1
|
Xu HJ, Su Y. Potential of Berberine for Rheumatoid Arthritis Prevention and Treatment. Chin J Integr Med 2025:10.1007/s11655-025-4217-y. [PMID: 40366564 DOI: 10.1007/s11655-025-4217-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/17/2025] [Indexed: 05/15/2025]
Affiliation(s)
- Hao-Jie Xu
- Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing, 100044, China
| | - Yin Su
- Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing, 100044, China.
- Department of Rheumatology and Immunology, Peking University People's Hospital, Qingdao, Shandong Province, 266111, China.
| |
Collapse
|
2
|
Cheng Y, Yu H, Yang S, Tian X, Zhao M, Ren L, Guo X, Hu C, Jiang J, Wang L. Enhancing the Therapeutic Efficacy of Berberine and Quercetin Through Salt Formulation for Liver Fibrosis Treatment. Int J Mol Sci 2025; 26:2193. [PMID: 40076811 PMCID: PMC11899775 DOI: 10.3390/ijms26052193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/22/2025] [Accepted: 02/26/2025] [Indexed: 03/14/2025] Open
Abstract
Liver fibrosis, caused by chronic hepatic injury, is a major threat to human health worldwide, as there are no specific drugs available for its treatment. Natural compounds, such as berberine (BBR) and quercetin (QR), have shown the ability to regulate energy metabolism and protect the liver without significant adverse effects. Additionally, combination therapy (the cocktail therapy approach), using multiple drugs, has shown promise in treating complicated conditions, including liver injury. In this study, we prepared a salt formulation of BBR and QR (BQS) to enhance their combined effect on liver fibrosis. The formation of BQS was confirmed using various analytical techniques, including nuclear magnetic resonance spectroscopy (NMR), differential scanning calorimetry (DSC), Fourier-transform infrared spectroscopy (FTIR), powder X-ray diffractometry (PXRD), and scanning electron microscopy (SEM). The results demonstrated that the dissolution efficiency and bioavailability of QR significantly increased in the BQS form, aligning with that of BBR, compared to the physically mixed (BQP) form. Moreover, BQS exhibited a superior inhibitory effect on fibrosis compared to BQP in the human hepatic stellate cell line LX-2 by modulating lipid accumulation, inflammation, apoptosis, and the cell cycle. Furthermore, in a mouse model of hepatic fibrosis induced by methionine and choline-deficient (MCD) diets, BQS demonstrated enhanced anti-fibrotic activities compared to BQP. These findings suggest that BQS holds promise as a potential alternative treatment for liver fibrosis. Importantly, this study provides novel insights into achieving a cocktail effect through the salt formation of two or more drugs. The results highlight the potential of salt formulations in enhancing the therapeutic efficacy and consistent biological processes of drug combinations.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Jiandong Jiang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science & Peking Union Medical College, Beijing 100050, China; (Y.C.); (H.Y.); (S.Y.); (X.T.); (M.Z.); (L.R.); (X.G.); (C.H.)
| | - Lulu Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science & Peking Union Medical College, Beijing 100050, China; (Y.C.); (H.Y.); (S.Y.); (X.T.); (M.Z.); (L.R.); (X.G.); (C.H.)
| |
Collapse
|
3
|
Liang C, Liu J, Jiang M, Zhu Y, Dong P. The advancement of targeted regulation of hepatic stellate cells using traditional Chinese medicine for the treatment of liver fibrosis. JOURNAL OF ETHNOPHARMACOLOGY 2025; 341:119298. [PMID: 39798676 DOI: 10.1016/j.jep.2024.119298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 12/19/2024] [Accepted: 12/27/2024] [Indexed: 01/15/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Liver fibrosis, which is a precursor to cirrhosis in chronic liver diseases, is driven by various factors. The activation and proliferation of hepatic stellate cells (HSCs) are recognized as a crucial phase in the progression of liver fibrosis. Compared with western drug therapy, Traditional Chinese medicine (TCM) and herbal medicine not only have the advantages of multi-target and multi-pathways in the treatment of liver fibrosis, but also have high safety without toxic side effects. AIM OF THE REVIEW This paper aims to compile and analyze the active ingredients in TCM and their corresponding signaling pathways that target and modulate the phenotype of hepatic stellate cells, offering a potential treatment for hepatic fibrosis. METHODS The Literature information was obtained from the scientific databases PubMed, Web of Science and CNKI from January 2010 to June 2020 with the aim of elucidating the intrinsic mechanisms and roles of TCM and natural medicine in the treatment of LF. The search terms included "liver fibrosis" or "hepatic fibrosis", "traditional Chinese medicine" or "Chinese herbal medicine", "medicinal plant", "natural plant", and "herb". RESULTS We described the antifibrosis activity of TCM and natural medicine in LF based on different signaling pathways. Plant medicine and herbal formulas regulated the related gene and protein expression via pathways such as TGF-β/Smad, PI3K/AKT/mTOR, MAPK and Wnt/β-catenin, which inhibit the proliferation, apoptosis, autophagy and activation of HSCs. CONCLUSION By reviewing both domestic and international literature on TCM interventions in liver fibrosis, this study presents a thorough evaluation of recent research progress and the challenges faced in the clinical application of TCM for this condition. The goal is to lay a solid foundation for further in-depth studies and to strengthen the theoretical framework in this field. The inhibitory effect of TCM and natural medicine on fibrosis was reflected in multiple levels and multiple pathways, providing reasonable evidence for new drug development. To make TCM and natural medicine widely and flexibly used in clinical practice, the efficacy, safety and mechanism of action need more in-depth experimental research. It also seeks to provide a theoretical foundation for future research on targeted therapies for liver fibrosis and related diseases.
Collapse
Affiliation(s)
- Chen Liang
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, PR China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, PR China
| | - Jingjing Liu
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, PR China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, PR China
| | - Meixiu Jiang
- The Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi, 330031, PR China
| | - Yan Zhu
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, PR China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, PR China
| | - Pengzhi Dong
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, PR China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, PR China.
| |
Collapse
|
4
|
Hsu CY, Pallathadka H, Gupta J, Ma H, Al-Shukri HHK, Kareem AK, Zwamel AH, Mustafa YF. Berberine and berberine nanoformulations in cancer therapy: Focusing on lung cancer. Phytother Res 2024. [PMID: 38994919 DOI: 10.1002/ptr.8255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 05/02/2024] [Accepted: 05/11/2024] [Indexed: 07/13/2024]
Abstract
Lung cancer is the second most prevalent cancer and ranks first in cancer-related death worldwide. Due to the resistance development to conventional cancer therapy strategies, including chemotherapy, radiotherapy, targeted therapy, and immunotherapy, various natural products and their extracts have been revealed as alternatives. Berberine (BBR), which is present in the stem, root, and bark of various trees, could exert anticancer activities by regulating tumor cell proliferation, apoptosis, autophagy, metastasis, angiogenesis, and immune responses via modulating several signaling pathways within the tumor microenvironment. Due to its poor water solubility, poor pharmacokinetics/bioavailability profile, and extensive p-glycoprotein-dependent efflux, BBR application in (pre) clinical studies is restricted. To overcome these limitations, BBR can be encapsulated in nanoparticle (NP)-based drug delivery systems, as monotherapy or combinational therapy, and improve BBR therapeutic efficacy. Nanoformulations also facilitate the selective delivery of BBR into lung cancer cells. In addition to the anticancer activities of BBR, especially in lung cancer, here we reviewed the BBR nanoformulations, including polymeric NPs, metal-based NPs, carbon nanostructures, and others, in the treatment of lung cancer.
Collapse
Affiliation(s)
- Chou-Yi Hsu
- Thunderbird School of Global Management, Arizona State University Tempe Campus, Phoenix, Arizona, USA
| | | | - Jitendra Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura, India
| | - Haowei Ma
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | | | - A K Kareem
- Biomedical Engineering Department, College of Engineering and Technologies, Al-Mustaqbal University, Hillah, Iraq
| | - Ahmed Hussein Zwamel
- Medical Laboratory Technique College, The Islamic University, Najaf, Iraq
- Medical Laboratory Technique College, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- Medical Laboratory Technique College, the Islamic University of Babylon, Babylon, Iraq
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, Iraq
| |
Collapse
|
5
|
Gao R, Lu Y, Zhang W, Zhang Z. The Application of Berberine in Fibrosis and the Related Diseases. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2024; 52:753-773. [PMID: 38716621 DOI: 10.1142/s0192415x24500307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
The formation of fibrotic tissue, characterized by the excessive accumulation of extracellular matrix (ECM) components such as collagen and fibronectin, is a normal and crucial stage of tissue repair in all organs. The over-synthesis, deposition, and remodeling of ECM components lead to organ dysfunction, posing a significant medical burden. Berberine, an isoquinoline alkaloid, is commonly used in the treatment of gastrointestinal diseases. With the deepening of scientific research, it has been gradually discovered that berberine also plays an important role in fibrotic diseases. In this review, we systematically introduce the effective role of berberine in fibrosis-related diseases. Specifically, this paper aims to provide a comprehensive review of the therapeutic role of berberine in treating fibrosis in organs such as the heart, liver, lungs, and kidneys. By summarizing its various pathways and mechanisms of action, including the inhibition of the transforming growth factor-[Formula: see text]/Smad signaling pathway, PI3K/Akt signaling pathway, MAPK signaling pathway, RhoA/ROCK signaling, and mTOR/p70S6K signaling pathway, as well as its activation of the Nrf2-ARE signaling pathway, AMPK signaling pathway, phosphorylated Smad 2/3 and Smad 7, and other signaling pathways, this review offers additional evidence to support the treatment of fibrotic diseases.
Collapse
Affiliation(s)
- Rongmao Gao
- Department of Critical Care Medicine, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, P. R. China
| | - Yuanyu Lu
- Department of Critical Care Medicine, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, P. R. China
| | - Wei Zhang
- Department of Critical Care Medicine, The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu 610057, P. R. China
| | - Zhao Zhang
- Department of Critical Care Medicine, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, P. R. China
| |
Collapse
|
6
|
Li J, Zhang Q, Chen Y, Lu C, Tong Y. Pharmacokinetics, Tissue Distribution and Excretion of Demethyleneberberine, a Metabolite of Berberine, in Rats and Mice. Molecules 2023; 28:7725. [PMID: 38067456 PMCID: PMC10708275 DOI: 10.3390/molecules28237725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/16/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
Demethyleneberberine is an active component extracted from the Chinese herbal drug Cortex Phellodendri. It is also a metabolite of berberine in animals and humans. However, the pharmacokinetics, tissue distribution and excretion of demethyleneberberine have not been reported. The present study aimed to investigate the pharmacokinetic parameters of demethyleneberberine by applying high-performance liquid chromatography-tandem mass spectrometry (LC-MS/MS). After intragastric administration of demethyleneberberine in rats and mice, the pharmacokinetics, tissue distribution and excretion of demethyleneberberine were comparatively studied for the first time. The plasma concentration of demethyleneberberine reached its peak within 5 min after intragastric administration in both rats and mice. Furthermore, its bioavailability was comparable, ranging from 4.47% to 5.94%, higher than that of berberine. The total excretion of demethyleneberberine in the urine, feces and bile was 7.28~9.77%. These findings provide valuable insights into the pharmacological and clinical research on demethyleneberberine.
Collapse
Affiliation(s)
| | | | | | - Chengyu Lu
- College of Pharmacy, Guangdong Medical University, Dongguan 523808, China; (J.L.); (Q.Z.); (Y.C.)
| | - Yongbin Tong
- College of Pharmacy, Guangdong Medical University, Dongguan 523808, China; (J.L.); (Q.Z.); (Y.C.)
| |
Collapse
|
7
|
Sabir U, Gu HM, Zhang DW. Extracellular matrix turnover: phytochemicals target and modulate the dual role of matrix metalloproteinases (MMPs) in liver fibrosis. Phytother Res 2023; 37:4932-4962. [PMID: 37461256 DOI: 10.1002/ptr.7959] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/05/2023] [Accepted: 07/02/2023] [Indexed: 11/10/2023]
Abstract
Extracellular matrix (ECM) resolution by matrix metalloproteinases (MMPs) is a well-documented mechanism. MMPs play a dual and complex role in modulating ECM degradation at different stages of liver fibrosis, depending on the timing and levels of their expression. Increased MMP-1 combats disease progression by cleaving the fibrillar ECM. Activated hepatic stellate cells (HSCs) increase expression of MMP-2, -9, and -13 in different chemicals-induced animal models, which may alleviate or worsen disease progression based on animal models and the stage of liver fibrosis. In the early stage, elevated expression of certain MMPs may damage surrounding tissue and activate HSCs, promoting fibrosis progression. At the later stage, downregulation of MMPs can facilitate ECM accumulation and disease progression. A number of phytochemicals modulate MMP activity and ECM turnover, alleviating disease progression. However, the effects of phytochemicals on the expression of different MMPs are variable and may depend on the disease models and stage, and the dosage, timing and duration of phytochemicals used in each study. Here, we review the most recent advances in the role of MMPs in the effects of phytochemicals on liver fibrogenesis, which indicates that further studies are warranted to confirm and define the potential clinical efficacy of these phytochemicals.
Collapse
Affiliation(s)
- Usman Sabir
- Department of Pediatrics and Group on the Molecular and Cell Biology of Lipids, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Hong-Mei Gu
- Department of Pediatrics and Group on the Molecular and Cell Biology of Lipids, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Da-Wei Zhang
- Department of Pediatrics and Group on the Molecular and Cell Biology of Lipids, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
8
|
Marques C, Fernandes MH, Lima SAC. Elucidating Berberine's Therapeutic and Photosensitizer Potential through Nanomedicine Tools. Pharmaceutics 2023; 15:2282. [PMID: 37765251 PMCID: PMC10535601 DOI: 10.3390/pharmaceutics15092282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/31/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Berberine, an isoquinoline alkaloid extracted from plants of the Berberidaceae family, has been gaining interest due to anti-inflammatory and antioxidant activities, as well as neuro and cardiovascular protective effects in animal models. Recently, photodynamic therapy demonstrated successful application in many fields of medicine. This innovative, non-invasive treatment modality requires a photosensitizer, light, and oxygen. In particular, the photosensitizer can selectively accumulate in diseased tissues without damaging healthy cells. Berberine's physicochemical properties allow its use as a photosensitising agent for photodynamic therapy, enabling reactive oxygen species production and thus potentiating treatment efficacy. However, berberine exhibits poor aqueous solubility, low oral bioavailability, poor cellular permeability, and poor gastrointestinal absorption that hamper its therapeutic and photodynamic efficacy. Nanotechnology has been used to minimize berberine's limitations with the design of drug delivery systems. Different nanoparticulate delivery systems for berberine have been used, as lipid-, inorganic- and polymeric-based nanoparticles. These berberine nanocarriers improve its therapeutic properties and photodynamic potential. More specifically, they extend its half-life, increase solubility, and allow a high permeation and targeted delivery. This review describes different nano strategies designed for berberine delivery as well as berberine's potential as a photosensitizer for photodynamic therapy. To benefit from berberine's overall potential, nanotechnology has been applied for berberine-mediated photodynamic therapy.
Collapse
Affiliation(s)
- Célia Marques
- IUCS-CESPU, University Institute of Health Sciences (IUCS), CESPU, CRL, 4585-116 Gandra, Portugal;
- LAQV, REQUIMTE, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal
| | - Maria Helena Fernandes
- BoneLab-Laboratory for Bone Metabolism and Regeneration, Faculty of Dental Medicine, University of Porto, LAQV, REQUIMTE, U. Porto, 4200-393 Porto, Portugal
| | - Sofia A. Costa Lima
- IUCS-CESPU, University Institute of Health Sciences (IUCS), CESPU, CRL, 4585-116 Gandra, Portugal;
- LAQV, REQUIMTE, Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| |
Collapse
|
9
|
Shan L, Wang F, Zhai D, Meng X, Liu J, Lv X. Matrix metalloproteinases induce extracellular matrix degradation through various pathways to alleviate hepatic fibrosis. Biomed Pharmacother 2023; 161:114472. [PMID: 37002573 DOI: 10.1016/j.biopha.2023.114472] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/20/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Liver fibrosis is the common consequence of various chronic liver injuries and is mainly characterized by the imbalance between the production and degradation of extracellular matrix, which leads to the accumulation of interstitial collagen and other matrix components. Matrix metalloproteinases (MMPs) and their specific inhibitors, that is, tissue inhibitors of metalloproteinases (TIMPs), play a crucial role in collagen synthesis and lysis. Previous in vivo and in vitro studies of our laboratory found repressing extracellular matrix (ECM) accumulation by restoring the balance between MMPs and TIMPs can alleviate liver fibrosis. We conducted a review of articles published in PubMed and Science Direct in the last decade until February 1, 2023, which were searched for using these words "MMPs/TIMPs" and "Hepatic Fibrosis." Through a literature review, this article reviews the experimental studies of liver fibrosis based on MMPs/TIMPs, summarizes the components that may exert an anti-liver fibrosis effect by affecting the expression or activity of MMPs/TIMPs, and attempts to clarify the mechanism of MMPs/TIMPs in regulating collagen homeostasis, so as to provide support for the development of anti-liver fibrosis drugs. We found the MMP-TIMP-ECM interaction can result in better understanding of the pathogenesis and progression of hepatic fibrosis from a different angle, and targeting this interaction may be a promising therapeutic strategy for hepatic fibrosis. Additionally, we summarized and analyzed the drugs that have been found to reduce liver fibrosis by changing the ratio of MMPs/TIMPs, including medicine natural products.
Collapse
Affiliation(s)
- Liang Shan
- Department of Pharmacy, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, Anhui 230011, China; Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei 230032, China; The Key Laboratory of Major Autoimmune Diseases, Hefei 230032, Anhui, China
| | - Fengling Wang
- Department of Pharmacy, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, Anhui 230011, China
| | - Dandan Zhai
- Department of Pharmacy, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, Anhui 230011, China
| | - Xiangyun Meng
- Department of Pharmacy, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, Anhui 230011, China
| | - Jianjun Liu
- Department of Pharmacy, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, Anhui 230011, China.
| | - Xiongwen Lv
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei 230032, China; The Key Laboratory of Major Autoimmune Diseases, Hefei 230032, Anhui, China.
| |
Collapse
|
10
|
Liu X, Li W, Zhang H, Wang X, Huang Y, Li Y, Pan G. Biodistribution and pharmacokinetic profile of berberine and its metabolites in hepatocytes. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 104:154288. [PMID: 35785560 DOI: 10.1016/j.phymed.2022.154288] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/09/2022] [Accepted: 06/18/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Berberine has been shown in clinical studies to have many health benefits, including anti-inflammatory and antioxidant properties, along with gut-flora balancing properties. However, its clinical efficacy is hindered by its low oral bioavailability and rapid metabolism. PURPOSE This study aims to identify the berberine metabolites' forms and characterize their biodistribution patterns in and out of HepG2 cells. METHODS The qualitative analysis of metabolites of berberine in HepG2 cells was performed using the LC/MSn-IT-TOF method. Subsequent cellular pharmacokinetics characterization of intracellular and extracellular berberine and its metabolites was performed by LC-MS/MS analysis. RESULTS Berberine's metabolites of phase I metabolism were demethyleneberberine, jatrorrhizine, columbamine, berberrubine, etc., while its phase II metabolites were sulfate and glucuronide conjugates of phase I metabolites. Among the phase I metabolites of berberine, jatrorrhizine+columbamine accounted for over two-thirds of the total, followed by demethyleneberberine, which accounted for about a quarter. The intracellular demethyleneberberine is 25.14 times more enriched than extracellular demethyleneberberine. On the other hand, jatrorrhizine+columbamine and berberrubine were primarily distributed extracellularly, and their extracellular concentrations were 7.13 times and 15.61 times of their intracellular concentrations, respectively. Berberine metabolites produced in phase II metabolism are predominantly sulfate conjugates. CONCLUSION Our results show that demethyleneberberine is highly concentrated intracellularly in HepG2, possibly because it is an essential metabolite of berberine that likely contributes to berberine's efficacy. In light of our findings, berberine's poor plasma concentration-effectiveness characteristics have been partially explained.
Collapse
Affiliation(s)
- Xiaomei Liu
- Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China
| | - Wenfang Li
- Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China
| | - Han Zhang
- Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China
| | - Xiaoming Wang
- Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China.
| | - Yuhong Huang
- Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300250, China
| | - Yuhong Li
- Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China
| | - Guixiang Pan
- Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300250, China.
| |
Collapse
|
11
|
Demethyleneberberine, a potential therapeutic agent in neurodegenerative disorders: a proposed mechanistic insight. Mol Biol Rep 2022; 49:10101-10113. [PMID: 35657450 DOI: 10.1007/s11033-022-07594-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 05/11/2022] [Indexed: 10/18/2022]
Abstract
INTRODUCTION Neurodegenerative disorders are a diverse variety of diseases that can be distinguished from developing degeneration of neurons in the CNS. Several alkaloids have shown mounting effects in neurodegenerative disorders, and berberine is one of them. Demethyleneberberine is a metabolite of berberine that has better blood-brain barrier crossing capacity. Demethyleneberberine possesses anti-inflammatory, anti-oxidant, and mitochondrial targeting properties. However, neither the pharmacological action nor the molecular mechanism of action of demethyleneberberine on neurodegenerative disorders has been explored yet. MATERIALS AND METHODS A systematic literature review of PubMed, Medline, Bentham, Scopus, and EMBASE (Elseveier) databases was carried out with the help of keywords like "Demethyleneberberine; neuroinflammation; oxidative stress; Neuroprotective; Neurodegenerative disorders" till date. CONCLUSION This review focus on the neuroprotective potential of demethyleneberberine in neurodegenerative disorders by attenuating different pathways, i.e., NF-κB, MAPK, and AMPK signalling.
Collapse
|
12
|
Filli MS, Ibrahim AA, Kesse S, Aquib M, Boakye-Yiadom KO, Farooq MA, Raza F, Zhang Y, Wang B. Synthetic berberine derivatives as potential new drugs. BRAZ J PHARM SCI 2022. [DOI: 10.1590/s2175-97902020000318835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
| | | | | | - Md Aquib
- China Pharmaceutical University, China
| | | | | | | | | | - Bo Wang
- China Pharmaceutical University, China
| |
Collapse
|
13
|
Liu J, Huang X, Liu D, Ji K, Tao C, Zhang R, Chen J. Demethyleneberberine induces cell cycle arrest and cellular senescence of NSCLC cells via c-Myc/HIF-1α pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 91:153678. [PMID: 34385092 DOI: 10.1016/j.phymed.2021.153678] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/07/2021] [Accepted: 07/14/2021] [Indexed: 05/16/2023]
Abstract
BACKGROUND Demethyleneberberine (DMB) is a natural active component of medicinal plant Cortex phellodendri chinensis with favorable bioactivity. However, the role of DMB in suppressing non-small cell lung cancer (NSCLC) remains unknown. PURPOSE In this study, we aimed to examine the effect and underlying mechanism of DMB in suppressing NSCLC. METHODS CCK8 assay and colony formation assay were utilized to assess the efficiency of DMB on the viability and colony formation capacity of NSCLC cells. Flow cytometry and β-Galactosidase Staining Kit were utilized to determine the efficiency of DMB on the cell cycle and cellular senescence of NSCLC cells. RT-qPCR and Western blot were used to detect the effect of DMB on cell cycle and cellular senescence related gene and protein expression of NSCLC cells. In vivo tumor model was established to evaluate the anti NSCLC effect of DMB. In addition, RNA-seq analysis was performed to detect the differential gene expression after DMB treatments. RESULTS In this study, we revealed that DMB exhibits efficient inhibitory effect on NSCLC cell proliferation and tumor xenografts growth in vivo. We also demonstrated that DMB could inhibit cell migration by suppressing epithelial-mesenchymal transition (EMT) and trigger cell cycle arrest by down-regulating the expression of cell cycle related genes in NSCLC cells. In addition, DMB treatment efficiently induces cellular senescence of NSCLC cells. From the RNA-seq analysis, we found that DMB accelerates senescence through suppressing HIF-1α expression, which was further elucidated by overexpressing HIF-1α in NSCLC to reduce the inhibitory effect of DMB. Furthermore, we also revealed that DMB decreases the expression of c-Myc, an up-stream protein of HIF-1α. CONCLUSIONS Taken together, we first report that DMB inhibits NSCLC progress through inducing cell cycle arrest and triggering cellular senescence by downregulating c-Myc/HIF-1α pathway.
Collapse
Affiliation(s)
- Jingfeng Liu
- School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China; Department of Rheumatism and Immunology, Peking University Shenzhen Hospital, Shenzhen, Guangdong, 518036, China; Shenzhen Key Laboratory of Immunity and Inflammatory Diseases, Peking University Shenzhen Hospital, Shenzhen, Guangdong, 518036, China
| | - Xiaofei Huang
- School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Dandan Liu
- School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Kaiyuan Ji
- The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong, 518033, China
| | - Cheng Tao
- School of Pharmacy, Guangdong Medical University, Dongguan, Guangdong, 523808, China.
| | - Ren Zhang
- School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China.
| | - Jian Chen
- Department of Rheumatism and Immunology, Peking University Shenzhen Hospital, Shenzhen, Guangdong, 518036, China; Shenzhen Key Laboratory of Immunity and Inflammatory Diseases, Peking University Shenzhen Hospital, Shenzhen, Guangdong, 518036, China.
| |
Collapse
|
14
|
Bansod S, Saifi MA, Godugu C. Molecular updates on berberine in liver diseases: Bench to bedside. Phytother Res 2021; 35:5459-5476. [PMID: 34056769 DOI: 10.1002/ptr.7181] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 04/05/2021] [Accepted: 05/18/2021] [Indexed: 12/14/2022]
Abstract
Liver diseases are life-threatening illnesses and are the major cause of mortality and morbidity worldwide. These may include liver fibrosis, liver cirrhosis, and drug-induced liver toxicity. Liver diseases have a wide prevalence globally and the fifth most common cause of death among all gastrointestinal disorders. Several novel therapeutic approaches have emerged for the therapy of liver diseases that may provide better clinical outcomes with improved safety. The use of phytochemicals for the amelioration of liver diseases has gained considerable popularity. Berberine (BBR), an isoquinoline alkaloid of the protoberberine type, has emerged as a promising molecule for the treatment of gastrointestinal disorders. Accumulating studies have proved the hepatoprotective effects of BBR. BBR has been shown to modulate multiple signaling pathways implicated in the pathogenesis of liver diseases including Akt/FoxO2, PPAR-γ, Nrf2, insulin, AMPK, mTOR, and epigenetic pathways. In the present review, we have emphasized the important pharmacological activities and mechanisms of BBR in liver diseases. Further, we have reviewed various pharmacokinetic and toxicological barriers of this promising phytoconstituent. Finally, formulation-based novel approaches are also summarized to overcome the clinical hurdles for BBR.
Collapse
Affiliation(s)
- Sapana Bansod
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Mohd Aslam Saifi
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Chandraiah Godugu
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| |
Collapse
|
15
|
Wang Z, Wang L, Shi B, Sun X, Xie Y, Yang H, Zi C, Wang X, Sheng J. Demethyleneberberine promotes apoptosis and suppresses TGF-β/Smads induced EMT in the colon cancer cells HCT-116. Cell Biochem Funct 2021; 39:763-770. [PMID: 34028068 DOI: 10.1002/cbf.3638] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/06/2021] [Accepted: 04/12/2021] [Indexed: 01/07/2023]
Abstract
Colorectal cancer (CRC) is one of the most common malignant tumours in the world. Recent reports have revealed natural products displayed inhibition on colon cancer potential by suppressing transforming growth factor-β/Smads induced epidermal-mesenchymal transition (EMT). In this article, 12 kinds of natural berberine analogues were screened for their effects on the inhibition of the colon cancer cells, the results showed that demethyleneberberine (DM-BBR) exhibited an interesting and potential effect on inducing the apoptosis of HCT-116 cells with drug concentrations of 6, 12 and 18 μM. Particularly, DM-BBR reversed the EMT process by inhibiting the expression of p-Smad2 and p-Smad3 in the transforming growth factor-β/Smads signal pathway, up-regulated pro-apoptotic protein cleaved caspase-9, and blocked cell cycle at the S phase and increasing the expression of cyclin proteins P27 and P21. Taken together, these findings suggested that DM-BBR could promote apoptosis and suppress TGF-β/Smads induced EMT in the colon cancer cells HCT-116.
Collapse
Affiliation(s)
- Zehao Wang
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China.,College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Lixia Wang
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China.,College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Boya Shi
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China.,College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Xiuli Sun
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China.,College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Yinrong Xie
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China.,College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Haonan Yang
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China.,College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Chengting Zi
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China.,College of Science, Yunnan Agricultural University, Kunming, China
| | - Xuanjun Wang
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China.,College of Science, Yunnan Agricultural University, Kunming, China
| | - Jun Sheng
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
16
|
Sun R, Kong B, Yang N, Cao B, Feng D, Yu X, Ge C, Feng S, Fei F, Huang J, Lu Z, Xie Y, Yang CS, Guo GL, Wang G, Aa J. The Hypoglycemic Effect of Berberine and Berberrubine Involves Modulation of Intestinal Farnesoid X Receptor Signaling Pathway and Inhibition of Hepatic Gluconeogenesis. Drug Metab Dispos 2021; 49:276-286. [PMID: 33376148 DOI: 10.1124/dmd.120.000215] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 12/01/2020] [Indexed: 02/13/2025] Open
Abstract
Our previous study suggests that berberine (BBR) lowers lipids by modulating bile acids and activating intestinal farnesoid X receptor (FXR). However, to what extent this pathway contributes to the hypoglycemic effect of BBR has not been determined. In this study, the glucose-lowering effects of BBR and its primary metabolites, berberrubine (M1) and demethyleneberberine, in a high-fat diet-induced obese mouse model were studied, and their modulation of the global metabolic profile of mouse livers and systemic bile acids was determined. The results revealed that BBR (150 mg/kg) and M1 (50 mg/kg) decreased mouse serum glucose levels by 23.15% and 48.14%, respectively. Both BBR and M1 markedly modulated the hepatic expression of genes involved in gluconeogenesis and metabolism of amino acids, fatty acids, and purine. BBR showed a stronger modulatory effect on systemic bile acids than its metabolites. Moreover, molecular docking and gene expression analysis in vivo and in vitro suggest that BBR and M1 are FXR agonists. The mRNA levels of gluconeogenesis genes in the liver, glucose-6-phosphatase and phosphoenolpyruvate carboxykinase, were significantly decreased by BBR and M1. In summary, BBR and M1 modulate systemic bile acids and activate the intestinal FXR signaling pathway, which reduces hepatic gluconeogenesis by inhibiting the gene expression of gluconeogenesis genes, achieving a hypoglycemic effect. BBR and M1 may function as new, natural, and intestinal-specific FXR agonists with a potential clinical application to treat hyperglycemia and obesity. SIGNIFICANCE STATEMENT: This investigation revealed that BBR and its metabolite, berberrubine, significantly lowered blood glucose, mainly through activating intestinal farnesoid X receptor signaling pathway, either directly by themselves or indirectly by modulating the composition of systemic bile acids, thus inhibiting the expression of gluconeogenic genes in the liver and, finally, reducing hepatic gluconeogenesis and lowering blood glucose. The results will help elucidate the mechanism of BBR and provide a reference for mechanism interpretation of other natural products with low bioavailability.
Collapse
Affiliation(s)
- Runbin Sun
- Jiangsu Province Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China (R.S., D.F., X.Y., C.G., S.F., J.H., Z.L., Y.X., G.W., J.A.); Department of Pharmacology and Toxicology (B.K., G.L.G.) and Department of Chemical Biology (C.S.Y.), Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey; and Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, China (N.Y., B.C., F.F.)
| | - Bo Kong
- Jiangsu Province Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China (R.S., D.F., X.Y., C.G., S.F., J.H., Z.L., Y.X., G.W., J.A.); Department of Pharmacology and Toxicology (B.K., G.L.G.) and Department of Chemical Biology (C.S.Y.), Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey; and Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, China (N.Y., B.C., F.F.)
| | - Na Yang
- Jiangsu Province Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China (R.S., D.F., X.Y., C.G., S.F., J.H., Z.L., Y.X., G.W., J.A.); Department of Pharmacology and Toxicology (B.K., G.L.G.) and Department of Chemical Biology (C.S.Y.), Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey; and Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, China (N.Y., B.C., F.F.)
| | - Bei Cao
- Jiangsu Province Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China (R.S., D.F., X.Y., C.G., S.F., J.H., Z.L., Y.X., G.W., J.A.); Department of Pharmacology and Toxicology (B.K., G.L.G.) and Department of Chemical Biology (C.S.Y.), Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey; and Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, China (N.Y., B.C., F.F.)
| | - Dong Feng
- Jiangsu Province Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China (R.S., D.F., X.Y., C.G., S.F., J.H., Z.L., Y.X., G.W., J.A.); Department of Pharmacology and Toxicology (B.K., G.L.G.) and Department of Chemical Biology (C.S.Y.), Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey; and Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, China (N.Y., B.C., F.F.)
| | - Xiaoyi Yu
- Jiangsu Province Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China (R.S., D.F., X.Y., C.G., S.F., J.H., Z.L., Y.X., G.W., J.A.); Department of Pharmacology and Toxicology (B.K., G.L.G.) and Department of Chemical Biology (C.S.Y.), Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey; and Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, China (N.Y., B.C., F.F.)
| | - Chun Ge
- Jiangsu Province Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China (R.S., D.F., X.Y., C.G., S.F., J.H., Z.L., Y.X., G.W., J.A.); Department of Pharmacology and Toxicology (B.K., G.L.G.) and Department of Chemical Biology (C.S.Y.), Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey; and Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, China (N.Y., B.C., F.F.)
| | - Siqi Feng
- Jiangsu Province Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China (R.S., D.F., X.Y., C.G., S.F., J.H., Z.L., Y.X., G.W., J.A.); Department of Pharmacology and Toxicology (B.K., G.L.G.) and Department of Chemical Biology (C.S.Y.), Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey; and Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, China (N.Y., B.C., F.F.)
| | - Fei Fei
- Jiangsu Province Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China (R.S., D.F., X.Y., C.G., S.F., J.H., Z.L., Y.X., G.W., J.A.); Department of Pharmacology and Toxicology (B.K., G.L.G.) and Department of Chemical Biology (C.S.Y.), Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey; and Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, China (N.Y., B.C., F.F.)
| | - Jingqiu Huang
- Jiangsu Province Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China (R.S., D.F., X.Y., C.G., S.F., J.H., Z.L., Y.X., G.W., J.A.); Department of Pharmacology and Toxicology (B.K., G.L.G.) and Department of Chemical Biology (C.S.Y.), Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey; and Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, China (N.Y., B.C., F.F.)
| | - Zhenyao Lu
- Jiangsu Province Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China (R.S., D.F., X.Y., C.G., S.F., J.H., Z.L., Y.X., G.W., J.A.); Department of Pharmacology and Toxicology (B.K., G.L.G.) and Department of Chemical Biology (C.S.Y.), Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey; and Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, China (N.Y., B.C., F.F.)
| | - Yuan Xie
- Jiangsu Province Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China (R.S., D.F., X.Y., C.G., S.F., J.H., Z.L., Y.X., G.W., J.A.); Department of Pharmacology and Toxicology (B.K., G.L.G.) and Department of Chemical Biology (C.S.Y.), Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey; and Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, China (N.Y., B.C., F.F.)
| | - Chung S Yang
- Jiangsu Province Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China (R.S., D.F., X.Y., C.G., S.F., J.H., Z.L., Y.X., G.W., J.A.); Department of Pharmacology and Toxicology (B.K., G.L.G.) and Department of Chemical Biology (C.S.Y.), Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey; and Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, China (N.Y., B.C., F.F.)
| | - Grace L Guo
- Jiangsu Province Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China (R.S., D.F., X.Y., C.G., S.F., J.H., Z.L., Y.X., G.W., J.A.); Department of Pharmacology and Toxicology (B.K., G.L.G.) and Department of Chemical Biology (C.S.Y.), Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey; and Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, China (N.Y., B.C., F.F.)
| | - Guangji Wang
- Jiangsu Province Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China (R.S., D.F., X.Y., C.G., S.F., J.H., Z.L., Y.X., G.W., J.A.); Department of Pharmacology and Toxicology (B.K., G.L.G.) and Department of Chemical Biology (C.S.Y.), Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey; and Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, China (N.Y., B.C., F.F.)
| | - Jiye Aa
- Jiangsu Province Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China (R.S., D.F., X.Y., C.G., S.F., J.H., Z.L., Y.X., G.W., J.A.); Department of Pharmacology and Toxicology (B.K., G.L.G.) and Department of Chemical Biology (C.S.Y.), Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey; and Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, China (N.Y., B.C., F.F.)
| |
Collapse
|
17
|
Zhang L, Wu X, Yang R, Chen F, Liao Y, Zhu Z, Wu Z, Sun X, Wang L. Effects of Berberine on the Gastrointestinal Microbiota. Front Cell Infect Microbiol 2021; 10:588517. [PMID: 33680978 PMCID: PMC7933196 DOI: 10.3389/fcimb.2020.588517] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 12/31/2020] [Indexed: 01/14/2023] Open
Abstract
The gastrointestinal microbiota is a multi-faceted system that is unraveling novel contributors to the development and progression of several diseases. Berberine has been used to treat obesity, diabetes mellitus, atherosclerosis, and metabolic diseases in China. There are also clinical trials regarding berberine use in cardiovascular, gastrointestinal, and endocrine diseases. Berberine elicits clinical benefits at standard doses and has low toxicity. The mechanism underlying the role of berberine in lipid‐lowering and insulin resistance is incompletely understood, but one of the possible mechanisms is related to its effect on the gastrointestinal microbiota. An extensive search in electronic databases (PubMed, Scopus, Embase, Web of Sciences, Science Direct) was used to identify the role of the gastrointestinal microbiota in the berberine treatment. The aim of this review was to summarize the pharmacologic effects of berberine on animals and humans by regulation of the gastrointestinal microbiota.
Collapse
Affiliation(s)
- Lichao Zhang
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, China
| | - Xiaoying Wu
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China.,Department of Gastroenterology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Ruibing Yang
- Medical Department, Xizang Minzu University, Xianyang, China
| | - Fang Chen
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Yao Liao
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, China
| | - Zifeng Zhu
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, China
| | - Zhongdao Wu
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, China
| | - Xi Sun
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, China
| | - Lifu Wang
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, China
| |
Collapse
|
18
|
Feng X, Wang K, Cao S, Ding L, Qiu F. Pharmacokinetics and Excretion of Berberine and Its Nine Metabolites in Rats. Front Pharmacol 2021; 11:594852. [PMID: 33584274 PMCID: PMC7874128 DOI: 10.3389/fphar.2020.594852] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 12/01/2020] [Indexed: 12/17/2022] Open
Abstract
Berberine, a well-known alkaloid, has been proved to possess various pharmacological activities. Previous studies demonstrated that berberine could be extensively metabolized and the metabolites also contributed to its therapeutic effects. However, as for berberine’s metabolites, especially phase II metabolites, pharmacokinetics and excretion studies were rarely reported. The objective of this study was to thoroughly investigate the pharmacokinetic and excretion profiles of berberine and its nine metabolites, namely, berberrubine (M1), demethyleneberberine (M2), jatrorrhizine (M3), jatrorrhizine-3-O-β-D-glucuronide (M4), jatrorrhizine-3-O-sulfate (M5), thalfendine-10-O-β-D-glucuronide (M6), berberrubine-9-O-β-D-glucuronide (M7), demethyleneberberine-2-O-sulfate (M8) and demethyleneberberine-2-O-β-D-glucuronide (M9) in rats. An accurate and reliable LC-MS/MS method was developed and validated for the determination of berberine and its nine metabolites in rat biosamples. Pharmacokinetic profiles of berberine and its nine metabolites were obtained after a single intravenous administration (4.0 mg/kg) and oral administration (48.2, 120 or 240 mg/kg) of berberine in rats. For excretion study, rats were intragastrically administered a single dose of 48.2 mg/kg berberine. Our results showed that berberine could be metabolized rapidly and all the nine metabolites could be detected in vivo. The absolute bioavailability of berberine was 0.37 ± 0.11%. As for the AUC0–48 h values, phase II metabolites were much higher than those of phase I metabolites, suggesting that phase II metabolites were the major metabolites exist in blood circulation. 18.6% of the berberine was excreted in feces as berberrubine (M1). The total recovery of berberine and its nine metabolites from urine, bile and feces was 41.2%. This is the first systematic study about the pharmacokinetics and excretion of berberine and its nine metabolites, which will be beneficial for both better understanding the clinical effects and further development of berberine.
Collapse
Affiliation(s)
- Xinchi Feng
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Kun Wang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shijie Cao
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Liqin Ding
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Feng Qiu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
19
|
Raeeszadeh-Sarmazdeh M, Do LD, Hritz BG. Metalloproteinases and Their Inhibitors: Potential for the Development of New Therapeutics. Cells 2020; 9:E1313. [PMID: 32466129 PMCID: PMC7290391 DOI: 10.3390/cells9051313] [Citation(s) in RCA: 199] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/18/2020] [Accepted: 05/19/2020] [Indexed: 02/06/2023] Open
Abstract
The metalloproteinase (MP) family of zinc-dependent proteases, including matrix metalloproteinases (MMPs), a disintegrin and metalloproteases (ADAMs), and a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTSs) plays a crucial role in the extracellular matrix (ECM) remodeling and degradation activities. A wide range of substrates of the MP family includes ECM components, chemokines, cell receptors, and growth factors. Metalloproteinases activities are tightly regulated by proteolytic activation and inhibition via their natural inhibitors, tissue inhibitors of metalloproteinases (TIMPs), and the imbalance of the activation and inhibition is responsible in progression or inhibition of several diseases, e.g., cancer, neurological disorders, and cardiovascular diseases. We provide an overview of the structure, function, and the multifaceted role of MMPs, ADAMs, and TIMPs in several diseases via their cellular functions such as proteolysis of other cell signaling factors, degradation and remodeling of the ECM, and other essential protease-independent interactions in the ECM. The significance of MP inhibitors targeting specific MMP or ADAMs with high selectivity is also discussed. Recent advances and techniques used in developing novel MP inhibitors and MP responsive drug delivery tools are also reviewed.
Collapse
Affiliation(s)
- Maryam Raeeszadeh-Sarmazdeh
- Chemical and Materials Engineering Department, University of Nevada, Reno, NV 89557, USA; (L.D.D.); (B.G.H.)
| | | | | |
Collapse
|
20
|
Zhang M, Li Q, Zhou C, Zhao Y, Li R, Zhang Y. Demethyleneberberine attenuates concanavalin A-induced autoimmune hepatitis in mice through inhibition of NF-κB and MAPK signaling. Int Immunopharmacol 2020; 80:106137. [PMID: 31931366 DOI: 10.1016/j.intimp.2019.106137] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 12/17/2019] [Accepted: 12/17/2019] [Indexed: 12/18/2022]
Abstract
Demethyleneberberine (DMB) is a natural product which has been reported to possess mitochondria-targeting anti-oxidative and anti-inflammatory effect. However, the pharmacological action and molecular mechanism of DMB on autoimmune hepatitis (AIH) have not been explored. In this study, AIH was induced by intravenously injecting Con A (20 mg/kg) in mice for 8 h, and DMB protected against Con A-induced AIH, evidenced by obvious reduction of hepatic enzymes in serum and histological lesion. DMB significantly inhibited the infiltration of CD4+ T cell and Kupffer cell as well as the expression of inflammatory cytokines, such as TNF-α, IL-6, IL-1β and IFN-γ by ELISA and qPCR analysis. Western blotting analysis illustrated that DMB remarkably inhibited Con A-induced phosphorylation of IKK, IκB, NF-κB p65, ERK, JNK, p38 MAPK and STAT3 induced by Con A. Moreover, DMB also effectively suppressed hepatic oxidative stress with reduction of MDA and elevation of GSH. Taken together, our findings indicated that DMB could prevent Con A-induced AIH by regulating NF-κB and MAPK signaling, suggesting that DMB can serve as a promising candidate for therapy of AIH.
Collapse
Affiliation(s)
- Miao Zhang
- State Key Laboratory of Natural Medicines, Department of Biochemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Qingxia Li
- State Key Laboratory of Natural Medicines, Department of Biochemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Cuisong Zhou
- State Key Laboratory of Natural Medicines, Department of Biochemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Yaxing Zhao
- State Key Laboratory of Natural Medicines, Department of Biochemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Ruiyan Li
- State Key Laboratory of Natural Medicines, Department of Biochemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Yubin Zhang
- State Key Laboratory of Natural Medicines, Department of Biochemistry, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
21
|
Gut microbial transformation, a potential improving factor in the therapeutic activities of four groups of natural compounds isolated from herbal medicines. Fitoterapia 2019; 138:104293. [PMID: 31398447 DOI: 10.1016/j.fitote.2019.104293] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/04/2019] [Accepted: 08/05/2019] [Indexed: 12/19/2022]
Abstract
Herbal medicines (HMs) have attracted widespread attention because of their significant contributions to the prevention and treatment of many human diseases. Recently, gut microbiota has become an important frontier to understand the therapeutic mechanisms of medicines. Gut microbiota-mediated transformation is a microbial metabolic form after oral administrations of HMs compounds. A great number of studies showed that gut microbiota could transform some HMs compounds by the variation of chemical structures into several active metabolites, which exerted better bioavailabilities and therapeutic activities than their parent compounds. Among these HMs compounds, alkaloids, flavonoids, polyphenols and terpenoids were the representative ones. However, there is no systemic review focusing on the potential improved therapeutic activities of these natural compounds caused by gut microbial transformation. Here, this review summarizes the therapeutic activities that are more potent in microbial transformed metabolites than in their parent compounds (alkaloids, flavonoids, polyphenols and terpenoids) from HMs. We hope this review will be conducive to deepening the understanding of the relationship between gut microbial transformation and therapeutic activities of HMs compounds.
Collapse
|
22
|
Xu P, Xu C, Li X, Li D, Li Y, Jiang J, Yang P, Duan G. Rapid Identification of Berberine Metabolites in Rat Plasma by UHPLC-Q-TOF-MS. Molecules 2019; 24:molecules24101994. [PMID: 31137649 PMCID: PMC6572607 DOI: 10.3390/molecules24101994] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 05/12/2019] [Accepted: 05/22/2019] [Indexed: 01/13/2023] Open
Abstract
In this study, a reliable and rapid method based on ultra high performance liquid chromatography combined with quadrupole time-of-flight tandem mass spectrometry (UHPLC-Q-TOF-MS) technology and MetabolitePilotMT software was developed for berberine metabolites identification in rat plasma. The chemical structures of the metabolites and their product ions were tentatively characterized or identified according to the molecular weights detected and MS/MS data. In all, nine metabolites, including M1 (demethyleneberberine, C19H18NO4, m/z 324), M2 (glucuronic acid-conjugated demethyleneberberine, C25H26NO10, m/z 500), M3 (diglucuronide-conjugated demethyleneberberine, C31H34NO16, m/z 676), M4 (glucuronic acid-conjugated jatrorrhizine or glucuronic acid-conjugated columbamine, C26H28NO10, m/z 514), M5 (berberrubine or thalifendine, C19H16NO4, m/z 322), M6 (glucuronic acid-conjugated berberrubine or glucuronic acid-conjugated thalifendine, C25H24NO10, m/z 498), M7 (sulfite-conjugated berberrubine or sulfite-conjugated thalifendine, C19H16NO7S, m/z 402), M8 (dihydroxy berberrubine or dihydroxy thalifendine, C19H16NO6, m/z 354) and M9 (dihydroxy berberine, C20H18NO6, m/z 368) were tentatively characterized or identified. Several new deposition patterns and three new metabolites (M7, M8 and M9) are reported in this paper for the first time. This work not only provides significant insights into the understanding of the metabolic pathways of berberine, but also contributes in identifying potential active drug candidates from the metabolites.
Collapse
Affiliation(s)
- Peng Xu
- Department of Pharmaceutical Analysis, School of Pharmacy, Fudan University, Shanghai 201203, China.
| | - Chen Xu
- Department of Pharmaceutical Analysis, School of Pharmacy, Fudan University, Shanghai 201203, China.
| | - Xiaoxia Li
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, China.
| | - Dan Li
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, China.
| | - Yan Li
- Department of Pharmaceutical Analysis, School of Pharmacy, Fudan University, Shanghai 201203, China.
| | - Jiebing Jiang
- Department of Pharmaceutical Analysis, School of Pharmacy, Fudan University, Shanghai 201203, China.
| | - Ping Yang
- Instrumental Analysis Center, School of Pharmacy, Fudan University, Shanghai 201203, China.
| | - Gengli Duan
- Department of Pharmaceutical Analysis, School of Pharmacy, Fudan University, Shanghai 201203, China.
| |
Collapse
|
23
|
Huang GR, Wei SJ, Huang YQ, Xing W, Wang LY, Liang LL. Mechanism of combined use of vitamin D and puerarin in anti-hepatic fibrosis by regulating the Wnt/β-catenin signalling pathway. World J Gastroenterol 2018; 24:4178-4185. [PMID: 30271082 PMCID: PMC6158481 DOI: 10.3748/wjg.v24.i36.4178] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 07/30/2018] [Accepted: 08/01/2018] [Indexed: 02/06/2023] Open
Abstract
AIM To reveal the protective mechanism of the combined use of vitamin D and puerarin in the progression of hepatic fibrosis induced by carbon tetrachloride (CCl4).
METHODS Eight-week-old male Wistar rats were randomly divided into a normal control group (C group), a CCl4 group (CCl4 group), a vitamin D group (V group), a puerarin group (P group), and a combined group of vitamin D and puerarin (V + P group), each of which contained ten rats. In this way, we built a rat model of CCl4-induced hepatic fibrosis with intervention by vitamin D, puerarin, or a combination of the two. After eight weeks, the mice were sacrificed to collect serum and liver specimens. Blood was collected to detect the hyaluronic acid (HA). We also measured hydroxyproline (Hyp) and prepared paraffin sections of liver. After Sirius red staining, the liver specimens were observed under a microscope. RT-PCR and western blot analysis were adopted to detect the mRNA and the protein levels of Collagen I, Collagen III, Wnt1, and β-catenin in the liver tissues, respectively.
RESULTS Hepatic fibrosis was observed in the CCl4 group. In comparison, hepatic fibrosis was attenuated in the V, P, and V + P groups: the HA level in blood and the Hyp level in liver were reduced, and the mRNA levels of Collagen I, Collagen III, Wnt, and β-catenin in liver were also decreased, as well as the protein levels of Wnt1 and β-catenin. Among these groups, the V + P group demonstrated the greatest amelioration of hepatic fibrosis.
CONCLUSION The combined application of vitamin D and puerarin is capable of alleviating CCl4-induced hepatic fibrosis of rats. As to the mechanism, it is probably because the combined use is able to silence the Wnt1/β-catenin pathway, suppress the activation of hepatic stellate cells, and reduce the secretion of collagen fibers, therefore improving the anti-hepatic fibrosis effect.
Collapse
Affiliation(s)
- Gan-Rong Huang
- Youjiang Medical University for Nationalities, School of Basic Medical Sciences, Baise 533000, Guangxi Zhuang Autonomous Region, China
| | - Si-Jun Wei
- Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, Guangxi Zhuang Autonomous Region, China
| | - Yan-Qiang Huang
- Youjiang Medical University for Nationalities, School of Basic Medical Sciences, Baise 533000, Guangxi Zhuang Autonomous Region, China
| | - Wei Xing
- Youjiang Medical University for Nationalities, School of Basic Medical Sciences, Baise 533000, Guangxi Zhuang Autonomous Region, China
| | - Lu-Yao Wang
- Youjiang Medical University for Nationalities, School of Basic Medical Sciences, Baise 533000, Guangxi Zhuang Autonomous Region, China
| | - Ling-Ling Liang
- Youjiang Medical University for Nationalities, School of Basic Medical Sciences, Baise 533000, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
24
|
Zhang H, Lin Y, Zhen Y, Hu G, Meng X, Li X, Men X. Therapeutic Effect of Glycyrrhizin Arginine Salt on Rat Cholestatic Cirrhosis and its Mechanism. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2018; 46:1111-1127. [DOI: 10.1142/s0192415x18500581] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
To investigate the therapeutic effect of glycyrrhizin arginine salt on rat cholestatic cirrhosis, we subjected male Sprague Dawley rats to common bile duct ligation for 14 days and treated them with distilled water (model group), arginine, or a low or high dose of glycyrrhizin arginine salt by gavage. A sham-operated group was used as a control group. Treatment with glycyrrhizin arginine salt substantially improved animal growth rates, reduced the ratio of liver weight to body weight and decreased total bilirubin, aspartate aminotransferase, 8-isoprostane and malondialdehyde compared with the values measured in the model group. The progress of liver fibrosis, as detected by hematoxylin and eosin and Masson’s trichrome staining, was slower in the glycyrrhizin arginine salt groups than in the model group or the arginine group. Reductions of bile salt pool size, hepatic hydroxyproline content and fibrosis score were also seen in the glycyrrhizin arginine salt groups compared with the model group. Furthermore, glycyrrhizin arginine salt significantly reduced the expression of transforming growth factor [Formula: see text]1 (TGF-[Formula: see text]1), [Formula: see text]-smooth muscle actin, tumor necrosis factor-[Formula: see text] and matrix metalloproteinases 2 and 9. Glycyrrhizin arginine salt also inhibited the expression of [Formula: see text]-SMA and matrix metalloproteinases 2 and 9 in response to TGF-[Formula: see text]1 in LX-2 cells and primary rat hepatic stellate cells and mitigated the cytotoxicity induced by rat bile in HepG2 cells and primary rat hepatocytes.
Collapse
Affiliation(s)
- Huan Zhang
- Tangshan Key Laboratory for Preclinical and Basic Research on Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan 063000, P. R. China
| | - Yajun Lin
- The Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing 100730, P. R. China
| | - Yongzhan Zhen
- Tangshan Key Laboratory for Preclinical and Basic Research on Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan 063000, P. R. China
| | - Gang Hu
- The Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing 100730, P. R. China
| | - Xu Meng
- Tangshan Key Laboratory for Preclinical and Basic Research on Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan 063000, P. R. China
| | - Xingxin Li
- Tangshan Key Laboratory for Preclinical and Basic Research on Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan 063000, P. R. China
| | - Xiuli Men
- Tangshan Key Laboratory for Preclinical and Basic Research on Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan 063000, P. R. China
| |
Collapse
|
25
|
Cao H, Li S, Xie R, Xu N, Qian Y, Chen H, Hu Q, Quan Y, Yu Z, Liu J, Xiang M. Exploring the Mechanism of Dangguiliuhuang Decoction Against Hepatic Fibrosis by Network Pharmacology and Experimental Validation. Front Pharmacol 2018; 9:187. [PMID: 29556199 PMCID: PMC5844928 DOI: 10.3389/fphar.2018.00187] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 02/19/2018] [Indexed: 12/11/2022] Open
Abstract
Dangguiliuhuang decoction (DGLHD) has been demonstrated to be effective in treating inflammatory, hepatic steatosis, and insulin resistance. In the study, we tried to elucidate the pharmacological efficacy and mechanism of DGLHD against liver fibrosis and predicate potential active ingredients and targets via network analysis and experimental validation. In the formula, we totally discovered 76 potential active ingredients like baicalein, berberine, and wogonin, and 286 corresponding targets including PTGS (prostaglandin-endoperoxide synthase) 2, PPAR (peroxisome proliferator-activated receptors) -γ, and NF-κB (nuclear factor-κB). Pathway and functional enrichment analysis of these putative targets indicated that DGLHD obviously influenced NF-κB and PPAR signaling pathway. Consistently, DGLHD downregulated levels of ALT (alanine transaminase) and AST (aspartate transaminase), reduced production of proinflammatory cytokines-TNF (tumor necrosis factor) -α and IL (Interleukin) -1β in serum and liver from mice with hepatic fibrosis, and inhibited hepatic stellate cell (HSC)-T6 cells proliferation. DGLHD decreased TGF (transforming growth factor) -β1 and α-SMA (smooth muscle actin) expression as well, maintained MMP (matrix metalloprotein) 13-TIMP (tissue inhibitor of metalloproteinases) 1 balance, leading to mitigated ECM (extracellular matrix) deposition in vivo and in vitro. Moreover, our experimental data confirmed that the alleviated inflammation and ECM accumulation were pertinent to NF-κB inhibition and PPAR-γ activation. Overall, our results suggest that DGLHD aims at multiply targets and impedes the progression of hepatic fibrosis by ameliorating abnormal inflammation and ECM deposition, thereby serving as a novel regimen for treating hepatic fibrosis in clinic.
Collapse
Affiliation(s)
- Hui Cao
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Senlin Li
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rui Xie
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Na Xu
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Qian
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongdan Chen
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qinyu Hu
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yihong Quan
- Department of Traditional Chinese Medicine, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhihong Yu
- Department of Traditional Chinese Medicine, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junjun Liu
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ming Xiang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
26
|
Wang K, Feng X, Chai L, Cao S, Qiu F. The metabolism of berberine and its contribution to the pharmacological effects. Drug Metab Rev 2017; 49:139-157. [DOI: 10.1080/03602532.2017.1306544] [Citation(s) in RCA: 312] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Kun Wang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, P.R. China
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P.R. China
| | - Xinchi Feng
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, P.R. China
| | - Liwei Chai
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, P.R. China
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P.R. China
| | - Shijie Cao
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, P.R. China
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P.R. China
| | - Feng Qiu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, P.R. China
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P.R. China
| |
Collapse
|
27
|
Jiang H, Song JM, Gao PF, Qin XJ, Xu SZ, Zhang JF. Metabolic characterization of the early stage of hepatic fibrosis in rat using GC-TOF/MS and multivariate data analyses. Biomed Chromatogr 2017; 31. [PMID: 27859443 DOI: 10.1002/bmc.3899] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 10/30/2016] [Accepted: 11/13/2016] [Indexed: 12/22/2022]
Affiliation(s)
- Hui Jiang
- Department of Pharmacy; The first affiliated hospital of Anhui university of Chinese medicine; Hefei China
- College of Basic Medicine; Anhui Medical University; Hefei China
| | - Jun-mei Song
- Department of Pharmacy; The first affiliated hospital of Anhui university of Chinese medicine; Hefei China
| | - Peng-fei Gao
- College of Pharmacy; Dali University; Dali China
| | - Xiu-juan Qin
- Department of Pharmacy; The first affiliated hospital of Anhui university of Chinese medicine; Hefei China
| | - Shuang-zhi Xu
- Department of Pharmacy; The first affiliated hospital of Anhui university of Chinese medicine; Hefei China
| | - Jia-fu Zhang
- Department of Pharmacy; The first affiliated hospital of Anhui university of Chinese medicine; Hefei China
| |
Collapse
|