifade IA, Fakorede S, Akintola AA. RNA binding proteins (RBPs) on genetic stability and diseases. Glob Med Genet 2025; 12:100032. [PMID: 39925443 PMCID: PMC11803229 DOI: 10.1016/j.gmg.2024.100032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/26/2024] [Accepted: 11/28/2024] [Indexed: 02/11/2025] Open
Abstract
RNA-binding proteins (RBPs) are integral components of cellular machinery, playing crucial roles in the regulation of gene expression and maintaining genetic stability. Their interactions with RNA molecules govern critical processes such as mRNA splicing, stability, localization, and translation, which are essential for proper cellular function. These proteins interact with RNA molecules and other proteins to form ribonucleoprotein complexes (RNPs), hence controlling the fate of target RNAs. The interaction occurs via RNA recognition motif, the zinc finger domain, the KH domain and the double stranded RNA binding motif (all known as RNA-binding domains (RBDs). These domains are found within the coding sequences (intron and exon domains), 5' untranslated regions (5'UTR) and 3' untranslated regions (3'UTR). Dysregulation of RBPs can lead to genomic instability, contributing to various pathologies, including cancer neurodegenerative diseases, and metabolic disorders. This study comprehensively explores the multifaceted roles of RBPs in genetic stability, highlighting their involvement in maintaining genomic integrity through modulation of RNA processing and their implications in cellular signalling pathways. Furthermore, it discusses how aberrant RBP function can precipitate genetic instability and disease progression, emphasizing the therapeutic potential of targeting RBPs in restoring cellular homeostasis. Through an analysis of current literature, this study aims to delineate the critical role of RBPs in ensuring genetic stability and their promise as targets for innovative therapeutic strategies.
Collapse
Affiliation(s)
| | | | - Shaibu Nasiru
- Department of Research and Development, Healthy Africans Platform, Ibadan, Nigeria
- Department of Biochemistry, Ambrose Alli University Ekpoma, Nigeria
| | | | - Sumana Nefishatu
- Department of Biochemistry, Ambrose Alli University Ekpoma, Nigeria
| | - Abdullahi Idowu
- Department of Biological Sciences, Purdue University Fort Wayne, USA
| | - Zainab Tiamiyu
- Department of Biochemistry and Cancer Biology, Medical College of Georgia, Augusta University, USA
| | - Aeshah A. Awaji
- Department of Biology, Faculty of Science, University College of Taymaa, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Nike Idowu
- Department of Chemistry, University of Nebraska-Lincoln, USA
| | | | - Qasim Mehmood
- Shifa Clinical Research Center, Shifa International Hospital, Islamabad, Pakistan
| | - Isreal Ayobami Onifade
- Department of Division of Family Health, Health Research Incorporated, New York State Department of Health, USA
| | - Sodiq Fakorede
- Department of Physical Therapy, Rehabilitation Science, and Athletic Training, University of Kansas Medical Center, Kansas City, KS, USA
| | - Ashraf Akintayo Akintola
- Department of Biology Education, Teachers College & Institute for Phylogenomics and Evolution, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
4
|
Kodavati M, Maloji Rao VH, Provasek VE, Hegde ML. Regulation of DNA damage response by RNA/DNA-binding proteins: Implications for neurological disorders and aging. Ageing Res Rev 2024; 100:102413. [PMID: 39032612 PMCID: PMC11463832 DOI: 10.1016/j.arr.2024.102413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 07/05/2024] [Indexed: 07/23/2024]
Abstract
RNA-binding proteins (RBPs) are evolutionarily conserved across most forms of life, with an estimated 1500 RBPs in humans. Traditionally associated with post-transcriptional gene regulation, RBPs contribute to nearly every known aspect of RNA biology, including RNA splicing, transport, and decay. In recent years, an increasing subset of RBPs have been recognized for their DNA binding properties and involvement in DNA transactions. We refer to these RBPs with well-characterized DNA binding activity as RNA/DNA binding proteins (RDBPs), many of which are linked to neurological diseases. RDBPs are associated with both nuclear and mitochondrial DNA repair. Furthermore, the presence of intrinsically disordered domains in RDBPs appears to be critical for regulating their diverse interactions and plays a key role in controlling protein aggregation, which is implicated in neurodegeneration. In this review, we discuss the emerging roles of common RDBPs from the heterogeneous nuclear ribonucleoprotein (hnRNP) family, such as TAR DNA binding protein-43 (TDP43) and fused in sarcoma (FUS) in controlling DNA damage response (DDR). We also explore the implications of RDBP pathology in aging and neurodegenerative diseases and provide a prospective on the therapeutic potential of targeting RDBP pathology mediated DDR defects for motor neuron diseases and aging.
Collapse
Affiliation(s)
- Manohar Kodavati
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX 77047, USA.
| | - Vikas H Maloji Rao
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX 77047, USA
| | - Vincent E Provasek
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX 77047, USA; School of Medicine, Texas A&M University, College Station, TX 77843, USA
| | - Muralidhar L Hegde
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX 77047, USA; School of Medicine, Texas A&M University, College Station, TX 77843, USA; Department of Neurosurgery, Weill Medical College, New York, NY 10065, USA.
| |
Collapse
|
5
|
Başar Kılıç Ş, Taheri S, Mehmetbeyoğlu Duman E, Öksüm Solak E, Yılmaz Şükranlı Z, Rassoulzadegan M, Borlu M. Psoriatic skin transcript phenotype: androgen/estrogen and cortisone/cortisol imbalance with increasing DNA damage response. Mol Biol Rep 2024; 51:933. [PMID: 39180588 DOI: 10.1007/s11033-024-09782-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 07/04/2024] [Indexed: 08/26/2024]
Abstract
BACKGROUND Patients prone to psoriasis suffer after a breakdown of the epidermal barrier and develop poorly healing lesions with abnormal proliferation of keratinocytes. Strong inflammatory reactions with genotoxicity (short telomeres) suggest impaired immune defenses with DNA damage repair response (DDR) in patients with psoriasis. Recent evidence indicates the existence of crosstalk mechanisms linking the DDR machinery and hormonal signaling pathways that cooperate to influence both progressions of many diseases and responses to treatment. The aim of this study was to clarify whether steroid biosynthesis and genomic stability markers are altered in parallel during the formation of psoriatic skin. Understanding the interaction of the steroid pathway and DNA damage response is crucial to addressing underlying fundamental issues and managing resulting epidermal barrier disruption in psoriasis. METHODS Skin (Lesional, non-lesional) and blood samples from twenty psoriasis patients and fifteen healthy volunteers were collected. Real-Time-PCR study was performed to assess levels of known transcripts such as: estrogen (ESR1, ESR2), androgen (AR), glucocorticoid/mineralocorticoid receptors (NR3C1, NR3C2), HSD11B1/HSD11B2, and DNA damage sensors (SMC1A, TREX1, TREX2, SSBP3, RAD1, RAD18, EXO1, POLH, HUS1). RESULTS We found that ESR1, ESR2, HSD11B1, NR3C1, NR3C2, POLH, and SMC1A transcripts were significantly decreased and AR, TREX1, RAD1, and SSBP3 transcripts were increased dramatically in the lesional skin compared to skin samples of controls. CONCLUSION We found that the regulation of the steroidogenic pathway was disrupted in the lesional tissue of psoriasis patients and that a sufficient glucocorticoid and mineralocorticoid response did not form and the estrogen/androgen balance was altered in favour of androgens. We suggest that an increased androgen response in the presence of DDR increases the risk of developing psoriasis. Although this situation may be the cause or the consequence of a disruption of the epidermal barrier, our data suggest developing new therapeutic strategies.
Collapse
Affiliation(s)
- Şeyma Başar Kılıç
- Dermatology and Venereology Department, Faculty of Medicine, Aksaray University, Aksaray, Turkey
| | - Serpil Taheri
- Medical Biology Department, Faculty of Medicine, Erciyes University, Kayseri, Turkey
- Betul Ziya Eren Genome and Stem Cell Center, Erciyes University, Kayseri, Turkey
| | - Ecmel Mehmetbeyoğlu Duman
- Betul Ziya Eren Genome and Stem Cell Center, Erciyes University, Kayseri, Turkey
- Department of Cancer and Genetics, Cardiff University, Cardiff, CF14 4XN, UK
| | - Eda Öksüm Solak
- Dermatology and Venereology Department, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | | | - Minoo Rassoulzadegan
- Betul Ziya Eren Genome and Stem Cell Center, Erciyes University, Kayseri, Turkey
| | - Murat Borlu
- Dermatology and Venereology Department, Faculty of Medicine, Erciyes University, Kayseri, Turkey.
| |
Collapse
|
6
|
Raj-Kumar PK, Lin X, Liu T, Sturtz LA, Gritsenko MA, Petyuk VA, Sagendorf TJ, Deyarmin B, Liu J, Praveen-Kumar A, Wang G, McDermott JE, Shukla AK, Moore RJ, Monroe ME, Webb-Robertson BJM, Hooke JA, Fantacone-Campbell L, Mostoller B, Kvecher L, Kane J, Melley J, Somiari S, Soon-Shiong P, Smith RD, Mural RJ, Rodland KD, Shriver CD, Kovatich AJ, Hu H. Proteogenomic characterization of difficult-to-treat breast cancer with tumor cells enriched through laser microdissection. Breast Cancer Res 2024; 26:76. [PMID: 38745208 PMCID: PMC11094977 DOI: 10.1186/s13058-024-01835-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 05/05/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND Breast cancer (BC) is the most commonly diagnosed cancer and the leading cause of cancer death among women globally. Despite advances, there is considerable variation in clinical outcomes for patients with non-luminal A tumors, classified as difficult-to-treat breast cancers (DTBC). This study aims to delineate the proteogenomic landscape of DTBC tumors compared to luminal A (LumA) tumors. METHODS We retrospectively collected a total of 117 untreated primary breast tumor specimens, focusing on DTBC subtypes. Breast tumors were processed by laser microdissection (LMD) to enrich tumor cells. DNA, RNA, and protein were simultaneously extracted from each tumor preparation, followed by whole genome sequencing, paired-end RNA sequencing, global proteomics and phosphoproteomics. Differential feature analysis, pathway analysis and survival analysis were performed to better understand DTBC and investigate biomarkers. RESULTS We observed distinct variations in gene mutations, structural variations, and chromosomal alterations between DTBC and LumA breast tumors. DTBC tumors predominantly had more mutations in TP53, PLXNB3, Zinc finger genes, and fewer mutations in SDC2, CDH1, PIK3CA, SVIL, and PTEN. Notably, Cytoband 1q21, which contains numerous cell proliferation-related genes, was significantly amplified in the DTBC tumors. LMD successfully minimized stromal components and increased RNA-protein concordance, as evidenced by stromal score comparisons and proteomic analysis. Distinct DTBC and LumA-enriched clusters were observed by proteomic and phosphoproteomic clustering analysis, some with survival differences. Phosphoproteomics identified two distinct phosphoproteomic profiles for high relapse-risk and low relapse-risk basal-like tumors, involving several genes known to be associated with breast cancer oncogenesis and progression, including KIAA1522, DCK, FOXO3, MYO9B, ARID1A, EPRS, ZC3HAV1, and RBM14. Lastly, an integrated pathway analysis of multi-omics data highlighted a robust enrichment of proliferation pathways in DTBC tumors. CONCLUSIONS This study provides an integrated proteogenomic characterization of DTBC vs LumA with tumor cells enriched through laser microdissection. We identified many common features of DTBC tumors and the phosphopeptides that could serve as potential biomarkers for high/low relapse-risk basal-like BC and possibly guide treatment selections.
Collapse
Affiliation(s)
- Praveen-Kumar Raj-Kumar
- Chan Soon-Shiong Institute of Molecular Medicine at Windber, Windber, PA, USA
- Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Xiaoying Lin
- Chan Soon-Shiong Institute of Molecular Medicine at Windber, Windber, PA, USA
- Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Tao Liu
- Pacific Northwest National Laboratory, Richland, WA, USA
| | - Lori A Sturtz
- Chan Soon-Shiong Institute of Molecular Medicine at Windber, Windber, PA, USA
- Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | | | | | | | - Brenda Deyarmin
- Chan Soon-Shiong Institute of Molecular Medicine at Windber, Windber, PA, USA
| | - Jianfang Liu
- Chan Soon-Shiong Institute of Molecular Medicine at Windber, Windber, PA, USA
| | | | - Guisong Wang
- Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, Bethesda, MD, USA
| | | | - Anil K Shukla
- Pacific Northwest National Laboratory, Richland, WA, USA
| | - Ronald J Moore
- Pacific Northwest National Laboratory, Richland, WA, USA
| | | | | | - Jeffrey A Hooke
- Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, Bethesda, MD, USA
| | - Leigh Fantacone-Campbell
- Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, Bethesda, MD, USA
| | - Brad Mostoller
- Chan Soon-Shiong Institute of Molecular Medicine at Windber, Windber, PA, USA
| | - Leonid Kvecher
- Chan Soon-Shiong Institute of Molecular Medicine at Windber, Windber, PA, USA
- Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Jennifer Kane
- Chan Soon-Shiong Institute of Molecular Medicine at Windber, Windber, PA, USA
| | - Jennifer Melley
- Chan Soon-Shiong Institute of Molecular Medicine at Windber, Windber, PA, USA
| | - Stella Somiari
- Chan Soon-Shiong Institute of Molecular Medicine at Windber, Windber, PA, USA
| | | | | | - Richard J Mural
- Chan Soon-Shiong Institute of Molecular Medicine at Windber, Windber, PA, USA
| | | | - Craig D Shriver
- Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.
- Department of Surgery, Walter Reed National Military Medical Center, Bethesda, MD, USA.
| | - Albert J Kovatich
- Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, Bethesda, MD, USA
| | - Hai Hu
- Chan Soon-Shiong Institute of Molecular Medicine at Windber, Windber, PA, USA.
- Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.
| |
Collapse
|
7
|
Alemi F, Poornajaf Y, Hosseini F, Vahedian V, Gharekhani M, Shoorei H, Taheri M. Interaction between lncRNAs and RNA-binding proteins (RBPs) influences DNA damage response in cancer chemoresistance. Mol Biol Rep 2024; 51:308. [PMID: 38366290 DOI: 10.1007/s11033-024-09288-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 01/25/2024] [Indexed: 02/18/2024]
Abstract
The DNA damage response (DDR) is a crucial cellular signaling pathway activated in response to DNA damage, including damage caused by chemotherapy. Chemoresistance, which refers to the resistance of cancer cells to the effects of chemotherapy, poses a significant challenge in cancer treatment. Understanding the relationship between DDR and chemoresistance is vital for devising strategies to overcome this resistance and improve treatment outcomes. Long non-coding RNAs (lncRNAs) are a class of RNA molecules that do not code for proteins but play important roles in various biological processes, including cancer development and chemoresistance. RNA-binding proteins (RBPs) are a group of proteins that bind to RNA molecules and regulate their functions. The interaction between lncRNAs and RBPs has been found to regulate gene expression at the post-transcriptional level, thereby influencing various cellular processes, including DDR signaling pathways. Multiple studies have demonstrated that lncRNAs can interact with RBPs to modulate the expression of genes involved in cancer chemoresistance by impacting DDR signaling pathways. Conversely, RBPs can regulate the expression and function of lncRNAs involved in DDR. Exploring these interactions can provide valuable insights for the development of innovative therapeutic approaches to overcome chemoresistance in cancer patients. This review article aims to summarize recent research on the interaction between lncRNAs and RBPs during cancer chemotherapy, with a specific focus on DDR pathways.
Collapse
Affiliation(s)
- Forough Alemi
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yadollah Poornajaf
- Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Foroogh Hosseini
- Department of Biological Sciences, Lehigh University, Bethlehem, PA, USA
| | - Vahid Vahedian
- Department of Medical Clinic, Division of Hematology/Oncology and Cellular Therapy, Faculty of Medicine, University of Sao Paulo (FMUSP), Sao Paulo, Brazil
| | - Mahdi Gharekhani
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Shoorei
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran.
- Rooyesh Infertility Center, Birjand University of Medical Sciences, Birjand, Iran.
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran.
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany.
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
8
|
Wang Y, Zhu W, Jang Y, Sommers JA, Yi G, Puligilla C, Croteau DL, Yang Y, Kai M, Liu Y. The RNA-binding motif protein 14 regulates telomere integrity at the interface of TERRA and telomeric R-loops. Nucleic Acids Res 2023; 51:12242-12260. [PMID: 37930826 PMCID: PMC10711441 DOI: 10.1093/nar/gkad967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 10/13/2023] [Indexed: 11/08/2023] Open
Abstract
Telomeric repeat-containing RNA (TERRA) and its formation of RNA:DNA hybrids (or TERRA R-loops), influence telomere maintenance, particularly in human cancer cells that use homologous recombination-mediated alternative lengthening of telomeres. Here, we report that the RNA-binding motif protein 14 (RBM14) is associated with telomeres in human cancer cells. RBM14 negatively regulates TERRA expression. It also binds to TERRA and inhibits it from forming TERRA R-loops at telomeres. RBM14 depletion has several effects, including elevated TERRA levels, telomeric R-loops, telomere dysfunction-induced DNA damage foci formation, particularly in the presence of DNA replication stress, pRPA32 accumulation at telomeres and telomere signal-free ends. Thus, RBM14 protects telomere integrity via modulating TERRA levels and its R-loop formation at telomeres.
Collapse
Affiliation(s)
- Yajun Wang
- Laboratory of Genetics and Genomics, 251 Bayview Blvd, National Institute on Aging/National Institutes of Health, Baltimore, MD 21224, USA
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Wei Zhu
- Laboratory of Genetics and Genomics, 251 Bayview Blvd, National Institute on Aging/National Institutes of Health, Baltimore, MD 21224, USA
| | - Yumi Jang
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Joshua A Sommers
- Translational Gerontology Branch, 251 Bayview Blvd, National Institute on Aging/National Institutes of Health, Baltimore, MD 21224, USA
| | - Gong Yi
- Laboratory of Genetics and Genomics, 251 Bayview Blvd, National Institute on Aging/National Institutes of Health, Baltimore, MD 21224, USA
| | - Chandrakala Puligilla
- Laboratory of Genetics and Genomics, 251 Bayview Blvd, National Institute on Aging/National Institutes of Health, Baltimore, MD 21224, USA
| | - Deborah L Croteau
- Laboratory of Genetics and Genomics, 251 Bayview Blvd, National Institute on Aging/National Institutes of Health, Baltimore, MD 21224, USA
| | - Yibin Yang
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Mihoko Kai
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Yie Liu
- Laboratory of Genetics and Genomics, 251 Bayview Blvd, National Institute on Aging/National Institutes of Health, Baltimore, MD 21224, USA
| |
Collapse
|
9
|
Balasubramanian S, Maharana S, Srivastava A. "Boundary residues" between the folded RNA recognition motif and disordered RGG domains are critical for FUS-RNA binding. J Biol Chem 2023; 299:105392. [PMID: 37890778 PMCID: PMC10687056 DOI: 10.1016/j.jbc.2023.105392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 09/19/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
Fused in sarcoma (FUS) is an abundant RNA-binding protein, which drives phase separation of cellular condensates and plays multiple roles in RNA regulation. The RNA-binding ability of FUS protein is crucial to its cellular function. Here, our molecular simulation study on the FUS-RNA complex provides atomic resolution insights into the observations from biochemical studies and also illuminates our understanding of molecular driving forces that mediate the structure, stability, and interaction of the RNA recognition motif (RRM) and RGG domains of FUS with a stem-loop junction RNA. We observe clear cooperativity and division of labor among the ordered (RRM) and disordered domains (RGG1 and RGG2) of FUS that leads to an organized and tighter RNA binding. Irrespective of the length of RGG2, the RGG2-RNA interaction is confined to the stem-loop junction and the proximal stem regions. On the other hand, the RGG1 interactions are primarily with the longer RNA stem. We find that the C terminus of RRM, which make up the "boundary residues" that connect the folded RRM with the long disordered RGG2 stretch of the protein, plays a critical role in FUS-RNA binding. Our study provides high-resolution molecular insights into the FUS-RNA interactions and forms the basis for understanding the molecular origins of full-length FUS interaction with RNA.
Collapse
Affiliation(s)
| | - Shovamayee Maharana
- Department of Molecular and Cell Biology, Indian Institute of Science Bangalore, Bangalore, Karnataka, India
| | - Anand Srivastava
- Molecular Biophysics Unit, Indian Institute of Science Bangalore, Bangalore, Karnataka, India.
| |
Collapse
|
10
|
Ben-Oz BM, Machour FE, Nicola M, Argoetti A, Polyak G, Hanna R, Kleifeld O, Mandel-Gutfreund Y, Ayoub N. A dual role of RBM42 in modulating splicing and translation of CDKN1A/p21 during DNA damage response. Nat Commun 2023; 14:7628. [PMID: 37993446 PMCID: PMC10665399 DOI: 10.1038/s41467-023-43495-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 11/10/2023] [Indexed: 11/24/2023] Open
Abstract
p53-mediated cell cycle arrest during DNA damage is dependent on the induction of p21 protein, encoded by the CDKN1A gene. p21 inhibits cyclin-dependent kinases required for cell cycle progression to guarantee accurate repair of DNA lesions. Hence, fine-tuning of p21 levels is crucial to preserve genomic stability. Currently, the multilayered regulation of p21 levels during DNA damage is not fully understood. Herein, we identify the human RNA binding motif protein 42 (RBM42) as a regulator of p21 levels during DNA damage. Genome-wide transcriptome and interactome analysis reveals that RBM42 alters the expression of p53-regulated genes during DNA damage. Specifically, we demonstrate that RBM42 facilitates CDKN1A splicing by counteracting the splicing inhibitory effect of RBM4 protein. Unexpectedly, we also show that RBM42, underpins translation of various splicing targets, including CDKN1A. Concordantly, transcriptome-wide mapping of RBM42-RNA interactions using eCLIP further substantiates the dual function of RBM42 in regulating splicing and translation of its target genes, including CDKN1A. Collectively, our data show that RBM42 couples splicing and translation machineries to fine-tune gene expression during DNA damage response.
Collapse
Affiliation(s)
- Bella M Ben-Oz
- Department of Biology, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - Feras E Machour
- Department of Biology, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - Marian Nicola
- Department of Biology, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - Amir Argoetti
- Department of Biology, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - Galia Polyak
- Department of Biology, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - Rawad Hanna
- Department of Biology, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - Oded Kleifeld
- Department of Biology, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - Yael Mandel-Gutfreund
- Department of Biology, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - Nabieh Ayoub
- Department of Biology, Technion - Israel Institute of Technology, Haifa, 3200003, Israel.
| |
Collapse
|
11
|
Wang YL, Zhao WW, Shi J, Wan XB, Zheng J, Fan XJ. Liquid-liquid phase separation in DNA double-strand breaks repair. Cell Death Dis 2023; 14:746. [PMID: 37968256 PMCID: PMC10651886 DOI: 10.1038/s41419-023-06267-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 10/23/2023] [Accepted: 11/01/2023] [Indexed: 11/17/2023]
Abstract
DNA double-strand breaks (DSBs) are the fatal type of DNA damage mostly induced by exposure genome to ionizing radiation or genotoxic chemicals. DSBs are mainly repaired by homologous recombination (HR) and nonhomologous end joining (NHEJ). To repair DSBs, a large amount of DNA repair factors was observed to be concentrated at the end of DSBs in a specific spatiotemporal manner to form a repair center. Recently, this repair center was characterized as a condensate derived from liquid-liquid phase separation (LLPS) of key DSBs repair factors. LLPS has been found to be the mechanism of membraneless organelles formation and plays key roles in a variety of biological processes. In this review, the recent advances and mechanisms of LLPS in the formation of DSBs repair-related condensates are summarized.
Collapse
Affiliation(s)
- Yun-Long Wang
- Henan Provincial Key Laboratory of Radiation Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, PR China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450052, PR China
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, PR China
- Department of Radiation Oncology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, PR China
| | - Wan-Wen Zhao
- Department of Radiation Oncology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, PR China
- GuangDong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, PR China
| | - Jie Shi
- Department of Radiation Oncology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, PR China
- GuangDong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, PR China
| | - Xiang-Bo Wan
- Henan Provincial Key Laboratory of Radiation Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, PR China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450052, PR China
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, PR China
- Department of Radiation Oncology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, PR China
| | - Jian Zheng
- Department of Radiation Oncology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, PR China
- GuangDong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, PR China
| | - Xin-Juan Fan
- Henan Provincial Key Laboratory of Radiation Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, PR China.
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450052, PR China.
- GuangDong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, PR China.
- Department of Pathology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, PR China.
| |
Collapse
|
12
|
Xu J, Pang B, Lan Y, Dou R, Wang S, Kang S, Zhang W, Liu Y, Zhang Y, Ping Y. Identifying the personalized driver gene sets maximally contributing to abnormality of transcriptome phenotype in glioblastoma multiforme individuals. Mol Oncol 2023; 17:2472-2490. [PMID: 37491836 PMCID: PMC10620122 DOI: 10.1002/1878-0261.13499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 06/21/2023] [Accepted: 07/24/2023] [Indexed: 07/27/2023] Open
Abstract
High heterogeneity in genome and phenotype of cancer populations made it difficult to apply population-based common driver genes to the diagnosis and treatment of cancer individuals. Characterizing and identifying the personalized driver mechanism for glioblastoma multiforme (GBM) individuals were pivotal for the realization of precision medicine. We proposed an integrative method to identify the personalized driver gene sets by integrating the profiles of gene expression and genetic alterations in cancer individuals. This method coupled genetic algorithm and random walk to identify the optimal gene sets that could explain abnormality of transcriptome phenotype to the maximum extent. The personalized driver gene sets were identified for 99 GBM individuals using our method. We found that genomic alterations in between one and seven driver genes could maximally and cumulatively explain the dysfunction of cancer hallmarks across GBM individuals. The driver gene sets were distinct even in GBM individuals with significantly similar transcriptomic phenotypes. Our method identified MCM4 with rare genetic alterations as previously unknown oncogenic genes, the high expression of which were significantly associated with poor GBM prognosis. The functional experiments confirmed that knockdown of MCM4 could significantly inhibit proliferation, invasion, migration, and clone formation of the GBM cell lines U251 and U118MG, and overexpression of MCM4 significantly promoted the proliferation, invasion, migration, and clone formation of the GBM cell line U87MG. Our method could dissect the personalized driver genetic alteration sets that are pivotal for developing targeted therapy strategies and precision medicine. Our method could be extended to identify key drivers from other levels and could be applied to more cancer types.
Collapse
Affiliation(s)
- Jinyuan Xu
- College of Bioinformatics Science and TechnologyHarbin Medical UniversityChina
| | - Bo Pang
- College of Bioinformatics Science and TechnologyHarbin Medical UniversityChina
| | - Yujia Lan
- College of Bioinformatics Science and TechnologyHarbin Medical UniversityChina
| | - Renjie Dou
- College of Bioinformatics Science and TechnologyHarbin Medical UniversityChina
| | - Shuai Wang
- College of Bioinformatics Science and TechnologyHarbin Medical UniversityChina
| | - Shaobo Kang
- College of Bioinformatics Science and TechnologyHarbin Medical UniversityChina
| | - Wanmei Zhang
- College of Bioinformatics Science and TechnologyHarbin Medical UniversityChina
| | - Yuanyuan Liu
- College of Bioinformatics Science and TechnologyHarbin Medical UniversityChina
| | - Yijing Zhang
- College of Bioinformatics Science and TechnologyHarbin Medical UniversityChina
| | - Yanyan Ping
- College of Bioinformatics Science and TechnologyHarbin Medical UniversityChina
| |
Collapse
|
13
|
Tan J, Sun X, Zhao H, Guan H, Gao S, Zhou P. Double-strand DNA break repair: molecular mechanisms and therapeutic targets. MedComm (Beijing) 2023; 4:e388. [PMID: 37808268 PMCID: PMC10556206 DOI: 10.1002/mco2.388] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 08/29/2023] [Accepted: 09/08/2023] [Indexed: 10/10/2023] Open
Abstract
Double-strand break (DSB), a significant DNA damage brought on by ionizing radiation, acts as an initiating signal in tumor radiotherapy, causing cancer cells death. The two primary pathways for DNA DSB repair in mammalian cells are nonhomologous end joining (NHEJ) and homologous recombination (HR), which cooperate and compete with one another to achieve effective repair. The DSB repair mechanism depends on numerous regulatory variables. DSB recognition and the recruitment of DNA repair components, for instance, depend on the MRE11-RAD50-NBS1 (MRN) complex and the Ku70/80 heterodimer/DNA-PKcs (DNA-PK) complex, whose control is crucial in determining the DSB repair pathway choice and efficiency of HR and NHEJ. In-depth elucidation on the DSB repair pathway's molecular mechanisms has greatly facilitated for creation of repair proteins or pathways-specific inhibitors to advance precise cancer therapy and boost the effectiveness of cancer radiotherapy. The architectures, roles, molecular processes, and inhibitors of significant target proteins in the DSB repair pathways are reviewed in this article. The strategy and application in cancer therapy are also discussed based on the advancement of inhibitors targeted DSB damage response and repair proteins.
Collapse
Affiliation(s)
- Jinpeng Tan
- Hengyang Medical CollegeUniversity of South ChinaHengyangHunan ProvinceChina
- Department of Radiation BiologyBeijing Key Laboratory for RadiobiologyBeijing Institute of Radiation MedicineBeijingChina
| | - Xingyao Sun
- Hengyang Medical CollegeUniversity of South ChinaHengyangHunan ProvinceChina
- Department of Radiation BiologyBeijing Key Laboratory for RadiobiologyBeijing Institute of Radiation MedicineBeijingChina
| | - Hongling Zhao
- Department of Radiation BiologyBeijing Key Laboratory for RadiobiologyBeijing Institute of Radiation MedicineBeijingChina
| | - Hua Guan
- Department of Radiation BiologyBeijing Key Laboratory for RadiobiologyBeijing Institute of Radiation MedicineBeijingChina
| | - Shanshan Gao
- Department of Radiation BiologyBeijing Key Laboratory for RadiobiologyBeijing Institute of Radiation MedicineBeijingChina
| | - Ping‐Kun Zhou
- Hengyang Medical CollegeUniversity of South ChinaHengyangHunan ProvinceChina
- Department of Radiation BiologyBeijing Key Laboratory for RadiobiologyBeijing Institute of Radiation MedicineBeijingChina
| |
Collapse
|
14
|
Jain L, Vickers MH, Jacob B, Middleditch MJ, Chudakova DA, Ganley ARD, O'Sullivan JM, Perry JK. The growth hormone receptor interacts with transcriptional regulator HMGN1 upon GH-induced nuclear translocation. J Cell Commun Signal 2023; 17:925-937. [PMID: 37043098 PMCID: PMC10409943 DOI: 10.1007/s12079-023-00741-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 03/15/2023] [Indexed: 04/13/2023] Open
Abstract
Growth hormone (GH) actions are mediated through binding to its cell-surface receptor, the GH receptor (GHR), with consequent activation of downstream signalling. However, nuclear GHR localisation has also been observed and is associated with increased cancer cell proliferation. Here we investigated the functional implications of nuclear translocation of the GHR in the human endometrial cancer cell-line, RL95-2, and human mammary epithelial cell-line, MCF-10A. We found that following GH treatment, the GHR rapidly translocates to the nucleus, with maximal localisation at 5-10 min. Combined immunoprecipitation-mass spectrometry analysis of RL95-2 whole cell lysates identified 40 novel GHR binding partners, including the transcriptional regulator, HMGN1. Moreover, microarray analysis demonstrated that the gene targets of HMGN1 were differentially expressed following GH treatment, and co-immunoprecipitation showed that HMGN1 associates with the GHR in the nucleus. Therefore, our results suggest that GHR nuclear translocation might mediate GH actions via interaction with chromatin factors that then drive changes in specific downstream transcriptional programs.
Collapse
Affiliation(s)
- Lekha Jain
- The Liggins Institute, University of Auckland, 85 Park Rd, Private Bag 92019, Auckland, 1142, New Zealand
| | - Mark H Vickers
- The Liggins Institute, University of Auckland, 85 Park Rd, Private Bag 92019, Auckland, 1142, New Zealand
| | - Bincy Jacob
- Faculty of Science, University of Auckland, Auckland, New Zealand
| | | | - Daria A Chudakova
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Austen R D Ganley
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Justin M O'Sullivan
- The Liggins Institute, University of Auckland, 85 Park Rd, Private Bag 92019, Auckland, 1142, New Zealand.
| | - Jo K Perry
- The Liggins Institute, University of Auckland, 85 Park Rd, Private Bag 92019, Auckland, 1142, New Zealand.
| |
Collapse
|
15
|
Xu K, Guo H, Xia A, Wang Z, Wang S, Wang Q. Non-coding RNAs in radiotherapy resistance: Roles and therapeutic implications in gastrointestinal cancer. Biomed Pharmacother 2023; 161:114485. [PMID: 36917887 DOI: 10.1016/j.biopha.2023.114485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/19/2023] [Accepted: 03/07/2023] [Indexed: 03/14/2023] Open
Abstract
Radiotherapy has become an indispensable and conventional means for patients with advanced solid tumors including gastrointestinal cancer. However, innate or acquired radiotherapy resistance remains a significant challenge and greatly limits the therapeutic effect, which results in cancer relapse and poor prognosis. Therefore, it is an urgent need to identify novel biomarkers and therapeutic targets for clarify the biological characteristics and mechanism of radiotherapy resistance. Recently, lots of studies have revealed that non-coding RNAs (ncRNAs) are the potential indicators and regulators of radiotherapy resistance via the mediation of various targets/pathways in different cancers. These findings may serve as a potential therapeutic strategy to overcome radiotherapy resistance. In this review, we will shed light on the recent findings regarding the functions and regulatory mechanisms of ncRNAs following radiotherapy, and comprehensively discuss their potential as biomarkers and therapeutic targets in radiotherapy resistance of gastrointestinal cancer.
Collapse
Affiliation(s)
- Kaiyue Xu
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210000, China; Department of Radiation Oncology, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing University Medical School, Suzhou 215000, China
| | - Huimin Guo
- Department of Gastroenterology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210000, China
| | - Anliang Xia
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210000, China
| | - Zhangding Wang
- Department of Gastroenterology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210000, China.
| | - Shouyu Wang
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210000, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University Medical School, Nanjing 210093, China.
| | - Qiang Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230000, China; Medical Transformation Research Institute, The First Affiliated Hospital of Anhui Medical University, Hefei 230000, China.
| |
Collapse
|
16
|
Cox EM, El-Behi M, Ries S, Vogt JF, Kohlhaas V, Michna T, Manfroi B, Al-Maarri M, Wanke F, Tirosh B, Pondarre C, Lezeau H, Yogev N, Mittenzwei R, Descatoire M, Weller S, Weill JC, Reynaud CA, Boudinot P, Jouneau L, Tenzer S, Distler U, Rensing-Ehl A, König C, Staniek J, Rizzi M, Magérus A, Rieux-Laucat F, Wunderlich FT, Hövelmeyer N, Fillatreau S. AKT activity orchestrates marginal zone B cell development in mice and humans. Cell Rep 2023; 42:112378. [PMID: 37060566 DOI: 10.1016/j.celrep.2023.112378] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 12/14/2022] [Accepted: 03/27/2023] [Indexed: 04/16/2023] Open
Abstract
The signals controlling marginal zone (MZ) and follicular (FO) B cell development remain incompletely understood. Here, we show that AKT orchestrates MZ B cell formation in mice and humans. Genetic models that increase AKT signaling in B cells or abolish its impact on FoxO transcription factors highlight the AKT-FoxO axis as an on-off switch for MZ B cell formation in mice. In humans, splenic immunoglobulin (Ig) D+CD27+ B cells, proposed as an MZ B cell equivalent, display higher AKT signaling than naive IgD+CD27- and memory IgD-CD27+ B cells and develop in an AKT-dependent manner from their precursors in vitro, underlining the conservation of this developmental pathway. Consistently, CD148 is identified as a receptor indicative of the level of AKT signaling in B cells, expressed at a higher level in MZ B cells than FO B cells in mice as well as humans.
Collapse
Affiliation(s)
- Eva-Maria Cox
- Institute for Molecular Medicine Mainz, University Hospital of Mainz, 55131 Mainz, Germany
| | - Mohamed El-Behi
- Institut Necker Enfants Malades, INSERM U1151-CNRS UMR 8253, 156-160, rue de Vaugirard, 75015 Paris, France
| | - Stefanie Ries
- Deutsches Rheuma-Forschungszentrum, a Leibniz Institute, 10117 Berlin, Germany
| | - Johannes F Vogt
- Institute for Molecular Medicine Mainz, University Hospital of Mainz, 55131 Mainz, Germany
| | - Vivien Kohlhaas
- Max Planck Institute for Metabolism Research Cologne, 50931 Cologne, Germany; Institute for Genetics, University of Cologne, 50931 Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases (CECAD), 50931 Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), 50931 Cologne, Germany; Center for Endocrinology, Diabetes and Preventive Medicine (CEDP) Cologne, 50931 Cologne, Germany
| | - Thomas Michna
- Institute for Immunology, University Medical Centre of the Johannes-Gutenberg University Mainz, Mainz, Germany
| | - Benoît Manfroi
- Institut Necker Enfants Malades, INSERM U1151-CNRS UMR 8253, 156-160, rue de Vaugirard, 75015 Paris, France
| | - Mona Al-Maarri
- Max Planck Institute for Metabolism Research Cologne, 50931 Cologne, Germany; Institute for Genetics, University of Cologne, 50931 Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases (CECAD), 50931 Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), 50931 Cologne, Germany; Center for Endocrinology, Diabetes and Preventive Medicine (CEDP) Cologne, 50931 Cologne, Germany
| | - Florian Wanke
- Institute for Molecular Medicine Mainz, University Hospital of Mainz, 55131 Mainz, Germany
| | - Boaz Tirosh
- The Hebrew University of Jerusalem, Institute for Drug Research, Jerusalem, Israel
| | - Corinne Pondarre
- Service de Pédiatrie Générale, Centre de Référence de la Drépanocytose, Centre Intercommunal de Créteil, Créteil, France; Inserm U955, Université Paris XII, Créteil, France
| | - Harry Lezeau
- Service de Pédiatrie Générale, Centre de Référence de la Drépanocytose, Centre Intercommunal de Créteil, Créteil, France; Inserm U955, Université Paris XII, Créteil, France
| | - Nir Yogev
- Faculty of Medicine, Department of Dermatology, University of Cologne, 50931 Cologne, Germany
| | - Romy Mittenzwei
- Institute for Molecular Medicine Mainz, University Hospital of Mainz, 55131 Mainz, Germany
| | - Marc Descatoire
- Laboratory of Immune Inherited Disorders, Department of Immunology and Allergology Lausanne Hospital CHUV, Lausanne, Switzerland
| | - Sandra Weller
- Institut Necker Enfants Malades, INSERM U1151-CNRS UMR 8253, 156-160, rue de Vaugirard, 75015 Paris, France
| | - Jean-Claude Weill
- Institut Necker Enfants Malades, INSERM U1151-CNRS UMR 8253, 156-160, rue de Vaugirard, 75015 Paris, France
| | - Claude-Agnès Reynaud
- Institut Necker Enfants Malades, INSERM U1151-CNRS UMR 8253, 156-160, rue de Vaugirard, 75015 Paris, France
| | - Pierre Boudinot
- Université Paris-Saclay, INRAE, UVSQ, VIM, 78350 Jouy-en-Josas, France
| | - Luc Jouneau
- Université Paris-Saclay, INRAE, UVSQ, VIM, 78350 Jouy-en-Josas, France
| | - Stefan Tenzer
- Institute for Immunology, University Medical Centre of the Johannes-Gutenberg University Mainz, Mainz, Germany; Research Centre for Immunotherapy (FZI), University Medical Center of the Johannes-Gutenberg University Mainz, Mainz, Germany; Helmholtz Institute for Translational Oncology Mainz (HI-TRON Mainz), Mainz, Germany
| | - Ute Distler
- Institute for Immunology, University Medical Centre of the Johannes-Gutenberg University Mainz, Mainz, Germany
| | - Anne Rensing-Ehl
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Christoph König
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; University of Freiburg, Faculty of Biology, Schaenzlestrasse 1, 79104 Freiburg, Germany
| | - Julian Staniek
- Department of Rheumatology and Clinical Immunology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Marta Rizzi
- Department of Rheumatology and Clinical Immunology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Division of Clinical and Experimental Immunology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Aude Magérus
- Université Paris Cité, Institut Imagine, Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, INSERM UMR 1163, 75015 Paris, France
| | - Frederic Rieux-Laucat
- Université Paris Cité, Institut Imagine, Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, INSERM UMR 1163, 75015 Paris, France
| | - F Thomas Wunderlich
- Max Planck Institute for Metabolism Research Cologne, 50931 Cologne, Germany; Institute for Genetics, University of Cologne, 50931 Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases (CECAD), 50931 Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), 50931 Cologne, Germany; Center for Endocrinology, Diabetes and Preventive Medicine (CEDP) Cologne, 50931 Cologne, Germany
| | - Nadine Hövelmeyer
- Institute for Molecular Medicine Mainz, University Hospital of Mainz, 55131 Mainz, Germany; Research Centre for Immunotherapy (FZI), University Medical Center of the Johannes-Gutenberg University Mainz, Mainz, Germany.
| | - Simon Fillatreau
- Institut Necker Enfants Malades, INSERM U1151-CNRS UMR 8253, 156-160, rue de Vaugirard, 75015 Paris, France; Université de Paris Cité, Paris Descartes, Faculté de Médecine, Paris, France; AP-HP, Hôpital Necker Enfants Malades, Paris, France.
| |
Collapse
|
17
|
Corcos L, Le Scanf E, Quéré G, Arzur D, Cueff G, Jossic-Corcos CL, Le Maréchal C. Microsatellite Instability and Aberrant Pre-mRNA Splicing: How Intimate Is It? Genes (Basel) 2023; 14:genes14020311. [PMID: 36833239 PMCID: PMC9957390 DOI: 10.3390/genes14020311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/10/2023] [Accepted: 01/17/2023] [Indexed: 01/27/2023] Open
Abstract
Cancers that belong to the microsatellite instability (MSI) class can account for up to 15% of all cancers of the digestive tract. These cancers are characterized by inactivation, through the mutation or epigenetic silencing of one or several genes from the DNA MisMatch Repair (MMR) machinery, including MLH1, MLH3, MSH2, MSH3, MSH6, PMS1, PMS2 and Exo1. The unrepaired DNA replication errors turn into mutations at several thousand sites that contain repetitive sequences, mainly mono- or dinucleotides, and some of them are related to Lynch syndrome, a predisposition condition linked to a germline mutation in one of these genes. In addition, some mutations shortening the microsatellite (MS) stretch could occur in the 3'-intronic regions, i.e., in the ATM (ATM serine/threonine kinase), MRE11 (MRE11 homolog) or the HSP110 (Heat shock protein family H) genes. In these three cases, aberrant pre-mRNA splicing was observed, and it was characterized by the occurrence of selective exon skipping in mature mRNAs. Because both the ATM and MRE11 genes, which as act as players in the MNR (MRE11/NBS1 (Nibrin)/RAD50 (RAD50 double strand break repair protein) DNA damage repair system, participate in double strand breaks (DSB) repair, their frequent splicing alterations in MSI cancers lead to impaired activity. This reveals the existence of a functional link between the MMR/DSB repair systems and the pre-mRNA splicing machinery, the diverted function of which is the consequence of mutations in the MS sequences.
Collapse
Affiliation(s)
- Laurent Corcos
- Inserm U1078, Univ Brest, EFS, F-29200 Brest, France
- CHRU Brest, F-29200 Brest, France
- Correspondence:
| | | | - Gaël Quéré
- Inserm U1078, Univ Brest, EFS, F-29200 Brest, France
| | | | | | | | - Cédric Le Maréchal
- Inserm U1078, Univ Brest, EFS, F-29200 Brest, France
- CHRU Brest, F-29200 Brest, France
| |
Collapse
|
18
|
Meng X, Wang Q, Hao R, Li X, Li M, Hu R, Du H, Hu Z, Yu B, Li S. RNA-binding protein MAC5A interacts with the 26S proteasome to regulate DNA damage response in Arabidopsis. PLANT PHYSIOLOGY 2023; 191:446-462. [PMID: 36331331 PMCID: PMC9806599 DOI: 10.1093/plphys/kiac510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 10/09/2022] [Indexed: 06/16/2023]
Abstract
DNA damage response (DDR) in eukaryotes is essential for the maintenance of genome integrity in challenging environments. The regulatory mechanisms of DDR have been well-established in yeast and humans. However, increasing evidence supports the idea that plants seem to employ different signaling pathways that remain largely unknown. Here, we report the role of MODIFIER OF SNC1, 4-ASSOCIATED COMPLEX SUBUNIT 5A (MAC5A) in DDR in Arabidopsis (Arabidopsis thaliana). Lack of MAC5A in mac5a mutants causes hypersensitive phenotypes to methyl methanesulfonate (MMS), a DNA damage inducer. Consistent with this observation, MAC5A can regulate alternative splicing of DDR genes to maintain the proper response to genotoxic stress. Interestingly, MAC5A interacts with the 26S proteasome (26SP) and is required for its proteasome activity. MAC core subunits are also involved in MMS-induced DDR. Moreover, we find that MAC5A, the MAC core subunits, and 26SP may act collaboratively to mediate high-boron-induced growth repression through DDR. Collectively, our findings uncover the crucial role of MAC in MMS-induced DDR in orchestrating growth and stress adaptation in plants.
Collapse
Affiliation(s)
- Xiangxiang Meng
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Shandong Energy Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Quanhui Wang
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Shandong Energy Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Ruili Hao
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Shandong Energy Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Xudong Li
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Shandong Energy Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mu Li
- School of Biological Sciences & Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, Nebraska 68588-0666, USA
| | - Ruibo Hu
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Shandong Energy Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Hai Du
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China
| | - Zhubing Hu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, College of Agriculture, Henan University, Kaifeng 475004, China
| | - Bin Yu
- School of Biological Sciences & Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, Nebraska 68588-0666, USA
| | - Shengjun Li
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Shandong Energy Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| |
Collapse
|
19
|
Awwad SW, Darawshe MM, Machour FE, Arman I, Ayoub N. Recruitment of RBM6 to DNA Double-Strand Breaks Fosters Homologous Recombination Repair. Mol Cell Biol 2023; 43:130-142. [PMID: 36941773 PMCID: PMC10038030 DOI: 10.1080/10985549.2023.2187105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 12/20/2022] [Accepted: 02/01/2023] [Indexed: 03/23/2023] Open
Abstract
DNA double-strand breaks (DSBs) are highly toxic lesions that threaten genome integrity and cell survival. To avoid harmful repercussions of DSBs, a wide variety of DNA repair factors are recruited to execute DSB repair. Previously, we demonstrated that RBM6 splicing factor facilitates homologous recombination (HR) of DSB by regulating alternative splicing-coupled nonstop-decay of the HR protein APBB1/Fe65. Here, we describe a splicing-independent function of RBM6 in promoting HR repair of DSBs. We show that RBM6 is recruited to DSB sites and PARP1 activity indirectly regulates RBM6 recruitment to DNA breakage sites. Deletion mapping analysis revealed a region containing five glycine residues within the G-patch domain that regulates RBM6 accumulation at DNA damage sites. We further ascertain that RBM6 interacts with Rad51, and this interaction is attenuated in RBM6 mutant lacking the G-patch domain (RBM6del(G-patch)). Consequently, RBM6del(G-patch) cells exhibit reduced levels of Rad51 foci after ionizing radiation. In addition, while RBM6 deletion mutant lacking the G-patch domain has no detectable effect on the expression levels of its splicing targets Fe65 and Eya2, it fails to restore the integrity of HR. Altogether, our results suggest that RBM6 recruitment to DSB promotes HR repair, irrespective of its splicing activity.HIGHLIGHTSPARP1 activity indirectly regulates RBM6 recruitment to DNA damage sites.Five glycine residues within the G-patch domain of RBM6 are critical for its recruitment to DNA damage sites, but dispensable for its splicing activity.RBM6 G-patch domain fosters its interaction with Rad51 and promotes Rad51 foci formation following irradiation.RBM6 recruitment to DSB sites underpins HR repair.
Collapse
Affiliation(s)
- Samah W. Awwad
- Department of Biology, Technion – Israel Institute of Technology, Haifa, Israel
| | - Malak M. Darawshe
- Department of Biology, Technion – Israel Institute of Technology, Haifa, Israel
| | - Feras E. Machour
- Department of Biology, Technion – Israel Institute of Technology, Haifa, Israel
| | - Inbar Arman
- Department of Biology, Technion – Israel Institute of Technology, Haifa, Israel
| | - Nabieh Ayoub
- Department of Biology, Technion – Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
20
|
Intrinsically Disordered Proteins: An Overview. Int J Mol Sci 2022; 23:ijms232214050. [PMID: 36430530 PMCID: PMC9693201 DOI: 10.3390/ijms232214050] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
Many proteins and protein segments cannot attain a single stable three-dimensional structure under physiological conditions; instead, they adopt multiple interconverting conformational states. Such intrinsically disordered proteins or protein segments are highly abundant across proteomes, and are involved in various effector functions. This review focuses on different aspects of disordered proteins and disordered protein regions, which form the basis of the so-called "Disorder-function paradigm" of proteins. Additionally, various experimental approaches and computational tools used for characterizing disordered regions in proteins are discussed. Finally, the role of disordered proteins in diseases and their utility as potential drug targets are explored.
Collapse
|
21
|
Hu J, Yang L, Peng X, Mao M, Liu X, Song J, Li H, Chen F. METTL3 promotes m6A hypermethylation of RBM14 via YTHDF1 leading to the progression of hepatocellular carcinoma. Hum Cell 2022; 35:1838-1855. [PMID: 36087219 DOI: 10.1007/s13577-022-00769-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/09/2022] [Indexed: 11/27/2022]
Abstract
Liver is a well-known immunological organ with unique microenvironment. In normal conditions, the rich immune-infiltrating cells cooperate with non-parenchymal cells, such as Kupffer cells (KCs). The presence of liver immunosuppressive microenvironment underlines the importance to dissect this interaction to understand how this cross-talk promotes tumor growth in hepatocellular carcinoma (HCC). Therefore, the aim of the study here was to probe the role of methyltransferase-like 3 (METTL3) in the HCC progression and its effect on the polarization of KCs. KCs showed M2 polarization, and METTL3 was overexpressed in our collected HCC tissues relative to adjacent tissues. METTL3 depletion inhibited the M2 polarization of KCs, thereby reverting the malignant phenotype of HCC cells in vitro and growth and metastasis in vivo. Mechanistically, YTH domain-containing family protein 1 (YTHDF1) bound to RNA-binding protein 14 (RBM14), whereas METTL3 knockdown in KCs cells suppressed RBM14 expression by decreasing N-methyladenosine (m6A) methylation. Overexpression of RBM14 mitigated the anti-tumor effects of sh-METTL3 in vitro and in vivo. It is suggested that the mechanism of sh-METTL3 suppressing the polarization of KCs and the progression of HCC is to regulate the RBM14 expression via YTHDF1-dependent m6A modification.
Collapse
Affiliation(s)
- Jingyao Hu
- The Seventh Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, No. 4, Donggu Road, Chonggu District, Shenyang, 110000, Liaoning, People's Republic of China
| | - Liang Yang
- The Third Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110000, Liaoning, People's Republic of China
| | - Xueqiang Peng
- The Third Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110000, Liaoning, People's Republic of China
| | - Minghuan Mao
- Department of Urology Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110000, Liaoning, People's Republic of China
| | - Xiaodan Liu
- The Fifth Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110000, Liaoning, People's Republic of China
| | - Jianbo Song
- Interventional Department, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110000, Liaoning, People's Republic of China
| | - Hangyu Li
- The Third Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110000, Liaoning, People's Republic of China.
| | - Fu Chen
- The Seventh Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, No. 4, Donggu Road, Chonggu District, Shenyang, 110000, Liaoning, People's Republic of China.
| |
Collapse
|
22
|
Cheng Z, Wang Y, Guo L, Li J, Zhang W, Zhang C, Liu Y, Huang Y, Xu K. Ku70 affects the frequency of chromosome translocation in human lymphocytes after radiation and T-cell acute lymphoblastic leukemia. Radiat Oncol 2022; 17:144. [PMID: 35986335 PMCID: PMC9389784 DOI: 10.1186/s13014-022-02113-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 08/05/2022] [Indexed: 11/23/2022] Open
Abstract
Background As one of the most common chromosomal causes, chromosome translocation leads to T-cell acute lymphoblastic leukemia (T-ALL). Ku70 is one of the key factors of error-prone DNA repair and it may end in translocation. So far, the direct correlation between Ku70 and translocation has not been assessed. This study aimed to investigate the association between Ku70 and translocation in human lymphocytes after radiation and T-ALL. Methods Peripheral blood lymphocytes (PBLs) from volunteers and human lymphocyte cell line AHH-1 were irradiated with X-rays to form the chromosome translocations. Phytohemagglutinin (PHA) was used to stimulate lymphocytes. The frequency of translocation was detected by fluorescence in situ hybridization (FISH). Meanwhile, the expression of Ku70 was detected by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and western blot. Furthermore, Ku70 interference, overexpression and chemical inhibition were used in AHH-1 cell lines to confirm the correlation. Finally, the expression of Ku70 in T-ALL samples with or without translocation was detected. Results The expression of Ku70 and frequencies of translocation were both significantly increased in PBLs after being irradiated by X-rays, and a positive correlation between the expression (both mRNA and protein level) of Ku70 and the frequency of translocation was detected (r = 0.4877, P = 0.004; r = 0.3038, P = 0.0358 respectively). Moreover, Ku70 interference decreased the frequency of translocations, while the frequency of translocations was not significantly affected after Ku70 overexpression. The expression of Ku70 and frequencies of translocation were both significantly increased in cells after irradiation, combined with chemical inhibition (P < 0.01). The protein level and mRNA level of Ku70 in T-ALL with translocation were obviously higher than T-ALL with normal karyotype (P = 0.009, P = 0.049 respectively). Conclusions Ku70 is closely associated with the frequency of chromosome translocation in human lymphocytes after radiation and T-ALL. Ku70 might be a radiation damage biomarker and a potential tumor therapy target. Supplementary Information The online version contains supplementary material available at 10.1186/s13014-022-02113-3.
Collapse
|
23
|
Wang X, Mi S, Zhao M, Lu C, Jia C, Chen Y. Quantitative Analysis of the Protein Methylome Reveals PARP1 Methylation is involved in DNA Damage Response. Front Mol Biosci 2022; 9:878646. [PMID: 35847980 PMCID: PMC9277342 DOI: 10.3389/fmolb.2022.878646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 06/10/2022] [Indexed: 11/13/2022] Open
Abstract
Protein methylation plays important roles in DNA damage response. To date, proteome-wide profiling of protein methylation upon DNA damage has been not reported yet. In this study, using HILIC affinity enrichment combined with MS analysis, we conducted a quantitative analysis of the methylated proteins in HEK293T cells in response to IR treatment. In total, 235 distinct methylation sites responding to IR treatment were identified, and 38% of them were previously unknown. Multiple RNA-binding proteins were differentially methylated upon DNA damage stress. Furthermore, we identified 14 novel methylation sites in DNA damage response-related proteins. Moreover, we validated the function of PARP1 K23 methylation in repairing IR-induced DNA lesions. K23 methylation deficiency sensitizes cancer cells to radiation and HU-induced replication stress. In addition, PARP1 K23 methylation participates in the resolution of stalled replication forks by regulating PARP1 binding to damaged forks. Taken together, this study generates a data resource for global protein methylation in response to IR-induced DNA damage and reveals a critical role of PARP1 K23 methylation in DNA repair.
Collapse
Affiliation(s)
- Xinzhu Wang
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang, China
- State Key Laboratory of Proteomics, National Center for Protein Sciences—Beijing, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Shaojie Mi
- State Key Laboratory of Proteomics, National Center for Protein Sciences—Beijing, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, China
- Key Laboratory of Industrial Fermentation Microbiology, Tianjin Industrial Microbiology Key Lab, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Mingxin Zhao
- State Key Laboratory of Proteomics, National Center for Protein Sciences—Beijing, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, China
| | - Chen Lu
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
- Jiangsu Marine Resources Development Research Institute, Jiangsu Ocean University, Lianyungang, China
- *Correspondence: Chen Lu, ; Chenxi Jia, ; Yali Chen,
| | - Chenxi Jia
- State Key Laboratory of Proteomics, National Center for Protein Sciences—Beijing, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, China
- *Correspondence: Chen Lu, ; Chenxi Jia, ; Yali Chen,
| | - Yali Chen
- State Key Laboratory of Proteomics, National Center for Protein Sciences—Beijing, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, China
- *Correspondence: Chen Lu, ; Chenxi Jia, ; Yali Chen,
| |
Collapse
|
24
|
A PARylation-phosphorylation cascade promotes TOPBP1 loading and RPA-RAD51 exchange in homologous recombination. Mol Cell 2022; 82:2571-2587.e9. [PMID: 35597237 DOI: 10.1016/j.molcel.2022.04.031] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 02/14/2022] [Accepted: 04/22/2022] [Indexed: 01/30/2023]
Abstract
The efficiency of homologous recombination (HR) in the repair of DNA double-strand breaks (DSBs) is closely associated with genome stability and tumor response to chemotherapy. While many factors have been functionally characterized in HR, such as TOPBP1, their precise regulation remains unclear. Here, we report that TOPBP1 interacts with the RNA-binding protein HTATSF1 in a cell-cycle- and phosphorylation-dependent manner. Mechanistically, CK2 phosphorylates HTATSF1 to facilitate binding to TOPBP1, which promotes S-phase-specific TOPBP1 recruitment to damaged chromatin and subsequent RPA/RAD51-dependent HR, genome integrity, and cancer-cell viability. The localization of HTATSF1-TOPBP1 to DSBs is potentially independent of the transcription-coupled RNA-binding and processing capacity of HTATSF1 but rather relies on the recognition of poly(ADP-ribosyl)ated RPA by HTATSF1, which can be blunted with PARP inhibitors. Together, our study provides a mechanistic insight into TOPBP1 loading at HR-prone DSB sites via HTATSF1 and reveals how RPA-RAD51 exchange is tuned by a PARylation-phosphorylation cascade.
Collapse
|
25
|
RNA-binding proteins and cancer metastasis. Semin Cancer Biol 2022; 86:748-768. [PMID: 35339667 DOI: 10.1016/j.semcancer.2022.03.018] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 12/13/2022]
Abstract
RNA-binding proteins (RBPs) can regulate gene expression through post-transcriptionally influencing all manner of RNA biology, including alternative splicing (AS), polyadenylation, stability, and translation of mRNAs, as well as microRNAs (miRNAs) and circular RNAs (circRNAs) processing. There is accumulating evidence reinforcing the perception that dysregulation or dysfunction of RBPs can lead to various human diseases, including cancers. RBPs influence diverse cancer-associated cellular phenotypes, such as proliferation, apoptosis, senescence, migration, invasion, and angiogenesis, contributing to the initiation and development of tumors, as well as clinical prognosis. Metastasis is the leading cause of cancer-related recurrence and death. Therefore, it is necessary to elucidate the molecular mechanisms behind tumor metastasis. In fact, a growing body of published research has proved that RBPs play pivotal roles in cancer metastasis. In this review, we will summarize the recent advances for helping us understand the role of RBPs in tumor metastasis, and discuss dysfunctions and dysregulations of RBPs affecting metastasis-associated processes including epithelial-mesenchymal transition (EMT), migration, and invasion of cancer cells. Furthermore, we will discuss emerging RBP-based strategy for the treatment of cancer metastasis.
Collapse
|
26
|
Soubise B, Jiang Y, Douet-Guilbert N, Troadec MB. RBM22, a Key Player of Pre-mRNA Splicing and Gene Expression Regulation, Is Altered in Cancer. Cancers (Basel) 2022; 14:cancers14030643. [PMID: 35158909 PMCID: PMC8833553 DOI: 10.3390/cancers14030643] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/19/2022] [Accepted: 01/22/2022] [Indexed: 01/05/2023] Open
Abstract
RNA-Binding Proteins (RBP) are very diverse and cover a large number of functions in the cells. This review focuses on RBM22, a gene encoding an RBP and belonging to the RNA-Binding Motif (RBM) family of genes. RBM22 presents a Zinc Finger like and a Zinc Finger domain, an RNA-Recognition Motif (RRM), and a Proline-Rich domain with a general structure suggesting a fusion of two yeast genes during evolution: Cwc2 and Ecm2. RBM22 is mainly involved in pre-mRNA splicing, playing the essential role of maintaining the conformation of the catalytic core of the spliceosome and acting as a bridge between the catalytic core and other essential protein components of the spliceosome. RBM22 is also involved in gene regulation, and is able to bind DNA, acting as a bona fide transcription factor on a large number of target genes. Undoubtedly due to its wide scope in the regulation of gene expression, RBM22 has been associated with several pathologies and, notably, with the aggressiveness of cancer cells and with the phenotype of a myelodysplastic syndrome. Mutations, enforced expression level, and haploinsufficiency of RBM22 gene are observed in those diseases. RBM22 could represent a potential therapeutic target in specific diseases, and, notably, in cancer.
Collapse
Affiliation(s)
- Benoît Soubise
- Université de Brest, Inserm, EFS, UMR 1078, GGB, F-29200 Brest, France; (B.S.); (Y.J.); (N.D.-G.)
| | - Yan Jiang
- Université de Brest, Inserm, EFS, UMR 1078, GGB, F-29200 Brest, France; (B.S.); (Y.J.); (N.D.-G.)
- Department of Hematology, The First Hospital of Jilin University, Changchun 130021, China
| | - Nathalie Douet-Guilbert
- Université de Brest, Inserm, EFS, UMR 1078, GGB, F-29200 Brest, France; (B.S.); (Y.J.); (N.D.-G.)
- CHRU Brest, Service de Génétique, Laboratoire de Génétique Chromosomique, F-29200 Brest, France
| | - Marie-Bérengère Troadec
- Université de Brest, Inserm, EFS, UMR 1078, GGB, F-29200 Brest, France; (B.S.); (Y.J.); (N.D.-G.)
- CHRU Brest, Service de Génétique, Laboratoire de Génétique Chromosomique, F-29200 Brest, France
- Correspondence: ; Tel.: +33-2-98-01-64-55
| |
Collapse
|
27
|
Zhang H, Lu X, Huang G, Hua M, Zhang W, Wang T, Huang L, Wang Z, Chen Q, Li J, Yang Q, Yang G. A genomic mutation spectrum of collecting duct carcinoma in the Chinese population. BMC Med Genomics 2022; 15:1. [PMID: 34980126 PMCID: PMC8722201 DOI: 10.1186/s12920-021-01143-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 12/01/2021] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Renal collecting duct carcinoma (CDC) is a rare and lethal subtype of renal cell carcinoma (RCC). The genomic profile of the Chinese population with CDC remains unclear. In addition, clinical treatments are contradictory. In this study, we aimed to identify the genomic mutation spectrum of CDC in the Chinese population. METHODS Whole-exome sequencing was performed using the Illumina Novaseq™ 6000 platform. MuTect2 detects single-nucleotide variants (SNVs) and small scale insertions/deletions (INDELs). The identified mutations were annotated with ANNOVAR and validated by Sanger sequencing. Control-FREEC was used to detect copy number variation (CNV), and GISTIC was applied to detect frequently mutated altered regions. These data were compared with associated The Cancer Genome Atlas cohorts. RESULTS Ten normal-matched CDC patients were included. The mean tumour mutation burden was 1.37 Mut/Mb. Six new recurrent somatic mutated genes were identified, including RBM14, MTUS1, GAK, DST, RNF213 and XIRP2 (20% and 2 of 10, respectively), and validated by Sanger sequencing. In terms of common mutated genes, SETD2 was altered in both CDC and other RCC subtypes but not in bladder urothelial carcinoma (BLCA); CDKN2A was a driver gene in both CDC (SNV: 10%, 1 of 10) and BLCA but not in other RCC subtypes. Next, 29 amplifications and 6 deletions of recurrent focal somatic CNVs were identified by GISTIC2.0, which displayed differences from kidney renal clear cell carcinoma (KIRC), kidney renal papillary cell carcinoma (KIRP) and BLCA cohorts. Of note, CDKN2A (CNV alteration: 30%, 3 of 10) and CDKN2A-AS1 were the only overlapping genes of these four cohorts. Importantly, the CDKN2A mutation in our cohort differed from previous studies in urinary carcinomas. Moreover, CDKN2A-altered cases had significantly worse overall survival than wild-type cases in both KIRC and KIRP cohorts. In addition, the most frequently altered genomic pathway of our CDC cohort was the CDKN2A-mediated p53/RB1 pathway. CONCLUSIONS Our study offers the first genomic spectrum of the Chinese population with CDC, which differs from that of the Western population. The altered CDKN2A-mediated p53/RB1 pathway might provide new insight into potential therapeutic targets for CDC patients.
Collapse
Affiliation(s)
- Huaru Zhang
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
- Department of Urology, Guangdong Second Provincial General Hospital, Guangzhou, 510317, China
- Department of Urology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Xiaojun Lu
- Department of Urology, the First Affiliated Hospital, Naval Military Medical University, Shanghai, 200433, China
| | - Gang Huang
- Department of Urology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Meimian Hua
- Department of Urology, the First Affiliated Hospital, Naval Military Medical University, Shanghai, 200433, China
| | - Wenhui Zhang
- Department of Urology, the First Affiliated Hospital, Naval Military Medical University, Shanghai, 200433, China
| | - Tao Wang
- Department of Urology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Liqun Huang
- Department of Urology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Ziwei Wang
- Department of Urology, the First Affiliated Hospital, Naval Military Medical University, Shanghai, 200433, China
| | - Qing Chen
- Department of Urology, the First Affiliated Hospital, Naval Military Medical University, Shanghai, 200433, China
| | - Jing Li
- Department of Bioinformatics, Center for Translational Medicine, Second Military Medical University, Shanghai, 200433, China.
| | - Qing Yang
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, China.
| | - Guosheng Yang
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China.
- Department of Urology, Guangdong Second Provincial General Hospital, Guangzhou, 510317, China.
- Department of Urology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China.
| |
Collapse
|
28
|
Machour FE, Abu-Zhayia ER, Awwad SW, Bidany-Mizrahi T, Meinke S, Bishara LA, Heyd F, Aqeilan RI, Ayoub N. RBM6 splicing factor promotes homologous recombination repair of double-strand breaks and modulates sensitivity to chemotherapeutic drugs. Nucleic Acids Res 2021; 49:11708-11727. [PMID: 34718714 PMCID: PMC8599755 DOI: 10.1093/nar/gkab976] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 09/26/2021] [Accepted: 10/07/2021] [Indexed: 12/13/2022] Open
Abstract
RNA-binding proteins regulate mRNA processing and translation and are often aberrantly expressed in cancer. The RNA-binding motif protein 6, RBM6, is a known alternative splicing factor that harbors tumor suppressor activity and is frequently mutated in human cancer. Here, we identify RBM6 as a novel regulator of homologous recombination (HR) repair of DNA double-strand breaks (DSBs). Mechanistically, we show that RBM6 regulates alternative splicing-coupled nonstop-decay of a positive HR regulator, Fe65/APBB1. RBM6 knockdown leads to a severe reduction in Fe65 protein levels and consequently impairs HR of DSBs. Accordingly, RBM6-deficient cancer cells are vulnerable to ATM and PARP inhibition and show remarkable sensitivity to cisplatin. Concordantly, cisplatin administration inhibits the growth of breast tumor devoid of RBM6 in mouse xenograft model. Furthermore, we observe that RBM6 protein is significantly lost in metastatic breast tumors compared with primary tumors, thus suggesting RBM6 as a potential therapeutic target of advanced breast cancer. Collectively, our results elucidate the link between the multifaceted roles of RBM6 in regulating alternative splicing and HR of DSBs that may contribute to tumorigenesis, and pave the way for new avenues of therapy for RBM6-deficient tumors.
Collapse
Affiliation(s)
- Feras E Machour
- Department of Biology, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Enas R Abu-Zhayia
- Department of Biology, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Samah W Awwad
- Department of Biology, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Tirza Bidany-Mizrahi
- The Concern Foundation Laboratories, The Lautenberg Center for Immunology and Cancer Research, Department of Immunology and Cancer Research-IMRIC, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Stefan Meinke
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Laboratory of RNA Biochemistry, Takustrasse 6, 14195 Berlin, Germany
| | - Laila A Bishara
- Department of Biology, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Florian Heyd
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Laboratory of RNA Biochemistry, Takustrasse 6, 14195 Berlin, Germany
| | - Rami I Aqeilan
- The Concern Foundation Laboratories, The Lautenberg Center for Immunology and Cancer Research, Department of Immunology and Cancer Research-IMRIC, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Nabieh Ayoub
- Department of Biology, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| |
Collapse
|
29
|
Cargill M, Venkataraman R, Lee S. DEAD-Box RNA Helicases and Genome Stability. Genes (Basel) 2021; 12:1471. [PMID: 34680866 PMCID: PMC8535883 DOI: 10.3390/genes12101471] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 09/19/2021] [Accepted: 09/20/2021] [Indexed: 02/06/2023] Open
Abstract
DEAD-box RNA helicases are important regulators of RNA metabolism and have been implicated in the development of cancer. Interestingly, these helicases constitute a major recurring family of RNA-binding proteins important for protecting the genome. Current studies have provided insight into the connection between genomic stability and several DEAD-box RNA helicase family proteins including DDX1, DDX3X, DDX5, DDX19, DDX21, DDX39B, and DDX41. For each helicase, we have reviewed evidence supporting their role in protecting the genome and their suggested mechanisms. Such helicases regulate the expression of factors promoting genomic stability, prevent DNA damage, and can participate directly in the response and repair of DNA damage. Finally, we summarized the pathological and therapeutic relationship between DEAD-box RNA helicases and cancer with respect to their novel role in genome stability.
Collapse
Affiliation(s)
- Michael Cargill
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA;
| | - Rasika Venkataraman
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA;
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| | - Stanley Lee
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA;
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
30
|
Vadivel Gnanasundram S, Bonczek O, Wang L, Chen S, Fahraeus R. p53 mRNA Metabolism Links with the DNA Damage Response. Genes (Basel) 2021; 12:1446. [PMID: 34573428 PMCID: PMC8465283 DOI: 10.3390/genes12091446] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/10/2021] [Accepted: 09/13/2021] [Indexed: 12/14/2022] Open
Abstract
Human cells are subjected to continuous challenges by different genotoxic stress attacks. DNA damage leads to erroneous mutations, which can alter the function of oncogenes or tumor suppressors, resulting in cancer development. To circumvent this, cells activate the DNA damage response (DDR), which mainly involves cell cycle regulation and DNA repair processes. The tumor suppressor p53 plays a pivotal role in the DDR by halting the cell cycle and facilitating the DNA repair processes. Various pathways and factors participating in the detection and repair of DNA have been described, including scores of RNA-binding proteins (RBPs) and RNAs. It has become increasingly clear that p53's role is multitasking, and p53 mRNA regulation plays a prominent part in the DDR. This review is aimed at covering the p53 RNA metabolism linked to the DDR and highlights the recent findings.
Collapse
Affiliation(s)
| | - Ondrej Bonczek
- Department of Medical Biosciences, Umeå University, 901-87 Umeå, Sweden; (O.B.); (L.W.); (S.C.)
- RECAMO, Masaryk Memorial Cancer Institute, Zluty Kopec 7, 656-53 Brno, Czech Republic
| | - Lixiao Wang
- Department of Medical Biosciences, Umeå University, 901-87 Umeå, Sweden; (O.B.); (L.W.); (S.C.)
| | - Sa Chen
- Department of Medical Biosciences, Umeå University, 901-87 Umeå, Sweden; (O.B.); (L.W.); (S.C.)
| | - Robin Fahraeus
- Department of Medical Biosciences, Umeå University, 901-87 Umeå, Sweden; (O.B.); (L.W.); (S.C.)
- RECAMO, Masaryk Memorial Cancer Institute, Zluty Kopec 7, 656-53 Brno, Czech Republic
- Inserm UMRS1131, Institut de Genetique Moleculaire, Universite Paris 7, Hopital St Louis, F-75010 Paris, France
- International Centre for Cancer Vaccine Science, University of Gdansk, 80-822 Gdansk, Poland
| |
Collapse
|
31
|
Cargill MJ, Morales A, Ravishankar S, Warren EH. RNA helicase, DDX3X, is actively recruited to sites of DNA damage in live cells. DNA Repair (Amst) 2021; 103:103137. [PMID: 34083132 PMCID: PMC8544569 DOI: 10.1016/j.dnarep.2021.103137] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 04/07/2021] [Accepted: 05/16/2021] [Indexed: 01/11/2023]
Abstract
Recent studies have suggested that human RNA helicase, DDX3X, is important for DNA repair, but little is known about the nuclear activity of this protein. In vitro analysis of nuclear DDX3X interactions and localization with DNA damage pointed to a direct role for DDX3X in the DNA damage response. We aimed to investigate whether DDX3X plays a direct role in the DNA damage response in live cells. In order to track nuclear DDX3X, we generated a nuclear-export deficient DDX3X mutant construct and performed microirradiation in live cells. We found that DDX3X accumulates at sites of microirradiation shortly after DNA damage induction. We further found DDX3X recruitment to be mediated by its intrinsically disordered domains, similar to other RNA binding proteins that are recruited to sites of DNA damage. Inhibition of liquid-liquid phase separation also reduced DDX3X recruitment. CRISPR/Cas9-mediated knockout of PARP1 ablated DDX3X recruitment, which was restored upon transgenic expression of wild-type PARP1 but not catalytically inactive PARP1, suggesting that DDX3X recruitment is PARP1-dependent.
Collapse
Affiliation(s)
- Michael J Cargill
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA; Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA.
| | - Alicia Morales
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | | | - Edus H Warren
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA; Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA; Department of Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
32
|
Impacts of chromatin dynamics and compartmentalization on DNA repair. DNA Repair (Amst) 2021; 105:103162. [PMID: 34182258 DOI: 10.1016/j.dnarep.2021.103162] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/10/2021] [Accepted: 06/17/2021] [Indexed: 11/22/2022]
Abstract
The proper spatial organization of DNA, RNA, and proteins is critical for a variety of cellular processes. The genome is organized into numerous functional units, such as topologically associating domains (TADs), the formation of which is regulated by both proteins and RNA. In addition, a group of chromatin-bound proteins with the ability to undergo liquid-liquid phase separation (LLPS) can affect the spatial organization and compartmentalization of chromatin, RNA, and proteins by forming condensates, conferring unique properties to specific chromosomal regions. Although the regulation of DNA repair by histone modifications and chromatin accessibility is well established, the impacts of higher-order chromatin and protein organization on the DNA damage response (DDR) have not been appreciated until recently. In this review, we will focus on the movement of chromatin during the DDR, the compartmentalization of DDR proteins via LLPS, and the roles of membraneless nuclear bodies and transcription in DNA repair. With this backdrop, we will discuss the importance of the spatial organization of chromatin and proteins for the maintenance of genome integrity.
Collapse
|
33
|
Roos D, de Boer M. Mutations in cis that affect mRNA synthesis, processing and translation. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166166. [PMID: 33971252 DOI: 10.1016/j.bbadis.2021.166166] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 05/03/2021] [Accepted: 05/04/2021] [Indexed: 12/17/2022]
Abstract
Genetic mutations that cause hereditary diseases usually affect the composition of the transcribed mRNA and its encoded protein, leading to instability of the mRNA and/or the protein. Sometimes, however, such mutations affect the synthesis, the processing or the translation of the mRNA, with similar disastrous effects. We here present an overview of mRNA synthesis, its posttranscriptional modification and its translation into protein. We then indicate which elements in these processes are known to be affected by pathogenic mutations, but we restrict our review to mutations in cis, in the DNA of the gene that encodes the affected protein. These mutations can be in enhancer or promoter regions of the gene, which act as binding sites for transcription factors involved in pre-mRNA synthesis. We also describe mutations in polyadenylation sequences and in splice site regions, exonic and intronic, involved in intron removal. Finally, we include mutations in the Kozak sequence in mRNA, which is involved in protein synthesis. We provide examples of genetic diseases caused by mutations in these DNA regions and refer to databases to help identify these regions. The over-all knowledge of mRNA synthesis, processing and translation is essential for improvement of the diagnosis of patients with genetic diseases.
Collapse
Affiliation(s)
- Dirk Roos
- Sanquin Blood Supply Organization, Dept. of Blood Cell Research, Landsteiner Laboratory, Amsterdam University Medical Centre, location AMC, University of Amsterdam, Amsterdam, the Netherlands.
| | - Martin de Boer
- Sanquin Blood Supply Organization, Dept. of Blood Cell Research, Landsteiner Laboratory, Amsterdam University Medical Centre, location AMC, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
34
|
Klaric JA, Wüst S, Panier S. New Faces of old Friends: Emerging new Roles of RNA-Binding Proteins in the DNA Double-Strand Break Response. Front Mol Biosci 2021; 8:668821. [PMID: 34026839 PMCID: PMC8138124 DOI: 10.3389/fmolb.2021.668821] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 04/22/2021] [Indexed: 12/14/2022] Open
Abstract
DNA double-strand breaks (DSBs) are highly cytotoxic DNA lesions. To protect genomic stability and ensure cell homeostasis, cells mount a complex signaling-based response that not only coordinates the repair of the broken DNA strand but also activates cell cycle checkpoints and, if necessary, induces cell death. The last decade has seen a flurry of studies that have identified RNA-binding proteins (RBPs) as novel regulators of the DSB response. While many of these RBPs have well-characterized roles in gene expression, it is becoming increasingly clear that they also have non-canonical functions in the DSB response that go well beyond transcription, splicing and mRNA processing. Here, we review the current understanding of how RBPs are integrated into the cellular response to DSBs and describe how these proteins directly participate in signal transduction, amplification and repair at damaged chromatin. In addition, we discuss the implications of an RBP-mediated DSB response for genome instability and age-associated diseases such as cancer and neurodegeneration.
Collapse
Affiliation(s)
- Julie A Klaric
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Stas Wüst
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Stephanie Panier
- Max Planck Institute for Biology of Ageing, Cologne, Germany.,Cologne Cluster of Excellence in Cellular Stress Responses in Aging-Associated Diseases (CECAD) Research Center, University of Cologne, Cologne, Germany
| |
Collapse
|
35
|
Levone BR, Lenzken SC, Antonaci M, Maiser A, Rapp A, Conte F, Reber S, Mechtersheimer J, Ronchi AE, Mühlemann O, Leonhardt H, Cardoso MC, Ruepp MD, Barabino SM. FUS-dependent liquid-liquid phase separation is important for DNA repair initiation. J Cell Biol 2021; 220:e202008030. [PMID: 33704371 PMCID: PMC7953258 DOI: 10.1083/jcb.202008030] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 01/17/2021] [Accepted: 02/04/2021] [Indexed: 12/17/2022] Open
Abstract
RNA-binding proteins (RBPs) are emerging as important effectors of the cellular DNA damage response (DDR). The RBP FUS is implicated in RNA metabolism and DNA repair, and it undergoes reversible liquid-liquid phase separation (LLPS) in vitro. Here, we demonstrate that FUS-dependent LLPS is necessary for the initiation of the DDR. Using laser microirradiation in FUS-knockout cells, we show that FUS is required for the recruitment to DNA damage sites of the DDR factors KU80, NBS1, and 53BP1 and of SFPQ, another RBP implicated in the DDR. The relocation of KU80, NBS1, and SFPQ is similarly impaired by LLPS inhibitors, or LLPS-deficient FUS variants. We also show that LLPS is necessary for efficient γH2AX foci formation. Finally, using superresolution structured illumination microscopy, we demonstrate that the absence of FUS impairs the proper arrangement of γH2AX nanofoci into higher-order clusters. These findings demonstrate the early requirement for FUS-dependent LLPS in the activation of the DDR and the proper assembly of DSB repair complexes.
Collapse
Affiliation(s)
- Brunno R. Levone
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Silvia C. Lenzken
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Marco Antonaci
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Andreas Maiser
- Department of Biology II, Center for Integrated Protein Science Munich, Ludwig Maximilian University of Munich, Planegg-Martinsried, Germany
| | - Alexander Rapp
- Department of Biology, Technical University of Darmstadt, Darmstadt, Germany
| | - Francesca Conte
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Stefan Reber
- UK Dementia Research Institute, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| | - Jonas Mechtersheimer
- UK Dementia Research Institute, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| | - Antonella E. Ronchi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Oliver Mühlemann
- Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland
| | - Heinrich Leonhardt
- Department of Biology II, Center for Integrated Protein Science Munich, Ludwig Maximilian University of Munich, Planegg-Martinsried, Germany
| | - M. Cristina Cardoso
- Department of Biology, Technical University of Darmstadt, Darmstadt, Germany
| | - Marc-David Ruepp
- UK Dementia Research Institute, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| | - Silvia M.L. Barabino
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| |
Collapse
|
36
|
Lee JH, Ryu SW, Ender NA, Paull TT. Poly-ADP-ribosylation drives loss of protein homeostasis in ATM and Mre11 deficiency. Mol Cell 2021; 81:1515-1533.e5. [PMID: 33571423 PMCID: PMC8026623 DOI: 10.1016/j.molcel.2021.01.019] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 12/14/2020] [Accepted: 01/19/2021] [Indexed: 12/11/2022]
Abstract
Loss of the ataxia-telangiectasia mutated (ATM) kinase causes cerebellum-specific neurodegeneration in humans. We previously demonstrated that deficiency in ATM activation via oxidative stress generates insoluble protein aggregates in human cells, reminiscent of protein dysfunction in common neurodegenerative disorders. Here, we show that this process is driven by poly-ADP-ribose polymerases (PARPs) and that the insoluble protein species arise from intrinsically disordered proteins associating with PAR-associated genomic sites in ATM-deficient cells. The lesions implicated in this process are single-strand DNA breaks dependent on reactive oxygen species, transcription, and R-loops. Human cells expressing Mre11 A-T-like disorder mutants also show PARP-dependent aggregation identical to ATM deficiency. Lastly, analysis of A-T patient cerebellum samples shows widespread protein aggregation as well as loss of proteins known to be critical in human spinocerebellar ataxias that is not observed in neocortex tissues. These results provide a hypothesis accounting for loss of protein integrity and cerebellum function in A-T.
Collapse
Affiliation(s)
- Ji-Hoon Lee
- The University of Texas at Austin, Department of Molecular Biosciences, Austin, TX 78712, USA
| | - Seung W Ryu
- The University of Texas at Austin, Department of Molecular Biosciences, Austin, TX 78712, USA
| | - Nicolette A Ender
- The University of Texas at Austin, Department of Molecular Biosciences, Austin, TX 78712, USA
| | - Tanya T Paull
- The University of Texas at Austin, Department of Molecular Biosciences, Austin, TX 78712, USA.
| |
Collapse
|
37
|
Basu S, Alagar S, Bahadur RP. Unusual RNA binding of FUS RRM studied by molecular dynamics simulation and enhanced sampling method. Biophys J 2021; 120:1765-1776. [PMID: 33705755 DOI: 10.1016/j.bpj.2021.03.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 02/10/2021] [Accepted: 03/01/2021] [Indexed: 10/22/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) and frontotemporal lobe degeneration (FTLD) are two inter-related intractable diseases of motor neuron degeneration. Fused in sarcoma (FUS) is found in cytoplasmic accumulation of ALS and FTLD patients, which readily link the protein with the diseases. The RNA recognition motif (RRM) of FUS has the canonical α-β folds along with an unusual lysine-rich loop (KK-loop) between α1 and β2. This KK-loop is highly conserved among FET family proteins. Another contrasting feature of FUS RRM is the absence of critical binding residues, which are otherwise highly conserved in canonical RRMs. These residues in FUS RRM are Thr286, Glu336, Thr338, and Ser367, which are substitutions of lysine, phenylalanine, phenylalanine, and lysine, respectively, in other RRMs. Considering the importance of FUS in RNA regulation and metabolism, and its implication in ALS and FTLD, it is important to elucidate the underlying molecular mechanism of RNA recognition. In this study, we have performed molecular dynamics simulation with enhanced sampling to understand the conformational dynamics of noncanonical FUS RRM and its binding with RNA. We studied two sets of mutations: one with alanine mutation of KK-loop and another with KK-loop mutations along with critical binding residues mutated back to their canonical form. We find that concerted movement of KK-loop and loop between β2 and β3 facilitates the folding of the partner RNA, indicating an induced-fit mechanism of RNA binding. Flexibility of the RRM is highly restricted upon mutating the lysine residues of the KK-loop, resulting in weaker binding with the RNA. Our results also suggest that absence of the canonical residues in FUS RRM along with the KK-loop is equally important in regulating its binding dynamics. This study provides a significant structural insight into the binding of FUS RRM with its cognate RNA, which may further help in designing potential drugs targeting noncanonical RNA recognition.
Collapse
Affiliation(s)
- Sushmita Basu
- Computational Structural Biology Lab, Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Suresh Alagar
- Computational Structural Biology Lab, Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Ranjit Prasad Bahadur
- Computational Structural Biology Lab, Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, India.
| |
Collapse
|
38
|
Yang S, Lin S, Liu K, Liu Y, Xu P, Zheng Y, Deng Y, Zhang D, Zhai Z, Li N, Ren X, Dai Z, Kang H. Identification of an immune-related RNA-binding protein signature to predict survival and targeted therapy responses in liver cancer. Genomics 2021; 113:795-804. [PMID: 33524497 DOI: 10.1016/j.ygeno.2021.01.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 12/25/2020] [Accepted: 01/25/2021] [Indexed: 12/12/2022]
Abstract
RNA-binding proteins (RBPs) play crucial roles in multiple cancers. However, very few RBPs and their association with immune genes have been systematically studied in liver cancer (LC). We aimed to identify an immune-related RBP signature to predict the survival of LC patients. Bioinformatics methods were used to identify differentially expressed, immune-related, and prognostic RBPs and to develop an immune-related RBP signature based on data from the Cancer Genome Atlas (TCGA) cohort. We obtained eight differentially expressed, immune-related, and prognostic RBPs to construct a risk signature. The signature could effectively distinguish between high- and low-risk patients, and its predictive capacity was validated in the International Cancer Genomics Consortium (ICGC) cohort. We speculated that the high-risk group was more sensitive to targeted therapy. The immune-related RBP signature is an independent prognostic biomarker for LC patients and can expand the application of targeted therapy through patient stratification.
Collapse
Affiliation(s)
- Si Yang
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Shuai Lin
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Kang Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Yuanxing Liu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Peng Xu
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yi Zheng
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yujiao Deng
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Dai Zhang
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Zhen Zhai
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Na Li
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Xueting Ren
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Zhijun Dai
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.
| | - Huafeng Kang
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
39
|
Pavan ICB, Peres de Oliveira A, Dias PRF, Basei FL, Issayama LK, Ferezin CDC, Silva FR, Rodrigues de Oliveira AL, Alves dos Reis Moura L, Martins MB, Simabuco FM, Kobarg J. On Broken Ne(c)ks and Broken DNA: The Role of Human NEKs in the DNA Damage Response. Cells 2021; 10:507. [PMID: 33673578 PMCID: PMC7997185 DOI: 10.3390/cells10030507] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/04/2021] [Accepted: 02/22/2021] [Indexed: 02/07/2023] Open
Abstract
NIMA-related kinases, or NEKs, are a family of Ser/Thr protein kinases involved in cell cycle and mitosis, centrosome disjunction, primary cilia functions, and DNA damage responses among other biological functional contexts in vertebrate cells. In human cells, there are 11 members, termed NEK1 to 11, and the research has mainly focused on exploring the more predominant roles of NEKs in mitosis regulation and cell cycle. A possible important role of NEKs in DNA damage response (DDR) first emerged for NEK1, but recent studies for most NEKs showed participation in DDR. A detailed analysis of the protein interactions, phosphorylation events, and studies of functional aspects of NEKs from the literature led us to propose a more general role of NEKs in DDR. In this review, we express that NEK1 is an activator of ataxia telangiectasia and Rad3-related (ATR), and its activation results in cell cycle arrest, guaranteeing DNA repair while activating specific repair pathways such as homology repair (HR) and DNA double-strand break (DSB) repair. For NEK2, 6, 8, 9, and 11, we found a role downstream of ATR and ataxia telangiectasia mutated (ATM) that results in cell cycle arrest, but details of possible activated repair pathways are still being investigated. NEK4 shows a connection to the regulation of the nonhomologous end-joining (NHEJ) repair of DNA DSBs, through recruitment of DNA-PK to DNA damage foci. NEK5 interacts with topoisomerase IIβ, and its knockdown results in the accumulation of damaged DNA. NEK7 has a regulatory role in the detection of oxidative damage to telomeric DNA. Finally, NEK10 has recently been shown to phosphorylate p53 at Y327, promoting cell cycle arrest after exposure to DNA damaging agents. In summary, this review highlights important discoveries of the ever-growing involvement of NEK kinases in the DDR pathways. A better understanding of these roles may open new diagnostic possibilities or pharmaceutical interventions regarding the chemo-sensitizing inhibition of NEKs in various forms of cancer and other diseases.
Collapse
Affiliation(s)
- Isadora Carolina Betim Pavan
- Graduate Program in “Ciências Farmacêuticas”, School of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, State University of Campinas (UNICAMP), R. Cândido Portinari 200, Prédio 2, Campinas CEP 13083-871, Brazil; (I.C.B.P.); (A.P.d.O.); (P.R.F.D.); (F.L.B.); (L.K.I.); (F.R.S.); (A.L.R.d.O.); (L.A.d.R.M.); (M.B.M.)
| | - Andressa Peres de Oliveira
- Graduate Program in “Ciências Farmacêuticas”, School of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, State University of Campinas (UNICAMP), R. Cândido Portinari 200, Prédio 2, Campinas CEP 13083-871, Brazil; (I.C.B.P.); (A.P.d.O.); (P.R.F.D.); (F.L.B.); (L.K.I.); (F.R.S.); (A.L.R.d.O.); (L.A.d.R.M.); (M.B.M.)
| | - Pedro Rafael Firmino Dias
- Graduate Program in “Ciências Farmacêuticas”, School of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, State University of Campinas (UNICAMP), R. Cândido Portinari 200, Prédio 2, Campinas CEP 13083-871, Brazil; (I.C.B.P.); (A.P.d.O.); (P.R.F.D.); (F.L.B.); (L.K.I.); (F.R.S.); (A.L.R.d.O.); (L.A.d.R.M.); (M.B.M.)
| | - Fernanda Luisa Basei
- Graduate Program in “Ciências Farmacêuticas”, School of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, State University of Campinas (UNICAMP), R. Cândido Portinari 200, Prédio 2, Campinas CEP 13083-871, Brazil; (I.C.B.P.); (A.P.d.O.); (P.R.F.D.); (F.L.B.); (L.K.I.); (F.R.S.); (A.L.R.d.O.); (L.A.d.R.M.); (M.B.M.)
| | - Luidy Kazuo Issayama
- Graduate Program in “Ciências Farmacêuticas”, School of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, State University of Campinas (UNICAMP), R. Cândido Portinari 200, Prédio 2, Campinas CEP 13083-871, Brazil; (I.C.B.P.); (A.P.d.O.); (P.R.F.D.); (F.L.B.); (L.K.I.); (F.R.S.); (A.L.R.d.O.); (L.A.d.R.M.); (M.B.M.)
| | - Camila de Castro Ferezin
- Graduate Program in “Biologia Funcional e Molecular”, Department of Biochemistry and Tissue Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas 13083-857, Brazil;
| | - Fernando Riback Silva
- Graduate Program in “Ciências Farmacêuticas”, School of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, State University of Campinas (UNICAMP), R. Cândido Portinari 200, Prédio 2, Campinas CEP 13083-871, Brazil; (I.C.B.P.); (A.P.d.O.); (P.R.F.D.); (F.L.B.); (L.K.I.); (F.R.S.); (A.L.R.d.O.); (L.A.d.R.M.); (M.B.M.)
| | - Ana Luisa Rodrigues de Oliveira
- Graduate Program in “Ciências Farmacêuticas”, School of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, State University of Campinas (UNICAMP), R. Cândido Portinari 200, Prédio 2, Campinas CEP 13083-871, Brazil; (I.C.B.P.); (A.P.d.O.); (P.R.F.D.); (F.L.B.); (L.K.I.); (F.R.S.); (A.L.R.d.O.); (L.A.d.R.M.); (M.B.M.)
| | - Lívia Alves dos Reis Moura
- Graduate Program in “Ciências Farmacêuticas”, School of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, State University of Campinas (UNICAMP), R. Cândido Portinari 200, Prédio 2, Campinas CEP 13083-871, Brazil; (I.C.B.P.); (A.P.d.O.); (P.R.F.D.); (F.L.B.); (L.K.I.); (F.R.S.); (A.L.R.d.O.); (L.A.d.R.M.); (M.B.M.)
| | - Mariana Bonjiorno Martins
- Graduate Program in “Ciências Farmacêuticas”, School of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, State University of Campinas (UNICAMP), R. Cândido Portinari 200, Prédio 2, Campinas CEP 13083-871, Brazil; (I.C.B.P.); (A.P.d.O.); (P.R.F.D.); (F.L.B.); (L.K.I.); (F.R.S.); (A.L.R.d.O.); (L.A.d.R.M.); (M.B.M.)
- Graduate Program in “Biologia Funcional e Molecular”, Department of Biochemistry and Tissue Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas 13083-857, Brazil;
| | | | - Jörg Kobarg
- Graduate Program in “Ciências Farmacêuticas”, School of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, State University of Campinas (UNICAMP), R. Cândido Portinari 200, Prédio 2, Campinas CEP 13083-871, Brazil; (I.C.B.P.); (A.P.d.O.); (P.R.F.D.); (F.L.B.); (L.K.I.); (F.R.S.); (A.L.R.d.O.); (L.A.d.R.M.); (M.B.M.)
- Graduate Program in “Biologia Funcional e Molecular”, Department of Biochemistry and Tissue Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas 13083-857, Brazil;
| |
Collapse
|
40
|
Abstract
Posttranscriptional control of mRNA regulates various biological processes, including inflammatory and immune responses. RNA-binding proteins (RBPs) bind cis-regulatory elements in the 3' untranslated regions (UTRs) of mRNA and regulate mRNA turnover and translation. In particular, eight RBPs (TTP, AUF1, KSRP, TIA-1/TIAR, Roquin, Regnase, HuR, and Arid5a) have been extensively studied and are key posttranscriptional regulators of inflammation and immune responses. These RBPs sometimes collaboratively or competitively bind the same target mRNA to enhance or dampen regulatory activities. These RBPs can also bind their own 3' UTRs to negatively or positively regulate their expression. Both upstream signaling pathways and microRNA regulation shape the interactions between RBPs and target RNA. Dysregulation of RBPs results in chronic inflammation and autoimmunity. Here, we summarize the functional roles of these eight RBPs in immunity and their associated diseases.
Collapse
Affiliation(s)
- Shizuo Akira
- Laboratory of Host Defense, WPI Immunology Frontier Research Center (IFReC), Osaka University, Osaka 565-0874, Japan.,Department of Host Defense, Division of Host Defense, Research Institute for Microbial Diseases (RIMD), Osaka University, Osaka 565-0874, Japan;
| | - Kazuhiko Maeda
- Laboratory of Host Defense, WPI Immunology Frontier Research Center (IFReC), Osaka University, Osaka 565-0874, Japan.,Department of Host Defense, Division of Host Defense, Research Institute for Microbial Diseases (RIMD), Osaka University, Osaka 565-0874, Japan;
| |
Collapse
|
41
|
Köritzer J, Blenn C, Bürkle A, Beneke S. Mitochondria are devoid of poly(ADP-ribose)polymerase-1, but harbor its product oligo(ADP-ribose). J Cell Biochem 2021; 122:507-523. [PMID: 33417272 DOI: 10.1002/jcb.29887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 12/28/2022]
Abstract
There are conflicting data about localization of poly(ADP-ribose)polymerase-1 and its product poly(ADP-ribose) in mitochondria. To finally clarify the discussion, we investigated with biochemical and cell biological methods the potential presence of poly(ADP-ribose) polymerase-1 in these organelles. Our data show that endogenous and overexpressed poly(ADP-ribose)polymerase 1 is only localized to the nucleus with a clear exclusion of cytosolic compartments. In addition, highly purified mitochondria devoid of nuclear contaminations do not contain poly(ADP-ribose)polymerase-1. Although no poly(ADP-ribose)polymerase-1 enzyme is detectable in mitochondria, a shorter variant of its product poly(ADP-ribose) is present, associated specifically with a small subset of mitochondrial proteins as revealed by immunoprecipitation and protein fingerprint analysis. These proteins are located at key-points of the Krebs-cycle, are chaperones involved in mitochondrial functionality and quality-control, and are RNA-binding proteins important for transcript stability, respectively. Of note, despite the fact that especially poly(ADP-ribose)polymerase-1 is its own major target for modification, we could not detect this enzyme by mass spectrometry in these organelles. These data suggests a new way of targeted nuclear-mitochondrial signaling, mediated by nuclear poly(ADP-ribosyl)ation dependent on poly(ADP-ribose)polymerase-1.
Collapse
Affiliation(s)
- Julia Köritzer
- Molecular Toxicology Group, University of Konstanz, Konstanz, Germany
| | - Christian Blenn
- Institute of Pharmacology and Toxicology, University of Zurich/Vetsuisse, Zurich, Switzerland
| | - Alexander Bürkle
- Molecular Toxicology Group, University of Konstanz, Konstanz, Germany
| | - Sascha Beneke
- Molecular Toxicology Group, University of Konstanz, Konstanz, Germany.,Human and Environmental Toxicology Group, University of Konstanz, Konstanz, Germany
| |
Collapse
|
42
|
Yang L, Wang ZA, Zuo H, Geng R, Guo Z, Niu S, Weng S, He J, Xu X. The LARK protein is involved in antiviral and antibacterial responses in shrimp by regulating humoral immunity. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 114:103826. [PMID: 32784011 DOI: 10.1016/j.dci.2020.103826] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/04/2020] [Accepted: 08/06/2020] [Indexed: 06/11/2023]
Abstract
The LARK proteins containing a C2HC-type zinc finger motif and two RNA recognition motifs are conserved across vertebrates and invertebrates. Previous studies have suggested that invertebrate LARKs and their mammalian counterparts, the RBM4 proteins, regulate gene expression by affecting RNA stability and post-transcriptional processing, participating in multiple life processes. In the current study, the LARK gene from Pacific white shrimp Litopenaeus vannamei was identified and functionally explored in the context of immunity. The LARK protein was mainly present in the nucleus of its expression vector-transfected S2 cells, and the LARK mRNA was detectable in all the tested shrimp tissues. Expression of LARK in gill was up-regulated by immune stimulation with various pathogens. In vivo experiments demonstrated that LARK played positive roles in both antiviral and antibacterial responses and silencing of LARK could make shrimp more susceptible to infection with Vibrio parahaemolyticus and white spot syndrome virus (WSSV). Although silencing of LARK did not affect the phagocytic activity of hemocytes, it regulated expression of many components of the NF-κB and JAK-STAT pathways and a series of immune function proteins. These suggested that LARK could be mainly involved in regulation of humoral immunity. The current study could help reveal the roles of LARK/RBM4 in immunity and further explore the regulatory mechanisms of shrimp immunity.
Collapse
Affiliation(s)
- Linwei Yang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, PR China
| | - Zi-Ang Wang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, PR China
| | - Hongliang Zuo
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, PR China
| | - Ran Geng
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, PR China
| | - Zhixun Guo
- South China Sea Fisheries Research Institute (CAFS), Guangzhou, PR China
| | - Shengwen Niu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, PR China
| | - Shaoping Weng
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, PR China
| | - Jianguo He
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Provice Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, PR China
| | - Xiaopeng Xu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Provice Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, PR China.
| |
Collapse
|
43
|
Sciarrillo R, Wojtuszkiewicz A, Assaraf YG, Jansen G, Kaspers GJL, Giovannetti E, Cloos J. The role of alternative splicing in cancer: From oncogenesis to drug resistance. Drug Resist Updat 2020; 53:100728. [PMID: 33070093 DOI: 10.1016/j.drup.2020.100728] [Citation(s) in RCA: 153] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/17/2020] [Accepted: 09/21/2020] [Indexed: 12/15/2022]
Abstract
Alternative splicing is a tightly regulated process whereby non-coding sequences of pre-mRNA are removed and protein-coding segments are assembled in diverse combinations, ultimately giving rise to proteins with distinct or even opposing functions. In the past decade, whole genome/transcriptome sequencing studies revealed the high complexity of splicing regulation, which occurs co-transcriptionally and is influenced by chromatin status and mRNA modifications. Consequently, splicing profiles of both healthy and malignant cells display high diversity and alternative splicing was shown to be widely deregulated in multiple cancer types. In particular, mutations in pre-mRNA regulatory sequences, splicing regulators and chromatin modifiers, as well as differential expression of splicing factors are important contributors to cancer pathogenesis. It has become clear that these aberrations contribute to many facets of cancer, including oncogenic transformation, cancer progression, response to anticancer drug treatment as well as resistance to therapy. In this respect, alternative splicing was shown to perturb the expression a broad spectrum of relevant genes involved in drug uptake/metabolism (i.e. SLC29A1, dCK, FPGS, and TP), activation of nuclear receptor pathways (i.e. GR, AR), regulation of apoptosis (i.e. MCL1, BCL-X, and FAS) and modulation of response to immunotherapy (CD19). Furthermore, aberrant splicing constitutes an important source of novel cancer biomarkers and the spliceosome machinery represents an attractive target for a novel and rapidly expanding class of therapeutic agents. Small molecule inhibitors targeting SF3B1 or splice factor kinases were highly cytotoxic against a wide range of cancer models, including drug-resistant cells. Importantly, these effects are enhanced in specific cancer subsets, such as splicing factor-mutated and c-MYC-driven tumors. Furthermore, pre-clinical studies report synergistic effects of spliceosome modulators in combination with conventional antitumor agents. These strategies based on the use of low dose splicing modulators could shift the therapeutic window towards decreased toxicity in healthy tissues. Here we provide an extensive overview of the latest findings in the field of regulation of splicing in cancer, including molecular mechanisms by which cancer cells harness alternative splicing to drive oncogenesis and evade anticancer drug treatment as well as splicing-based vulnerabilities that can provide novel treatment opportunities. Furthermore, we discuss current challenges arising from genome-wide detection and prediction methods of aberrant splicing, as well as unravelling functional relevance of the plethora of cancer-related splicing alterations.
Collapse
Affiliation(s)
- Rocco Sciarrillo
- Department of Hematology, Amsterdam UMC, VU University Medical Center, Cancer Center Amsterdam, Amsterdam, Netherlands; Department of Pediatric Oncology, Emma's Children's Hospital, Amsterdam UMC, VU University Medical Center, Cancer Center Amsterdam, Amsterdam, Netherlands; Department of Medical Oncology, Amsterdam UMC, VU University Medical Center, Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Anna Wojtuszkiewicz
- Department of Hematology, Amsterdam UMC, VU University Medical Center, Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Yehuda G Assaraf
- The Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Gerrit Jansen
- Amsterdam Immunology and Rheumatology Center, Amsterdam UMC, VU University Medical Center, Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Gertjan J L Kaspers
- Department of Pediatric Oncology, Emma's Children's Hospital, Amsterdam UMC, VU University Medical Center, Cancer Center Amsterdam, Amsterdam, Netherlands; Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Elisa Giovannetti
- Department of Medical Oncology, Amsterdam UMC, VU University Medical Center, Cancer Center Amsterdam, Amsterdam, Netherlands; Fondazione Pisana per la Scienza, Pisa, Italy
| | - Jacqueline Cloos
- Department of Hematology, Amsterdam UMC, VU University Medical Center, Cancer Center Amsterdam, Amsterdam, Netherlands.
| |
Collapse
|
44
|
Sukhanova MV, Singatulina AS, Pastré D, Lavrik OI. Fused in Sarcoma (FUS) in DNA Repair: Tango with Poly(ADP-ribose) Polymerase 1 and Compartmentalisation of Damaged DNA. Int J Mol Sci 2020; 21:E7020. [PMID: 32987654 PMCID: PMC7582374 DOI: 10.3390/ijms21197020] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/20/2020] [Accepted: 09/21/2020] [Indexed: 12/18/2022] Open
Abstract
The fused in sarcoma (FUS) protein combines prion-like properties with a multifunctional DNA/RNA-binding domain and has functions spanning the regulation of RNA metabolism, including transcription, pre-mRNA splicing, mRNA transport and translation. In addition to its roles in RNA metabolism, FUS is implicated in the maintenance of DNA integrity. In this review, we examine the participation of FUS in major DNA repair pathways, focusing on DNA repair associated with poly(ADP-ribosyl)ation events and on how the interaction of FUS with poly(ADP-ribose) may orchestrate transient compartmentalisation of DNA strand breaks. Unravelling how prion-like RNA-binding proteins control DNA repair pathways will deepen our understanding of the pathogenesis of some neurological diseases and cancer as well as provide the basis for the development of relevant innovative therapeutic technologies. This knowledge may also extend the range of applications of poly(ADP-ribose) polymerase inhibitors to the treatment of neurodegenerative diseases related to RNA-binding proteins in the cell, e.g., amyotrophic lateral sclerosis and frontotemporal lobar degeneration.
Collapse
Affiliation(s)
- Maria V. Sukhanova
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, 630090 Novosibirsk, Russia; (A.S.S.); (O.I.L.)
| | - Anastasia S. Singatulina
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, 630090 Novosibirsk, Russia; (A.S.S.); (O.I.L.)
| | - David Pastré
- Laboratoire Structure-Activité des Biomolécules Normales et Pathologiques, INSERM U1204, Université Paris-Saclay, 91025 Evry, France;
| | - Olga I. Lavrik
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, 630090 Novosibirsk, Russia; (A.S.S.); (O.I.L.)
| |
Collapse
|
45
|
Naumenko KN, Sukhanova MV, Hamon L, Kurgina TA, Alemasova EE, Kutuzov MM, Pastré D, Lavrik OI. Regulation of Poly(ADP-Ribose) Polymerase 1 Activity by Y-Box-Binding Protein 1. Biomolecules 2020; 10:E1325. [PMID: 32947956 PMCID: PMC7565162 DOI: 10.3390/biom10091325] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/07/2020] [Accepted: 09/10/2020] [Indexed: 12/23/2022] Open
Abstract
Y-box-binding protein 1 (YB-1) is a multifunctional positively charged protein that interacts with DNA or RNA and poly(ADP-ribose) (PAR). YB-1 is poly(ADP-ribosyl)ated and stimulates poly(ADP-ribose) polymerase 1 (PARP1) activity. Here, we studied the mechanism of YB-1-dependent PAR synthesis by PARP1 in vitro using biochemical and atomic force microscopy assays. PAR synthesis activity of PARP1 is known to be facilitated by co-factors such as Mg2+. However, in contrast to an Mg2+-dependent reaction, the activation of PARP1 by YB-1 is accompanied by overall up-regulation of protein PARylation and shortening of the PAR polymer. Therefore, YB-1 and cation co-factors stimulated PAR synthesis in divergent ways. PARP1 autoPARylation in the presence of YB-1 as well as trans-PARylation of YB-1 are greatly affected by the type of damaged DNA, suggesting that PARP1 activation depends on the formation of a PARP1-YB-1-DNA ternary complex. An unstructured C-terminal part of YB-1 involved in an interaction with PAR behaves similarly to full-length YB-1, indicating that both DNA and PAR binding are involved in the stimulation of PARP1 activity by YB-1. Thus, YB-1 is likely linked to the regulation of PARylation events in cells via an interaction with PAR and damaged DNA.
Collapse
Affiliation(s)
- Konstantin N. Naumenko
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, 630090 Novosibirsk, Russia; (K.N.N.); (M.V.S.); (T.A.K.); (E.E.A.); (M.M.K.)
| | - Mariya V. Sukhanova
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, 630090 Novosibirsk, Russia; (K.N.N.); (M.V.S.); (T.A.K.); (E.E.A.); (M.M.K.)
| | - Loic Hamon
- Laboratoire Structure-Activité des Biomolécules Normales et Pathologiques, University of Evry, INSERM U1204, Université Paris-Saclay, 91025 Evry, France; (L.H.); (D.P.)
| | - Tatyana A. Kurgina
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, 630090 Novosibirsk, Russia; (K.N.N.); (M.V.S.); (T.A.K.); (E.E.A.); (M.M.K.)
- Department of Molecular Biology, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Elizaveta E. Alemasova
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, 630090 Novosibirsk, Russia; (K.N.N.); (M.V.S.); (T.A.K.); (E.E.A.); (M.M.K.)
| | - Mikhail M. Kutuzov
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, 630090 Novosibirsk, Russia; (K.N.N.); (M.V.S.); (T.A.K.); (E.E.A.); (M.M.K.)
| | - David Pastré
- Laboratoire Structure-Activité des Biomolécules Normales et Pathologiques, University of Evry, INSERM U1204, Université Paris-Saclay, 91025 Evry, France; (L.H.); (D.P.)
| | - Olga I. Lavrik
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, 630090 Novosibirsk, Russia; (K.N.N.); (M.V.S.); (T.A.K.); (E.E.A.); (M.M.K.)
- Department of Molecular Biology, Novosibirsk State University, 630090 Novosibirsk, Russia
| |
Collapse
|
46
|
Qin H, Ni H, Liu Y, Yuan Y, Xi T, Li X, Zheng L. RNA-binding proteins in tumor progression. J Hematol Oncol 2020; 13:90. [PMID: 32653017 PMCID: PMC7353687 DOI: 10.1186/s13045-020-00927-w] [Citation(s) in RCA: 222] [Impact Index Per Article: 44.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 06/25/2020] [Indexed: 02/08/2023] Open
Abstract
RNA-binding protein (RBP) has a highly dynamic spatiotemporal regulation process and important biological functions. They are critical to maintain the transcriptome through post-transcriptionally controlling the processing and transportation of RNA, including regulating RNA splicing, polyadenylation, mRNA stability, mRNA localization, and translation. Alteration of each process will affect the RNA life cycle, produce abnormal protein phenotypes, and thus lead to the occurrence and development of tumors. Here, we summarize RBPs involved in tumor progression and the underlying molecular mechanisms whereby they are regulated and exert their effects. This analysis is an important step towards the comprehensive characterization of post-transcriptional gene regulation involved in tumor progression.
Collapse
Affiliation(s)
- Hai Qin
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198, People's Republic of China
| | - Haiwei Ni
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198, People's Republic of China
| | - Yichen Liu
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198, People's Republic of China
| | - Yaqin Yuan
- Guizhou Medical Device Testing Center, Guiyang, 550004, Guizhou, People's Republic of China
| | - Tao Xi
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198, People's Republic of China.
| | - Xiaoman Li
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China.
| | - Lufeng Zheng
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198, People's Republic of China.
| |
Collapse
|
47
|
Eymin B. Targeting the spliceosome machinery: A new therapeutic axis in cancer? Biochem Pharmacol 2020; 189:114039. [PMID: 32417188 DOI: 10.1016/j.bcp.2020.114039] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 05/12/2020] [Indexed: 02/06/2023]
Abstract
Pre-mRNA splicing is the removal of introns and ligation of exons to form mature mRNAs, and it provides a critical mechanism by which eukaryotic cells can regulate their gene expression. Strikingly, more than 90% of protein-encoding transcripts are alternatively spliced, through exon inclusion/skipping, differential use of 5' or 3' alternative splice sites, intron retention or selection of an alternative promoter, thereby drastically increasing protein diversity. Splicing is altered in various pathological conditions, including cancers. In the last decade, high-throughput transcriptomic analyses have identified thousands of splice variants in cancers, which can distinguish between tumoral and normal tissues as well as identify tumor types, subtypes and clinical stages. These abnormal or aberrantly expressed splice variants, found in all cancer hallmarks, can result from mutations in splice sites, deregulated expression or even somatic mutations of components of the spliceosome machinery. Therefore, and based on these recent observations, a new anti-cancer strategy of targeting the spliceosome machinery with small molecules has emerged; however, the potential for these therapies is still a matter of great debate. Notably, more preclinical studies are needed to clarify which splicing patterns are mainly affected by these compounds, which cancer patients could be the most eligible for these treatments and whether using these spliceosome inhibitors alone or in combination with chemotherapies or targeted therapies would provide better therapeutic benefits. In this commentary, I will discuss all of these aspects.
Collapse
Affiliation(s)
- Beatrice Eymin
- INSERM U1209, CNRS UMR5309, Institute For Advanced Biosciences, 38000 Grenoble, France; Université Grenoble Alpes, 38000 Grenoble, France.
| |
Collapse
|
48
|
Huang RX, Zhou PK. DNA damage response signaling pathways and targets for radiotherapy sensitization in cancer. Signal Transduct Target Ther 2020; 5:60. [PMID: 32355263 PMCID: PMC7192953 DOI: 10.1038/s41392-020-0150-x] [Citation(s) in RCA: 641] [Impact Index Per Article: 128.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 02/20/2020] [Accepted: 03/16/2020] [Indexed: 12/19/2022] Open
Abstract
Radiotherapy is one of the most common countermeasures for treating a wide range of tumors. However, the radioresistance of cancer cells is still a major limitation for radiotherapy applications. Efforts are continuously ongoing to explore sensitizing targets and develop radiosensitizers for improving the outcomes of radiotherapy. DNA double-strand breaks are the most lethal lesions induced by ionizing radiation and can trigger a series of cellular DNA damage responses (DDRs), including those helping cells recover from radiation injuries, such as the activation of DNA damage sensing and early transduction pathways, cell cycle arrest, and DNA repair. Obviously, these protective DDRs confer tumor radioresistance. Targeting DDR signaling pathways has become an attractive strategy for overcoming tumor radioresistance, and some important advances and breakthroughs have already been achieved in recent years. On the basis of comprehensively reviewing the DDR signal pathways, we provide an update on the novel and promising druggable targets emerging from DDR pathways that can be exploited for radiosensitization. We further discuss recent advances identified from preclinical studies, current clinical trials, and clinical application of chemical inhibitors targeting key DDR proteins, including DNA-PKcs (DNA-dependent protein kinase, catalytic subunit), ATM/ATR (ataxia-telangiectasia mutated and Rad3-related), the MRN (MRE11-RAD50-NBS1) complex, the PARP (poly[ADP-ribose] polymerase) family, MDC1, Wee1, LIG4 (ligase IV), CDK1, BRCA1 (BRCA1 C terminal), CHK1, and HIF-1 (hypoxia-inducible factor-1). Challenges for ionizing radiation-induced signal transduction and targeted therapy are also discussed based on recent achievements in the biological field of radiotherapy.
Collapse
Affiliation(s)
- Rui-Xue Huang
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, 410078, Changsha, People's Republic of China
| | - Ping-Kun Zhou
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, AMMS, 100850, Beijing, People's Republic of China.
- Institute for Chemical Carcinogenesis, State Key Laboratory of Respiratory, Guangzhou Medical University, 511436, Guangzhou, People's Republic of China.
| |
Collapse
|
49
|
Jang Y, Elsayed Z, Eki R, He S, Du KP, Abbas T, Kai M. Intrinsically disordered protein RBM14 plays a role in generation of RNA:DNA hybrids at double-strand break sites. Proc Natl Acad Sci U S A 2020; 117:5329-5338. [PMID: 32094185 PMCID: PMC7071921 DOI: 10.1073/pnas.1913280117] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Accumulating evidence suggests participation of RNA-binding proteins with intrinsically disordered domains (IDPs) in the DNA damage response (DDR). These IDPs form liquid compartments at DNA damage sites in a poly(ADP ribose) (PAR)-dependent manner. However, it is greatly unknown how the IDPs are involved in DDR. We have shown previously that one of the IDPs RBM14 is required for the canonical nonhomologous end joining (cNHEJ). Here we show that RBM14 is recruited to DNA damage sites in a PARP- and RNA polymerase II (RNAPII)-dependent manner. Both KU and RBM14 are required for RNAPII-dependent generation of RNA:DNA hybrids at DNA damage sites. In fact, RBM14 binds to RNA:DNA hybrids. Furthermore, RNA:DNA hybrids and RNAPII are detected at gene-coding as well as at intergenic areas when double-strand breaks (DSBs) are induced. We propose that the cNHEJ pathway utilizes damage-induced transcription and intrinsically disordered protein RBM14 for efficient repair of DSBs.
Collapse
Affiliation(s)
- Yumi Jang
- Department of Radiation Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21231
| | - Zeinab Elsayed
- Department of Radiation Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21231
| | - Rebeka Eki
- Department of Radiation Oncology, University of Virginia School of Medicine, Charlottesville, VA 22908
- Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908
| | - Shuaixin He
- Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21231
| | - Kang-Ping Du
- Department of Radiation Oncology, University of Virginia School of Medicine, Charlottesville, VA 22908
- Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908
| | - Tarek Abbas
- Department of Radiation Oncology, University of Virginia School of Medicine, Charlottesville, VA 22908
- Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908
| | - Mihoko Kai
- Department of Radiation Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21231;
| |
Collapse
|
50
|
Murphy MR, Kleiman FE. Connections between 3' end processing and DNA damage response: Ten years later. WILEY INTERDISCIPLINARY REVIEWS. RNA 2020; 11:e1571. [PMID: 31657151 PMCID: PMC7295566 DOI: 10.1002/wrna.1571] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 09/10/2019] [Accepted: 09/17/2019] [Indexed: 12/23/2022]
Abstract
Ten years ago we reviewed how the cellular DNA damage response (DDR) is controlled by changes in the functional and structural properties of nuclear proteins, resulting in a timely coordinated control of gene expression that allows DNA repair. Expression of genes that play a role in DDR is regulated not only at transcriptional level during mRNA biosynthesis but also by changing steady-state levels due to turnover of the transcripts. The 3' end processing machinery, which is important in the regulation of mRNA stability, is involved in these gene-specific responses to DNA damage. Here, we review the latest mechanistic connections described between 3' end processing and DDR, with a special emphasis on alternative polyadenylation, microRNA and RNA binding proteins-mediated deadenylation, and discuss the implications of deregulation of these steps in DDR and human disease. This article is categorized under: RNA Processing > 3' End Processing RNA-Based Catalysis > Miscellaneous RNA-Catalyzed Reactions RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Michael Robert Murphy
- Department of Chemistry, Hunter College and Biochemistry Program, The Graduate Center, City University of New York, New York, New York
| | - Frida Esther Kleiman
- Department of Chemistry, Hunter College and Biochemistry Program, The Graduate Center, City University of New York, New York, New York
| |
Collapse
|