1
|
Zou Q, Zhang S, Jiang C, Xiao S, Wang Y, Wen B. Low-level laser therapy on soft tissue healing after implantation: a randomized controlled trial. BMC Oral Health 2024; 24:1477. [PMID: 39639276 PMCID: PMC11619145 DOI: 10.1186/s12903-024-05258-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 11/26/2024] [Indexed: 12/07/2024] Open
Abstract
BACKGROUND To explore the effect of low-level laser therapy (LLLT) on the healing of soft tissue around the implant after flap implantation and explore the possible mechanism. METHODS A total of 58 patients who underwent implant surgery were enrolled, with a total of 70 implants. They were randomly divided into the LLLT group and the control group. The LLLT group underwent LLLT with Nd:YAG (Fotona, 1064 nm) immediately after surgery and on the 2nd and 3rd day in the surgical area, while the control group did not receive any intervention. Pain assessment was performed in the first 3 days after surgery. The weight of peri-implant crevicular fluid (PICF), modified sulcus bleeding index (mSBI), gingival index (GI), and the expression levels of tumor necrosis factor-α (TNF-α), and vascular endothelial growth factor (VEGF) on the 7th and 14th days after surgery were evaluated. RESULTS On the first 3 days after surgery, the pain score of the LLLT group was significantly lower than that of the control group. On the 7th and 14th day after surgery, the PICF volume, mSBI, GI, and TNF-α levels of the LLLT group were lower than those of the control group. The VEGF levels in the LLLT group were significantly higher than that in the control group. CONCLUSIONS LLLT can promote the healing of the soft tissue after implantation, effectively relieve postoperative pain, improve clinical indicators, reduce TNF-α, and increase the expression level of VEGF, which is worthy of clinical application. TRIAL REGISTRATION Retrospectively Registered Trials ChiCTR2400087562 (07/30/2024).
Collapse
Affiliation(s)
- Qiaoru Zou
- Department of Stomatology, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Shengxiang Zhang
- Department of Stomatology, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Chunwen Jiang
- Department of Stomatology, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Shan Xiao
- Department of Stomatology, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Yue Wang
- Department of Stomatology, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Bing Wen
- Department of Stomatology, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.
| |
Collapse
|
2
|
Cruz FF, Pereira TCB, da Costa KM, Bonan CD, Bogo MR, Morrone FB. Effect of adenosine treatment on ionizing radiation toxicity in zebrafish early life stages. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:521-534. [PMID: 37480487 DOI: 10.1007/s00210-023-02617-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 07/07/2023] [Indexed: 07/24/2023]
Abstract
The danger of ionizing radiation exposure to human health is a concern. Since its wide use in medicine and industry, the development of radioprotectors has been very significant. Adenosine exerts anti-inflammatory actions and promotes tissue protection and repair, by activating the P1 receptors (A1, A2A, A2B, and A3). Zebrafish (Danio rerio) is an appropriate tool in the fields of toxicology and pharmacology, including the evaluation of radiobiological outcomes and in the search for radioprotector agents. This study aims to evaluate the effect of adenosine in the toxicity induced by radiation in zebrafish. Embryos were treated with 1, 10, or 100 µM adenosine, 30 min before the exposure to 15 Gy of gamma radiation. Adenosine potentiated the effects of radiation in heart rate, body length, and pericardial edema. We evaluated oxidative stress, tissue remodeling and inflammatory. It was seen that 100 µM adenosine reversed the inflammation induced by radiation, and that A2A2 and A2B receptors are involved in these anti-inflammatory effects. Our results indicate that P1R activation could be a promising pharmacological strategy for radioprotection.
Collapse
Affiliation(s)
- Fernanda Fernandes Cruz
- Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
- Laboratório de Farmacologia Aplicada, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Talita Carneiro Brandão Pereira
- Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
- Laboratório de Biologia Genômica e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Kesiane Mayra da Costa
- Laboratório de Biologia Genômica e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
- Programa de Pós-Graduação em Medicina e Ciências da Saúde, Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Carla Denise Bonan
- Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
- Programa de Pós-Graduação em Medicina e Ciências da Saúde, Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Maurício Reis Bogo
- Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
- Laboratório de Biologia Genômica e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
- Programa de Pós-Graduação em Medicina e Ciências da Saúde, Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Fernanda Bueno Morrone
- Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil.
- Laboratório de Farmacologia Aplicada, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil.
- Programa de Pós-Graduação em Medicina e Ciências da Saúde, Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil.
| |
Collapse
|
3
|
Day RM, Rittase WB, Slaven JE, Lee SH, Brehm GV, Bradfield DT, Muir JM, Wise SY, Fatanmi OO, Singh VK. Iron Deposition in the Bone Marrow and Spleen of Nonhuman Primates with Acute Radiation Syndrome. Radiat Res 2023; 200:593-600. [PMID: 37967581 PMCID: PMC10754359 DOI: 10.1667/rade-23-00107.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 10/23/2023] [Indexed: 11/17/2023]
Abstract
The risk of exposure to high levels of ionizing radiation from nuclear weapons or radiological accidents is an increasing world concern. Partial- or total-body exposure to high doses of radiation is potentially lethal through the induction of acute radiation syndrome (ARS). Hematopoietic cells are sensitive to radiation exposure; white blood cells primarily undergo apoptosis while red blood cells (RBCs) undergo hemolysis. Several laboratories demonstrated that the rapid hemolysis of RBCs results in the release of acellular iron into the blood. We recently demonstrated using a murine model of ARS after total-body irradiation (TBI) and the loss of RBCs, iron accumulated in the bone marrow and spleen, notably between 4-21 days postirradiation. Here, we investigated iron accumulation in the bone marrow and spleens from TBI nonhuman primates (NHPs) using histological stains. We observed trends in increased intracellular and extracellular brown pigmentation in the bone marrow after various doses of radiation, especially after 4-15 days postirradiation, but these differences did not reach significance. We observed a significant increase in Prussian blue-staining intracellular iron deposition in the spleen 13-15 days after 5.8-8.5 Gy of TBI. We observed trends of increased iron in the spleen after 30-60 days postirradiation, with varying doses of radiation, but these differences did not reach significance. The NHP model of ARS confirms our earlier findings in the murine model, showing iron deposition in the bone marrow and spleen after TBI.
Collapse
Affiliation(s)
- Regina M. Day
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814
| | - W. Bradley Rittase
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814
| | - John E. Slaven
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814
| | - Sang-Ho Lee
- Pathology Department, Research Services, Naval Medical Research Center, Silver Spring, Maryland 20910
| | - Grace V. Brehm
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814
| | - Dmitry T. Bradfield
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814
| | - Jeannie M. Muir
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814
| | - Stephen Y. Wise
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814
| | - Oluseyi O. Fatanmi
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814
| | - Vijay K. Singh
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814
| |
Collapse
|
4
|
LIU F, WEI Y, WANG Z. β-D-Glucan promotes NF-κB activation and ameliorates high-LET carbon-ion irradiation-induced human umbilical vein endothelial cell injury. Turk J Med Sci 2023; 53:1621-1634. [PMID: 38813508 PMCID: PMC10760591 DOI: 10.55730/1300-0144.5731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 12/12/2023] [Accepted: 09/21/2023] [Indexed: 05/31/2024] Open
Abstract
Background/aim Heavy-ion irradiation seriously perturbs cellular homeostasis and thus damages cells. Vascular endothelial cells (ECs) play an important role in the pathological process of radiation damage. Protecting ECs from heavy-ion radiation is of great significance in the radioprotection of normal tissues. In this study, the radioprotective effect of β-D-glucan (BG) derived from Saccharomyces cerevisiae on human umbilical vein endothelial cell (EA.hy926) cytotoxicity produced by carbon-ion irradiation was examined and the probable mechanism was established. Materials and methods EA.hy926 cells were divided into seven groups: a control group; 1, 2, or 4 Gy radiation; and 10 μg/mL BG pretreatment for 24 h before 1, 2, or 4 Gy irradiation. Cell survival was assessed by colony formation assay. Cell cycles, apoptosis, DNA damage, and reactive oxygen species (ROS) levels were measured through flow cytometry. The level of malondialdehyde and antioxidant enzyme activities were analyzed using assay kits. The activation of NF-κB was analyzed using western blotting and a transcription factor assay kit. The expression of downstream target genes was detected by western blotting. Results BG pretreatment significantly increased the survival of irradiated cells, improved cell cycle progression, and decreased DNA damage and apoptosis. The levels of ROS and malondialdehyde were also decreased by BG. Further study indicated that BG increased the antioxidant enzyme activities, activated Src, and promoted NF-κB activation, especially for the p65, p50, and RelB subunits. The activated NF-κB upregulated the expression of antioxidant protein MnSOD, DNA damage-response and repair-related proteins BRCA2 and Hsp90α, and antiapoptotic protein Bcl-2. Conclusion Our results demonstrated that BG protects EA.hy926 cells from high linear-energy-transfer carbon-ion irradiation damage through the upregulation of prosurvival signaling triggered by the interaction of BG with its receptor. This confirms that BG is a promising radioprotective agent for heavy-ion exposure.
Collapse
Affiliation(s)
- Fang LIU
- International Genome Center, Jiangsu University, Zhenjiang, Jiangsu, P.R.
China
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, Gansu, P.R.
China
| | - Yanting WEI
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, Gansu, P.R.
China
| | - Zhuanzi WANG
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, Gansu, P.R.
China
| |
Collapse
|
5
|
Obrador E, Salvador-Palmer R, Villaescusa JI, Gallego E, Pellicer B, Estrela JM, Montoro A. Nuclear and Radiological Emergencies: Biological Effects, Countermeasures and Biodosimetry. Antioxidants (Basel) 2022; 11:1098. [PMID: 35739995 PMCID: PMC9219873 DOI: 10.3390/antiox11061098] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 11/17/2022] Open
Abstract
Atomic and radiological crises can be caused by accidents, military activities, terrorist assaults involving atomic installations, the explosion of nuclear devices, or the utilization of concealed radiation exposure devices. Direct damage is caused when radiation interacts directly with cellular components. Indirect effects are mainly caused by the generation of reactive oxygen species due to radiolysis of water molecules. Acute and persistent oxidative stress associates to radiation-induced biological damages. Biological impacts of atomic radiation exposure can be deterministic (in a period range a posteriori of the event and because of destructive tissue/organ harm) or stochastic (irregular, for example cell mutation related pathologies and heritable infections). Potential countermeasures according to a specific scenario require considering basic issues, e.g., the type of radiation, people directly affected and first responders, range of doses received and whether the exposure or contamination has affected the total body or is partial. This review focuses on available medical countermeasures (radioprotectors, radiomitigators, radionuclide scavengers), biodosimetry (biological and biophysical techniques that can be quantitatively correlated with the magnitude of the radiation dose received), and strategies to implement the response to an accidental radiation exposure. In the case of large-scale atomic or radiological events, the most ideal choice for triage, dose assessment and victim classification, is the utilization of global biodosimetry networks, in combination with the automation of strategies based on modular platforms.
Collapse
Affiliation(s)
- Elena Obrador
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain; (R.S.-P.); (B.P.); (J.M.E.)
| | - Rosario Salvador-Palmer
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain; (R.S.-P.); (B.P.); (J.M.E.)
| | - Juan I. Villaescusa
- Service of Radiological Protection, Clinical Area of Medical Image, La Fe University Hospital, 46026 Valencia, Spain; (J.I.V.); (A.M.)
- Biomedical Imaging Research Group GIBI230, Health Research Institute (IISLaFe), La Fe University Hospital, 46026 Valencia, Spain
| | - Eduardo Gallego
- Energy Engineering Department, School of Industrial Engineering, Polytechnic University of Madrid, 28040 Madrid, Spain;
| | - Blanca Pellicer
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain; (R.S.-P.); (B.P.); (J.M.E.)
| | - José M. Estrela
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain; (R.S.-P.); (B.P.); (J.M.E.)
| | - Alegría Montoro
- Service of Radiological Protection, Clinical Area of Medical Image, La Fe University Hospital, 46026 Valencia, Spain; (J.I.V.); (A.M.)
- Biomedical Imaging Research Group GIBI230, Health Research Institute (IISLaFe), La Fe University Hospital, 46026 Valencia, Spain
| |
Collapse
|
6
|
Zhu S, Liang J, Zhu F, Zhang X, Xu M, Zhao K, Zeng L, Xu K. The effects of myeloablative or non-myeloablative total body irradiations on intestinal tract in mice. Biosci Rep 2021; 41:BSR20202993. [PMID: 33605406 PMCID: PMC7926181 DOI: 10.1042/bsr20202993] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 01/25/2021] [Accepted: 02/18/2021] [Indexed: 12/12/2022] Open
Abstract
Acute radiation injury caused by high-dose radiation exposure severely impedes the application of radiotherapy in cancer management. To deeply understand the side effects of radiation on intestinal tract, an irradiation murine model was applied and evaluated. C57BL/6 mice were given 4 Gy non-myeloablative irradiation, 8 Gy myeloablative irradiation and non-irradiation (control), respectively. Results demonstrated that the 8 Gy myeloablative irradiations significantly damaged the gut barrier along with decreasing MECA32 and ZO-1. However, a slight increase in MECA32 and ZO-1 was detected in the 4 Gy non-myeloablative irradiations treatment from day 5 to day 10. Further, the irradiations affected the expression of P38 and JNK mitogen-activated protein kinase (MAPK) but not ERK1/2 MAPK signal pathway. Moreover, irradiation had adverse effects on hematopoietic system, altered the numbers and percentages of intestinal inflammatory cells. The IL-17/AhR had big increase in the gut of 4 Gy irradiation mice at day 10 compared with other groups. Both 8 Gy myeloablative and 4 Gy non-myeloablative irradiation disturbed the levels of short-chain fatty acids (SCFAs) in intestine. Meanwhile, high dosage of irradiation decreased the intestinal bacterial diversity and altered the community composition. Importantly, the fatty acids generating bacteria Bacteroidaceae and Ruminococcaceae played key roles in community distribution and SCFAs metabolism after irradiation. Collectively, the irradiation induced gut barrier damage with dosages dependent that led to the decreased p38 MAPK and increased JNK MAPK, unbalanced the mononuclear cells (MNCs) of gut, disturbed intestinal bacterial community and SCFAs level.
Collapse
Affiliation(s)
- Shengyun Zhu
- Institute of Blood Diseases, Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
- Department of Hematology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
- The Key Laboratory of Bone Marrow Stem Cell, Jiangsu 221002, China
| | - Jing Liang
- Institute of Blood Diseases, Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
| | - Feng Zhu
- Institute of Blood Diseases, Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
- Department of Hematology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
- The Key Laboratory of Bone Marrow Stem Cell, Jiangsu 221002, China
| | - Xue Zhang
- Institute of Blood Diseases, Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
| | - Mengdi Xu
- Institute of Blood Diseases, Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
| | - Kai Zhao
- Institute of Blood Diseases, Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
- Department of Hematology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
- The Key Laboratory of Bone Marrow Stem Cell, Jiangsu 221002, China
| | - Lingyu Zeng
- Institute of Blood Diseases, Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
- Department of Hematology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
- The Key Laboratory of Bone Marrow Stem Cell, Jiangsu 221002, China
| | - Kailin Xu
- Institute of Blood Diseases, Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
- Department of Hematology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
- The Key Laboratory of Bone Marrow Stem Cell, Jiangsu 221002, China
| |
Collapse
|
7
|
Yamasaki MC, Roque-Torres GD, Peroni LV, Nascimento EHL, Salmon B, Oliveira ML, Freitas DQ, Correr-Sobrinho L. Does the administration of meloxicam before head and neck radiotherapy reduce the risk of mandibular osteoradionecrosis? An animal model study. Clin Oral Investig 2021; 25:3739-3745. [PMID: 33387032 DOI: 10.1007/s00784-020-03701-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 11/23/2020] [Indexed: 11/27/2022]
Abstract
OBJECTIVE To assess whether the administration of meloxicam before head and neck radiotherapy reduces the risk of mandibular osteoradionecrosis in rats. MATERIAL AND METHODS Sixty male Wistar rats were randomly divided into 6 groups (n = 10) according to the meloxicam administration and radiation therapy: control (C), irradiated (I), single dose of meloxicam (M1), single dose of meloxicam and irradiated (M1I), triple dose of meloxicam (M3), triple dose of meloxicam and irradiated (M3I). Meloxicam was administrated (20 mg/kg per dose) 1 h before the radiation therapy (single dose of 20 Gy) and 24 h and 48 h after the radiation therapy for groups with two additional doses. Ten days after the radiation therapy, the three right mandibular molars were extracted from all rats, who were euthanatized after 21 or 35 days (n = 5 per group). The mandibles were assessed by macroscopic evaluation and micro-CT analysis. RESULTS The right hemimandibles of the irradiated groups revealed macroscopic signs of osteoradionecrosis, and those of the non-irradiated groups revealed complete gingival healing. A significant delay in alveolar socket healing in all irradiated groups was observed in the micro-CT assessment regardless meloxicam treatment. CONCLUSION The administration of meloxicam before head and neck radiotherapy does not reduce the risk of mandibular osteoradionecrosis when associated to dental extractions. CLINICAL RELEVANCE Since meloxicam has been shown to be a potential radiation-protective agent, and osteoradionecrosis physiopathology is believed to be related to an inflammatory process, possible interactions are relevant to be investigated.
Collapse
Affiliation(s)
- Mayra Cristina Yamasaki
- Department of Oral Diagnosis, Division of Oral Radiology, Piracicaba Dental School, University of Campinas, Av. Limeira, 901, PO Box 52, Piracicaba, SP, 13414-903, Brazil.
| | - Gina Delia Roque-Torres
- Department of Oral Diagnosis, Division of Oral Radiology, Piracicaba Dental School, University of Campinas, Av. Limeira, 901, PO Box 52, Piracicaba, SP, 13414-903, Brazil
| | - Leonardo Vieira Peroni
- Department of Oral Diagnosis, Division of Oral Radiology, Piracicaba Dental School, University of Campinas, Av. Limeira, 901, PO Box 52, Piracicaba, SP, 13414-903, Brazil
| | - Eduarda Helena Leandro Nascimento
- Department of Oral Diagnosis, Division of Oral Radiology, Piracicaba Dental School, University of Campinas, Av. Limeira, 901, PO Box 52, Piracicaba, SP, 13414-903, Brazil
| | - Benjamin Salmon
- Université de Paris, Orofacial Pathologies, Imaging and Biotherapies UR2496 Lab, F-92120, Montrouge, France.,Dental Medicine Department, AP-HP, Bretonneau hospital, F-75018, Paris, France
| | - Matheus Lima Oliveira
- Department of Oral Diagnosis, Division of Oral Radiology, Piracicaba Dental School, University of Campinas, Av. Limeira, 901, PO Box 52, Piracicaba, SP, 13414-903, Brazil
| | - Deborah Queiroz Freitas
- Department of Oral Diagnosis, Division of Oral Radiology, Piracicaba Dental School, University of Campinas, Av. Limeira, 901, PO Box 52, Piracicaba, SP, 13414-903, Brazil
| | - Lourenço Correr-Sobrinho
- Department of Restorative Dentistry, Division of Dental Materials, Piracicaba Dental School, University of Campinas, Piracicaba, Brazil
| |
Collapse
|
8
|
Theron AJ, Steel HC, Rapoport BL, Anderson R. Contrasting Immunopathogenic and Therapeutic Roles of Granulocyte Colony-Stimulating Factor in Cancer. Pharmaceuticals (Basel) 2020; 13:ph13110406. [PMID: 33233675 PMCID: PMC7699711 DOI: 10.3390/ph13110406] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/16/2020] [Accepted: 11/16/2020] [Indexed: 12/15/2022] Open
Abstract
Tumor cells are particularly adept at exploiting the immunosuppressive potential of neutrophils as a strategy to achieve uncontrolled proliferation and spread. Recruitment of neutrophils, particularly those of an immature phenotype, known as granulocytic myeloid-derived suppressor cells, is achieved via the production of tumor-derived granulocyte colony-stimulating factor (G-CSF) and neutrophil-selective chemokines. This is not the only mechanism by which G-CSF contributes to tumor-mediated immunosuppression. In this context, the G-CSF receptor is expressed on various cells of the adaptive and innate immune systems and is associated with induction of T cell polarization towards the Th2 and regulatory T cell (Treg) phenotypes. In contrast to the potentially adverse effects of sustained, endogenous production of G-CSF by tumor cells, stringently controlled prophylactic administration of recombinant (r) G-CSF is now a widely practiced strategy in medical oncology to prevent, and in some cases treat, chemotherapy-induced severe neutropenia. Following an overview of the synthesis, structure and function of G-CSF and its receptor, the remainder of this review is focused on: (i) effects of G-CSF on the cells of the adaptive and innate immune systems; (ii) mechanisms by which this cytokine promotes tumor progression and invasion; and (iii) current clinical applications and potential risks of the use of rG-CSF in medical oncology.
Collapse
Affiliation(s)
- Annette J. Theron
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa; (H.C.S.); (B.L.R.); (R.A.)
- Correspondence: ; Tel.: +27-12-319-2355
| | - Helen C. Steel
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa; (H.C.S.); (B.L.R.); (R.A.)
| | - Bernardo L. Rapoport
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa; (H.C.S.); (B.L.R.); (R.A.)
- The Medical Oncology Centre of Rosebank, Johannesburg 2196, South Africa
| | - Ronald Anderson
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa; (H.C.S.); (B.L.R.); (R.A.)
| |
Collapse
|
9
|
Obrador E, Salvador R, Villaescusa JI, Soriano JM, Estrela JM, Montoro A. Radioprotection and Radiomitigation: From the Bench to Clinical Practice. Biomedicines 2020; 8:E461. [PMID: 33142986 PMCID: PMC7692399 DOI: 10.3390/biomedicines8110461] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 10/27/2020] [Accepted: 10/29/2020] [Indexed: 02/07/2023] Open
Abstract
The development of protective agents against harmful radiations has been a subject of investigation for decades. However, effective (ideal) radioprotectors and radiomitigators remain an unsolved problem. Because ionizing radiation-induced cellular damage is primarily attributed to free radicals, radical scavengers are promising as potential radioprotectors. Early development of such agents focused on thiol synthetic compounds, e.g., amifostine (2-(3-aminopropylamino) ethylsulfanylphosphonic acid), approved as a radioprotector by the Food and Drug Administration (FDA, USA) but for limited clinical indications and not for nonclinical uses. To date, no new chemical entity has been approved by the FDA as a radiation countermeasure for acute radiation syndrome (ARS). All FDA-approved radiation countermeasures (filgrastim, a recombinant DNA form of the naturally occurring granulocyte colony-stimulating factor, G-CSF; pegfilgrastim, a PEGylated form of the recombinant human G-CSF; sargramostim, a recombinant granulocyte macrophage colony-stimulating factor, GM-CSF) are classified as radiomitigators. No radioprotector that can be administered prior to exposure has been approved for ARS. This differentiates radioprotectors (reduce direct damage caused by radiation) and radiomitigators (minimize toxicity even after radiation has been delivered). Molecules under development with the aim of reaching clinical practice and other nonclinical applications are discussed. Assays to evaluate the biological effects of ionizing radiations are also analyzed.
Collapse
Affiliation(s)
- Elena Obrador
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain; (E.O.); (R.S.); (J.M.E.)
| | - Rosario Salvador
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain; (E.O.); (R.S.); (J.M.E.)
| | - Juan I. Villaescusa
- Service of Radiological Protection, Clinical Area of Medical Image, La Fe University Hospital, 46026 Valencia, Spain;
- Biomedical Imaging Research Group GIBI230, Health Research Institute (IISLaFe), La Fe University Hospital, 46026 Valencia, Spain
| | - José M. Soriano
- Food & Health Lab, Institute of Materials Science, University of Valencia, 46980 Valencia, Spain;
- Joint Research Unit in Endocrinology, Nutrition and Clinical Dietetics, University of Valencia-Health Research Institute IISLaFe, 46026 Valencia, Spain
| | - José M. Estrela
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain; (E.O.); (R.S.); (J.M.E.)
| | - Alegría Montoro
- Service of Radiological Protection, Clinical Area of Medical Image, La Fe University Hospital, 46026 Valencia, Spain;
- Biomedical Imaging Research Group GIBI230, Health Research Institute (IISLaFe), La Fe University Hospital, 46026 Valencia, Spain
| |
Collapse
|
10
|
Sia DK, Mensah KB, Opoku-Agyemang T, Folitse RD, Darko DO. Mechanisms of ivermectin-induced wound healing. BMC Vet Res 2020; 16:397. [PMID: 33081763 PMCID: PMC7576857 DOI: 10.1186/s12917-020-02612-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 10/06/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Wounds cause structural and functional discontinuity of an organ. Wound healing, therefore, seeks to re-establish the normal morphology and functionality through intertwined stages of hemostasis, inflammation, proliferation, and tissue remodelling. Ivermectin, a macrolide, has been used as an endectoparasiticide in human and veterinary medicine practice for decades. Here, we show that ivermectin exhibits wounding healing activity by mechanisms independent of its well-known antiparasitic activity. This study aimed to evaluate the wound healing property of ivermectin cream using histochemistry and enzyme-linked immunosorbent assay techniques. RESULTS Non-irritant dose of ivermectin cream (0.03-1%) decreased wound macroscopic indices such as exudation, edge edema, hyperemia, and granulation tissue deposition by day 9 compared to day 13 for the vehicle-treated group. This corresponded with a statistically significant wound contraction rate, hydroxyproline deposition, and a decreased time to heal rate. The levels of growth factors TGF-β1 and VEGF were significantly elevated on day 7 but decreased on day 21. This corresponded with changes in cytokines (IL-1α, IL-4, IL-10, and TNF-α) and eicosanoids (LTB4, PGE2, and PGD2) levels on days 7 and 21.. Interestingly, low doses of ivermectin cream (0.03-0.1%) induced wound healing with minimal scarring compared to higher doses of the cream and the positive control, Silver Sulfadiazine. CONCLUSION Ivermectin promotes wound healing partly through modulation of the inflammatory process and the levels of Transforming Growth Factor-Beta 1 and Vascular Endothelial Growth Factor. Low doses of ivermectin cream have the potential to be used in treating wounds with minimal scar tissue formation.
Collapse
Affiliation(s)
- Daniel Kwesi Sia
- Department of Pharmacology, College of Health Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
- School of Veterinary Medicine, College of Health Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Kwesi Boadu Mensah
- Department of Pharmacology, College of Health Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana.
| | - Tony Opoku-Agyemang
- School of Veterinary Medicine, College of Health Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Raphael D Folitse
- School of Veterinary Medicine, College of Health Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - David Obiri Darko
- Department of Pharmacology, College of Health Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| |
Collapse
|
11
|
Grebenyuk AN, Gladkikh VD. Modern Condition and Prospects for the Development of Medicines towards Prevention and Early Treatment of Radiation Damage. BIOL BULL+ 2020. [DOI: 10.1134/s1062359019110141] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Farhood B, Hassanzadeh G, Amini P, Shabeeb D, Musa AE, Khodamoradi E, Mohseni M, Aliasgharzadeh A, Moradi H, Najafi M. Mitigation of Radiation-induced Gastrointestinal System Injury using Resveratrol or Alpha-lipoic Acid: A Pilot Histopathological Study. Antiinflamm Antiallergy Agents Med Chem 2020; 19:413-424. [PMID: 31713500 DOI: 10.2174/1871523018666191111124028] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/05/2019] [Accepted: 10/20/2019] [Indexed: 06/10/2023]
Abstract
AIM In this study, we aimed to determine possible mitigation of radiationinduced toxicities in the duodenum, jejunum and colon using post-exposure treatment with resveratrol and alpha-lipoic acid. BACKGROUND After the bone marrow, gastrointestinal system toxicity is the second critical cause of death following whole-body exposure to radiation. Its side effects reduce the quality of life of patients who have undergone radiotherapy. Resveratrol has an antioxidant effect and stimulates DNA damage responses (DDRs). Alpha-lipoic acid neutralizes free radicals via the recycling of ascorbic acid and alpha-tocopherol. OBJECTIVE This study is a pilot investigation of the mitigation of enteritis using resveratrol and alpha-lipoic acid following histopathological study. METHODS 60 male mice were randomly assigned to six groups; control, resveratrol treatment, alpha-lipoic acid treatment, whole-body irradiation, irradiation plus resveratrol, and irradiation plus alpha-lipoic acid. The mice were irradiated with a single dose of 7 Gy from a cobalt-60 gamma-ray source. Treatment with resveratrol or alpha-lipoic acid started 24 h after irradiation and continued for 4 weeks. All mice were sacrificed after 30 days for histopathological evaluation of radiation-induced toxicities in the duodenum, jejunum and colon. RESULTS AND DISCUSSION Exposure to radiation caused mild to severe damages to vessels, goblet cells and villous. It also led to significant infiltration of macrophages and leukocytes, especially in the colon. Both resveratrol and alpha-lipoic acid were able to mitigate morphological changes. However, they could not mitigate vascular injury. CONCLUSION Resveratrol and alpha-lipoic acid could mitigate radiation-induced injuries in the small and large intestine. A comparison between these agents showed that resveratrol may be a more effective mitigator compared to alpha-lipoic acid.
Collapse
Affiliation(s)
- Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Gholamreza Hassanzadeh
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Peyman Amini
- Department of Radiology, Faculty of Paramedical, Tehran University of Medical Sciences, Tehran, Iran
| | - Dheyauldeen Shabeeb
- Department of Physiology, College of Medicine, University of Misan, Misan, Iraq
| | - Ahmed Eleojo Musa
- Department of Medical Physics, Tehran University of Medical Sciences, Tehran, Iran
| | - Ehsan Khodamoradi
- Department of Radiology and Nuclear Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mehran Mohseni
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Akbar Aliasgharzadeh
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Habiballah Moradi
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Masoud Najafi
- Department of Radiology and Nuclear Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
13
|
Hofer M, Hoferová Z, Falk M. Brief Story on Prostaglandins, Inhibitors of their Synthesis, Hematopoiesis, and Acute Radiation Syndrome. Molecules 2019; 24:molecules24224019. [PMID: 31698831 PMCID: PMC6891503 DOI: 10.3390/molecules24224019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 10/31/2019] [Accepted: 11/04/2019] [Indexed: 01/22/2023] Open
Abstract
Prostaglandins and inhibitors of their synthesis (cyclooxygenase (COX) inhibitors, non-steroidal anti-inflammatory drugs) were shown to play a significant role in the regulation of hematopoiesis. Partly due to their hematopoiesis-modulating effects, both prostaglandins and COX inhibitors were reported to act positively in radiation-exposed mammalian organisms at various pre- and post-irradiation therapeutical settings. Experimental efforts were targeted at finding pharmacological procedures leading to optimization of therapeutical outcomes by minimizing undesirable side effects of the treatments. Progress in these efforts was obtained after discovery of selective inhibitors of inducible selective cyclooxygenase-2 (COX-2) inhibitors. Recent studies have been able to suggest the possibility to find combined therapeutical approaches utilizing joint administration of prostaglandins and inhibitors of their synthesis at optimized timing and dosing of the drugs which could be incorporated into the therapy of patients with acute radiation syndrome.
Collapse
Affiliation(s)
- Michal Hofer
- Correspondence: ; Tel.: +420-541-517-171; Fax: +420-541-211-293
| | | | | |
Collapse
|
14
|
Mahran YF, Badr AM, Aldosari A, Bin-Zaid R, Alotaibi HN. Carvacrol and Thymol Modulate the Cross-Talk between TNF- α and IGF-1 Signaling in Radiotherapy-Induced Ovarian Failure. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:3173745. [PMID: 31531182 PMCID: PMC6721489 DOI: 10.1155/2019/3173745] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 07/01/2019] [Accepted: 07/18/2019] [Indexed: 02/08/2023]
Abstract
Premature ovarian failure (POF) is a common cause of infertility in premenopausal women who are unavoidably exposed to cytotoxic therapy. Radiotherapy is one of the most effective cytotoxic treatments. However, the radiosensitivity of ovarian tissues limits its therapeutic outcome and results in the depletion of the primordial follicle and loss of fertility. Therefore, the need for an effective radioprotective therapy is evident especially when none of the current clinically used modalities for radioprotection succeeds efficiently. The present study investigated the potential radioprotective effect of carvacrol (CAR) (80 mg) or thymol (80 mg) on gamma- (γ-) irradiation-induced ovarian damage as well as their role in the cross-talk between IGF-1 and TNF-α signaling and antioxidative activity. In immature female Wister rats, a single dose of whole-body irradiation (3.2 Gy, LD20) produced considerable ovarian damage, which was evident by histopathological findings and hormonal changes. Interestingly, pretreatment with CAR or thymol significantly enhanced the follicular development and restored the anti-Mullerian hormone (AMH), E2, and FSH levels. Both essential oils improved the irradiation-mediated oxidative stress and reduction in proliferating cell nuclear antigen (PCNA) expression. Moreover, irradiated rats exhibited an inverse relationship between IGF-1 and TNF-α levels two days post irradiation, which was further inverted by the pretreatment with CAR and thymol and ought to contribute in their radioprotective mechanisms. In conclusion, CAR and thymol showed a radioprotective effect and rescued the ovarian reserve mainly through counteracting oxidative stress and the dysregulated cross-talk between IGF-1 and TNF-α.
Collapse
Affiliation(s)
- Yasmen F. Mahran
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Amira M. Badr
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 22452, Riyadh 114592, Saudi Arabia
| | - Alhanouf Aldosari
- College of Pharmacy, King Saud University, P.O. Box 22452, Riyadh 114592, Saudi Arabia
| | - Raghad Bin-Zaid
- College of Pharmacy, King Saud University, P.O. Box 22452, Riyadh 114592, Saudi Arabia
| | - Hind N. Alotaibi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 22452, Riyadh 114592, Saudi Arabia
| |
Collapse
|
15
|
Pagáčová E, Štefančíková L, Schmidt-Kaler F, Hildenbrand G, Vičar T, Depeš D, Lee JH, Bestvater F, Lacombe S, Porcel E, Roux S, Wenz F, Kopečná O, Falková I, Hausmann M, Falk M. Challenges and Contradictions of Metal Nano-Particle Applications for Radio-Sensitivity Enhancement in Cancer Therapy. Int J Mol Sci 2019; 20:ijms20030588. [PMID: 30704035 PMCID: PMC6387067 DOI: 10.3390/ijms20030588] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 01/24/2019] [Indexed: 12/12/2022] Open
Abstract
From the very beginnings of radiotherapy, a crucial question persists with how to target the radiation effectiveness into the tumor while preserving surrounding tissues as undamaged as possible. One promising approach is to selectively pre-sensitize tumor cells by metallic nanoparticles. However, though the "physics" behind nanoparticle-mediated radio-interaction has been well elaborated, practical applications in medicine remain challenging and often disappointing because of limited knowledge on biological mechanisms leading to cell damage enhancement and eventually cell death. In the present study, we analyzed the influence of different nanoparticle materials (platinum (Pt), and gold (Au)), cancer cell types (HeLa, U87, and SKBr3), and doses (up to 4 Gy) of low-Linear Energy Transfer (LET) ionizing radiation (γ- and X-rays) on the extent, complexity and reparability of radiation-induced γH2AX + 53BP1 foci, the markers of double stand breaks (DSBs). Firstly, we sensitively compared the focus presence in nuclei during a long period of time post-irradiation (24 h) in spatially (three-dimensionally, 3D) fixed cells incubated and non-incubated with Pt nanoparticles by means of high-resolution immunofluorescence confocal microscopy. The data were compared with our preliminary results obtained for Au nanoparticles and recently published results for gadolinium (Gd) nanoparticles of approximately the same size (2⁻3 nm). Next, we introduced a novel super-resolution approach-single molecule localization microscopy (SMLM)-to study the internal structure of the repair foci. In these experiments, 10 nm Au nanoparticles were used that could be also visualized by SMLM. Altogether, the data show that different nanoparticles may or may not enhance radiation damage to DNA, so multi-parameter effects have to be considered to better interpret the radiosensitization. Based on these findings, we discussed on conclusions and contradictions related to the effectiveness and presumptive mechanisms of the cell radiosensitization by nanoparticles. We also demonstrate that SMLM offers new perspectives to study internal structures of repair foci with the goal to better evaluate potential differences in DNA damage patterns.
Collapse
Affiliation(s)
- Eva Pagáčová
- Czech Academy of Sciences, Institute of Biophysics, v.v.i., Kralovopolska 135, 612 65 Brno, Czech Republic.
| | - Lenka Štefančíková
- Czech Academy of Sciences, Institute of Biophysics, v.v.i., Kralovopolska 135, 612 65 Brno, Czech Republic.
- Institute des Sciences Moléculaires d'Orsay (ISMO), Université Paris Saclay, Université Paris Sud, CNRS, 91405 Orsay Cedex, France.
| | - Franz Schmidt-Kaler
- Kirchhoff-Institute for Physics, University of Heidelberg, Im Neuenheimer Feld 227, 69120 Heidelberg, Germany.
| | - Georg Hildenbrand
- Kirchhoff-Institute for Physics, University of Heidelberg, Im Neuenheimer Feld 227, 69120 Heidelberg, Germany.
- Department of Radiation Oncology, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, 68159 Mannheim, Germany.
| | - Tomáš Vičar
- Brno University of Technology, Department of Biomedical Engineering, Technická 3082/12, 61600 Brno, Czech Republic.
| | - Daniel Depeš
- Czech Academy of Sciences, Institute of Biophysics, v.v.i., Kralovopolska 135, 612 65 Brno, Czech Republic.
| | - Jin-Ho Lee
- Kirchhoff-Institute for Physics, University of Heidelberg, Im Neuenheimer Feld 227, 69120 Heidelberg, Germany.
| | - Felix Bestvater
- German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.
| | - Sandrine Lacombe
- Institute des Sciences Moléculaires d'Orsay (ISMO), Université Paris Saclay, Université Paris Sud, CNRS, 91405 Orsay Cedex, France.
| | - Erika Porcel
- Institute des Sciences Moléculaires d'Orsay (ISMO), Université Paris Saclay, Université Paris Sud, CNRS, 91405 Orsay Cedex, France.
| | - Stéphane Roux
- Institute UTINAM, UMR CNRS 6213-Université de Bourgogne Franche-Comté, 25020 Besançon Cedex, France.
| | - Frederik Wenz
- Department of Radiation Oncology, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, 68159 Mannheim, Germany.
| | - Olga Kopečná
- Czech Academy of Sciences, Institute of Biophysics, v.v.i., Kralovopolska 135, 612 65 Brno, Czech Republic.
| | - Iva Falková
- Czech Academy of Sciences, Institute of Biophysics, v.v.i., Kralovopolska 135, 612 65 Brno, Czech Republic.
| | - Michael Hausmann
- Kirchhoff-Institute for Physics, University of Heidelberg, Im Neuenheimer Feld 227, 69120 Heidelberg, Germany.
| | - Martin Falk
- Czech Academy of Sciences, Institute of Biophysics, v.v.i., Kralovopolska 135, 612 65 Brno, Czech Republic.
| |
Collapse
|
16
|
Carbonero F, Mayta-Apaza AC, Yu JZ, Lindeblad M, Lyubimov A, Neri F, Szilagyi E, Bartholomew A. A comparative analysis of gut microbiota disturbances in the Gottingen minipig and rhesus macaque models of acute radiation syndrome following bioequivalent radiation exposures. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2018; 57:419-426. [PMID: 30343431 DOI: 10.1007/s00411-018-0759-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 10/13/2018] [Indexed: 06/08/2023]
Abstract
In rodent studies, the gut microbiota has been implicated in facilitating both radioresistance, by protecting the epithelium from apoptotic responses and radiosensitivity, inducing endothelial apoptotic responses. Despite the observation that large animal models, such as the Chinese Rhesus macaque and the Gottingen Minipig, demonstrate similarity to human physiologic responses to radiation, little is known about radiation-induced changes of the gut microbiome in these models. To compare the two models, we used bioequivalent radiation doses which resulted in an LD50 for Gottingen Minipigs and Chinese Rhesus macaques, 1.9 Gy and 6.8 Gy, respectively. Fecal samples taken prior and 3 days post-radiation were used for 16S rRNA gene sequence amplicon high throughput sequencing (Illumina MiSeq). Baseline gut microbiota profiles were dissimilar between minipigs and rhesus macaques. Irradiation profoundly impacted gut microbiota profiles in both animals. Significant increases of intracellular symbionts were common to both models and to reported changes in rodents suggesting universality of these findings post-radiation. Remarkably, opposite dynamics were observed for the main phyla, with increase of Firmicutes and decrease of Bacteroidetes and Proteobacteria in minipigs but with enrichment of Bacteroidetes in rhesus macaques. Minipig changes in magnitude and in variety of species affected were more extensive than those observed in rhesus macaques. This pilot study provides an important first step in comparing the radiosensitive pig model to the comparatively more radioresistant macaque model, for the identification of microbial elements which may influence radiosensitivity.
Collapse
Affiliation(s)
- Franck Carbonero
- Department of Food Science, University of Arkansas, 2650 North Young Avenue, Fayetteville, AR, 72704, USA.
| | - Alba C Mayta-Apaza
- Department of Food Science, University of Arkansas, 2650 North Young Avenue, Fayetteville, AR, 72704, USA
| | - Jiang-Zhou Yu
- Department of Surgery, University of Illinois at Chicago, Chicago, Illinois, 60612, USA
| | - Matt Lindeblad
- Department of Pharmacology, University of Illinois at Chicago, Chicago, Illinois, 60612, USA
| | - Alex Lyubimov
- Department of Pharmacology, University of Illinois at Chicago, Chicago, Illinois, 60612, USA
| | - Flavia Neri
- Department of Surgery, University of Illinois at Chicago, Chicago, Illinois, 60612, USA
| | - Erzsebet Szilagyi
- Department of Surgery, University of Illinois at Chicago, Chicago, Illinois, 60612, USA
| | - Amelia Bartholomew
- Department of Surgery, University of Illinois at Chicago, Chicago, Illinois, 60612, USA
| |
Collapse
|
17
|
Karabulutoglu M, Finnon R, Imaoka T, Friedl AA, Badie C. Influence of diet and metabolism on hematopoietic stem cells and leukemia development following ionizing radiation exposure. Int J Radiat Biol 2018; 95:452-479. [PMID: 29932783 DOI: 10.1080/09553002.2018.1490042] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE The review aims to discuss the prominence of dietary and metabolic regulators in maintaining hematopoietic stem cell (HSC) function, long-term self-renewal, and differentiation. RESULTS Most adult stem cells are preserved in a quiescent, nonmotile state in vivo which acts as a "protective state" for stem cells to reduce endogenous stress provoked by DNA replication and cellular respiration as well as exogenous environmental stress. The dynamic balance between quiescence, self-renewal and differentiation is critical for supporting a functional blood system throughout life of an organism. Stress-conditions, for example ionizing radiation exposure can trigger the blood forming HSCs to proliferate and migrate through extramedullary tissues to expand the number of HSCs and increase hematopoiesis. In addition, a wealth of investigation validated that deregulation of this balance plays a critical pathogenic role in various different hematopoietic diseases including the leukemia development. CONCLUSION The review summarizes the current knowledge on how alterations in dietary and metabolic factors could alter the risk of leukemia development following ionizing radiation exposure by inhibiting or even reversing the leukemic progression. Understanding the influence of diet, metabolism, and epigenetics on radiation-induced leukemogenesis may lead to the development of practical interventions to reduce the risk in exposed populations.
Collapse
Affiliation(s)
- Melis Karabulutoglu
- a Cancer Mechanisms and Biomarkers group, Biological Effects Department, Centre for Radiation, Chemical and Environmental Hazards , Public Health England , Didcot , UK.,b CRUK & MRC Oxford Institute for Radiation Oncology, Department of Oncology , University of Oxford , Oxford , UK
| | - Rosemary Finnon
- a Cancer Mechanisms and Biomarkers group, Biological Effects Department, Centre for Radiation, Chemical and Environmental Hazards , Public Health England , Didcot , UK
| | - Tatsuhiko Imaoka
- c Department of Radiation Effects Research, National Institute of Radiological Sciences , National Institutes for Quantum and Radiological Science and Technology , Chiba , Japan
| | - Anna A Friedl
- d Department of Radiation Oncology , University Hospital, LMU Munich , Munich , Germany
| | - Christophe Badie
- a Cancer Mechanisms and Biomarkers group, Biological Effects Department, Centre for Radiation, Chemical and Environmental Hazards , Public Health England , Didcot , UK
| |
Collapse
|
18
|
17α-Ethinyl-androst-5-ene-3β, 17β-diol, a Novel Potent Oral Radioprotective Agent, Confers Radioprotection of Hematopoietic Stem and Progenitor Cells in a Granulocyte Colony-Stimulating Factor-Independent Manner. Int J Radiat Oncol Biol Phys 2018; 103:217-228. [PMID: 30103023 DOI: 10.1016/j.ijrobp.2018.08.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 06/18/2018] [Accepted: 08/01/2018] [Indexed: 01/15/2023]
Abstract
PURPOSE The risk of radiation exposure is considered to have increased in recent years. For convenience and simple administration, development of an effective orally administered radioprotective agent is highly desirable. The steroid 5-androstene-3β, 17β-diol (5-AED) has been evaluated as both a radioprotector and a radiomitigator in mice and nonhuman primates; however, poor oral bioavailability has limited its development. A variant compound-17α-ethinyl-androst-5-ene-3β, 17β-diol (EAD)-exhibits significant oral bioavailability. We investigated the radioprotective effects of EAD via oral administration in mice. METHODS AND MATERIALS Survival assays were performed in lethally (9.0-10.0 Gy) irradiated mice. Peripheral blood cell counts were monitored in lethally (9.5 Gy) or sublethally (6.5 Gy) irradiated mice. We performed histologic analysis of bone marrow (BM) and frequency and functional analysis of hematopoietic stem and progenitor cells in mice irradiated with 6.5 Gy. To investigate multilineage engraftment of irradiated hematopoietic stem cells after BM transplantation, competitive repopulation assays were conducted. Plasma granulocyte colony-stimulating factor was measured by enzyme-linked immunosorbent assay. RESULTS Oral administration of EAD on 3 consecutive days before irradiation conferred 100% survival in mice, against otherwise 100% death, at a 9.5-Gy lethal dose of total body irradiation. EAD ameliorated radiation-induced pancytopenia at the same dose. EAD augmented BM cellular recovery and colony-forming ability, promoted hematopoietic stem and progenitor cell recovery, and expanded the pool of functionally superior hematopoietic stem cells in the BM of sublethally irradiated mice. Unlike 5-AED, EAD did not increase granulocyte colony-stimulating factor levels in mice and exhibited no therapeutic effects on hematologic recovery after irradiation; nevertheless, its radioprotective efficacy was superior to that of 5-AED. CONCLUSIONS Our findings demonstrate the radioprotective efficacy of EAD and reveal that the 17α-ethinyl group is essential for its oral activity. Given its oral efficacy and low toxicity, EAD has potential as an optimal radioprotector for use by first responders, as well as at-risk civilian populations.
Collapse
|
19
|
Liu F, Wang Z, Liu J, Li W. Radioprotective effect of orally administered beta-d-glucan derived from Saccharomyces cerevisiae. Int J Biol Macromol 2018; 115:572-579. [DOI: 10.1016/j.ijbiomac.2018.04.098] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 04/04/2018] [Accepted: 04/18/2018] [Indexed: 10/17/2022]
|
20
|
Estrogen Effects on Wound Healing. Int J Mol Sci 2017; 18:ijms18112325. [PMID: 29099810 PMCID: PMC5713294 DOI: 10.3390/ijms18112325] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 10/30/2017] [Accepted: 11/02/2017] [Indexed: 02/07/2023] Open
Abstract
Wound healing is a physiological process, involving three successive and overlapping phases—hemostasis/inflammation, proliferation, and remodeling—to maintain the integrity of skin after trauma, either by accident or by procedure. Any disruption or unbalanced distribution of these processes might result in abnormal wound healing. Many molecular and clinical data support the effects of estrogen on normal skin homeostasis and wound healing. Estrogen deficiency, for example in postmenopausal women, is detrimental to wound healing processes, notably inflammation and re-granulation, while exogenous estrogen treatment may reverse these effects. Understanding the role of estrogen on skin might provide further opportunities to develop estrogen-related therapy for assistance in wound healing.
Collapse
|