1
|
Lin JG, Sun YW, Wu WL, Jiang WP, Zhung FY, Huang GJ. Multi-Target Protective Effects of Sanghuangporus sanghuang Against 5-Fluorouracil-Induced Intestinal Injury Through Suppression of Inflammation, Oxidative Stress, Epitheli-Al-Mesenchymal Transition, and Tight Junction. Int J Mol Sci 2025; 26:3444. [PMID: 40244381 PMCID: PMC11989720 DOI: 10.3390/ijms26073444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 03/28/2025] [Accepted: 04/03/2025] [Indexed: 04/18/2025] Open
Abstract
Sanghuang (Sanghuangporus sanghuang, SS) is a medicinal fungus with multiple pharmacological effects, including antioxidant, anti-inflammatory, immune-boosting, and anti-cancer activities. 5-fluorouracil (5-FU) is a commonly used chemotherapeutic agent for the treatment of colorectal cancer. It primarily exerts its antitumor effect by inhibiting DNA and RNA synthesis, leading to cell apoptosis. However, it frequently induces adverse effects These issues limit the clinical application of 5-FU. This research aims to determine the potential of SS as a therapeutic agent in reducing 5-FU-induced intestinal mucositis in a mouse model. The results indicated that 5-FU administration significantly increased diarrhea severity, reduced colon length, caused small intestinal villus atrophy, disrupted intestinal architecture, led to insufficient crypt cell proliferation, and resulted in weight loss. It also significantly upregulated inflammatory responses, apoptosis, oxidative stress, and epithelial-mesenchymal transition (EMT) pathways, and disrupted the integrity of intestinal mucosal tight junction, while elevating pro-inflammatory cytokines and reducing antioxidant capacity. However, SS significantly ameliorating alleviating the adverse impacts of the chemotherapeutic agent on the intestinal mucosa. In conclusion, this investigation provides the first evidence of the protective effects of SS on 5-FU-induced mucositis. These findings suggest SS as a potential therapeutic application, offering a promising strategy for reducing the adverse effects of 5-FU chemotherapy and improving the treatment and quality of life for colorectal cancer patients.
Collapse
Affiliation(s)
- Jaung-Geng Lin
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung 404, Taiwan; (J.-G.L.); (W.-L.W.)
- Chinese Medicine Research Center, China Medical University, Taichung 404, Taiwan
| | - Yu-Wen Sun
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Chinese Medicine, China Medical University, Taichung 404, Taiwan
| | - Wen-Liang Wu
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung 404, Taiwan; (J.-G.L.); (W.-L.W.)
| | - Wen-Ping Jiang
- Department of Pharmacy, China Medical University, Taichung 404, Taiwan;
| | - Fang-Yu Zhung
- Department of Nutrition, China Medical University, Taichung 404, Taiwan
| | - Guan-Jhong Huang
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Chinese Medicine, China Medical University, Taichung 404, Taiwan
- Department of Food Nutrition and Healthy Biotechnology, Asia University, Taichung 413, Taiwan
| |
Collapse
|
2
|
Kadokawa JI. A Mini-Review: Fabrication of Polysaccharide Composite Materials Based on Self-Assembled Chitin Nanofibers. MATERIALS (BASEL, SWITZERLAND) 2024; 17:1898. [PMID: 38673255 PMCID: PMC11052074 DOI: 10.3390/ma17081898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/29/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024]
Abstract
This mini-review presents the fabrication methods for polysaccharide composite materials that employ self-assembled chitin nanofibers (ChNFs) as functional components. Chitin is one of the most abundant polysaccharides in nature. However, it is mostly not utilized because of its poor feasibility and processability. Self-assembled ChNFs are efficiently obtained by a regenerative bottom-up process from chitin ion gels using an ionic liquid, 1-allyl-3-methylimodazolium bromide. This is accomplished by immersing the gels in methanol. The resulting dispersion is subjected to filtration to isolate the regenerated materials, producing ChNF films with a morphology defined by highly entangled nanofibers. The bundles are disintegrated by electrostatic repulsion among the amino groups on the ChNFs in aqueous acetic acid to produce thinner fibers known as scaled-down ChNFs. The self-assembled and scaled-down ChNFs are combined with other chitin components to fabricate chitin-based composite materials. ChNF-based composite materials are fabricated through combination with other polysaccharides.
Collapse
Affiliation(s)
- Jun-Ichi Kadokawa
- Graduate School of Science and Engineering, Kagoshima University, 1-21-40 Korimoto, Kagoshima 890-0065, Japan
| |
Collapse
|
3
|
Kadokawa JI. Hydrogelation from Self-Assembled and Scaled-Down Chitin Nanofibers by the Modification of Highly Polar Substituents. Gels 2023; 9:432. [PMID: 37367103 DOI: 10.3390/gels9060432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/09/2023] [Accepted: 05/22/2023] [Indexed: 06/28/2023] Open
Abstract
Chitin nanofibers (ChNFs) with a bundle structure were fabricated via regenerative self-assembly at the nanoscale from a chitin ion gel with an ionic liquid using methanol. Furthermore, the bundles were disentangled by partial deacetylation under alkaline conditions, followed by cationization and electrostatic repulsion in aqueous acetic acid to obtain thinner nanofibers called scaled-down ChNFs. This review presents a method for hydrogelation from self-assembled and scaled-down ChNFs by modifying the highly polar substituents on ChNFs. The modification was carried out by the reaction of amino groups on ChNFs, which were generated by partial deacetylation, with reactive substituent candidates such as poly(2-oxazoline)s with electrophilic living propagating ends and mono- and oligosaccharides with hemiacetallic reducing ends. The substituents contributed to the formation of network structures from ChNFs in highly polar dispersed media, such as water, to produce hydrogels. Moreover, after the modification of the maltooligosaccharide primers on ChNFs, glucan phosphorylase-catalyzed enzymatic polymerization was performed from the primer chain ends to elongate the amylosic graft chains on ChNFs. The amylosic graft chains formed double helices between ChNFs, which acted as physical crosslinking points to construct network structures, giving rise to hydrogels.
Collapse
Affiliation(s)
- Jun-Ichi Kadokawa
- Graduate School of Science and Engineering, Kagoshima University, 1-21-40 Korimoto, Kagoshima 890-0065, Japan
| |
Collapse
|
4
|
Chitin and chitin-based biomaterials: A review of advances in processing and food applications. Carbohydr Polym 2023; 299:120142. [PMID: 36876773 DOI: 10.1016/j.carbpol.2022.120142] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/19/2022] [Accepted: 09/19/2022] [Indexed: 11/21/2022]
Abstract
Chitin is the most abundant natural amino polysaccharide, showing various practical applications owing to its functional properties. However, there are barriers in the development due to the difficulty of chitin extraction and purification, regarding its high crystallinity and low solubility. In recent years, some novel technologies such as microbial fermentation, ionic liquid, electrochemical extraction have emerged for the green extraction of chitin from new sources. Furthermore, nanotechnology, dissolution systems and chemical modification were applied to develop a variety of chitin-based biomaterials. Remarkably, chitin was used in delivering active ingredients and developing functional foods for weight loss, lipid reduction, gastrointestinal health, and anti-aging. Moreover, the application of chitin-based materials was expanded into medicine, energy and the environment. This review outlined the emerging extraction methods and processing routes of different chitin sources and advances in applying chitin-based materials. We aimed to provide some direction for the multi-disciplinary production and application of chitin.
Collapse
|
5
|
Huang J, Hwang AYM, Jia Y, Kim B, Iskandar M, Mohammed AI, Cirillo N. Experimental Chemotherapy-Induced Mucositis: A Scoping Review Guiding the Design of Suitable Preclinical Models. Int J Mol Sci 2022; 23:15434. [PMID: 36499758 PMCID: PMC9737148 DOI: 10.3390/ijms232315434] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/01/2022] [Accepted: 12/04/2022] [Indexed: 12/12/2022] Open
Abstract
Mucositis is a common and most debilitating complication associated with the cytotoxicity of chemotherapy. The condition affects the entire alimentary canal from the mouth to the anus and has a significant clinical and economic impact. Although oral and intestinal mucositis can occur concurrently in the same individual, these conditions are often studied independently using organ-specific models that do not mimic human disease. Hence, the purpose of this scoping review was to provide a comprehensive yet systematic overview of the animal models that are utilised in the study of chemotherapy-induced mucositis. A search of PubMed/MEDLINE and Scopus databases was conducted to identify all relevant studies. Multiple phases of filtering were conducted, including deduplication, title/abstract screening, full-text screening, and data extraction. Studies were reported according to the updated Preferred Reporting Items for Systematic reviews and Meta-Analyses Extension for Scoping Reviews (PRISMA-ScR) guidelines. An inter-rater reliability test was conducted using Cohen's Kappa score. After title, abstract, and full-text screening, 251 articles met the inclusion criteria. Seven articles investigated both chemotherapy-induced intestinal and oral mucositis, 198 articles investigated chemotherapy-induced intestinal mucositis, and 46 studies investigated chemotherapy-induced oral mucositis. Among a total of 205 articles on chemotherapy-induced intestinal mucositis, 103 utilised 5-fluorouracil, 34 irinotecan, 16 platinum-based drugs, 33 methotrexate, and 32 other chemotherapeutic agents. Thirteen articles reported the use of a combination of 5-fluorouracil, irinotecan, platinum-based drugs, or methotrexate to induce intestinal mucositis. Among a total of 53 articles on chemotherapy-induced oral mucositis, 50 utilised 5-fluorouracil, 2 irinotecan, 2 methotrexate, 1 topotecan and 1 with other chemotherapeutic drugs. Three articles used a combination of these drugs to induce oral mucositis. Various animal models such as mice, rats, hamsters, piglets, rabbits, and zebrafish were used. The chemotherapeutic agents were introduced at various dosages via three routes of administration. Animals were mainly mice and rats. Unlike intestinal mucositis, most oral mucositis models combined mechanical or chemical irritation with chemotherapy. In conclusion, this extensive assessment of the literature revealed that there was a large variation among studies that reproduce oral and intestinal mucositis in animals. To assist with the design of a suitable preclinical model of chemotherapy-induced alimentary tract mucositis, animal types, routes of administration, dosages, and types of drugs were reported in this study. Further research is required to define an optimal protocol that improves the translatability of findings to humans.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Nicola Cirillo
- Melbourne Dental School, The University of Melbourne, Carlton, VIC 3053, Australia
| |
Collapse
|
6
|
The beneficial mechanism of chitosan and chitooligosaccharides in the intestine on different health status. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
7
|
Kadokawa JI. Preparation of Composite Materials from Self-Assembled Chitin Nanofibers. Polymers (Basel) 2021; 13:polym13203548. [PMID: 34685305 PMCID: PMC8538764 DOI: 10.3390/polym13203548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/10/2021] [Accepted: 10/11/2021] [Indexed: 01/18/2023] Open
Abstract
Although chitin is a representative abundant polysaccharide, it is mostly unutilized as a material source because of its poor solubility and processability. Certain specific properties, such as biodegradability, biocompatibility, and renewability, make nanofibrillation an efficient approach for providing chitin-based functional nanomaterials. The composition of nanochitins with other polymeric components has been efficiently conducted at the nanoscale to fabricate nanostructured composite materials. Disentanglement of chitin microfibrils in natural sources upon the top-down approach and regeneration from the chitin solutions/gels with appropriate media, such as hexafluoro-2-propanol, LiCl/N, N-dimethylacetamide, and ionic liquids, have, according to the self-assembling bottom-up process, been representatively conducted to fabricate nanochitins. Compared with the former approach, the latter one has emerged only in the last one-and-a-half decade. This short review article presents the preparation of composite materials from the self-assembled chitin nanofibers combined with other polymeric substrates through regenerative processes based on the bottom-up approach.
Collapse
Affiliation(s)
- Jun-Ichi Kadokawa
- Graduate School of Science and Engineering, Kagoshima University, 1-21-40 Korimoto, Kagoshima 890-0065, Japan
| |
Collapse
|
8
|
Sauruk da Silva K, Carla da Silveira B, Bueno LR, Malaquias da Silva LC, da Silva Fonseca L, Fernandes ES, Maria-Ferreira D. Beneficial Effects of Polysaccharides on the Epithelial Barrier Function in Intestinal Mucositis. Front Physiol 2021; 12:714846. [PMID: 34366901 PMCID: PMC8339576 DOI: 10.3389/fphys.2021.714846] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 06/30/2021] [Indexed: 12/11/2022] Open
Abstract
Intestinal mucositis is a clinically relevant side effect of anticancer therapies. It is experienced by 60–100% of patients undergoing treatment with high doses of chemotherapy, radiation therapy, and bone marrow transplantation. Intestinal mucositis can manifest as pain, weight loss, inflammation, diarrhea, rectal bleeding, and infection; affecting normal nutritional intake and intestinal function. It often impacts adherence to anticancer therapy as it frequently limits patient’s ability to tolerate treatment, causing schedule delays, interruptions, or premature discontinuation. In some cases, local and systemic secondary infections are observed, increasing the costs toward medical care and hospitalization. Several strategies for managing mucositis are available which do not always halt this condition. In this context, new therapeutic strategies are under investigation to prevent or treat intestinal mucositis. Polysaccharides from natural resources have recently become promising molecules against intestinal damage due to their ability to promote mucosal healing and their anti-inflammatory actions. These effects are associated with the protection of intestinal mucosa and regulation of microbiota and immune system. This review aims to discuss the recent advances of polysaccharides from natural resources as potential therapies for intestinal mucositis. The source, species, doses, treatment schedules, and mechanisms of action of polysaccharides will be discussed in detail.
Collapse
Affiliation(s)
- Karien Sauruk da Silva
- Instituto de Pesquisa Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba, Brazil.,Programa de Pós-graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Faculdades Pequeno Príncipe, Curitiba, Brazil
| | - Bruna Carla da Silveira
- Instituto de Pesquisa Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba, Brazil.,Programa de Pós-graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Faculdades Pequeno Príncipe, Curitiba, Brazil
| | - Laryssa Regis Bueno
- Instituto de Pesquisa Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba, Brazil.,Programa de Pós-graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Faculdades Pequeno Príncipe, Curitiba, Brazil
| | - Liziane Cristine Malaquias da Silva
- Instituto de Pesquisa Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba, Brazil.,Programa de Pós-graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Faculdades Pequeno Príncipe, Curitiba, Brazil
| | - Lauany da Silva Fonseca
- Instituto de Pesquisa Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba, Brazil.,Programa de Pós-graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Faculdades Pequeno Príncipe, Curitiba, Brazil
| | - Elizabeth Soares Fernandes
- Instituto de Pesquisa Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba, Brazil.,Programa de Pós-graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Faculdades Pequeno Príncipe, Curitiba, Brazil
| | - Daniele Maria-Ferreira
- Instituto de Pesquisa Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba, Brazil.,Programa de Pós-graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Faculdades Pequeno Príncipe, Curitiba, Brazil
| |
Collapse
|
9
|
Uthaiwat P, Priprem A, Chio-Srichan S, Settasatian C, Lee YC, Mahakunakorn P, Boonsiri P, Leelayuwat C, Tippayawat P, Puthongking P, Daduang J. Oral Administration of Melatonin or Succinyl Melatonin Niosome Gel Benefits 5-FU-Induced Small Intestinal Mucositis Treatment in Mice. AAPS PharmSciTech 2021; 22:200. [PMID: 34212283 DOI: 10.1208/s12249-021-01941-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 01/20/2021] [Indexed: 01/01/2023] Open
Abstract
Mucositis is one of the most adverse effects of 5-fluorouracil (5-FU) and had no standard drug for treatment. Melatonin is a neurohormone, and can ameliorate radiotherapy-induced small intestinal mucositis. Melatonin encapsulated in niosomes improved its poor bioavailability. Succinyl melatonin, a melatonin derivative, showed prolonged release compared with melatonin. This study investigated the efficacy of melatonin niosome gel (MNG) and succinyl melatonin niosome gel (SNG) in 5-FU-induced small intestinal mucositis treatment in mice. MNG and SNG with particle sizes of 293 and 270 nm were shown to have mucoadhesive potentials. The effect of a daily oral application of MNG, SNG, or fluocinolone acetonide gel (FAG, positive control) was compared to that of the normal group. The body weight, food consumption, histology, Fourier transform infrared (FTIR) spectroscopy, inflammatory cytokines (tumor necrosis factor (TNF)-α and interleukin (IL)-1β), and malondialdehyde (MDA) in the small intestine were monitored. The results showed decreased %body weight and food consumption in all 5-FU-injected groups compared with the normal group. The MNG and SNG treatments maintained the food consumption and the normal integrity of the small intestines, as evidenced by villus length and crypt depth, similar to the observations in the normal groups. The FTIR spectra showed no change in lipids of the MNG and SNG groups compared with the normal group. Moreover, SNG could reduce IL-1β content to a level that was not different from the level in the normal groups. Therefore, the oral application of MNG and SNG could protect against 5-FU-induced small intestinal mucositis in mice.
Collapse
|
10
|
Preparation of Nanochitin/Polystyrene Composite Particles by Pickering Emulsion Polymerization Using Scaled-Down Chitin Nanofibers. COATINGS 2021. [DOI: 10.3390/coatings11060672] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this study, we investigate the Pickering emulsion polymerization of styrene using scaled-down chitin nanofibers (SD-ChNFs) as stabilizers to produce nanochitin/polystyrene composite particles. Prior to emulsion polymerization, an SD-ChNF aqueous dispersion was prepared by disintegrating bundles of the parent ChNFs with an upper hierarchical scale in aqueous acetic acid through ultrasonication. After styrene was added to the resulting dispersions, the mixtures at the desired weight ratios (SD-ChNFs to styrene = 0.1:1–1.4:1) were ultrasonicated to produce Pickering emulsions. Radical polymerization was then conducted in the presence of potassium persulfate as an initiator in the resulting emulsions to fabricate the composite particles. The results show that their average diameters decreased to a minimum of 84 nm as the weight ratios of SD-ChNFs to styrene increased. The IR and 1H-NMR spectra of the composite particle supported the presence of both chitin and polystyrene in the material.
Collapse
|
11
|
Goto K, Teramoto Y. Distribution of the Degree of Deacetylation of Surface-Deacetylated Chitin Nanofibers: Effects on Crystalline Structure and Cell Adhesion and Proliferation. ACS APPLIED BIO MATERIALS 2020; 3:8650-8657. [DOI: 10.1021/acsabm.0c01040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kenki Goto
- Department of Applied Life Science, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Yoshikuni Teramoto
- Division of Forest and Biomaterials Science, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
12
|
Yan P, Yin H, Guo W, Sun X, Li F, Huang S, Bian X, Wang F, Zhang F, Wang B, Zhou H, Zhou C, Yin L, Jiang X, Jiang N, Wu J, Liu J, Song D, He X. Raltitrexed versus 5-fluorouracil with cisplatin and concurrent radiotherapy for locally advanced nasopharyngeal carcinoma: An open labeled, randomized, controlled, and multicenter clinical trial. Cancer Med 2020; 9:6166-6172. [PMID: 32657029 PMCID: PMC7476844 DOI: 10.1002/cam4.3260] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 05/19/2020] [Accepted: 06/05/2020] [Indexed: 12/20/2022] Open
Abstract
Background This study aimed to compare the efficacy and toxicity of raltitrexed (Saiweijian®) plus cisplatin (SP regimen) and 5‐fluorouracil plus cisplatin (FP regimen) as concurrent chemoradiotherapy (CCRT) in patients with locally advanced nasopharyngeal carcinoma (LA‐NPC). Methods Eligible patients (N = 135) were allocated randomly in a ratio of 1:1 to receive CCRT with either SP or FP. At least 2 cycles of chemotherapy was administrated during radiotherapy. Progression free survival (PFS) was primary endpoint. Secondary endpoints included overall survival (OS), loco‐regional relapse free survival (LRRFS), distant metastasis free survival (DMFS) and toxicity. Results In this study, 68 patients received SP as CCRT, and 67 received FP. Objective responses were noted in 97.1% of the patients in the SP group and in 97.0% of the patients in the FP group (P = 1.00). At the end of a median 36 months follow‐up period, the estimated 3‐year PFS rates were 70.1% for SP and 66.6% for FP, respectively. The 3‐year LRRFS, DMFS and OS rates were 88.9%, 74.7% and 84.0%, respectively, for the SP group, and 92.3%, 71.0% and 73.7%, respectively, for the FP group. Overall, there was no difference between treatment groups with regard to response or survival. The most frequent acute toxicities monitored in both groups were bone marrow suppression, gastrointestinal side effects and oral mucositis (OM). The overall incidence of grade 3‐4 OM in the FP group (47.8%) was higher than in the SP group (11.8%). However, the incidence of other adverse effects observed in both groups was similar (P > .05). Conclusions These data indicate that SP and FP therapies have similar efficacy in treating LA‐NPC. The SP regimen showed a tolerable safety profile along with a lower frequency of severe OM and therefore, an improved life quality. In conclusion, SP was a well tolerated, effective, regimen for LA‐NPC treatment.
Collapse
Affiliation(s)
- Pengwei Yan
- Department of Radiaotherapy, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Haitao Yin
- Department of Radiotherapy, Xuzhou Center Hospital, Xuzhou, China
| | - Wenjie Guo
- Department of Radiaotherapy, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Xiangdong Sun
- Department of Radiotherapy, Jinling Hospital, Nanjing, China
| | - Feng Li
- Department of Radiaotherapy, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Shengfu Huang
- Department of Radiaotherapy, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Xiuhua Bian
- Department of Radiaotherapy, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Feijiang Wang
- Department of Radiaotherapy, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Fuzheng Zhang
- Department of Radiation Oncology, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Buhai Wang
- Cancer Institute of Northern Jiangsu People's Hospital, Yangzhou, China
| | - Hongping Zhou
- Director of Department of Radiotherapy Oncology, Nanjing Benq Medicalcenter, Nanjing, China
| | - Chong Zhou
- Department of Radiotherapy, Xuzhou Center Hospital, Xuzhou, China
| | - Li Yin
- Department of Radiaotherapy, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Xuesong Jiang
- Department of Radiaotherapy, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Ning Jiang
- Department of Radiaotherapy, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Jianfeng Wu
- Department of Radiaotherapy, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Juying Liu
- Department of Radiaotherapy, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Dan Song
- Department of Radiaotherapy, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Xia He
- Department of Radiaotherapy, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
13
|
Kamar SS, Baky MH, Omar AI. The beneficial influence of rhubarb on 5-fluorouracil-induced ileal mucositis and the combined role of aquaporin-4, tumour necrosis factor-α, nuclear factor-kappa B & matrix metalloproteinase-9 in rat model: histological study. Anat Cell Biol 2020; 53:228-239. [PMID: 32647090 PMCID: PMC7343559 DOI: 10.5115/acb.20.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/28/2020] [Accepted: 03/31/2020] [Indexed: 11/27/2022] Open
Abstract
A 5-fluorouracil (5-FU) is used for cancer treatment despite its cytotoxic sequelae on healthy cells, especially the rapid proliferating ones. Intestinal mucositis is one of the most frequent chemotherapeutic debilitating sequelae. Rhubarb (Rh), an ancient herb, is known for its curing effect on gastrointestinal complications. This study aims to detect the role of aquaporin-4 (AQP-4), tumour necrosis factor-α (TNF-α), nuclear factor-kappa B (NF-κB), and matrix metalloproteinase-9 (MMP-9) in 5-FU-induced ileal histological and biochemical changes and the potential therapeutic effect of Rh water extract on these changes in rats. A 45 rats were divided into 3 groups; control, 5-FU (single intraperitoneal injection of 150 mg/kg/rat) and Rh-treated (oral 20 mg/kg/day/rat for 8 days). The change in animals’ weight, incidence of diarrhoea and AQP-4 and TNF-α values in ileal homogenates were measured. Ileal sections were subjected to hematoxylin and eosin stain, periodic acid Schiff (PAS)-reaction and MMP-9, NF-κB and AQP-4 immunohistochemical staining. A 5-FU group revealed marked ileal mucosal damage associated with a significant decrease in the mean body weight, AQP-4 level and area percent of PAS and AQP-4 positive reaction. Significant increase in the mean incidence of diarrhoea, TNF-α value and area percent of MMP-9 and NF-κB was detected. These changes were significantly corrected with Rh administration. A 5-FU resulted in severe ileal mucositis through TNF-α, NF-κB, MMP-9, and AQP-4 disturbances. Rh treatment was highly effective in preventing such mucositis.
Collapse
Affiliation(s)
- Samaa Samir Kamar
- Department of Histology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Mostafa Hasan Baky
- Department of Pharmacology, Faculty of Pharmacology, Egyptian Russian University, Cairo, Egypt
| | - Abeer Ibraheem Omar
- Department of Histology, Faculty of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
14
|
Al-Jbour ND, Beg MD, Gimbun J, Alam AKMM. An Overview of Chitosan Nanofibers and their Applications in the Drug Delivery Process. Curr Drug Deliv 2019; 16:272-294. [PMID: 30674256 DOI: 10.2174/1567201816666190123121425] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 12/15/2018] [Accepted: 01/17/2019] [Indexed: 01/28/2023]
Abstract
Chitosan is a polycationic natural polymer which is abundant in nature. Chitosan has gained much attention as natural polymer in the biomedical field. The up to date drug delivery as well as the nanotechnology in controlled release of drugs from chitosan nanofibers are focused in this review. Electrospinning is one of the most established and widely used techniques for preparing nanofibers. This method is versatile and efficient for the production of continuous nanofibers. The chitosan-based nanofibers are emerging materials in the arena of biomaterials. Recent studies revealed that various drugs such as antibiotics, chemotherapeutic agents, proteins and anti-inflammatory analgesic drugs were successfully loaded onto electrospun nanofibers. Chitosan nanofibers have several outstanding properties for different significant pharmaceutical applications such as wound dressing, tissue engineering, enzyme immobilization, and drug delivery systems. This review highlights different issues of chitosan nanofibers in drug delivery applications, starting from the preparation of chitosan nanofibers, followed by giving an idea about the biocompatibility and degradation of chitosan nanofibers, then describing how to load the drug into the nanofibers. Finally, the major applications of chitosan nanofibers in drug delivery systems.
Collapse
Affiliation(s)
- Nawzat D Al-Jbour
- Center of Excellence for Advanced Research in Fluid Flow (CARIFF), Faculty of Chemical and Natural Resources Engineering, Universiti Malaysia Pahang, Gambang 26300, Kuantan, Malaysia
| | - Mohammad D Beg
- Center of Excellence for Advanced Research in Fluid Flow (CARIFF), Faculty of Chemical and Natural Resources Engineering, Universiti Malaysia Pahang, Gambang 26300, Kuantan, Malaysia
| | - Jolius Gimbun
- Center of Excellence for Advanced Research in Fluid Flow (CARIFF), Faculty of Chemical and Natural Resources Engineering, Universiti Malaysia Pahang, Gambang 26300, Kuantan, Malaysia
| | - A K M Moshiul Alam
- Center of Excellence for Advanced Research in Fluid Flow (CARIFF), Faculty of Chemical and Natural Resources Engineering, Universiti Malaysia Pahang, Gambang 26300, Kuantan, Malaysia.,Institute of Radiation and Polymer Technology, Bangladesh Atomic Energy Commission, Dhaka, Bangladesh
| |
Collapse
|
15
|
Gao Y, Kan C, Wan C, Chen C, Chen M, Chen J. Effects of hot air treatment and chitosan coating on citric acid metabolism in ponkan fruit during cold storage. PLoS One 2018; 13:e0206585. [PMID: 30444882 PMCID: PMC6239292 DOI: 10.1371/journal.pone.0206585] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Accepted: 10/15/2018] [Indexed: 02/07/2023] Open
Abstract
In citrus fruit, citric acid is the predominant organic acid which influence fruit taste, flavor and quality. The effect of hot air treatment (HAT 40°C, 48 h) and 1.0% chitosan coating on the change of organic acids and the related gene expression of citric acid synthesis and degradation in ponkan (Citrus reticulata Blanco) fruit during cold storage have been studied. The results showed that citric acid was the main organic acid in fruit, the trend change of citric acid content was consistent with total organic acids and titratable acidity (TA) content, which decreased with the prolongation of storage time, hot air treatment significantly promoted but chitosan coating treatment significantly delayed citric acid degradation in Ponkan fruit. Hot air treatment could induced CitAco2/3, CitIDH2/3, CitGAD4, CitACLs, CitPEPCKs and CitFBPases expression during fruit storage period, but had no significant effect on CitGSs expression, The enhanced expression of degradation-related genes was closely related to the degradation of citric acid. The expressions of CitAco3, CitGAD4 CitACLα2/β, CitPEPCKs and CitFBPases were inhibited, which leading to the degradation rate of citric acid was slowed by chitosan coating during storage. These results showed that the degradation of citric acid in fruit was regulated by ATP citrate lyase (ACL) pathway and γ-aminobutyric acid (GABA) pathway.
Collapse
Affiliation(s)
- Yang Gao
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables, Collaborative Innovation Center of Post-Harvest Key Technology and Quality Safety of Fruits and Vegetables, College of Agronomy, Jiangxi Agricultural University, Nanchang, China
| | - Chaonan Kan
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables, Collaborative Innovation Center of Post-Harvest Key Technology and Quality Safety of Fruits and Vegetables, College of Agronomy, Jiangxi Agricultural University, Nanchang, China
| | - Chunpeng Wan
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables, Collaborative Innovation Center of Post-Harvest Key Technology and Quality Safety of Fruits and Vegetables, College of Agronomy, Jiangxi Agricultural University, Nanchang, China
| | - Chuying Chen
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables, Collaborative Innovation Center of Post-Harvest Key Technology and Quality Safety of Fruits and Vegetables, College of Agronomy, Jiangxi Agricultural University, Nanchang, China
| | - Ming Chen
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables, Collaborative Innovation Center of Post-Harvest Key Technology and Quality Safety of Fruits and Vegetables, College of Agronomy, Jiangxi Agricultural University, Nanchang, China
| | - Jinyin Chen
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables, Collaborative Innovation Center of Post-Harvest Key Technology and Quality Safety of Fruits and Vegetables, College of Agronomy, Jiangxi Agricultural University, Nanchang, China
- Pingxiang University, Pingxiang, China
| |
Collapse
|
16
|
Anraku M, Gebicki JM, Iohara D, Tomida H, Uekama K, Maruyama T, Hirayama F, Otagiri M. Antioxidant activities of chitosans and its derivatives in in vitro and in vivo studies. Carbohydr Polym 2018; 199:141-149. [DOI: 10.1016/j.carbpol.2018.07.016] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 06/26/2018] [Accepted: 07/06/2018] [Indexed: 02/07/2023]
|
17
|
Park JW, Oh J, Ko SJ, Chang MS, Kim J. Effects of Onchung-eum, an Herbal Prescription, on 5-Fluorouracil-Induced Oral Mucositis. Integr Cancer Ther 2018; 17:1285-1296. [PMID: 30296855 PMCID: PMC6247538 DOI: 10.1177/1534735418805560] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
In most cancer patients, chemotherapy-induced oral mucositis (OM) is a frequent
side effect, leading to low quality of life and delay in therapy. The aim of
this study was to evaluate the effects of Onchung-eum, a
well-known herbal prescription in traditional medicine comprising 8 herbs that
has long been used for skin diseases, on 5-fluorouracil (5-FU)–induced OM in
human pharyngeal cells and golden Syrian hamsters. DPPH
(2,2-diphenyl-1-picrylhydrazyl) radical scavenging activity, MTT
(3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay, and
reactive oxygen species production were measured in vitro. The effects of
Onchung-eum on OM of hamster cheek pouches induced by 5-FU
were evaluated histologically and using TUNEL assay. In addition, the expression
of nuclear factor-κB, caspase-3, and pro-inflammatory cytokines were measured by
immunoblotting and immunohistochemistry. Significantly increased cell viability
was observed in the Onchung-eum–treated groups compared with
the 5-FU–treated control group. In 500 and 1000 mg/kg
Onchung-eum–treated groups, the damaged epithelial layers
in the cheek pouches of hamsters were significantly recovered. Moreover, at all
concentrations, cell death in the cheek pouches of hamsters in the
Onchung-eum–treated groups significantly decreased. The
expression of pro-inflammatory cytokines, nuclear factor-κB, and caspase-3 also
significantly decreased in Onchung-eum–treated groups at 500
and 1000 mg/kg. In conclusion, this study revealed that
Onchung-eum can be used to treat chemotherapy-induced OM.
However, further studies are required to understand the underlying
mechanisms.
Collapse
Affiliation(s)
- Jae-Woo Park
- 1 Department of Gastroenterology, College of Korean Medicine, Kyung Hee University, Seoul, Korea
| | - Jayoung Oh
- 2 Department of Clinical Korean Medicine, Graduate School, Kyung Hee University, Seoul, Korea
| | - Seok-Jae Ko
- 1 Department of Gastroenterology, College of Korean Medicine, Kyung Hee University, Seoul, Korea
| | - Mun Seog Chang
- 3 Department of Prescriptionology, College of Korean Medicine, Kyung Hee University, Seoul, Korea
| | - Jinsung Kim
- 1 Department of Gastroenterology, College of Korean Medicine, Kyung Hee University, Seoul, Korea
| |
Collapse
|
18
|
Gao Y, Kan C, Wan C, Chen C, Chen M, Chen J. Effects of hot air treatment and chitosan coating on citric acid metabolism in ponkan fruit during cold storage. PLoS One 2018. [PMID: 30444882 DOI: 10.1371/journal.pone.020658e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2023] Open
Abstract
In citrus fruit, citric acid is the predominant organic acid which influence fruit taste, flavor and quality. The effect of hot air treatment (HAT 40°C, 48 h) and 1.0% chitosan coating on the change of organic acids and the related gene expression of citric acid synthesis and degradation in ponkan (Citrus reticulata Blanco) fruit during cold storage have been studied. The results showed that citric acid was the main organic acid in fruit, the trend change of citric acid content was consistent with total organic acids and titratable acidity (TA) content, which decreased with the prolongation of storage time, hot air treatment significantly promoted but chitosan coating treatment significantly delayed citric acid degradation in Ponkan fruit. Hot air treatment could induced CitAco2/3, CitIDH2/3, CitGAD4, CitACLs, CitPEPCKs and CitFBPases expression during fruit storage period, but had no significant effect on CitGSs expression, The enhanced expression of degradation-related genes was closely related to the degradation of citric acid. The expressions of CitAco3, CitGAD4 CitACLα2/β, CitPEPCKs and CitFBPases were inhibited, which leading to the degradation rate of citric acid was slowed by chitosan coating during storage. These results showed that the degradation of citric acid in fruit was regulated by ATP citrate lyase (ACL) pathway and γ-aminobutyric acid (GABA) pathway.
Collapse
Affiliation(s)
- Yang Gao
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables, Collaborative Innovation Center of Post-Harvest Key Technology and Quality Safety of Fruits and Vegetables, College of Agronomy, Jiangxi Agricultural University, Nanchang, China
| | - Chaonan Kan
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables, Collaborative Innovation Center of Post-Harvest Key Technology and Quality Safety of Fruits and Vegetables, College of Agronomy, Jiangxi Agricultural University, Nanchang, China
| | - Chunpeng Wan
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables, Collaborative Innovation Center of Post-Harvest Key Technology and Quality Safety of Fruits and Vegetables, College of Agronomy, Jiangxi Agricultural University, Nanchang, China
| | - Chuying Chen
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables, Collaborative Innovation Center of Post-Harvest Key Technology and Quality Safety of Fruits and Vegetables, College of Agronomy, Jiangxi Agricultural University, Nanchang, China
| | - Ming Chen
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables, Collaborative Innovation Center of Post-Harvest Key Technology and Quality Safety of Fruits and Vegetables, College of Agronomy, Jiangxi Agricultural University, Nanchang, China
| | - Jinyin Chen
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables, Collaborative Innovation Center of Post-Harvest Key Technology and Quality Safety of Fruits and Vegetables, College of Agronomy, Jiangxi Agricultural University, Nanchang, China
- Pingxiang University, Pingxiang, China
| |
Collapse
|
19
|
Topical application of ointment containing 0.5% green tea catechins suppresses tongue oxidative stress in 5-fluorouracil administered rats. Arch Oral Biol 2017; 82:247-255. [DOI: 10.1016/j.archoralbio.2017.06.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 05/30/2017] [Accepted: 06/18/2017] [Indexed: 12/30/2022]
|