1
|
Dole L, Durand N, Poss C, Gousselot M, Strub C, Fontana A, Schorr-Galindo S. Routine LC-MS/MS method for quantifying Alternaria toxins in tomatoes at harvest stage and during processing. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2025; 42:774-785. [PMID: 40333595 DOI: 10.1080/19440049.2025.2499001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 04/24/2025] [Accepted: 04/24/2025] [Indexed: 05/09/2025]
Abstract
A high-performance liquid chromatography tandem mass spectrometry method has been developed and validated to quantify alternariol, alternariol monomethyl ether, tenuazonic acid, altenuene, altertoxin I, and tentoxin, and implemented to better understand the risks associated with Alternaria contamination of tomatoes and fate of the toxins during processing. This method has been developed for routine use, by reducing the cost, duration, and complexity of manipulations. Limits of quantification were below EU recommendations 2022/553, reaching 1.2-3.7 µg kg-1 for alternariol and alternariol monomethyl ether and 9.4-18.4 µg kg-1 for tenuazonic acid depending on the matrix. Apparent recovery ranged between 85 and 103%, and intraday repeatability was <15%. Different Alternaria strains isolated from tomatoes were assessed for their toxin production profiles, and the impact of processing operations on Alternaria toxins naturally occurring in tomatoes was evaluated on a pilot scale. Tenuazonic acid was the predominant toxin produced by Alternaria strains and contaminating tomatoes. Processing operations did not reduce toxin accumulation, which demonstrates its thermostability. Additionally, tomato skin and seeds residues, which are reused for different applications, was 2.6 times more contaminated than tomato pulp.
Collapse
Affiliation(s)
- Léna Dole
- Qualisud, Univ Montpellier, CIRAD, Avignon Université, Institut Agro, IRD, Univ de La Réunion, Montpellier, France
| | - Noël Durand
- Qualisud, Univ Montpellier, CIRAD, Avignon Université, Institut Agro, IRD, Univ de La Réunion, Montpellier, France
- CIRAD, UMR Qualisud, Montpellier, France
| | - Charlie Poss
- Qualisud, Univ Montpellier, CIRAD, Avignon Université, Institut Agro, IRD, Univ de La Réunion, Montpellier, France
- CIRAD, UMR Qualisud, Montpellier, France
| | | | - Caroline Strub
- Qualisud, Univ Montpellier, CIRAD, Avignon Université, Institut Agro, IRD, Univ de La Réunion, Montpellier, France
| | - Angélique Fontana
- Qualisud, Univ Montpellier, CIRAD, Avignon Université, Institut Agro, IRD, Univ de La Réunion, Montpellier, France
| | - Sabine Schorr-Galindo
- Qualisud, Univ Montpellier, CIRAD, Avignon Université, Institut Agro, IRD, Univ de La Réunion, Montpellier, France
| |
Collapse
|
2
|
Ma J, Chai A, Shi Y, Xie X, Li L, Xiang S, Sun X, Fan T, Li B. Diurnal Release of Airborne Pathogen Spores in Greenhouses via the Synergistic Effects of Relative Humidity and Wind. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2501500. [PMID: 40349151 DOI: 10.1002/advs.202501500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/25/2025] [Indexed: 05/14/2025]
Abstract
The occurrence of diseases during greenhouse vegetable cultivation is becoming increasingly severe. Humidity and wind are important factors affecting the spread of many pathogenic fungal spores, but it remains difficult to explain the phenomenon of rapid spore spread in greenhouses. Here, the detachment of spores from hyphae during rapid drops in humidity and their subsequent dispersal due to wind is detailed. It is demonstrated that Corynespora cassiicola spores exhibit jerking movements during humidity reduction, resulting in spore discharge, and that spore connections are weaker in high-humidity environments than in low-humidity environments. This investigation across the fungal kingdom further reveals that jerking movements are common in the tested hyphomycete spore species. Spores rely mainly on wind to spread after being discharged from hyphae, and their spread range is influenced by factors such as wind speed, spore source height, and spore age. In summary, it is discovered that the combined effects of diurnal humidity fluctuations and wind drive the rapid spread of pathogenic spores in greenhouses, providing a theoretical basis for optimizing control strategies for airborne fungal diseases in greenhouses.
Collapse
Affiliation(s)
- Jiayi Ma
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Ali Chai
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yanxia Shi
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xuewen Xie
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Lei Li
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Sheng Xiang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xianhua Sun
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Tengfei Fan
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Baoju Li
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
3
|
Chowdhury S, Mukherjee A, Singh R, Talukdar S, Basak S, Das R, Mal S, Kundu P. Tomato miR398 knockout disrupts ROS dynamics during stress conferring heat tolerance but hypersusceptibility to necrotroph infection. PLANT MOLECULAR BIOLOGY 2025; 115:35. [PMID: 39992436 DOI: 10.1007/s11103-025-01563-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 01/22/2025] [Indexed: 02/25/2025]
Abstract
An imbalance between ROS production and scavenging during stress results in oxidative bursts, which causes cellular damage. miR398 is a regulator of ROS scavenging since it targets crucial Cu/Zn superoxide dismutases (CSDs). Established functional studies aligned miR398 with plants' heat and heavy metal stress fitness. However, a knowledge gap in the dynamics of miR398-CSD interaction for redox regulation during pathogenic development impeded their use in crop improvement programmes. We use tomato, Solanum lycopersicum, plants, and necrotrophic and biotrophic pathogens to show that a complex transcriptional and post-transcriptional regulatory circuit maintains SlmiR398 and its target SlCSD genes' level. The interaction is indispensable for ROS regulation in either the pathogenic outcome, thermal stress, or a combination of both stresses, as observed in the cultivation field. The SlmiR398 knockout plants display feeble O2∙- accumulation but enhanced levels of H2O2, several defense-related genes, metabolites, and vital HSFs and HSPs, which were heightened upon stress. Depletion of SlmiR398, although it renders thermotolerance and resilience to biotrophic pathogens likely due to the augmented hypersensitive response, facilitates necrotrophy. Thus, SlmiR398-mediated ROS regulation seemingly works at the interface of abiotic and biotic stress response for a sustainable reaction of tomato plants.
Collapse
Affiliation(s)
- Shreya Chowdhury
- Department of Biological Sciences, Bose Institute, EN 80, Sector V, Bidhan Nagar, Kolkata, West Bengal, 700091, India
| | - Ananya Mukherjee
- Department of Biological Sciences, Bose Institute, EN 80, Sector V, Bidhan Nagar, Kolkata, West Bengal, 700091, India
| | - Raghuvir Singh
- Department of Biological Sciences, Bose Institute, EN 80, Sector V, Bidhan Nagar, Kolkata, West Bengal, 700091, India
| | - Sushmita Talukdar
- Department of Biological Sciences, Bose Institute, EN 80, Sector V, Bidhan Nagar, Kolkata, West Bengal, 700091, India
| | - Shrabani Basak
- Department of Biological Sciences, Bose Institute, EN 80, Sector V, Bidhan Nagar, Kolkata, West Bengal, 700091, India
| | - Rohit Das
- Department of Biological Sciences, Bose Institute, EN 80, Sector V, Bidhan Nagar, Kolkata, West Bengal, 700091, India
| | - Sayan Mal
- Department of Biological Sciences, Bose Institute, EN 80, Sector V, Bidhan Nagar, Kolkata, West Bengal, 700091, India
| | - Pallob Kundu
- Department of Biological Sciences, Bose Institute, EN 80, Sector V, Bidhan Nagar, Kolkata, West Bengal, 700091, India.
| |
Collapse
|
4
|
Peng Q, Tang L, Tang S, Wang S, Miao J, Liu X. Cyclobutrifluram Resistance in Alternaria alternata: Molecular Mechanisms and Detection Strategies. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:3942-3950. [PMID: 39930547 DOI: 10.1021/acs.jafc.4c10317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
The resistance risk and mechanisms of cyclobutrifluram in Alternaria alternata are unclear. The baseline sensitivity of 111 A. alternata isolates to cyclobutrifluram was 0.10 ± 0.07 μg/mL. Eight cyclobutrifluram-resistant mutants of A. alternata were generated in the laboratory, exhibiting high-level and relative stable resistance. Cross-resistance was found between cyclobutrifluram and boscalid or pydiflumetofen, yet no cross-resistance was observed between cyclobutrifluram and iprodione, azoxystrobin, mefentrifluconazole, or difenoconazole. Each resistant mutant exhibited a reduced compound fitness index (CFI) compared to their parental isolates. An S73L substitution in AaSdhC or a P113T, H134N, or D145N mutation in AaSdhD conferred cyclobutrifluram resistance. Allele-specific PCR (AS-PCR) methods for the detection of mutations AaSdhCS73L, AaSdhDP113T, AaSdhDH134N, and AaSdhDD145N were successfully developed. In summary, A. alternata exhibits a moderate risk for developing resistance to cyclobutrifluram, attributed to the S73L substitution in AaSdhC or the P113T, H134N, or D145N mutations in AaSdhD, which are detectable using specific AS-PCR methods.
Collapse
Affiliation(s)
- Qin Peng
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lijun Tang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shiqi Tang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shuai Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jianqiang Miao
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xili Liu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, 2 Yuanmingyuanxi Road, Beijing 100193, China
| |
Collapse
|
5
|
Zhang Y, Liu C, van der Fels‐Klerx HJ. Occurrence, toxicity, dietary exposure, and management of Alternaria mycotoxins in food and feed: A systematic literature review. Compr Rev Food Sci Food Saf 2025; 24:e70085. [PMID: 39746866 PMCID: PMC11695269 DOI: 10.1111/1541-4337.70085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 11/18/2024] [Accepted: 12/22/2024] [Indexed: 01/04/2025]
Abstract
Alternaria mycotoxins are emerging contaminants frequently detected in food products and threaten human health. This systematic review aims to provide an up-to-date overview of scientific data and knowledge and gaps therein of natural occurrence, toxicological effects, dietary exposure, and prevention and control management of Alternaria mycotoxins in food and feed. A systematic review has been performed, using the databases Scopus and PubMed, retrieving relevant scientific papers published in English from 2011 to 2024. Alternaria mycotoxins are widely present in various food and feed products, with tomatoes and cereals being the most contaminated products. From the Alternaria mycotoxins, tenuazonic acid (TeA) and alternariol were reported with the highest detection rate and concentrations. Identified toxicological effects vary between the different Alternaria mycotoxins and include carcinogenicity, immune toxicity, cytotoxicity, and genotoxicity. Dietary exposure assessments for Alternaria mycotoxins have been conducted in several countries but vary in their scope. The calculations and risk values suggest that exposure of children to TeA via their diet is close to their tolerable daily intake. A similar finding has been reported for exposure of adults to alternariol and alternariol monomethyl ether via food consumption. Most Alternaria mycotoxins are heat-stable and cannot easily be removed during food processing; therefore, prevention and control measures for Alternaria mycotoxin contamination in food and feed are crucial. Fungicide and biocontrol applications have been shown effective in reducing Alternaria fungal growth and toxin production, and the development of predictive models may be promising. Collectively, they can contribute to mitigating the impact of Alternaria mycotoxins on human health.
Collapse
Affiliation(s)
- Yimin Zhang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhenChina
- Business Economics GroupWageningen University & ResearchWageningenThe Netherlands
- Wageningen Food Safety ResearchWageningen University & ResearchWageningenThe Netherlands
| | - Cheng Liu
- Wageningen Food Safety ResearchWageningen University & ResearchWageningenThe Netherlands
| | - H. J. van der Fels‐Klerx
- Business Economics GroupWageningen University & ResearchWageningenThe Netherlands
- Wageningen Food Safety ResearchWageningen University & ResearchWageningenThe Netherlands
| |
Collapse
|
6
|
Dučkena L, Bessadat N, Bataillé-Simoneau N, Hamon B, Koppel M, Loit K, Rasiukevičiūtė N, Bimšteine G, Simoneau P. Haplotype diversity and phylogeny within Alternaria alternata and A. arborescens species complexes from tomatoes. Fungal Biol 2024; 128:2250-2265. [PMID: 39643392 DOI: 10.1016/j.funbio.2024.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 10/24/2024] [Accepted: 10/27/2024] [Indexed: 12/09/2024]
Abstract
Tomato (Solanum lycopersicum L.) is an economically important vegetable susceptible to various fungal diseases, including leaf spot caused by Alternaria spp. from the section Alternaria. In our study, a total of 72 tomato-associated Alternaria spp. strains from Latvia, Lithuania, Estonia, and Algeria were analysed by integrating morphological data, pathogenicity assay, multi-locus phylogeny, and haplotype assignment. Recovered Alternaria spp. strains were characterized by considerable variation in phenotypic diversity, non-pathogenicity to their host of origin and absence of the AAL-toxin biosynthesis gene (ALT1). Multi-locus phylogeny of the RNA polymerase II second largest subunit (rpb2), putative F-box-domain-containing protein (ASA-10), and putative histone-like transcription factor (ASA-19) confirmed the occurrence of both A. alternata and A. arborescens species complexes along with A. longipes and A. postmessia on symptomatic tomatoes. The discordant tree topology among single-gene phylogenies suggested the occurrence of potential recombination between phylogenetic lineages in the section Alternaria, resulting in putative alternata-arborescens and alternata-longipes hybrids. DNA polymorphism analysis of the rpb2, ASA-10, and ASA-19 loci revealed a high level of genetic diversity in the section Alternaria, and the number of single nucleotide polymorphisms (SNPs) and haplotypes varied among loci and lineages studied. A total of 16 and 6 multi-locus haplotypes were assigned in alternata and arborescens lineages, respectively. Global genetic diversity analysis of A. alternata and A. arborescens strains at the rpb2 locus confirmed that major haplotypes described from tomatoes were shared among other hosts of origin.
Collapse
Affiliation(s)
- Lilija Dučkena
- Institute of Soil and Plant Sciences, Latvia University of Life Sciences and Technologies, Liela Street 2, LV-3001, Jelgava, Latvia; University of Angers, Institut Agro, INRAe, UMR 1345 IRHS, SFR 4207 QUASAV, Beaucouzé Cedex, 49070, France
| | - Nabahat Bessadat
- University of Angers, Institut Agro, INRAe, UMR 1345 IRHS, SFR 4207 QUASAV, Beaucouzé Cedex, 49070, France; Laboratory of Applied Microbiology, University of Oran1 Ahmed Ben Bella, BP 1524, El M'Naouer, 31000, Oran, Algeria
| | - Nelly Bataillé-Simoneau
- University of Angers, Institut Agro, INRAe, UMR 1345 IRHS, SFR 4207 QUASAV, Beaucouzé Cedex, 49070, France
| | - Bruno Hamon
- University of Angers, Institut Agro, INRAe, UMR 1345 IRHS, SFR 4207 QUASAV, Beaucouzé Cedex, 49070, France
| | - Mati Koppel
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Fr.R. Kreutzwaldi 1, 51006, Tartu, Estonia
| | - Kaire Loit
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Fr.R. Kreutzwaldi 1, 51006, Tartu, Estonia
| | - Neringa Rasiukevičiūtė
- Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry, Kauno Street 30, LT-54333, Babtai, Lithuania
| | - Gunita Bimšteine
- Institute of Soil and Plant Sciences, Latvia University of Life Sciences and Technologies, Liela Street 2, LV-3001, Jelgava, Latvia
| | - Philippe Simoneau
- University of Angers, Institut Agro, INRAe, UMR 1345 IRHS, SFR 4207 QUASAV, Beaucouzé Cedex, 49070, France.
| |
Collapse
|
7
|
Kukreti A, Siddabasappa CB, Krishnareddy PM, Devanna P, Basavapatna Subbanna Y, Channappa M, Reddy NK, Hashem A, Alsayed MF, Abd Allah EF. Comparative study of endophytic bacterial strains from non-host crops for enhancing plant growth and managing early blight in tomato. Front Microbiol 2024; 15:1487653. [PMID: 39568994 PMCID: PMC11576455 DOI: 10.3389/fmicb.2024.1487653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 10/21/2024] [Indexed: 11/22/2024] Open
Abstract
Bacillus pseudomycoides, Paenibacillus polymyxa, and B. velezensis are potent bacterial endophytes, which typically exhibit host-specific interactions. However, comparative studies of these endophytes in vitro and in planta in non-host crops are lacking. Therefore, in this study, we evaluated the potential of endophytes B. pseudomycoides strain HP3d, P. polymyxa strain PGSS1, B. velezensis strain A6, and P42, isolated from various crop ecosystems in promoting plant growth and inducing systemic resistance against early blight disease in tomato. In vitro, endophytes exhibited 44.44-55.56% and 37.50-87.50% inhibition of Alternaria solani in dual culture and volatilome bioassay, respectively. In the glasshouse, individual and combined applications via seed treatment (ST), seedling dip (SD), and foliar spray (FS) significantly enhanced shoot growth (23.63-57.61%), root growth (43.27-118.23%), number of leaves (77.52-93.58%), number of shoots (33.42-45.28%) and root dry matter (42.17-43.86%), reducing early blight (PDI) by 70.95-76.12% compared to uninoculated control. Enzymatic activities, including such as polyphenol oxidase (30-40 fold), peroxidase (65.00-75.00 fold), superoxide dismutase (34.20-37.20 fold) and phenylalanine ammonia-lyase (44.44-45.56 fold) were elevated post-inoculation in endophytes treated tomato plants challenged with A. solani compared to control treated only with A. solani and declined after the fifth day. The total chlorophyll content declined from the 0th to the 10th day, but endophyte treated plants exhibited lesser reductions (2.03-2.09) than uninoculated control. Field trials confirmed the glasshouse findings, showing reduced early blight and improved growth parameters in tomato where the ST + SD + FS combination emerged as the most effective treatment for all endophytes showing 1.06-1.88 fold increase in fruit yield per plant and 28.92-32.52% decrease in PDI compared to untreated control. Thus, the study highlights the broad-spectrum potential of these strains in promoting plant growth and controlling early blight in tomato, demonstrating non-host specificity. These endophytes offer eco-friendly alternatives to chemical pesticides, supporting sustainable agriculture. Their success in field trials suggests the potential for commercialization and large-scale use across diverse crops and pave the way for further interdisciplinary research to optimize their application in integrated pest management strategies.
Collapse
Affiliation(s)
- Aditya Kukreti
- Department of Plant Pathology, University of Agricultural Sciences, GKVK, Bengaluru, India
- Insect Bacteriology Laboratory, ICAR-National Bureau of Agricultural Insect Resources, Bengaluru, India
| | | | | | | | | | - Manjunatha Channappa
- Insect Bacteriology Laboratory, ICAR-National Bureau of Agricultural Insect Resources, Bengaluru, India
| | | | - Abeer Hashem
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mashail Fahad Alsayed
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Elsayed Fathi Abd Allah
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
8
|
Taha AG, Attia MS, Abdelaziz AM. Modification of chitosan-ethyl formate polymer with zinc oxide nanoparticles and β-CD to minimize the harmful effects of Alternaria early blight on Vicia faba. Int J Biol Macromol 2024; 282:137246. [PMID: 39505187 DOI: 10.1016/j.ijbiomac.2024.137246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 10/09/2024] [Accepted: 11/02/2024] [Indexed: 11/08/2024]
Abstract
Derivatives of chitosan-ethyl formate polymers (Chs-EF) show promise as biologically relevant materials. The novelty of this study lies in the innovative use of Chs-EF doped with zinc oxide nanoparticles and beta-cyclodextrin, which significantly enhances the polymers' protective activities against Alternaria early blight disease in Vicia faba by improving both disease resistance and plant health. After doping Chs-EF with zinc oxide nanoparticles (ZnONPs) and inserting it into the beta-cyclodextrin (CD), two products emerged: Chs-EF/ZnONPs and Chs-EF/CD. Using βCD and ZnONPs to modify the Chs-EF polymer improves the optical properties of the generated polymers. Also, the energy gab values of the modified polymers (Chs-EF/ZnONPs and Chs-EF/βCD) were 3.3 and 3.7 eV, respectively, while energy gab value of the Chs-EF polymer was 3.9 eV. In this study, the effects of ZnONPs, chitosan, β-CD, and Chs-EF/ZnONPs on Alternaria solani early blight disease in Vicia faba plants were investigated. The treatments were evaluated based on disease symptoms and a disease index (DI) to assess their ability to protect against Alternaria early blight disease blight. The results show that the modified polymer with ZnONPs and beta-cyclodextrin (β-CD) and the modified polymer with ZnONPs (Chs-EF/ZnO NPs) provided the best protection, with DI values of 25 % and 12.5 %, respectively. Furthermore, it was discovered that the levels of carotenoids, chlorophyll a, and chlorophyll b in the infected plants had dropped by 52.6 %, 69.2 %, and 36.1 %, respectively. Chs-EF/ZnONPs were the most effective treatment, showing significant increases in the contents of chlorophyll a and b in infected plants by 120.8 % and 225.4 %, respectively. The study revealed that Chs-EF/ZnONPs exhibited a 131 % increase in the total phenolic content of plants, peroxidase (POD) activity (110.6 %), and a 347 % increase in polyphenol oxidase (PPO) activity, respectively, compared to healthy plants. Malondialdhyde (MDA) decreased by 50.7 %, 49.7 %, 43.4 %, 36.6 %, 31.7 %, and 7.5 % in response to Chs-EF/ZnONPs, Chs-EF/β-CD, Chs-EF, ZnONPs, Chitosan, and β-CD, respectively. Also, application of Chs-EF/ZnONPs, Chs-EF/β-CD, Chs-EF, ZnONPs, Chitosan, and β-CD reduced the production of H2O2 by 77.5 %, 62.8 %, 62.5 %, 39.6 %, 22 %, and 15.1 %, respectively, compared to infected controls. We recommend considering these substances as promising candidates for agricultural use, as they may effectively serve as control agents against early blight caused by Alternaria solani.
Collapse
Affiliation(s)
- Ahmed G Taha
- Department of Chemistry, Faculty of Science, South Valley University, Qena 83523, Egypt
| | - Mohamed S Attia
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, 11884 Nasr City, Cairo, Egypt.
| | - Amer M Abdelaziz
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, 11884 Nasr City, Cairo, Egypt
| |
Collapse
|
9
|
Babu GR, Gokuldhev M, Brahmanandam PS. Integrating IoT for Soil Monitoring and Hybrid Machine Learning in Predicting Tomato Crop Disease in a Typical South India Station. SENSORS (BASEL, SWITZERLAND) 2024; 24:6177. [PMID: 39409219 PMCID: PMC11479041 DOI: 10.3390/s24196177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/08/2024] [Accepted: 09/09/2024] [Indexed: 10/20/2024]
Abstract
This study develops a hybrid machine learning (ML) algorithm integrated with IoT technology to improve the accuracy and efficiency of soil monitoring and tomato crop disease prediction in Anakapalle, a south Indian station. An IoT device collected one-minute and critical soil parameters-humidity, temperature, pH values, nitrogen (N), phosphorus (P), and potassium (K), during the vegetative growth stage, which are essential for assessing soil health and optimizing crop growth. Kendall's correlations were computed to rank these parameters for utilization in hybrid ML techniques. Various ML algorithms including K-nearest neighbors (KNN), support vector machines (SVM), decision tree (DT), random forest (RF), and logistic regression (LR) were evaluated. A novel hybrid algorithm, 'Bayesian optimization with KNN', was introduced to combine multiple ML techniques and enhance predictive performance. The hybrid algorithm demonstrated superior results with 95% accuracy, precision, and recall, and an F1 score of 94%, while individual ML algorithms achieved varying results: KNN (80% accuracy), SVM (82%), DT (77%), RF (80%), and LR (81%) with differing precision, recall, and F1 scores. This hybrid ML approach proved highly effective in predicting tomato crop diseases in natural environments, underscoring the synergistic benefits of IoT and advanced ML techniques in optimizing agricultural practices.
Collapse
Affiliation(s)
- Gurujukota Ramesh Babu
- Department of CSE, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Chennai 600602, India; (G.R.B.); (M.G.)
| | - Mony Gokuldhev
- Department of CSE, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Chennai 600602, India; (G.R.B.); (M.G.)
| | - P. S. Brahmanandam
- Department of Physics & R&D Cell, Shri Vishnu Engineering College for Women (A), Bhimavaram 534202, India
| |
Collapse
|
10
|
Wilson K, Arunachalam S. Microbiome transition mediated plant immune response to Alternaria solani (Ellis & Martin) Jones & Grout infection in tomato ( Solanum lycopersicum L.). Heliyon 2024; 10:e37203. [PMID: 39296181 PMCID: PMC11409117 DOI: 10.1016/j.heliyon.2024.e37203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/21/2024] Open
Abstract
Alternaria solani (Ellis & Martin) Jones & Grout, causing early blight infection in solanaceous crops, is a growing threat influencing sustainable crop production. Understanding the variation in the foliar microbiome, particularly the bacterial community during pathogenesis, can provide critical information on host-pathogen interactions, highlighting the host immune response during pathogen invasion. In the present study, early blight (EB) infection was artificially induced in tomato leaves, and the transition in the foliar bacterial community from healthy leaf tissue to infected leaves was analyzed. The 16s sequencing data revealed a significant shift in alpha and beta diversity, with infected leaf tissue exhibiting considerably lower bacterial abundance and diversity. Further interpretation at the genus level highlighted the possible role of the host immune system in recruiting higher nitrogen-fixing bacteria to resist the pathogen. The study, in addition to analyzing the foliar bacterial community transition during pathogenesis, has also shed light on the possible strategy employed by the host in recruiting selective nutrient-enriching microbes. Further application of this research in developing biocontrol agents with higher microbial host colonizing ability will be of tremendous benefit in achieving sustainable EB control measures.
Collapse
Affiliation(s)
- Karun Wilson
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
- VIT School of Agricultural Innovations and Advanced Learning, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Sathiavelu Arunachalam
- VIT School of Agricultural Innovations and Advanced Learning, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| |
Collapse
|
11
|
Eschrig S, Kahlon PS, Agius C, Holzer A, Hückelhoven R, Schwechheimer C, Ranf S. Cross-family transfer of the Arabidopsis cell-surface immune receptor LORE to tomato confers sensing of 3-hydroxylated fatty acids and enhanced disease resistance. MOLECULAR PLANT PATHOLOGY 2024; 25:e70005. [PMID: 39235143 PMCID: PMC11375736 DOI: 10.1111/mpp.70005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 08/14/2024] [Accepted: 08/18/2024] [Indexed: 09/06/2024]
Abstract
Plant pathogens pose a high risk of yield losses and threaten food security. Technological and scientific advances have improved our understanding of the molecular processes underlying host-pathogen interactions, which paves the way for new strategies in crop disease management beyond the limits of conventional breeding. Cross-family transfer of immune receptor genes is one such strategy that takes advantage of common plant immune signalling pathways to improve disease resistance in crops. Sensing of microbe- or host damage-associated molecular patterns (MAMPs/DAMPs) by plasma membrane-resident pattern recognition receptors (PRR) activates pattern-triggered immunity (PTI) and restricts the spread of a broad spectrum of pathogens in the host plant. In the model plant Arabidopsis thaliana, the S-domain receptor-like kinase LIPOOLIGOSACCHARIDE-SPECIFIC REDUCED ELICITATION (AtLORE, SD1-29) functions as a PRR, which senses medium-chain-length 3-hydroxylated fatty acids (mc-3-OH-FAs), such as 3-OH-C10:0, and 3-hydroxyalkanoates (HAAs) of microbial origin to activate PTI. In this study, we show that ectopic expression of the Brassicaceae-specific PRR AtLORE in the solanaceous crop species Solanum lycopersicum leads to the gain of 3-OH-C10:0 immune sensing without altering plant development. AtLORE-transgenic tomato shows enhanced resistance against Pseudomonas syringae pv. tomato DC3000 and Alternaria solani NL03003. Applying 3-OH-C10:0 to the soil before infection induces resistance against the oomycete pathogen Phytophthora infestans Pi100 and further enhances resistance to A. solani NL03003. Our study proposes a potential application of AtLORE-transgenic crop plants and mc-3-OH-FAs as resistance-inducing biostimulants in disease management.
Collapse
Affiliation(s)
- Sabine Eschrig
- TUM School of Life Sciences, Technical University of Munich, Freising-Weihenstephan, Germany
| | - Parvinderdeep S Kahlon
- TUM School of Life Sciences, Technical University of Munich, Freising-Weihenstephan, Germany
| | - Carlos Agius
- TUM School of Life Sciences, Technical University of Munich, Freising-Weihenstephan, Germany
| | - Andrea Holzer
- TUM School of Life Sciences, Technical University of Munich, Freising-Weihenstephan, Germany
| | - Ralph Hückelhoven
- TUM School of Life Sciences, Technical University of Munich, Freising-Weihenstephan, Germany
| | - Claus Schwechheimer
- TUM School of Life Sciences, Technical University of Munich, Freising-Weihenstephan, Germany
| | - Stefanie Ranf
- TUM School of Life Sciences, Technical University of Munich, Freising-Weihenstephan, Germany
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
12
|
Azeez SO, Adeboye SE. Advances in understanding plant-pathogen interactions: insights from tomato as a model system. Virusdisease 2024; 35:537-552. [PMID: 39464738 PMCID: PMC11502661 DOI: 10.1007/s13337-024-00889-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 07/09/2024] [Indexed: 10/29/2024] Open
Abstract
The impact of plant diseases coupled with climate change on agriculture worldwide cannot be overemphasized from negative effects on crop yield as well as economy to food insecurity. The model plants are essential for understanding the intricacies of plant-pathogen interactions. One of such plants is the tomato (Solanum lycopersicum L.). Researchers hope to increase tomato productivity and boost its resilience to pathogen attacks by utilizing OMICS and biotechnological methods. With an emphasis on tomato viral infections, this review summarizes significant discoveries and developments from earlier research. The analysis elucidates ongoing efforts to advance plant pathology by exploring the implications for sustainability and tomato production.
Collapse
Affiliation(s)
| | - Seyi Ebun Adeboye
- Agricultural Biotechnology Department, National Biotechnology Development Agency, Abuja, Nigeria
| |
Collapse
|
13
|
Haghpanah M, Jelodar NB, Zarrini HN, Pakdin-Parizi A, Dehestani A. New insights into azelaic acid-induced resistance against Alternaria Solani in tomato plants. BMC PLANT BIOLOGY 2024; 24:687. [PMID: 39026164 PMCID: PMC11264620 DOI: 10.1186/s12870-024-05397-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 07/09/2024] [Indexed: 07/20/2024]
Abstract
BACKGROUND The effect of azelaic acid (Aza) on the response of tomato plants to Alternaria solani was investigated in this study. After being treated with Aza, tomato plants were infected with A. solani, and their antioxidant, biochemical, and molecular responses were analyzed. RESULTS The results demonstrated that H2O2 and MDA accumulation increased in control plants after pathogen infection. Aza-treated plants exhibited a remarkable rise in peroxidase (POD) and catalase (CAT) activities during the initial stages of A. solani infection. Gene expression analysis revealed that both Aza treatment and pathogen infection altered the expression patterns of the SlNPR1, SlERF2, SlPR1, and SlPDF1.2 genes. The expression of SlPDF1.2, a marker gene for the jasmonic acid/ethylene (JA/ET) signaling pathway, showed a remarkable increase of 4.2-fold upon pathogen infection. In contrast, for the SlNPR1, a key gene in salicylic acid (SA) pathway, this increased expression was recorded with a delay at 96 hpi. Also, the phytohormone analysis showed significantly increased SA accumulation in plant tissues with disease development. It was also revealed that tissue accumulation of JA in Aza-treated plants was increased following pathogen infection, while it was not increased in plants without pathogen inoculation. CONCLUSION The results suggest that the resistance induced by Aza is mainly a result of modulations in both SA and JA pathways following complex antioxidant and molecular defense responses in tomato plants during A. solani infection. These findings provide novel information regarding inducing mechanisms of azelaic acid which would add to the current body of knowledge of SAR induction in plants as result of Aza application.
Collapse
Affiliation(s)
- Mostafa Haghpanah
- Kohgiluyeh and Boyerahmad Agricultural and Natural Resources Research and Education Center, Dryland Agricultural Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Gachsaran, Iran
- Department of Plant Breeding and Biotechnology, Sari Agricultural Sciences and Natural Resources University, Sari, Iran
- Genetics and Agricultural Biotechnology Institute of Tabarestan, Sari Agricultural Sciences and Natural Resources University, Sari, Iran
| | - Nadali Babaeian Jelodar
- Department of Plant Breeding and Biotechnology, Sari Agricultural Sciences and Natural Resources University, Sari, Iran
| | - Hamid Najafi Zarrini
- Department of Plant Breeding and Biotechnology, Sari Agricultural Sciences and Natural Resources University, Sari, Iran
| | - Ali Pakdin-Parizi
- Genetics and Agricultural Biotechnology Institute of Tabarestan, Sari Agricultural Sciences and Natural Resources University, Sari, Iran
| | - Ali Dehestani
- Genetics and Agricultural Biotechnology Institute of Tabarestan, Sari Agricultural Sciences and Natural Resources University, Sari, Iran.
| |
Collapse
|
14
|
Tominello-Ramirez CS, Muñoz Hoyos L, Oubounyt M, Stam R. Network analyses predict major regulators of resistance to early blight disease complex in tomato. BMC PLANT BIOLOGY 2024; 24:641. [PMID: 38971719 PMCID: PMC11227178 DOI: 10.1186/s12870-024-05366-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 07/01/2024] [Indexed: 07/08/2024]
Abstract
BACKGROUND Early blight and brown leaf spot are often cited as the most problematic pathogens of tomato in many agricultural regions. Their causal agents are Alternaria spp., a genus of Ascomycota containing numerous necrotrophic pathogens. Breeding programs have yielded quantitatively resistant commercial cultivars, but fungicide application remains necessary to mitigate the yield losses. A major hindrance to resistance breeding is the complexity of the genetic determinants of resistance and susceptibility. In the absence of sufficiently resistant germplasm, we sequenced the transcriptomes of Heinz 1706 tomatoes treated with strongly virulent and weakly virulent isolates of Alternaria spp. 3 h post infection. We expanded existing functional gene annotations in tomato and using network statistics, we analyzed the transcriptional modules associated with defense and susceptibility. RESULTS The induced responses are very distinct. The weakly virulent isolate induced a defense response of calcium-signaling, hormone responses, and transcription factors. These defense-associated processes were found in a single transcriptional module alongside secondary metabolite biosynthesis genes, and other defense responses. Co-expression and gene regulatory networks independently predicted several D clade ethylene response factors to be early regulators of the defense transcriptional module, as well as other transcription factors both known and novel in pathogen defense, including several JA-associated genes. In contrast, the strongly virulent isolate elicited a much weaker response, and a separate transcriptional module bereft of hormone signaling. CONCLUSIONS Our findings have predicted major defense regulators and several targets for downstream functional analyses. Combined with our improved gene functional annotation, they suggest that defense is achieved through induction of Alternaria-specific immune pathways, and susceptibility is mediated by modulating hormone responses. The implication of multiple specific clade D ethylene response factors and upregulation of JA-associated genes suggests that host defense in this pathosystem involves ethylene response factors to modulate jasmonic acid signaling.
Collapse
Affiliation(s)
- Christopher S Tominello-Ramirez
- Department of Phytopathology and Crop Protection, Institute for Phytopathology, Christian Albrechts University, Kiel, Germany
- Phytopathology, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Lina Muñoz Hoyos
- Phytopathology, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Mhaned Oubounyt
- Institute for Computational Systems Biology, University of Hamburg, Hamburg, Germany
| | - Remco Stam
- Department of Phytopathology and Crop Protection, Institute for Phytopathology, Christian Albrechts University, Kiel, Germany.
- Phytopathology, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany.
| |
Collapse
|
15
|
Bhunjun C, Chen Y, Phukhamsakda C, Boekhout T, Groenewald J, McKenzie E, Francisco E, Frisvad J, Groenewald M, Hurdeal VG, Luangsa-ard J, Perrone G, Visagie C, Bai F, Błaszkowski J, Braun U, de Souza F, de Queiroz M, Dutta A, Gonkhom D, Goto B, Guarnaccia V, Hagen F, Houbraken J, Lachance M, Li J, Luo K, Magurno F, Mongkolsamrit S, Robert V, Roy N, Tibpromma S, Wanasinghe D, Wang D, Wei D, Zhao C, Aiphuk W, Ajayi-Oyetunde O, Arantes T, Araujo J, Begerow D, Bakhshi M, Barbosa R, Behrens F, Bensch K, Bezerra J, Bilański P, Bradley C, Bubner B, Burgess T, Buyck B, Čadež N, Cai L, Calaça F, Campbell L, Chaverri P, Chen Y, Chethana K, Coetzee B, Costa M, Chen Q, Custódio F, Dai Y, Damm U, Santiago A, De Miccolis Angelini R, Dijksterhuis J, Dissanayake A, Doilom M, Dong W, Álvarez-Duarte E, Fischer M, Gajanayake A, Gené J, Gomdola D, Gomes A, Hausner G, He M, Hou L, Iturrieta-González I, Jami F, Jankowiak R, Jayawardena R, Kandemir H, Kiss L, Kobmoo N, Kowalski T, Landi L, Lin C, Liu J, Liu X, Loizides M, Luangharn T, Maharachchikumbura S, Mkhwanazi GM, Manawasinghe I, Marin-Felix Y, McTaggart A, Moreau P, Morozova O, et alBhunjun C, Chen Y, Phukhamsakda C, Boekhout T, Groenewald J, McKenzie E, Francisco E, Frisvad J, Groenewald M, Hurdeal VG, Luangsa-ard J, Perrone G, Visagie C, Bai F, Błaszkowski J, Braun U, de Souza F, de Queiroz M, Dutta A, Gonkhom D, Goto B, Guarnaccia V, Hagen F, Houbraken J, Lachance M, Li J, Luo K, Magurno F, Mongkolsamrit S, Robert V, Roy N, Tibpromma S, Wanasinghe D, Wang D, Wei D, Zhao C, Aiphuk W, Ajayi-Oyetunde O, Arantes T, Araujo J, Begerow D, Bakhshi M, Barbosa R, Behrens F, Bensch K, Bezerra J, Bilański P, Bradley C, Bubner B, Burgess T, Buyck B, Čadež N, Cai L, Calaça F, Campbell L, Chaverri P, Chen Y, Chethana K, Coetzee B, Costa M, Chen Q, Custódio F, Dai Y, Damm U, Santiago A, De Miccolis Angelini R, Dijksterhuis J, Dissanayake A, Doilom M, Dong W, Álvarez-Duarte E, Fischer M, Gajanayake A, Gené J, Gomdola D, Gomes A, Hausner G, He M, Hou L, Iturrieta-González I, Jami F, Jankowiak R, Jayawardena R, Kandemir H, Kiss L, Kobmoo N, Kowalski T, Landi L, Lin C, Liu J, Liu X, Loizides M, Luangharn T, Maharachchikumbura S, Mkhwanazi GM, Manawasinghe I, Marin-Felix Y, McTaggart A, Moreau P, Morozova O, Mostert L, Osiewacz H, Pem D, Phookamsak R, Pollastro S, Pordel A, Poyntner C, Phillips A, Phonemany M, Promputtha I, Rathnayaka A, Rodrigues A, Romanazzi G, Rothmann L, Salgado-Salazar C, Sandoval-Denis M, Saupe S, Scholler M, Scott P, Shivas R, Silar P, Silva-Filho A, Souza-Motta C, Spies C, Stchigel A, Sterflinger K, Summerbell R, Svetasheva T, Takamatsu S, Theelen B, Theodoro R, Thines M, Thongklang N, Torres R, Turchetti B, van den Brule T, Wang X, Wartchow F, Welti S, Wijesinghe S, Wu F, Xu R, Yang Z, Yilmaz N, Yurkov A, Zhao L, Zhao R, Zhou N, Hyde K, Crous P. What are the 100 most cited fungal genera? Stud Mycol 2024; 108:1-411. [PMID: 39100921 PMCID: PMC11293126 DOI: 10.3114/sim.2024.108.01] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 03/17/2024] [Indexed: 08/06/2024] Open
Abstract
The global diversity of fungi has been estimated between 2 to 11 million species, of which only about 155 000 have been named. Most fungi are invisible to the unaided eye, but they represent a major component of biodiversity on our planet, and play essential ecological roles, supporting life as we know it. Although approximately 20 000 fungal genera are presently recognised, the ecology of most remains undetermined. Despite all this diversity, the mycological community actively researches some fungal genera more commonly than others. This poses an interesting question: why have some fungal genera impacted mycology and related fields more than others? To address this issue, we conducted a bibliometric analysis to identify the top 100 most cited fungal genera. A thorough database search of the Web of Science, Google Scholar, and PubMed was performed to establish which genera are most cited. The most cited 10 genera are Saccharomyces, Candida, Aspergillus, Fusarium, Penicillium, Trichoderma, Botrytis, Pichia, Cryptococcus and Alternaria. Case studies are presented for the 100 most cited genera with general background, notes on their ecology and economic significance and important research advances. This paper provides a historic overview of scientific research of these genera and the prospect for further research. Citation: Bhunjun CS, Chen YJ, Phukhamsakda C, Boekhout T, Groenewald JZ, McKenzie EHC, Francisco EC, Frisvad JC, Groenewald M, Hurdeal VG, Luangsa-ard J, Perrone G, Visagie CM, Bai FY, Błaszkowski J, Braun U, de Souza FA, de Queiroz MB, Dutta AK, Gonkhom D, Goto BT, Guarnaccia V, Hagen F, Houbraken J, Lachance MA, Li JJ, Luo KY, Magurno F, Mongkolsamrit S, Robert V, Roy N, Tibpromma S, Wanasinghe DN, Wang DQ, Wei DP, Zhao CL, Aiphuk W, Ajayi-Oyetunde O, Arantes TD, Araujo JC, Begerow D, Bakhshi M, Barbosa RN, Behrens FH, Bensch K, Bezerra JDP, Bilański P, Bradley CA, Bubner B, Burgess TI, Buyck B, Čadež N, Cai L, Calaça FJS, Campbell LJ, Chaverri P, Chen YY, Chethana KWT, Coetzee B, Costa MM, Chen Q, Custódio FA, Dai YC, Damm U, de Azevedo Santiago ALCM, De Miccolis Angelini RM, Dijksterhuis J, Dissanayake AJ, Doilom M, Dong W, Alvarez-Duarte E, Fischer M, Gajanayake AJ, Gené J, Gomdola D, Gomes AAM, Hausner G, He MQ, Hou L, Iturrieta-González I, Jami F, Jankowiak R, Jayawardena RS, Kandemir H, Kiss L, Kobmoo N, Kowalski T, Landi L, Lin CG, Liu JK, Liu XB, Loizides M, Luangharn T, Maharachchikumbura SSN, Makhathini Mkhwanazi GJ, Manawasinghe IS, Marin-Felix Y, McTaggart AR, Moreau PA, Morozova OV, Mostert L, Osiewacz HD, Pem D, Phookamsak R, Pollastro S, Pordel A, Poyntner C, Phillips AJL, Phonemany M, Promputtha I, Rathnayaka AR, Rodrigues AM, Romanazzi G, Rothmann L, Salgado-Salazar C, Sandoval-Denis M, Saupe SJ, Scholler M, Scott P, Shivas RG, Silar P, Souza-Motta CM, Silva-Filho AGS, Spies CFJ, Stchigel AM, Sterflinger K, Summerbell RC, Svetasheva TY, Takamatsu S, Theelen B, Theodoro RC, Thines M, Thongklang N, Torres R, Turchetti B, van den Brule T, Wang XW, Wartchow F, Welti S, Wijesinghe SN, Wu F, Xu R, Yang ZL, Yilmaz N, Yurkov A, Zhao L, Zhao RL, Zhou N, Hyde KD, Crous PW (2024). What are the 100 most cited fungal genera? Studies in Mycology 108: 1-411. doi: 10.3114/sim.2024.108.01.
Collapse
Affiliation(s)
- C.S. Bhunjun
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - Y.J. Chen
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - C. Phukhamsakda
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - T. Boekhout
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
- The Yeasts Foundation, Amsterdam, the Netherlands
| | - J.Z. Groenewald
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - E.H.C. McKenzie
- Landcare Research Manaaki Whenua, Private Bag 92170, Auckland, New Zealand
| | - E.C. Francisco
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
- Laboratório Especial de Micologia, Universidade Federal de São Paulo, São Paulo, Brazil
| | - J.C. Frisvad
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | | | - V. G. Hurdeal
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - J. Luangsa-ard
- BIOTEC, National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - G. Perrone
- Institute of Sciences of Food Production, National Research Council (CNR-ISPA), Via G. Amendola 122/O, 70126 Bari, Italy
| | - C.M. Visagie
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - F.Y. Bai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - J. Błaszkowski
- Laboratory of Plant Protection, Department of Shaping of Environment, West Pomeranian University of Technology in Szczecin, Słowackiego 17, PL-71434 Szczecin, Poland
| | - U. Braun
- Martin Luther University, Institute of Biology, Department of Geobotany and Botanical Garden, Neuwerk 21, 06099 Halle (Saale), Germany
| | - F.A. de Souza
- Núcleo de Biologia Aplicada, Embrapa Milho e Sorgo, Empresa Brasileira de Pesquisa Agropecuária, Rodovia MG 424 km 45, 35701–970, Sete Lagoas, MG, Brazil
| | - M.B. de Queiroz
- Programa de Pós-graduação em Sistemática e Evolução, Universidade Federal do Rio Grande do Norte, Campus Universitário, Natal-RN, 59078-970, Brazil
| | - A.K. Dutta
- Molecular & Applied Mycology Laboratory, Department of Botany, Gauhati University, Gopinath Bordoloi Nagar, Jalukbari, Guwahati - 781014, Assam, India
| | - D. Gonkhom
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - B.T. Goto
- Programa de Pós-graduação em Sistemática e Evolução, Universidade Federal do Rio Grande do Norte, Campus Universitário, Natal-RN, 59078-970, Brazil
| | - V. Guarnaccia
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Torino, Largo Braccini 2, 10095 Grugliasco, TO, Italy
| | - F. Hagen
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
- Institute of Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, the Netherlands
| | - J. Houbraken
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - M.A. Lachance
- Department of Biology, University of Western Ontario London, Ontario, Canada N6A 5B7
| | - J.J. Li
- College of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, P.R. China
| | - K.Y. Luo
- College of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, P.R. China
| | - F. Magurno
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellońska 28, 40-032 Katowice, Poland
| | - S. Mongkolsamrit
- BIOTEC, National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - V. Robert
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - N. Roy
- Molecular & Applied Mycology Laboratory, Department of Botany, Gauhati University, Gopinath Bordoloi Nagar, Jalukbari, Guwahati - 781014, Assam, India
| | - S. Tibpromma
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, Yunnan 655011, P.R. China
| | - D.N. Wanasinghe
- Center for Mountain Futures, Kunming Institute of Botany, Honghe 654400, Yunnan, China
| | - D.Q. Wang
- College of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, P.R. China
| | - D.P. Wei
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, P.R. China
| | - C.L. Zhao
- College of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, P.R. China
| | - W. Aiphuk
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - O. Ajayi-Oyetunde
- Syngenta Crop Protection, 410 S Swing Rd, Greensboro, NC. 27409, USA
| | - T.D. Arantes
- Laboratório de Micologia, Departamento de Biociências e Tecnologia, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, 74605-050, Goiânia, GO, Brazil
| | - J.C. Araujo
- Mykocosmos - Mycology and Science Communication, Rua JP 11 Qd. 18 Lote 13, Jd. Primavera 1ª etapa, Post Code 75.090-260, Anápolis, Goiás, Brazil
- Secretaria de Estado da Educação de Goiás (SEDUC/ GO), Quinta Avenida, Quadra 71, número 212, Setor Leste Vila Nova, Goiânia, Goiás, 74643-030, Brazil
| | - D. Begerow
- Organismic Botany and Mycology, Institute of Plant Sciences and Microbiology, Ohnhorststraße 18, 22609 Hamburg, Germany
| | - M. Bakhshi
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE, UK
| | - R.N. Barbosa
- Micoteca URM-Department of Mycology Prof. Chaves Batista, Federal University of Pernambuco, Av. Prof. Moraes Rego, s/n, Center for Biosciences, University City, Recife, Pernambuco, Zip Code: 50670-901, Brazil
| | - F.H. Behrens
- Julius Kühn-Institute, Federal Research Centre for Cultivated Plants, Institute for Plant Protection in Fruit Crops and Viticulture, Geilweilerhof, D-76833 Siebeldingen, Germany
| | - K. Bensch
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - J.D.P. Bezerra
- Laboratório de Micologia, Departamento de Biociências e Tecnologia, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, 74605-050, Goiânia, GO, Brazil
| | - P. Bilański
- Department of Forest Ecosystems Protection, Faculty of Forestry, University of Agriculture in Krakow, Al. 29 Listopada 46, 31-425 Krakow, Poland
| | - C.A. Bradley
- Department of Plant Pathology, University of Kentucky, Princeton, KY 42445, USA
| | - B. Bubner
- Johan Heinrich von Thünen-Institut, Bundesforschungsinstitut für Ländliche Räume, Wald und Fischerei, Institut für Forstgenetik, Eberswalder Chaussee 3a, 15377 Waldsieversdorf, Germany
| | - T.I. Burgess
- Harry Butler Institute, Murdoch University, Murdoch, 6150, Australia
| | - B. Buyck
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d’Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, 57 rue Cuvier, CP 39, 75231, Paris cedex 05, France
| | - N. Čadež
- University of Ljubljana, Biotechnical Faculty, Food Science and Technology Department Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| | - L. Cai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - F.J.S. Calaça
- Mykocosmos - Mycology and Science Communication, Rua JP 11 Qd. 18 Lote 13, Jd. Primavera 1ª etapa, Post Code 75.090-260, Anápolis, Goiás, Brazil
- Secretaria de Estado da Educação de Goiás (SEDUC/ GO), Quinta Avenida, Quadra 71, número 212, Setor Leste Vila Nova, Goiânia, Goiás, 74643-030, Brazil
- Laboratório de Pesquisa em Ensino de Ciências (LabPEC), Centro de Pesquisas e Educação Científica, Universidade Estadual de Goiás, Campus Central (CEPEC/UEG), Anápolis, GO, 75132-903, Brazil
| | - L.J. Campbell
- School of Veterinary Medicine, University of Wisconsin - Madison, Madison, Wisconsin, USA
| | - P. Chaverri
- Centro de Investigaciones en Productos Naturales (CIPRONA) and Escuela de Biología, Universidad de Costa Rica, 11501-2060, San José, Costa Rica
- Department of Natural Sciences, Bowie State University, Bowie, Maryland, U.S.A
| | - Y.Y. Chen
- Guizhou Key Laboratory of Agricultural Biotechnology, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China
| | - K.W.T. Chethana
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - B. Coetzee
- Department of Plant Pathology, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa
- School for Data Sciences and Computational Thinking, University of Stellenbosch, South Africa
| | - M.M. Costa
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - Q. Chen
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - F.A. Custódio
- Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa-MG, Brazil
| | - Y.C. Dai
- State Key Laboratory of Efficient Production of Forest Resources, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
| | - U. Damm
- Senckenberg Museum of Natural History Görlitz, PF 300 154, 02806 Görlitz, Germany
| | - A.L.C.M.A. Santiago
- Post-graduate course in the Biology of Fungi, Department of Mycology, Federal University of Pernambuco, Av. Prof. Moraes Rego, s/n, 50740-465, Recife, PE, Brazil
| | | | - J. Dijksterhuis
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - A.J. Dissanayake
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - M. Doilom
- Innovative Institute for Plant Health/Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, Guangdong, P.R. China
| | - W. Dong
- Innovative Institute for Plant Health/Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, Guangdong, P.R. China
| | - E. Álvarez-Duarte
- Mycology Unit, Microbiology and Mycology Program, Biomedical Sciences Institute, University of Chile, Chile
| | - M. Fischer
- Julius Kühn-Institute, Federal Research Centre for Cultivated Plants, Institute for Plant Protection in Fruit Crops and Viticulture, Geilweilerhof, D-76833 Siebeldingen, Germany
| | - A.J. Gajanayake
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - J. Gené
- Unitat de Micologia i Microbiologia Ambiental, Facultat de Medicina i Ciències de la Salut & IURESCAT, Universitat Rovira i Virgili (URV), Reus, Catalonia Spain
| | - D. Gomdola
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Mushroom Research Foundation, 128 M.3 Ban Pa Deng T. Pa Pae, A. Mae Taeng, Chiang Mai 50150, Thailand
| | - A.A.M. Gomes
- Departamento de Agronomia, Universidade Federal Rural de Pernambuco, Recife-PE, Brazil
| | - G. Hausner
- Department of Microbiology, University of Manitoba, Winnipeg, MB, R3T 5N6
| | - M.Q. He
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - L. Hou
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Key Laboratory of Space Nutrition and Food Engineering, China Astronaut Research and Training Center, Beijing, 100094, China
| | - I. Iturrieta-González
- Unitat de Micologia i Microbiologia Ambiental, Facultat de Medicina i Ciències de la Salut & IURESCAT, Universitat Rovira i Virgili (URV), Reus, Catalonia Spain
- Department of Preclinic Sciences, Medicine Faculty, Laboratory of Infectology and Clinical Immunology, Center of Excellence in Translational Medicine-Scientific and Technological Nucleus (CEMT-BIOREN), Universidad de La Frontera, Temuco 4810296, Chile
| | - F. Jami
- Plant Health and Protection, Agricultural Research Council, Pretoria, South Africa
| | - R. Jankowiak
- Department of Forest Ecosystems Protection, Faculty of Forestry, University of Agriculture in Krakow, Al. 29 Listopada 46, 31-425 Krakow, Poland
| | - R.S. Jayawardena
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, South Korea
| | - H. Kandemir
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - L. Kiss
- Centre for Crop Health, Institute for Life Sciences and the Environment, University of Southern Queensland, QLD 4350 Toowoomba, Australia
- Centre for Research and Development, Eszterházy Károly Catholic University, H-3300 Eger, Hungary
| | - N. Kobmoo
- BIOTEC, National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - T. Kowalski
- Department of Forest Ecosystems Protection, Faculty of Forestry, University of Agriculture in Krakow, Al. 29 Listopada 46, 31-425 Krakow, Poland
| | - L. Landi
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| | - C.G. Lin
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - J.K. Liu
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - X.B. Liu
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, P.R. China
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Center, Temesvári krt. 62, Szeged H-6726, Hungary
- Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
| | | | - T. Luangharn
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - S.S.N. Maharachchikumbura
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - G.J. Makhathini Mkhwanazi
- Department of Plant Pathology, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa
| | - I.S. Manawasinghe
- Innovative Institute for Plant Health/Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, Guangdong, P.R. China
| | - Y. Marin-Felix
- Department Microbial Drugs, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124, Braunschweig, Germany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstrasse 7, 38106, Braunschweig, Germany
| | - A.R. McTaggart
- Centre for Horticultural Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Ecosciences Precinct, Dutton Park 4102, Queensland, Australia
| | - P.A. Moreau
- Univ. Lille, ULR 4515 - LGCgE, Laboratoire de Génie Civil et géo-Environnement, F-59000 Lille, France
| | - O.V. Morozova
- Komarov Botanical Institute of the Russian Academy of Sciences, 2, Prof. Popov Str., 197376 Saint Petersburg, Russia
- Tula State Lev Tolstoy Pedagogical University, 125, Lenin av., 300026 Tula, Russia
| | - L. Mostert
- Department of Plant Pathology, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa
| | - H.D. Osiewacz
- Faculty for Biosciences, Institute for Molecular Biosciences, Goethe University, Max-von-Laue-Str. 9, 60438, Frankfurt/Main, Germany
| | - D. Pem
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Mushroom Research Foundation, 128 M.3 Ban Pa Deng T. Pa Pae, A. Mae Taeng, Chiang Mai 50150, Thailand
| | - R. Phookamsak
- Center for Mountain Futures, Kunming Institute of Botany, Honghe 654400, Yunnan, China
| | - S. Pollastro
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Bari, Italy
| | - A. Pordel
- Plant Protection Research Department, Baluchestan Agricultural and Natural Resources Research and Education Center, AREEO, Iranshahr, Iran
| | - C. Poyntner
- Institute of Microbiology, University of Innsbruck, Technikerstrasse 25, 6020, Innsbruck, Austria
| | - A.J.L. Phillips
- Faculdade de Ciências, Biosystems and Integrative Sciences Institute (BioISI), Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal
| | - M. Phonemany
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Mushroom Research Foundation, 128 M.3 Ban Pa Deng T. Pa Pae, A. Mae Taeng, Chiang Mai 50150, Thailand
| | - I. Promputtha
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - A.R. Rathnayaka
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Mushroom Research Foundation, 128 M.3 Ban Pa Deng T. Pa Pae, A. Mae Taeng, Chiang Mai 50150, Thailand
| | - A.M. Rodrigues
- Laboratory of Emerging Fungal Pathogens, Department of Microbiology, Immunology, and Parasitology, Discipline of Cellular Biology, Federal University of São Paulo (UNIFESP), São Paulo, 04023062, Brazil
| | - G. Romanazzi
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| | - L. Rothmann
- Plant Pathology, Department of Plant Sciences, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, 9301, South Africa
| | - C. Salgado-Salazar
- Mycology and Nematology Genetic Diversity and Biology Laboratory, U.S. Department of Agriculture, Agriculture Research Service (USDA-ARS), 10300 Baltimore Avenue, Beltsville MD, 20705, USA
| | - M. Sandoval-Denis
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - S.J. Saupe
- Institut de Biochimie et de Génétique Cellulaire, UMR 5095 CNRS Université de Bordeaux, 1 rue Camille Saint Saëns, 33077 Bordeaux cedex, France
| | - M. Scholler
- Staatliches Museum für Naturkunde Karlsruhe, Erbprinzenstraße 13, 76133 Karlsruhe, Germany
| | - P. Scott
- Harry Butler Institute, Murdoch University, Murdoch, 6150, Australia
- Sustainability and Biosecurity, Department of Primary Industries and Regional Development, Perth WA 6000, Australia
| | - R.G. Shivas
- Centre for Crop Health, Institute for Life Sciences and the Environment, University of Southern Queensland, QLD 4350 Toowoomba, Australia
| | - P. Silar
- Laboratoire Interdisciplinaire des Energies de Demain, Université de Paris Cité, 75205 Paris Cedex, France
| | - A.G.S. Silva-Filho
- IFungiLab, Departamento de Ciências e Matemática (DCM), Instituto Federal de Educação, Ciência e Tecnologia de São Paulo (IFSP), São Paulo, BraziI
| | - C.M. Souza-Motta
- Micoteca URM-Department of Mycology Prof. Chaves Batista, Federal University of Pernambuco, Av. Prof. Moraes Rego, s/n, Center for Biosciences, University City, Recife, Pernambuco, Zip Code: 50670-901, Brazil
| | - C.F.J. Spies
- Agricultural Research Council - Plant Health and Protection, Private Bag X5017, Stellenbosch, 7599, South Africa
| | - A.M. Stchigel
- Unitat de Micologia i Microbiologia Ambiental, Facultat de Medicina i Ciències de la Salut & IURESCAT, Universitat Rovira i Virgili (URV), Reus, Catalonia Spain
| | - K. Sterflinger
- Institute of Natural Sciences and Technology in the Arts (INTK), Academy of Fine Arts Vienna, Augasse 2–6, 1090, Vienna, Austria
| | - R.C. Summerbell
- Sporometrics, Toronto, ON, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - T.Y. Svetasheva
- Tula State Lev Tolstoy Pedagogical University, 125, Lenin av., 300026 Tula, Russia
| | - S. Takamatsu
- Mie University, Graduate School, Department of Bioresources, 1577 Kurima-Machiya, Tsu 514-8507, Japan
| | - B. Theelen
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - R.C. Theodoro
- Laboratório de Micologia Médica, Instituto de Medicina Tropical do RN, Universidade Federal do Rio Grande do Norte, 59078-900, Natal, RN, Brazil
| | - M. Thines
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Senckenberganlage 25, 60325 Frankfurt Am Main, Germany
| | - N. Thongklang
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - R. Torres
- IRTA, Postharvest Programme, Edifici Fruitcentre, Parc Agrobiotech de Lleida, Parc de Gardeny, 25003, Lleida, Catalonia, Spain
| | - B. Turchetti
- Department of Agricultural, Food and Environmental Sciences and DBVPG Industrial Yeasts Collection, University of Perugia, Italy
| | - T. van den Brule
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
- TIFN, P.O. Box 557, 6700 AN Wageningen, the Netherlands
| | - X.W. Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - F. Wartchow
- Departamento de Sistemática e Ecologia, Universidade Federal da Paraíba, Paraiba, João Pessoa, Brazil
| | - S. Welti
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstrasse 7, 38106, Braunschweig, Germany
| | - S.N. Wijesinghe
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Mushroom Research Foundation, 128 M.3 Ban Pa Deng T. Pa Pae, A. Mae Taeng, Chiang Mai 50150, Thailand
| | - F. Wu
- State Key Laboratory of Efficient Production of Forest Resources, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
| | - R. Xu
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
- Internationally Cooperative Research Center of China for New Germplasm Breeding of Edible Mushroom, Jilin Agricultural University, Changchun 130118, China
| | - Z.L. Yang
- Syngenta Crop Protection, 410 S Swing Rd, Greensboro, NC. 27409, USA
- Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
| | - N. Yilmaz
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - A. Yurkov
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Brunswick, Germany
| | - L. Zhao
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - R.L. Zhao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - N. Zhou
- Department of Biological Sciences and Biotechnology, Botswana University of Science and Technology, Private Bag, 16, Palapye, Botswana
| | - K.D. Hyde
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Innovative Institute for Plant Health/Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, Guangdong, P.R. China
- Key Laboratory of Economic Plants and Biotechnology and the Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - P.W. Crous
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
- Microbiology, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht
| |
Collapse
|
16
|
Khan M, Gulan F, Arshad M, Zaman A, Riaz A. Early and late blight disease identification in tomato plants using a neural network-based model to augmenting agricultural productivity. Sci Prog 2024; 107:368504241275371. [PMID: 39262392 PMCID: PMC11401150 DOI: 10.1177/00368504241275371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Computer-advanced technologies have a significant impact across various fields. It is widely recognized that diseases have a detrimental effect on crop productivity and can significantly impact the economy, particularly in agricultural countries. Tomatoes hold great economic importance among cash crops, second only to potatoes. Globally, tomato production reaches a staggering 160 million tons annually, making it even more crucial for agricultural development. Unfortunately, the tomato crop is susceptible to several diseases, with early blight and late blight as two prominent culprits responsible for a production decrease of around 79%. Traditional disease detection and identification methods are time-consuming, expensive, and destructive, often requiring pathologists' expertise. Thus, the primary research objective is to enhance disease identification accuracy by leveraging deep learning techniques. A model based on the inception-V3 architecture has been devised to classify diseases affecting tomato plant leaves. The model was trained and tested using the PlantVillage dataset, which comprises 6000 sample images of tomato leaves. The training and testing process utilized an 80 : 20 ratio, resulting in an impressive classification accuracy of 97.44% for the proposed model. The proposed solution aims to enable the tomato industry to thrive in the global market by mitigating the impact of tomato leaf diseases. By reducing the prevalence of these diseases, the solution can increase demand and contribute to the industry's growth.
Collapse
Affiliation(s)
- Muzammil Khan
- Department of Computer & Software Technology, University of Swat, KP, Pakistan
| | - Fahmida Gulan
- Department of Computer Science, City University of Science and Information Technology, KP, Pakistan
| | - Muhammad Arshad
- Department of Computer Science, City University of Science and Information Technology, KP, Pakistan
| | - Abnash Zaman
- Department of Computer Science, City University of Science and Information Technology, KP, Pakistan
| | - Ammara Riaz
- Department of Life Sciences, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| |
Collapse
|
17
|
Muñoz Hoyos L, Anisha WP, Meng C, Kleigrewe K, Dawid C, Hückelhoven R, Stam R. Untargeted metabolomics reveals PTI-associated metabolites. PLANT, CELL & ENVIRONMENT 2024; 47:1224-1237. [PMID: 38164085 DOI: 10.1111/pce.14794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 12/09/2023] [Accepted: 12/13/2023] [Indexed: 01/03/2024]
Abstract
Plants employ a multilayered immune system to combat pathogens. In one layer, recognition of Pathogen- or Microbe-Associated Molecular Patterns or elicitors, triggers a cascade that leads to defence against the pathogen and Pattern Triggered Immunity. Secondary or specialised metabolites (SMs) are expected to play a role, because they are potentially anti-fungal compounds. Tomato (Solanum lycopersicum) plants inoculated with Alternaria solani s.l. show symptoms of infection after inoculation. Plants inoculated with Alternaria alternata remain symptomless. We hypothesised that pattern-triggered induction of resistance related metabolites in tomato contributes to the resistance against A. alternata. We compared the metabolomic profile (metabolome) of tomato after treatments with A. alternata, A. solani and the fungal elicitor chitin, and identified SMs involved in early defence of tomato plants. We revealed differential metabolome fingerprints. The composition of A. alternata and chitin induced metabolomes show larger overlap with each other than with the A. solani induced metabolome. We identify 65 metabolites possibly associated with PTI in tomato plants, including NAD and trigonelline. We confirm that trigonelline inhibits fungal growth in vitro at physiological concentrations. Thus, a true pattern-triggered, chemical defence is mounted against A. alternata, which contains anti-fungal compounds that could be interesting for crop protection strategies.
Collapse
Affiliation(s)
- Lina Muñoz Hoyos
- Chair of Phytopathology, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Wan Petra Anisha
- Chair of Phytopathology, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Chen Meng
- TUM School of Life Sciences, Bavarian Center for Biomolecular Mass Spectrometry, Technical University of Munich, Freising, Germany
| | - Karin Kleigrewe
- TUM School of Life Sciences, Bavarian Center for Biomolecular Mass Spectrometry, Technical University of Munich, Freising, Germany
| | - Corinna Dawid
- TUM School of Life Sciences, Bavarian Center for Biomolecular Mass Spectrometry, Technical University of Munich, Freising, Germany
- Chair of Food Chemistry and Molecular Sensory Science, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
- Functional Phytometabolomics, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Ralph Hückelhoven
- Chair of Phytopathology, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Remco Stam
- Chair of Phytopathology, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
- Department of Phytopathology and Crop protection, Institute of Phytopathology, Kiel University, Kiel, Germany
| |
Collapse
|
18
|
Schmey T, Tominello‐Ramirez CS, Brune C, Stam R. Alternaria diseases on potato and tomato. MOLECULAR PLANT PATHOLOGY 2024; 25:e13435. [PMID: 38476108 PMCID: PMC10933620 DOI: 10.1111/mpp.13435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/27/2024] [Accepted: 01/29/2024] [Indexed: 03/14/2024]
Abstract
Alternaria spp. cause different diseases in potato and tomato crops. Early blight caused by Alternaria solani and brown spot caused by Alternaria alternata are most common, but the disease complex is far more diverse. We first provide an overview of the Alternaria species infecting the two host plants to alleviate some of the confusion that arises from the taxonomic rearrangements in this fungal genus. Highlighting the diversity of Alternaria fungi on both solanaceous hosts, we review studies investigating the genetic diversity and genomes, before we present recent advances from studies elucidating host-pathogen interactions and fungicide resistances. TAXONOMY Kingdom Fungi, Phylum Ascomycota, Class Dothideomycetes, Order Pleosporales, Family Pleosporaceae, Genus Alternaria. BIOLOGY AND HOST RANGE Alternaria spp. adopt diverse lifestyles. We specifically review Alternaria spp. that cause disease in the two solanaceous crops potato (Solanum tuberosum) and tomato (Solanum lycopersicum). They are necrotrophic pathogens with no known sexual stage, despite some signatures of recombination. DISEASE SYMPTOMS Symptoms of the early blight/brown spot disease complex include foliar lesions that first present as brown spots, depending on the species with characteristic concentric rings, which eventually lead to severe defoliation and considerable yield loss. CONTROL Good field hygiene can keep the disease pressure low. Some potato and tomato cultivars show differences in susceptibility, but there are no fully resistant varieties known. Therefore, the main control mechanism is treatment with fungicides.
Collapse
Affiliation(s)
- Tamara Schmey
- TUM School of Life Science WeihenstephanTechnical University of MunichFreisingGermany
| | | | - Carolin Brune
- TUM School of Life Science WeihenstephanTechnical University of MunichFreisingGermany
| | - Remco Stam
- Department of Phytopathology and Crop Protection, Institute of PhytopathologyChristian Albrechts UniversityKielGermany
| |
Collapse
|
19
|
Qiu C, Halterman D, Zhang H, Liu Z. Multifunctionality of AsCFEM6 and AsCFEM12 effectors from the potato early blight pathogen Alternaria solani. Int J Biol Macromol 2024; 257:128575. [PMID: 38048930 DOI: 10.1016/j.ijbiomac.2023.128575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/31/2023] [Accepted: 12/01/2023] [Indexed: 12/06/2023]
Abstract
Plant pathogens secrete fungal-specific common in several fungal extracellular membrane (CFEM) effectors to manipulate host immunity and contribute to their virulence. Little is known about effectors and their functions in Alternaria solani, the necrotrophic fungal pathogen causing potato early blight. To identify candidate CFEM effector genes, we mined A. solani genome databases. This led to the identification of 12 genes encoding CFEM proteins (termed AsCFEM1-AsCFEM12) and 6 of them were confirmed to be putative secreted effectors. In planta expression revealed that AsCFEM6 and AsCFEM12 have elicitor function that triggers plant defense response including cell death in different botanical families. Targeted gene disruption of AsCFEM6 and AsCFEM12 resulted in a change in spore development, significant reduction of virulence on potato and eggplant susceptible cultivars, increased resistance to fungicide stress, variation in iron acquisition and utilization, and the involvement in 1,8-dihydroxynaphthalene (DHN) melanin biosynthesis pathway. Using maximum likelihood method, we found that positive selection likely caused the polymorphism within AsCFEM6 and AsCFEM12 homologs in different Alternaria spp. Site-directed mutagenesis analysis indicated that positive selection sites within their CFEM domains are required for cell death induction in Nicotiana benthamiana and are critical for response to abiotic stress in yeast. These results demonstrate that AsCFEM effectors possess additional functions beyond their roles in host plant immune response and pathogen virulence.
Collapse
Affiliation(s)
- Chaodong Qiu
- Department of Plant Pathology, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Dennis Halterman
- U.S. Department of Agriculture-Agricultural Research Service, Vegetable Crops Research Unit, Madison, WI 53706, USA
| | - Huajian Zhang
- Department of Plant Pathology, School of Plant Protection, Anhui Agricultural University, Hefei, China; Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei 230036, China.
| | - Zhenyu Liu
- Department of Plant Pathology, School of Plant Protection, Anhui Agricultural University, Hefei, China; Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei 230036, China.
| |
Collapse
|
20
|
Anderson TA, Sudermann MA, DeJong DM, Francis DM, Smart CD, Mutschler MA. Detection of trait donors and QTL boundaries for early blight resistance using local ancestry inference in a library of genomic sequences for tomato. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:404-415. [PMID: 37856521 DOI: 10.1111/tpj.16495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 09/12/2023] [Accepted: 09/27/2023] [Indexed: 10/21/2023]
Abstract
By conducting hierarchical clustering along a sliding window, we generated haplotypes across hundreds of re-sequenced genomes in a few hours. We leveraged our method to define cryptic introgressions underlying disease resistance in tomato (Solanum lycopersicum L.) and to discover resistant germplasm in the tomato seed bank. The genomes of 9 accessions with early blight (Alternaria linariae) disease resistance were newly sequenced and analyzed together with published sequences for 770 tomato and wild species accessions, most of which are available in germplasm collections. Identification of common ancestral haplotypes among resistant germplasm enabled rapid fine mapping of recently discovered quantitative trait loci (QTL) conferring resistance and the identification of possible causal variants. The source of the early blight QTL EB-9 was traced to a vintage tomato named 'Devon Surprise'. Another QTL, EB-5, as well as resistance to bacterial spot disease (Xanthomonas spp.), was traced to Hawaii 7998. A genomic survey of all accessions forecasted EB-9-derived resistance in several heirloom tomatoes, accessions of S. lycopersicum var. cerasiforme, and S. pimpinellifolium PI 37009. Our haplotype-based predictions were validated by screening the accessions against the causal pathogen. There was little evidence of EB-5 prevalence in surveyed contemporary germplasm, presenting an opportunity to bolster tomato disease resistance by adding this rare locus. Our work demonstrates practical insights that can be derived from the efficient processing of large genome-scale datasets, including rapid functional prediction of disease resistance QTL in diverse genetic backgrounds. Finally, our work finds more efficient ways to leverage public genetic resources for crop improvement.
Collapse
Affiliation(s)
- Taylor A Anderson
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, 245 Emerson Hall, Ithaca, NY, 14853, USA
| | - Martha A Sudermann
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, 630 West North Street, Geneva, NY, 14456, USA
| | - Darlene M DeJong
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, 245 Emerson Hall, Ithaca, NY, 14853, USA
| | - David M Francis
- Department of Horticulture and Crop Science, The Ohio State University, 1680 Madison Avenue, Wooster, OH, 44691, USA
| | - Christine D Smart
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, 630 West North Street, Geneva, NY, 14456, USA
| | - Martha A Mutschler
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, 245 Emerson Hall, Ithaca, NY, 14853, USA
| |
Collapse
|
21
|
Singh DP, Maurya S, Yerasu SR, Bisen MS, Farag MA, Prabha R, Shukla R, Chaturvedi KK, Farooqi MS, Srivastava S, Rai A, Sarma BK, Rai N, Behera TK. Metabolomics of early blight (Alternaria solani) susceptible tomato (Solanum lycopersicum) unfolds key biomarker metabolites and involved metabolic pathways. Sci Rep 2023; 13:21023. [PMID: 38030710 PMCID: PMC10687106 DOI: 10.1038/s41598-023-48269-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 11/24/2023] [Indexed: 12/01/2023] Open
Abstract
Tomato (Solanum lycopersicum) is among the most important commercial horticultural crops worldwide. The crop quality and production is largely hampered due to the fungal pathogen Alternaria solani causing necrotrophic foliage early blight disease. Crop plants usually respond to the biotic challenges with altered metabolic composition and physiological perturbations. We have deciphered altered metabolite composition, modulated metabolic pathways and identified metabolite biomarkers in A. solani-challenged susceptible tomato variety Kashi Aman using Liquid Chromatography-Mass Spectrometry (LC-MS) based metabolomics. Alteration in the metabolite feature composition of pathogen-challenged (m/z 9405) and non-challenged (m/z 9667) plant leaves including 8487 infection-exclusive and 8742 non-infection exclusive features was observed. Functional annotation revealed putatively annotated metabolites and pathway mapping indicated their enrichment in metabolic pathways, biosynthesis of secondary metabolites, ubiquinone and terpenoid-quinones, brassinosteroids, steroids, terpenoids, phenylpropanoids, carotenoids, oxy/sphingolipids and metabolism of biotin and porphyrin. PCA, multivariate PLS-DA and OPLS-DA analysis showed sample discrimination. Significantly up regulated 481 and down regulated 548 metabolite features were identified based on the fold change (threshold ≥ 2.0). OPLS-DA model based on variable importance in projection (VIP scores) and FC threshold (> 2.0) revealed 41 up regulated discriminant metabolite features annotated as sphingosine, fecosterol, melatonin, serotonin, glucose 6-phosphate, zeatin, dihydrozeatin and zeatin-β-D-glucoside. Similarly, 23 down regulated discriminant metabolites included histidinol, 4-aminobutyraldehyde, propanoate, tyramine and linalool. Melatonin and serotonin in the leaves were the two indoleamines being reported for the first time in tomato in response to the early blight pathogen. Receiver operating characteristic (ROC)-based biomarker analysis identified apigenin-7-glucoside, uridine, adenosyl-homocysteine, cGMP, tyrosine, pantothenic acid, riboflavin (as up regulated) and adenosine, homocyctine and azmaline (as down regulated) biomarkers. These results could aid in the development of metabolite-quantitative trait loci (mQTL). Furthermore, stress-induced biosynthetic pathways may be the potential targets for modifications through breeding programs or genetic engineering for improving crop performance in the fields.
Collapse
Affiliation(s)
| | - Sudarshan Maurya
- ICAR-Indian Institute of Vegetable Research, Varanasi, 221305, India
| | | | - Mansi Singh Bisen
- ICAR-Indian Institute of Vegetable Research, Varanasi, 221305, India
| | - Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Cairo, Egypt
| | - Ratna Prabha
- ICAR-Indian Agricultural Statistics Research Institute, Library Avenue, New Delhi, India
| | - Renu Shukla
- Indian Council of Agricultural Research, New Delhi, 110012, India
| | | | - Md Samir Farooqi
- ICAR-Indian Agricultural Statistics Research Institute, Library Avenue, New Delhi, India
| | - Sudhir Srivastava
- ICAR-Indian Agricultural Statistics Research Institute, Library Avenue, New Delhi, India
| | - Anil Rai
- ICAR-Indian Agricultural Statistics Research Institute, Library Avenue, New Delhi, India
- Indian Council of Agricultural Research, New Delhi, 110012, India
| | - Birinchi Kumar Sarma
- Department of Mycology and Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Nagendra Rai
- ICAR-Indian Institute of Vegetable Research, Varanasi, 221305, India
| | | |
Collapse
|
22
|
Sallam NMA, AbdElfatah HAS, Khalil Bagy HMM, Elfarash A, Abo-Elyousr KAM, Sikora EJ, Sallam A. Exploring the mechanisms of endophytic bacteria for suppressing early blight disease in tomato ( Solanum lycopersicum L.). Front Microbiol 2023; 14:1184343. [PMID: 37808317 PMCID: PMC10551630 DOI: 10.3389/fmicb.2023.1184343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 08/24/2023] [Indexed: 10/10/2023] Open
Abstract
Controlling early blight of tomatoes using endophytic bacteria is an eco-friendly and sustainable approach to manage this common fungal disease caused by Alternaria solani, Alternaria alternata, and Curvularia lunata. Endophytic bacteria are microorganisms that live inside plant tissues without causing harm and can help protect the host plant from pathogens. In this work, twenty endophytic bacterial isolates from tomato healthy plants were tested against pathogenic fungal isolates that caused early blight disease in vitro. Out of the 20 tested isolates, three (B4, B7, and B17) were considered effective isolates against the growth of fungal pathogens. The three isolates were recognized as Enterobacter cloacae HS-6 (B4), Pseudomonas gessardii HS-5 (B 7), and Pseudomonas mediterranea HS-4 (B17) using 16s-rDNA sequencing. Different concentrations of bacterial cultural diltrates at 20, 40, and 60% were tested for their antagonistic effects on the development of pathogenic fungi in vitro. The lowest dry weights of pathogenic isolates in all bacterial culture filtrates were discovered at 60%. In all culture filtrates, phenolic compounds showed the largest peak area. Under greenhouse conditions, the least disease severity of tomato early blight was found for E. cloacae and its culture filtrate compared to other treatments. Real-time PCR was used to examine the expression pattern of the defense response gene β-1.3 glucanase gene in infected tomato plants with pathogenic fungi (control) as well as its relations with efficient biocontrol agent (E. cloacae). The expression of the gene increased substantially and significantly after three days from the inoculation-infected plants with C. lunata and E. cloacae while it reached the maximum after five days from the inoculation with A. alternata, A. solani and E. cloacae. Our study concluded that the endophytic bacterial isolate E. cloacae can be considered a promising biocontrol agent for preventing tomato early blight.
Collapse
Affiliation(s)
- Nashwa M. A. Sallam
- Department of Plant Pathology, Faculty of Agriculture, Assiut University, Assiut, Egypt
| | | | | | - Ameer Elfarash
- Department of Genetics, Faculty of Agriculture, Assiut University, Assiut, Egypt
| | - Kamal A. M. Abo-Elyousr
- Department of Plant Pathology, Faculty of Agriculture, Assiut University, Assiut, Egypt
- Department of Arid Land Agriculture, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Edward J. Sikora
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, United States
| | - Ahmed Sallam
- Department of Genetics, Faculty of Agriculture, Assiut University, Assiut, Egypt
- Department Genebank, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| |
Collapse
|
23
|
Adhikari TB, Siddique MI, Louws FJ, Sim SC, Panthee DR. Molecular mapping of quantitative trait loci for resistance to early blight in tomatoes. FRONTIERS IN PLANT SCIENCE 2023; 14:1135884. [PMID: 37324699 PMCID: PMC10267708 DOI: 10.3389/fpls.2023.1135884] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 05/02/2023] [Indexed: 06/17/2023]
Abstract
Early blight (EB), caused by Alternaria linariae (Neerg.) (syn. A. tomatophila) Simmons, is a disease that affects tomatoes (Solanum lycopersicum L.) throughout the world, with tremendous economic implications. The objective of the present study was to map the quantitative trait loci (QTL) associated with EB resistance in tomatoes. The F2 and F2:3 mapping populations consisting of 174 lines derived from NC 1CELBR (resistant) × Fla. 7775 (susceptible) were evaluated under natural conditions in the field in 2011 and in the greenhouse in 2015 by artificial inoculation. In all, 375 Kompetitive Allele Specific PCR (KASP) assays were used for genotyping parents and the F2 population. The broad-sense heritability estimate for phenotypic data was 28.3%, and 25.3% for 2011, and 2015 disease evaluations, respectively. QTL analysis revealed six QTLs associated with EB resistance on chromosomes 2, 8, and 11 (LOD 4.0 to 9.1), explaining phenotypic variation ranging from 3.8 to 21.0%. These results demonstrate that genetic control of EB resistance in NC 1CELBR is polygenic. This study may facilitate further fine mapping of the EB-resistant QTL and marker-assisted selection (MAS) to transfer EB resistance genes into elite tomato varieties, including broadening the genetic diversity of EB resistance in tomatoes.
Collapse
Affiliation(s)
- Tika B. Adhikari
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, United States
| | - Muhammad Irfan Siddique
- Department of Horticultural Science, North Carolina State University, Mountain Horticultural Crops Research and Extension Center, Mills River, NC, United States
| | - Frank J. Louws
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, United States
- Department of Horticultural Science, North Carolina State University, Raleigh, NC, United States
| | - Sung-Chur Sim
- Department of Bioresources Engineering, Sejong University, Seoul, Republic of Korea
| | - Dilip R. Panthee
- Department of Horticultural Science, North Carolina State University, Mountain Horticultural Crops Research and Extension Center, Mills River, NC, United States
| |
Collapse
|
24
|
Nehela Y, Mazrou YSA, Taha NA, Elzaawely AA, Xuan TD, Makhlouf AH, El-Nagar A. Hydroxylated Cinnamates Enhance Tomato Resilience to Alternaria alternata, the Causal Agent of Early Blight Disease, and Stimulate Growth and Yield Traits. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12091775. [PMID: 37176833 PMCID: PMC10181299 DOI: 10.3390/plants12091775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/20/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023]
Abstract
The important vegetable crop, tomato, is challenged with numerous abiotic and biotic stressors, particularly the newly emerged fungicide-resistant strains of phytopathogenic fungi such as Alternaria alternata, the causal agent of early blight disease. The current study investigated the potential antifungal activity of four cinnamate derivatives including cinnamic acid, ρ-coumaric acid, caffeic acid, and ferulic acid against A. alternata. Our in vitro findings showed that all tested compounds exhibited dose-dependent fungistatic action against A. alternata when their concentrations were increased from 0.1, 0.3, 0.5, and 0.7, to 0.9 mM, respectively. The high concentration of ferulic acid (0.9 mM) completely inhibited the radial mycelial growth of A. alternata and it was comparable to the positive control (difenoconazole fungicide). Additionally, under greenhouse conditions, foliar application of the four tested cinnamates significantly reduced the severity of early blight disease without any phytotoxicity on treated tomato plants. Moreover, it significantly improved the growth traits (plant height, total leaf area, number of leaves per plant, and shoot fresh weight), total chlorophyll, and yield components (number of flowers per plant, number of fruits per plant, and fruit yield) of treated A. alternata-infected plants. Collectively, our findings suggest that cinnamate derivatives could be good candidates as eco-friendly alternatives to reduce the use of chemical fungicides against A. alternata.
Collapse
Affiliation(s)
- Yasser Nehela
- Department of Agricultural Botany, Faculty of Agriculture, Tanta University, Tanta 31527, Egypt
| | - Yasser S A Mazrou
- Business Administration Department, Community College, King Khalid University, Guraiger, Abha 62529, Saudi Arabia
- Department of Agriculture Economic, Faculty of Agriculture, Tanta University, Tanta 31511, Egypt
| | - Naglaa A Taha
- Vegetable Diseases Research Department, Agricultural Research Center, Plant Pathology Research Institute, Giza 12619, Egypt
| | - Abdelnaser A Elzaawely
- Department of Agricultural Botany, Faculty of Agriculture, Tanta University, Tanta 31527, Egypt
| | - Tran Dang Xuan
- Transdisciplinary Science and Engineering Program, Graduate School of Advanced Science and Engineering, Hiroshima University, Higashi-Hiroshima 739-8529, Japan
- Center for the Planetary Health and Innovation Science (PHIS), The IDEC Institute, Hiroshima University, Higashi-Hiroshima 739-8529, Japan
| | - Abeer H Makhlouf
- Department of Agricultural Botany, Faculty of Agriculture, Minufiya University, Shibin El-Kom 32511, Egypt
| | - Asmaa El-Nagar
- Department of Agricultural Botany, Faculty of Agriculture, Tanta University, Tanta 31527, Egypt
| |
Collapse
|
25
|
Singh DP, Bisen MS, Prabha R, Maurya S, Yerasu SR, Shukla R, Tiwari JK, Chaturvedi KK, Farooqi MS, Srivastava S, Rai A, Sarma BK, Rai N, Singh PM, Behera TK, Farag MA. Untargeted Metabolomics of Alternaria solani-Challenged Wild Tomato Species Solanum cheesmaniae Revealed Key Metabolite Biomarkers and Insight into Altered Metabolic Pathways. Metabolites 2023; 13:585. [PMID: 37233626 PMCID: PMC10220610 DOI: 10.3390/metabo13050585] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 05/27/2023] Open
Abstract
Untargeted metabolomics of moderately resistant wild tomato species Solanum cheesmaniae revealed an altered metabolite profile in plant leaves in response to Alternaria solani pathogen. Leaf metabolites were significantly differentiated in non-stressed versus stressed plants. The samples were discriminated not only by the presence/absence of specific metabolites as distinguished markers of infection, but also on the basis of their relative abundance as important concluding factors. Annotation of metabolite features using the Arabidopsis thaliana (KEGG) database revealed 3371 compounds with KEGG identifiers belonging to biosynthetic pathways including secondary metabolites, cofactors, steroids, brassinosteroids, terpernoids, and fatty acids. Annotation using the Solanum lycopersicum database in PLANTCYC PMN revealed significantly upregulated (541) and downregulated (485) features distributed in metabolite classes that appeared to play a crucial role in defense, infection prevention, signaling, plant growth, and plant homeostasis to survive under stress conditions. The orthogonal partial least squares discriminant analysis (OPLS-DA), comprising a significant fold change (≥2.0) with VIP score (≥1.0), showed 34 upregulated biomarker metabolites including 5-phosphoribosylamine, kaur-16-en-18-oic acid, pantothenate, and O-acetyl-L-homoserine, along with 41 downregulated biomarkers. Downregulated metabolite biomarkers were mapped with pathways specifically known for plant defense, suggesting their prominent role in pathogen resistance. These results hold promise for identifying key biomarker metabolites that contribute to disease resistive metabolic traits/biosynthetic routes. This approach can assist in mQTL development for the stress breeding program in tomato against pathogen interactions.
Collapse
Affiliation(s)
| | | | - Ratna Prabha
- ICAR-Indian Agricultural Statistics Research Institute, Library Avenue, New Delhi 110012, India
| | - Sudarshan Maurya
- ICAR-Indian Institute of Vegetable Research, Varanasi 221305, India
| | | | - Renu Shukla
- Indian Council of Agricultural Research, New Delhi 110012, India
| | | | | | - Md. Samir Farooqi
- ICAR-Indian Agricultural Statistics Research Institute, Library Avenue, New Delhi 110012, India
| | - Sudhir Srivastava
- ICAR-Indian Agricultural Statistics Research Institute, Library Avenue, New Delhi 110012, India
| | - Anil Rai
- ICAR-Indian Agricultural Statistics Research Institute, Library Avenue, New Delhi 110012, India
| | - Birinchi Kumar Sarma
- Department of Mycology and Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Nagendra Rai
- ICAR-Indian Institute of Vegetable Research, Varanasi 221305, India
| | | | | | - Mohamed A. Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Cairo 11562, Egypt
| |
Collapse
|
26
|
Ansari M, Ahmed S, Abbasi A, Hamad NA, Ali HM, Khan MT, Haq IU, Zaman QU. Green Synthesized Silver Nanoparticles: A Novel Approach for the Enhanced Growth and Yield of Tomato against Early Blight Disease. Microorganisms 2023; 11:microorganisms11040886. [PMID: 37110309 PMCID: PMC10145257 DOI: 10.3390/microorganisms11040886] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/23/2023] [Accepted: 03/23/2023] [Indexed: 04/29/2023] Open
Abstract
Tomato plants are among the most widely cultivated and economically important crops worldwide. Farmers' major challenge when growing tomatoes is early blight disease caused by Alternaria solani, which results in significant yield losses. Silver nanoparticles (AgNPs) have gained popularity recently due to their potential antifungal activity. The present study investigated the potential of green synthesized silver nanoparticles (AgNPs) for enhancing the growth and yield of tomato plants and their resistance against early blight disease. AgNPs were synthesized using leaf extract of the neem tree. Tomato plants treated with AgNPs showed a significant increase in plant height (30%), number of leaves, fresh weight (45%), and dry weight (40%) compared to the control plants. Moreover, the AgNP-treated plants exhibited a significant reduction in disease severity index (DSI) (73%) and disease incidence (DI) (69%) compared to the control plants. Tomato plants treated with 5 and 10 ppm AgNPs reached their maximum levels of photosynthetic pigments and increased the accumulation of certain secondary metabolites compared to the control group. AgNP treatment improved stress tolerance in tomato plants as indicated by higher activities of antioxidant enzymes such as PO (60%), PPO (65%), PAL (65.5%), SOD (65.3%), CAT (53.8%), and APX (73%). These results suggest that using green synthesized AgNPs is a promising approach for enhancing the growth and yield of tomato plants and protecting them against early blight disease. Overall, the findings demonstrate the potential of nanotechnology-based solutions for sustainable agriculture and food security.
Collapse
Affiliation(s)
- Madeeha Ansari
- Institute of Botany, University of the Punjab, Lahore 54590, Pakistan
| | - Shakil Ahmed
- Institute of Botany, University of the Punjab, Lahore 54590, Pakistan
| | - Asim Abbasi
- Department of Environmental Sciences, Kohsar University Murree, Murree 47150, Pakistan
- School of Plant Sciences, University of Arizona, Tucson, AZ 85721, USA
| | - Najwa A Hamad
- Plant Protection Department, Faculty of Agriculture, Omar Al-Mukhtar University, El-Beida P.O. Box 919, Libya
| | - Hayssam M Ali
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Muhammad Tajammal Khan
- Institute of Botany, University of the Punjab, Lahore 54590, Pakistan
- Division of Science and Technology, Department of Botany, University of Education, Lahore 54770, Pakistan
| | - Inzamam Ul Haq
- Department of Entomology, University of Agriculture, Faisalabad 38000, Pakistan
| | - Qamar Uz Zaman
- Department of Environmental Sciences, The University of Lahore, Lahore 54590, Pakistan
| |
Collapse
|
27
|
Miranda-Apodaca J, Artetxe U, Aguado I, Martin-Souto L, Ramirez-Garcia A, Lacuesta M, Becerril JM, Estonba A, Ortiz-Barredo A, Hernández A, Zarraonaindia I, Pérez-López U. Stress Response to Climate Change and Postharvest Handling in Two Differently Pigmented Lettuce Genotypes: Impact on Alternaria alternata Invasion and Mycotoxin Production. PLANTS (BASEL, SWITZERLAND) 2023; 12:1304. [PMID: 36986993 PMCID: PMC10059781 DOI: 10.3390/plants12061304] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/24/2023] [Accepted: 03/09/2023] [Indexed: 06/19/2023]
Abstract
Many species of Alternaria are important pathogens that cause plant diseases and postharvest rots. They lead to significant economic losses in agriculture and affect human and animal health due to their capacity to produce mycotoxins. Therefore, it is necessary to study the factors that can result in an increase in A. alternata. In this study, we discuss the mechanism by which phenol content protects from A. alternata, since the red oak leaf cultivar (containing higher phenols) showed lower invasion than the green one, Batavia, and no mycotoxin production. A climate change scenario enhanced fungal growth in the most susceptible cultivar, green lettuce, likely because elevated temperature and CO2 levels decrease plant N content, modifying the C/N ratio. Finally, while the abundance of the fungi was maintained at similar levels after keeping the lettuces for four days at 4 °C, this postharvest handling triggered TeA and TEN mycotoxin synthesis, but only in the green cultivar. Therefore, the results demonstrated that invasion and mycotoxin production are cultivar- and temperature-dependent. Further research should be directed to search for resistant cultivars and effective postharvest strategies to reduce the toxicological risk and economic losses related to this fungus, which are expected to increase in a climate change scenario.
Collapse
Affiliation(s)
- Jon Miranda-Apodaca
- Department of Plant Biology and Ecology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Spain
| | - Unai Artetxe
- Department of Plant Biology and Ecology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Spain
| | - Iratxe Aguado
- Applied Genomics and Bioinformatics Research Group, Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Spain
| | - Leire Martin-Souto
- Fungal and Bacterial Biomics Research Group, Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Spain
| | - Andoni Ramirez-Garcia
- Fungal and Bacterial Biomics Research Group, Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Spain
| | - Maite Lacuesta
- Department of Plant Biology and Ecology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain
| | - José María Becerril
- Department of Plant Biology and Ecology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Spain
| | - Andone Estonba
- Applied Genomics and Bioinformatics Research Group, Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Spain
| | - Amaia Ortiz-Barredo
- NEIKER-Basque Institute for Agricultural Research and Development, 01080 Vitoria-Gasteiz, Spain
| | - Antonio Hernández
- Department of Plant Biology and Ecology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Spain
| | - Iratxe Zarraonaindia
- Applied Genomics and Bioinformatics Research Group, Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Spain
- IKERBASQUE, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain
| | - Usue Pérez-López
- Department of Plant Biology and Ecology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Spain
| |
Collapse
|
28
|
Jiang J, Guo X, Tan H, Ding M, Liu F, Yang Z, Zhu J. Transcriptome sequencing leads to an improved understanding of the infection mechanism of Alternaria solani in potato. BMC PLANT BIOLOGY 2023; 23:120. [PMID: 36859112 PMCID: PMC9976505 DOI: 10.1186/s12870-023-04103-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Alternaria solani (A. solani), the main pathogen of potato early blight, causes serious yield reductions every year. The application of fungicides is the most common and effective method of controlling Alternaria-caused diseases. The differentially expressed transcripts of A. solani infecting potato were identified, revealing a group of valuable candidate genes for a systematic analysis to increase the understanding of the molecular pathogenesis of A. solani, and providing scientific data for formulating additional measures to prevent and control potato early blight. In this study, a deep RNA-sequencing approach was applied to gain insights into A. solani pathogenesis. At 3, 4, and 5 days post inoculation (dpi), RNA samples from the susceptible potato cultivar Favorita infected with A. solani strain HWC-168, were sequenced and utilized for transcriptome analysis, and compared to the transcriptome obtained 0 dpi. RESULTS A total of 4430 (2167 upregulated, 2263 downregulated), 4736 (2312 upregulated, 2424 downregulated), and 5043 (2411 upregulated, 2632 downregulated) genes were differentially expressed 3, 4 and 5 dpi, respectively, compared with genes analysed at 0 dpi. KEGG enrichment analysis showed that genes involved in the pathways of amino acid metabolism, glucose metabolism, and enzyme activity were significantly differentially expressed at the late infection stage. Correspondingly, symptoms developed rapidly during the late stage of A. solani infection. In addition, a short time-series expression miner (STEM) assay was performed to analyse the gene expression patterns of A. solani and Profile 17 and 19 showed significant change trends 3, 4 and 5 dpi. Both profiles, but especially Profile 17, included enzymes, including transferases, oxidoreductases, hydrolases and carbohydrate-active enzymes (CAZYmes), which may play important roles in late fungal infection. Furthermore, possible candidate effectors were identified through the adopted pipelines, with 137 differentially expressed small secreted proteins identified, including some enzymes and proteins with unknown functions. CONCLUSIONS Collectively, the data presented in this study show that amino acid metabolism, and glucose metabolism pathways, and specific pathway-related enzymes may be key putative pathogenic factors, and play important roles in late stage A. solani infection. These results contribute to a broader base of knowledge of A. solani pathogenesis in potato, as indicated by the transcriptional level analysis, and provide clues for determining the effectors of A. solani infection.
Collapse
Affiliation(s)
- Jia Jiang
- College of Plant Protection, Hebei Agricultural University, Baoding, 071001, China
- Department of Plant Protection, College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, China
| | - Xuhao Guo
- Department of Plant Protection, College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, China
| | - Huanhuan Tan
- Department of Plant Protection, College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, China
| | - Mingya Ding
- Potato Research Institute of Weichang Manchu and Mongolian Autonomous County, Chengde, 068450, China
| | - Fangming Liu
- Potato Research Institute of Weichang Manchu and Mongolian Autonomous County, Chengde, 068450, China
| | - Zhihui Yang
- College of Plant Protection, Hebei Agricultural University, Baoding, 071001, China
| | - Jiehua Zhu
- College of Plant Protection, Hebei Agricultural University, Baoding, 071001, China.
| |
Collapse
|
29
|
Wang C, Wang J, Zhang D, Cheng J, Zhu J, Yang Z. Identification and functional analysis of protein secreted by Alternaria solani. PLoS One 2023; 18:e0281530. [PMID: 36877688 PMCID: PMC9987770 DOI: 10.1371/journal.pone.0281530] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 01/25/2023] [Indexed: 03/07/2023] Open
Abstract
Early blight, caused by the necrotrophic fungus Alternaria solani, is an important foliar disease that causes major yield losses of potato. Effector proteins secreted by pathogens to host cells can inhibit host immune response to pathogens. Currently, the function of effector proteins secreted by A. solani during infection is poorly understood. In this study, we identified and characterized a novel candidate effector protein, AsCEP50. AsCEP50 is a secreted protein that is highly expressed throughout the infection stages of A. solani. Agrobacterium tumefaciens-mediated transient expression in Nicotiana benthamiana and tomato demonstrated that AsCEP50 is located on the plasma membrane of N. benthamiana and regulates senescence-related genes, resulting in the chlorosis of N. benthamiana and tomato leaves. Δ50 mutants were unaffected in vegetative growth, spore formation and mycelium morphology. However, the deletion of AsCEP50 significantly reduced virulence, melanin production and penetration of A. solani. These results strongly supported that AsCEP50 is an important pathogenic factor at the infection stage and contributes to the virulence of Alternaria solani.
Collapse
Affiliation(s)
- Chen Wang
- College of Plant Protection, Hebei Agricultural University, Baoding, P. R. China
| | - Jinhui Wang
- College of Plant Protection, Hebei Agricultural University, Baoding, P. R. China
| | - Dai Zhang
- College of Plant Protection, Hebei Agricultural University, Baoding, P. R. China
| | - Jianing Cheng
- College of Plant Protection, Hebei Agricultural University, Baoding, P. R. China
| | - Jiehua Zhu
- College of Plant Protection, Hebei Agricultural University, Baoding, P. R. China
- Technological Innovation Center for Biological Control of Crop Diseases and Insect Pests of Hebei Province, Baoding, P. R. China
- * E-mail: (JZ); (ZY)
| | - Zhihui Yang
- College of Plant Protection, Hebei Agricultural University, Baoding, P. R. China
- Technological Innovation Center for Biological Control of Crop Diseases and Insect Pests of Hebei Province, Baoding, P. R. China
- * E-mail: (JZ); (ZY)
| |
Collapse
|
30
|
Runge P, Ventura F, Kemen E, Stam R. Distinct Phyllosphere Microbiome of Wild Tomato Species in Central Peru upon Dysbiosis. MICROBIAL ECOLOGY 2023; 85:168-183. [PMID: 35041070 PMCID: PMC9849306 DOI: 10.1007/s00248-021-01947-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 12/15/2021] [Indexed: 06/14/2023]
Abstract
Plants are colonized by myriads of microbes across kingdoms, which affect host development, fitness, and reproduction. Hence, plant microbiomes have been explored across a broad range of host species, including model organisms, crops, and trees under controlled and natural conditions. Tomato is one of the world's most important vegetable crops; however, little is known about the microbiota of wild tomato species. To obtain insights into the tomato microbiota occurring in natural environments, we sampled epiphytic microbes from leaves of four tomato species, Solanum habrochaites, S. corneliomulleri, S. peruvianum, and S. pimpinellifolium, from two geographical locations within the Lima region of Peru over 2 consecutive years. Here, a high-throughput sequencing approach was applied to investigate microbial compositions including bacteria, fungi, and eukaryotes across tomato species and geographical locations. The phyllosphere microbiome composition varies between hosts and location. Yet, we identified persistent microbes across tomato species that form the tomato microbial core community. In addition, we phenotypically defined healthy and dysbiotic samples and performed a downstream analysis to reveal the impact on microbial community structures. To do so, we compared microbial diversities, unique OTUs, relative abundances of core taxa, and microbial hub taxa, as well as co-occurrence network characteristics in healthy and dysbiotic tomato leaves and found that dysbiosis affects the phyllosphere microbial composition in a host species-dependent manner. Yet, overall, the present data suggests an enrichment of plant-promoting microbial taxa in healthy leaves, whereas numerous microbial taxa containing plant pathogens occurred in dysbiotic leaves.Concluding, we identify the core phyllosphere microbiome of wild tomato species, and show that the overall phyllosphere microbiome can be impacted by sampling time point, geographical location, host genotype, and plant health. Future studies in these components will help understand the microbial contribution to plant health in natural systems and can be of use in cultivated tomatoes.
Collapse
Affiliation(s)
- Paul Runge
- Department of Microbial Interactions, IMIT/ZMBP, University of Tübingen, Auf der Morgenstelle 32, 72076, Tübingen, Germany
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Carl-von-Linne-Weg 10, 50829, Köln, Germany
| | - Freddy Ventura
- Plant Pathology and Bacteriology, International Potato Centre, Avenida La Molina 1895, La Molina, Lima, Peru
| | - Eric Kemen
- Department of Microbial Interactions, IMIT/ZMBP, University of Tübingen, Auf der Morgenstelle 32, 72076, Tübingen, Germany
| | - Remco Stam
- Chair of Phytopathology, TUM School of Life Science, Emil-Ramann-Str. 2, 85354, Freising-Weihenstephan, Germany.
| |
Collapse
|
31
|
Valle-Sotelo EG, Troncoso-Rojas R, Tiznado-Hernández ME, Carvajal-Millán E, Sánchez-Estrada A, Henry García Y. Bioefficacy of fungal chitin oligomers in the control of postharvest decay in tomato fruit. INTERNATIONAL FOOD RESEARCH JOURNAL 2022. [DOI: 10.47836/ifrj.29.5.15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Tomato is one of the most commercialised and consumed fruits worldwide. However, tomatoes are highly susceptible to Alternaria rot. Among the safe strategies proposed to control Alternaria rot is the induction of defence mechanisms through biological elicitors, such as chitin. Chitin and its oligosaccharides are an activate plant defence mechanisms, but studies of fruits exposed to fungal chitin fragments are scarce. Therefore, the present work aimed to obtain and partially characterise chitin oligomers of Alternaria alternata, and evaluate their effect on the defence mechanism of tomato fruits and their tolerance to Alternaria rot. The chitin oligomers obtained had a molecular weight of ≤ 1 kDa, 12% N-acetyl-glucosamine, 0.2% residual protein, and were 94% acetylated. These oligomers markedly increased the enzymatic activity of chitinase and β-1,3-glucanase in tomato fruits, and the development of Alternaria rot was inhibited by 78%. Chitin oligomers of A. alternata represent a promising alternative to attenuate Alternaria rot in tomato fruits through an enzymatic defence mechanism.
Collapse
|
32
|
Abbasi S, Nasirzadeh F, Boojar MMA, Kafi SA, Karimi E, Khelghatibana F, Sadeghi A. Streptomyces strains can improve the quality properties and antifungal bioactivities of tomato fruits by impacting WRKY70 transcription factor gene and nitrate accumulation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 188:31-37. [PMID: 35964362 DOI: 10.1016/j.plaphy.2022.07.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 07/09/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
The current study evaluated the effect of plant growth-promoting (PGP) strains of Streptomyces on yield, quality, and nitrate content of fruits, plant-microbe responses, and antifungal effect against blight disease caused by fungus pathogen Alternaria solani on tomato fruits in commercial greenhouse conditions. Greenhouse trials were done with four treatments including strains Y28, IC10, IT25, and commercial bio-fertilizer (Barvar NPK®) on tomato plants. In PGP treatments, the number of infected fruits significantly reduced (60%) compared to Barvar and control. Strain Y28 improved the quality of tomatoes more than other treatments. All three PGP treatments contained a higher level of total sugar concentration and antioxidant enzyme activities than Barvar and control. In contrast, PGP strains, especially Y28, significantly reduced nitrate accumulation (25%) compared to Barvar and control tomatoes. Streptomyces treatments induced more than a 20-fold increase in UDP and WRKY70 transcription factor gene expression relative to the control (P < 0.01). Based on the results, microbe-dependent plant defense induced by these strains is positively correlated to WRKY70 expression and nitrate reduction in commercial greenhouse conditions. These findings suggest that the commercial application of specific strains not only can illustrate an eco-friendly solution to induce resistance against fungal pathogens but also improve the quality properties of food plants with lower nitrate content.
Collapse
Affiliation(s)
- Sakineh Abbasi
- Department of Plant Pathology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran; Department of Microbial Biotechnology, Agricultural Biotechnology Research Institute of Iran, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Farhad Nasirzadeh
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | | | - Sahar Alipour Kafi
- Department of Microbiology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
| | - Ebrahim Karimi
- Department of Microbial Biotechnology, Agricultural Biotechnology Research Institute of Iran, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Fatemeh Khelghatibana
- Plant Protection Lab, Iranian Research Institute of Plant Protection, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Akram Sadeghi
- Department of Microbial Biotechnology, Agricultural Biotechnology Research Institute of Iran, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran.
| |
Collapse
|
33
|
Study on spray-drying of Bacillus velezensis NKMV-3 strain, its formulation and bio efficacy against early blight of tomato. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102483] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
34
|
Wang C, Zhang D, Cheng J, Zhao D, Pan Y, Li Q, Zhu J, Yang Z, Wang J. Identification of effector CEP112 that promotes the infection of necrotrophic Alternaria solani. BMC PLANT BIOLOGY 2022; 22:466. [PMID: 36171557 PMCID: PMC9520946 DOI: 10.1186/s12870-022-03845-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Alternaria solani is a typical necrotrophic pathogen that can cause severe early blight on Solanaceae crops and cause ring disease on plant leaves. Phytopathogens produce secretory effectors that regulate the host immune response and promote pathogenic infection. Effector proteins, as specialized secretions of host-infecting pathogens, play important roles in disrupting host defense systems. At present, the role of the effector secreted by A. solani during infection remains unclear. We report the identification and characterization of AsCEP112, an effector required for A. solani virulence. RESULT The AsCEP112 gene was screened from the transcriptome and genome of A. solani on the basis of typical effector signatures. Fluorescence quantification and transient expression analysis showed that the expression level of AsCEP112 continued to increase during infection. The protein localized to the cell membrane of Nicotiana benthamiana and regulated senescence-related genes, resulting in the chlorosis of N. benthamiana and tomato leaves. Moreover, comparative analysis of AsCEP112 mutant obtained by homologous recombination with wild-type and revertant strains indicated that AsCEP112 gene played an active role in regulating melanin formation and penetration in the pathogen. Deletion of AsCEP112 also reduced the pathogenicity of HWC-168. CONCLUSION Our findings demonstrate that AsCEP112 was an important effector protein that targeted host cell membranes. AsCEP112 regulateed host senescence-related genes to control host leaf senescence and chlorosis, and contribute to pathogen virulence.
Collapse
Affiliation(s)
- Chen Wang
- College of Plant Protection, Hebei Agricultural University, Baoding, 071001, People's Republic of China
| | - Dai Zhang
- College of Plant Protection, Hebei Agricultural University, Baoding, 071001, People's Republic of China
| | - Jianing Cheng
- College of Plant Protection, Hebei Agricultural University, Baoding, 071001, People's Republic of China
| | - Dongmei Zhao
- College of Plant Protection, Hebei Agricultural University, Baoding, 071001, People's Republic of China
| | - Yang Pan
- College of Plant Protection, Hebei Agricultural University, Baoding, 071001, People's Republic of China
| | - Qian Li
- College of Plant Protection, Hebei Agricultural University, Baoding, 071001, People's Republic of China
| | - Jiehua Zhu
- College of Plant Protection, Hebei Agricultural University, Baoding, 071001, People's Republic of China.
- Technological Innovation Center for Biological Control of Crop Diseases and Insect Pests of Hebei Province, Baoding, 071001, People's Republic of China.
| | - Zhihui Yang
- College of Plant Protection, Hebei Agricultural University, Baoding, 071001, People's Republic of China.
- Technological Innovation Center for Biological Control of Crop Diseases and Insect Pests of Hebei Province, Baoding, 071001, People's Republic of China.
| | - Jinhui Wang
- College of Plant Protection, Hebei Agricultural University, Baoding, 071001, People's Republic of China.
- Technological Innovation Center for Biological Control of Crop Diseases and Insect Pests of Hebei Province, Baoding, 071001, People's Republic of China.
| |
Collapse
|
35
|
Attia MS, Hashem AH, Badawy AA, Abdelaziz AM. Biocontrol of early blight disease of eggplant using endophytic Aspergillus terreus: improving plant immunological, physiological and antifungal activities. BOTANICAL STUDIES 2022; 63:26. [PMID: 36030517 PMCID: PMC9420682 DOI: 10.1186/s40529-022-00357-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 08/18/2022] [Indexed: 05/06/2023]
Abstract
BACKGROUND The eggplant suffers from many biotic stresses that cause severe damage to crop production. One of the most destructive eggplant pathogens is Alternaria solani, which causes early blight disease. A pot experiment was conducted to evaluate the role of fungal endophytes in protecting eggplant against early blight as well as in improving its growth performance. RESULTS Endophytic Aspergillus terreus was isolated from Ocimum basilicum leaves and identified morphologically and genetically. In vitro, crude extract of endophytic A. terreus exhibited promising antifungal activity against A. solani where minimum inhibitory concentration (MIC) was 1.25 mg/ml. Severity of the disease and rate of protection from the disease were recorded. Vegetative growth indices, physiological resistance signs (photosynthetic pigments, carbohydrates, proteins, phenols, proline, malondialdehyde (MDA), antioxidant enzymes), and isozymes were estimated. Alternaria solani caused a highly disease severity (87.5%) and a noticeable decreasing in growth characteristics and photosynthetic pigments except for carotenoids. Also, infection with A. solani caused significant decreases in the contents of carbohydrate and protein by 29.94% and 10.52%, respectively. Infection with A. solani caused enhancement in phenolics (77.21%), free proline (30.56%), malondialdehyde (30.26%), superoxide dismutase (SOD) (125.47%), catalase (CAT) (125.93%), peroxidase (POD) (25.07%) and polyphenol oxidase (PPO) (125.37%) compared to healthy plants. In contrast, the use of A. terreus on infected plants succeeded in recovering eggplants from the disease, as the disease severity was recorded (caused protection by 66.67%). Application of A. terreus either on healthy or infected eggplants showed several responses in number and density of peroxidase (POD) and polyphenol oxidase (PPO) isozymes. CONCLUSION It is necessary for us to address the remarkable improvement in the photosynthetic pigments, protein, carbohydrates, and enzymatic activity compared to infected control, which opens the way for more studies on the use of biocides as safe alternatives against fungal diseases.
Collapse
Affiliation(s)
- Mohamed S Attia
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo, 11884, Egypt
| | - Amr H Hashem
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo, 11884, Egypt
| | - Ali A Badawy
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo, 11884, Egypt.
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo, 11884, Egypt.
| | - Amer M Abdelaziz
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo, 11884, Egypt.
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo, 11884, Egypt.
| |
Collapse
|
36
|
FytoSol, a Promising Plant Defense Elicitor, Controls Early Blight (Alternaria solani) Disease in the Tomato by Inducing Host Resistance-Associated Gene Expression. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8060484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Early blight (EB), caused by the necrotrophic pathogen Alternaria solani, is one of the most common and destructive diseases in the tomato (Solanum lycopersicum L.). The use of fungicides is a prominent tactic used to control EB; however, their undesirable effects on the environment and human health, as well as involvement in the development of resistant strains, have driven researchers to search for new alternatives. Plant defense elicitors are exogenous defense-triggering molecules that induce a plant’s defense system associated with extensive transcriptional- and metabolic reprogramming of the genome and do not cause direct toxicity to phytopathogens. Moreover, 2,6-dichloroisonicotinic acid (INA) was an early-identified and strong plant defense elicitor to various phytopathogens. Recently, the combination of chitosan oligomers and pectin-derived oligogalacturonides that can mimic the induction of plants by a pathogen or damaged-derived molecules (PAMP and DAMP) were characterized as defense elicitors, named FytoSol. In this study, the preventive roles of these two defense elicitors—FytoSol and INA—against EB disease and its molecular basis, were explored. According to the results, FytoSol significantly reduced disease severity by an average of 30% for almost one month with an AUDPC value of 399 compared to the control, which had an AUDPC value of 546. On the contrary, INA did not provide any protection against EB. Gene expression analyses of these two distinct plant defense elicitors indicated that the expression patterns of several SA-, JA-, or ET-pathway-related genes (Pti4, TPK1b, Pto kinase, TomloxD, PRB1-2, SABP2, WRKY33b, WRKY70, PR-5, and PR3) were induced by defense elicitors differently. FytoSol extensively upregulated gene expressions of PR3, downregulated the SA-related defense pathway, and provided remarkable protection against the necrotrophic pathogen Alternaria solani. On the contrary, INA mostly induced genes related to biotrophic and/or hemibiotrophic pathogen protection. Our results indicate that FytoSol is a promising plant defense elicitor against EB and the modes of action of the elicitors are important to characterize their effects against pathogens. Further research may extend the use of defense elicitors as alternatives to pesticides in agriculture.
Collapse
|
37
|
Awan ZA, Shoaib A, Iftikhar MS, Jan BL, Ahmad P. Combining Biocontrol Agent With Plant Nutrients for Integrated Control of Tomato Early Blight Through the Modulation of Physio-Chemical Attributes and Key Antioxidants. Front Microbiol 2022; 13:807699. [PMID: 35401436 PMCID: PMC8986128 DOI: 10.3389/fmicb.2022.807699] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 02/04/2022] [Indexed: 11/26/2022] Open
Abstract
Early blight (EB) is one of the major fungal diseases caused by Alternaria solani that is responsible for destructive tomato production around the globe. Biocontrol agent/s can be adequately implemented in an integrated management framework by using it in combination with vital plant nutrients, e.g., nitrogen, phosphorus, and potassium (NPK) and zinc (Zn). The current study was aimed to assess the integrated effect of a biocontrol agent Bacillus subtilis (BS-01) and the selective plant nutrients (NPK and Zn) on EB disease management and tomato crop performance. A field experiment was conducted for the off-season tomato production (under walk-in tunnels) in Punjab, Pakistan. The trial was set in a randomized complete block design (RCBD) and comprised nine treatments of a biocontrol agent (BS-01) either alone or in combination with the plant nutrients, viz., NPK (64:46:50 kg acre–1) and Zn (10 kg acre–1) as sustainable disease managing approach against EB. In addition, the biocontrol efficacy of B. subtilis (BS-01) on a fungal load of A. solani was estimated by quantitative PCR assays, where the foliar application of BS-01 on tomato plants either alone or in combination with the plant nutrients was done as a preventive measure. Our results revealed that the interactive effect of BS-01 with plant nutrients conferred significantly a varying degree of resilience in the infected tomato plants against EB by effectively modifying the content of total chlorophyll, carotenoids, and total phenolics along with the activities of antioxidant enzymes (SOD, CAT, POX, PPO, and PAL). In addition, the integrative effect of BS-01 and plant nutrients proved significantly effective in reducing pathogen load on inoculated tomato foliage, displaying the desired level of protection against A. solani infection. Besides, the complementary interaction of BS-01 + Zn + NPK worked synergistically to improve crop productivity by providing the highest marketable yield (21.61 tons acre–1) and net profit (361,363 Pakistani rupees acre–1). This integrated approach is put forward as a way to reduce the fungicide doses to control EB that would act as a sustainable plant protection strategy to generate profitable tomato production.
Collapse
Affiliation(s)
- Zoia Arshad Awan
- Institute of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
- *Correspondence: Zoia Arshad Awan,
| | - Amna Shoaib
- Institute of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | | | - Basit Latief Jan
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Parvaiz Ahmad
- Botany and Microbiology Department, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
38
|
Shalaby TA, Taha NA, Taher DI, Metwaly MM, El-Beltagi HS, Rezk AA, El-Ganainy SM, Shehata WF, El-Ramady HR, Bayoumi YA. Paclobutrazol Improves the Quality of Tomato Seedlings to Be Resistant to Alternaria solani Blight Disease: Biochemical and Histological Perspectives. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11030425. [PMID: 35161406 PMCID: PMC8840709 DOI: 10.3390/plants11030425] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 01/31/2022] [Accepted: 02/01/2022] [Indexed: 05/09/2023]
Abstract
The production and quality of tomato seedlings needs many growth factors and production requirements besides controlling the phytopathogens. Paclobutrazol (PBZ) has benefit applications in improving crop productivity under biotic stress (Alternaria solani, the causal agent of early blight disease in tomatoes). In the current study, the foliar application of PBZ, at rates of 25, 50, and 100 mg L-1, was evaluated against early blight disease in tomatoes under greenhouse conditions. The roles of PBZ to extend tomato seedling lives and handling in nurseries were also investigated by measuring different the biochemical (leaf enzymes, including catalase and peroxidase) and histological attributes of tomato seedlings. Disease assessment confirmed that PBZ enhanced the quality of tomato seedlings and induced resistance to early blight disease post inoculation, at 7, 14, and 21 days. Higher values in chlorophyll content, enzyme activities, and anatomical features of stem (cuticle thickness) and stomata (numbers and thickness) were recorded, due to applied PBZ. This may support the delay of the transplanting of tomato seedlings without damage. The reason for this extending tomato seedling life may be due to the role of PBZ treatment in producing seedlings to be greener, more compact, and have a better root system. The most obvious finding to emerge from this study is that PBZ has a distinguished impact in ameliorating biotic stress, especially of the early blight disease under greenhouse conditions. Further studies, which consider molecular variables, will be conducted to explore the role of PBZ in more detail.
Collapse
Affiliation(s)
- Tarek A. Shalaby
- Department of Arid Land Agriculture, College of Agricultural and Food Science, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia;
- Horticulture Department, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt;
- Correspondence: (T.A.S.); (H.S.E.-B.)
| | - Naglaa A. Taha
- Agricultural Research Center, Plant Pathology Research Institute, Giza 12619, Egypt; (N.A.T.); (A.A.R.)
| | - Dalia I. Taher
- Agricultural Research Center (ARC), Vegetable Crops Research Department, Horticulture Research Institute, Giza 12619, Egypt;
| | - Metwaly M. Metwaly
- Agricultural Botany Department, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt;
| | - Hossam S. El-Beltagi
- Department of Agricultural Biotechnology, College of Agricultural and Food Science, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia;
- Biochemistry Department, Faculty of Agriculture, Cairo University, Giza 12613, Egypt
- Correspondence: (T.A.S.); (H.S.E.-B.)
| | - Adel A. Rezk
- Agricultural Research Center, Plant Pathology Research Institute, Giza 12619, Egypt; (N.A.T.); (A.A.R.)
- Department of Agricultural Biotechnology, College of Agricultural and Food Science, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia;
| | - Sherif M. El-Ganainy
- Department of Arid Land Agriculture, College of Agricultural and Food Science, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia;
- Agricultural Research Center, Plant Pathology Research Institute, Giza 12619, Egypt; (N.A.T.); (A.A.R.)
| | - Wael F. Shehata
- Department of Agricultural Biotechnology, College of Agricultural and Food Science, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia;
- Plant Production Department, College of Environmental Agricultural Science, El–Arish University, North Sinai 45511, Egypt
| | - Hassan R. El-Ramady
- Soil and Water Department, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt;
| | - Yousry A. Bayoumi
- Horticulture Department, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt;
- Physiology & Breeding of Horticultural Crops Laboratory, Horticulture Department, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt
| |
Collapse
|
39
|
Nekoval S, Zakharchenko A, Sadovaya A, Churikova A, Fedoryanskaya I. Assessment of mutant tomato lines as a starting material for breeding varieties resistant to Alternaria alternata. Saudi J Biol Sci 2022; 29:1061-1072. [PMID: 35197775 PMCID: PMC8848014 DOI: 10.1016/j.sjbs.2021.09.066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/16/2021] [Accepted: 09/25/2021] [Indexed: 11/16/2022] Open
Affiliation(s)
- Svetlana Nekoval
- Corresponding author at: FSBSI «Federal Research Center of Biological Plant Protection», 350039, Krasnodar-39, VNIIBZR, Russia.
| | | | | | | | | |
Collapse
|
40
|
Hamminger C, Glueck M, Fefer M, Ckurshumova W, Liu J, Tenhaken R, Plaetzer K. Photodynamic Inactivation of plant pathogens part II: fungi. Photochem Photobiol Sci 2022; 21:195-207. [PMID: 35044642 DOI: 10.1007/s43630-021-00157-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/09/2021] [Indexed: 11/30/2022]
Abstract
The constantly increasing demand for agricultural produce from organic and conventional farming calls for new, sustainable, and biocompatible solutions for crop protection. The overuse of fungicides leading to contamination of both produce and environment and the emergence of plant pathogenic fungi that are resistant to conventional treatments warrant the need for new methods to combat fungal infections in the field. We here deliver the follow-up study to our research on the Photodynamic Inactivation (PDI) of plant pathogenic bacteria (Glueck et al. in Photochem Photobiol Sci 18(7):1700-1708, 2019) by expanding the scope to fungal pathogens. Both fungal species employed in this study-Alternaria solani and Botrytis cinerea-cause substantial crop and economic losses. Sodium magnesium chlorophyllin (Chl, approved as food additive E140) in combination with Na2EDTA and the chlorin e6 derivative B17-0024 holding cationic moieties serve as eco-friendly photoactive compounds. Effectiveness of the antifungal PDI was measured by inhibition of growth of mycelial spheres (average diameter 2-3 mm) after incubation with the photosensitizer for 100 min and subsequent illumination using a LED array (395 nm, 106.6 J cm-2). One hundred micromolar Chl combined with 5 mM Na2EDTA was able to successfully photokill 94.1% of A. solani and 91.7% of B. cinerea samples. PDI based on B17-0024 can completely inactivate A. solani at 10 times lower concentration (10 µM); however, for B. cinerea, the concentration required for complete eradication was similar to that of Chl with Na2EDTA (100 µM). Using a plant compatibility assay based on Fragaria vesca, we further demonstrate that both photosensitizers neither affect host plant development nor cause significant leaf damage. The plants were sprayed with 300 µL of treatment solution used for PDI (one or three treatments on consecutive days) and plant growth was monitored for 21 days. Only minor leaf damage was observed in samples exposed to the chelators Na2EDTA and polyaspartic acid, but overall plant development was unaffected. In conclusion, our results suggest that sodium magnesium chlorophyllin in combination with EDTA and B17-0024 could serve as effective and safe photofungicides.
Collapse
Affiliation(s)
- Christoph Hamminger
- Laboratory of Photodynamic Inactivation of Microorganisms, Department of Biosciences and Medical Biology, Paris Lodron University of Salzburg, Hellbrunnerstr. 34, Salzburg, Austria
| | - Michael Glueck
- Laboratory of Photodynamic Inactivation of Microorganisms, Department of Biosciences and Medical Biology, Paris Lodron University of Salzburg, Hellbrunnerstr. 34, Salzburg, Austria
| | - Michael Fefer
- Suncor AgroScience, 2489 North Sheridan Way, Mississauga, ON, L5K1A8, Canada
| | - Wenzi Ckurshumova
- Suncor AgroScience, 2489 North Sheridan Way, Mississauga, ON, L5K1A8, Canada
| | - Jun Liu
- Suncor AgroScience, 2489 North Sheridan Way, Mississauga, ON, L5K1A8, Canada
| | - Raimund Tenhaken
- Plant Physiology, Department of Environment and Biodiversity, University of Salzburg, Hellbrunnerstr. 34, Salzburg, Austria
| | - Kristjan Plaetzer
- Laboratory of Photodynamic Inactivation of Microorganisms, Department of Biosciences and Medical Biology, Paris Lodron University of Salzburg, Hellbrunnerstr. 34, Salzburg, Austria.
| |
Collapse
|
41
|
Yang W, Li H, Liu J, Shao H, Hua J, Luo S. Degraded Metabolites of Phlorizin Promote Germination of Valsa mali var. mali in its Host Malus spp. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:149-156. [PMID: 34939801 DOI: 10.1021/acs.jafc.1c06206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Plant pathogenic fungi are able to utilize the principal metabolites of their hosts, which is one reason pathogens can so seriously harm the plants, although the mechanisms behind this utilization are not always clear. Valsa mali var. mali is a pathogenic fungus specific to the plant genus Malus. The fungus can seriously endanger apple crops and has caused serious economic losses. Phlorizin (1), the principal component in the stems, roots, and leaves of Malus pumila and M. sieversii, was able to promote spore germination of Valsa mali var. mali (Vmm-30) significantly over 120-168 h in a non-nutritional suspension. Compared with the control, the concentrations of nine phenolic compounds (3-11) in the stems of M. pumila increased after inoculation with Vmm-30. Moreover, compounds 3, 4, and 9-11 were able to promote the germination of Vmm-30 spores over 24-36 h, which was a significantly shorter time than that of phlorizin. High-performance liquid chromatography with diode-array detection (HPLC-DAD) and ultraperformance liquid chromatography with tandem mass spectrometry (UPLC-MS/MS) analyses further suggested that compounds 2-11 were the degradation products of phlorizin (1) and are produced through carbon oxidation cracking, decarboxylation, and oxidation reactions. This suggests that the degradation of phlorizin is able to effectively promote the growth of Vmm-30. The Vmm-30 strain is therefore able to utilize the principal metabolite phlorizin to generate a series of degradation products, which further promote its germination and the infection of its host plants in the genus Malus.
Collapse
Affiliation(s)
- Wan Yang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning Province 110866, China
| | - Hongdi Li
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning Province 110866, China
| | - Jiayi Liu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning Province 110866, China
| | - Hua Shao
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| | - Juan Hua
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning Province 110866, China
| | - Shihong Luo
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning Province 110866, China
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| |
Collapse
|
42
|
Abstract
A leaf blight disease with an incidence level of about 50% was found on Robusta banana in Guangdong province of China in September 2020. The early symptom appeared as pale gray to black brown, irregular, small, necrotic lesions mainly on the top 3–5 leaves. Severely infected leaves were withered and necrotic. Two representative fungus strains, strain L1 and strain L2, were isolated from affected banana leaves, and morphological and molecular identification analysis confirmed that the two fungi were both Alternaria jacinthicola. Many Alternaria species have been reported to cause wilting, decay, leaf blight and leaf spots on plants and lead to serious economic losses in their production, including A. alternata, causing leaf blight and leaf sport diseases on banana. The Koch’s postulates of A. jacinthicola causing the leaf blight disease was further fulfilled, which confirmed that it is the causal agent of this disease. To our knowledge, this is the first report of A. jacinthicola causing leaf blight on banana in China.
Collapse
|
43
|
Characterization of New Small-Spored Alternaria Species Isolated from Solanaceae in Algeria. Life (Basel) 2021; 11:life11121291. [PMID: 34947822 PMCID: PMC8704928 DOI: 10.3390/life11121291] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/20/2021] [Accepted: 11/21/2021] [Indexed: 11/24/2022] Open
Abstract
Although large-spored Alternaria species of the section Porri are considered to be the major agents responsible for leaf spot and blight of Solanaceae, small-spored Alternaria species are also frequently isolated from symptomatic tissues. A survey of the north-western regions of Algeria during the 2017–2018 growing seasons revealed that amongst the 623 Alternaria isolates from tomato, potato, pepper, eggplant and black nightshade, 8% could not be morphologically assigned to either section Porri or section Alternaria. In order to more precisely determine the taxonomic position of these isolates, detailed morphological characterizations and multi-locus phylogenetic analyses were performed. Based on these analyses, the isolates were grouped into four main clades: section Ulocladioides, section Infectoriae, including two new species, section Embellisioides, and section Eureka, including one new species. These isolates were also characterized for their virulence under green-house conditions. They were able to produce leaf spot symptoms on tomato plants but with variable levels.
Collapse
|
44
|
Kumar M, Giri VP, Pandey S, Gupta A, Patel MK, Bajpai AB, Jenkins S, Siddique KHM. Plant-Growth-Promoting Rhizobacteria Emerging as an Effective Bioinoculant to Improve the Growth, Production, and Stress Tolerance of Vegetable Crops. Int J Mol Sci 2021; 22:ijms222212245. [PMID: 34830124 PMCID: PMC8622033 DOI: 10.3390/ijms222212245] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 10/27/2021] [Accepted: 11/08/2021] [Indexed: 11/16/2022] Open
Abstract
Vegetable cultivation is a promising economic activity, and vegetable consumption is important for human health due to the high nutritional content of vegetables. Vegetables are rich in vitamins, minerals, dietary fiber, and several phytochemical compounds. However, the production of vegetables is insufficient to meet the demand of the ever-increasing population. Plant-growth-promoting rhizobacteria (PGPR) facilitate the growth and production of vegetable crops by acquiring nutrients, producing phytohormones, and protecting them from various detrimental effects. In this review, we highlight well-developed and cutting-edge findings focusing on the role of a PGPR-based bioinoculant formulation in enhancing vegetable crop production. We also discuss the role of PGPR in promoting vegetable crop growth and resisting the adverse effects arising from various abiotic (drought, salinity, heat, heavy metals) and biotic (fungi, bacteria, nematodes, and insect pests) stresses.
Collapse
Affiliation(s)
- Manoj Kumar
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion 7505101, Israel
- Correspondence: (M.K.); (K.H.M.S.)
| | - Ved Prakash Giri
- Division of Microbial Technology, CSIR-National Botanical Research Institute, Lucknow 226001, India;
| | - Shipra Pandey
- Department of Chemical Engineering, Indian Institute of Technology, Bombay 400076, India;
| | - Anmol Gupta
- Department of Biosciences, Faculty of Sciences, Integral University, Lucknow 226026, India;
| | - Manish Kumar Patel
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization, Volcani Center, Rishon LeZion 7505101, Israel;
| | | | - Sasha Jenkins
- The UWA Institute of Agriculture and UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA 6001, Australia;
| | - Kadambot H. M. Siddique
- The UWA Institute of Agriculture and UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA 6001, Australia;
- Correspondence: (M.K.); (K.H.M.S.)
| |
Collapse
|
45
|
Vignesh M, Shankar SRM, MubarakAli D, Hari BNV. A Novel Rhizospheric Bacterium: Bacillus velezensis NKMV-3 as a Biocontrol Agent Against Alternaria Leaf Blight in Tomato. Appl Biochem Biotechnol 2021; 194:1-17. [PMID: 34586599 DOI: 10.1007/s12010-021-03684-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 09/08/2021] [Indexed: 11/28/2022]
Abstract
A novel strain of Bacillus isolated from rhizosphere has shown to be an excellent biocontrol agent against various plant pathogens. In this study, a first report of a Bacillus strain NKMV-3 which effectively controls Alternaria solani, which cause the early blight disease in tomato. Based on the cultural and molecular sequencing of 16S rRNA gene sequence, the identity of the strain was confirmed as Bacillus velezensis NKMV-3. The presence of the lipopeptide which are antibiotic synthesis genes, namely iturin C, surfactin A and fengycin B and D, was confirmed through gene amplification. In addition, lipopeptides were also confirmed through liquid chromatography. The extract showed inhibitory effect against A. solani in vitro and detached tomato leaf assays. Bacillus velezensis strain NKMV-3-based formulations may provide an effective solution in controlling early blight disease in tomato and other crops.
Collapse
Affiliation(s)
- Murthy Vignesh
- Research and Development Centre, Bharathiar University, Coimbatore, 641 046, Tamil Nadu, India.
| | | | - Davoodbasha MubarakAli
- School of Life Sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, 600048, Tamil Nadu, India
| | | |
Collapse
|
46
|
Jindo K, Evenhuis A, Kempenaar C, Pombo Sudré C, Zhan X, Goitom Teklu M, Kessel G. Review: Holistic pest management against early blight disease towards sustainable agriculture. PEST MANAGEMENT SCIENCE 2021; 77:3871-3880. [PMID: 33538396 PMCID: PMC8451811 DOI: 10.1002/ps.6320] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/22/2021] [Accepted: 02/04/2021] [Indexed: 05/24/2023]
Abstract
Alternaria species are well-known aggressive pathogens that are widespread globally and warmer temperatures caused by climate change might increase their abundance more drastically. Early blight (EB) disease, caused mainly by Alternaria solani, and brown spot, caused by Alternaria alternata, are major concerns in potato, tomato and eggplant production. The development of EB is strongly linked to varieties, crop development stages, environmental factors, cultivation and field management. Several forecasting models for pesticide application to control EB were created in the last century and more recent scientific advances have included modern breeding technology to detect resistant genes and precision agriculture with hyperspectral sensors to pinpoint damage locations on plants. This paper presents an overview of the EB disease and provides an evaluation of recent scientific advances to control the disease. First of all, we describe the outline of this disease, encompassing biological cycles of the Alternaria genus, favorite climate and soil conditions as well as resistant plant species. Second, versatile management practices to minimize the effect of this pathogen at field level are discussed, covering their limitations and pitfalls. A better understanding of the underlying factors of this disease and the potential of novel research can contribute to implementing integrated pest management systems for an ecofriendly farming system. © 2021 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Keiji Jindo
- Agrosystems ResearchWageningen University & ResearchWageningenThe Netherlands
| | | | - Corné Kempenaar
- Agrosystems ResearchWageningen University & ResearchWageningenThe Netherlands
| | - Cláudia Pombo Sudré
- Laboratório de Melhoramento Genético VegetalUniversidade Estadual do Norte Fluminense Darcy Ribeiro, UENFCampos dos GoytacazesBrazil
| | - Xiaoxiu Zhan
- Department of Crop Cultivation and Farming SystemCollege of Agronomy, Sichuan Agricultural UniversityChengduChina
| | | | - Geert Kessel
- Field CropsWageningen University & ResearchLelystadThe Netherlands
| |
Collapse
|
47
|
Silicon supplementation improves early blight resistance in Lycopersicon esculentum Mill . by modulating the expression of defense-related genes and antioxidant enzymes. 3 Biotech 2021; 11:232. [PMID: 33968576 DOI: 10.1007/s13205-021-02789-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 04/12/2021] [Indexed: 01/24/2023] Open
Abstract
Early blight is the most devastating disease in tomato which causes huge yield losses across the globe. Hence, development of specific, efficient and ecofriendly tools are required to increase the disease resistance in tomato plants. Here, we systematically investigate the defensive role and priming effect of silicon (Si) in tomato plants under control and infected conditions. Based on the results, Si-treated tomato plants showed improved resistance to Alternaria solani as there was delay in symptoms and reduced disease severity than non-Si-treated plants. To further examine the Si-mediated molecular priming in tomato plants, expression profiling of defense-related genes like PR1, PR2, WRKYII, PR3, LOXD and JERF3 was studied in control, Si-supplemented, A. solani-inoculated and Si + A. solani-inoculated plants. Interestingly, Si significantly increased the expression of jasmonic acid (JA) marker genes (PR3, LOXD and JERF3) than salicylic acid (SA) marker genes (PR1, PR2 and WRKYII). However, Si + A. solani-inoculated plants showed higher expression levels of defence genes except WRKYII than A. solani-inoculated or Si-treated plants. Furthermore, pre-supplementation of Si to A. solani-infected tomato plants showed increased activity of antioxidant enzymes viz. superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), glutathione reductase (GR) and peroxidase (POD) than control, Si-treated and A. solani-inoculated plants. Altogether, present study highlights the defensive role of Si in tomato plants in response to A. solani by increasing not only the transcript levels of defense signature genes, but also the activity of antioxidant enzymes.
Collapse
|
48
|
Role of biochar, compost and plant growth promoting rhizobacteria in the management of tomato early blight disease. Sci Rep 2021; 11:6092. [PMID: 33731746 PMCID: PMC7971063 DOI: 10.1038/s41598-021-85633-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 03/04/2021] [Indexed: 01/20/2023] Open
Abstract
The individual role of biochar, compost and PGPR has been widely studied in increasing the productivity of plants by inducing resistance against phyto-pathogens. However, the knowledge on combined effect of biochar and PGPR on plant health and management of foliar pathogens is still at juvenile stage. The effect of green waste biochar (GWB) and wood biochar (WB), together with compost (Comp) and plant growth promoting rhizobacteria (PGPR; Bacillus subtilis) was examined on tomato (Solanum lycopersicum L.) physiology and Alternaria solani development both in vivo and in vitro. Tomato plants were raised in potting mixture modified with only compost (Comp) at application rate of 20% (v/v), and along with WB and GWB at application rate of 3 and 6% (v/v), each separately, in combination with or without B. subtilis. In comparison with WB amended soil substrate, percentage disease index was significantly reduced in GWB amended treatments (Comp + 6%GWB and Comp + 3%GWB; 48.21 and 35.6%, respectively). Whereas, in the presence of B. subtilis disease suppression was also maximum (up to 80%) in the substrate containing GWB. Tomato plant growth and physiological parameters were significantly higher in treatment containing GWB (6%) alone as well as in combination with PGPR. Alternaria solani mycelial growth inhibition was less than 50% in comp, WB and GWB amended growth media, whereas B. subtilis induced maximum inhibition (55.75%). Conclusively, the variable impact of WB, GWB and subsequently their concentrations in the soil substrate was evident on early blight development and plant physiology. To our knowledge, this is the first report implying biochar in synergism with PGPR to hinder the early blight development in tomatoes.
Collapse
|
49
|
Curvularia lunata as new causal pathogen of tomato early blight disease in Egypt. Mol Biol Rep 2021; 48:3001-3006. [PMID: 33687701 DOI: 10.1007/s11033-021-06254-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 02/25/2021] [Indexed: 10/22/2022]
Abstract
Tomato plants displaying early blight symptoms were collected from different localities in the provinces of Assiut and Sohag, Egypt. The causal pathogens were isolated on potato dextrose agar plates. Pathogenicity tests with 48 isolates were carried out under greenhouse conditions on tomato cultivar (CV 844). All tested isolates caused symptoms of early blight disease with different degrees. The highest disease severity on tomato plants was found after inoculation with isolate No. 6 followed by isolates No. 20 and No. 31. The most pathogenic isolates were identified by sequence analysis using ITS1 and ITS4 primers. The analysis of the amplified sequences from fungal isolates No. 6, 20 and 31 displayed 99-100% nucleotide identity with Alternaria solani, Curvularia lunata and A. alternata, respectively. To our knowledge, this is the first report of Curvularia lunata as one of the causal pathogens of early blight disease of tomato plants in Egypt.
Collapse
|
50
|
Alizadeh-Moghaddam G, Rezayatmand Z, Esfahani MN, Khozaei M. Bio-genetic analysis of resistance in tomato to early blight disease, Alternaria alternata. PHYTOCHEMISTRY 2020; 179:112486. [PMID: 32828067 DOI: 10.1016/j.phytochem.2020.112486] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/09/2020] [Accepted: 08/08/2020] [Indexed: 05/29/2023]
Abstract
Early blight disease (EB), Alternaria alternata, is destructive on Solanum lycopersicum Mill. The responses of 35 domestic and exotic commercial tomato genotypes to early blight were examined at transplanting and maturing stages using genetic diversity analysis, with 15 Inter Simple Sequence Repeat (ISSR) primers, total phenolic content (TPC), and enzymatic activity of catalase (CAT), phenylalanine ammonia lyase (PAL), peroxidase (POD) and superoxide dismutase (SOD) assays. The disease severity ranged from 18 to 87.5%. Eleven of 15 ISSR primers generated 68 loci of which 63 (90%) were polymorphic. Polymorphism information content value varied from 0.3 to 0.5 with an average of 0.4. Nei's measure of the average gene diversity ranged from 0.06 to 0.5. The Tomato genotypes were divided into five clusters in Un-weighted Pair Group Method with Arithmetic Mean (UPGMA) analysis, showing a considerable similarity between resistance level and molecular classification pattern. Antioxidant analysis indicated a significant increase in TPC and CAT, POD, PAL and SOD activities in most inoculated tomato genotypes at both growth stages. The highest increase in activity was seen in PAL (5-fold) and TPC (4-fold) at transplanting stage, whereas the highest TPC (2 to 3-fold) and POD activity (3-fold) were found at maturing stage in all the inoculated resistant genotypes in comparison with controls. Esfahan Local and H. a.s 2274 showed the highest level of activity in POD (2.5- and 3- fold, respectively) and TPC (2.5- and 4-fold, respectively). Our results suggest that using both genetic diversity and enzymatic diversity as markers, it is possible to discriminate resistant from susceptible tomato genotypes to early blight disease.
Collapse
Affiliation(s)
- Giti Alizadeh-Moghaddam
- Department of Biology, Falavarjan Branch, Islamic Azad University, Isfahan, 84517-31167, Iran.
| | - Zahra Rezayatmand
- Department of Biology, Falavarjan Branch, Islamic Azad University, Isfahan, 84517-31167, Iran.
| | - Mehdi Nasr- Esfahani
- Plant Protection Research Division, Isfahan Center for Research and Education in Agricultural Science and Natural Resources, (AREEO), Isfahan, 81786-96446, Iran.
| | - Mahdi Khozaei
- Plant Biotechnology, Department of Biology, University of Isfahan, Isfahan, 81746-73441, Iran.
| |
Collapse
|